Time varying autoregressive models for multisite weather

generators

V. Monbet !, joint work with P. Ailliot2, T. T. T. Chau !, P. Tandéo?

1 Université de Rennes 1/IRMAR & INRIA/Aspi,
2UBO/LMBA,
2Telecom

Monbet, SWGEN 2016 (UR1) Locally linear models 1/23



@ Wind in Finistére

BRIGNOGAN

PLOUDALMEZEAU

BREST-GUIPAVAS.

LANVEOG

LANDIVISIAU

-5.0 -4.5

Monbet, SWGEN 2016 (UR1)

~4.0

-3.5

Locally linear models

Multivariate

- (Ut, ®4): easy to interprete for
meteorologists

- (ut, vt): easier to handle for
statistical models

About 20 years of hourly data,
missing data

Seasons
- Focus on january month
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Example of multivariate time series

@ The notion of regimes ou weather types is common in meteo. Different mean,
volatility, spatial covariance...

@ Can we model (u, v) with a finite number of regimes or should we consider a
smoother model?

u component (West-East)
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Local linear model

o Letusdenote X; = (uy(t), -, ug(t), vi(t), - , va(t))"

@ General local linear model

X = Ao(Xe—1,St) + A1(Xe—1, St)Xe—1 + -+ + Ap(Xe—1, St) Xi—p + E(Xe—1, St) /e

with Sy € {1,--- , M} a variable describing the regime.
@ If Ay, Ay, ---, Ap and X are constant over time

— Vector autoregressive model (VAR)
@ If Ap, X only dependon X;_q and Ay =--- =Ap =0

— Locally constant model

@ If Ap, Ay and X only depend on X;_4
— Local Linear Regression model (LLR)

@ If Ay, Ay and X only depend on a Markov chain S;
— Markov Switching autoregressive model (MSAR)
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Different wind conditions

@ Consider X;_1 such that U = 7m/s in each station and different directions.

@ If we fit a VAR model conditionnaly to these conditions, one obtains
- Autoregressive matrices A (X;_1)

e
I 100 100 10 0

S e e e e e Se e e e e

L Se e e s oo e

- Innovation covariance matrices X (X;_1) ( A not same scale)

N
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We propose to compare the following models.
@ Locally constant model
@ Local Linear Regression model (LLR)
@ Markov Switching autoregressive model (MSAR) (VAR is a particular case)
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Locally constant model

@ Algorithm: local bootstrap (LB) with a compact support kernel.

@ Simulation algorithm "Analogs"
Given a catalog of pairs of observations {(x*—"), x(®)) k =1,..., n} such that x(k)
is the successor of x(*=1) in time,

Xi|X;_1 = x + (weighted) bootstrap sampling in {x*)|x(*=1) € Knn(x)}

where Knn(x) stands for the set of the K nearest neighbors of x for the euclidean
distance. Weights may depend on the distance d(x, x(k=1))

@ It leads to the Nadaraya Watson estimate of the conditional mean
E(Xt| Xt—1) = Ao(Xi—1).

The simulated process is Markovian.
@ May be extended to higher order and covariables can be added.
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Replace Local Bootstrap by Local Linear Regression?

@ We expect that Local Linear Regression does better than LB
@ Example : dimension 1, 4 observations
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Number of analogues

@ LLR is better for forecasting (dynamics close to linear).
@ Is it also better for simulating? How does it compare to MS-AR?
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Local linear regression

@ Simulation algorithm "LLR"
Given a catalog of pairs of observations {(x*="1, x(K) k =1,... , n}

1. Estimation of the local parameters

2
. . _ ; k) _ (k—1)
(Ao(x), A1(x)) = arg min g Wi || X (AO + Aix )H

0. A
x(k=1) e Knn(x)

with wy weights depending on the distance d(x(A=1), x).
2. Bootstrap sampling of the innovation

¢ « bootstrap sampling in ¢, = x() — (Ao(x) + A (x)x(k*‘)>
3. Computation of the successor X; of f(,_1 =X
Xl X1 = x = Ao(x) + A (x)x + &

Alternative for residuals 3 + By(x) + By (x)x
@ It leads to the LLR estimate of the conditional mean

E(Xt|Xi—1) = Ao(Xi—1) + A1 (Xe—1) Xi—1

The simulated process is Markovian.
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Markov Switching Autoregressive models

Weathertype -+ — S.1 — S — S —
Y
Wind s — Xt,1 — X[ — Xt+1 —

@ Weather type - Hidden weather type modeled as a first order Markov chain.
Homogeneous transitions

P(St = st|So = S0, , St—1 = St—1, X1 = X1, -+, Xt—1 = Xt—1) = P(St = 8t|Si—1 = st-1)
Non homogeneous transitions
P(St = st|So = S0, -+, St—1 = St—1, X1 = X1, -+, Xt—1 = X¢—1)

= P(St = st|St—1 = St—1, Xi—1 = X1_1)
@ Wind - Linear Gaussian AR(p) model for the wind evolution conditionally to the
weather type
Y= Ao(St) + A (S)Xi—1 + -+ Ao(S)Xe_p + £(St) " 2e

(Ai(s)), (X(s)) for s € 1,--- , M unknown parameters and {¢;} iid A'(0, 1) sequence
@ Inference: Maximum Likelihood
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Markov switching models

@ Autoregressive matrices Aq ()

Regime 1 : wind blowing from the West; regime 2: wind blowing from the East;
regime 3 and 4: larger volatility.

S P e e o e S e e e o e S e e e o e S e e e s a e e

@ Innovation covariance matrices ¥(s) ( A not same scale)
Regime 2 and 4 have high covariance of innovations. Regime 1 and 3: smaller
covariance but larger spatial scale.

R
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Markov switching models

@ Transition probabilities depends of the wind direction at Ploudamézeau (westliest

station)
N s
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Stochastic weather generator

@ One simulates sequences of (u, v) simultaneously at the 5 stations.

@ Computational time
- LLR ~ 14 s for one month of January (hourly data). The computation of the distance
and the sort are expensive. It can be improved.
- MSAR (4 regimes, order 2) ~ 40s to calibrate the model (done only one time), then
0.04 s for one month of January (hourly data).

@ To validate the SWGEN one compares several statistics of the observations to the
one of the data. The considered station is the westliest (Ploudalmézeau). The
performances at other stations are similar.

- the marginal distribution of (v, v) and U

- spatial covariance

- auto correlation of U and cross-correlation of U at Ploudalmézeau (westliest station)
and U at Landivisiau (eastliest station)

- cross-correlation of cos(® and sin(®)

- intensity of up-crossing for u and U

Monbet, SWGEN 2016 (UR1) Locally linear models 13/23



Marginal distributions (u,v), Ploudalmézeau

MSAR NH-MSAR
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Analogs LLR
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Spatial correlations (u,v)
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Correlation U, Ploudalmézeau
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Correlation U, Ploudalmézeau - zoom
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Cross-correlations, U, Ploudalmézeau-Landivisiau
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Cross-correlation (cos(®), sin(®)), Ploudalmézeau
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Intensity of up-crossings u, Ploudalmézeau
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Models comparison

@ Inference
- Statistical properties of Analogs are well known: local bootstrap.
- LLR only a few results for multivariate time series.
- MSAR provides a proper model with well known statistical properties ans tools for
inference.

@ Model/Interpretability
- Analogs and LLR are non parametric models difficult to interpret.
- Regimes and parameters of MSAR models have physical interpretation.

@ Robustness
- LLR needs less calibration than MSAR.
Easy to introduce covariables and to handle missing values.
It may be difficult and time consuming to optimize the algorithm parameters. What is
the good criteria for simulation?
If the dimension increases, some work is needed to choose an appropriate distance.
Ridge shrinkage easy to implement. Lasso?
- MSAR has been fitted to many weather variables time series (ex: wind,
temperature, rain).
Possiblity to introduce covariables in the intercept and in the transitions.
If the dimension increases, sparse versions can be used (Lasso).

@ Computational time
- MSAR is much faster.
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Models comparison

@ Simulation performances

- Analogs algorithm reproduces the marginal distribution, but produces no new
conditions.

- LLR better reproduces the dynamics but not as good for the marginal distribution.
- (NH) MSAR models are quite good in reproducing the second order structure but
they would need a control of the marginal distribution (ABC algorithms).

Analogs LLR MSAR NH-MSAR

(u, v) pdf + ++ + ++
U pdf ++ +
Cspat. + + ++ ++
Cw) ++ ++
Cuu) ++ +
Cicos(®) sin(®)) ++

E(N) ++

Initial question : " Can we model (u, v) with a finite number of regimes or should we
consider a smoother model? "

It is difficult to give a clear-cut answer: NH-MSAR is somewhere betwenn MSAR and
LLR and gives good results.
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