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Motivating example
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NI E North Pacific sea surface temperature

e Spatiotemporal field with power on
subseasonal to multidecadal timescales
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Given past SST observations, predict the
evolution of the Pacific decadal
oscillation
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Why nonparametric forecasting?

In many low-order modeling scenarios, it is difficult to construct a
parametric model that fits the training data well and also has high

forecast skill

PDO fit in training phase
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e Stationary and nonstationary
autoregressive models fit the PDO
training time series well, but fail to beat
persistence forecast in hindcast phase
(Comeau et al. 2016)
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@ Conventional analog forecasting

® Basic kernel analog forecasting

©® KAF with Nystrom extension

® Dynamics-aware kernels

Collaborators. Romeo Alexander, Mitch Bushuk, Darin Comeau, Andy
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Problem setup

Ergodic dynamical system (A, A, $;, ) with
evolution map @; and invariant prob. measure «

Measurable observation map 7 : A+— X into a
metric space X (space of initial data)

Square-integrable prediction observable
fel?’Aa)

Koopman operators U; : L?(A, ) — L2(A, ),
Uif(a) = £(2+(a))



Problem setup

e Ergodic dynamical system (A, A, $;, ) with
evolution map @; and invariant prob. measure «

e Measurable observation map 7 : A+ X into a
metric space X (space of initial data)

e Square-integrable prediction observable
fel?’Aa)

o Koopman operators U; : L2(A, o) — L?(A, ),
Uif(a) = £(2+(a))

Objective. Given time-ordered pairs

{(x0, o), (x1, 1), ., (xv—1, fv—1) },
Xj = ’7T(a,'), fi= f(a,-), aj = @t,.(ao), ti = (I — 1)7‘,

construct a function F; : X — R that predicts f over lead time t



Problem setup

e Ergodic dynamical system (A, A, $;, ) with
evolution map @; and invariant prob. measure «

e Measurable observation map 7 : A+ X into a
metric space X (space of initial data)

e Square-integrable prediction observable
fel?’Aa)

o Koopman operators U; : L2(A, o) — L?(A, ),
Uif(a) = £(2+(a))

Objective. Given time-ordered pairs

{(x0, o), (x1, 1), ., (xv—1, fv—1) },
Xj = ’7T(a,'), fi= f(a,-), aj = @t,.(ao), ti = (I — 1)7‘,

construct a function F; : X — R that predicts f over lead time t

o A “perfect” forecast has F,(m(b)) = U.f(b) for all b € A.



Analog prediction (Lorenz 1969)

e Training data: Time-ordered pairs
{0 )}

e Input: Previously unseen sample y € X,
distance function D

e Output: Forecast F,(y) of  at lead
t=gqr,qeN

= fa)

Model-free, two-step technique:

® Analog identification:

i= argmin D(y,x;)
je{0,...,N—1}

® Prediction: )
Fi(y) = Uif(aj) = i+q

e Model error is avoided if {(x;, f;)} are observations of nature

e {x;} does not have to be a Markovian time series



Kernel analog forecasting

Potential shortcomings of conventional analog forecasting:
° IA-_t(y) depends discontinuously on the initial data even if f is continuous

e The forecast step uses information from only a single state in the training
data

Kernel analog forecasting (Zhao & G. 2016, Comeau et al. 2016) addresses
these deficiencies using kernel out-of-sample extension techniques for
functions

Two variants of the technique based on:
e Nystrom extension (Coifman & Lafon 2006)
Performs best for data-driven bandlimited observables

e Laplacian pyramids (Coifman & Rabin 2012, Fernidndez et al. 2014)
Works for arbitrary observables, is able to cope with forecast biases in the
case of partially observed systems



Basic properties of kernels

A kernel K : X x X +— R is a pairwise
measure of similarity in data space with
“nice" properties

fi = f(a))

e 0<K<(C<x
° O<C§fMK(y,-)d,u<oo,y€X,u:a0ﬂ*1
e K(-,x) is continuous for all x € M.

Example (radial Gaussian kernel). X is compact and

K(y,x) = esz(y’X)/E, e>0



Basic properties of kernels

For data generated by ergodic dynamical systems,
kernels naturally lead to averaging operators

N—1

P(b) = [ p(b.2)f(a) dila) = ; 3 blb.a)f(a)
fi = f(a) A i=0

R

e P is an operator on L2(A, &) for the sampling measure & = N1 E;V:_l

e pis computed by normalization of K, e.g.,

N—
b5, =< g0 L3 K(a(o) w(a)

i=0

e By the pointwise ergodic theorem, as N — oo, Pf(b) converges a-a.s. to

p(b.a) = LTI gy

q(b)

Pf(b) = / p(b, 2)f(2) da(a),
[ K(r(b). m(a)) daa)



Basic kernel analog forecasting

Conventional analog forecast at lead t = g7 can also be expressed as

I:_ty:/Utfdd;i: itq, 1= argmin D(y,x;)
A jef{0,...,N—1}

Kernel-based formulation:
@ Map the initial data y to the probability measure
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® Predict using the expectation value

N—
ﬁt(y):AUtfdﬁy_ Z Py, xi)fiq
i=0



Basic kernel analog forecasting

N—1

N R 1 R

Fly) = | Ufdiy =5 > By, xi)fitq
i=0

= fa)

e There exists a unique function 7 € L2(A, ) lying above F, in the sense
that f,(b) = Fi(w(b)) for all b € A:

L V-1
fe(b) = N Z p(b, ai)firq
i—0

e As N — oo, Fi(y) converges to

dv .
F) = [ dv. S = plyn() = ST,

and there exists a unique f; € L2(A, a) lying above F;
e If the dynamics is mixing, f; = f= fA fda
—00



Basic kernel analog forecasting

Pros:
e f; is continuous if K is continuous in its first argument

e Multiple states in the training data are weighted

Cons:
e The forecast can be biased, i.e.,

/rtdCY#O, rt:ﬂ—Utf
A

e The forecast can be overly diffusive, in the sense that even if P is a
“good"” averaging operator (positive semidefinite, self-adjoint on
[2(A, ), ||rt]l > ~||f — f|, where v is the spectral gap of P, and ||r||
can be arbitrarily close to ||f — f||



Reproducing kernel Hilbert spaces

A positive-semidefinite kernel o : X x X — R has the integrability and
boundedness properties of non-symmetric kernels plus

e Symmetry: o(y,x) = o(x,y) forall x,y € X

e Non-negativity: Z,J 1Gio(xi,xj)cp >0 forall neN, xi,...,x, € X,
C1, ,Ch € R

o induces a positive-semidefinite kernel on A, s(b, a) = o(w(b), w(a))

Theorem (Moore-Aronszajn). There exists a unique Hilbert space H of
functions A— R s.t. for all b € A,



Reproducing kernel Hilbert spaces

Given a normalized non-symmetric kernel g, we can form a
positive-semidefinite kernel via “right” symmetrization

1 N—-1

&(yvx):N ﬁ(y,X/,)ﬁ(X,X/)

o

[similarly for “left” symmetrization]

As N — oo, & converges a-a.s. to

o(y,x) = /M p(y,-)p(x, ) dp

e & is computable from finite datasets whereas o is not



Reproducing kernel Hilbert spaces
The RKHS # associated with § consists of functions of the form
N—1 ] Nt
f= 2 cip(-, ai), m ; ¢ < oo

e Because p(b, a;) = p(n(b),n(a;)), f(b) is constant on 7~ 1((b))

# lies in the intersection of [2(A, &) and L2(A, &), i.e.,

fefl = Hf||a:/f2doz<oo, Kz
A

©

1 N—1
d:NZf2(al)<Oo
i=0



Nystrom extension

There exist subspaces B; C 7 of bandlimited
observables which can be evaluated at arbitrary
points on A given their values on the sampled
states

Bl - Span{w(% e awlfl}
1 -

£ = flar) lbk = 17/25¢k’ Ak > 0

R Ak

S: 1A a)—H, S5f= /s( a) dé(a) Z

i=0

o {@k}r=4 is an orthonormal basis of L2(A, &) consisting of eigenfunctions
of 5*5
e In the case of left (right) symmetrization, the ¢, (a;) are given by the

right (left) singular vectors of P = N~1[p(a;, a;)], and )\k/ are equal to
the corresponding singular values

e In the context of out-of-sample extension of functions on manifolds, the
1k are known as geometric harmonics (Coifman & Lafon 2006)



Nystrom extension

e The v are orthonormal on H

e For f = ZL;IO ckk, then, without approximation,

=

-1

f(ai)ox(ai)

1 1
k= 75 {0k Fla =
A NAY? 4

Il
<}

o 1 lies above a unique function ¥, : X — R s.t.

=
-

i(y) = &(y,xi)px(ar)

=
I

J

fi = f(a))

o Similarly, f lies above F = ZL_:IO kP

o Given g = S didx € L2(A, &), the RKHS norm ||g
measures its roughness with respect to the kernel 5

/-1
k—o A/ Ak
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Kernel analog forecasting with Nystrom extension

@ Expand the time-shifted forecast observable U;f, t = g, as

/-1

Uf = Z Ck(t)wk + 11,

k=0
where r; is in the orthogonal complement Bj- of B; in L%(A, «)

® Compute the expansion coefficients

C() <wk7Ut = 1/2 Z¢k aj /+q

© Given initial data y € X, evaluate the forecast using



Kernel analog forecasting with Nystrom extension

o If U;f lies in By for all lead times of interest, then, by construction,
analog forecasting with Nystrom extension has vanishing forecast error

e In practice, U;f will have a nonzero residual in B,J- at t =0 and/or at
t > 0 since By is not a Us-invariant subspace of L2(A, )

o Yet, for appropriately constructed kernels, B; contains physically
meaningful data-driven observables
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Analog prediction of low-frequency eigenfunctions of North Pacific SST
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(Zhao & G. 2016, Comeau et al. 2016)



Analog prediction of low-frequency eigenfunctions of North Pacific SST

Running PDO forecast Running ENSO forecast
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(Rudimentary) uncertainty quantification:
We compute two-sided error bars ¢(y) through a local average of the
squared residual norm in the training dataset

N—
(y) = Z (o)), re(xi) = Fe(x) = fivg, t=gqr



Prediction of spatial PDO patterns
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Prediction of spatial PDO patterns
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Prediction of spatial PDO patterns
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Choice of kernel

Restrict attention to the case X = RY,

M = 7(A) C X is compact, and K, is a
symmetric, exponentially decaying kernel
with a bandwidth parameter ¢, e.g.,

K.(y,x) = e lly=xI?/e

fi=f(a)

Diffusion maps normalization (Coifman & Lafon 2006, Berry & Sauer 2015)
® "Right” normalization:

Rty = K a0 2 L5 )
e\, X 1/2 s e\ X) = e\ X, Xi ),
g% (x) N <

® “Left” normalization:
R k’(y,x) R 1 N—1 .y
pe(yax):iiv de(y)zi e(yvxi)
de(y) N =

By ergodicity, p(y, x) T pe(y,x), given by replacing N=1 3" in the
—00
above by [, du



Choice of kernel

Associated with . is an (ergodic) Markov semigroup {P"} ,en on
L2(A, &) with

N

-1
=S b(ba)f(a),  Belb,a) = p(n(b), 7(a))
i=0

P.f(b) =

=]

As N — oo, P.f(b) — P.f(b) (given again by replacing sums with
integrals)

Recall that the {¢;} basis of L2(A, &) used in Nystrom extension is
determined by the SVD of P,

e Can study the asymptotic behavior of the scheme in the limit of large
data through the properties of P,



Small-bandwidth asymptotics

If Ais a smooth manifold diffeomorphic to M (i.e., the observations are
fuII), then, uniformly on A (Coifman & Lafon 2006, Berry & Sauer 2015),

Pf(b) = f(b) — eLf(b) + O(¢?)

o [ is the generator of a gradient flow for a Riemannian metric g that
depends on K. and a potential e=?, § = da/dvoly:

A91/2

Lf = AF =

f, Af = —divggrad, f
e In the limit e = 0, N — oo, the ¢« converge to the eigenfunctions of L,
which have a geometrical interpretation as the extrema of the Rayleigh

quotient
E(f
(), E(f):/||gradgf||2da
Il A
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Dynamics-aware kernels

The following features enhance the timescale separation and physical
interpretability of the eigenfunctions:

e Delay-coordinate embeddings (G. & Majda 2011-2014, Berry et al. 2013)
Concatenate snapshots over a running window to form “videos”

zi =7(a;) = (Xi, Xi—1, -+ s Xi—(q-1)), Xi = 7(a;)

Kernels evaluated on Z become increasingly biased towards stable
Lyapunov directions (Berry et al. 2013)

2
—|zi—zl|* /€
Ke(Zth) —e llzi—z/

e “Cone” kernels (G. 2015)

L vl12
Kecang) = exp |~ 2250010 ¢ cog,)(1 - ¢ cos? 0,112
’ el
Xjir1 — Xi—1 (Xj - Xi) : fi
§i=——F—, cosf= ——"—- (<1
2 1€l — ]

Directional dependence on &; acts as an intrinsic low-pass filter favoring
slowly-varying observables



Recovering slow intrinsic timescales

Cone kernels are associated with a modified Riemannian geometry on
A with the metric tensor

1 b b
hC (g <_V Q@V)7 V:dUt

VI vz dt

t=0

e v is the vector field on A generating the dynamics

As ( — 1, h¢ increasingly contracts lengths along v

The associated gradient flow becomes increasingly biased along the
integral curves of the dynamics

1
(1-9)

The leading eigenfunctions with small E;(¢x) have small directional
derivative v(¢y), i.e., are slowly varying

E(f) =

/A (v(F)? da+ O((1 - ¢)%)



Recovering multiple intrinsic timescales
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Summary of kernel analog forecasting with Nystrom extension

delay-coordinate data-driven

embeddings \ / observables (1)
kernel I

construction

velocity-dependent / \ Nystrom-based

features (&) analog prediction

e Technique is expected to perform well for bandlimited forecast
observables (e.g., kernel eigenfunctions)

e Potential shortcomings include biases and/or poor conditioning for
broadband observables in the kernel eigenfunction basis (in such cases,
use Laplacian pyramids technique)



Summary & outlook

o Kernel analog forecasting provides a flexible nonparametric modeling
approach, which does not require prior knowledge of the equations of
motion, or an appropriate parametric model structure

e Variants of the technique based on Nystrom extension and Laplacian
pyramids are applicable for bandlimited and broadband observables (in
the RKHS sense), respectively

o Interplay between “dynamics-aware" kernels and data-driven observables
constructed through kernel eigenfunctions

e Promising results in SST and sea-ice prediction and forecasts of tropical
intraseasonal oscillations (Alexander et al. 2016; not discussed here)



Summary & outlook

Several open questions for future research, including:

e Establishment of convergence rates and associated truncation criteria to
prevent overfitting

e Improved UQ

o Kernel design: Can we construct kernels tailored to the given prediction
observable?

e Incorporation of prior information about the equations of motion
o Study effects of observational noise
e Extension to nonautonomous and/or stochastic dynamics

e Extension to vector-valued prediction observables
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Kernel analog forecasting with Laplacian pyramids

o Let Py, Py,..., P, be a sequence of averaging operators constructed from
kernels K., with bandwidth parameters eg > €1 > --- > ¢

e Consider the basic kernel analog forecast formula

fro(b) = PoUef(b) = /Apo(b, a)U:f(a) da(a)



Kernel analog forecasting with Laplacian pyramids

o Let Py, Py,..., P, be a sequence of averaging operators constructed from
kernels K., with bandwidth parameters eg > €1 > --- > ¢

e Consider the basic kernel analog forecast formula
fro(b) = PoUef(b) = / po(b, a)U;f(a) da(a)
A
e In LP (Coifman & Rabin 2012, Ferndndez et al. 2014), the residual

reo(b) = Uf(b) — PoUyf(b) is viewed as a new observable to be
approximated via

gia(b) = Pirio(b) = /A p1(b, a)re1(a) da)



Kernel analog forecasting with Laplacian pyramids

o Let Py, Py,..., P, be a sequence of averaging operators constructed from
kernels K., with bandwidth parameters eg > €1 > --- > ¢

e Consider the basic kernel analog forecast formula
fro(b) = PoUef(b) = / po(b, a)U;f(a) da(a)
A

e In LP (Coifman & Rabin 2012, Ferndndez et al. 2014), the residual
reo(b) = Uf(b) — PoUyf(b) is viewed as a new observable to be
approximated via

gia(b) = Pirio(b) = /A p1(b, a)re1(a) da)

o lterating this procedure / times yields the /-level Laplacian pyramids
approximation of the forecast observable f at lead time t:

I
ft,l = ft,O + th,i

i=1



Kernel analog forecasting with Laplacian pyramids

e LP-based kernel analog forecasting is better suited than the
Nystrom-based approach to deal with non-bandlimited forecast
observables for the given kernel family

o At each level of approximation, the refinement g ; = Pjry ;1 liesin a
RKHS #; associated with p;

e If the P; are positive-semidefinite, self-adjoint on L2(A, ),
[[re,ill < llreiall

o LP-based forecasts with general averaging operators can be biased,

/rt,/da#O
A



North Pacific sea-ice prediction

e Kernel analog forecasts of North Pacific total sea-ice area from extended
control integration of the CCSM4 climate model and HadISST satellite
observations (Comeau et. al 2015)

e Signal dominated by seasonal cycle; anomalies relative to seasonal cycle
are highly intermittent and have heavy-tailed distributions

o Multivariate predictors (SST and sea ice concentration) used

e Significant trend (non-autonomous dynamics) present in nature
(HadISST dataset)



Kernel analog forecast results—CCSM4 data
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Kernel analog forecast results—HadISST data
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