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Motivating example

North Pacific sea surface temperature

• Spatiotemporal field with power on
subseasonal to multidecadal timescales

Given past SST observations, predict the
evolution of the Pacific decadal
oscillation
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Why nonparametric forecasting?

In many low-order modeling scenarios, it is difficult to construct a
parametric model that fits the training data well and also has high
forecast skill

PDO fit in training phase
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Fig. 6 Ensemble analog prediction results for the leading two low-
frequency modes, with model error. CCSM4 model data is used for the
in-sample data, and HadISST observational data is used as the out-of-
sample data. Here the method produces little advantage over persis-
tence in RMSE, given the model error between model and nature, but
there is gain in skill over persistence in pattern correlation for the f SI

L2
(PDO) mode.

discussed in Section 2.4, for the low-frequency modes f SI
L1

,721

f SI
L2

generated from CCSM4 model (Figure 7) and the HadISST722

observation (8) training data. For both sets of low-frequency723

modes, K = 2 clusters was judged to be optimal by the AIC724

as mentioned in Section 2.4–see Horenko (2010b); Metzner725

et al (2012) for more details. The coefficients for each clus-726

ter are nearly the same (autoregressive coefficent close to 1,727

similar noise coefficients), apart from the constant forcing728

coefficient µi of almost equal magnitude and opposite sign,729

suggesting two distinct regime behaviors. In the stationary730

case, the external forcing coefficient µ is very close to 0.731

In the top left panel of Figures 7 and 8, we display snap-732

shots of the leading low-frequency mode f SI
L1

(NPGO) tra-733

jectory reconstruction during the training period, for the sta-734

tionary and non-stationary models, along with the cluster735

switching function associated with the non-stationary model.736

In both the CCSM4 model and HadISST data sets, the non-737

stationary model snapshot is a better representation of the738

truth, and the benefit over the stationary model is more clearly739

seen in the CCSM4 model data, Figure 7, which has the ben-740

efit of a 400 year training period, as opposed to the shorter741

16 year training period with the observational data set.742

In the prediction setting, however, the non-stationary mod-743

els, which are reliant on an advancement of the unknown744

cluster affiliation function G (t) beyond the training period,745

as discussed in Section 2.4, fail to outperform their station-746

ary counterparts in the RMSE and PC metrics (bottom pan-747

els of Figures 7 and 8). In fact, none of the proposed re-748

gression prediction models are able to outperform the sim-749

ple persistence forecast in these experiments. As a measure750

of potential predition skill for the non-stationary models,751

whereby we mean that if perfect knowledge of the underly-752

ing optimal cluster switching function G (t) could be known753

over the test period, we have run the experiment of replacing754

the test data period with the training data set, and find ex-755

ceedingly strong predictive performance, with PC between756

0.7 and 0.8 for all time lags tested, up to 60 months. Simi-757

lar qualitative results for the second leading low-frequency758

mode f SI
L2

(PDO) for each data set were found (not shown).759

This suggests that the Markov hypothesis, the basis for the760

predictions of G (t), is not accurate, and other methods in-761

corporating more memory are needed.762
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Fig. 7 Top left: Snapshot of the true CCSM4 f SI
L1

(NPGO) trajectory
(black) with reconstructed stationary (blue) and non-stationary K = 2
(red) FEM-VARX model trajectories, along with corresponding model
affiliation function G (t) for non-stationary case. Top right: Sample tra-
jectories for various prediction methods: P2 = stationary, using FEM-
VARX model coefficients from initial cluster; K1 = stationary autore-
gressive; M1, M2 = FEM-VARX with predictions as described in Sec-
tion 2.4.1, where M1 is deterministic evolution of the cluster affiliation
p(t), and M2 uses realizations of p generated from the estimated prob-
ability transition matrix T . Bottom panels: RMSE and PC as a function
of lead time for various prediction methods, including P1 = persistence
as a benchmark. The dashed black line is for potential predictive skill of
non-stationary FEM-VARX, where predictions were ran over the train-
ing period using the known optimal model affiliation function G (t).

4.2 Sea ice anomalies763

The targeted observables hereto considered for prediction764

have been data driven, and as such influenced by the data765

analysis algorithm. Hence there is no objective ground truth766

available when predicting these modes beyond the training767

period on which the data analysis was performed, and while768

• Stationary and nonstationary
autoregressive models fit the PDO
training time series well, but fail to beat
persistence forecast in hindcast phase
(Comeau et al. 2016)

Hindcast phase
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Fig. 7 Top left: Snapshot of the true CCSM4 f SI
L1

(NPGO) trajectory
(black) with reconstructed stationary (blue) and non-stationary K = 2
(red) FEM-VARX model trajectories, along with corresponding model
affiliation function G (t) for non-stationary case. Top right: Sample tra-
jectories for various prediction methods: P2 = stationary, using FEM-
VARX model coefficients from initial cluster; K1 = stationary autore-
gressive; M1, M2 = FEM-VARX with predictions as described in Sec-
tion 2.4.1, where M1 is deterministic evolution of the cluster affiliation
p(t), and M2 uses realizations of p generated from the estimated prob-
ability transition matrix T . Bottom panels: RMSE and PC as a function
of lead time for various prediction methods, including P1 = persistence
as a benchmark. The dashed black line is for potential predictive skill of
non-stationary FEM-VARX, where predictions were ran over the train-
ing period using the known optimal model affiliation function G (t).
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Outline

1 Conventional analog forecasting

2 Basic kernel analog forecasting

3 KAF with Nyström extension

4 Dynamics-aware kernels

Collaborators. Romeo Alexander, Mitch Bushuk, Darin Comeau, Andy
Majda, Joanna Slawinska, Eniko Szekely, Jane Zhao
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Problem setup

obs. map
π

observable

f
prediction

M = π(A)

fi = f (ai )

X

xi = π(ai )

R

A

a0

ai = Φti
a0

x0 = π(a0)

• Ergodic dynamical system (A,A, Φt , α) with
evolution map Φt and invariant prob. measure α

• Measurable observation map π : A 7→ X into a
metric space X (space of initial data)

• Square-integrable prediction observable
f ∈ L2(A, α)

• Koopman operators Ut : L2(A, α) 7→ L2(A, α),
Ut f (a) = f (Φt(a))

Objective. Given time-ordered pairs

{(x0, f0), (x1, f1), . . . , (xN−1, fN−1)},
xi = π(ai ), fi = f (ai ), ai = Φti (a0), ti = (i − 1)τ,

construct a function F̂t : X 7→ R that predicts f over lead time t

• A “perfect” forecast has F̂t(π(b)) = Ut f (b) for all b ∈ A.
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Analog prediction (Lorenz 1969)

obs. map
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observable

f
prediction

M = π(A)

fi = f (ai )

X

xi = π(ai )

R

A

a0

ai = Φti
a0

x0 = π(a0)

• Training data: Time-ordered pairs
{(xi , fi )}N−1

i=0

• Input: Previously unseen sample y ∈ X ,
distance function D

• Output: Forecast F̂t(y) of f at lead
t = qτ , q ∈ N

Model-free, two-step technique:

1 Analog identification:

i = argmin
j∈{0,...,N−1}

D(y , xj)

2 Prediction:
F̂t(y) = Ut f (ai ) = fi+q

• Model error is avoided if {(xi , fi )} are observations of nature

• {xi} does not have to be a Markovian time series



Kernel analog forecasting

Potential shortcomings of conventional analog forecasting:

• F̂t(y) depends discontinuously on the initial data even if f is continuous

• The forecast step uses information from only a single state in the training
data

Kernel analog forecasting (Zhao & G. 2016, Comeau et al. 2016) addresses
these deficiencies using kernel out-of-sample extension techniques for
functions

Two variants of the technique based on:

• Nyström extension (Coifman & Lafon 2006)

Performs best for data-driven bandlimited observables

• Laplacian pyramids (Coifman & Rabin 2012, Fernández et al. 2014)

Works for arbitrary observables, is able to cope with forecast biases in the
case of partially observed systems



Basic properties of kernels

obs. map
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f
prediction

M = π(A)

fi = f (ai )

X
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R

A

a0

ai = Φti
a0

x0 = π(a0)

A kernel K : X × X 7→ R is a pairwise
measure of similarity in data space with
“nice” properties

• 0 ≤ K ≤ C <∞
• 0 < c ≤

∫
M
K (y , ·) dµ <∞, y ∈ X , µ = α ◦ π−1

• K (·, x) is continuous for all x ∈ M.

Example (radial Gaussian kernel). X is compact and

K (y , x) = e−D
2(y ,x)/ε, ε > 0



Basic properties of kernels

obs. map
π

observable

f
prediction

M = π(A)

fi = f (ai )

X

xi = π(ai )

R

A

a0

ai = Φti
a0

x0 = π(a0)

For data generated by ergodic dynamical systems,
kernels naturally lead to averaging operators

P̂f (b) =

∫
A

p̂(b, a)f (a) dα̂(a) =
1

N

N−1∑
i=0

p̂(b, ai )f (ai )

• P̂ is an operator on L2(A, α̂) for the sampling measure α̂ = N−1
∑N−1

i=0 δai
• p̂ is computed by normalization of K , e.g.,

p̂(b, ai ) =
K (π(b), π(ai ))

q̂(b)
, q̂(b) =

1

N

N−1∑
i=0

K (π(b), π(ai ))

• By the pointwise ergodic theorem, as N →∞, P̂f (b) converges α-a.s. to

Pf (b) =

∫
A

p(b, a)f (a) dα(a),

p(b, a) =
K (π(b), π(a))

q(b)
, q(b) =

∫
A

K (π(b), π(a)) dα(a)



Basic kernel analog forecasting

Conventional analog forecast at lead t = qτ can also be expressed as

F̂ty =

∫
A

Ut f dδai = fi+q, i = argmin
j∈{0,...,N−1}

D(y , xj)

Kernel-based formulation:

1 Map the initial data y to the probability measure

ν̂y =
1

N

N−1∑
i=0

ρ̂(y , xi )δai , ρ̂(y , xi ) =
K (y , xi )

q̂(y)

2 Predict using the expectation value

F̂t(y) =

∫
A

Ut f d ν̂y =
1

N

N−1∑
i=0

ρ̂(y , xi )fi+q



Basic kernel analog forecasting

obs. map
π

observable

f
prediction

M = π(A)

fi = f (ai )

X

xi = π(ai )

R

A

a0

ai = Φti
a0

x0 = π(a0)

F̂t(y) =

∫
A

Ut f d ν̂y =
1

N

N−1∑
i=0

ρ̂(y , xi )fi+q

• There exists a unique function f̂t ∈ L2(A, α) lying above F̂t in the sense
that f̂t(b) = F̂t(π(b)) for all b ∈ A:

f̂t(b) =
1

N

N−1∑
i=0

p̂(b, ai )fi+q

• As N →∞, F̂t(y) converges to

Ft(y) =

∫
A

Ut f dνy ,
dνy
dα

= ρ(y , π(·)) =
K (y , π(·))

q(y)
,

and there exists a unique ft ∈ L2(A, α) lying above Ft

• If the dynamics is mixing, ft −−−→
t→∞

f̄ =
∫
A
f dα



Basic kernel analog forecasting

Pros:

• F̂t is continuous if K is continuous in its first argument

• Multiple states in the training data are weighted

Cons:

• The forecast can be biased, i.e.,∫
A

rt dα 6= 0, rt = ft − Ut f

• The forecast can be overly diffusive, in the sense that even if P is a
“good” averaging operator (positive semidefinite, self-adjoint on
L2(A, α)), ‖rt‖ ≥ γ‖f − f̄ ‖, where γ is the spectral gap of P, and ‖rt‖
can be arbitrarily close to ‖f − f̄ ‖



Reproducing kernel Hilbert spaces

A positive-semidefinite kernel σ : X × X 7→ R has the integrability and
boundedness properties of non-symmetric kernels plus

• Symmetry: σ(y , x) = σ(x , y) for all x , y ∈ X

• Non-negativity:
∑n

i,j=1 ciσ(xi , xj)cj ≥ 0 for all n ∈ N, x1, . . . , xn ∈ X ,
c1, . . . , cn ∈ R

σ induces a positive-semidefinite kernel on A, s(b, a) = σ(π(b), π(a))

Theorem (Moore-Aronszajn). There exists a unique Hilbert space H of
functions A 7→ R s.t. for all b ∈ A,

f (b) = 〈s(b, ·), f 〉H



Reproducing kernel Hilbert spaces

Given a normalized non-symmetric kernel ρ̂, we can form a
positive-semidefinite kernel via “right” symmetrization

σ̂(y , x) =
1

N

N−1∑
i=0

ρ̂(y , xi , )ρ̂(x , xi )

[similarly for “left” symmetrization]

As N →∞, σ̂ converges α-a.s. to

σ(y , x) =

∫
M

ρ(y , ·)ρ(x , ·) dµ

• σ̂ is computable from finite datasets whereas σ is not



Reproducing kernel Hilbert spaces

The RKHS Ĥ associated with ŝ consists of functions of the form

f =
N−1∑
i=0

ci p̂(·, ai ),
1

N

N−1∑
i=0

c2
i <∞

• Because p̂(b, ai ) = ρ̂(π(b), π(ai )), f (b) is constant on π−1(π(b))

Ĥ lies in the intersection of L2(A, α) and L2(A, α̂), i.e.,

f ∈ Ĥ =⇒ ‖f ‖α =

∫
A

f 2 dα <∞, ‖f ‖α̂ =
1

N

N−1∑
i=0

f 2(ai ) <∞

L2(A, α) L2(A, α̂)

Ĥ



Nyström extension

obs. map
π

observable

f
prediction

M = π(A)

fi = f (ai )

X

xi = π(ai )

R

A

a0

ai = Φti
a0

x0 = π(a0)

There exist subspaces Bl ⊂ Ĥ of bandlimited
observables which can be evaluated at arbitrary
points on A given their values on the sampled
states

Bl = span{ψ0, . . . , ψl−1}

ψk =
1

λ
1/2
k

Ŝφk , λk > 0

Ŝ : L2(A, α̂) 7→ Ĥ, Ŝ f =

∫
A

ŝ(·, a) dα̂(a) =
1

N

N−1∑
i=0

ŝ(·, ai )f (ai )

• {φk}N−1
k=0 is an orthonormal basis of L2(A, α̂) consisting of eigenfunctions

of Ŝ∗Ŝ

• In the case of left (right) symmetrization, the φk(ai ) are given by the

right (left) singular vectors of P = N−1[p̂(ai , aj)], and λ
1/2
k are equal to

the corresponding singular values

• In the context of out-of-sample extension of functions on manifolds, the
ψk are known as geometric harmonics (Coifman & Lafon 2006)



Nyström extension

• The ψk are orthonormal on Ĥ
• For f =

∑l−1
k=0 ckψk , then, without approximation,

ck =
1

λ
1/2
k

〈φk , f 〉α̂ =
1

Nλ
1/2
k

N−1∑
i=0

f (ai )φk(ai )

obs. map
π

observable

f
prediction

M = π(A)

fi = f (ai )

X

xi = π(ai )

R

A

a0

ai = Φti
a0

x0 = π(a0)

• ψk lies above a unique function Ψk : X 7→ R s.t.

Ψk(y) =
1

N

N−1∑
j=0

σ̂(y , xi )φk(ai )

• Similarly, f lies above F =
∑l−1

k=0 ckΨk

• Given g =
∑N−1

k=0 dkφk ∈ L2(A, α̂), the RKHS norm ‖g‖2
Ĥ =

∑l−1
k=0 d

2
k /λk

measures its roughness with respect to the kernel ŝ



Kernel analog forecasting with Nyström extension

1 Expand the time-shifted forecast observable Ut f , t = qτ , as

Ut f =
l−1∑
k=0

ck(t)ψk + rt ,

where rt is in the orthogonal complement B⊥l of Bl in L2(A, α)

2 Compute the expansion coefficients

ck(t) = 〈ψk ,Ut f 〉Ĥ =
1

Nλ
1/2
k

N−1∑
i=0

φk(ai )fi+q

3 Given initial data y ∈ X , evaluate the forecast using

F̂t(y) =
l−1∑
k=0

ck(t)Ψk(y)



Kernel analog forecasting with Nyström extension

• If Ut f lies in Bl for all lead times of interest, then, by construction,
analog forecasting with Nyström extension has vanishing forecast error

• In practice, Ut f will have a nonzero residual in B⊥l at t = 0 and/or at
t > 0 since Bl is not a Ut-invariant subspace of L2(A, α)

• Yet, for appropriately constructed kernels, Bl contains physically
meaningful data-driven observables
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Analog prediction of low-frequency eigenfunctions of North Pacific SST

ψ6 (PDO eigenfunction)
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(Zhao & G. 2016, Comeau et al. 2016)



Analog prediction of low-frequency eigenfunctions of North Pacific SST

Running PDO forecast
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(Rudimentary) uncertainty quantification:
We compute two-sided error bars ±εt(y) through a local average of the
squared residual norm in the training dataset

ε2
t (y) =

1

N

N−1∑
i=0

ρ̂(y , xi )|rt(xi )|2, rt(xi ) = F̂t(xi )− fi+q, t = qτ



Prediction of spatial PDO patterns
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Choice of kernel

obs. map
π

observable

f
prediction

M = π(A)

fi = f (ai )

X

xi = π(ai )

R

A

a0

ai = Φti
a0

x0 = π(a0)

Restrict attention to the case X = Rd ,
M = π(A) ⊂ X is compact, and Kε is a
symmetric, exponentially decaying kernel
with a bandwidth parameter ε, e.g.,

Kε(y , x) = e−‖y−x‖
2/ε

Diffusion maps normalization (Coifman & Lafon 2006, Berry & Sauer 2015)

1 “Right” normalization:

K̂ ′ε(y , x) =
Kε(y , x)

q̂
1/2
ε (x)

, q̂ε(x) =
1

N

N−1∑
i=0

Kε(x , xi ),

2 “Left” normalization:

ρ̂ε(y , x) =
K̂ ′ε(y , x)

d̂ε(y)
, d̂ε(y) =

1

N

N−1∑
i=0

K̂ ′ε(y , xi )

By ergodicity, ρ̂ε(y , x) −−−−→
N→∞

ρε(y , x), given by replacing N−1
∑

i in the

above by
∫
M

dµ



Choice of kernel

Associated with ρ̂ε is an (ergodic) Markov semigroup {P̂n
ε }n∈N on

L2(A, α̂) with

P̂εf (b) =
1

N

N−1∑
i=0

p̂ε(b, ai )f (ai ), p̂ε(b, a) = ρ̂ε(π(b), π(a))

As N →∞, P̂εf (b)→ Pεf (b) (given again by replacing sums with
integrals)

Recall that the {φi} basis of L2(A, α̂) used in Nyström extension is
determined by the SVD of P̂ε

• Can study the asymptotic behavior of the scheme in the limit of large
data through the properties of Pε



Small-bandwidth asymptotics

If A is a smooth manifold diffeomorphic to M (i.e., the observations are
full), then, uniformly on A (Coifman & Lafon 2006, Berry & Sauer 2015),

Pf (b) = f (b)− εLf (b) + O(ε2)

• L is the generator of a gradient flow for a Riemannian metric g that
depends on Kε and a potential e−θ, θ = dα/d volg :

Lf = ∆f − ∆θ1/2

θ1/2
f , ∆f = − divg gradg f

• In the limit ε→ 0, N →∞, the φk converge to the eigenfunctions of L,
which have a geometrical interpretation as the extrema of the Rayleigh
quotient

E (f )

‖f ‖2
, E (f ) =

∫
A

‖gradg f ‖2 dα



obs.map in
π̃ z0 = π̃(a0)

zi = π̃(ai )

prediction
f

observable

π̃(A)

Z

fi = f (ai )

X

a0

A π(A)

x0 = π(a0)

xi = π(ai )

R

ai = Φti
a0

π
obs. map

delay space



Dynamics-aware kernels

The following features enhance the timescale separation and physical
interpretability of the eigenfunctions:

• Delay-coordinate embeddings (G. & Majda 2011–2014, Berry et al. 2013)

Concatenate snapshots over a running window to form “videos”

zi = π̃(ai ) = (xi , xi−1, . . . , xi−(q−1)), xi = π(ai )

Kernels evaluated on Z become increasingly biased towards stable
Lyapunov directions (Berry et al. 2013)

Kε(zi , zj) = e−‖zi−zj‖
2/ε

• “Cone” kernels (G. 2015)

Kε,ζ(xi , xj) = exp

(
−‖xi − xj‖2

ε‖ξi‖‖ξj‖
[(1− ζ cos2 θi )(1− ζ cos2 θj)]1/2

)
ξi =

xi+1 − xi−1

2
, cos θi =

(xj − xi ) · ξi
‖ξi‖‖xj − xi‖

, ζ < 1

Directional dependence on ξi acts as an intrinsic low-pass filter favoring
slowly-varying observables



Recovering slow intrinsic timescales

Cone kernels are associated with a modified Riemannian geometry on
A with the metric tensor

hζ =
1

‖v‖2
g

(
g − ζ v

[ ⊗ v [

‖v‖2
g

)
, v =

dUt

dt

∣∣∣∣
t=0

• v is the vector field on A generating the dynamics

• As ζ → 1, hζ increasingly contracts lengths along v

• The associated gradient flow becomes increasingly biased along the
integral curves of the dynamics

Eζ(f ) =
1

(1− ζ)

∫
A

(v(f ))2 dα + O((1− ζ)0)

• The leading eigenfunctions with small Eζ(φk) have small directional
derivative v(φk), i.e., are slowly varying



Recovering multiple intrinsic timescales

Interannual and
decadal patterns of
Indo-Pacific SST
extracted via cone
kernels (Slawinska &

G. 2016)



Summary of kernel analog forecasting with Nyström extension

analog prediction

kernel
construction

delay-coordinate
embeddings

features (ξ)
velocity-dependent

data-driven
observables (ψk )

Nyström-based

• Technique is expected to perform well for bandlimited forecast
observables (e.g., kernel eigenfunctions)

• Potential shortcomings include biases and/or poor conditioning for
broadband observables in the kernel eigenfunction basis (in such cases,
use Laplacian pyramids technique)



Summary & outlook

• Kernel analog forecasting provides a flexible nonparametric modeling
approach, which does not require prior knowledge of the equations of
motion, or an appropriate parametric model structure

• Variants of the technique based on Nyström extension and Laplacian
pyramids are applicable for bandlimited and broadband observables (in
the RKHS sense), respectively

• Interplay between “dynamics-aware” kernels and data-driven observables
constructed through kernel eigenfunctions

• Promising results in SST and sea-ice prediction and forecasts of tropical
intraseasonal oscillations (Alexander et al. 2016; not discussed here)



Summary & outlook

Several open questions for future research, including:

• Establishment of convergence rates and associated truncation criteria to
prevent overfitting

• Improved UQ

• Kernel design: Can we construct kernels tailored to the given prediction
observable?

• Incorporation of prior information about the equations of motion

• Study effects of observational noise

• Extension to nonautonomous and/or stochastic dynamics

• Extension to vector-valued prediction observables
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Kernel analog forecasting with Laplacian pyramids

• Let P0,P1, . . . ,Pl be a sequence of averaging operators constructed from
kernels Kεi with bandwidth parameters ε0 > ε1 > · · · > εl

• Consider the basic kernel analog forecast formula

ft,0(b) = P0Ut f (b) =

∫
A

p0(b, a)Ut f (a) dα(a)

• In LP (Coifman & Rabin 2012, Fernández et al. 2014), the residual
rt,0(b) = Ut f (b)− P0Ut f (b) is viewed as a new observable to be
approximated via

gt,1(b) = P1rt,0(b) =

∫
A

p1(b, a)rt,1(a) dα(α)

• Iterating this procedure l times yields the l-level Laplacian pyramids
approximation of the forecast observable f at lead time t:

ft,l = ft,0 +
l∑

i=1

gt,i
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Kernel analog forecasting with Laplacian pyramids

• LP-based kernel analog forecasting is better suited than the
Nyström-based approach to deal with non-bandlimited forecast
observables for the given kernel family

• At each level of approximation, the refinement gt,i = Pi rt,i−1 lies in a
RKHS Hi associated with pi

• If the Pi are positive-semidefinite, self-adjoint on L2(A, α),

‖rt,i‖ ≤ ‖rt,i−1‖

• LP-based forecasts with general averaging operators can be biased,∫
A

rt,l dα 6= 0



North Pacific sea-ice prediction
Motivation Coupled NLSA North Pacific Variability Arctic Variability Reemergence Hierarchy Conclusions

North Pacific SST & sea ice data sets

• Monthly-averaged SST and
sea-ice concentration (SIC)
fields from extended control
integration of the CCSM3
model and HadISST obs

• Two-year lag embedding

• No seasonal detrending

Atmosphere grid T42 ⇡ 2.9�

Ocean and ice grid resoln. 1�

Temporal extent (yr) 900
# ocean gridpoints 6671
# ice gridpoints 3750
Embedding space dim. 160,104 and 90,000
NLSA temporal space dim. l 22

• Kernel analog forecasts of North Pacific total sea-ice area from extended
control integration of the CCSM4 climate model and HadISST satellite
observations (Comeau et. al 2015)

• Signal dominated by seasonal cycle; anomalies relative to seasonal cycle
are highly intermittent and have heavy-tailed distributions

• Multivariate predictors (SST and sea ice concentration) used

• Significant trend (non-autonomous dynamics) present in nature
(HadISST dataset)



Kernel analog forecast results—CCSM4 data
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Fig. 8 Top left: Snapshot of the true HadISST f SI
L1

(NPGO) trajectory
(black) with stationary (blue) and non-stationary K = 2 (red) FEM-
VARX model trajectories, along with the corresponding model affilia-
tion function G (t) for non-stationary case. Top right: Sample trajecto-
ries for various prediction methods–see Figure 7 for details of methods.
Bottom panels: RMSE and PC as a function of lead time for various
prediction methods. The dashed black line is for potential predictive
skill of non-stationary FEM-VARX, where predictions were ran over
the training period using the known optimal model affiliation function
G (t).

in this case the NLSA algorithm was used, other data analy-769

sis methods such as EOFs would suffer the same drawback.770

We wish to test our prediction method on an observable that771

is objective, in the sense that it can be computed indepen-772

dently of the data analysis algorithm, for which we turn773

to integrated sea ice extent anomalies as defined in Equa-774

tion (10). We can clearly compute the time series of sea ice775

anomalies from the out-of-sample set directly (relative to the776

training set climatology), which will be our ground truth,777

and use the Laplacian pyramid approach to generate our778

out-of-sample extension predictions. This observable does779

not have a tight expansion in the eigenfunction basis, so780

the geometric harmonics method of extension will be ill-781

conditioned, and thus not considered. We note that in this782

approach, there are reconstruction errors at time lag t = 0, so783

at very short time scales we cannot outperform persistence.784

We consider a range of truncation levels for the number of785

ensemble members used, which are nearest neighbors to the786

out-of-sample data point, as determined by the kernel func-787

tion. Using all available neighbors will likely overly smooth788

and average out features in forward trajectories, while using789

too few neighbors will place too much weight on particu-790

lar trajectories. Indeed we find good performance using 100791

(out of total possible 4791). The top left panel of Figure 9792

shows a snapshot of the true sea ice extent anomalies, re-793

spectively, together with a reconstructed out-of-sample ex-794

tension using the Laplacian pyramid. To be clear this is not795

a prediction trajectory, but rather each point in the out-of-796

sample extension is calculated using Equation (9); that is,797

each point is a time-lead t = 0 reconstruction.798
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Fig. 9 Top left: True sea ice cover anomalies plotted with the cor-
responding Laplacian pyramid out-of-sample extention function. The
other panels show prediction results using Laplacian pyramids for total
North Pacific sea ice cover anomalies in CCSM4 data. The number of
nearest neighbors (nN) used to form the ensemble was varied, and we
find the best performance when the ensemble is restricted to the nearest
100 neighbors, corresponding to about 2% of the total sample size.

The top right panel shows sample snapshots of predic-799

tion trajectories, restricting the ensemble size to the nearest800

10, 100, and then all nearest neighbors. Notice in particular801

predictions match the truth when the anomalies are close to802

0, but then may subsequently progress in the opposite sign803

as the truth. As our prediction metrics are averaged over ini-804

tial conditions spanning all months, the difficulty the pre-805

dictions have in projecting from a state of near 0 anomaly806

significantly hampers the ability for long-range predictabil-807

ity of this observable.808

In the bottom two panels of Figure 9 we have the aver-809

aged error metrics, and see year to year correlations mani-810

festing as a dip/bump in RMSE and PC in the persistence811

forecast that occurs after 12 months. After the first month812

lag time, the kernel ensemble analog forecasts overcome the813

reconstruction error and beat persistence in both RMSE and814

PC, and give about a 2 month increase in prediction skill (as815

measured by when the PC drops below 0.6) over persistence.816

We see the best performance restricting the ensemble size to817

100 nearest neighbors (about 2% of the total sample size)818

in both the RMSE and PC metrics, though this is marginal819

before the error metrics drop below the 0.6 threshold.820

Pushing the prediction strategy to an even more difficult821

problem, in Figure 10 we try to predict observational sea ice822

extent anomalies using CCSM4 model data as training data.823



Kernel analog forecast results—HadISST data
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In this scenario, without knowledge of the test data clima-824

tology, the observation sea ice extent anomalies are defined825

using the CCSM4 climatology. In the top panel of Figure 10826

we see the strong bias as a result, where the observational827

record has less sea ice than the CCSM model climatology,828

which has been taken from a pre-industrial control run. This829

strongly hampers the ability to accurately predict observa-830

tional sea ice extent anomalies using CCSM4 model ensem-831

ble analogs, and as a result the only predictive skill we see832

is from the annual cycle.833
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Fig. 10 Prediction results for total observed (HadISST data) North Pa-
cific sea ice volume anomalies, using CCSM4 as training data. The ice
cover function is out-of-sample extended via Laplacian pyramid, using
100 nearest neighbors.

5 Discussion834

We have examined a recently proposed prediction strategy835

employing a kernel ensemble analog forecasting scheme mak-836

ing use of out-of-sample extension techniques. These non-837

parametric, data-driven methods make no assumptions on838

the underlying governing dynamics or statistics. We have839

used these methods in conjunction with NLSA to extract840

low-frequency modes of variability from North Pacific SST841

and SIC data sets, both from models and observations. We842

find that for these low-frequency modes, the analog forecast-843

ing performs at least as well, and in many cases better than,844

the simple constant persistence forecast. Predictive skill, as845

measured by PC exceeding 0.6, can be increased by up to 3846

to 6 months for low-frequency modes of variability in the847

North Pacific. This is a strong advantage over traditional848

parametric regression models, which were shown to fail to849

beat persistence. There is a limitation in using short time se-850

ries with this method, as illustrated in our examples with ob-851

servational data. In those experiments, when long CCSM4852

model data was used as training, CCSM4 model biases in-853

troduced model error into the forecasts, and predictability854

was lower than perfect model experiments.855

The kernel ensemble analog forecasting methods out-856

lined included two variations on the underlying out-of-sample857

extension scheme, each with its strengths and weaknesses.858

The geometric harmonics method, based on the Nyström859

method, worked well for observables that are band-limited860

in the eigenfunction basis, in particular the eigenfunctions861

themselves. However for observables not easily expressed in862

such a basis, the Laplacian pyramid provides an alternative863

method based on a multiscale decomposition of the original864

observable.865

While the low-frequency eigenfunctions from NLSA were866

a natural preferred class of observables to target for predic-867

tion, we also studied the case of objective observables un-868

influenced by the data analysis algorithm. Motivated by the869

strong reemergence phenomena, we considered sea ice ex-870

tent anomalies as our target for prediction in the North Pa-871

cific. Using a shorter embedding window due to faster (sea-872

sonal) time scale dynamics, we obtain approximately a two873

month increase in predictive skill over the persistence fore-874

cast. While this forecast method may reveal predictability875

in a system, the data-driven nature of the method leaves ab-876

sent a conceptual or mechanistic description of the source877

of the predictability. However, identifying predictability can878

be useful in directing focus of where further investigation879

with physical models could be beneficial to understanding880

this predictability.881

An important consideration is that our prediction metrics882

are averaged over initial conditions ranging over all possible883

initial states of the system. As we saw clearly in the case884

of North Pacific sea ice volume anomalies, these prediction885

strategies can have difficulty with projecting from an ini-886

tial state of quiessence, and can easily predict to the wrong887

sign of an active state, greatly hampering predictive skill.888

On the other hand we would expect predictive skill to be889

stronger for those initial states that begin in a strongly ac-890

tive state, or said differently, clearly in one climate regime,891

as oppose to in transition between the two. Future work will892

further explore conditional forecasting, where we either con-893

dition forecasts on the initial month, or the target month. It894

is also evident that when considering regional sea ice extent895

anomalies winds play a large role in moving ice into and896

out of the domain of interest, and as such additional consid-897

eration of the atmospheric component in the system could898

be included in the multivariate kernel function, despite hav-899

ing weaker low-frequency variability. Finally, extending the900

scope of this work to other regions in the Arctic, from the901


