Background 0 BHM 00000 Application 0 Simulation 0000000

References

Generating gridded fields of extreme precipitation for large domains with a Bayesian hierarchical model

Cameron Bracken

Department of Civil, Environmental and Architectural Engineering University of Colorado at Boulder

> Vannes, France May 19, 2016

Introduction	
00000	

BHM

Application 0 Simulation 0000000 References

Coauthors

- Balaji Rajagopalan University of Colorado
- ► Will Kleiber University of Colorado
- Linyin Cheng NOAA
- ► Subhrendu Gangopadhyay Bureau of Reclamation

Background

BHM

Application 0 Simulation 0000000 References

This talk

- Motivation Link to weather generation
- ► Bayesian hierarchical model (BHM) for spatial extremes
- Application to the Western US
- Simulation procedure using the BHM

Background 0 BHM 00000 Application 0 Simulation 0000000

References

Motivation - Extremes in the western US?

- From 1983-2000 the Western States (WA, OR, CA, ID, NV, UT, AZ, MT, WY, CO, NM, ND, SD, NE, KS, OK, and TX) experienced \$24.7 billion in flood damages, \$1.5 billion annually.
- California, Washington, and Oregon alone accounted for \$10.6 billion (46 percent) [Ralph et al., 2014, Pielke et al., 2002]

Boulder Flood, 2013

Research into hydroclimate extremes can provide more accurate and localized estimates of flood risk.

Background

BHM 00000 Application 0 Simulation 0000000 References

More Motivation

- How are simulated fields of extremes linked to weather generation?
- May not need a full weather generator extremes may be the only quantity of interest
- Preserve spatial dependence of simulated extremes
- Downscaling

Introduction	Background	BHM	Application	Simulation	References
00000	0	00000	0	0000000	

What are BHM Spatial Extremes models typically used for?

► Return Levels

Introduction	
00000	

BHM 00000 Application 0 Simulation 0000000 References

Background on Bayesian Statistics

From Bayes' rule:

 $\underline{p(\theta|y,x)} \propto \underline{p(y|\theta,x)} \underbrace{p(\theta,x)}_{p(\theta,x)} \underbrace{p(\theta,x)}_{p(\theta,x)}$ Posterior

- θ Parameters
- y Dependent data (response)
- x Independent data (covariates/predictors/constants)

Posterior: The answer, probability distributions of parameters **Likelihood**: A computable function of the parameters, model specific

Prior: Probability distribution, incorporates existing knowledge of the system, model specific

IntroductionBackgroundBHMApplicationSimulation000000000000000000

Bayesian Hierarchical Model

In a hierarchical Bayesian model, expand terms using conditional distributions where $\theta = (\theta_1, \theta_2)$:

Data Likelihood Relates observed data to distribution parameters

Process Likelihood Relates distribution parameters of the to each other

References

Introduction	Background	BHM	Application	Simulation	Reference
00000	•	00000	0	0000000	

Statistics of Extremes

Given daily data, if we select the maximum value in each year, those data follow a generalized extreme value (GEV) distribution:

$$\operatorname{GEV}(y;\mu,\sigma,\xi) = \frac{1}{\sigma} b^{(-1/\xi)-1} \exp\left\{-b^{-1/\xi}\right\}$$

$$b = 1 + \xi \left(\frac{x-\mu}{\sigma}\right)$$
, μ : Location, σ : Scale, ξ : Shape.

Return Level (quantile function):

$$z_r = \mu + \frac{\sigma}{\xi} [(-\log(1-1/r))^{-\xi} - 1]$$

Where r is the return period in years (100 years for example).

Background 0 BHM 00000 Application 0 Simulation 0000000

References

Hierarchical spatial model

$(Y(\mathbf{s}_1, t), \dots, Y(\mathbf{s}_n, t)) \sim C_g[\Sigma; \{\mu(\mathbf{s}), \sigma(\mathbf{s}), \xi(\mathbf{s})\}]$ $Y(\mathbf{s}, t) \sim GEV[\mu(\mathbf{s}), \sigma(\mathbf{s}), \xi(\mathbf{s})]$

Introduction	
00000	

BHM 00000 Application 0 Simulation 0000000

References

Hierarchical spatial model

$$\begin{aligned} (Y(\mathbf{s}_{1},t),\ldots,Y(\mathbf{s}_{n},t)) &\sim C_{g}[\Sigma;\{\mu(\mathbf{s}),\sigma(\mathbf{s}),\xi(\mathbf{s})\}] \\ Y(\mathbf{s},t) &\sim GEV[\mu(\mathbf{s}),\sigma(\mathbf{s}),\xi(\mathbf{s})] \\ \mu(\mathbf{s}) &= \beta_{\mu,0} + \mathbf{x}_{\mu}^{T}(\mathbf{s})\boldsymbol{\beta}_{\mu}(\mathbf{s}) + w_{\mu}(\mathbf{s}) \\ \sigma(\mathbf{s}) &= \beta_{\sigma,0} + \mathbf{x}_{\sigma}^{T}(\mathbf{s})\boldsymbol{\beta}_{\sigma}(\mathbf{s}) + w_{\sigma}(\mathbf{s}) \\ \xi(\mathbf{s}) &= \beta_{\xi,0} + \mathbf{x}_{\xi}^{T}(\mathbf{s})\boldsymbol{\beta}_{\xi}(\mathbf{s}) + w_{\xi}(\mathbf{s}) \end{aligned}$$

Introduction	
00000	

BHM 00000 Application 0 Simulation 0000000

References

Hierarchical spatial model

$$\begin{aligned} (Y(\mathbf{s}_{1},t),\ldots,Y(\mathbf{s}_{n},t)) &\sim C_{g}[\Sigma; \{\mu(\mathbf{s}),\sigma(\mathbf{s}),\xi(\mathbf{s})\}] \\ Y(\mathbf{s},t) &\sim GEV[\mu(\mathbf{s}),\sigma(\mathbf{s}),\xi(\mathbf{s})] \\ \mu(\mathbf{s}) &= \beta_{\mu,0} + \mathbf{x}_{\mu}^{T}(\mathbf{s})\boldsymbol{\beta}_{\mu}(\mathbf{s}) + w_{\mu}(\mathbf{s}) \\ \sigma(\mathbf{s}) &= \beta_{\sigma,0} + \mathbf{x}_{\sigma}^{T}(\mathbf{s})\boldsymbol{\beta}_{\sigma}(\mathbf{s}) + w_{\sigma}(\mathbf{s}) \\ \xi(\mathbf{s}) &= \beta_{\xi,0} + \mathbf{x}_{\xi}^{T}(\mathbf{s})\boldsymbol{\beta}_{\xi}(\mathbf{s}) + w_{\xi}(\mathbf{s}) \\ w_{\mu}(\mathbf{s}) &\sim GP(\mathbf{0},C(\boldsymbol{\theta}_{\mu})) \\ w_{\sigma}(\mathbf{s}) &\sim GP(\mathbf{0},C(\boldsymbol{\theta}_{\sigma})) \\ w_{\xi}(\mathbf{s}) &\sim GP(\mathbf{0},C(\boldsymbol{\theta}_{\xi})) \end{aligned}$$

Introduction	
00000	

BHM 00000 Application 0 Simulation 0000000

References

Hierarchical spatial model

$$(Y(\mathbf{s}_{1},t),\ldots,Y(\mathbf{s}_{n},t)) \sim C_{g}[\Sigma; \{\mu(\mathbf{s}),\sigma(\mathbf{s}),\xi(\mathbf{s})\}]$$

$$Y(\mathbf{s},t) \sim GEV[\mu(\mathbf{s}),\sigma(\mathbf{s}),\xi(\mathbf{s})]$$

$$\mu(\mathbf{s}) = \beta_{\mu,0} + \mathbf{x}_{\mu}^{T}(\mathbf{s})\boldsymbol{\beta}_{\mu}(\mathbf{s}) + w_{\mu}(\mathbf{s})$$

$$\sigma(\mathbf{s}) = \beta_{\sigma,0} + \mathbf{x}_{\sigma}^{T}(\mathbf{s})\boldsymbol{\beta}_{\sigma}(\mathbf{s}) + w_{\sigma}(\mathbf{s})$$

$$\xi(\mathbf{s}) = \beta_{\xi,0} + \mathbf{x}_{\xi}^{T}(\mathbf{s})\boldsymbol{\beta}_{\xi}(\mathbf{s}) + w_{\xi}(\mathbf{s})$$

$$w_{\mu}(\mathbf{s}) \sim GP(\mathbf{0}, C(\boldsymbol{\theta}_{\mu}))$$

$$w_{\sigma}(\mathbf{s}) \sim GP(\mathbf{0}, C(\boldsymbol{\theta}_{\sigma}))$$

$$w_{\xi}(\mathbf{s}) \sim GP(\mathbf{0}, C(\boldsymbol{\theta}_{\xi}))$$

Covariates: $x^{T}(s) = (Elevation, Mean Seasonal Precip)^{T}$ C: Stationary, isotropic, exponential covariance model

Introduction	Background	BHM	Application	Simulation	References
00000	0	0000	0	0000000	

Spatially varying regression coefficients

$$\begin{split} \boldsymbol{\beta}_{\mu}(\mathbf{s}) &= \sum_{i=1}^{k} c_{i}^{\mu} \eta_{i}^{\mu}(\mathbf{s}) \\ \boldsymbol{\beta}_{\sigma}(\mathbf{s}) &= \sum_{i=1}^{k} c_{i}^{\sigma} \eta_{i}^{\sigma}(\mathbf{s}) \\ \boldsymbol{\beta}_{\xi}(\mathbf{s}) &= \sum_{i=1}^{k} c_{i}^{\xi} \eta_{i}^{\xi}(\mathbf{s}) \end{split}$$

$$\eta_i(\mathbf{s}) = \exp(d_i/\phi_i)$$

Introduction	
00000	

BHM ○●○○○ Application 0 Simulation 0000000 References

Elliptical copula for data dependence

The Gaussian elliptical copula constructs the joint cdf of of a random vector (V_1, \ldots, V_n) as

$$F_{\mathcal{C}}(v_1,\ldots,v_n) = \Phi_{\Sigma}(u_1,\ldots,u_n)$$
(1)

where $\Phi_{\Sigma}(\cdot)$ is the joint cdf of an *n*-dimensional multivariate normal distribution with covariance matrix Σ , $u_i = \phi^{-1}(F_i[v_i])$, ϕ^{-1} is the inverse cdf (quantile function) of the standard normal distribution and $F_i(\cdot)$ is the marginal GEV cdf of variable *i*.

oduction	Background	BHM	Application	Simulation
000	0	00000	0	0000000

Elliptical copula for data dependence

The corresponding joint pdf is

$$f_{C}(y_{1},...,y_{m}) = \frac{\prod_{i=1}^{m} f_{i}[y_{i}]}{\prod_{i=1}^{m} \psi[u_{i}]} \Psi_{\Sigma}(u_{1},...,u_{m})$$
(2)

where f_i is the marginal GEV pdf at site i, ψ is the standard normal pdf and Ψ_{Σ} is the joint pdf of an *m*-dimensional multivariate normal distribution.

Exponential dependence matrix for spatial data:

$$\Sigma(i,j) = \exp(-||s_i - s_j||/a_0)$$
(3)

 a_0 is the copula range parameter. Termed the **dependogram** since values are not covariances [Renard, 2011].

References

Introduction	Background	BHM	Application	Simulation	References
00000	0	00000	0	000000	

Pros and Cons of Gaussian elliptical copulas

Benefits:

- Easy to implement
- ► Few parameters
- ► Flexible (can use any marginal distribution)

Requires checking two conditions in application:

- Asymptotic independence (dependence is hard to find in practice)
- Multivariate normality after transformation (usually satisfied)

Composite Likelihood (CL)

- Evaluating the full GP likelihood for 2500 stations is infeasible in a Bayesian model
 - One inversion (or Cholesky decomposition) of the covariance matrix takes seconds
- ► CL is an approximation of the full likelihood
- Stations are broken up into G groups each with n_g stations

$$L_{c}(\boldsymbol{\theta}|\mathbf{y}_{1},\ldots,\mathbf{y}_{G}) = \prod_{g=1}^{G} L_{g}(\boldsymbol{\theta}|\mathbf{y}_{g})$$
(4)

- ► CL Requires $O(Gn_g^3)$ computations as opposed to $O(n^3)$.
- This approximation is applied to the copula as well as each of the GEV parameter residuals.

BHM 00000 Application

Simulation 0000000 References

Precipitation Data

Global Historical Climatology Network (GHCN), daily total precip data

- ► ~2500 stations with near complete data from 1948-2013
- 3 day aggregation window
- Fall maxima

Very large region/dataset for typical Bayesian spatial model

- Complete
 Incomplete
- Knot

IntroductionBackgroundBHMApplicationSimulationReferences00000000000000000000000000

Simulation procedure

Introduction Background BHM Application Simulation

GEV Parameter simulation = conditional sim + mean (covariates + betas)

$$\mu(\mathbf{s}) = \boldsymbol{\beta}_{\mu,0} + \mathbf{x}_{\mu}^{T}(\mathbf{s})\boldsymbol{\beta}_{\mu}(\mathbf{s}) + w_{\mu}(\mathbf{s})$$

References

Introduction	Background	BHM	Application	Simulation	References
00000	0	00000	0	000000	

Unit Fréchet Copula Simulations

Introduction	
00000	

BHM 00000 Application 0 Simulation ○○○○●○○ References

GEV from unit Fréchet

If Y is a random variable with a GEV distribution with location $\mu,$ scale σ and shape $\xi.$ Then,

$$Z = [1 + \xi(Y - \mu)/\sigma]^{1/\xi}$$

is unit Fréchet distributed i.e. $Z \sim \text{GEV}(1,1,1)$.

If Z is a unit Fréchet random variable. Then,

$$Y = \mu + \sigma(Z^{\xi} - 1) / \xi$$

is unit GEV distributed with location, scale and shape parameters equal to μ , σ and ξ respectively.

Introduction Background BHM 00000 0 00000 Application 0 Simulation

References

Extreme precipitation simulations

Threshold of 1 cm.

Introduction	
00000	

BHM 00000 Application 0 Simulation ○○○○○● References

Discussion and Contributions

Discussion:

- MCMC sampling takes 3+ days!
- Conditional simulation is expensive
- Gaussian elliptical copula is an alternative to a max stable process when some conditions hold

BHM 00000 Application 0 Simulation

References

Discussion and Contributions

Discussion:

- MCMC sampling takes 3+ days!
- Conditional simulation is expensive
- Gaussian elliptical copula is an alternative to a max stable process when some conditions hold

Conclusions:

- Bayesian spatial extremes model for return levels
- Can be used for simulations of extremes on a grid at arbitrary resolution
- Composite likelihood and spatially varying regression coefficients make it feasible for larger regions

BHM 00000 Application 0 Simulation ○○○○○● References

Discussion and Contributions

Discussion:

- MCMC sampling takes 3+ days!
- ► Conditional simulation is expensive
- Gaussian elliptical copula is an alternative to a max stable process when some conditions hold

Conclusions:

- ► Bayesian spatial extremes model for return levels
- Can be used for simulations of extremes on a grid at arbitrary resolution
- Composite likelihood and spatially varying regression coefficients make it feasible for larger regions

Thanks!

Background

BHM 0000 Application 0 Simulation 0000000 References

References I

- R A Pielke, M W Downton, and JZB Miller. Flood damage in the United States, 1926-2000: a reanalysis of National Weather Service estimates, 2002.
- F M Ralph, M Dettinger, A White, D Reynolds, D Cayan, T Schneider, R Cifelli, K Redmond, M Anderson, F Gherke, J Jones, K Mahoney, L Johnson, S Gutman, V Chandrasekar, J Lundquist, N Molotch, L Brekke, R Pulwarty, J Horel, L Schick, A Edman, P Mote, J Abatzoglou, R Pierce, and G Wick. A Vision for Future Observations for Western U.S. Extreme Precipitation and Flooding. *Journal of Contemporary Water Research & Education*, 153(1):16–32, April 2014.
- B Renard. A Bayesian hierarchical approach to regional frequency analysis. Water Resources Research, 47 (W11513):1–21, 2011.