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This talk

I Motivation - Link to weather generation

I Bayesian hierarchical model (BHM) for spatial extremes

I Application to the Western US

I Simulation procedure using the BHM
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Motivation - Extremes in the western US?

I From 1983-2000 the Western
States (WA, OR, CA, ID, NV,
UT, AZ, MT, WY, CO, NM,
ND, SD, NE, KS, OK, and TX)
experienced $24.7 billion in
flood damages, $1.5 billion
annually.

I California, Washington, and
Oregon alone accounted for
$10.6 billion (46 percent)
[Ralph et al., 2014, Pielke
et al., 2002]

Boulder Flood, 2013

Research into hydroclimate extremes can provide more
accurate and localized estimates of flood risk.
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More Motivation

I How are simulated fields of extremes linked to weather
generation?

I May not need a full weather generator – extremes may be the
only quantity of interest

I Preserve spatial dependence of simulated extremes

I Downscaling
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What are BHM Spatial Extremes models typically used for?

I Return Levels
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Background on Bayesian Statistics

From Bayes’ rule:

p(θ|y, x)︸ ︷︷ ︸
Posterior

∝ p(y|θ, x)︸ ︷︷ ︸
Likelihood

p(θ, x)︸ ︷︷ ︸
Prior

θ Parameters

y Dependent data (response)

x Independent data (covariates/predictors/constants)

Posterior: The answer, probability distributions of parameters

Likelihood: A computable function of the parameters, model
specific

Prior: Probability distribution, incorporates existing
knowledge of the system, model specific
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Bayesian Hierarchical Model

In a hierarchical Bayesian model, expand terms using conditional
distributions where θ = (θ1, θ2):

p(θ |y)︸ ︷︷ ︸
Posterior

∝ p(y|θ1)︸ ︷︷ ︸
Data Likelihood

p(θ1|θ2)︸ ︷︷ ︸
Process Liklihood

p(θ2)︸ ︷︷ ︸
Prior

Data Likelihood Relates observed data to distribution
parameters

Process Likelihood Relates distribution parameters of the to
each other
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Statistics of Extremes

Given daily data, if we select the maximum value in each year,
those data follow a generalized extreme value (GEV) distribution:

GEV(y; µ, σ, ξ) =
1
σ

b(−1/ξ)−1 exp
{
−b−1/ξ

}
b = 1 + ξ

(
x−µ

σ

)
, µ: Location, σ: Scale, ξ: Shape.

Return Level (quantile function):

zr = µ+
σ

ξ
[(− log(1− 1/r))−ξ− 1]

Where r is the return period in
years (100 years for example).
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Hierarchical spatial model

(Y(s1, t), . . . , Y(sn, t)) ∼ Cg[Σ; {µ(s), σ(s), ξ(s)}]
Y(s, t) ∼ GEV[µ(s), σ(s), ξ(s)]

µ(s) = βµ,0 + xT
µ(s)βµ(s) + wµ(s)

σ(s) = βσ,0 + xT
σ (s)βσ(s) + wσ(s)

ξ(s) = βξ,0 + xT
ξ (s)βξ(s) + wξ(s)

wµ(s) ∼ GP(0, C(θµ))

wσ(s) ∼ GP(0, C(θσ))

wξ(s) ∼ GP(0, C(θξ))

Covariates: xT(s) = (Elevation, Mean Seasonal Precip)T

C: Stationary, isotropic, exponential covariance model
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Spatially varying regression coefficients

βµ(s) =
k

∑
i=1

cµ
i η

µ
i (s)

βσ(s) =
k

∑
i=1

cσ
i ησ

i (s)

βξ(s) =
k

∑
i=1

cξ
i η

ξ
i (s)

ηi(s) = exp(di/φi)
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Elliptical copula for data dependence

The Gaussian elliptical copula constructs the joint cdf of of a
random vector (V1, . . . , Vn) as

FC(v1, . . . , vn) = ΦΣ(u1, . . . , un) (1)

where ΦΣ(·) is the joint cdf of an n-dimensional multivariate
normal distribution with covariance matrix Σ, ui = φ−1(Fi[vi]),
φ−1 is the inverse cdf (quantile function) of the standard normal
distribution and Fi(·) is the marginal GEV cdf of variable i.
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Elliptical copula for data dependence
The corresponding joint pdf is

fC(y1, . . . , ym) =

m

∏
i=1

fi[yi]

m

∏
i=1

ψ[ui]

ΨΣ(u1, ....um) (2)

where fi is the marginal GEV pdf at site i, ψ is the standard
normal pdf and ΨΣ is the joint pdf of an m-dimensional
multivariate normal distribution.

Exponential dependence matrix for spatial data:

Σ(i, j) = exp(−|| si− sj ||/a0) (3)

a0 is the copula range parameter. Termed the dependogram since
values are not covariances [Renard, 2011].
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Pros and Cons of Gaussian elliptical copulas

Benefits:

I Easy to implement

I Few parameters

I Flexible (can use any marginal distribution)

Requires checking two conditions in application:

I Asymptotic independence (dependence is hard to find in
practice)

I Multivariate normality after transformation (usually satisfied)
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Composite Likelihood (CL)

I Evaluating the full GP likelihood for 2500 stations is infeasible
in a Bayesian model

I One inversion (or Cholesky decomposition) of the covariance
matrix takes seconds

I CL is an approximation of the full likelihood

I Stations are broken up into G groups each with ng stations

Lc(θ|y1, . . . , yG) =
G

∏
g=1

Lg(θ|yg) (4)

I CL Requires O(Gn3
g) computations as opposed to O(n3).

I This approximation is applied to the copula as well as each of
the GEV parameter residuals.
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Precipitation Data
Global Historical Climatology
Network (GHCN), daily total
precip data

I ∼2500 stations with near
complete data from
1948-2013

I 3 day aggregation
window

I Fall maxima

Very large region/dataset
for typical Bayesian spatial
model

●●●
●●

●

●●●

●● ● ● ●●● ● ●●● ●● ●●● ●
● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●●

● ●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●

● ●
●

●

●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●
●

●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

● ●

●

●
●●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●
●

●

●
●● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●●

●
●

●

●
●

●

●

●

●

●

●

● ●●

●

● ●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●●

●●●
●
●

●●

●
●

●

●

●
●

●●
●●●●

●● ●
●

●●
●

●
●

●
●
●

●
●

●
●
●

●

●

●

●

●
●

●●

●

●●●
●
●
●
●

●
●

●

●

● ●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●●
●

●
●

● ●

●
●
●
●

●●●

●

●

●

●

●

●
●

●● ●●

●
●

●● ●
●
●

●
●●

●

●
●
●●
●

●
●

●●

●
●●●
● ●●●

●●

●●

●

●

●
●

●
●

●●●

●
●

●
● ●

● ●●●

●
●
●●

●●

●

●

●●●
●

● ●

●

●
●●

●●

●
●●

●

●●●

●

●
●●

●●

●

●●

●

●

●
●

●

●

●

●

●●
●●

●●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●
●●●

●

●●

●●

●

●
●

●●

●

●

●

●●●
●
●

●
●

●●

●
●

●●

●

●

●●●

●

●

●

●●
●
●
●

●
●●●

●

●●●

●

●
●

●
●
●●

●

●

●
●●

●●

●
●

●
●

●
●

●●
●●

●

●
●●
●

●
●●

●

●
●●●

●
●
●
●●●●

●●
●

●●

●

●

●●

●
●

●

●
●●

●
●●
●●
●
●●

●
●

●●
●

●●●

●

●

●

●

●
●

●

●

●●●●
●●●●
●●

●
●

●
●
● ●●

●

●
●

●

●●

●●
●●

●
●●●●●

●
●

●
●●
●●

●

●

●

●

●

●●

●

●
●●

●●●●
●

●
●

●●●
●

●
●

●●

●●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

35

40

45

−120 −115 −110 −105
lon

la
t ●

●

Complete
Incomplete
Knot

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

35

40

45

−120 −115 −110 −105
lon

la
t ●

●

Complete
Incomplete

16 / 24



Introduction Background BHM Application Simulation References

Simulation procedure

Fit the modelDraw posterior 
sample

Compute latent 
regression 

coefficient surfaces

Compute latent 
parameter means

Conditionally simulate 
latent parameter residuals

Unconditional unit Fréchet 
copula simulation

Extreme value 
simulation!

Latent GEV 
parameter fields

GEV 
Transformation
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Regression coefficient surfaces - one posterior sample
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GEV Parameter simulation = conditional sim + mean
(covariates + betas)

µ(s) = βµ,0 + xT
µ(s)βµ(s) + wµ(s)
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Unit Fréchet Copula Simulations
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GEV from unit Fréchet

If Y is a random variable with a GEV distribution with location µ,
scale σ and shape ξ. Then,

Z = [1 + ξ(Y− µ)/σ]1/ξ

is unit Fréchet distributed i.e. Z ∼ GEV(1,1,1).

If Z is a unit Fréchet random variable. Then,

Y = µ + σ(Zξ − 1)/ξ

is unit GEV distributed with location, scale and shape parameters
equal to µ, σ and ξ respectively.
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Extreme precipitation simulations

sim1 sim2 sim3
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Discussion and Contributions

Discussion:

I MCMC sampling takes 3+ days!

I Conditional simulation is expensive

I Gaussian elliptical copula is an alternative to a max stable
process when some conditions hold

Conclusions:

I Bayesian spatial extremes model for return levels

I Can be used for simulations of extremes on a grid at arbitrary
resolution

I Composite likelihood and spatially varying regression
coefficients make it feasible for larger regions

Thanks!
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