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Introduction

Random phenomena

In the past years I have been invoved with modelling “’diverse” random
processes like:

precipitation, waves, significant wave height and recently wind
power production. Some of the charactersitics that they share are

Marginal distributions that are different from Gaussian - heavy tails
Sample path asymmetries
Chains of zeros⇒ probability mass at 0
Motion!
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Introduction

I want to present some of our efforts to make spatio-temporal random fields

move

have vertical and horizontal asymmetries

marginals that are heavier (different) than Gaussian

Collaborators: Krys Podgórski, Igor Rychlik, Jorg Wegener, Jan Lennartsson
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Introduction

How do we make a surface move?

Creating fields as solution to stochastic differential equations:

L(X , ∂X/∂p, ∂X/∂t ,p, t) = dW (p, t)

By dispersion relations encoded in spectrum:

X (p, t) =
∑
ω

s(ω) · cos
(
ω2

g
p + ωt

)

But we want stochasticl fields that exhibit certain spatial variability and with non
trivial temporal variability.

We suggest to construct spatio-temporal fields driven by a deterministic flow
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Moving spatio-temporal models

Static Model

The starting point is the spectral representation of a non-stationary process

η(s)
d
=

∫
Rn

exp(is · ω)
√

Ss(ω) dB(ω).

with covariance

rS(s, s′) =

∫
Rn

exp(i(s− s′) · ω)
√

Ss(ω)Ss′(ω) dω.

Which can easily be extended to spatio-temporal fields

η(s, t) d
=

∫
Rn+1

ei(s,t)·(ω,τ)
√

Ss(ω)ST
s (τ) dB(ω, τ).
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Moving spatio-temporal models

Alternatively define

X (s, t) =

∫
f (t , τ ; s) Φ(s; dτ),

for Φ(·; dτ) a Gaussian field-valued measure uniquely characterized by the time
dependent spatial covariances rS(s, s′; τ) and f some deterministic kernel

with
covariance

r(s, s′; t , t ′) =

∫
f (t , τ ; s)f (t ′, τ ; s′) · rS(s, s′; τ) dτ

A lot of known fields are special cases of this construction for specific choices of kernel
For f (t) = e−λt1[0,∞)(t) we get the temporal Ornstein- Uhlenbeck field which

corresponds to autoregression model of order one

X (s, t) = ρX (s, t −∆t) +
√

1− ρ2 Φt (s).
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Moving spatio-temporal models

An alternative method?

The two fields η(s, t) and X (s, t) are equal in distribution if the covariances in time at
a fixed location s are the same and the kernels fs are symmetric with non-negative
Fourier transform.

Symmetry of the kernels cannot be relaxed, for example for exponential function (the
Ornstein-Uhlenbeck case) the two approaches lead to different processes!
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Moving spatio-temporal models

Stochastic Velocity Field

One of the many possible definitions of velocity on random surfaces

v(s, t) =

(
− Xt (s, t)

Xx (s, t)
,− Xt (s, t)

Xy (s, t)

)
is the x and y - coordinate of the slope of the tangent plane to the upcrossing
contour attached to the point (x , y , t)

v ∼ Cauchy(·, ·)

Anastassia Baxevani 9 / 37



Moving spatio-temporal models

Is there non-trivial dynamics?

If
r(s, s′; t , t ′) =

∫ ∞
−∞

f (t , τ) · f (t ′, τ) · rS(s− s′; τ) dτ.

then the dynamics of the field is trivial (i.e. velocities are centered at zero).

Thus the field
X (s, t) =

∫
f (t , τ) Φ(s; dτ),

with Φ(s; dτ) governed by a stationary spatial covariance, does not exhibit any
organized motion.
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Moving spatio-temporal models

Examples of fields

Spatio-temporal fields X (x , t) with covariance rX (x , t) = σ2e−x2/2e−λ|t| for various
values of λ and σ2 ( Left) and their corresponding velocities (Right).
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Moving spatio-temporal models

Feeding deterministic flow into stochastic field

Flow ψt,h(s) obtained from a velocity field v(s, t) satisfying the transport
equation

ψt,h(s) = s +

∫ t+h

t
v(ψt,u−t (s), u) du = s +

∫ h

0
v(ψt,s(s), t + τ) dτ,

Construction of the stochastic field at fixed location p and fixed time t :

Y (s, t) =

∫ ∞
−∞

f (t , τ) Φ(ψt,τ−t (s); dτ)
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Moving spatio-temporal models

Dynamic Flow

Trajectories and directional field of a simple dynamical flow representing damped
oscillations (Left). Dynamic spatio-temporal random fields X (x , t) for λ = 0.5 and

σ2 = 0.5 (Right).

Anastassia Baxevani 13 / 37



Moving spatio-temporal models

Estimated Velocities

Velocities of dynamical flow (Top) vs. velocities of stochastic field: unfiltered (Middle)
estimated by the median filter (Bottom). λ = 0.5 and σ2 = 0.5.

Anastassia Baxevani 14 / 37



Moving spatio-temporal models

There is a method in the madness

Theorem

If the spatial covariance rS of the innovations Φ(s; dt) are isotropic,
then the distribution of random velocities on the surface of Y (s, t) has
its center at the value of the deterministic velocity field v(s, t).

In other words, stochastic dynamics follows the one represented by the
underlying deterministic field. So we have managed to construct
spatio-temporal fields (Gaussian) that can move.
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Moving spatio-temporal models

Highlights

We have constructed spatio-temporal Gaussian as convolutions of Gaussian
spatial noise with deterministic kernels

We can obtain almost all known spatio-temporal covariances for specific cases
of spatial covariances and kernels

We have shown that when spatial correlations are stationary the resulting fields
do not move

We have embedded deterministic flow in the innovations resulting in moving
fields

We have shown that for isotropic spatial covariances the distribution of the
random velocities has its center at the deterministic velocity

Anastassia Baxevani 16 / 37



Non-Gaussian models

Non-Gaussian Models

To provide with a more universal model, there is a growing interest in models
featuring more general distributions.

Interesting alternative to the Gaussian models are the Laplace moving average
models, which are formulated as convolutions of Laplace noise and some
deterministic kernel.

These models constitute a rich class that is capable of modeling a variety of
geometrical asymmetries in the records, and simultaneously can efficiently
acount for occasional highly extreme events.
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Non-Gaussian models

Asymmetries in random records

The following is an example of space and time records from a non-linear model for sea surface

Visually, the asymmetries are clear but how to model and quantify them?

Anastassia Baxevani 18 / 37
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Non-Gaussian models

We could start from some asymmetric densities

!3 !2 !1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Standard Gaussian 
!= infinity 

!=1/4 

Standard Laplace 
!=1 

!1.5 !1 !0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Standard Gaussian 

!=1 
Asymmetric Laplace 

!=1/4 

!=3 

Laplace densities. Left: µ = 0 and Right: µ = − 3σ
23/2 , τ = 1/ν,

mean =0 and variance=1
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Non-Gaussian models

Generalized skewed Laplace distribution

Generalized skewed Laplace distributions have ch.f.

φ(t) =
eitδ

(1 + σ2t2/2− iµt)ν

Gamma variance-mean mixtures of normal

σ
√

WZ + µW + δ,

Z – standard normal, W – gamma variable with the shape ν.
Density in terms of the modified Bessel function of the third kind

2eµ/σ
2(y−δ)

√
2πσΓ(ν)

(
(y − δ)/σ√
2 + µ2/σ2

)ν−1/2

Kν−1/2((y − δ)/
√

2 + µ2/σ2),
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Non-Gaussian models

Multivariate extension

Gamma variance models

Y = δ + Γ · µ+ Γ1/2 ·Σ1/2Z

where Γ is a gamma variable with the shape parameter ν.

characteristics functions

φ(t) = eiδ′t

(
1

1 + 1
2 t′Σt− iµ′t

)ν
, t ∈ Rd .

Density

2 exp(µ′Σ−1(y− δ))

(2π)d/2Γ(ν)|Σ|1/2

(
Q(y− δ)

C(Σ,µ)

)ν−d/2

Kν−d/2(Q(y− δ)C(Σ,µ)),

where Q(x) =
√

x′Σ−1x and C(Σ,µ) =
√

2 + µ′Σ−1µ.
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Non-Gaussian models

Multivariate extension - Examples of densities
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Stochastic processes build upon Laplace distribution

Laplace motion

B(λ) denote standard Brownian motion

Γ(λ) a standard gamma process, i.e. independent increments with the
density

g(x) =
1

Γ(γ)
xγ−1e−x , x > 0

γ = νdλ

Laplace motion - subordinated Brownian motion

L(λ) = B(Γ(λ))

Some properties are inherited from the distribution (stochastic
self-similarity): √

pL(λ) = L(NBp(λ)),

where NBp is binomial Lévy motion.
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Anastassia Baxevani 23 / 37



Stochastic processes build upon Laplace distribution

Moving averages through stochastic integration

By means of stochastic integral we define

X (τ ) =

∫
Rd

f (τ − x)dΛ(x).

Λ(A) has the generalized asymmetric Laplace distribution

φ(t) =
1(

1− iµt + σ2

2 t2
)λ(A) ,

where λ is the Lebesgue measure in Rd .
If d = 1, then Λ(−∞, x ] = B(Γ(x)), where B is a Brownian motion
with drift and Γ is a gamma process.
Conditionally on Γ the process X can be viewed as a
non-stationary Gaussian process.
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Stochastic processes build upon Laplace distribution

Symmetric spatial models - realizations
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Stochastic processes build upon Laplace distribution

Asymmetric spatial models
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Stochastic processes build upon Laplace distribution

Tilting of trajectories
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Stochastic processes build upon Laplace distribution

Measuring tilting using Rice’s formula

N(T ,A) – “number” of times the field X takes value zero in [0,T ]
and at the same time has a property A
For ergodic stationary processes

lim
T→∞

N(T ,A)

N(T )
=

E
[
{X ∈ A}|Ẋ (0)|

∣∣X (0) = 0
]

E
[
|Ẋ (0)|

∣∣X (0) = 0
] ,

the right hand side represents the biased sampling distribution
when sampling is made over the 0-level contour
C0 = {τ : X (τ ) = 0}
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Stochastic processes build upon Laplace distribution

Slope distributions at level crossings

derivative at down/upcrossing
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Stochastic processes build upon Laplace distribution

Another way of tilting

derivative at down/upcrossing
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Stochastic processes build upon Laplace distribution

Non-Gaussian Models

In spatial statistics and geostatistics, Gaussian random fields are important
when constructing models for data mainly beacuse they are specified through
the mean and covariance structures.

Prediction and estimation are performed using the covariance function.

Although Gaussian models are the most popular ones in spatial statistics, mainly
because of their simplicity, they have difficulty in efficiently accounting for
asymmetries and unusually extreme values in the data. Frequently a
transformed Gaussian model is considered, while the choice of transformation is
cattering toward a particular application.
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Stochastic processes build upon Laplace distribution

Truncated and transformed Gaussian models

Latent and transformed Gaussian model

Y (s, t) =

{
ψs,t (Z (s, t)), if (Zs, t) > 0 (u),

0 if Z (s, t) ≤ 0 (u),

which can be also writen as

Y (s, t) = φs,t (Z (s, t))

with
φs,t (z) = 0 · {z ≤ 0}+ ψs,t (z) · {z > 0}
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Gaussian field

Idea:

There exist a local marginal transformation that makes data, locally, to appear
Gaussian.
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Gaussian field

So what is needed?

Model the transformation

Model the mean function

Model the covariance structure

This gives you a stationary (or not) Gaussian model that you can marginally transform
to give you distributions that resemble the data. If additionally want to extrapolate to
locations with no observations then we need

stochastic models for the parameters

regres the parameters on covariates
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Gaussian field

Highlights

Non-Gaussian stochastic fields are proposed that can be suitable for modeling
environmental data.
The models are introduced by means of integrals with respect to independently
scattered stochastic measures that have generalized Laplace distributions.
Resulting stationary second order processes have, as opposed to their Gaussian
counterpart, a possibility of accounting for asymmetry and heavier tails.
Despite this greater flexibility the discussed models still share a lot of spectral
properties with Gaussian processes having the latter as a special case.
The models extend directly to random fields.
Spatio-temporal characteristics including asymmetries in the records can be
studied by the means of generalized Rice’s formula.
Model fitting can be obtained by utilizing: a) Method of Moments (simpler) or b)
Maximum Likelihood (more accurate)
Markov Random Fields can be used to localize efficiently the fitting problem and
provide a way to account for non-stationarity in the data.
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Gaussian field
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Gaussian field

Final Slide

What does Mother Earth think of our methods?
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