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Wind speed prediction and scenarios simulation

Wind speed prediction and predictive statistical scenarios

- Surface wind predictions are used in a lot of fields: renewable ressources,
pollution applications, power grid dispatch
[Constantinescu et al., 2011, Li et al., 2015], ...

- Predictive distributions are used to account for the uncertainty associated
to a point prediction

- Predictive statistical scenarios enable to inform about this uncertainty at
various locations and-or time-step ahead [Pinson et al., 2009]

- Space-time models enable to account for propagations of weather events
and improve accuracy of forecasts

Using model outputs and measurements

- Incorporate future and extra information to improve the accuracy of
forecast and the spread of scenarios

- Multiple interactions to account for: between variables, space, time



Goals
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Wind speed at successive times

Goals:
e Provide wind speed predictive scenarios in space and time
e Use Numerical Weather Prediction (NWP) model outputs and measured
observations
e Account for space-time information
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Objectives

Objectives: predict unobserved measurement corresponding to the available
24-hr of NWP using the past measurements and NWP data

fctors.

Wind speed (ms)

Time (hr)

- Observed pairs of measurements (—) and NWP model outputs (——) —
training dataset

- Available NWP data (——) possibly at different locations but unobserved
measurements (x) — predictor dataset

- Include spatial information from neighbors



Two sources of surface wind speed
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Homogeneous sub-regions are
considered

- NWP model output: WRF data

At = 10min, Ax = 25km

denoted as Ynwp

Every day, the NWP model provides a forecast
of 48 hours

- Ground measurements data: ASOS network
At = 1min, irregular locations
denoted as Yops

- Data are considered at 10m
- Data are picked every hour
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Modeling choices
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- NWP outputs modeled as a
random process to account for their
space-time structure and to provide
non-aligned prediction

- Gaussian distribution for
convenience in multi-dimension
context and conditional distribution
expression

- Multi-dimension because of the
two processes Yywp and Yops that
are space-time processes
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Space-time correlation of wind speed:
Observations
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Hierarchical bivariate model

A space-time extension of the model proposed in [Royle and Berliner, 1999] is
used:

0.035

(Yobs| Ynwe) ~ N(ﬂobswvw—", ):obswwp)

0.030

Obs

YNWP ~ N(HNWP, ZNWP) 0.025

0.020

Station

0015

0.010

NWP

i
Associated full joint distribution: T ;3: o
Obs

NWP

with fiopsinwp = Hobs + AYnwp st

( Yobs ) -~ N (<Hobs + AMNWP) (zobs|NWP + AZNWPAT AzNWP))

Ynwp HUNWP (AZnwe) > nwp



Specification of the model - Mean structure

-
( Yobs ) ~ N( (Hobs+/\mva) 7 (Xobs|NWP+/\)ZNWp/\ A):NWP) )

Yawp Hnwe (A wp) " Znwp

® /i0ps and pnwp are specified with geographical coordinates and time
harmonics for account for their space-time patterns;
e unwp also with parameter from the NWP model: the land-use

OE( Yobs| Ynwp) = ftobs + AYnwe
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LU(s) is the land-use value of the closest grid point of s



A
Specification of the model - Covariance structure

The covariance of Y has the structure, inspired by an
earlier study [Constantinescu and Anitescu, 2013]:
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e The matrices Ko and K, written as

K;[L k] = aj exp(—b;(|tic — t2])?) + di1c :
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e The matrices L, are parameterized in space and time

® The same structure is used for ywp and X ,psnvp with different parameters

The proposed structure can be interpreted as the following description of the process:
Y (bi,s5) = s+ Ls; Yo(bs) + es;(bi)

- bj: temporal window of 24 hours
- s;: spatial location
- €5; are independent from each other and from Yp



Estimation

- Parameters are estimated by Maximum Likelihood

- The model is trained independently on the 3 sub-regions and independently
on 3 months January, May and August 2012

- The parameters are estimated on two thirds of each month, prediction is
made on the remaining third
The training period is rolled over the possible permutations



- Advantages:
- avoid the specification of the cross-covariance between Y,ps and Yywpe

- corner stone is the specification of jiops + A Ynwe

- Challenges:
- specify A to capture of the spatio-temporal scales

- linear relation between Yops and Ynwp to capture complex patterns ...

- What is new?
- the idea of using the entire window of 24hr-forecast NWP
- this model is using

- model outputs are modeled as a random process
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Estimated parameters

Empirical and fitted mean on Y,
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Time series and scenarios
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Time series of wind speed at the station with the median RMSE
Upper panels: 50 predictive samples are plotted
Lower panels: 3 samples are plotted



Improvement of Root Mean Square Error

January August
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Maps of improvement of RMSE of the proposed prediction with respect to the
RMSE of the NWP
Each RMSE is computed with respect to the measurements



Temporal spectrum

January August
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Estimated spectrum for the station with the median RMSE in subregion C2.
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Correction of the mean and variance of NWP outputs - Ax = 5km

Krigged observation NWP
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Conclusion and perspectives

e Space-time framework for prediction of surface wind speed based on NWP
data and measurements

e Provided predictions improve the RMSE with respect to NWP
e Scenarios have a realistic spectrum respectively to the measurements

o The model enables to correct the first and second order structure of the
NWP to match the one of the measurements
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