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Wind speed prediction and scenarios simulation

Wind speed prediction and predictive statistical scenarios

- Surface wind predictions are used in a lot of fields: renewable ressources,
pollution applications, power grid dispatch
[Constantinescu et al., 2011, Li et al., 2015], ...

- Predictive distributions are used to account for the uncertainty associated
to a point prediction

- Predictive statistical scenarios enable to inform about this uncertainty at
various locations and-or time-step ahead [Pinson et al., 2009]

- Space-time models enable to account for propagations of weather events
and improve accuracy of forecasts

Using model outputs and measurements

- Incorporate future and extra information to improve the accuracy of
forecast and the spread of scenarios

- Multiple interactions to account for: between variables, space, time

.



Goals
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t = 3pm t = 5pm t = 7pm t = 9pm t = 11pm
Wind speed at successive times

Goals:
• Provide wind speed predictive scenarios in space and time

• Use Numerical Weather Prediction (NWP) model outputs and measured
observations

• Account for space-time information

.
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Objectives

Objectives: predict unobserved measurement corresponding to the available
24-hr of NWP using the past measurements and NWP data
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NWP output as predictors

- Observed pairs of measurements (−) and NWP model outputs (−−) →
training dataset

- Available NWP data (−−) possibly at different locations but unobserved
measurements (×) → predictor dataset

- Include spatial information from neighbors

.



Two sources of surface wind speed
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Homogeneous sub-regions are
considered

- NWP model output: WRF data
∆t = 10min, ∆x = 25km
denoted as YNWP

Every day, the NWP model provides a forecast
of 48 hours

- Ground measurements data: ASOS network
∆t = 1min, irregular locations
denoted as Yobs

- Data are considered at 10m
- Data are picked every hour

.
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Modeling choices

(
Yobs
YNWP

)
∼ N

( (
µobs+ΛµNWP

µNWP

)
,
(

Σobs|NWP+ΛΣNWPΛT ΛΣNWP

(ΛΣNWP )T ΣNWP

))

- NWP outputs modeled as a
random process to account for their
space-time structure and to provide
non-aligned prediction

- Gaussian distribution for
convenience in multi-dimension
context and conditional distribution
expression

- Multi-dimension because of the
two processes YNWP and Yobs that
are space-time processes

Space-time correlation of wind speed:
Observations Space-time model

Time model Diagonal model

.



Hierarchical bivariate model

A space-time extension of the model proposed in [Royle and Berliner, 1999] is
used:

(Yobs |YNWP) ∼ N
(
µobs|NWP ,Σobs|NWP

)
YNWP ∼ N

(
µNWP ,ΣNWP

)

Associated full joint distribution:

with µobs|NWP = µobs + ΛYNWP
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Specification of the model - Mean structure

(
Yobs
YNWP

)
∼ N

( (
µobs+ΛµNWP

µNWP

)
,
(

Σobs|NWP+ΛΣNWPΛT ΛΣNWP

(ΛΣNWP )T ΣNWP

))

• µobs and µNWP are specified with geographical coordinates and time
harmonics for account for their space-time patterns;
• µNWP also with parameter from the NWP model: the land-use

•E(Yobs |YNWP) = µobs + ΛYNWP

(ΛYNWP)(t, s) =
h∑

i=1

α(LU(s))(|t − ti |)
3∑

k=1

fk(∆Lat,∆Long)(s, sk)YNWP(ti , sk) ,

(1)

t1 ≤ t ≤ th ,

LU(s) is the land-use value of the closest grid point of s

.



Specification of the model - Covariance structure

The covariance of Y has the structure, inspired by an
earlier study [Constantinescu and Anitescu, 2013]:

cov(Y (., si ),Y (., sj)) = (LsiK0L
T
sj ) + δi−jKsi

• The matrices K0 and Ks written as

Kj[l, k] = aj exp(−bj(|tk − tl|)2) + δk−lcj

• The matrices Lsj are parameterized in space and time
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• The same structure is used for ΣNWP and Σobs|NWP with different parameters

The proposed structure can be interpreted as the following description of the process:

Y(bi, sj) = µ+ LsjY0(bi) + εsj (bi)

- bi : temporal window of 24 hours
- sj : spatial location
- εsj are independent from each other and from Y0

.



Estimation

- Parameters are estimated by Maximum Likelihood

- The model is trained independently on the 3 sub-regions and independently
on 3 months January, May and August 2012

- The parameters are estimated on two thirds of each month, prediction is
made on the remaining third
The training period is rolled over the possible permutations

.



- Advantages:
- avoid the specification of the cross-covariance between Yobs and YNWP

- corner stone is the specification of µobs + ΛYNWP

- Challenges:
- specify Λ to capture of the spatio-temporal scales

- linear relation between Yobs and YNWP to capture complex patterns ...

- What is new?
- the idea of using the entire window of 24hr-forecast NWP

- this model is using space-time information

- model outputs are modeled as a random process

.
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Estimated parameters

Empirical and fitted mean on Yobs
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Time series and scenarios

January August

0 20 40 60 80 100 120 140

0
5

1
0

1
5

Time (hr)

W
in

d
 s

p
e

e
d

 (
m

/s
)

Measurement

NWP

Predictive mean

Sample

0 20 40 60 80 100 120 140

0
5

1
0

1
5

2
0

Time (hr)

W
in

d
 s

p
e

e
d

 (
m

/s
)

Measurement

NWP

Predictive mean

Sample

0 20 40 60 80 100 120 140

0
5

1
0

1
5

Time (hr)

W
in

d
 s

p
e

e
d

 (
m

/s
)

Measurement

NWP

Sample

Sample

Sample

0 20 40 60 80 100 120 140
0

2
4

6
8

1
0

1
2

Time (hr)

W
in

d
 s

p
e

e
d

 (
m

/s
)

Measurement

NWP

Sample

Sample

Sample

Time series of wind speed at the station with the median RMSE
Upper panels: 50 predictive samples are plotted
Lower panels: 3 samples are plotted
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Improvement of Root Mean Square Error

January August
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Maps of improvement of RMSE of the proposed prediction with respect to the
RMSE of the NWP
Each RMSE is computed with respect to the measurements
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Temporal spectrum

January August
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Correction of the mean and variance of NWP outputs - ∆x = 5km
Krigged observation NWP

Mean
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Conclusion and perspectives

• Space-time framework for prediction of surface wind speed based on NWP
data and measurements

• Provided predictions improve the RMSE with respect to NWP

• Scenarios have a realistic spectrum respectively to the measurements

• The model enables to correct the first and second order structure of the
NWP to match the one of the measurements

.
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