Workshop on Stochastic Weather Generators

Nina A. Kargapolova

Novosibirsk State University & Institute of Computational Mathematics and Mathematical Geophysics

Monthly average temperatures and precipitation stochastic simulation in the Lake Baikal region

Vannes, 2016

<u>Plan</u>

- 1. Real data analysis
- 2. Spatio model
- 3. Validation of the model + numerical experiments
- 4. Spatio-temporal model
- 5. Model of joint spatio fields
- 6. Conclusion

Real data analysis

Area: $1400 \text{ km} \times 1000 \text{ km}$, data from 33 weather stations, years of observation: 1978 - 2009

One-dimensional distributions

Parameters of one-dimensional distributions depend on both spatial coordinates and time.

Figure 2. Sample means of monthly average temperature and month total precipitation amount.

Curve 1: weather station on Ushkaniy Island; curve 2: weather station in Chervyanka; curve 3: 90% confidence intervals.

Temporal correlation structure

Assumption: temporal sample correlation coefficients do not depend on spatial coordinates.

Figure 3. Temporal sample correlation coefficients. Curve 1: temperature, curve 2: precipitation.

Spatial correlation structure

Assumptions: temperature – isotropic field; precipitation – homogeneous field.

Figure 4. Spatial sample correlation coefficients between monthly average temperature at the Irkutsk weather station and at all other weather stations. January.

Spatio model

Temperature:

one-dimensional distributions – Gaussian (parameters depend on spatial coordinates)

correlation structure – isotropic field

Precipitation:

one-dimensional distributions – gamma-distribution (parameters depend on spatial coordinates)

correlation structure – homogeneous field

Simulation:

in nods of a regular rectangular grid with 35 km $\times 25$ km sells

Problem:

how to define parameters of one-dimensional distributions in arbitrary nodes and correlation matrixes?

Parameters of one-dimensional distributions:

interpolation of sample mean and sample variance from weather stations to nodes by inverse weighted distance method

$$X = \sum_{i=1}^{n} \lambda_i X_i, \ \lambda_i = \frac{d^{-\alpha} \left(A, A_i \right)}{\sum_{i=1}^{n} d^{-\alpha} \left(A, A_i \right)},$$
$$\alpha = 1, n = 2$$

method of moments

Correlation matrixes:

approximation of sample correlation coefficients with specific correlation function $corr(x_1, y_1, x_2, y_2)$

Precipitation:
$$corr(x_1, y_1, x_2, y_2) = corr(x_1 - x_2, y_1 - y_2) =$$

= $corr(x, y) = exp(-[ax^2 + bxy + cy^2]^{\theta})$

Month	а	b	С	θ
January	0.01	0.04	0.04	0.04
April	0.01	0.01	0.01	0.05
Мау	0.02	-0.02	0.01	0.07
December	0.01	0.08	0.16	0.02

Table 1. Parameters of approximating correlation function.

Temperature: corr₁(x₁, y₁, x₂, y₂) = corr
$$\left(\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\right)$$
 =
= corr(r) = exp(-ar²)

or

$$corr_2(\mathbf{x}_1, \mathbf{y}_1, \mathbf{x}_2, \mathbf{y}_2) = corr(r) = \lambda / (\lambda + r^2)$$

Month	α	λ
February	0.00029	2339810
April	0.00016	4836330
July	0.00050	1144200

Table 2. Parameters of approximating correlation functions.

Simulation Time_{method of conditional distributions} \approx $\approx 100 \cdot \text{Simulation Time}_{\text{randomized algorithm "by rows and columns"}}$

Randomized algorithm "by rows and by columns" -

efficient algorithm for simulation of isotropic random fields with correlation function *b*

$$R(r) = \int_{a}^{b} \exp(-xr^{2}) f(x) dx$$

where f(x), $x \in [a;b]$, a > 0 – arbitrary distribution density.

Ogorodnikov V.A. Simulation of a class of isotropic Gaussian fields // Theory and applications of stochastic simulation, Novosibirsk, 1988, p. 25 – 30. (in Russian)

If
$$f(x) = \lambda \exp(-\lambda x)$$
, $x \ge 0$ then $R(r) = corr_2(r) = \lambda/(\lambda + r^2)$.

Modification of this algorithm may be used for simulation of homogeneous random fields.

Babicheva G.A., Kargapolova N.A., Ogorodnikov V.A. Special algoritm for simulation of homogeneous random fields // Numerical Analysis and Applications (2016), Vol. 19, No 2, p. 125-138.

Validation of the model + numerical experiments

Validation:

data from 2 additional weather stations + comparison of characteristics that are not model input parameters.

			- 10	
Level, °C	Share c	of territory		
	Real data	Simulated data	- 8.0 - 6.0	
-34	0.00	0.02	$\begin{bmatrix} 0 & 0.4 \\ 9 & 0.2 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$	
-30	0.00	0.10		
-26	0.18	0.32	-35 -30 -25 -20 -15 -10 -5 (
-22	0.59	0.68	temperature, degrees C	
-18	0.90	0.92	Figure 7. Share of territory, where monthly mean temperature is below level. Curve 1.	
-14	1.00	0.99	March, curve 2 – December. Simulated	
-10	1.00	1.00	data.	

Table 3. Share of territory, where monthly mean temperature is below given level, and this level. February.

Month	Probability of very cold month	Probability of very warm month
January	0.005	0.122
April	0.013	0.016
December	0.020	0.049

Table 4. Probability of very cold/warm month on 875 km^2 -area around Irkutsk. Simulated data.

Figure 8. Probability of the event "sum of precipitations in Barguzin and Ust'Barguzin is not less than a given level (mm)". Curve 1 – real data, curve 2 – simulated data. January.

Spatio-temporal model

Reminder:

spatial correlation structure depends on time. Assumption:

> temporal structure do not depend on spatial coordinates.

 R_i , i = 1, 2, ..., 12 – spatial correlation matrixes

$$\begin{pmatrix} R_{1} & t_{2}^{1}R_{1} & t_{3}^{1}R_{1} & \dots & t_{12}^{1}R_{1} \\ t_{2}^{1}R_{1}^{T} & R_{2} & t_{3}^{2}R_{2} & \dots & t_{12}^{2}R_{2} \\ t_{3}^{1}R_{1}^{T} & t_{3}^{2}R_{2}^{T} & R_{3} & \dots & t_{12}^{3}R_{3} \\ \dots & \dots & \dots & \dots & \dots \\ t_{12}^{1}R_{1}^{T} & t_{12}^{2}R_{2}^{T} & t_{12}^{3}R_{3}^{T} & \dots & R_{12} \end{pmatrix}$$

spatio-temporal correlation matrix

Figure 9. Histogram of sum of year total precipitation in Barguzin and Ust'Barguzin. Black – real data, red – simulated data.

Model of joint spatio fields

Standard approach:

$$\begin{pmatrix} R_{TT} & R_{TP} \\ R_{PT} & R_{PP} \end{pmatrix}$$

Problems:

huge correlation matrix (3362 × 3362 elements), time & memory consuming simulation, computational mistakes Idea:

simulate field of temperature,

simulate precipitation as a function of temperature

Simulation algorithm:

field of temperature - as described above,

field of precipitation - homogeneous field $(\exp(-[ax^2 + bxy + cy^2]^{\theta}))$ with one-dimension gamma-distribution with mean $\mu(T)$ and variance v(T) = cT + d

Perspectives

-Better description of precipitation distribution and temperatureprecipitation dependence;

- Station-temporal model of joint (temperature and precipitation) fields;

- Application of considered model for solution of hydrological problems.

Thank you for attention!

