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Real data analysis

Area:                                 , data from 33 weather stations, 
years of observation: 1978 – 2009

1400 1000km km

Figure 1: The Lake Baikal region. Red circles-
weather stations.



One-dimensional distributions
Parameters of one-dimensional distributions depend on both 
spatial coordinates and time. 

Figure 2. Sample means of monthly average temperature and month total precipitation 
amount. 

Curve 1: weather station on Ushkaniy Island; curve 2: weather station in Chervyanka; 
curve 3: 90% confidence intervals.



Temporal correlation structure

Assumption: temporal sample correlation coefficients do not 
depend on spatial coordinates.

Figure 3. Temporal sample correlation coefficients. Curve 1: temperature, curve 2: 
precipitation.
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Spatial correlation structure
Assumptions: temperature – isotropic field;

precipitation – homogeneous field.

Figure 4. Spatial sample correlation coefficients between monthly average 
temperature at the Irkutsk weather station and at all other weather stations. January. 



Spatio model
Temperature:

one-dimensional distributions – Gaussian 
(parameters depend on spatial coordinates)

correlation structure – isotropic field  

Precipitation:
one-dimensional distributions – gamma-distribution 

(parameters depend on spatial coordinates)

correlation structure – homogeneous field

Simulation:
in nods of a regular rectangular grid with                      
sells

35 25km km



Problem:

how to define parameters of one-dimensional distributions 
in arbitrary nodes and correlation matrixes?

Parameters of one-dimensional distributions:

interpolation of sample mean and sample variance from 
weather stations to nodes by inverse weighted distance 
method

+

method of moments

 

 1

1

,
, ,

,

1, 2

n
i

i i i n
i

i
i

d A A
X X

d A A

n




 









 

 






Correlation matrixes:

approximation of sample correlation coefficients with 
specific correlation function 

Precipitation:    

   
1 1 2 2 1 2 1 2

2 2

   

      

, , , ,

, exp
θ

corr x y x y corr x x y y

corr x y ax bxy cy

 1 1 2 2, , ,corr x y x y

0.050.010.010.01April

0.020.160.080.01December

0.070.01-0.020.02May

0.040.040.040.01January

Month a b c θ

Table 1. Parameters of approximating 
correlation function.Figure 5. Isolines of approximating 

correlation function. May.
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      
 
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exp
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corr x y x y corr x x y y

corr r αr

corr x y x y corr r λ λ r

Temperature:

or

0.00050 

0.00016

0.00029 

1144200July

4836330April

2339810February
Month α λ

Table 2. Parameters of approximating 
correlation functions.

Figure 6. Vertical profiles of approximating 
correlation functions  (1 – , 2 – ) 

and sample correlation coefficients (  ). 
August.
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Simulation

Field of monthly average 
temperature

Method of conditional 
distributions (with 

regularization if necessary)

Randomized algorithm “by
rows and by columns”

Field of month total 
precipitation amount

Inverse distribution function 
method

Method of conditional 
distributions (with 

regularization if necessary)


OR

method of conditional distributions

randomized algorithm "by rows and columns"

Simulation Time
100 Simulation Time
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Randomized algorithm “by rows and by columns” –

efficient algorithm for simulation of isotropic random fields with 
correlation function 

where                                      – arbitrary distribution density.
Ogorodnikov V.A. Simulation of a class of isotropic Gaussian fields // Theory and 
applications of stochastic simulation, Novosibirsk, 1988, p. 25 – 30. (in Russian)

If                                              then            .  

Modification of this algorithm may be used for simulation of 
homogeneous random fields.
Babicheva G.A., Kargapolova N.A., Ogorodnikov V.A. Special algoritm for simulation 
of homogeneous random fields // Numerical Analysis and Applications (2016), Vol. 19, 
No 2, p. 125-138. 
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Validation of the model + numerical experiments
Validation: 

data from 2 additional weather stations + comparison of 
characteristics that are not model input parameters.
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data

Real data
Share of territoryLevel, oC

Table 3. Share of territory, where monthly 
mean temperature is below given level, and 

this level. February.
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Figure 7. Share of territory, where monthly 
mean temperature is below level. Curve 1-

March, curve 2 – December. Simulated 
data.



0.0490.020December
0.0160.013April
0.1220.005January

Probability of very 
warm month

Probability of very 
cold monthMonth

Table 4.  Probability of very cold/warm month on                -area around Irkutsk. 
Simulated data.

2875km

Figure 8. Probability of the event “sum of precipitations in Barguzin and Ust’Barguzin
is not less than a given level (mm)”. Curve 1 – real data, curve 2 – simulated data. 

January.
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Spatio-temporal model
Reminder: 

spatial correlation structure depends on time.
Assumption: 

temporal structure do not depend on spatial 
coordinates.

spatial correlation matrixes

temporal correlation matrix
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Figure 9. Histogram of sum of year total precipitation in Barguzin and Ust’Barguzin. 
Black – real data, red – simulated data.



Model of joint spatio fields

Standard approach:

Problems:

huge correlation matrix ( elements),

time & memory consuming simulation,

computational mistakes  

Idea:

simulate field of temperature,

simulate precipitation as a function of temperature
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Figure 10. Precipitation-temperature dependence. Black – real data, red – approximating 
function. January. Chervyanka.

Simulation algorithm:

field of temperature  - as described above,
field of precipitation  - homogeneous field (                               )

with one-dimension gamma-distribution with mean           and
variance

 2 2exp
θ

ax bxy cy    
 T

   v T cT d



Perspectives

-Better description of precipitation distribution and temperature-
precipitation dependence;

- Station-temporal model of joint (temperature and precipitation) 
fields;

- Application of considered model for solution of hydrological 
problems.



Thank you for attention!


