

a stochastic weather generator for daily temperatures and precipitations : usability for climate change adaptation in agriculture

Vincent CAILLIEZ – Chambre d'Agriculture de la Creuse vincent.cailliez@creuse.chambagri.fr

Vannes – Centre Henri Lebesgue - 17/20th May 2016

Adaptation to climate change : issue WEATHER GENERATORS

- What kind of climate projections could be relevant for operationnal adaptation toward the near future (2015-2040)?

- GCM results are strongly incompatible with observed climate change (1980-2015) over France

- Classical definition of climate is outdated

 \rightarrow Let's conceive and use a specific SWG, adapted to our agronomical purpose !

Observed VS simulated C.C.

La Courtine (Creuse, France) max. daily temperature

An outdated climate definition :

the 30-year average

La Courtine (Creuse, France)

Redefining the climate : the "climate expectancy"

<u>Classical WMO definition</u> (Technical Regulations, Basic documents n°2, vol.1, General Meteorological Standards and Recommended Practices, 2011 edition updated 2012. http://library.wmo.int/pmb_ged/wmo_49-V1-2012_en.pdf)

- Observation = 30-year average + Anomaly

The 30-year average is the "normality"

Proposed V. Cailliez definition ("Prud'homme" prize 1992, SMF)

- Homogenized serial of observations = combination of organizations + random part

Re-exposed : Climate and impacts workshop, IPSL (11/2014) and International climate conference, UNESCO (07/2015)

Let's name the combination of organizations (or complementary part of randomness) the **"climate expectancy"** in replacement of the 30-year average.

Gen-CFox in general :

Let's put the new climate definition into equations

- Take Par(t), a serials of daily temperatures (Tn,Tx) or precipitations (RR) during 1980-2015

- Homogenize the serials
- Progressively extract organizations
 - Long-term (trend, cycles...)
 - Short-term (persistence...)
- Study the residual
 - Randomness
 - Descriptive distribution

Removing the long-term organization

$$\begin{aligned} \textbf{Par(t)} &= a^{*}t+b \text{ (if linear...)} &| \text{ Trend} \\ &+A_{1}^{*}sin(2\Pi t/P_{1}+\phi_{1}) &| \text{ Cycles} \\ &+ \dots &| \\ &+A_{k}^{*}sin(2\Pi t/P_{k}+\phi_{k}) &| \\ &+ \textbf{ParWLTO(t)} &| \text{ Residual} \end{aligned}$$

t : time in days, months, years... Par : climatic Parameter (temperature, precipitations...) WLTO : Without Long Term Organization

Notice : - A_i and ϕ_i can be organized themselves - Only statistically significant coefficients are kept

Removing the short-term organization

WSTO : Without long term and Short Term Organization

Notice : - a_i can be organized themselves - Tn,Tx are linked through the autoregressive process -->multi-variation of the SWG - n goes from 3 to 7

Gen-CFox : Studying the residual

- Randomness
 - Runs tests \rightarrow O.K.
- Idealized distribution
 - via intensive parameters (not quantiles)
 - Average → 0 (must be!)
 - Standard deviation → *function of time,* organized in trend and cycles
 - Skewness (G1) and Kurtosis (G2) \rightarrow *very*

weakly organized, considered as constants

Notice : Climate expectancy alone doesn't need an SWG !
ClimExpect(t) = Par(t) - ParWSTO(t)

Generating climate to the present

- Re-generation of the residual :

- Use of a random number generator, calibrated on idealized ParWSTO(t)

- 10 000 iterations of daily 1980-2015 serials for each observation serials (10000*13149 datas)

- Rebuilding of autoregressive process, day by day
- Addition of the long-term organization

- You get 10 000 complete serials. You have to check the relevancy in distribution and organization with the observed one.

Comparating SWG simulations VS observations

- Verification of total distribution Par(t)
 Quantile-Quantile correction needed !
- Verification of chronological organizations
 - Average(Sim.coeff)=Obs.coeff
 - Std Dev(Sim.coeff)=Std Err(Obs.coeff)
- Accuracy of classical climate indexes
 - Tx>30°C "very hot days"
 - Tx>25°C "hot days"
 - Tn<0°C "freezing days"
 - Tx<0°C "non-defreezing days"
 - Tn<-5°C "severely freezing days"

Gen-CFox : What about the future ?

Global mean temperature near-term projections relative to 1986-2005

IPCC AR5, Tech. Summary, p87, figure TS.14 and adaptation

Gen-CFox : What about the future ?

- Prolongation of chronological organization
 - toward the near future (2015-2040)
 - without any acceleration
 - very moderate hypothesis!
- Ensemble statistics on many agro-climatic indexes
 - grass
 - wheat
 - corn
 - fruits
 - ...

Examples of use : Time to mow the hay (1st)

Néoux (Creuse, France)

Examples of use :

Wheat over-heating days

Ahun (Creuse, France)

Days over 25°C, from may-15 to july-15

Examples of use : Wheat over-heating days

Ahun (Creuse, France)

Days over 25°C, from may-15 to july-15 (2010), shifting 7days/10 years

Examples of use :

Climate extremes

- Heat Wave of August 2003, in France

- Indicator : summer (JJA) mean of max daily temperature

Calculation type	Return period
Original calculation (Météo-France, "La Météorologie", n°46, aug. 2004)	140 yrs
Climate expectancy 2003	35 yrs
Climate expectancy 2015	18 yrs
Climate expectancy 2040	5 yrs

Extensions

- After a beginning in the Limousin region (2012-2015), the method is now in use in 2 agro-climate projects (2015-2019) concerning $\sim \frac{1}{2}$ of France :

- AP3C (Massif Central)
- Agri-Accept (Western France)
- Refinements:
 - Fully multi-variate approach (Tn,Tx,RR,P.E.T.)
 - Dynamical adjustment of G1,G2 on residual

Complementary informations

- Climate expectancy developments in :
 - the acts of "Atelier Climat et Impacts" IPSL, 2014
- the book of abstracts of the 2015 UNESCO climate conference, p105-106 :

http://pool7.kermeet.com/C/ewe/ewex/unesco/DOCS/CFCC_abstractBook.pdf

- Popularization work in the prospective magazine "Futuribles", n°407, july 2015 : https://www.futuribles.com/

 Contact of the author : vincent.cailliez@creuse.chambagri.fr

Thanks for your attention !