Downscaling of extremes : empirical and
theoretical issues.
Application to severe precipitation.
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Motivation

e ~ 30 % of the world economic activities are affected by the
meteorological conditions (source: IPCC AR4)

e IPCC scenarios of climate change and GCMs :

¢ Have a coarse spatial resolution (x~ 250 km)
— Needs for downscaling

¢ Smooth extreme values
— Needs for correction to recover extreme events
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What is downscaling ???

Definition:
Downscaling is the action of
generating climatic or meteorological
values and/or characteristics) at a
local scale, based on information
(from GCM/reanalyses) given at a
large scale.




How to downscale?: The basics

Coarse atmospheric data
Precipitation, temperature, humidity,
geopotential, wind, etc.

=~ 250 km
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produce regional/local climate features?
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Region, city,
fields, station

Local variables (e.g., precip., temp.)

(small scale water cycle, impacts — crops, resources — etc.)




How to downscale?: The basics

Coarse atmospheric data
Precipitation, temperature, humidity,

geopotential, wind, etc.
|

Dvynamical downscaling IKRCI\-IS):

=~ 250 km

e GCMs to drive regional models (5-50kimn) determining atmosphere dynamics
e Requires a lot of computer tine aild resources == Limited applications
|

Statistical downscaling: :

o Based on statistical relationships Uetween large- and local-scale variables

]
e Low costs and rapid sunulations a Pphc-a ble to any spatial resolution
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o Uncertamnties (results, propagatiorl, etc)
¥
Local variables (e.g., precip., temp.)

Region, city,
fields, station
(small scale water cycle, impacts — crops, resources — etc.)




Main statistical approaches

Could also be RCM simulations. ..

Coarse atmospheric data
Precip., temp., humidity, geopot., wind, etc.
' |
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Local variables (e.g., precip., temp.)

(small scale water cycle, impacts — crops, resources — etc.)




Statistical downscaling : bias correction

CDF-Transform Method

Build a bias correction by comparing the CDF of the high-scale
variable and the one of the low-scale variable (Michelangeli et al.,
2009).

Transformation

Calibration

CORY)
CORY)
Donnscaled data
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Statistical Downscaling for Spatial Extremes

Simulate spatial fields of extremes conditioning to large scale
information

Large scale Small scale
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Statistical Downscaling for Spatial Extremes

Simulate spatial fields of extremes conditioning to large scale
information

e Model for spatial extremes
e Conditional simulation for this model
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2. Region of interest and data
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Low scale: SAFRAN data (Quintana-Segui et al.,
2008)
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Low scale daily precipitation data from SAFRAN analysis (1960—2007) on a
grid with 8 km x8 km-resolution (Quintana-Segui et al., '08)

Figure: Study area of SAFRAN data
subset.

Description:

e Cévennes region in SE of
France

e Autumnal maximum of daily
precipitation for 1960-2007.

e 457 points uniformly distributed.
e Grid data from interpolation.



Large scale: MEDCORDEX-IPSL-WRF data

Description:

e RCM outputs of autumnal daily
precipitation for 1989-2007.

e Grid resolution: about 50km.

e Area of interest is covered by 12
grid-cells.

0 10 20 30

Figure: MEDCORDEX-IPSL-WRF maximum
precipitation data for the year 1989 (in mm).
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Spatial model for extremes

{Z(s),s € S} random field , Z is max-stable if
there exist a,,(s) and b,,(s) > 0, such that for all n, (Z;);—1,, ind copies
Z,

1=1,n

{2 (2‘()”}8 D {Z(5)} es

Asymptotic dependence at lag »

x(h) = lim P(Z(s+h) > z|Z(s) > z)

z—z*

x(h) >0



Spatial extremes

De Haan construction

e (&, 1) Poisson point process on (0, +o0) x X, with intensity
£ 2dép(da),

o W(.:s): X — [0,+0) functions {, W (z, s)u(dx) = 1forall s € S.

Then
Z(s) = max & W (zg, )

is a max-stable process with Fréchet margins.

Models for maxima random fields.



Max-stable models

Max-stable models

e Smith (storm) processes
Wi(zg, s) = (s — xk)

e Schlather processes
Wi (zg, s) = max(0, Yi(s)), Yz
Gaussian

o extremal-t processes ¢ ' d¢p(dx),
Wi (zg, s) = max(0, Yi(s)), Yz
Gaussian

e Brown-Resnick processes
Wi (zk, s) = exp (Yi(s) — 0%(s)/2) Yy
Gaussian stationary inc.

Z(0)




Data transformation

Max-stable model : ¢t-extremal process with a-Fréchet margins.

Transformation of the data by modeling the GEV parameters:
n = MQ+M1*LON+M2*LAT
o = og+o01 % LON 4+ 09 % LAT
¢ =

Parameters (uo, 111, 112, 00, 01, 02, C, c, p) estimated by composite
likelihood

uw = exp(—3.06 —0.22LON + 0.18LAT)
o = exp(—4.34 —0.37TLON + 0.21LAT)
¢ = 011
a = 221
p = 123



Safran data year 2005 Safran data year 2007

simulation simulation
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Conditional Sampling for Max-Stable Processes

Z(s) = maxgen §Wi(s), se K

Task: Simulate Z given some conditions on Z.
Condition’s
e W(Z)y=2, z>0

for some positively homogeneous functional /, i.e.

laf) =al(f), a>0, feCL(K).

Examples for /:
integral, point evaluation, maximum, minimum, ...



Conditional Sampling for Max-Stable Processes

Z(s) = maxpen §pWi(s), se K

condition: /(Z) =z, z>0
for some positively homogeneous functional ¢

Difficulties:

e number of “active” functions may be arbitrarily large

e condition cannot be carried over to conditions on the Poisson
point process

e condition cannot be expressed in terms of the exponent measure



Conditional Sampling for Max-Stable Processes

Z(s) = maxpen §pWi(s), se K

condition: /(Z) =z, z>0
for some positively homogeneous functional ¢
Difficulties:

e number of “active” functions may be arbitrarily large

e condition cannot be carried over to conditions on the Poisson
point process

e condition cannot be expressed in terms of the exponent measure

~~ conditional distribution not tractable analytically

Our Approach: Sampling via MCMC techniques!



Conditional Sampling for Max-Stable Processes

o {&:}ren: Poisson point process with intensity ¢ =2 d¢
o {Wr(-)}ren: i.i.d. sample-continuous processes

Z(s) = max,y  &Wi(s), seK



Conditional Sampling for Max-Stable Processes
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o {&:}ren: Poisson point process with intensity ¢ =2 d¢
o {Wr(-)}ren: i.i.d. sample-continuous processes

Z(s) = max,y  &Wi(s), seK

What about the distribution {{;}1en?

o {&:}reny Ccan be numbered s.t. & > & > ...
o then: & =4 (Ey + ...+ Ey) ! for
{Ek}rken ~iia Exp(1)



Conditional Sampling for Max-Stable Processes

|

o {&:}ren: Poisson point process with intensity ¢ =2 d¢
. o {Wr(-)}ren: i.i.d. sample-continuous processes
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Z(s) = max,y  &Wi(s), seK

What about the distribution {{;}1en?

o {&:}reny Ccan be numbered s.t. & > & > ...
o then: & =4 (Ey + ...+ Ey) ! for

moe oo

° 1 {Er}ken ~iia Exp(1)
Assumption: sup.x Wi(s) < C a.s. for some C > 0 (%)
Then,

fk O < infSeK Z(S)
= &, Wi (-) cannot contribute to Z(-)
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o {&:}ren: Poisson point process with intensity ¢ =2 d¢
o {Wr(-)}ren: i.i.d. sample-continuous processes

Z(s) = max,y  &Wi(s), seK

What about the distribution {{;}1en?

o {&:}reny Ccan be numbered s.t. & > & > ...
o then: & =4 (Ey + ...+ Ey) ! for
{Ek}rken ~iia Exp(1)

Assumption: sup.x Wi(s) < C a.s. for some C > 0 (%)

Define

N W) =min{keN: & C <infyex Z(s)}.
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o {Wr(-)}ren: i.i.d. sample-continuous processes
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What about the distribution {{;}1en?

o {&:}reny Ccan be numbered s.t. & > & > ...
o then: & =4 (Ey + ...+ Ey) ! for
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Conditional Sampling for Max-Stable Processes
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o {&:}ren: Poisson point process with intensity ¢ =2 d¢
o {Wr(-)}ren: i.i.d. sample-continuous processes

Z(s) = maxi\ﬁ’w) EWi(s), seK

What about the distribution {{;}1en?

o {&:}reny Ccan be numbered s.t. & > & > ...
o then: & =4 (Ey + ...+ Ey) ! for
{Ek}rken ~iia Exp(1)

Assumption: sup.x Wi(s) < C a.s. for some C > 0 (%)

Define

N W) =min{keN: & C <infyex Z(s)}.

Note: I, can always be chosen s.t. () holds
(de Haan & Ferreira, ‘06, Oesting et al, '13 )



Conditional Sampling for Max-Stable Processes

Max-Stable Process

N(UW
2(5) = "max| GWi(s)



Conditional Sampling for Max-Stable Processes

Max-Stable Process

N(UW
2(s) = "Wax | GWils)

Two-Step Procedure for Max-Stable Processes:
A Sample  n from distribution of N(EW) | UZ) ==



Conditional Sampling for Max-Stable Processes

Max-Stable Process

N(UW
2(s) = "Wax | GWils)

Two-Step Procedure for Max-Stable Processes:
A Sample (w,n) from distribution of (W, N({, W)) | {(Z) = =



Conditional Sampling for Max-Stable Processes

Max-Stable Process

N(UW
2(5) = "max| GWi(s)

Two-Step Procedure for Max-Stable Processes:
A Sample (w,n) from distribution of (W, N({, W)) | {(Z) = =

B Sample ¢ from distribution of ¢ | W =w, N(§, W) =n, {(Z) = z



Conditional Sampling for Max-Stable Processes

Max-Stable Process

N(UW
2(s) = "Wax | GWils)

Two-Step Procedure for Max-Stable Processes:

A Sample (w,n) from distribution of (W, N({, W)) | {(Z) = =
¢ by Metropolis-Hastings algorithm
e proposal distribution: unconditional distribution of (W, N (£, W))

B Sample ¢ from distribution of ¢ | W =w, N(§, W) =n, {(Z) = z



Conditional Sampling for Max-Stable Processes

Max-Stable Process

N(UW
2(s) = "Wax | GWils)

Two-Step Procedure for Max-Stable Processes:

A Sample (w,n) from distribution of (W, N({, W)) | {(Z) = =
¢ by Metropolis-Hastings algorithm
e proposal distribution: unconditional distribution of (W, N (£, W))

B Sample ¢ from distribution of ¢ | W =w, N(§, W) =n, {(Z) = z

o Metropolis-Hastings algorithm
¢ conditional sampling for max-linear model

Z(s) =max)_; ar(s)Up, =AU



MCMC Algorithm for Max-Linear Models

Z(s) =maxp_,ap(s)Uy = AOU, seK
Aim: Simulate Y = (%,,%) | 6(Z) = 2.

Metropolis-Hastings Algorithm:
1. Choose starting value y € (0, 00)" 1.
2. Draw y* from non-conditional distribution of Y as proposal for y.
3. Sety = y* with probability

in 1 P(Y € dy )P(Y e dy* | ((2) = 2)
min 4 1, P(Y e dy)P(Yedy [((2)=2) |

4. Goto 2.



MCMC Algorithm for Max-Linear Models

Z(s) =maxp_,ap(s)Uy = AOU, seK
Qi U
Aim: Simulate Y = (73,..., U1> | U(Z) =

Metropolis-Hastings Algorithm:
1. Choose starting value y € (0, 00)" 1.
2. Draw y* from non-conditional distribution of Y as proposal for y.
3. Sety = y* with probability

oy B i)

(S, 1400 ) oxp (—L 3, 00

4. Goto 2.



Application

Simulation conditional to each RCM grid-cell

e Standard downscaling (cdf-transform) for each Safran grid point
covered by the RCM grid cell

« the averaged of the downscaled values is the conditioning value
e perform conditional simulations with the MCMC algorithm



Results

Year 2007

corrected RCM Averaged simulations
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From conditional simulations to downscaling

Downscaling of the regional climate models (RCM) outputs

Climate model : cells M, ..., M,

Objective: Simulate (Z)|M; = mq, ..., M, = my,



From conditional simulations to downscaling

Downscaling of the regional climate models (RCM) outputs

Climate model : cells M, ..., M,

Objective: Simulate (Z)|M; = mq, ..., M, = my,

Method: conditional simulations using downscaled values as
conditioning points.

= hybrid method



Hybrid Method : a physical and statistical
approach




Hybrid Method : a physical and statistical
approach

General Methodology:

e Choose a given number of points in the low scale dataset.

o Establish a statistical link (transfer function) between the high
scale information (from GCM outputs) and these points
(calibrated on the past)



Hybrid Method : a physical and statistical
approach

General Methodology:

e Choose a given number of points in the low scale dataset.

o Establish a statistical link (transfer function) between the high
scale information (from GCM outputs) and these points
(calibrated on the past)

 Build with this transfer function some pseudo-observations at
these given locations



Hybrid Method : a physical and statistical
approach

General Methodology:

e Choose a given number of points in the low scale dataset.

o Establish a statistical link (transfer function) between the high
scale information (from GCM outputs) and these points
(calibrated on the past)

 Build with this transfer function some pseudo-observations at
these given locations

e Perform a conditional simulation algorithm with the
pseudo-observations as conditioning values.



Conditional simulations

Suppose that Z has been measured at a number of data points.

1= Z(Sl)v <y Rn = Z(Sn)
Objective: Simulate (Z),|Z(s1) = z1 ..., Z(sn) = zn

Z(s) = max EWi(s) = max Or(s) = max(rrizm o1 (s), max gzb,:(S))

k=1 k k=1
Algorithm
Dombry and Eyi-Minko (2012) propose:
(i) generate a partition .7 given z1, . .., zy;

(ii) generate extremal random fields ¢ given 7 ;
(iii) generate sub-extremal random fields ¢ .



Comments on the generic algorithm

— Step (i): Gibbs sampler, Dombry et al, 2013) rests on the
computation of multidimensional integrals, that may be not
numerically tractable.

— Step (ii): Each extremal random field must be simulated under
equality and inequality constraints. A rejection approach, may take
very long time when the number of conditioning points is large.

Gathering steps 1 and 2
Instead of drawing a partition, draw directly the extremal
random fields at all conditioning points
¢ avoid the calculation of integrals
¢ enables handling up to hundreds conditioning
points instead of less than 30.



Choice of conditioning points

Basic choice: near the center of each grid-cell

Alternative choices

e choose a representative of the low-scale dataset with clustering
algorithm.

= Partitioning Around Medoids (PAM)

e choose randomly one conditioning point into each grid-cell and
change it for each simulation

= Stochastic Hybrid Method



Transfer functions and methods

Methods TF Cond. Sim. | Description
. Bilinear interpolation of the RCM
Interpolation NO NO outputs values.
Model the low-scale variable by the
Linear downsc. | YES NO mean of the high-scale variable over
the 9 pixels around the point of interest.
Raw NO YES Use directly RCM outputs as

conditioning values.
Build a bias correction by comparing the

CDF-t YES YES CDF of the high-scale variable and
the one of the low-scale variable.
: Same as Linear downscaling but only
Linear reg. YES YES at the conditioning points.
Optimal NO YES Use directly the real observations

as conditioning points

Table: Different methods for building the pseudo-observations from the Medcordex and
Safran datasets.



Results

Skill-Score: % of improvement compared to a reference method.

Models CRPSS | QSSgs | K-SSS | RMSE, SS
No simulations Interpolation -20.1% | -54.8% | -19.8% -0.4%
Linear downscaling 0% 0% 0% 0%
Conditional Raw 14.0% | 44.4% | 10.4% 20.2%
CDF-t 141% | 60.6% | 12.3% 40.4%
Simulations Linear Regression 20.1% 53.4% 15.0% 22.5%
Optimal 24.2% 70.7% | 18.7% 52.9%

Table: Skill-Scores (with Linear downscaling as reference) of the hybrid
algorithm with the different methods for building the pseudo-obs. from the
MEDCORDEX dataset.



Results

Figure: Annual means obtained by the 6 methods. The observed in blue
and each trajectory in red is one conditional simulation.



Choice of the conditioning points

PAM

Choice of conditioning points
independent of the RCM
model.

57 conditioning points

Same order between the
different methods (=~ same
skill-scores)

Results not improved (higher
scores).

Reasons: the typicality of
some conditioning points
(alone in their clustering
classes)

Stochastic Hybrid Method

Choice of conditioning points
depend on the RCM model
No more case-by-case choice
of conditioning points.

Same order between the
different methods (~ same
skill-scores)

Improved results (Scores)



Perspectives

Downscaling of MSP, theoretical distribution
e several conditions ?
e if not reachable, smoothing to avoid discontinuities
when changing large scale grid-cell
Hybrid downscaling
e choice of the points (and number)

Both

e transfer functions
e other RCM

Describe the future evolution of the extreme precipitation according
to different high-scale scenarios.

Joint work with
Aurélien Bechler, Christian Lantuéjoul, Marco Oesting, Mathieu Vrac.
funding ANR McSim.
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