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Motivation

• � 30 % of the world economic activities are affected by the
meteorological conditions (source: IPCC AR4)

• IPCC scenarios of climate change and GCMs :
• Have a coarse spatial resolution (� 250 km)
ùñ Needs for downscaling

• Smooth extreme values
ùñ Needs for correction to recover extreme events



Outline

Downscaling for Spatial Extremes

1. Statistical downscaling
2. Region of interest and data
3. Max-stable processes
4. Conditional distribution according to a single condition
5. Spatial Hybrid Downscaling
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Statistical downscaling : bias correction

CDF-Transform Method
Build a bias correction by comparing the CDF of the high-scale
variable and the one of the low-scale variable (Michelangeli et al.,
2009).
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Statistical Downscaling for Spatial Extremes

Simulate spatial fields of extremes conditioning to large scale
information
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Statistical Downscaling for Spatial Extremes

Simulate spatial fields of extremes conditioning to large scale
information

• Model for spatial extremes
• Conditional simulation for this model
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Low scale: SAFRAN data (Quintana-Segui et al.,
2008)

Low scale daily precipitation data from SAFRAN analysis (1960–2007) on a
grid with 8 km�8 km-resolution (Quintana-Seguı́ et al., ’08)

Figure: Study area of SAFRAN data
subset.

Description:
• Cévennes region in SE of

France
• Autumnal maximum of daily

precipitation for 1960-2007.
• 457 points uniformly distributed.
• Grid data from interpolation.



Large scale: MEDCORDEX-IPSL-WRF data

0 10 20 30

Figure: MEDCORDEX-IPSL-WRF maximum
precipitation data for the year 1989 (in mm).

Description:
• RCM outputs of autumnal daily

precipitation for 1989-2007.
• Grid resolution: about 50km.
• Area of interest is covered by 12

grid-cells.
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Spatial model for extremes

tZpsq, s P Su random field , Z is max-stable if
there exist anpsq and bnpsq ¡ 0, such that for all n, pZiqi�1,n ind copies
Z, "

max
i�1,n

Zipsq � anpsq

bnpsq

*
sPS

D
� tZpsqusPS

Asymptotic dependence at lag h

χphq � lim
zÑz�

P pZps� hq ¡ z|Zpsq ¡ zq

χphq ¡ 0



Spatial extremes

De Haan construction

• pξk, xkq Poisson point process on p0,�8q � X , with intensity
ξ�2dξµpdxq,

• W p.; sq : X ÞÑ r0,�8q functions
³
X W px, sqµpdxq � 1 for all s P S.

Then
Zpsq � max

k
ξkW pxk, sq

is a max-stable process with Fréchet margins.

Models for maxima random fields.



Max-stable models
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Max-stable models
• Smith (storm) processes
Wkpxk, sq � ϕps� xkq

• Schlather processes
Wkpxk, sq � maxp0, Ykpsqq, Yk
Gaussian

• extremal-t processes ξ�1�αdξµpdxq,
Wkpxk, sq � maxp0, Ykpsqq, Yk
Gaussian

• Brown-Resnick processes
Wkpxk, sq � exp

�
Ykpsq � σ2psq{2

�
Yk

Gaussian stationary inc.



Data transformation

Max-stable model : t-extremal process with α-Fréchet margins.

Transformation of the data by modeling the GEV parameters:

µ � µ0 � µ1 � LON � µ2 � LAT

σ � σ0 � σ1 � LON � σ2 � LAT

ζ � ζ0

Parameters pµ0, µ1, µ2, σ0, σ1, σ2, ζ, α, ρ) estimated by composite
likelihood

µ � expp�3.06� 0.22LON � 0.18LAT q

σ � expp�4.34� 0.37LON � 0.21LAT q

ζ � 0.11

α � 2.21

ρ � 1.23



Safran data year 2005
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Conditional Sampling for Max-Stable Processes

Zpsq � maxkPN ξkWkpsq, s P K

Task: Simulate Z given some conditions on Z.

Condition�Zs

• `pZq � z, z ¡ 0

for some positively homogeneous functional `, i.e.

`pafq � a`pfq, a ¡ 0, f P C�pKq.

Examples for `:
integral, point evaluation, maximum, minimum, . . .



Conditional Sampling for Max-Stable Processes

Zpsq � maxkPN ξkWkpsq, s P K

condition: `pZq � z, z ¡ 0
condition: for some positively homogeneous functional `

Difficulties:

• number of “active” functions may be arbitrarily large
• condition cannot be carried over to conditions on the Poisson

point process
• condition cannot be expressed in terms of the exponent measure

 conditional distribution not tractable analytically

Our Approach: Sampling via MCMC techniques!
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Conditional Sampling for Max-Stable Processes
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• tξkukPN: Poisson point process with intensity ξ�2 dξ

• tWkp�qukPN: i.i.d. sample-continuous processes

Zpsq � maxkPN ξkWkpsq, s P K

What about the distribution tξkukPN?

• tξkukPN can be numbered s.t. ξ1 ¡ ξ2 ¡ . . .

• then: ξk �d pE1 � . . .� Ekq
�1 for

tEkukPN �iid Expp1q

Assumption: supsPKWkpsq   C a.s. for some C ¡ 0 p�q

Npξ,Wq � min
 
k P N :

ξk � C   infsPK Zpsq

(
.
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ñ ξkWkp�q cannot contribute to Zp�q
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Conditional Sampling for Max-Stable Processes
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Note: Wk can always be chosen s.t. p�q holds
(de Haan & Ferreira, ’06, Oesting et al, ’13 )



Conditional Sampling for Max-Stable Processes

Max-Stable Process

Zpsq �
NpU,Wq
max
i�1

ξkWkpsq

Two-Step Procedure for Max-Stable Processes:

A Sample

pw,

n

q

from distribution of

pW,

Npξ,Wq

q

| `pZq � z

• by Metropolis-Hastings algorithm
• proposal distribution: unconditional distribution of pW, Npξ,Wqq

B Sample ξ from distribution of ξ |W � w, Npξ,Wq � n, `pZq � z

• Metropolis-Hastings algorithm
• conditional sampling for max-linear model

Zpsq � maxnk�1 akpsqUk � AdU
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MCMC Algorithm for Max-Linear Models

Zpsq � maxnk�1 akpsqUk � AdU, s P K

Aim: Simulate Y �
�
U2
U1
, . . . , Un

U1

	
| `pZq � z.

Metropolis-Hastings Algorithm:
1. Choose starting value y P p0,8qn�1.
2. Draw y� from non-conditional distribution of Y as proposal for y.
3. Set y � y� with probability

min

$&
%1,

PpY P dy qPpY P dy� | `pZq � zq

PpY P dy�qPpY P dy | `pZq � zq

,.
- .

4. Goto 2.
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Application

Simulation conditional to each RCM grid-cell

• Standard downscaling (cdf-transform) for each Safran grid point
covered by the RCM grid cell

• the averaged of the downscaled values is the conditioning value
• perform conditional simulations with the MCMC algorithm



Results
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From conditional simulations to downscaling

Downscaling of the regional climate models (RCM) outputs

Climate model : cells M1, . . . ,Mn

Objective: Simulate pZqs|M1 � m1, . . . ,Mn � mn

Method: conditional simulations using downscaled values as
conditioning points.

ñ hybrid method
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Hybrid Method : a physical and statistical
approach
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Hybrid Method : a physical and statistical
approach

General Methodology:

• Choose a given number of points in the low scale dataset.
• Establish a statistical link (transfer function) between the high

scale information (from GCM outputs) and these points
(calibrated on the past)

• Build with this transfer function some pseudo-observations at
these given locations

• Perform a conditional simulation algorithm with the
pseudo-observations as conditioning values.
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Conditional simulations

Suppose that Z has been measured at a number of data points.

z1 � Zps1q, . . . , zn � Zpsnq

Objective: Simulate pZqs|Zps1q � z1 . . . , Zpsnq � zn

Zpsq � max
k¥1

ξkWkpsq � max
k¥1

φkpsq � max
�
max
k�1,`

φ�k psq,max
k¥1

φ�k psq
�

Algorithm
Dombry and Eyi-Minko (2012) propose:
(i) generate a partition J given z1, . . . , zn;
(ii) generate extremal random fields φ�i given J ;
(iii) generate sub-extremal random fields φ�i .



Comments on the generic algorithm

– Step (i): Gibbs sampler, Dombry et al, 2013) rests on the
computation of multidimensional integrals, that may be not
numerically tractable.

– Step (ii): Each extremal random field must be simulated under
equality and inequality constraints. A rejection approach, may take
very long time when the number of conditioning points is large.

Gathering steps 1 and 2
Instead of drawing a partition, draw directly the extremal
random fields at all conditioning points
• avoid the calculation of integrals
• enables handling up to hundreds conditioning

points instead of less than 30.



Choice of conditioning points

Basic choice: near the center of each grid-cell

Alternative choices
• choose a representative of the low-scale dataset with clustering

algorithm.
ñ Partitioning Around Medoids (PAM)

• choose randomly one conditioning point into each grid-cell and
change it for each simulation

ñ Stochastic Hybrid Method



Transfer functions and methods

Methods TF Cond. Sim. Description

Interpolation NO NO Bilinear interpolation of the RCM
outputs values.

Linear downsc. YES NO
Model the low-scale variable by the
mean of the high-scale variable over
the 9 pixels around the point of interest.

Raw NO YES Use directly RCM outputs as
conditioning values.

CDF-t YES YES
Build a bias correction by comparing the
CDF of the high-scale variable and
the one of the low-scale variable.

Linear reg. YES YES Same as Linear downscaling but only
at the conditioning points.

Optimal NO YES Use directly the real observations
as conditioning points

Table: Different methods for building the pseudo-observations from the Medcordex and
Safran datasets.



Results

Skill-Score: % of improvement compared to a reference method.

Models CRPSS QSS95 K-S SS RMSEv SS

No simulations Interpolation -20.1% -54.8% -19.8% -0.4%
Linear downscaling 0% 0% 0% 0%

Conditional Raw 14.0% 44.4% 10.4% 20.2%
CDF-t 14.1% 60.6% 12.3% 40.4%

Simulations Linear Regression 20.1% 53.4% 15.0% 22.5%
Optimal 24.2% 70.7% 18.7% 52.9%

Table: Skill-Scores (with Linear downscaling as reference) of the hybrid
algorithm with the different methods for building the pseudo-obs. from the

MEDCORDEX dataset.
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Figure: Annual means obtained by the 6 methods. The observed in blue
and each trajectory in red is one conditional simulation.



Choice of the conditioning points

PAM

• Choice of conditioning points
independent of the RCM
model.

• 57 conditioning points
• Same order between the

different methods (� same
skill-scores)

• Results not improved (higher
scores).
Reasons: the typicality of
some conditioning points
(alone in their clustering
classes)

Stochastic Hybrid Method

• Choice of conditioning points
depend on the RCM model

• No more case-by-case choice
of conditioning points.

• Same order between the
different methods (� same
skill-scores)

• Improved results (Scores)



Perspectives

Downscaling of MSP, theoretical distribution
• several conditions ?
• if not reachable, smoothing to avoid discontinuities

when changing large scale grid-cell

Hybrid downscaling
• choice of the points (and number)

Both
• transfer functions
• other RCM

Describe the future evolution of the extreme precipitation according
to different high-scale scenarios.

Joint work with
Aurélien Bechler, Christian Lantuéjoul, Marco Oesting, Mathieu Vrac.
funding ANR McSim.
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