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Kernel methods (I1)

Support Vector Machines (SVM)

@ Support Vector Machines are classifiers i.e. they predict a qualitative variable,
typically Y € {—1,1}.

@ SVM combine 2 tricks.
1. ltis a kernel method.
2. Itis a large margin linear classifier (in the representation space F).

@ Remind thatwhen Y € {—1,1} and g(x) is a classifier, yg(x) > 0 if the sample x is
correctly classified by g.

@ Remark, that if f(x) = By + x3 is a linear frontier betwenn the classes, yf(x) > 0 also
means a correct classification.
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Kernel methods (I1)

Linear classifier with large margin

e xeX,ye{—1,1},data: Sn = {(X1,¥1), -, (Xn, ¥n)}
@ If the classes are separable, the problem is to find an hyperplan

f(x) = Bo + xB

such that the margin M is the largest

max M under constraints y;j(3y +x;8) > M,i=1,--- . n
Bo.B,[181I=1 ¥i( iB)

The constraint ||3|| = 1 can be taken into account by writing y;(80 + X;8) > M||3||-
@ And with M = 1/||8],

1 ) ]
gniré E||ﬁ|\2 under constraints y;(8g +x;8) > 1,i=1,---,n
0>

@ The constraint implies that all the points are well classified.
Note that, for a regression problem the constraint is substituted by
Yi— (Bo+xiB) < Mand —y; + (6o + xi8) < M.
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Kernel methods (I1)

Linear classifier with large margin

@ The large margin classification problem find a trade off between large margin and a
few errors

1

in —— + C x errors(fy,
B0 margin(do, ) ¢ €O P)

@ Cis aregularization parameter. When C tends to infinity, no error is allowed.
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Kernel methods (I1)
Soft margin SVM formulation

@ The margin of a labelled point (x, y) is defined by
margin(x, y) = y (8o + xB)

@ The erroris

0 if margin(x,y) > 0,
1 — margin(x,y) otherwise.

@ The soft margin SVM solves

n
min {Iﬁll2 +CY max(0,1— yi(Bo + x,ﬂ))}
Bos

i=1
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Kernel methods (I1)
Soft margin SVM formulation

@ With the hinge loss function

0 if yu>1

ehinge(u’ y) = max(1 — yu,0) = { 1—yu otherwise

and A = 1/C, problem is rewritten

n
gginghinge(ﬁo + xiﬂvyi) + >‘H/8||2
=1

1(69.y)

yi(x)
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Kernel methods (I1)
Lagrangian formulation

@ Find (Bp, B) € RP*! which solves

.1 2
min —
Bo,,@2||'6”

st.(Bo+x/B)yi>1,i=1,---,n
@ [tis equivalent to looking for the lagrangian saddle point

max min £(8g, 8, «
ax min (8o, B, @)

where «;> 0 are the Lagrange multipliers and

n

£(B0,8,0) = IBIP ~ 3 e (B0 + X B)ys — 1)

i=1

«; represents the influence of the constraint linked to point x; thus the influence of point x;.
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Kernel methods (I1)
Gradients

n

£(B0,8,0) = 18I ~ 3" ai (6o -+ X By — 1)

i=1
Computing the gradients

VaL(fo,B,a) =8 — Z aiyiX;

(ﬂ07ﬁ7a) Zalyl

When the gradients are 0, we have

n n
B=> X, Y aiy=0
i i
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Kernel methods (I1)
Conditions for SVM

n n
B— aiyxi=0and > ajy; =0

i=1 i=1
Yi(B"Xi + Bo) > 1, i=1,---,n
a;j>0, i=1,---,n

o (Yi(B™xi+ o) =1) =0, i=1,---,n

The last condition (called the complementary condition) split the data into two sets
@ The set of active constraints (usefull points)

{ie - myB™ +Bo) =1}

That are the points which are effectively used in the calculus.

@ The set of useless points
{ie{t,-- ntlej =0}

They correspond to well classified points and are not involved in the calculus.
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Kernel methods (Il)

@ SVM formulation with 3

n

1412 (v(8Tx,
e gIBI° =3 e (8w + 20) = 1)

with o > 0and 8 — 27:1 a;jyix; = 0 and Z?:1 ajyi=0

@ Now, using the fact that 3 = 27:1 a;yjX;, we obtain a formulation without 3

n n
1 T
mﬂEL!XZ iy — 5 Z a,-ajy,-ij, X]'
i=1 ij=1

with a; > 0 and 27:1 a;jy; = 0.
It is a quadratic problem too.

@ Predict with the decision function

n
f(x) =D aiyx]x+ Bo
i=1
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Kernel methods (I1)
SVM in the features space

In the features space, a kernel replaces the inner products.

@ Train the SVM by maximizes

max L(a) = Za,y,ff Z ajoK(Xj, X})

a€eR?
ij=1

under the constraints

0<ajyi<C, fori=1,---,n

predict with the decision function

ZQIK(X/ +BO
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Kernel methods (Il)

@ The training points with «;; # 0 are called support vectors.
Only support vectors are important for the classification of new points:

() = aiK(xi,X) + By = f(x) = > aiK(%;,X) + Bo
p

ieSv

@ SVM leads to very flexible classifiers.
@ Parameter C drives the regularization. It has to be chosen by the user.

@ The strength of SVM in high dimension (p > n) is that it solves a convex problem only
for the support vectors.

@ In Support Vector Regression (SVR) similar ideas are used.
Algorithm hyper parameters : kernel and its parameters, C.
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Kernel methods (I1)

SVM: Leukemia

Example

@ Gaussian kernel
@ Algorithm parameter to choose: C, v
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