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Kernel methods (II)

Support Vector Machines (SVM)

Support Vector Machines are classifiers i.e. they predict a qualitative variable,
typically Y ∈ {−1, 1}.
SVM combine 2 tricks.
1. It is a kernel method.
2. It is a large margin linear classifier (in the representation space F ).

Remind that when Y ∈ {−1, 1} and g(x) is a classifier, yg(x) > 0 if the sample x is
correctly classified by g.

Remark, that if f (x) = β0 + xβ is a linear frontier betwenn the classes, yf (x) > 0 also
means a correct classification.
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Kernel methods (II)

Linear classifier with large margin

x ∈ X , y ∈ {−1, 1}, data: Sn = {(x1, y1), · · · , (xn, yn)}
If the classes are separable, the problem is to find an hyperplan

f (x) = β0 + xβ

such that the margin M is the largest

max
β0,β,‖β‖=1

M under constraints yi (β0 + xiβ) ≥ M, i = 1, · · · , n

The constraint ‖β‖ = 1 can be taken into account by writing yi (β0 + xiβ) ≥ M‖β‖.
And with M = 1/‖β‖,

min
β0,β

1
2
‖β‖2 under constraints yi (β0 + xiβ) ≥ 1, i = 1, · · · , n

The constraint implies that all the points are well classified.
Note that, for a regression problem the constraint is substituted by
yi − (β0 + xiβ) ≤ M and −yi + (β0 + xiβ) ≤ M.
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Kernel methods (II)

Linear classifier with large margin

The large margin classification problem find a trade off between large margin and a
few errors

min
β0,β

1
margin(β0,β)

+ C × errors(β0,β)

C is a regularization parameter. When C tends to infinity, no error is allowed.
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Kernel methods (II)

Soft margin SVM formulation

The margin of a labelled point (x, y) is defined by

margin(x, y) = y(β0 + xβ)

The error is

0 if margin(x, y) > 0,

1−margin(x, y) otherwise.

The soft margin SVM solves

min
β0,β

{
||β||2 + C

n∑
i=1

max(0, 1− yi (β0 + xiβ))

}
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Kernel methods (II)

Soft margin SVM formulation

With the hinge loss function

`hinge(u, y) = max(1− yu, 0) =
{

0 if yu ≥ 1
1− yu otherwise

and λ = 1/C, problem is rewritten

min
β0,β

n∑
i=1

`hinge(β0 + xiβ, yi ) + λ||β||2
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Kernel methods (II)

Lagrangian formulation

Find (β0,β) ∈ Rp+1 which solves

min
β0,β

1
2
||β||2

s.t. (β0 + xT
i β)yi ≥ 1, i = 1, · · · , n

It is equivalent to looking for the lagrangian saddle point

max
α

min
β0,β
L(β0,β, α)

where αi≥ 0 are the Lagrange multipliers and

L(β0,β, α) =
1
2
||β||2 −

n∑
i=1

αi

(
(β0 + xT

i β)yi − 1
)

αi represents the influence of the constraint linked to point xi thus the influence of point xi .
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Kernel methods (II)

Gradients

L(β0,β, α) =
1
2
||β||2 −

n∑
i=1

αi

(
(β0 + xT

i β)yi − 1
)

Computing the gradients

∇βL(β0,β, α) = β −
n∑

i=1

αi yi xi

∂L(β0,β, α)

∂β0
= −

n∑
i=1

αi yi

When the gradients are 0, we have

β =
n∑

i=1

αi yi xi ,
n∑

i=1

αi yi = 0
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Kernel methods (II)

Conditions for SVM

β −
n∑

i=1

αi yi xi = 0 and
n∑

i=1

αi yi = 0

yi (β
T xi + β0) ≥ 1, i = 1, · · · , n

αi ≥ 0, i = 1, · · · , n

αi

(
yi (β

T xi + β0)− 1
)
= 0, i = 1, · · · , n

The last condition (called the complementary condition) split the data into two sets

The set of active constraints (usefull points){
i ∈ {1, · · · , n}|yi (β

T xi + β0) = 1
}

That are the points which are effectively used in the calculus.

The set of useless points
{i ∈ {1, · · · , n}|αi = 0}

They correspond to well classified points and are not involved in the calculus.
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Kernel methods (II)

SVM formulation with β

max
β,β0,α

1
2
||β||2 −

n∑
i=1

αi

(
yi (β

T xi + β0)− 1
)

with αi ≥ 0 and β −
∑n

i=1 αi yi xi = 0 and
∑n

i=1 αi yi = 0

Now, using the fact that β =
∑n

i=1 αi yi xi , we obtain a formulation without β

max
α

n∑
i=1

αi yi −
1
2

n∑
i,j=1

αiαj yi yj xT
i xj

with αi ≥ 0 and
∑n

i=1 αi yi = 0.
It is a quadratic problem too.

Predict with the decision function

f (x) =
n∑

i=1

αi yi xT
i x + β0
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Kernel methods (II)

SVM in the features space

In the features space, a kernel replaces the inner products.

Train the SVM by maximizes

max
α∈Rn

L(α) =
n∑

i=1

αi yi−
1
2

n∑
i,j=1

αiαj K (xi , xj )

under the constraints

0 ≤ αi yi ≤ C, for i = 1, · · · , n

predict with the decision function

f (x) =
n∑

i=1

αi K (xi , x) + β0
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Kernel methods (II)

The training points with αi 6= 0 are called support vectors.
Only support vectors are important for the classification of new points:

f (x) =
n∑

i=1

αi K (xi , x) + β0 = f (x) =
∑

i∈SV

αi K (xi , x) + β0

SVM leads to very flexible classifiers.

Parameter C drives the regularization. It has to be chosen by the user.

The strength of SVM in high dimension (p > n) is that it solves a convex problem only
for the support vectors.

In Support Vector Regression (SVR) similar ideas are used.
Algorithm hyper parameters : kernel and its parameters, C.
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Kernel methods (II)

Example for SVM: Leukemia

Gaussian kernel

Algorithm parameter to choose: C, γ
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