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Kernel methods (I)

This part of the course is highly inspired from J.P. Vert lecture notes/slides.
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Kernel methods (I) Kernel trick

Kernel methods

Motivations
@ Develop versatile algorithms (based on pairwise comparison) to process and analyze

data
@ without making any assumptions regarding the type of data (vectors, strings, graphs,

images, ...)

The approach
@ Develop methods based on pairwise comparisons
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Kernel methods (I) Kernel trick

Kernel methods

Representation of pairwise comparison, ideas
@ Define a "comparison function": K : X x X — R

@ Represent a set of n data points S = {x4,--- ,Xn} by the n x n matrix (symmetric
and positive semidefinite): [K]; := K(x;, ;).
@ Example

--------=>{(S)=(aatcgagtcac, atggacgtct, tgcactact)
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Figure from J.P. Vert
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Kernel methods (I) Kernel trick

Supervised classification with vector embedding

@ Map each string x € X to a vector ¢(x) € F.

@ Train a classifier for vectors on the images ¢(x1), - - - , ¢(xn) of the training set
(nearest neighbor, linear perceptron, logistic regression,support vector machine...)
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Kernel methods (I) Kernel trick

Kernel trick

@ In statistics, most methods are not directly based on the variables x or ¢(x) itself but
on their inner product
(X y) = K(x,y) = (e(x), ¢(¥))

because the inner product describes the general geometrical structure of the set.

@ The kernel trick consists in forgetting the transformation  and directly use the kernel.

Definition

A positive definite (p.d.) kernel on X is a function

K: XxX—>R

such that for every sequence x; of points in X’ the matrix (k(x;, X;)); ; is symetric and
positive.
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Kernel methods (I) Kernel trick

Kernel trick

@ The trick: this mapping might not be explicitly given.
@ Example: computing distances

O (X1, %2)? llp(x1) — p(x2)l15

= {p(x1) — p(x2), p(X1) — @(X2)) x

= {p(x1),0(x1)) 7 + {p(X2), p(X2)) 7 — 2{p(X1), p(X2)) 7
dic(x1,%2)? = K(X1,X1) + K(X2,X2) — 2K(X1,X2)

where K is a kernel.

Ao ) 7 8D

~®9(x2)
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Kernel methods (I) Kernel trick

Example of Kernels

@ Let ¥ =RP.
The function K : X2 — R defined by K(x,X’) = (X, X')gp is a p.d. kernel.
It is linear.

@ Let X be any set, and ¢ : X s RY.
Then, the function : X2 — R defined as follows is p.d kernel.

V(X, X/) € sz K(x, X/) = (L,/J(X),C,O(X/»]Rp.

@ Example: polynomial kernel.
For xT = (x1, %), (X) = {x2, \@X1X27X22},

2

K(x,X') = x2x{2 + 2x1x0x{ X5 + X5 x2 = (x,X')2,

° o _—a
3
e o °
. Re o >

The transformation leads to a linear separation problem!

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 8/28



Kernel methods (I) Kernel trick

Polynomial kernel

Decision surface

@ Here the idea is to map the data into a (possibly high dimensional) vector space
where linear relations exist among the data, then apply a linear algorithm in this
space.

@ Problem: Representing data in a highdimensional space is computationally difficult

@ Alternative solution to the original problem: Calculate a similarity measure in the
feature space instead of the coordinates of the vectors there, then apply algorithms
that only need the value of this measure.
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Kernel methods (I) Reproducing Kernel Hilbert Spaces (RKHS)

Mercer’s condition

@ For which kernels does there exist a pair (#, ¢) where H is a (possibly infinite
dimensional) Euclidean space and ¢ : RP — # is the mapping?

@ Mercer’s condition tells us whether or not a prospective kernel is actually a dot
product in some space.

@ It can be stated as follows:
There exists a mapping ¢ and an expansion

K(x,y) = > ¢i(x)ei(y)
i=1

if and only if for any g(x) such that [ g(x)?dx is finite then
J K(x,¥)9(x)g(y)dxdy > 0 (in otherwords, K is semi-positive definite.
@ [t can be shown that this condition is satisfied for positive integral powers the dot
product:
K(x.y) = (x-y)?
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Kernel methods (I) Reproducing Kernel Hilbert Spaces (RKHS)

Constructing a feature space

@ Given that we want a kernel function K that satisfies K(x, y) = (¢(x), ¢(y)), how do
we construct a feature space for K?

@ 1. Define a feature map
p: X = R" x— K(,X)

Then ¢(x) = K(., x) denotes the function that assigns the value K(x’, x) to x’ € X.
@ 2. Turn it into a linear space

)= Za/ ax), 9() =) Bk
i=1

@ 3. Endow it with a dot product

3\

M-

[
-
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1

and turn it into an Hilbert space' H.

T An Hilbert space is a vector space where an inner product is defined.
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Kernel methods (I) Examples of kernels and RKHS

Linear kernel

o Take X = RY and the linear kernel:

K(x,y) = (X, ¥)pd-

The RKHS of the linear kernel is the set of linear functions of the form

fw(X) = (W, X)ga for w e RY
endowed with the inner product
Yw, v € RY, (fw, i) 3 = (W, V)pa

and corresponding norm
vw € RY, ||fwll3 = [|Wl|ga
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Kernel methods (I) Examples of kernels and RKHS

Non linear kernels

@ Take X = R and the polynomial kernel:
K(x,y) = (a(x, Y)ga +1)°

with § the degree of the polynom.

@ Take X = RY and Gaussian kernel

[x—yl|?

Kx.y)=e <*

with o the width of the kernel. .
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Example of string Kernels

Kernel methods (I) Examples of kernels and RKHS

Les protéines sont des chaines d’acides aminés qui different selon leur longueur et
leur composition.

Exemples de longueur 110 et 153. Lalphabet contient 20 caracteres.

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGML
FEKKLWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

@ |l existe plusieurs fagons de mesurer la similarité entre les deux molécules.
@ Spectral-kernel. On considére une mesure basée de le nombre d’'occurrence de sous

séquences (ex : LQE).

Pour construire les variables, on compte le nombre daAZoccurrences de toutes les
séquences de longueur m. On génére ainsi de nouvelles variables pour lesquelles on
peut définir des noyaux.

On pourrait aussi compter le nombre de positions communes ou le nombre de sous
séquences communes (en autorisant éventuellement des gaps).
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Kernel methods (I) Kernel PCA

Kernel PCA

@ Consider the PCA of a set of transformed individuals ¢(x;), i € {1,...,n}.
@ Lets ¢ be the matrix with ist line ¢(X;).
@ The Singular Value Decomposition? of

e’ = (k(x;, %)),

returns the principal components (eigen vectors a, - - - of the matrix with coefficients
k(xi,x})).
@ The coordinates of a new sample x’ are given by the inner product (k(x’, X;);, o).

+ Avantage: the reconstruction space is not explicitly needed, but only the kernel k(., .).
- Drawback: the computation of the coordinates depends on the number of observations in
the learning set.

28VD = looking for the eigen values and eigen vectors as in PCA. It leads to principal conponents.
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Kernel methods (I) Kernel PCA

Exemple jouet

Initial set

Polynomial kernel Gaussian kernel

e NT
k(x,x') = (xTx' + 1), k(x,x') < e 20— (x=x)
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Kernel methods (I) Kernel PCA

Projection of digits 0 to 3 (black, blue, red, green) for the regular PCA (top left panel) and
kernel ACP with polynomial kernel of degree 1 to 5.

Projection by KPCA
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The space is transformed. However it seems difficult here to decide if one transformation
is better thatn the others.
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Kernel methods (1) Kernel PCA

Original data

L 1Y IOKA 7181910

Data corrupted with Gaussian noise
i BR RS
Result after linear PCA

HEEdeErEEE

Result after kernel PCA, Gaussian kernel
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Kernel methods (I) Kernel PCA

tRNA sequences

PC2 A set of 74 human tRNA
N sequences is analyzed using
bt
T a kernel for sequences (the
. g

second-order marginalized

. ’.‘ N * kernel based on SCFG). This
‘o o, .

set of tRNAs contains three

o PC1
o classes, called Ala-AGC
* * %gfé%@ (white circles), Asn-GTT
%Z (black circles) and Cys-GCA
°© Y

(plus symbols) (from Tsuda
et al., 2003).
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Kernel methods (I) Kernel k-means

Kernel k-means

Kernel kmeans can be used to detect non convex clusters
@ kmeans is known to only detect cluster that are linearly separable.
@ |dea: project the data into a space F where the clusters are linearly separable.
@ Drawback: the computation will be more expensive.
@ Kernel kmeans minimizes the SSE

K
F) 2 (F)
>3 et~ 1B, where il = s 7

k=1ieCy ieCk

It can be shown after short calculations that
F
() — ui 113,

=K K( K
(X, X;) — card(Ck) Z (xi> X;) card(Ck 2I€ZCH§k (X, Xe)
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Kernel methods (I) Kernel k-means

Kernel K-means

W@@f@o@;
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Kernel K-means is able to find “complex” clusters.
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Kernel methods (I) Kernel Ridge Regression

el Ridge Regression

@ Sp = {(X;,i)}i=1,... ,n @ training set

@ Goal = find a function f to predict y by f(x)

@ Least-square regression with penalization to prevent overfitting
n

2 1
f=argmin ; (i = F(x0))? + Al

V. Monbet (UFR Math Machine Learning for biology (2020) 22/28



Kernel methods (I) Kernel Ridge Regression

Kernel Ridge Regression

n

- 1
= argmin 30— 1)) + M-

@ By the representer theorem, any solution can be expanded as
. n
Fx) = > aiK(x;,x)
i=1

@ LetK be anx nGram matrix: K; = K(x;, x;)

@ We can then write: (F(x1),--- , f(xn))T = Kex
@ The following holds:

n n
W15 =D aiK(xi, x)ak = o Ka
i=1 k=1
@ The kernel Ridge regression problem is therefore equivalent to
1 T T
arg min — (Ka —y)' (Ka — y) + da’' Ka
acR™ N

and its solution is
a=(K+xn)y
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Kernel methods (I) Kernel Ridge Regression

Example with Gaussian kernel

lambda =10

-1
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Kernel methods (I) Kernel Ridge Regression

Example with Gaussian kernel

lambda =1
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Kernel methods (I) Kernel Ridge Regression

Example with Gaussian kernel

lambda = 0.01

-1
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Kernel methods (I) Kernel Ridge Regression

Example with Gaussian kernel

lambda = 0.00001
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Kernel methods (I) Kernel Ridge Regression

@ The kernel trick allows to extend many linear algorithms to non-linear settings and to
general data (even non-vectorial).

@ The representer theorem shows that functional optimization over (subsets of) the
kernel space is feasible in practice.

@ We will see next a particularly successful applications of kernel methods: supervized
classification with SVM.
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