
Machine Learning for biology

V. Monbet

UFR de Mathématiques
Université de Rennes 1

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 1 / 44



Introduction

Outline

1 Introduction

2 Dimension Reduction

3 Unsupervised learning

4 Supervised learning

5 Linear model (I)

6 Linear model (II)

7 Data driven supervised learning

8 Ensemble methods (I)

9 Ensemble methods (II)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Dimension Reduction

Outline

1 Introduction

2 Dimension Reduction

3 Unsupervised learning

4 Supervised learning

5 Linear model (I)

6 Linear model (II)

7 Data driven supervised learning

8 Ensemble methods (I)

9 Ensemble methods (II)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Unsupervised learning

Outline

1 Introduction

2 Dimension Reduction

3 Unsupervised learning

4 Supervised learning

5 Linear model (I)

6 Linear model (II)

7 Data driven supervised learning

8 Ensemble methods (I)

9 Ensemble methods (II)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Supervised learning

Outline

1 Introduction

2 Dimension Reduction

3 Unsupervised learning

4 Supervised learning

5 Linear model (I)

6 Linear model (II)

7 Data driven supervised learning

8 Ensemble methods (I)

9 Ensemble methods (II)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Linear model (I)

Outline

1 Introduction

2 Dimension Reduction

3 Unsupervised learning

4 Supervised learning

5 Linear model (I)

6 Linear model (II)

7 Data driven supervised learning

8 Ensemble methods (I)

9 Ensemble methods (II)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Linear model (II)

Outline

1 Introduction

2 Dimension Reduction

3 Unsupervised learning

4 Supervised learning

5 Linear model (I)

6 Linear model (II)

7 Data driven supervised learning

8 Ensemble methods (I)

9 Ensemble methods (II)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Data driven supervised learning

Outline

1 Introduction

2 Dimension Reduction

3 Unsupervised learning

4 Supervised learning

5 Linear model (I)

6 Linear model (II)

7 Data driven supervised learning

8 Ensemble methods (I)

9 Ensemble methods (II)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Ensemble methods (I)

Outline

1 Introduction

2 Dimension Reduction

3 Unsupervised learning

4 Supervised learning

5 Linear model (I)

6 Linear model (II)

7 Data driven supervised learning

8 Ensemble methods (I)

9 Ensemble methods (II)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Ensemble methods (II)

Outline

1 Introduction

2 Dimension Reduction

3 Unsupervised learning

4 Supervised learning

5 Linear model (I)

6 Linear model (II)

7 Data driven supervised learning

8 Ensemble methods (I)

9 Ensemble methods (II)
Boosting
Let’s go deeper into boosting algorithms
Interlude: optimization algorithms
Gradient boosting
Boosting is a particular way of forward stagewise additive modeling (option)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Ensemble methods (II) Boosting

Outline

9 Ensemble methods (II)
Boosting
Let’s go deeper into boosting algorithms
Interlude: optimization algorithms
Gradient boosting
Boosting is a particular way of forward stagewise additive modeling (option)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Ensemble methods (II) Boosting

Boosting

The first boosting algorithm is due to Freund and Shapire (1996).

It was developed for classification tasks.

It consists in building a family of prediction rules which are aggregated.

The algorithm is recursive: the rule at step m depends on the rule at step m − 1.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 2 / 44



Ensemble methods (II) Boosting

Boosting

Boosting is one of the most powerful learning ideas introduced in the last twenty
years.

The first objective of boosting is to reduce bias.

Boosting fits sequentially m models (weak learners) using weighted observations.
At each step, examples that are badly predicted gain weight and examples that are
classified correctly lose weight. Thus future models focus more on the examples that
previous models have badly predicted.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 3 / 44



Ensemble methods (II) Boosting

Boosting

Let us denote L the loss function: RMSE for regression and exp (−yf (x)) for classification
with y ∈ {−1, 1}.

Algorithm: boosting

Initialization of observation weights ω(1)
i = 1/n, i = 1, · · · , n

For m=1 to M
(a) Fit a regression model f̂m with weights ω(m)

i , i = 1, · · · , n
(b) Compute

`m(i) = L
(

yi , f̂m(xi )
)
, errm =

n∑
i=1

ω
(m)
i `m(i)

(c) Compute αm = errm/(supi `m(i)− errm)

(d) Do ω(m+1)
i ← ω

(m)
i α

1−`m(i)/ supi `m(i)
m , i = 1, · · · , n

(e) ω(m+1)
i =

ω
(m+1)
i∑n

i=1 ω
(m+1)
i

Return f̂ (x) =
∑M

m=1 log
(

1
αm

)
f̂m(x)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 4 / 44



Ensemble methods (II) Boosting

General comments
The main idea of boosting is to iteratively build models such that the model at iteration m
characterize what the previous models have not described.

Boosting algorithm are local models and they are able to capture complex boundaries!

Example from sklearn documentation (200 trees, max depth=1)
V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 5 / 44



Ensemble methods (II) Boosting

General comments

Step (a) "Fit a regression model f̂m with weights" of Adaboost algorithm requires the
prediction rule/model to allow weighting.
However, the model can also be fit on a sample drawn according to the weights
ω1, · · · , ωn.

At each step (d), the weights are updated.

ω
(m+1)
i ← ω

(m)
i α

1−`m(i)/ supi `m(i)
m

If observation i is well classified/predicted 1− `m(i)/ supi `m(i) = (e − e−1)/e < 1
and ωi is decreased.
If observation i is badly classified, 1− `m(i)/ supi `m(i) = (e − e)/e = 0 and ωi does
not change.

The weight 1
αm

of the rule/model f̂m increases with the performance of f̂m so that
more importance is given to the good models than bad models.

αm = errm/(supi `m(i)− errm) and f̂ (x) =
∑M

m=1 log
(

1
αm

)
f̂m(x).

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 6 / 44



Ensemble methods (II) Let’s go deeper into boosting algorithms

Outline

9 Ensemble methods (II)
Boosting
Let’s go deeper into boosting algorithms
Interlude: optimization algorithms
Gradient boosting
Boosting is a particular way of forward stagewise additive modeling (option)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 7 / 44



Ensemble methods (II) Let’s go deeper into boosting algorithms

Theoretical and empirical loss functions

Here, we will illustrate why boosting use the function exp(−yf (x)) as loss function. It is a
general concept in statistical learning.

Let (X,Y ) be a pair of random variables in Rd × {−1, 1}
Given F a family of models (or rules), we look for the best model in F .

In theory, we want to choose the model which minimizes a loss fonction, for instance

L(f ) = P
(
Y 6= f (X)

)
Problem: the loss function is intractable.

Idea: Choose the model which minimizes the empirical loss function

Ln(f ) =
1
n

n∑
i=1

1f (xi ) 6=yi

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 7 / 44



Ensemble methods (II) Let’s go deeper into boosting algorithms

Convex risk

Problem
Function

Rn → R

(f (x1), · · · , f (xn)) 7→
1
n

n∑
i=1

1f (xi ) 6=yi

is usually difficult to minimize by an optimization algorithm.

Idea
Find another loss function ` such that

Rn → R

(f (x1), · · · , f (xn)) 7→
1
n

n∑
i=1

`(yi , f (xi ))

is "easy" to minimize (ex: v 7→ `(u, v) convex).

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 8 / 44



Ensemble methods (II) Let’s go deeper into boosting algorithms

Loss function

The loss function `(y , f (x)) measures the gap between y ∈ {−1, 1} and f (x).

Thus, it has to be
- large if yf (x) < 0 (both have opposite signs→ badly classified sample.))
- small if yf (x) > 0 (both have same sign→ well classified sample.)

Examples:
1. `(y , f (x)) = 1yf (x)<0
2. `(y , f (x)) = exp(−yf (x)) (this function is convex according to its second
argument)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 9 / 44



Ensemble methods (II) Let’s go deeper into boosting algorithms

Choice of loss function is important

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 10 / 44



Ensemble methods (II) Let’s go deeper into boosting algorithms

Loss functions and robustness

The principal attraction of exponential loss in the context of additive modeling is
computational.

The exponential loss function is a monotone decreasing function of the "margin"
yf (x).

In classification (with a -1/1 response) the margin plays a role analogous to the
residuals (y − f (x)) in regression.
Observations with positive margin yi f (xi ) > 0 are classified correctly whereas those
with negative margin yi f (xi ) < 0 are misclassified.

The goal of the classification algorithm is to produce positive margins as frequently as
possible. Any loss criterion used for classification should penalize negative margins
more heavily than positive ones since positive margin observations are already
correctly classified.

Misclassification loss gives unit penalty for negative margin values, and no penalty
at all for positive ones.

Exponential loss continuously penalizes increasingly negative margin values more
heavily than they reward increasingly positive ones.

‘

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 11 / 44



Ensemble methods (II) Let’s go deeper into boosting algorithms

Generalization error & bias/variance tradeoff

Ideally, one wants to choose a model that both accurately captures the information in
training data, but also generalizes well to unseen data.

Property [Freund and Shapire, 1999]

L(f̂M) ≤ Ln(f̂M) + O

(√
MV
n

)

where L(f̂M) is the theoretical error, Ln(f̂M) is the empirical error and V a variance.
The theoritical error of boosting model f̂M is bounded by the empirical error plus a
variance term depending on the number of iterations M.

The bias/variance tradeoff or approximation error/estimation tradeoff is controlled by
the number of iterations M:
- M small: the first term Ln(f̂M)(approximation) dominates

- M big: the second term
√

MV
n (estimation) dominates

If M is too large, Adaboost leads to overfitting (see next slide).

The choice of M is important.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 12 / 44



Ensemble methods (II) Let’s go deeper into boosting algorithms

Empirical error

Let us denote errm the error rate computed on the sample {x1, · · · , xn} for the model
f̂m

errm =

∑n
i=1 ω

(m)
i `m(i)∑n

i=1 ω
(m)
i

and γm the improvement of model f̂m compared to the purely random model, then

errm = 1/2− γm

for a classification task.

Property [Freund and Shapire, 1997]

Ln(f̂M) ≤ exp

(
−2

M∑
m=1

γ2
m

)

Thus, the empirical error Ln(f̂M) (computed on the data) tends to 0 when the number
of iterations M increases.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 13 / 44



Ensemble methods (II) Let’s go deeper into boosting algorithms

Example for AdaBoost: Ozone (regression)

AdaBoost

Weak learner: tree, maximum depth=2

Boosting decreases RMSE

RMSE = VAR+BIAS2.
It is mainly the bias which is decreased (not shown).

1 10 50 100 300
Nb boosting iterations

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

RM
SE

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 14 / 44



Ensemble methods (II) Let’s go deeper into boosting algorithms

Adaboost performances, Leukemia (classification)

Trees depth = 2 (+ default parameters)

10 trees 100 trees 500 trees

Trees depth = 6

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 15 / 44



Ensemble methods (II) Interlude: optimization algorithms

Outline

9 Ensemble methods (II)
Boosting
Let’s go deeper into boosting algorithms
Interlude: optimization algorithms
Gradient boosting
Boosting is a particular way of forward stagewise additive modeling (option)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 16 / 44



Ensemble methods (II) Interlude: optimization algorithms

Optimization problem
In Machine Learning, what ever the method we choose, we have to minimize a loss
function.
In other words, during the training process, we tweak and change the parameters
(weights) of our model to try and minimize that loss function, and make our predictions as
correct and optimized as possible. But how exactly do you do that? How do you change
the parameters of your model, by how much, and when?

Source site:
https://algorithmia.com/blog/introduction-to-loss-functions

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 16 / 44

https://algorithmia.com/blog/introduction-to-loss-functions


Ensemble methods (II) Interlude: optimization algorithms

Gradient descent

Generally, if we want to find the minimum of a function, we set the derivative to zero and
solve for the parameters.
It is done for instance solving a linear regression problem.

It turns out, however, it is impossible to get a closed form solution in many Machine
Learning methods.

This is where optimizers come in. They tie together the loss function and model
parameters by updating the model in response to the output of the loss function. In
simpler terms, optimizers shape and mold your model into its most accurate possible form
by futzing with the weights. The loss function is the guide to the terrain, telling the
optimizer when it’s moving in the right or wrong direction.

We iteratively search for a minimum using a method called gradient descent.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 17 / 44



Ensemble methods (II) Interlude: optimization algorithms

Gradient descent image

As a visual analogy, you can think of a hiker trying to get down a mountain with a blindfold
on. It’s impossible to know which direction to go in, but there’s one thing she can know: if
she’s going down (making progress) or going up (losing progress). Eventually, if she keeps
taking steps that lead her downwards, she’ll reach the base.

Source site: https://www.deepideas.net/
deep-learning-from-scratch-iv-gradient-descent-and-backpropagation/

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 18 / 44

https://www.deepideas.net/deep-learning-from-scratch-iv-gradient-descent-and-backpropagation/
https://www.deepideas.net/deep-learning-from-scratch-iv-gradient-descent-and-backpropagation/


Ensemble methods (II) Interlude: optimization algorithms

Gradient descent ideas

Gradient descent operates in a similar way when trying to find the minimum of a function:
It starts at a random location in parameter space and then iteratively reduces the error J
until it reaches a local minimum.

At each step of the iteration, it determines the direction of steepest descent and takes a
step along that direction. This process is depicted for the 1-dimensional case in the
following image.

Source site: https://www.deepideas.net/
deep-learning-from-scratch-iv-gradient-descent-and-backpropagation/

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 19 / 44

https://www.deepideas.net/deep-learning-from-scratch-iv-gradient-descent-and-backpropagation/
https://www.deepideas.net/deep-learning-from-scratch-iv-gradient-descent-and-backpropagation/


Ensemble methods (II) Interlude: optimization algorithms

Gradient descent algorithm

As you might remember, the direction of steepest ascent of a function at a certain point is
given by the gradient at that point. Therefore, the direction of steepest descent is given by
the negative of the gradient.

So now we have a rough idea how to minimize J:

1. Start with random values for the parameters (or weights) β
2. Calculate what a small change in each individual weight would do to the loss function
math−−−→ Compute the gradient of J with respect to β.

3. Adjust each individual weight based on its gradient
math−−−→ Take a small step along the direction of the negative gradient

4. Go back to 2

The tricky part of this algorithm (and optimizers in general) is understanding gradients,
which represent what a small change in a weight or parameter would do to the loss
function. Gradients are partial derivatives, and are a measure of change.

∇J(βj ) '
J(βj + h)− J(βj )

h
for h small

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 20 / 44



Ensemble methods (II) Interlude: optimization algorithms

Local/global maxima

One hiccup that you might experience during optimization is getting stuck on local minima.
When dealing with high dimensional data sets (lots of variables) it’s possible you’ll find an
area where it seems like you’ve reached the lowest possible value for your loss function,
but it’s really just a local minimum.

In the vein of the hiker analogy theme, this is like finding a small valley within the mountain
you’re climbing down. It appears that you’ve reached bottom − getting out of the valley
requires, counterintuitively, climbing − but you have’nt.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 21 / 44



Ensemble methods (II) Interlude: optimization algorithms

Learning rate

To avoid getting stuck in local minima, we make sure we use the proper learning rate.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 22 / 44



Ensemble methods (II) Interlude: optimization algorithms

Learning rate

Changing our weights too fast by adding or subtracting too much (i.e. taking steps that are
too large) can hinder our ability to minimize the loss function. We don’t want to make a
jump so large that we skip over the optimal value for a given weight.

To make sure that this doesn’t happen, we use a variable called "the learning rate." This
thing is just a very small number, usually something like 0.001, that we multiply the
gradients by to scale them. This ensures that any changes we make to our weights are
pretty small. In math talk, taking steps that are too large can mean that the algorithm will
never converge to an optimum.

At the same time, we don’t want to take steps that are too small, because then we might
never end up with the right values for our weights. In math talk, steps that are too small
might lead to our optimizer converging on a local minimum for the loss function, but not the
absolute minimum.

For a simple summary, just remember that the learning rate ensures that we change our
weights at the right pace, not making any changes that are too big or too small.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 23 / 44



Ensemble methods (II) Interlude: optimization algorithms

Learning Rate

Gradient descent algorithm with learning rate α
1. Sample randomly an initial value β[0] for the weights
2. Compute the gradient ∇J(β[r−1]) of the loss function J at the current value of the
weights β[r−1]
3. Update the weights:

β[r ] = β[r−1] − α∇J(β[r−1])

4. Go back to 2. until convergence.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 24 / 44



Ensemble methods (II) Interlude: optimization algorithms

A good way to make sure gradient descent runs properly is by plotting the cost function as
the optimization runs. Put the number of iterations on the x axis and the value of the
cost-function on the y axis.

When gradient descent can’t decrease the cost-function anymore and remains more or
less on the same level, it has converged. The number of iterations gradient descent needs
to converge can sometimes vary a lot. It can take 50 iterations, 60,000 or maybe even 3
million, making the number of iterations to convergence hard to estimate in advance.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 25 / 44



Ensemble methods (II) Interlude: optimization algorithms

Let’s practice!

Just copy the url below, paste it on your favorite web navigator

https://developers.google.com/machine-learning/crash-course/
reducing-loss/playground-exercise

and follow the instructions.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 26 / 44

https://developers.google.com/machine-learning/crash-course/reducing-loss/playground-exercise
https://developers.google.com/machine-learning/crash-course/reducing-loss/playground-exercise


Ensemble methods (II) Gradient boosting

Outline

9 Ensemble methods (II)
Boosting
Let’s go deeper into boosting algorithms
Interlude: optimization algorithms
Gradient boosting
Boosting is a particular way of forward stagewise additive modeling (option)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 27 / 44



Ensemble methods (II) Gradient boosting

Ideas

(X,Y ) in Rd × {−1, 1}, a loss function ` and we have to approximate

f∗ = argmin
f∈F

E (`(Y , f (X)))

Strategy: given a sample Sn = {(x1, y1), · · · , (xn, yn)}, the empirical version of
E (`(Y , f (X))) is minimized:

1
n

n∑
i=1

`(yi , f (xi ))

Recursive approach: f∗ is approximated by

f̂ =
M∑

m=1

fm(x)

where the models fm are fit in a recursive way.

Method: use a numerical approach (gradient descent)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 27 / 44



Ensemble methods (II) Gradient boosting

Gradient descent

Let us denote fm = (fm(x1), · · · , fm(xn)) and

J(fm) =
1
n

n∑
i=1

`(yi , fm(xi ))

The recurrence formula of gradient descent algorithms is

fm = fm−1 − α∇J(fm)

where α is the learning rate.

Drawbacks of this algorithm

This algorithm allows to compute the estimator only on the observed points
x1, · · · , xn

It does not take advantage of specific regularity properties of the function to be
estimated

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 28 / 44



Ensemble methods (II) Gradient boosting

Gradient descent

At each step, approximated values are obtained:

fm(xi ) = fm−1(xi )− αUi

with, for all i = 1, · · · , n

Ui = −
∂

∂f (xi)
`(yi , f (xi ))|f (xi )=fm−1(xi)

For example, if `(yi , f (x)) = exp(−yf (x)), then Ui = −yi exp(−yi fm−1(xi ))

To compute fm at a given x, a regression can be performed on the points
(x1,U1), · · · , (xn,Un).

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 29 / 44



Ensemble methods (II) Gradient boosting

Gradient Boosting Algorithm (Friedman, 2001)

Sn = {(x1, y1), · · · , (xn, yn)} and 0 < α ≤ 1 a regularization parameter

h a simple regression model

Initialization: f0(.) = argminc
1
n `(yi , c)

For m = 1, · · · ,M:
(a) Compute − ∂

∂f (xi)
`(yi , f (xi )) at the points fm(xi )

(b) Fit the simple regression model hm on the sample (x1,U1), · · · , (xn,Un)
(c) Update fm(x) = fm−1(x) + αhm(x)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 30 / 44



Ensemble methods (II) Gradient boosting

Gradient Boosting Algorithm, comments

The output of the Gradient Boosting Algorithm is an aggregated function

f̂M = f0 + α
M∑

m=1

f̂m

If f̂M(x) is a real; in classification task, ŷ = sign(f̂M(x))

When α = 1 and `(y , f (x)) = exp(−yf (x)), the gradient boosting is very close to
Adaboost.

Choice of α is linked to the choice of M; they control the rate at which the function

1
n

n∑
i=1

`(yi , f (xi ))

is minimized.

If α is too low, the computational time is long.

If M is too large, overftting occurs.
M can be estimated using the out-of-bag samples.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 31 / 44



Ensemble methods (II) Gradient boosting

Gradient Boosting Algorithm, comments

As for Adaboost, the model used in gradient boosting should be a weak classifier.

Usually the algorithm is more performant if the weak learner has a large bias but a
low variance.

If trees are used, their depth should be low.

To decrease variance (and increase bias), only a sample of features can be used at
each step (like in bagging algorithms).

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 32 / 44



Ensemble methods (II) Gradient boosting

Gradient Boosting for regression

For a regression task,

`(y , f (x)) =
1
2
(y − f (x))2

is a convex function with respect to f (x).

The gradients are

Ui = −
∂

∂f (xi)
`(yi , f (xi ))|f (xi )

= yi − fm−1(xi ).

They are the residuals of the regression at step m − 1, so that fm tries to explain the
residual information of fm−1.

It can be shown, that under some assumptions, at each step the bias decreases but
the variance tends to increase.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 33 / 44



Ensemble methods (II) Gradient boosting

Gradient boosting performances, Leukemia (classification)

Trees depth = 2, Exponential loss, Max features=3, default learning rate

10 trees 100 trees 500 trees

Trees depth = 6, Exponential loss, Max features=10, default learning rate

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 34 / 44



Ensemble methods (II) Gradient boosting

Variable importance, Leukemia (classification)

Let us compare the importance of variables for Gradient Boosting and for a unique tree.

The "selection" is not the same.

1000 trees, depth=2 1000 trees, depth=6 1 tree

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 35 / 44



Ensemble methods (II) Gradient boosting

Example for Gradient Boosting: Ozone (Regression)

Gradient Boosting algorithm is more efficient than AdaBoost.

Weak learner: tree, maximum depth=2

1 10 50 100 300 1000
Nb boosting iterations

10

15

20

25

30

35

RM
SE

0 25 50 75 100
Relative Importance

Vx15
Vx12
Ne15

T9
Ne12
Ne9
Vx9
T15

maxO3v
T12

Variable Importance

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 36 / 44



Ensemble methods (II) Gradient boosting

eXtreme Gradient Boosting

eXtreme Gradient Boosting is an optimized version of gradient boosting.

Model Features
- Stochastic Gradient Boosting with sub-sampling at the row, column and column per
split levels.
- Regularized Gradient Boosting with both L1 and L2 regularization.

System Features
- Parallelization of tree construction using all of your CPU cores during training.
- Distributed Computing for training very large models using a cluster of machines.
- Out-of-Core Computing for very large datasets that don’t fit into memory.
- Cache Optimization of data structures and algorithm to make best use of hardware.

Algorithm Features
- Sparse Aware implementation with automatic handling of missing data values.
- Block Structure to support the parallelization of tree construction.
- Continued Training so that you can further boost an already fitted model on new
data.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 37 / 44



Ensemble methods (II) Gradient boosting

eXtreme Gradient boosting performances, Leukemia (classification)

Trees depth = 2, column sample by tree=.3

10 trees 100 trees 500 trees

Trees depth = 6: to much trees may lead to over-fitting

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 38 / 44



Ensemble methods (II) Gradient boosting

Variable importance, Leukemia (classification)
Let us compare the importance of variables for eXtreme Gradient Boosting and for a
unique tree.

The "selection" is not the same.

1000 trees, depth=2 1000 trees, depth=6 1 tree

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 39 / 44



Ensemble methods (II) Gradient boosting

Example for Gradient Boosting: Leukemia

Gradient Boosting algorithm is more efficient than AdaBoost.

Weak learner: tree, maximum depth=2

Specificity

S
e
n
s
it
iv

it
y

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n.trees = 100, AUC = 0.750
n.trees = 250, AUC = 0.963
n.trees = 500, AUC = 0.992
n.trees = 1000, AUC = 0.996

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 40 / 44



Ensemble methods (II) Boosting is a particular way of forward stagewise additive modeling (option)

Outline

9 Ensemble methods (II)
Boosting
Let’s go deeper into boosting algorithms
Interlude: optimization algorithms
Gradient boosting
Boosting is a particular way of forward stagewise additive modeling (option)

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 41 / 44



Ensemble methods (II) Boosting is a particular way of forward stagewise additive modeling (option)

Boosting as a particular way of forward stagewise additive modeling

Idea: fit nested models such that, at step m, a model is fit to the residuals of the
previous step

resm−1(i) = yi − f̂m−1(xi ) = β∗mb(xi ; γ
∗
m) + εi

where b(.; γ) is a basis function

(β∗m, γ
∗
m) = arg min

βm+1,γm+1

n∑
i=1

L
(

yi − f̂m−1(xi ), βmb(xi ; γm)
)

More generally, the models are fit by solving

min
{βm,γm}M

m=1

n∑
i=1

L

(
yi ,

M∑
m=1

βmb(xi ; γm)

)

The boosting AdaBoost algorithm (with y ∈ {−1, 1}) is a particular case of Forward
Stagewise Additive Modeling for the exponential loss function.
In AdaBoost, the basis functions are weak classifiers1 G(x) ∈ {−1, 1}. And, at step
m,

(βm,Gm) = argmin
β,G

n∑
i=1

exp (−yi (fm−1(xi ) + βG(xi )))

1See Hastie, p.343

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 41 / 44



Ensemble methods (II) Boosting is a particular way of forward stagewise additive modeling (option)

Boosting as a particular forward stagewise additive modeling (continue)

The boosting AdaBoost algorithm (with y ∈ {−1, 1}) is a particular case of Forward
Stagewise Additive Modeling for the exponential loss function.

In AdaBoost, the basis functions are weak classifiers G(x) ∈ {−1, 1}. And, at step
m,

(βm,Gm) = argmin
β,G

n∑
i=1

exp (−yi (fm−1(xi ) + βG(xi )))

With ω(m)
i = exp(−yi fm−1(xi )), it leads to

(βm,Gm) = argmin
β,G

n∑
i=1

ω
(m)
i exp (−yiβG(xi ))

Since ω(m)
i does not depend on β nor G it can be interpreted as a wieght applied to

each observation.
The weight depends on fm−1 so that it will be updated at each iteration.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 42 / 44



Ensemble methods (II) Boosting is a particular way of forward stagewise additive modeling (option)

Boosting as a particular forward stagewise additive modeling (continue)

Now, the minimizing problem

(βm,Gm) = argmin
β,G

n∑
i=1

exp (−yi (fm−1(xi ) + βG(xi )))

can be solved in 2 steps. Firstly, since −yi G(xi ) = I(yi 6= G(xi )),

Gm = argmin
G

n∑
i=1

ω
(m)
i I(yi 6= G(xi ))

which is the classifier that minimizes the weighted error.
If the exponential loss fonction is considered,

n∑
i=1

ω
(m)
i exp (−yiβG(xi )) = e−β

∑
yi=G(xi )

ω
(m)
i + eβ

∑
yi 6=G(xi )

ω
(m)
i

= (eβ − e−β)
n∑

i=1

ω
(m)
i I(yi 6= G(xi )) + eβ

n∑
i=1

ω
(m)
i

and minimizing the last line in β leads to

β =
1
2
log

1− errm

errm
where errm =

∑n
i=1 ω

(m)
i I(yi 6= G(xi ))∑n

i=1 ω
(m)
i

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 43 / 44



Ensemble methods (II) Boosting is a particular way of forward stagewise additive modeling (option)

Boosting as a particular forward stagewise additive modeling (continue)

The approximation of the forward stagewise additive modeling is updated

fm = fm−1 + βGm

which causes the weights for the next iteration to be

ω
(m)
i = ω

(m−1)
i exp (−yiβmG(xi ))

Using that −yi G(xi ) = I(yi 6= G(xi )), it becomes

ω
(m)
i = ω

(m−1)
i e−βm eαmI(yi 6=G(xi ))

where αm = 2βm is the quantity defined in the algorithm.

Finally, Adaboost is a forward stagewise additive model associated to the exponential
loss function.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 44 / 44


	Introduction
	Dimension Reduction
	Unsupervised learning
	Supervised learning
	Linear model (I)
	Linear model (II)
	Data driven supervised learning
	Ensemble methods (I)
	Ensemble methods (II)
	Boosting
	Let's go deeper into boosting algorithms
	Interlude: optimization algorithms
	Gradient boosting
	Boosting is a particular way of forward stagewise additive modeling (option)


