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Ensemble methods (I) Introduction

Introduction

The motivation for model aggregation is to develop procedures that combine the
outputs of many "weak" classifiers to produce a powerful "committee."

Bootstrap: choose the best model among B models.

Bagging (bootstrap aggregating): combine linearly several models to reduce the
estimation variance and the risk of overfitting

f̂ (x) =
1
B

B∑
b=1

f̂b(x).

Example: random forest
Boosting: combine a sequence of (elementary) models fit to weighted observations;
at each step the weights of badly predicted observations are increased.
Example : Adaboost
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Ensemble methods (I) Bumping, bootstrap

Bumping

Bootstrap is usually used to find the best model among M models.

m∗ = argmin
m

EP
[
Y − f̂m

]2

Algorithm
Let z = {(x1, y1), · · · , (xn, yn)} be a training sample.
For b = 1, · · · ,B

Randomly sample with replacement z(b) of size napp in z.
Fit model f (b).
Estimate the out-of-bag error E(b)

oob .

Choose model f (b
∗) such that b∗ = argminb∈{1,··· ,B} E

(b)
oob
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Ensemble methods (I) Bumping, bootstrap

Example

One looks for a classifier for the following data (n=200).
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500 trees are fit to bootstrap samples of size 150; the sampling unit is zi = (xi , yi ). At
each step, the samples which are not in the training set are gathered in the out-of-bag
sample.

The classification error is estimated on the out-of-bag sample.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 4 / 22



Ensemble methods (I) Bumping, bootstrap

Bumping
Best model : err.min = 0
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Worst model : err.min = 0.5
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Ensemble methods (I) Bumping, bootstrap

Bumping

Since bumping compares different models to the training data, one must ensure that
the models have roughly the same complexity.

Training data: although at each step the out-of-bag data are used to estimate the
model performances, at the end the final model has been chosen on the basis of all
the train database.

Complexity: if one of the models has a larger complexity it might be favorised.

In the case of trees, this would mean growing trees with the same number of terminal
nodes on each bootstrap sample.
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Ensemble methods (I) Bagging (bootstrap aggregation)

Bagging

Bagging is inspired by bootstrap.

Suppose we fit a model f̂ to our training data S = {(x1, y1), · · · , (xn, yn)} obtaining
prediction f̂ (x) at input x .

Bootstrap aggregation or bagging average the prediction of a collection of B boostrap
samples.

The bagging estimate is defined by

f̂bag =
1
B

B∑
b=1

f̂b(x)

The bagged estimate will differ from the original estimate f̂ (x) only when the latter is
a nonlinear or adaptive function of the data.

Bagging helps to reduce the variance but does not change the bias
Bias: E(f̂bag) = E(f̂1)
Variance: Var(f̂bag) =

1
B Var(f̂1)
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Ensemble methods (I) Bagging (bootstrap aggregation)

Impact of bagging on bias and variance

Bagging helps to reduce the variance but does not change the bias.

If the predictions f̂1(x), · · · , f̂B(x) are i.i.d,
Bias: E(f̂bag(x)) = E(f̂1(x))
Variance: Var(f̂bag(x)) = 1

B Var(f̂1(x))

Here, the bootstrap samples are correlated.
Lets denote ρ(x) = corr(f̂b(x), f̂b′ (x))
Var(f̂bag) ' ρ(x)Var(f̂1) if B is large.

Trees are unstable: they may change a lot when the training sample is perturbated. They
are good candidates for bagging!
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Ensemble methods (I) Bagging (bootstrap aggregation)

Variance reduction

Let’s consider a theoretically ideal case.

(xi , yi ), i = 1, · · · , n are observations sampled according to distribution P and
fbag(x) = EP (f̂∗(x)).
Here, x is fixed and the bootstrap samples (x∗i , y

∗
i ), i = 1, · · · , n are sampled in the

population P (and are independent from the observations). Then 1,

EP
[
Y − f̂∗(x)

]2
= EP

[
Y − fbag(x) + fbag(x)− f̂∗(x)

]2

= EP
[
Y − fbag(x)

]2
+ 2EP

[
Y − EP f̂∗(x)

]
EP

[
EP f̂∗(x)− f̂∗(x)

]
+EP

[
fbag(x)− f̂∗(x)

]2

= EP
[
Y − fbag(x)

]2
+ EP

[
fbag(x)− f̂∗(x)

]2

≥ EP
[
Y − fbag(x)

]2

The second term in the error comes from the variance of f̂∗(x). So that aggregation
in the true population never increases the RMSE. This suggest that bagging
(aggregation in the data) will often allow RMSE to decrease.

1EP
[
f̂∗(x)− EP f̂∗(x)

]
= EP f̂∗(x)− EP f̂∗(x) = 0
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Ensemble methods (I) Bagging (bootstrap aggregation)

Bagging with kNN and trees

MSE = Bias2+variance

kNN, interquartile of 50 predictions
kNN, 7 neigh., bagging
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In both examples, the variance is drastically reduced.
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Ensemble methods (I) Bagging (bootstrap aggregation)

Bagging for classification

For a K class classification problem,

f̂bag(x) = arg max
k∈{1,··· ,K}

B∑
b=1

δf (b)(x)=k

In classification the reduction of variance does not hold anymore. Bagging a good
classifier can make it better, but bagging a bad classifier can make it worse.

Example of a bad classifier.
Suppose Y = 1 for all x , and the classifier Ĝ(x) predicts

Y = 1 (for all x) with probability 0.4
Y = 0 (for all x) with probability 0.6.

Then the prediction of the bagged classifier will always be 0 (which has a higher
probability to occur).
So the error of G(x) is 0.6 but that of the bagged classifier is 1.0.
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Ensemble methods (I) Bagging (bootstrap aggregation)

Bagging for classification
For a K class classification problem,

f̂bag(x) = arg max
k∈{1,··· ,K}

B∑
b=1

δf (b)(x)=k

In classification the reduction of variance does not hold anymore. Bagging a good
classifier can make it better, but bagging a bad classifier can make it worse.

Example of a good classifier.
Let the Bayes optimal decision at x be G(x) = 1 in a two-class example.
Suppose each of the weak learners Gb have an error-rate eb = e < 0.5, and let

S1(x) =
1
B

B∑
b=1

IG∗b (x)=1

be the consensus vote for class 1.
Since the weak learners are assumed to be independent2,

S1(x) ∼ B(1, 1− e)

and P(S1(x) > 1/2)→ 1 when B gets large.
2mean of B independent {0, 1} samples
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Ensemble methods (I) Random Forests

Random forest

A random forest is defined from a set of trees.

Let Tb(x), b = 1, · · · ,B be B predictors associated to trees (Tb)b .
The random forest predictor is obtain by aggregating the tree collection:

T̂B(x) =
1
B

B∑
b=1

Tb(x)

The most famous random forests are due to L. Breiman (2000).

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 13 / 22



Ensemble methods (I) Random Forests

Random forest

The trees of the forest are fit to bootstrap samples.

In Breiman’s random forest, at each node of a given tree, the split is based on the
"best" variable of a set composed of m variables randomly chosen.

This trick allows to reduce the correlation between the trees of the forest.

Note that there are two sources of randomness:
- the bootstrap sampling,
- the sampling of the variables.

"m variables randomly chosen"
It is a similar idea as the dropout of the deep learning algortihms.
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Ensemble methods (I) Random Forests

Random forest, algorithm

Random Forest

S = {(x1, y1), · · · , (xn, yn)} a learning set.

For b = 1, · · · ,B
(a) Draw a bootstrap sample S(b) of size n among S.
(b) Grow a tree S(b) by recursively repeating the following steps
for each terminal node of the tree,
until the minimum node size nmin is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

(d) Estimate the generalization error using out-of-bag samples .

For a new observation, x, y is predicted by the mean of the responses of the B
regression trees.

Ref : Leo Breiman (2001), "Random Forests", Machine learning, vol. 45, p. 5-32.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2020) 15 / 22



Ensemble methods (I) Random Forests

Properties of random forest

Random forest are easy to use.

They lead to good estimates (or predictors) even if the data are complex (high
dimension, missing values).

The estimate is robust in the sense that it is not sensitive to the choice of the
algorithm parameters (B, m, ...)

However, B should be large in order to reduce the variance

Var(T̂B) = ρ(x)Var(Tk (x)) +
1− ρ(x)

B
Var(Tk (x))

Bias is not reduced by using random forest.
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Ensemble methods (I) Random Forests

Random forest in practice

Usually, m has to be chosen close to p/3. But, Breiman shows with examples that the
results may be very good even if m = 1. Example below, m = 2.

The larger m, the higher the correlation between the trees.

When the number of variables is large, but the fraction of relevant variables small,
random forests are likely to perform poorly with small m.

Random Forest stabilizes quite fast by increasing the number of trees.
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Ensemble methods (I) Random Forests

Random Forest interpretability

Variable importance plots can be constructed for random forests.

The most advanced variable importance measure available in random forests is the
permutation accuracy importance measure.

Principle : permutation test
- For a given predictor variable Xj , the observations are randomly permuted, and the
out-of-bag samples are predicted.
- The prediction accuracy decreases substantially compared to the original ones, if Xj
is associated with the response.

Thus, a reasonable measure for variable importance is the difference in prediction
accuracy before and after permuting Xj .

Comments
- By randomly permuting the predictor variable Xj , its original association with the
response Y is broken.
- For variable selection purposes the advantage of the random forest permutation
accuracy importance measure as compared to univariate screening methods is that it
covers the impact of each predictor variable individually as well as in multivariate
interactions with other predictor variables.
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Ensemble methods (I) Random Forests

Variable importance, Ozone data (regression)
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Ensemble methods (I) Random Forests

Random forest performances, Leukemia (classification)

Trees depth = 2: For large forests the depth of the trees is not determinant.

10 trees 100 trees 1000 trees

Trees depth = 6
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Ensemble methods (I) Random Forests

Variable importance, Leukemia (classification)

Let us compare the importance of variables for the forests and for a unique tree.

The "selection" is not the same.

1000 trees, depth=2 1000 trees, depth=6
1 tree
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Ensemble methods (I) Random Forests

Concluding remarks

Bagging is an ensemble method which helps to decrease the model’s variance.

Random forest is the most famous bagging algorithm.

The elementary models are fit on subsamples and combined by a majority vote (or a
mean for regression problems).

The subsamples should be small (for instance 1/3 of the learning database).

The vote (or mean) computation can be adapted to take into account the
performance of the weak models using weights.
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