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Data driven supervised learning Nearest neighbors (KNN)

Making Predictions with kNN

k nearest neighbors algorithm (kNN) makes data driven predictions.

Predictions are made for a
new instance x0 ∈ X by
searching through the entire
training set for the k most
similar instances (the k
neighbors) and
summarizing the output
variable for those k
instances.

Ŷ (x0) =
1
k

∑
i|xi∈NN(x0)

yi

where NN(x0) denotes the
neighborhoor of x0.

V. Monbet (UFR Math, UR1) Machine Learning for biology (2019) 2 / 43



Data driven supervised learning Nearest neighbors (KNN)

Finding the neighbors

To determine which of the k instances in the training dataset SX ,n = {x1, · · · , xn}
are most similar to a new input a distance measure is used.

For real-valued input variables, the most popular distance measure is Euclidean
distance.

d(xi′ , xi ) =

√√√√ p∑
j=1

(xi′ j − xij )2

To deal with a mix of numerical and categorical inputs, a specific distance has to be
used

d(x, x′) =

pnum∑
j=1

(xj − x ′j )2 + γ

pnum+pcat∑
j=pnum+1

δ(xj , x ′j )

where δ(xj , x ′j ) is a distance for categorical variables and γ a constant to choose to
correctly balance both distances.
Reference: Huang (1998), Data Mining and Knowledge Discovery 2, 283-304
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Data driven supervised learning Nearest neighbors (KNN)

kNN smoother with weights

Smoother predictions can be obtained by the introduction of weights.

Let K be a kernel defined
by Kλ(x , x ′) = 1

λ
K
(

x−x′

λ

)
prediction is given by

Ŷ (x0) =

∑n
i=1 Kλ(x0, xi )yi∑n
i=1 Kλ(x0, xi )

The larger λ, the smoother
the prediction.

The Gaussian kernel is the most widely used in machine learning

K (x) =
1
√

2π
exp

(
−

1
2

x2
)

The quality of the kNN prediction depends on the choice of k (resp. λ). It can be
done by cross-validation.
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Data driven supervised learning Nearest neighbors (KNN)

Example: Ozone

RMSE computed by Monte Carlo cross-validation (50 repetitions) for increasing
number of neighbors (from 1 to 15), with uniform and Gaussian weights.

Inputs: all the numerical variables (Euclidean distance)

Best number of neighbors k∗ = 3
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Data driven supervised learning Nearest neighbors (KNN)

Prediction of a categorical variable

If Y is qualitative (or categorical) and takes its values in {1, · · · ,K}, one predicts
ŷ = arg maxk P(Y = k |X = x)

The kNN algorithm

ŷ = arg max
k∈{1,··· ,K}

Card {xi ∈ NN(x) & yi = k}
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Data driven supervised learning Nearest neighbors (KNN)

knn classifier, example

Leukemia genes expression
Here, we keep the genes with highest absolute correlation with class AML/ALL
(|ρ| > .7)
Monte carlo cross validation, n.train = 25, 100 runs.
For k=7 and k=9, AUROC = 0.81.
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AML is almost always well predicted. Errors occur for ALL class.
By adding information, the dimension is increased (which may be a drawback for knn)
but here : for |ρ| > .5, k=7 and k=9, AUROC = 0.88.
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Data driven supervised learning Nearest neighbors (KNN)

k-nearest neighbors

kNN is easy to handle and has good performances if the learning data set is large.

kNN approach may break down in high dimensions.

Dimension reduction techniques can be combined with kNN.

When the number of instances is large, the computational cost of finding the k
nearest neighbors may be expensive: use specific algorithm like kd-trees, ...
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Data driven supervised learning Curse of dimensionality

Local methods in high dimension

Curse of dimensionality refers to various phenomena that arise when analyzing and
organizing data in high-dimensional spaces.

As the number of features or dimensions grows, the amount of data we need to generalize
accuretely grows exponentially1.

1Incomputer science, "exponentially" means "bad"...
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Data driven supervised learning Curse of dimensionality

Example: sphere in high dimension

Volume of a sphere in Rd : V = crd .

Outside circle ro = 1,
inner circle ri = .95

V = crd
o = c,

Vshell = c − crd
i ,

Sphere shell fraction of the volume:

Vshell
V

= 1− rd
i

In high dimensional spaces most of
the observed points belongs to the
shell’s fraction of the hypersphere’s
volume. The inner volume of the
red shpere is almost empty...

It is hard to obtain a representative
sample in this case !
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Data driven supervised learning Curse of dimensionality

Local methods in high dimension

Curse of dimensionality refers to various phenomena that arise when analyzing and
organizing data in high-dimensional spaces.

The input features are uniformly
distributed in [1, 1]p for
p = 1, · · · , 10.

The top left panel shows the target
function f (X) = e||X ||

2
, and the

error that 1-nearest neighbor
makes in estimating f (0).

The top right panel illustrates why
the radius of the 1-nearest
neighborhood increases with
dimension p.

The lower left panel shows the
average radius of the 1-nearest
neighborhoods.

The lower-right panel shows the
MSE, squared bias and variance
curves as a function of dimension
p.
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Data driven supervised learning Regression and classification trees

Introduction

Tree-based methods partition the feature space into a set of rectangles, and then fit a
simple model (like a constant) in each one.
They are conceptually simple yet powerful.
Let’s consider a regression problem with continuous response Y ∈ Y and inputs X1
and X2, each taking values in the unit interval. In each cell, Y is predicted by the
mean value cm of the observations belonging to the cell Rm.

f̂ (x) =
M∑

m=1

cmIRm (x1, x2)

Figures from Hastie’s book.
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Data driven supervised learning Regression and classification trees

Construction of a regression tree: greedy algorithm

Data: Sn = {(x1, y1), · · · , (xn, yn)} with xi = (xi1, · · · , xip)

The trees are build by an iterative algorithm.

The algorithm automatically decides on the splitting variables and split points.
Splitting rule: decrease the variance such that the weighted combination of the child
node variance is smaller than the variance of the parent.

Once the partition Rm is fixed, the regression function for an observation x ∈ X is
given by

f (x) =
M∑

m=1

cmIRm (x), cm =
∑

{i|xi∈Rm}
yi

Now finding the best binary partition in terms of minimum sum of squares. Evaluating∑n
i=1(yi − f (xi ))2 is generally computationally infeasible. Hence trees proceed with

a greedy algorithm.
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Data driven supervised learning Regression and classification trees

Construction of a regression tree

Starting with all of the data, consider a splitting variable xj and split point s, and
define the pair of half-planes

R1(j, s) = {x|xj ≤ s} and R2(j, s) = {x|xj > s}

Then we seek the splitting variable xj and split point s that solve

min
j,s

min
c1

∑
{i|xi∈R1(j,s)}

(yi − c1)2 + min
c2

∑
{i|xi∈R2(j,s)}

(yi − c2)2

 .

where for any choice xj and s, the inner minimization is solved by

ĉ1 =
∑

{i|xi∈R1}
yi and ĉ2 =

∑
{i|xi∈R2}

yi

For each splitting variable, the determination of the split point s can be done very
quickly and hence by scanning through all of the inputs, determination of the best pair
(j, s) is feasible.
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Data driven supervised learning Regression and classification trees

Construction of a regression tree, Ozone

maxO3 with respect to T12 and Vx12
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Data driven supervised learning Regression and classification trees

How large should we grow the tree?

Bias-Variance Tradeoff: Very large tree might overfit the data while a small tree might
not capture the important structures.

The depth of the tree drive the compromise between bias and variance
-Low depth (= few splits) leads to stable trees that have low variance but high bias
-High depth (= many splits) leads to stable trees that have low bias but high variance
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Data driven supervised learning Regression and classification trees

Example: Ozone

Tree depth selection (Monte Carlo cross validation)
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Data driven supervised learning Regression and classification trees

How large should we grow the tree?

The strategy is to grow a large tree T0, stopping the splitting process only when some
minimum node size (say 5) is reached. Then this large tree is pruned using
cost-complexity pruning.

The cost-complexity criterion is defined by

Cα(T) =

|T|∑
m

NmQm(T)︸ ︷︷ ︸
cost

+ α|T|︸︷︷︸
complexity

where Nm = Card({xi ∈ Rm}) and Qm(T ) = 1
Nm

∑
{i|xi∈Rm}(yi − ĉm)2 .

The idea is to find, for each α, the subtree Tα of T to minimize Cα(T).

α is referred to as complexity parameter.

Estimation of α is achieved by 5- or 10-fold cross-validation.
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Data driven supervised learning Regression and classification trees

Maximal tree, Ozone
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Data driven supervised learning Regression and classification trees

Complexity/risk compromise, Ozone
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Data driven supervised learning Regression and classification trees

Complexity/risk compromise, Ozone

Complexity/risk compromise leads to the following tree.

T12 < 23

maxO3v < 91

Ne12 >= 4.5

pluie = Pluie

T12 < 27

90

100%

77

74%

73

54%

70

46%

66

28%

77

18%

87

9%

89

20%

128

26%

110

12%

142

14%

yes no
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Data driven supervised learning Regression and classification trees

Tree instability, Ozone

Tree instability: trees fit on two different learning sets are different.

T12 < 23

Vx9 < −2.3

maxO3v < 72

93

100%

80

74%

70

30%

86

45%

75

12%

90

32%

131

26%

yes no T12 < 24

maxO3v < 91

Ne9 >= 6.5

91

100%

78

76%

72

51%

65

26%

80

26%

90

24%

132

24%

yes no
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Data driven supervised learning Regression and classification trees

Variable importance

A question that frequently arises among tree users is: which variables are the most
important?

To measure the importance of a variable Xj , the idea is to compute, for each split of
the tree, the deviance gain (improvement) obtained if the optimal split is replaced by a
split based on Xj .

In a regression tree, the improvement of a split is measured by

i2(R`,Rr ) =
w`wr

w` + wr
(ȳ` − ȳr )2

where ` (resp. r ) referred to as a left (resp. right) node.

In practice the computation of variable importance is not expensive since it just
consists in storing the results of the calculus which are done to build the tree.
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Data driven supervised learning Regression and classification trees

Variable importance, Ozone
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Data driven supervised learning Regression and classification trees

Classification trees

If Y = {1, · · · ,K} i.e. Y is a categorical variable, the trees algorithms are very
similar.
The main differences are that,
- for an instance x ∈ X , ŷ = arg maxk∈Y p̂mk
where

p̂mk =
1

Nm

∑
ß|xi∈Rm

I(yi = k)

- the quality of the tree is measured by one of the impurity criteria

Misclassification error:
1

Nm

∑
ß|xi∈Rm

I(yi = k) = 1− p̂mk

Gini index2:
∑
k 6=k′

p̂mk p̂mk′ =
K∑

k=1

p̂mk (1− p̂mk )

Entropy3: −
K∑

k=1

p̂mk log p̂mk

2Gini index is a measure of inegalities. It is equal to 0 for a total equality and to 1 if the situation is totally unequal. ex:
income inequalities.

3Entropy can be interpreted as a measure of disorder.
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Data driven supervised learning Regression and classification trees

Classification trees, Leukemia

Monte Carlo cross validation, 100
runs.

AUC = 0.902 is quite high for a
regression tree.
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Data driven supervised learning Regression and classification trees

Trees

Decision trees are easy to use and they lead to interpretable representations.

They easily deal with missing values because algorithms work variable by variable.

Instability
One major problem with trees is their high variance. Often a small change in the data
can result in a very different series of splits.

Lack of smoothness
Trees lead to constant by pieces boundaries.

Random forests (combination of trees) provide an interesting alternative to address
the two last points (see below).
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Data driven supervised learning Regression and classification trees

Concluding remarks

Data driven model such as kNN and Trees lead to prediction models which are locally
optimal.
They require quite a lot of data to be learned.
They are affected by curse of dimensionality.
They are might not be convenient for extrapolation.

But they are powerfull is enough data are available and the relationship betwenn X
and Y is complex!

Linear models such as linear regression, logistic regression, discriminant analysis are
globally optimal.
If only few data are available, they should be prefered.
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