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Abstract

This study compared two alternative techniques for predicting forest cover types from
cartographic variables. The study evaluated four wilderness areas in the Roosevelt National
Forest, located in the Front Range of northern Colorado. Cover type data came from US
Forest Service inventory information, while the cartographic variables used to predict cover
type consisted of elevation, aspect, and other information derived from standard digital
spatial data processed in a geographic information system (GIS). The results of the
comparison indicated that a feedforward artificial neural network model more accurately
predicted forest cover type than did a traditional statistical model based on Gaussian
discriminant analysis. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Accurate natural resource inventory information is vital to any private, state, or
federal land management agency. Forest cover type is one of the most basic
characteristics recorded in such inventories. Generally, cover type data is either
directly recorded by field personnel or estimated from remotely sensed data. Both
of these techniques may be prohibitively time consuming and/or costly in some
situations. Furthermore, an agency may find it useful to have inventory information
for adjoining lands that are not directly under its control, where it is often
economically or legally impossible to collect inventory data. Predictive models
provide an alternative method for obtaining such data.

Compared to statistical models, artificial neural networks (ANNs) represent a
relatively new approach to developing predictive models. Artificial neural networks
are ‘‘computing devices that use design principles similar to the design of the
information-processing system of the human brain’’ (Bharath and Drosen, 1993, p.
xvii). Several recent textbooks describe the mechanics of ANNs (Hertz et al., 1991;
Haykin, 1994; Masters, 1994; Bishop, 1995; Ripley, 1996). Recent publications
involving artificial neural networks being applied to natural resources topics
include: modeling complex biophysical interactions for resource planning applica-
tions (Gimblett and Ball, 1995); generating terrain textures from a digital elevation
model and remotely sensed data (Alvarez, 1995); modeling individual tree survival
probabilities (Guan and Gertner, 1995); and Harvey and Dean (1996), who used
geographic information systems (GIS) in developing computer-aided visualization
of proposed road networks. Recent comparisons in which ANNs performed
favorably against conventional statistical approaches include Reibnegger et al.
(1991), Patuwo et al. (1993), Yoon et al. (1993), Marzban and Stumpf (1996),
Paruelo and Tomasel (1996), Pattie and Haas (1996), and Marzban et al. (1997).

However, artificial neural networks do not always outperform traditional predic-
tive models. For example, Jan (1997) found a traditional maximum-likelihood
classifier outperformed artificial neural network models when classifying remotely
sensed crop data. Also, using their best artificial neural network model, Vega-Gar-
cia et al. (1996) obtained only a slight improvement in predicting human-caused
wildfire occurrences as compared to their best logit model.

This study examined the ability of an ANN model to predict forest cover type
classes in forested areas that have experienced relatively little direct human manage-
ment activities in the recent past. The predictions produced by the ANN model
were evaluated based on how well they corresponded with observed cover types
(absolute accuracy), and on their relative accuracy compared to predictions made
by a more conventional model based on discriminant analysis (DA).

2. Data description

The study area for this project consisted of the Rawah (29 628 hectares or 73 213
acres), Comanche Peak (27 389 hectares or 67 680 acres), Neota (3904 hectares or
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9647 acres), and Cache la Poudre (3817 hectares or 9433 acres) wilderness areas of
the Roosevelt National Forest in northern Colorado. As shown in Fig. 1, these
areas are located �70 miles northwest of Denver, Colorado. These wilderness
areas were selected because they contained forested lands that have experienced
relatively little direct human management disturbances. As a consequence, the
current composition of forest cover types within these areas are primarily a result
of natural ecological processes rather than the product of active forest management.

In this study, the ANN and DA models utilized a supervised classification
procedure to classify each observation into one of seven mutually exclusive forest
cover type classes. The seven forest cover type classes used in this study were
lodgepole pine (Pinus contorta), spruce/fir (Picea engelmannii and Abies lasiocarpa),
ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii ), aspen (Pop-
ulus tremuloides), cottonwood/willow (Populus angustifolia, Populus deltoides, Salix
bebbiana, Salix amygdaloides), and krummholz. The krummholz forest cover type
class is composed primarily of Engelmann spruce (Picea engelmannii ), subalpine fir
(Abies lasiocarpa), and Rocky Mountain bristlecone pine (Pinus aristata) in these
wilderness areas. These seven cover type classes were chosen for this research since
they represent the primary dominant tree species currently found in the four
wilderness areas. A few other forest cover types exist in small patches within the
study area, however, these relatively minor cover types have been ignored in this
analysis. Cover type maps for these areas were created by the US Forest Service,
and are based on homogeneous stands varying in size from 2 to 80 hectares (from
5 to 200 acres) that were derived from large-scale aerial photography.

Fig. 1. Study area location map.
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For this study, digital spatial data obtained from the US Geological Survey
(USGS) and the US Forest Service (USFS) were used to derive independent
variables for the predictive models. The following 12 variables (with their units of
measure) were used:

1. Elevation (m),
2. Aspect (azimuth from true north),
3. Slope (°),
4. Horizontal distance to nearest surface water feature (m),
5. Vertical distance to nearest surface water feature (m),
6. Horizontal distance to nearest roadway (m),
7. A relative measure of incident sunlight at 09:00 h on the summer solstice

(index),
8. A relative measure of incident sunlight at noon on the summer solstice (index),
9. A relative measure of incident sunlight at 15:00 h on the summer solstice

(index),
10. Horizontal distance to nearest historic wildfire ignition point (m),
11. Wilderness area designation (four binary values, one for each wilderness area),

and
12. Soil type designation (40 binary values, one for each soil type).

Elevation was obtained directly from USGS digital elevation model (DEM) data,
based on 30×30-m raster cells (1:24 000 scale). This DEM data was used to
standardize all remaining data, so each observation in this study represents a
unique 30×30-m raster cell that corresponds to USGS DEM data. Aspect, slope,
and the three relative measures of incident sunlight were developed from this DEM
using standard GIS-based surface analysis and hillshading procedures (Environ-
mental Systems Research Institute, 1991). Horizontal distance to the nearest surface
water feature and horizontal distance to the nearest roadway were obtained by
applying Euclidean distance analyses to USGS hydrologic and transportation data.
Horizontal distance to the nearest historic wildfire ignition point was determined by
using Euclidean distance analyses with a USFS wildfire ignition point coverage,
which identified ignition points of forest wildfires occurring over the past 20 years.
Vertical distance above or below the nearest surface water feature were calculated
using a combination of the DEM, hydrologic data, and a simple custom-built
spatial analysis program.

Both soil type information and wilderness area designation were obtained from
the USFS. These qualitative variables were treated as multiple binary values. This
resulted in a series of variables for each raster cell, where a value of ‘0’ would
represent an ‘absence’ and a value of ‘1’ would represent a ‘presence’ of a specific
wilderness area or soil type (Huberty, 1994, p. 151; Bishop, 1995, p. 300). A total
of four wilderness areas and 40 soil type classes were used in this study, producing
four wilderness area designator variables, forty soil type designator variables, and
ten continuous variables for a total of 54 possible independent variables available
for each model.

The data used in this study were produced primarily by using standard GIS
procedures with ARC/INFO software, version 7.2.1, and the GRID module
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(Environmental Systems Research Institute, 1991). Several software packages were
used within a UNIX Sun Sparc workstation environment for data analysis and
model development. The feedforward artificial neural network models were devel-
oped using PROPAGATOR software, version 1.0 (ARD Corporation, 1993). In
addition, the discriminant analysis models were created using the statistical proce-
dures available from SAS software, version 6.11 (SAS Institute, Inc., 1989). These
predictive models were then implemented using custom-built GIS macros and
embedded ‘C’ programs.

3. Data set selection

For this study, three mutually exclusive and distinct data sets were created to
train, validate, and test the predictive models. A training data set was used to
develop classifiers for both the artificial neural network and the discriminant
analysis predictive models. The validation data set was used in the development of
the feedforward artificial neural network models, to identify the point in the
training process where the network begins to ‘overfit’ (memorize) the training data
set, and consequently loses its ability to generalize against unforeseen data inputs.
The validation data set, however, is not required in the development of discriminant
analysis models, and consequently was not utilized for that purpose in this study.
Finally, for both the artificial neural network and the discriminant analysis models,
the test data set was used to determine how well each classifier would perform
against a data set that was not used in the creation of the predictive model.

These three data sets were selected from a total of 581 012 observations (30×30-
m raster cells) encompassing �52 291 hectares (129 213 acres) of the study area.
Each observation contained information for every independent and response vari-
able used in the study (e.g. no observations contain ‘missing data’).

All observations were initially pooled into one very large data set for the whole
study area. Then two subsets were extracted from the full data set. The first
extracted set contained 1620 randomly selected observations for each of the seven
cover types (11 340 total observations) and became the training data set. This
number (1620 observations per cover type) was chosen because it represented
�60% of the number of observations available in the least numerous cover type
(cottonwood/willow), and utilizing �60% of the available data for training is an
effective use of data (Anderson, Department of Computer Science, Colorado State
University, 1996, personal communication).

The second data set extracted from the remaining data contained 540 randomly
selected observations for each cover type (3780 total observations) and became the
validation data set. This number (540) of observations represents �20% of the
observations available for the cottonwood/willow cover type. Finally, all remaining
observations (565 892) were placed in the testing data set. Table 1 lists the number
of observations within each cover type for the three data sets. As shown in Table
1, the training and validation data sets are represented by an equal number of
randomly selected observations per cover type, while the test data set reflects the
more realistic proportions of cover types found in the study area.
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Table 1
Number of observations within each forest cover type class for each data set

Training data setForest cover Validation data Total observationsTest data set
per cover typeobservationsset observationsobservationstype class

209 680 211 840Spruce/fir 1620 540
281 141 283 301540Lodgepole pine 1620

5401620 33 594 35 754Ponderosa pine
1620Cottonwood/ 540 587 2747

willow
73331620 9493540Aspen

1620 540 15 207 17 367Douglas-fir
18 350 20 5105401620Krummholz

Total observa- 11 340 3780 565 892 581 012
tions per data
set

All variables in the three data sets used by the artificial neural network model
were linearly scaled to lie in the range between zero and one. This scaling took
place across all three data sets combined, not individually within each data set.
Scaling is highly recommended in the development of artificial neural networks
where the ranges of values among independent variables are not similar (Marzban
and Stumpf, 1996). In addition, the response (dependent) variables in the three
artificial neural network data sets were coded as a series of seven binary variables,
much like the soil type and wilderness area designator variables described previ-
ously. This was done so that the response variables would conform to the
architecture of the artificial neural network (seven output nodes). In contrast, the
response variable in the discriminant analysis data set was coded as a single variable
that assumed integer values from one to seven. Other than this, the data sets used
for discriminant and artificial neural network analyses were identical.

4. Artificial neural network specifications

Artificial neural network models require several architectural and training
parameters to be selected prior to analysis. The optimal number of hidden layers
and the number of nodes per hidden layer are generally not known a priori for a
specific data set, and must be empirically determined through an examination of
different parameter settings (Haykin, 1994; Marzban and Stumpf, 1996). In this
study one hidden layer was used, which past studies have found to be sufficient in
most situations (Wong et al., 1995; Fowler and Clarke, 1996).

Determining the optimal number of nodes to place in this single hidden layer is
a difficult process. Although several ‘rules of thumb’ exist concerning the optimal
number of hidden nodes for a network, no method is universally appropriate since
the number of nodes depends on the complexity of the problem to be solved
(Fowler and Clarke, 1996). By systematically experimenting with the number of
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hidden nodes in a network, the best fit may be found without making any a priori
assumptions (Marzban and Stumpf, 1996).

In addition to parameters defining the network’s architecture, training parame-
ters are also required to initialize the learning algorithm used by the network.
Backpropagation was the learning algorithm chosen for this study, for no other
reason than it is the best known and most common algorithm in use today (Hertz
et al., 1991; Gimblett and Ball, 1995; Guan and Gertner, 1995; Markham and
Ragsdale, 1995; Wong et al., 1995). Backpropagation requires two initialization
parameters, termed the learning rate and the momentum rate. Once again, it is not
possible to know a priori optimal values for these parameters for a specific data set,
so another trial-and-error process is needed to determine acceptable values.

Once the network architecture and training parameters are selected, an artificial
neural network is trained iteratively. Each iteration represents one complete pass
through a training data set (an epoch). At the conclusion of each iteration, a
measure of discrepancy between observed and predicted values of the dependent
variable is calculated. This discrepancy is often expressed as a mean square error
(MSE), which for this study was the error function:

E(w)=
1

2N
%
N

n=1

%
k

i=1

(di(n)−yi(n))2 (1)

where E(w) is the mean square error term, w are the synaptic weights to be
estimated, N is the number of observation (input) vectors presented to the network,
n is a single observation vector, k is the number of output nodes, i is a single output
node, di(n) is the observed response and yi(n) is the predicted response for
observation n and output node i (Rumelhart et al., 1986; Hertz et al., 1991; Jan,
1997; Marzban et al., 1997). The N observation vectors constitute a training data
set, which is used specifically to ‘teach’ the network to recognize the relationships
between the independent and dependent variables (e.g. to develop a classifier). This
classifier will consequently be used to predict class membership for other vectors of
input variables not included in the training data set. Theoretically, the backpropa-
gation algorithm ultimately finds a set of weights w that minimizes E(w).

All artificial neural network models in this study had fully connected input,
hidden, and output layers (i.e. each node in layer m was connected to all nodes in
layer m+1). The generalized delta rule with gradient descent (commonly used with
the backpropagation learning algorithm) was utilized in each network’s learning
process. The activation function for each network’s input layer was linear [ f(x)=
x ], while hidden and output layers utilized logistic activation functions [ f(x)=1/
(1+ exp(−x))]. Initial synaptic weights were randomly selected between negative
one and positive one, based on a random seed and no input noise. All input
variables were linearly scaled to lie in the range between zero and one.

Training patterns were presented to the network in a random order, with an
update of the validation data set MSE at an interval of every ten epochs through
the training data set. Training was halted after either (1) a minimum of 1000
training epochs had been completed, (2) a validation MSE of 0.05 was reached, or
(3) it was subjectively determined that the validation MSE would not significantly
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decrease with further training epochs. The stopping criteria listed above are based
on previous experience in the development of artificial neural network models with
a similar data set (Blackard and Dean, 1996), training results obtained from several
preliminary networks utilizing the same data set employed in this current study, and
available computer resources.

Finally, after the network parameters were chosen via experimentation, those
parameters that produced the artificial neural network judged to be ‘best’ were used
to produce an additional 30 networks, each with the same parameters but with a
different set of initial random synaptic weights. These additional networks were
developed since artificial neural network methods are, to a degree, based on
random processes (e.g. each ANN model is developed based in part on a set of
randomly chosen initial synaptic weights). In addition, the method of gradient
descent commonly used in artificial neural network strategy does not always
provide for the global minimum in error space. Thus, an indication of the nature of
the response surface may be obtained from analyzing the results of these 30
networks.

5. Discriminant analysis considerations

Extensive discussions of discriminant analysis may be found in Johnson and
Wichern (1992), McLachlan (1992)and Huberty (1994). Discriminant analysis is
based upon two main assumptions. The first is that the distributions of all
independent variables are normal (Gaussian), which encourages the use of continu-
ous rather than discrete data in the predictive model. The second assumption
applies only for linear discriminant analysis, in which the covariance matrices for
the different groups of observations are assumed to be equal (homoscedasticity)
(Marzban et al., 1997). The second assumption is very restrictive and in practice
rarely applies in full (Curram and Mingers, 1994). As McLachlan (1992) points out
on p. 132, ‘‘…in practice, it is perhaps unlikely that homoscedasticity will hold
exactly’’.

In practice, some amount of violation of these assumptions is common and
appears to have minimal impact on results. McLachlan (1992), on p. 132, supports
the use of the linear discriminant analysis model in situations where its assumptions
are violated: ‘‘…its good performance for discrete or mixed data in many situations
explains the versatility and consequent popularity of linear discriminant analy-
sis…’’. McLachlan (1992), on p. 16, also states: ‘‘In practical situations, some
variables in the feature vector X may be discrete. Often treating the discrete
variables, in particular binary variables, as if they were normal in the formulation
of the discriminant rule is satisfactory’’.

For linear discriminant analysis problems having both equal costs and equal
prior probabilities between groups (or classes), each observation or unit will be
classified into that group which it is nearest in terms of some distance measure
applied within the space defined by the independent variables (Johnson and
Wichern, 1992, p. 535). Huberty (1994), on p. 55, describes a frequently used
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distance measure termed the Mahalanobis index, which determines the squared
distance between an observation vector unit u and the centroid for group g as:

Dug
2 = (Xu−Xg)%Sg

−1(Xu−Xg) (2)

where Xu is the p×1 vector for observation u, Xg is the p×1 vector of means for
group g, and Sg is the p×p covariance matrix for group g. This approach was
adapted in this study.

Both linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA) were investigated in this study. However, the QDA model became unstable
when qualitative or discrete variables were considered. The LDA model did not
exhibit this type of behavior, and therefore was used more extensively than the
QDA model.

6. Experimental design

One hidden layer was used in all of the artificial neural networks developed in
this study. The number of nodes in this single hidden layer was systematically
changed across 14 possible values while holding constant the learning rate (LR) and
momentum rate (MR) training parameters. This procedure identified the number of
hidden nodes which produced the minimum error (MSE) of the validation data set
under the original LR and MR values. The number of hidden nodes was then held
constant and the LR and MR parameters were sequentially changed to find the best
combination of network architecture and training parameter values for this data
set. While a parallel approach would have been preferable to this sequential
approach for determining ANN parameter values (to compensate for interdepen-
dent effects), a parallel approach was not practical due to the length of time
required for each computer run and the number of runs involved (one run is
necessary for each unique combination of network parameter values). Therefore, a
sequential approach was selected as a reasonable compromise between complete-
ness and practicality. Table 2 lists the various architectural and training parameter
values investigated in this study.

Once the network parameters for the predictive model containing all 54 indepen-
dent variables were selected, a number of other models with fewer input variables
were investigated. The same set of reduced models were investigated via discrimi-
nant analysis. This was done to determine if fewer input variables would produce
models with similar predictive abilities, thereby identifying variables that did not
contribute to the overall predictive capability of the system.

One variable examined in this reduction process was the ‘horizontal distance to
the nearest wildfire ignition point’ measure, since it only provided an ignition point
and not a delineation of overall wildfire boundary nor an indication of fire
intensity. Another variable investigated was the ‘wilderness area designation’ indi-
cator, since it was a qualitative measure which may not reflect any true differences
between the wilderness areas. Also, the ‘soil type designation’ variables were either
generalized to produce 11 soil types rather than the original 40 types, or excluded
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Table 2
Artificial neural network architectural and training parameter values

ANN model with 54 6ariables

Step 1: Select the optimal number of hidden nodes parameter from 14 possible values while holding constant LR=0.05 and MR=0.9
60 90 120 150 180 210Number of hidden nodes 2406 270 30012 18 24 30

Step 2: Hold the optimal number of hidden nodes parameter value (selected from step 1) constant, and determine the optimal learning rate (LR) and
momentum rate (MR) parameter values by systematically altering between their 42 possible combined values

0.30 –0.10 0.150.05Learning rates 0.20 0.25
0.8 0.9Momentum rates 0.3 0.4 0.5 0.6 0.7

ANN model with 53 or fewer 6ariables

Step 1: Select the optimal number of hidden nodes parameter from 14 possible values while holding constant LR=0.05 and MR=0.5
60 90 120 150 180Number of hidden nodes 2106 240 270 30012 18 24 30

Step 2: Hold the optimal number of hidden nodes parameter value (selected from step 1) constant, and determine the optimal learning rate (LR) and
momentum rate (MR) parameter values by systematically altering between their 30 possible combined values

0.30 –Learning rates 0.05 0.10 0.15 0.20 0.25
– –0.7Momentum rates 0.3 0.4 0.60.5
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Table 3
Number of input variable subsets examined in this study

Description of variablesNumber of independent
variables

Ten quantitative variables+four wilderness areas+40 soil types54
Same as ‘54’ but excluding distance-to-wildfire-ignition-points53
Ten quantitative variables+11 generalized soil types21

20 Same as ‘21’ but excluding distance-to-wildfire-ignition-points
10 Ten quantitative variables only

Same as ‘10’ but excluding distance-to-wildfire-ignition-points9

from the model altogether. This was accomplished by objectively grouping those 40
soil types into more generalized categories based solely on their climatic and
geologic associations. Table 3 lists the six sets of independent variables examined in
this study.

7. Results

The MSE values across all 14 different numbers of hidden nodes from the 54
variable ANN models are shown in Fig. 2. Each of these networks held the LR and

Fig. 2. MSE for the different numbers of hidden nodes for the 54 variable ANN models (optimal value
for this model is 120 hidden nodes).
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Fig. 3. MSE of the validation data set for the 54 variable ANN model with 120 hidden nodes (optimal
values for this model are a learning rate of 0.05 and a momentum rate of 0.5). MSE values are shown
by momentum rates (spokes) and learning rates (symbols), and are equal along concentric lines of the
plot.

MR values constant at 0.05 and 0.9, respectively. This figure shows that roughly
120 hidden nodes were necessary to minimize the MSE in these networks.

Once the ‘best’ number of hidden nodes was identified, the learning rates and
momentum rates were sequentially changed to determine optimal values for these
parameters. Fig. 3 displays a radar plot of the resulting MSE values for 42 different
candidate networks, all with 120 hidden nodes. As shown, a learning rate of 0.05
generally produced the lowest MSE for each possible momentum rate. In addition,
momentum rate values of 0.3, 0.4, and 0.5 appeared to have the lowest average
MSE among the various learning rates. The network model with the lowest MSE
was produced with an LR of 0.05 and an MR of 0.5.

From these results, a ANN design of 54 input nodes, 120 hidden nodes, and
seven output nodes (symbolized as 54-120-7) with an LR=0.05 and MR=0.5 was
chosen as ‘optimal’ for this data set. Optimal parameters for each of the reduced
artificial neural network models were found in a similar fashion, and are shown in
Table 4.

Classification accuracies produced by each model as calculated from the test data
set were also examined. As shown in Table 5, the ANN predictions of forest cover
type produced an overall classification accuracy of 70.58%.
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Table 4
Artificial neural network parameter values in this studya

Learning rate Momentum rateNetwork archi- Validation dataNumber of independent
set MSEtecturevariables

54-120-7 0.05 0.5 0.274754
0.5 0.29080.0553-120-753

0.0521-60-7 0.5 0.306121
0.0520-60-7 0.5 0.336320

0.5 0.33120.1010 10-90-7
0.059-60-7 0.6 0.36999

a Network architecture values represent the number of input nodes, number of hidden nodes, and the
number of output nodes (respectively) present in the network.

In comparison, Table 6 presents the LDA results obtained from the test data set.
The overall classification accuracy for the DA model was 58.38%.

The ANN model was recreated an additional 30 times with randomly selected
initial weights to evaluate the nature of the ANN’s response surface. The resulting
mean classification accuracy was 70.52%, with a 95% confidence interval of
70.26–70.80% and a standard deviation of 0.7293. This narrow confidence interval
indicates that the response surface is fairly smooth in the region surrounding the
solution found by the ANN.

The classification accuracies of each reduced model for both the ANN and the
DA models were also determined. Fig. 4 compares these classification results for the

Fig. 4. Comparison of artificial neural network and discriminant analysis classification results (ann=ar-
tificial neural network; lda= linear discriminant analysis; qda=quadratic discriminant analysis).
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Table 5
Artificial neural network classification matrix for the test data set (54 variables)a

ObservedPredicted ObservedObserved
percenttotals

DF KRASSF CWPPLP

0 6683 481 12 244 209 680 37.05Spruce/fir (SF) 39 435150 397 440
27 391 8796 2263 281 141 49.687350 871Lodgepole 186 050 5697

pine (LP)
20122 625 5402 0 33 594 5.94258 25 295Ponderosa

pine (PP)
0 563 0 9 0 587 0.100Cottonwood/ 15

willow (CW)
56 1 7333 1.300 673713838120Aspen (AS)

161 12 802 0 15 207 2.69Douglas-fir 0 126 1672 446
(DF)

6 0 17 577 18 3501 3.240128638Krummholz
(KR)

33 258 3094 41 603 27 546 32 085 565 892Predicted 201 928 226 378
totals

7.35 4.87 5.675.88 100.035.68 0.55Predicted 40.00
percent

a Network architecture: 54-120-7 (LR=0.05, MR=0.5). Overall classification accuracy: 70.58%.
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Table 6
Discriminant analysis classification matrix for the test data set (54 variables)a

ObservedPredicted ObservedObserved
percenttotals

DF KRASSF CWPPLP

0 9178 1119 22 171 209 680 37.05Spruce/fir (SF) 40 835136 200 177
53 262 12 239 1495 281 141 49.6812161 466Lodgepole 146 780 5778

pine (LP)
33030 1090 10 716 0 33 594 5.94101 18 384Ponderosa

pine (PP)
0 429 0 65 0 587 0.100Cottonwood/ 93

willow (CW)
367 0 7333 1.300 46485811488249Aspen (AS)

1301 9127 0 15 207 2.69Douglas-fir 0 449 3702 628
(DF)

26 0 14 808 18 35071 3.24053440Krummholz
(KR)

28 786 4481 69 505 33 633 38 474 565 892Predicted 201 355 189 658
totals

12.28 5.94 6.805.09 100.035.58 0.79Predicted 33.51
percent

a Overall classification accuracy: 58.38%.
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ANN, LDA, and QDA methods. The QDA accuracies are only provided for the
predictive variables subsets which produced valid results (i.e. set including only
quantitative variables). As this figure shows, the ANN models outperform the
corresponding DA methods across all predictive variable subsets for this data set.

8. Discussion

The ANN models consistently outperformed the DA models in the prediction of
forest cover types. One reason for this result may be the assumptions associated
with most statistical analysis techniques, including DA. In discriminant analysis, the
distributions of both the dependent and independent variables are assumed to be
normal (Gaussian), and for LDA the covariance matrices for each group are
assumed to be equal (homoscedasticity).

The data set investigated in this study contained both qualitative and quantitative
variables, some of which were clearly not normally distributed. This factor could
have effected the LDA results. However, previous studies have found that LDA is
very robust to mixed data types. As Yoon et al. (1993) states:

In applied research, data are seldom compatible with the underlying assump-
tions needed to perform statistical inferences. In many fields, like social and
behavioral sciences, business, and biomedical sciences, measurement of hard data
is still a problem. Measurements are, at best, of nominal or ordinal nature.
Usually, research workers ignore the discrete nature of the data and proceed with
classification using Fisher’s LDF. In such situations they get a useful, but not an
optimal rule of classification.

The non-optimality of the LDA results in mixed data type situations was
obvious; in this study, the non-optimality lowered the accuracy of the LDA results
to a level lower than that produced by the artificial neural networks.

In addition to parametric discriminant analysis, a single form of non-parametric
discriminant analysis was also evaluated in this study. This non-parametric version
did not perform noticeably differently from the parametric DA versions. However,
there are many forms of non-parametric DA available, each with their own unique
strengths and weaknesses. Thus, the single non-parametric DA conducted in this
study cannot be considered to be representative of all possible non-parametric DAs.

The ANN model produced higher classification accuracies than the DA ap-
proach, both in cases where only quantitative independent variables were used and
where both qualitative and quantitative independent variables were employed. This
may be due to the fact that the artificial neural network approach makes no explicit
assumptions regarding the underlying distributions of the variables involved
(Marzban et al., 1997). Another benefit is the ability of the artificial neural network
structure to partitioning the input space into regions that allow for classification of
linearly inseparable data (Yoon et al., 1993). Consequently, one would expect an
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ANN model to outperform a LDA model for most classification tasks involving
non-linear data. Non-linearity was certainly present in the data used in this study.

When comparing the individual classification matrices of the best ANN model
against that of the best DA model (the two 54 independent variables models), as
shown in Tables 5 and 6, many insights may be drawn concerning the respective
classification strategies of the two models. In general, both the ANN and DA
models seemed to misclassify ponderosa pine, Douglas-fir, and cottonwood/willow
cover types primarily with each other. These misclassifications may be due to the
actual geographic proximity of the cover types, since they are all principally found
in the Cache la Poudre wilderness area. Both predictive models also seemed to
misrepresent krummholz as spruce/fir and to a lesser extent as lodgepole pine. All
three of these forest cover types are typically considered high elevational species,
which might have caused the classification confusion in some instances. The aspen
cover type was generally misclassified by both the ANN and DA models as
lodgepole pine, but these misclassifications were much more frequent in the DA
model (381 observations misclassified for the ANN model and 1488 observations
for the DA model). In addition, the lodgepole pine cover type was primarily
misrepresented by both the ANN and DA models as either spruce/fir or aspen.
However, the DA model misclassified a much larger number of actual lodgepole
pine observations as aspen (53 262 observations misclassified for the DA model and
27 391 observations for the ANN model). This classification confusion for the
lodgepole pine and aspen cover types and disparity of numbers of misclassifications
by the DA model may be due in part to its inability to take advantage of the
presumably non-linear influence of the horizontal distance to the nearest wildfire
ignition point variable. Another likely factor would be that lodgepole pine and
aspen cover types are generally located within the same altitudinal zone (Whitney,
1992) and are frequently found as neighboring forest stands within the study area.

In addition to overall classification accuracies, Tables 5 and 6 also show
prediction accuracies for each forest cover type. When comparing correct predic-
tions for each cover type (the major diagonal through each classification matrix)
between the ANN model and the corresponding DA model, the ANN model
produces more accurate predictions for every cover type.

Furthermore, when considering percent of predicted forest cover types (column
totals) against percent of observed forest cover types (row totals), the ANN model
was superior to the DA model. Although this measure does include omission and
commission errors, the ANN model was closer to the observed percentage of each
forest cover type than the corresponding DA model. Overall, these detailed
measures of classification accuracy indicate that the ANN model outperformed the
DA model for overall classification accuracy, individual forest cover type accuracy,
and the percent of predicted forest cover type totals.

An obvious burden of the artificial neural network approach is the need to divide
the data into three separate sets for analysis rather than the traditional two sets
used in most conventional statistical methods. Fortunately, this was not a problem
in this study; a very large number observations were available for analysis and
hence all three data sets contained adequate numbers of observations. However,
this fact may pose a problem for other applications where data is not so plentiful.
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Another consideration when comparing the two classification techniques involves
the amount of computational time required to develop each model. The ANN
model outperformed the DA model in classification accuracy, but also demanded a
greater amount of time to generate a set of network parameters. For example, the
ANN model with 54 independent variables required 56 computer runs (i.e. different
networks) to determine the ‘best’ set of network parameter values, with each run
taking roughly 45 h to complete (using a UNIX Sun Sparc workstation). In
contrast, the DA model with 54 independent variables (using the same workstation)
required only a single computer run that lasted only �5 min. This major time
difference should be considered by those analysts comparing these two techniques.

In a previous paper (Blackard and Dean, 1996), we described an earlier attempt
to predict forest cover types from cartographic variables. In contrast to the findings
reported here, this earlier attempt concluded that both the ANN and DA methods
performed rather poorly. We feel that these earlier findings reflected the sensitivity
of the DA approach to the manner in which the available data is divided into
training, validation and testing sets, and to some of the characteristics of the data
sets themselves. In the earlier study, the training and validation data sets were
created by including every raster cell located within one or more subjectively chosen
geographically contiguous areas. Attempts were made to ensure that these contigu-
ous regions represented the full range of variability throughout the study area, but
such full representation was not completely possible. Some amount of analyst bias
was undoubtedly present by using this type of procedure to develop training and
validation data sets. In contrast, this current study randomly assigned raster cells to
the various data sets, thereby ensuring a truly random (and presumably representa-
tive) sample within each set.

In addition, the sampling scheme used in the current study ensured that within
both the training and validation data sets, each forest cover type was represented by
an equal number of observations. No effort was made to equalize cover type
representations in the data sets used in the previous study. By incorporating a
random sampling system along with minor refinement of the predictive variables,
this study produced ANN models with greater predictive accuracy than comparable
DA models.

9. Conclusions

This study evaluated the ability of an artificial neural network (ANN) model to
predict forest cover type classes in forested areas that have experienced relatively
little direct human management activities in the recent past. The ANN model was
evaluated based both on its absolute accuracy and on its ability relative to a model
based on discriminant analysis (DA). In general, the ANN model produced
good classification results, with greater accuracies than those produced by the DA
model.

For comparison purposes, a study involving land cover classification from
remotely sensed data was recently conducted for the Colorado State Forest, which
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lies along the western edge of the study area used in this research project. The
Colorado State Forest study (Croteau, 1994) used Landsat Thematic Mapper
data to classify 30×30-m observations into one of 11 relatively broad land
cover classes (water, conifer, aspen, willow/wet meadow, mountain meadow,
alpine vegetation, clearcut, range, non-vegetation, sand, and snow). By using
remotely sensed data describing actual landforms and vegetation, rather than the
cartographic data used in this study that describes only site characteristics, pre-
dictive accuracies of 71.1% were achieved (Croteau, 1994). The classification
accuracy achieved with the artificial neural network model in this study com-
pares very favorably with this remote sensing accuracy. Along with those results
obtained from previous ANN studies, these findings suggest that while the ANN
approach does have its own drawbacks, it can still be a viable alternative to
traditional approaches to developing predictive models.
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