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Abstract—Uncertainties assessment performed by nu-
merical weather ensemble forecast system is active re-
search in the statistical weather community. The uni-
variate correction challenge of ensemble forecast known
as univariate calibration is a well-known problem with
linear models. The recent application of a non-linear
approach from the machine learning domain offers a new
way to perform calibration of the ensemble forecast. The
multivariate component of weather forecast with medium
forecasting range represents a high economic value for
decision making but an actual difficult border to cross in
calibration. One way to study the multivariate calibration
and keep a high economic value is the weather types
classification. For example, to plan maintenance activities
outside or an important manifestation, good weather is
preferred and can be studied in the ensemble forecast at
medium-range. Good weather can be seen as a weather
type created by the interaction of the wind speed and the
precipitation. In this article, the multivariate calibration
will be managed by a weather types classification problem
using the non-parametric approach from the machine
learning domain and ensemble forecast at medium-range.

I. MOTIVATION

Nowadays, meteorological institutes provide ensem-
ble forecasts like, for instance, the European Center for
Medium-range Weather Forecast (ECMWF) ensemble.
However such ensemble forecasts of surface weather
parameters are known to be under-dispersed and often
biased [1],[2] [3].[4].

To improve the accuracy of such forecasts, statisti-
cal post-processing has been studied these last years.
One of the most common approach is to calibrate the
ensemble, for each variable separately, by a regres-
sion model which helps to predict observations of the
variable given a description of the ensemble as input.
For example, the state-of-art method, referred to as
Ensemble Model Output Statistics (EMOS;[5]), is based
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on an heteroscedastic linear regression. More recently,
non-parametric algorithms have been proposed [6], [7],
[8]. Multivariate calibration were also developed to
reproduce dependencies between variables [9].

In this article, we focus on multivariate forecasting
for horizon higher than 3 days. Large range forecasting
is valued for maintenance operations in many fields.
Here, we focus on wind intensity and precipitations.
However, the problem of large range forecasting is
difficult because the weather is not well predictable.
To simplify the problem of multivariate calibration, we
chose to deal with weather types and the quantita-
tive variables were transformed into qualitative ones.
Qualitative information like "Good weather” or “Rainy
weather” is sufficient for many applications. Our goal
becomes to predict weather types using an ensemble
forecast.

vm: a reprendre The machine learning algorithm
of random forest (RF; [10]) will be applied to the
problem of classification using the ensemble forecast
of wind speed and rainfall at a fixed spatial point and
forecasting medium-range. To assess the performance
of classification of the RF algorithm, a Multinomial
Lasso regression (MLR) will be performed [11].
The recent univariate calibration approaches cited
before have shown a high capacity to produce reliable
ensemble forecast. Consequently, we have adopted a
methodology of univariate calibration and classification.
The forecast ensembles post-processed by the univariate
calibration methods will be reordered by an empirical
copula method to assure the same dependencies has
the multivariate observation. The multivariate ensemble
obtained would be classified. This method would allow
us to compare the performance of the random forest
applied on the classification of weather types with the
recent univariate calibration methods.

The paper is organised as follows. In Section
I, part A, the considered data are introduced and
the weather type are defined. Then, the classification
algorithms used for the post-processing are described.



JOUAN ET AL.

9th International Workshop on Climate Informatics
October 02-04, 2019

Hosted by Ecole Normale Supérieure, Paris, France

@

In Section IIIA., the performances of the proposed
methods are compared for the forecasting of wind and
rainfall at the ranges 5 days and 10 days for a chosen
location in North-West part of France. The paper ends
with some concluding remarks in Section III.B.

II. METHODOLOGY FOR THE PREDICTION OF
WEATHER TYPES

Our aim is to calibrate multivariate large range
forecast ensembles for one location. Since qualitative
information is sufficient for some applications, we pro-
pose to tackle the problem of weather type prediction,
each weather type being defined from several variables
as described in Section A hereafter. To solve this
classification problem, two approaches are considered.
The first one is based on a direct application of machine
learning classification algorithms (Section B). The sec-
ond one consists in applying the weather type definition
to the output of classical calibration methods (Section
C). J’ai change le plan : classification directe d’abord
puis utilisation des techniques de calibration standard
apres. Peut-ttre qu’il faut revenir au plan precedent?

A. Data description and definition of the weather types

Ensemble forecast data of the ECMWF ([12]) are
collected from the Thorpex interactive grand global en-
semble archive (TIGGE; [2],[1]). The ECMWF ensem-
ble system is composed of 50 exchangeable ensemble
members generated from random perturbations in the
initial conditions and stochastic physics parametrization
([13],[14]). The TIGGE archive includes a minimum of
10 ensemble forecasting system on a time-period from
2006 (for older ensemble forecast system) to actually.

Collected data are composed of observations and
ensemble forecasts of precipitations (Precip, mm) and
wind speed (WS, m.s™!) at 5 days and 10 days of
forecasting range, two runs (6 am and 6 pm) for the
French city of Rennes. The data set is splitted in two
subsets. The first one (years 2008 to 2013) is used to
learn the models and the second one (years 2014 to
2018) is used to compare the algorithms. As mentioned
earlier, the continuous data are transformed to define
weather types. K = 4 balanced weather types are
chosen. For an observation vector y = (y7¢¢P 4WS)T,
and the set of thresholds W = {0.02,2.8,4.0}, the ¢
thresholding function is defined as:

1 yPrear < 0.02, 5" < 2.8

y
Precip > .02,y < 4.0
Y > Y
oy, W) = )]
y
y

w N

Precip > O.OQ,yWS > 4.0
Precip = 0,02,y"S > 2.8

W

The four weather types are referred to as good if
k =1, rainy if k = 2, rainy and windy if k = 3 and
windy of k = 4.

The ensemble members can not be used directly as
inputs of the machine learning algorithm because they
are not exchangeable [15]. Then, following [6], the
considered features are some statistics of the ensembles
of the precipitation and wind speed, namely means,
standard deviations, kurtosis, skewness, first and ninth
deciles, interquartile range and precipitations propabil-
ities. It is standard to also add the control and the high
resolution members to the features set. The month and
the hour, considered as factor inputs, allows to taken
into account the daily and yearly cycles existing in
the data. Finally, since we consider (observed) weather
types as output, we decide to also add in the inputs the
corresponding weather types computed for the ensem-
bles by applying the thresholding function ¢.

To estimate raw ensemble classification performance,
each raw ensemble member is classified with the same
methods described in the step 5 of section II.B. vm: je
ne comprends pas cette phrase... est ce que a ne devrait
pas ttre dans la partie suivante voire seulement dans la
partie validation?

B. Direct classification

The problem is now to predict a discrete variable
with 4 classes given continuous and discrete inputs.
Two classical Machine Learning algorithms are
considered: random forest and lasso logistic regression.

Random forest classifier (RFC) was proposed by
[16] and [10]. It combines elementary classification
trees, learned on subsamples of the data, generated
randomly, to estimate the probability of each weather
type. The principle of each tree is to infer a partition
of the input space by a greedy algorithm. Each part
is called a leave. At each step of the algorithm, the
current leave is split into two parts if it improves a
Gini impurity. At the end, the probabilities of the
weather types estimated the mean of the responses of
all the trees.

Penalized multinomial Lasso regression (MLR) is
described for instance in [11]. Each multinomial regres-
sion model predicts the probability of a weather type
against the other ones so that K — 1 models are fitted.
The Lasso penalty helps to select the most discriminant
variables. The idea is to penalize the log likelihood by
a the sum of the absolute values of the coefficients of
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the regression. It has the consequence to shrink to zero
the coefficients of the not useful inputs and to lead to
more a robust prediction tool.

C. Classification from multivariate calibration

The direct machine learning classification algorithms
proposed in this paper have to be compared to other
machine learning solutions proposed in the ensemble
forecast calibration literature, in particular [17] which
also used random forests. In [17] and reference therein,
the authors perform univariate calibration with quantile
regression forests [18].

Here, we propose to apply a quantile regression forest
for each variable, wind speed and precipitation, sepa-
rately. Then the two independent calibrated ensembles
are combined by a Schaake Shuffle (SS) algorithm [19]
to reproduce the dependent structure existing between
observed wind speed and precipitations. In SS, the
marginal post processing are combined to reproduce
the empirical copula estimated from past observations.
In recent improvement, referred to as SimSchaake;
[20], [9] proposed to combine SS algorithm with ana-
log approaches. It allows to select past observations
from meteorological configurations close to the current
one and it reduces the bias in the estimation of the
dependence structure. After applying SimSchaake, the
thresholding function ¢ is used to derive the calibrated
weather type ensemble.

Est-il utile de garder les differentes etapes decrites
ci-dessous? The classification obtained from a
multivariate calibration approach for a new ensemble
forecast can be defined by the following steps:

1) ¥p € {1,.,P}, fit p random forest [18]

to perform univariate calibration on each p
weather variable with the 7T learning set of
Y = @, .9h), . (wF, ..., yE)}  observation
and X = {(z{"Y, 2Dy @B 20T of

the ensemble forecast with M members for a chosen
spatial location and forecasting range.

2) For a new T + 1 ensemble forecast, generate
7= {(@,..,85), ., (@, ..., 7))} a set of the post-
processed ensemble composed of N members using
the trees prediction with the random forest applied on

the T'+ 1 ensemble forecast.

3) As mentioned in the article [20], compute
the similarity between the T + 1 ensemble forecast
and each t € {1,..,T} ensemble of X. Select N
observation of Y corresponding of the N elements
minimising the similarity calculated above. After
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Fig. 1. Classification scores of models on Rennes data set with
ensemble forecast at 5 days (5d) estimated by cross validation.
left- Accuracy score by model, top-right- Precision score by model
and classes, bottom-right- Recall score by model and classes.
RFR/SimSS: classification obtained from a multivariate calibration,
MLR: Multinomial lasso regression , RFC: Random forest classifier.

computing the ordering statistics y:fl) < .. < y:fN),
Vp € {1,..,P}, store the permutation induced
hY, = rank(yh), Vn € {1,.., N} in a permutation set

H.

4) Apply H on Z to produce the set Z containing

the Z elements reordered: i}, = 5, .

of I, use
to predict

{1,..,N} member

5) Vn S
the vector @, = (&},..,20)T

N N
2= MaXpe(1, K} N Done1 L{o(@,, W)=k}

¢ is a thresholding function defined by the
user to construct the weather types and explicit in the
A.case study part II. The complete method will be
called RFR/SimSS in the evaluation of part III.

IIT. EVALUATION

The performances of the classification algorithms are
compared using classical scores like the accuracy, the
precision, the recall and the F; measure [21].

In the Figure 1, RFC algorithm has the best accuracy
mean, while RFR/SimSS method gets a lower accuracy
mean. The MLR algorithm has an equivalent accuracy
mean with the raw ensemble.

The assessment of the recall and precision scores of
the raw ensemble prediction show a high recall, lower
precision for good Weather and high precision and
lower recall for Rainfall. These scores are suggesting
that the raw ensemble got a tendency to overestimate



JOUAN ET AL.

9th International Workshop on Climate Informatics
October 02-04, 2019

@

Hosted by Ecole Normale Supérieure, Paris, France

the good weather while the rainfall is underestimated.

The same evaluation of these scores for the MRL
and RFC algorithms presents an increase of the recall
and a decrease of the precision for the rainfall and
rainfall with wind. The increase of recall implies
a better detection of these weather types. But, the
decrease of precision shows an augmentation of the
false positive prediction error. These results suggest
an overestimating of these classes for MLR and
RFC models. The recall and precision of RFR/SimSS
method reflect the same and stronger result with the
Windy weather types.

While the good weather and windy type show for
MLR and RFC models an increase of precision and a
decrease of the recall for all methods. The modification
of recall and precision implies an underestimating of
these weather types. Moreover, RFR/SimSS model
shows the same results stronger and with other weather
types added: Rainfall with wind.

Compare to the 5 days ensemble forecast, in the
Figure 2, the 10 days ensemble displays a global
decrease on all classification scores due to the increase
of the uncertainties of the numerical weather prediction
system. In the accuracy score, the same results as
above are noticed, the RFC got the highest accuracy.
Nevertheless, RFR/SimSS has a higher difference with
the models and raw accuracy score than with the 5
days ensemble forecast.

The recall of RFR/SimSS is very low for good
weather and Rainfall with wind classes and high for
the rainfall class. The RFC and MLR models are
more accurate to predict the good weather and rainfall
with wind than RFR/SimSS and raw ensemble. The
RFR/SimSS highly overfits the rainfall class and MLR
and RFC overfit the good weather and rainfall with
wind classes.

After an analysis on the importance of features of
the model with an ensemble forecast at 5 days and
10 days (not shown here), a set of few features has
shown a particular interest. The median and mean
of the 10 days forecast ensemble of the WS are the
main features of the RFC model and improve the
classification score of the good weather and rainfall
with wind but hugely decrease the score of the rainfall
and windy classes. Or, these features got less impact
on the calibration random forest. Also, for the MLR
model, these features got less impact for the rainfall
and windy classes with their 3 coefficients associated
are set close to zero. The difference between the
performance of the windy class prediction for RFC
and MLR is explained by the uses of variance, IQR,

Comparison of the classification scores
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Fig. 2. Classification scores of models on Rennes data set with
ensemble forecast at 10 days (10d) of forecasting horizon estimated
by cross validation.

skewness of the Precip ensemble as features for the
RFC model.

The temporal factor hour for 10 days ensemble
forecast is mainly used by direct classification models
and not by calibration random forest. In the direct
classification models, this factor highly interferes with
the good weather and rainfall classes.

IV. CONCLUDING REMARKS

Overall classification scores shown the random forest
classifier obtains the best results for 5 days and 10
days ensemble forecast at Rennes. The classification
obtained from a multivariate calibration revealed an
interesting high capacity of detection of the rainfall.
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Where direct classification models follow raw ensemble
performances and are better for good weather and
rainfall with wind.

Between forecast ensemble at 5 days and 10 days
forecasting range, few models performances differences
are noticed. The increasing of weather types overfitting
of the models with the increasing of the global weather
types prediction error represents one of the main objec-
tives to correct in future work.

The method of classification obtained from a multi-
variate calibration uses the nonlinear approach of the
random forest to calibrate. In the work of Taillardat,
this model has been compared to linear approaches
for short-range. A comparison of linear approach on
the wind speed and cumulative rainfall ensemble at 5
days and 10 days is needed. The recent EMOS models
of [22] for calibration of wind speed and [23] for
calibration of precipitation will be applied.

Other ensemble with a shorter medium-range (3
days) will be tested and compared to assess the classi-
fication results obtained at 5 days and 10 days. Also,
the weather types prediction problem needs to be in-
vestigated on other spatial locations.
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