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Introduction
Introduction

@ Graphical models became recently common tools in statistic and learning to describe

dependence structures in (high dimensional) complex data such as images, social
network data, gene expression, etc.

@ Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in
computer science in the late 1980’s.

@ Data can be structured (time series, images) or not (social network, gene network, ...
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Introduction
Introduction

@ Graph representing votes for the American senators (2004-2006). 100 variables

corresponding to 100 senators democrates (bullet) and republicans (square). 542
observations.

@ In the graph, most democrats have demecrates as neighbors.
@ Exception : Chafee. It is coherent with the mediatic positions of Chasbee at that time.
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Introduction

Reasoning under uncertainty!

Robotic control

Pedigree

Evolution
© Eric Xing @ CMU, 2005-2014 Planning 7
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Introduction
Introduction

@ Graphical models are used for
- better understanding conditional dependencies,
- segmentation (image),
- pattern recognition,
- signal denoising,
@ Data associated with graphical models
() () ;_
X3 Xplsi=1,0 00
(one variable per node of the graph).
@ Graphical models are based on probabilistic models such as the multivariate
Gaussian distribution or multivariate multinomial distribution.

@ A graphical model can be interpreted as a multivariate distribution under constraints
given by a network structure.

@ Applications of GM : computer vision, natural language processing, decision making
under uncertainty, computational biology, genetics and medical diagnosis/prognosis,
etc.
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Introduction
Basic problems in graphical models

@ Representation : what is the joint probability distribution on multiple variables ?

P(X17"' 7XP)

o How many state configuration in total ? — ex for multinomial data 2P

@ Are they all needed to be represented ?
o Do we have any scientific/medical insight ?

@ Learning : estimation of the parameters of the model
o Maximal-likelihood estimation ? With how many data ?

@ Are there other estimation principles ?
@ Where do we put domain knowledge in terms of plausible relationships between variables,

and plausible values of the probabilities ?

@ Inference : If not all variables are observable, how to compute the conditional
distribution of latent variables given observations ?
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Fondamentals of graphical models
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Fondamentals of graphical models

Representing multivariate distribution

@ Representation : what is the joint probability distribution on multiple variables ?
P(X1, X2, X3, X4, X5, X, X7, Xg)
o How many state configuration in total ? — 28

@ Are they need to be represented ?
e Do they get any scientific/medical insight ?

@ Factored representation : the chain-rule
P(X1, X2, X3, X4, X5, Xo, X7, Xg) = P(X1)P(Xa|X1)P(X3| X1, X2) P(Xa| X1, X2, X3) - - -
P(X7|X1 ) X27 X37 X47 X57 XG)P(X8|X1 ) X27 X37 X47 X57 X67 X7)

o This factorization is true for any distribution and any variable ordering
e Do we save any parameterization cost ?
@ If X;’s are independent : P(X;|.) = P(X;) and
P(X1, X2, X3, Xa, X5, Xe, X7, Xg) = [ | P(X;)
i
e What we gain?

o What we lose ?
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Fondamentals of graphical models
Two types of graphical models

@ Directed edges give causality relationships (Bayesian Network or Directed Graphical

Model) :
P(X1, X2, X3, Xa, X5, X6, X7, Xg) == A
= P(X)P(Xa) P(Xa| X1 ) P(Xa| Xa) o e e

Th—
P(Xs| X3, X4)P(X7|Xs) P(Xg| X5, Xs) T

@ Undirected edges simply give (partial) correlations between variables (Markov
Random Field or Undirected Graphical model) :

P(X1 7X27 X37 X47 X57X67 X77 XS) =
1
— &P {E(X1) + E(X)+

E(X3, X1) + E(Xa4, X2) + E(Xs, X2) I
+E(Xs, X3, Xa) + E(X7, Xg) + E(Xg, X5, X5)} = Jx Erp

where Z is a normalization constante and E represent
"energy" functions.
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Undirected graph models
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e Undirected graph models
@ |. Quantitative Specification
@ |l. Independence properties

V. Monbet Graphical models



Undirected graph models

Canonical example

@ Let us consider a family of distributions such that
ALl C|{B,D}and B L D|{A, C}
There is no causality relationship between the variables.

@ It can be represented by a simple graph. The graph helps to interpret the model.

o - Person A and person B tend to agree about things
- Person A and person D tend to disagree about things
° e - Person C tends to believe things are true, is more likely
G to be swayed by person D than by person B, and has no

direct contact with person A

MRF - Person B and person D have no direct contact

@ Factorization of the distribution

P(A,B, C,D) = P(A|B,D)P(C|B, D)P(B, D) = P(B|A, C)P(D|A, C)P(A, C)
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Undirected graph models
Canonical example - Exercice

@ Let us consider a family of distributions such that
AL B|{B,D,E}and E L A,C,D|{B} and D | C|{A, B, E}

There is no causality relationship between the variables.
@ Plot the associated graph.
@ Write the factorization of the distribution
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Undirected graph models

Example 1

ach: aches and pains
agi: psychomotor agitation
anx: feeling anxious

app: change of appetite

con: concentration problems
dia: diarrhea/constipation
ene: energy level

fal: falling asleep

fut: view of myself

hyp: hypersomnia

int: general interest

irr: feeling irritable

pan: panic/phobic symptoms
par: leaden paralysis

ple: capacity for pleasure (not sex)
qmo: quality of mood

ret: psychomotor retardation
rmo: respons of mood

sad: feeling sad

sel: view of oneself

sen: interpersonal sensitivity
sex: interest in sex

sle: sleep during the night
sui: suicidal thoughts

sym: other bodily symptoms
wak: waking up too early
wei: change of weight

The resulting network structure of a group of healthy controls and people with a current or
history of depressive disorder (N = 1108). Cognitive symptoms are displayed as O and

thicker edges (connections) represent stronger associations.
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Undirected graph models
Representation

@ An undirected graphical model represents a distribution P(Xj, ..., Xy) defined by an

undirected graph H, and a set of positive potential functions 1) associated with the
cliques of H, s.t.

p(X1,--, Xq) = 1} [T vexe)

ceC
where Z is known as the partition function. It is a normalization constant.

Z= Z H’l/fc(xc)

Xq,:,Xg c€C

@ Also known as Markov Random Fields, Markov networks ...

@ The potential function can be understood as a contingency function of its arguments
assigning "pre-probabilistic" score of their joint configuration.

V. Monbet Graphical models
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Undirected graph models
Global Markov properties

@ Let H be an undirected graph

@ B separates A and C if every path from a node in A into a node in C passes through a

node in B :
sepy(A; C|B).

@ A probability distribution satisfies the global Markov property if for any disjoint A, B,
C, such that B separates A and C, A is independent of C given B :

I(H) = {A L C|B: sepy(A: C|B)} .
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Undirected graph models
Local Markov independencies

o For each node X; € V, there is unique Markov blanket of Xj, denoted MBy;, which is
the set of neighbors of X; in the graph (those that share an edge with Xj)

@ The local Markov independencies associated with H is :

Ii(H) : {x,— LV~ {X;} — MBx |MBy - Vj}

In other words, X; is independent of the rest of the nodes in the graph given its
immediate neighbors

By the local property, A is conditionally
independent from the rest of the
network given its neighbors.
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Undirected graph models
Pairwise properties

@ Any two nodes in the Markov network are conditionally independent given the rest of
the network if they are not neighbors.

@ The pairwise property associated with H is :

Xj L Xi|X; ¢ MBy, : vj

By the pairwise property, A is
conditionally independent from B and C
given the rest of the network, but B and
C are still dependent on each other.
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Undirected graph models

Summary : Conditional Independence Semantics in an MRF

Structure : an undirected graph

@ Meaning : a node is conditionally independent of
every other node in the network given its neighbors

@ Local contingency functions (potentials) and the
cliques in the graph completely determine the joint
distribution.

@ Give correlations between variables, but no explicit
way to generate samples
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Undirected graph models I. Quantitative Specification
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Undirected graph models I. Quantitative Specification

Cliques

@ A complete subgraph (clique) is a subgraph V’ such that nodes in V' are fully
interconnected.

@ A (maximal) clique is a complete subgraph s.t. any superset is not complete.
@ A sub-clique is a not-necessarily-maximal clique.

@ Example
- max-cliques : {A, B, D}, {B, C, D}
- sub-cliques : {A, B}, {B, C}, - - - e.g. all edges and singletons

(A)
<N
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Undirected graph models I. Quantitative Specification

Gibbs Distribution and Clique Potential

@ an undirected graphical model represents a distribution P(Xj, ..., Xy) defined by an
undirected graph H, and a set of positive potential functions v associated with the
cliques of H, s.t.

p(X1,- -+, Xq) = 1 H e(Xe) A Gibbs distribution
z ceC

where Z is known as the partition function. It is a normalization constant.

Z= > ]I #ecx)

X1, ,Xg ceC
@ Also known as Markov Random Fields, Markov networks ...

@ The potential function can be understood as a contingency function of its arguments
assigning "pre-probabilistic" score of their joint configuration.
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Undirected graph models I. Quantitative Specification

A first example

ENENEE

0 o [ 1 37500 ° e = o ¢ 3
0 o 1 0 50000

0 o 1 1 625000

o 1 o o 1135

0 1 0 1 168750

0 1 1 0 50000
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1 o o 0 250

1 o 0 1 375

1 o 1 0 50000

1 o 1 1 £250

1 1 o 0 112500 0 1 s o 1 15
1 1 o 1 168750 N 5 s ) o e
1 1 1 0 5000000 . . . . . .
1 1 1 1 525000

Z=7520750

Source : https://wiki.ubc.ca/Course:CPSC522/Markov_Networks
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Undirected graph models I. Quantitative Specification

Interpretation of Clique Potentials with simpler examples

O~

@ The model implies X L Z|Y. This independence statement implies (by definition) that
the joint probability must factorize as :

p(x,y,2) = p(y)p(x|y)p(zly)

@ We can write it as
p(x,y,z) = p(x,y)p(zly)
or
p(x,y,z) = p(x|y)p(z,y)
but

- cannot have all potentials be marginals
- cannot have all potentials be conditionals.

@ The positive clique potentials can only be thought of as general "compatibility",
"goodness" or "happiness” functions over their variables, but not as probability
distributions.

@ Potential functions are more flexible than probabilities.
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Undirected graph models I. Quantitative Specification

Example UGM — using max cliques

- Dt
RS 5
o V. (X104) ¥ (Xp34) ‘@

1
P'(x1, %2, X3,X4) = 2%()(124)%()(234)

Z= Z he(X124)c(X234)

X15,X2,X3,X4
@ For discrete nodes, we can represent P(X.4) as two 3D tables instead of one 4D

table.
@ But computing Z is not easy.
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Undirected graph models I. Quantitative Specification

Example UGM — using sub cliques

1
P"(x1, X0, X3, X4) = > Hw/y(xi/)
i

z= > JIwoew

X1,,X2,X3,X4 if

@ We can represent P(Xj.4) as 5 2D tables instead of one 4D table.
@ Pair MRF is a popular and simple special case.
@ Are the two representations equivalent ? Are they of the same size ?

V. Monbet Graphical models 22/108



Undirected graph models II. Independence properties
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Undirected graph models II. Independence properties

Hammersley-Clifford Theorem

@ If arbitrary potentials are utilized in the following product formula for probabilities,

POt xa) = 5 [T velxe)

ceC

Z= 3" T wexe)

X1, Xd ceC

then the family of probability distributions obtained is exactly that set which respects
the qualitative specification (the conditional independence relations) described earlier.

@ Theorem : Let P be a positive distribution over V, and H a Markov network graph
over V. If His an Independence map for P, then P is a Gibbs distribution over H.

V. Monbet Graphical models 23/108



Undirected graph models II. Independence properties

Global and local Markov properties

@ The global Markov properties of an undirected graph H are
/(H) = {XA 1 XC|XB : speH(XA;XC\XB)}

@ The pairwise Markov independencies associated with an undirected graph
H=(V;E)are
I(H)y={XLYIV-{X,Y}:{X,Y}) ¢ E}

Example X; L Xs5|{Xz, X3, Xa}

0000

@ A distribution has the local Markov property w.r.t. a graph H = (V; E) if the
conditional distribution of variable given its neighbours is independent of the
remaining nodes

I(H) = {X LV — (XUNg(X))|Ny(X); X € V}

V. Monbet Graphical models 24/108



Undirected graph models II. Independence properties

Global and local Markov properties

@ Theorem (Hammersley-Clifford) : If the distribution is strictly positive and satisfies the
local Markov property, then it factorizes with respect to the graph.

A positive distribution P satisfies the conditional independence properties of an
undirected graph H iff P can be represented as a product of factors, one per maximal
clique, I;e.

P(y;0) H Ye(Yei Oc)

ceC
where C is the set of all maximal cliques and Z(0) is the partition function.

@ Ny(X) is also called the Markov blanket of X.
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Undirected graph models II. Independence properties

Exponential form

@ Constraining clique potentials to be positive could be inconvenient (e.g., the
interactions between a pair of atoms can be either attractive or repulsive). We
represent a clique potential 1)c(X¢) in an unconstrained form using a real-value
"energy" function ¢¢(Xc)

pe(Xe) = exp(—epe(Xc))

@ This gives the joint probability a nice additive structure

ceC

px) = & exp {— 3 delxe)

where the sum in the exponent is called the "free energy". The free energy can be
positive or negative.

@ In physics, this is called the "Boltzmann distribution”.
@ In computer science, this is called the "Gibbs distribution".
@ In statistics, this is called a log-linear model.
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Examples of discrete undirected graph models
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Examples of discrete undirected graph models
Boltzman machines

@ A fully connected graph with pairwise (edge) potentials on binary-valued nodes
(xi € {—1,+1} or x; € {0, 1}) is called a Boltzmann machine

;
P(xi, -+, x) = ZeXP{Z@j(Xan)}
i
1
= ZEXp{ZGIJ’Xf)(i+ZO‘fo+C}'
i i

@ Hence the overall energy function has the form

H(x) = > (% — w)@;(x — 1) = (X — ) O(x — )
]
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Examples of discrete undirected graph models
Ising models

@ Variables are binary.

@ Nodes are arranged in a reguler topology (regular grid) and they are connected only
to their geometric neighbors.

]
p(x) = 3 exp > Opxixi+ > 0ix;
ijeN, i

@ Same as sparse Boltzmann machine where 6;; # 0 iff j and j are neighbors.

e Ising’s model described dependencies of order 2, like a
multivariate Gaussian model.

@ e.g. nodes are pixels, potential function encourages nearby
pixels to have the same intensities.

e This model implies

exp (9/‘0 + 2 keE 9/ka)
1+exp (9/‘0 + Z/‘,kgg ejkxk)

PXjIX—j = x-j) =

where 0 measures the dependence between x; and x
e . This is the middle position of a Go game.
conditionally to the other variables. Overtaid is the estimate for the probabilty of
becoming black or white for every intersection.

@ Applications : Modeling Go, opinions in a social network Large squares mean the probabilty s higher.
@ Potts model is a multi-state Ising model (categorical variables).
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Examples of discrete undirected graph models

Ising models

Exercice

@ The raw data consist of the binary judgments of 101 first-year psychology students
who indicated whether or not they would display each of 8 anger-related behaviors
when being angry at someone in each of 6 situations.

@ The 8 behaviors consist of 4 pairs of reactions that reflect a particular strategy to deal
with situations in which one is angry at someone, namely,
(1) fighting (fly off the handle, quarrel),
(2) fleeing (leave, avoid),
(3) emotional sharing (pour out one’s heart, tell one’s story),
(4) making up (make up, clear up the matter).

@ The six situations are constructed from two factors with three levels :
(1) the extent to which one likes the instigator of anger (like, dislike, unfamiliar)
(2) the status of the instigator of anger (higher, lower, equal).
Each situation is presented as one level of a factor, without specifying a level for the
other factor.
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Examples of discrete undirected graph models

Ising models

Exercice

@ Give an interpretation to these graphs, build for 3 situations.

Like

lDiinke Unlamili
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Examples of discrete undirected graph models

Ising models

Exercice

@ Give an interpretation to these graphs, build for 3 behaviours.

©

vom

Harts+Story @

V. Monbet

Graphical models
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Examples of discrete undirected graph models

Ising models

Comparison with MCA

@ MCA is another way to represent the variables.

tell oie's story
pouf out gne’s hart

®
)

Dim 2 (20.94%)

0.4

0.2
I

ave

{ake up

th avm((‘l
leargip the matter
Q fyoffhe RS
T T T T T
00 02 04 06 08 1.0
Dim 1 (32.72%)

0.0
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Examples of discrete undirected graph models

Ising models

Comparison with MCA

@ MCA is another way to represent the variables.

HartsStory
&) :
2

L o
3 8 A Harturtamiliar
3
) :
8
o Story/unfamiliar
e 34
S £ 3
Hart/disliké¢ ~ Story/dislike
o
S

Hartlike

@ o Story/lik
s
T T T T T
° 0.0 0.2 0.4 0.6 08 1.0

Dim 1 (32.76%)
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Examples of discrete undirected graph models
Restricted Boltzmann Machine

hidden units

visible units

1
P(x,h;0) = = exp {Z 0ii(x0) + Y 085(hy) + > 0bii(xi, h,-)}
i j ij
@ In Boltzmann machine the model is homogeneous.

@ The introduction of latent (or hidden) variables allow to describe an heterogeneous
space.

@ For example, the visible units may be the pixels of an image and the hidden units the
class of the pixel (ex : earth or sky).
In deeplearning, the hidden units are interpreted as meta-features.

@ RBM can be used to extract summarized information about the observations.
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Examples of discrete undirected graph models

A constructive definition

h.
e p(x[h) =[] px, [m),

p(x W) =expl 20, £, (x)+4,(16,}) }
b,=0,+ 2W)'g, (h)=6,+ 2W])g (h)
jb j

X.
Vi p(h|x)= H p(h; %) vector of loca! .
coupling in the j sufficient statistics
log-domain with (features)

shifted parameters p(h;|x)= CXP{ Z/{/,,g/,,(h/)+B /({/{m}) }
b

A=A+ WSS

ia Jia

(%)= 4, + 2" (x)

@ Firstly, one writes the conditional distributions.
@ Then, they map to the RBM random field :

p(x, h; 0) = exp {Z bifi(x) + > Gigi(h) + > f,-(xf)TW,-,-g,-(h,-)}
j j

i
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Examples of discrete undirected graph models

RBM

Exercice

@ Fit a RBM with 2 units for the Anger "Like" data.
@ Fit a RBM with 3 units for the Anger "Emotional sharing" data.

Go to https ://perso.univ-rennes1.fr/valerie.monbet/GM/Anger.html for an example.
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Examples of discrete undirected graph models
RBM for text modeling

@ Context

o h e R by=37 wxi
Ex : hj = 3 : topic j has strength 3

e x; €N
Ex : x; = n : world i occurred n times.

words counts

@ Chosen conditional distributions

p(hyx) ~ N (Z WjX;, 1)

exp(ey + 3, wih;
p(x;|h) ~ Binomial <N (o + 325 wihi) )

"1 + exp(aj + Z/ Wé-h,‘)
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Examples of undirected graph models for continuous observations

Outline

e Examples of undirected graph models for continuous observations
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Examples of undirected graph models for continuous observations

Examples

@ Satellite images of sea surface temperatures and sea color close to Brazil.

RSS) & Currents (Aviso) MODIS) & Currents (Aviso)

o Gene expressions may be influenced by
unobserved factors that are post-transcriptionally
regulated.

o £ @

o The unavailability of the state of B results in a
constrain over A and C. This constraints can be

T e - for instance be interpreted as correlation and they
- o will be highlighted by the graph.
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Examples of undirected graph models for continuous observations
Gaussian graphical models

@ Let us consider Markov networks where all the variables are continuous.

@ In this context, the Gaussian multivariate distribution is often used because it has nice
analytical properties.

X ~ N (1, E)

PO 1, E) = oxp (G x— ) = (- )

]
(27)9/2(detx)!/2

@ Precision matrix : @ = £~

det®)
p(x;pp=0,0) = ((270:/2 ( ZQMX - Z eljxlxj>

i<j

We can view this as a continuous Markov Random Field with potentials defined on
every node and edge (ex : Ising’s model).

@ The Gaussian distribution only models dependencies of order 2. Then it describes
Markovian graphs of order 1.
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Examples of undirected graph models for continuous observations
Covariance and precision matrices

@ Covariance matrix
£;=0= X L X orp(X,X) = p(X)p(X)
Graphical model interpretation ?

@ Precision matrix @ = ¥~
©; = 0= X; L X[X_; or p(Xi, XIX_j) = p(Xi|X_;)P(Xi|X_)
Graphical model interpretation ?

V. Monbet Graphical models 40/108



Examples of undirected graph models for continuous observations

Sparse precision vs sparse covariance in Gaussian graphical models

0000

0.10 0.15 -0.13 -0.08 0.15
0.15 —0.03 0.02 0.01 —0.03
, XL = —-0.13  0.02 0.10 0.07 -0.12
—0.08 0.01 0.07 —-0.04 0.07
0.15 -0.03 -0.12 0.07 0.08

e=3x"T=

[eNeNeNo R
oo NN O
O 00 WO
© » OO O
g1 O O oo

©15 =0 Xi L Xs|X_115y
does not imply

X1LX5<:>Z15:O

V. Monbet Graphical models 41/108



Examples of undirected graph models for continuous observations

Sparse precision in Gaussian graphical models

*
*
*
*
*
0

V. Monbet Graphical models 42/108
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Examples of undirected graph models for continuous observations

Some nice properties of Gaussian distribution

@ One of the nice properties of the multivariate Gaussian distribution is that all its
conditional distributions are Gaussian too.
Let Yand Zbe suchthat Z = (Xy,--- , Xp—1) and Y = Xp,

1 1
YIZ=z~N (uy +(z- ;Lz)TZZZO'ZV, oyy — U;yzzzazy)
where
p
s = ( _IZZ ozy ) .
Ozy Oyy

@ Remark : py + (z — }LZ)TZEZ1 ozy is exactly of the same form as the linear
regression of Y over Z with 8 = £} ozy.
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Examples of undirected graph models for continuous observations
More on the precision matrix

_ _ pN o
Y|Z = ZNN(MY +(z—nz) T3 0zv, ovy —U}-yzzzufzy)v T = ( U%z UZY )
zY YY

@ Remark : py + (z — ;LZ)T}:EZ1 ozy is exactly of the same form as the linear
regression of Y over Z with 8 = ¥, ozy.

@ With the same partition for ® = £~' and X, since

o0x =/

Ozy = —9YYZEZ1 ozy
with 1/0yy = oyy — U;YZEZ1 ozy > 0. So that,

B=X3)ozy = —bzy/0yy

@ The conditional dependencies between Y and Z are described by the mean. The
zero coefficients of 07y leads to zero coefficients in 5 (and reversely).

@ Finally, © captures all the second order structure that is needed to describe the
conditional distribution.
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Examples of undirected graph models for continuous observations

Toys examples

@ 3 examples of graphs with their precision matrices.

Tag e e,

Graphical models
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Learning (continuous) undirected graph models

Outline

e Learning (continuous) undirected graph models
@ Learning when the structure is known
@ Estimation of the graph structure
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Learning (continuous) undirected graph models

Examples

@ We have niid observations (ex : expression of the genes, like/unlike from customers,
students marks, etc.).

X1, Xn, X €RY

@ We want to learn the structure and the parameters of the graphical models (e.g. the
multivariate distribution).
u, ®

@ Maximization of the likelihood.
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Outline

e Learning (continuous) undirected graph models
@ Learning when the structure is known
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Learning (continuous) undirected graph models Learning when the structure is known

Estimation for a full graph

@ Observations {Xq,--- ,Xp} of X
@ Assumption : the graph is full : ;- and £~ have no zero coefficients.
@ The empirical covariance matrix is given by

S P
Sn—n;(x/ X)(X; — X)

where X is the empirical mean.
@ The log-likelihood is given by

£(©) = log det(®) — trace(SO)

up to an additive constant.
o And

% logdet(®) =1, %traoe(se) =S

@ So that the estimator of the maximum likelihoodis ¥ = @~ ' =S
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Learning when the structure is known

Learning (continuous) undirected graph models

Estimation for a sparse graph

@ Generally, the graphs are sparse.
@ [f the graph structure is known and denoted E, the maximization of the likelihood
leads to a quadratic optimization problem under equality constraints.

max log det(®) — trace(SO®) — Z Yiji
U,K)¢E

@ The gradient equation is
e '-s-r=o

I is a matrix of Lagrange parameters with non-zero values for all pairs with edges
absent.
Raf
=k
4 )

IR 5T
AT D]
PGP

RS
Sesayeey
27

oS
V%

b

0

N

77\
7]]
5]
]

EZ /7
X7
RE
!

B 5
MEN ) e‘!“i}f‘_
S

Y\

48/108

Graphical models

V. Monbet



Learning (continuous) undirected graph models Learning when the structure is known

Ideas of the modified regression algorithm

@ We partition the matrices © and X into two parts

o Part 1 : the first d — 1 rows and columns
@ Part 2 : the last row and column

( W1 W12)(@11 012 >:< ly—1 0)
W1T2 Wao 917—2 () 0 1

Wig = —Wi1012/022 = Wi 8

This implies

Then, with empirical estimates, W13 — 612 — 12 = 0.

There are d — g non-zero elements in 1> (edges constrained to be zero), so that the
previous equation is equivalent to

5" = (Wi~ 83

Furthermore, 9i22 = Wop — W),8 and wop = 625 since the diagonal of T is zero.

This leads to a simple iterative algorithm.
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Learning (continuous) undirected graph models Learning when the structure is known

A Modified Regression Algorithm for Estimation of an Undirected

Gaussian Graphical Model with Known Structure.

Q Intialize W = £
@ Repeatforj=1,2,---,p, until convergence
@ Partition the matrix W into part 1 : all but the jth row and column,

and part 2 : the jth row and column.
@ Solve W}, 8" = &7, for the unconstrained edge parameters 3, using the reduced system

of equations. Obtain 3 by padding 3* with zeros in the appropriate positions.
© Update wip = W13

@ In the final cycle (for each j) solve 015 = — B, With 1/855 = 625 — w1723

V. Monbet Graphical models
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Learning (continuous) undirected graph models Learning when the structure is known

A simple graph for illustration

X3 X
10 1 5 4
1 10 2 6
S= 5 2 10 3
4 6 3 10
Xy ——— Xy
10.00 1.00 1.31 4.00 0.12  -0.01 0.00 —0.05
$_ 1.00 10.00 2.00 0.87 2—1 _ —0.01 0.11 —-0.02 0.00
B 1.31 2.00 10.00 3.00 0.00 —-0.02 0.11 —0.03
4.00 0.87 3.00 10.00 -0.05 0.00 -0.03 0.13 ,
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Outline

e Learning (continuous) undirected graph models

@ Estimation of the graph structure
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Learning (continuous) undirected graph models Estimation of the graph structure

Estimation of the graph structure

@ In most problems, the graph structure is unknown.
@ A natural solution is to introduce a Lasso penalty. The new optimization problem is
written

®=arg min {log det(®) — trace(S®) — A[|©]|1}
with [[@][1 = > 651
@ As in Lasso regression, the non significant parameters are shrunk to zero.

@ The function to be minimized is convex. The algorithm called "graphical lasso" is
similar to the one proposed for sparse graph estimation when the structure is known.
The gradient equation is replaced by

O ' -S—ASign®@=0

where Sign(0;) = sign(6y) if 6; # 0 and Sign(6;) € [-1,1]if0; =0
@ There are some consistency results for this algorithm.
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Learning (continuous) undirected graph models Estimation of the graph structure

Example, Ozone conce
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Learning (continuous) undirected graph models Estimation of the graph structure

Ozone concentration

@ Correlation matrix and graph on a subset of variables

- 0.6
04

r 02

- 00 @
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Learning (continuous) undirected graph models Estimation of the graph structure

Ozone concentrations

Exercice

@ Fit a Gaussian Graphical Model on the qualitative variables of the Ozone data set.
@ Use BIC and/or AIC to find the "best" regularization constant.

@ Plot the precision matrix and the associated graph.

@ Interpret the graph.

See https://perso.univ-rennesl.fr/valerie.monbet/GM/Ozone_GGM.Rmd
for an example.
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Learning (continuous) undirected graph models Estimation of the graph structure

Ozone concentration

@ Correlation matrix and graph on continuous variables

ed X x
X X
® X X \
x Ul x
° X X
X X X X .
. X X X
3 X
~ - % B
‘ ‘ X% ‘.
2 4 6 8 10
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Learning (continuous) undirected graph models Estimation of the graph structure

Customer’s satisfaction survey

Exercice

@ Fit a Gaussian Graphical Model on the customer’s satisfaction survey. You can use
glasso package available on CRAN.

@ The data describe customer’s satisfaction for mobile phones.
n =250, p =23.
Customers give marks between 1 and 10.

@ Use BIC and/or AIC to find the "best" regularization constant.
@ Plot the precision matrix and the associated graph.
@ Interpret the graph.

Data available at
https://perso.univ-rennesl.fr/valerie.monbet/GM/mobi.Rdata
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Learning (continuous) undirected graph models Estimation of the graph structure

Example, customer’s satisfaction survey

@ Customer’s satisfaction for mobile phones. n = 250, p = 23. Customers give marks
between 1 and 10.

@ Estimation of S and £ for the complete graph.

@ Following S, variables 8 and 9 are highly correlated : BuyAgain, Recommend. Same
for 22 and 23 : FairPrice,GoodValue.

@ The precision matrix is difficult to interpret.

S (S}

V. Monbet Graphical models
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Learning (continuous) undirected graph models Estimation of the graph structure

Example, customer’s satisfaction survey

@ Full graph
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Learning (continuous) undirected graph models Estimation of the graph structure

Example, customer’s satisfaction

@ Satisfaction survey. n = 250, p = 23.

@ Sparse model ?

@ )\ is selected according to AIC and BIC criteria.
Py 0.2 0.4 0.6 0.8 1.0 12 14 16 138 2.0
AIC 1483 1463 1436 1442 1430 1441 1458 1475 1493 1508
BIC 1793 1681 1560 1534 1462 1455 1469 1482 1500 1511

Graphe e

GoExp
ovéalsat

MeetsExp
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Learning (discrete) undirected graph models

Learning Ising models (pairwise MRF)

@ Assuming the nodes are discrete, and edges are weighted, then for a sample x, we
have
P(x[@) =exp | D_07xi+ > 0;xx;— &(©)
% (ij)€E
® plays the role of the normalisation constant.
@ Recall that Ising model implies that
exp (9/0 + 2 keE 9/'kxk>

P(XjIX_j = x_j) =
1+ exp <9/'0 + Z/’,keE ijXk)

@ It can be shown following the same logic that we can use Ly regularized logistic
regression to obtain a sparse estimate of the neighbourhood of each variable in the
discrete case (graph structure).

@ Once the graph structure is known, non zero parameters can be estimated.
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Learning (discrete) undirected graph models

Estimation when the graph structure is known

@ For undirected graphical models, the log likelihood does not decompose, because the
normalization constant Z is a function of all the parameters

Pl xg) = & [ velxe), 2= 3 T velxe)

ceC Xy, Xg c€C

@ In general, we will need to do inference (i.e. marginalization or conditional prediction)
to learn parameters for undirected models, even in the fully observed case.

V. Monbet Graphical models
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Learning (discrete) undirected graph models

Estimation when the graph structure is known, Ising model

@ Observations X; = (X1, -, Xig) € {0,1}9,i=1,--- | N.
@ Log likelihood of Ising model

N
2(0) = Z { Z Ok Xj Xk — ‘b(@)}

i=1 \ (j,k)€EE

@ Gradient of log-likelihood

N
0¢(0) 99(0)
= XjiXixk — N
89]/( ; ik 89];(
0P (O
O = 3 xxn(x, ©) = Eolx%0)
Jk XX

@ The gradient is zero when
E(XjXk) = Eo(XjXk)

where E is the empirical expectation.
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Learning (discrete) undirected graph models

Estimation when the graph structure is known, Ising model

@ To find a solution of R
E(XXi) = Eo(XjXk)

gradient descent methods can be used if d is not to large (d < 30).
@ Problems becomes intractable when d is large. To compute Eg (X Xk), the
computation of p(X; @) is required for all 292 possible values of |X| = 29.

@ The more common approach is then to use Gibbs sampling to approximate Eg (X;Xk)
from several successive sampling of the conditional distributions Pg (X;|X_;).

@ Indeed, if samples of pg are available, Eg(X;Xk) can be approximated by empirical
estimates.
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Learning (discrete) undirected graph models

Gibbs sampler

@ LetX = (Xj,---,Xy) be a vector of random variables.
@ We want to generate a sample of the joint distribution of X.

@ Sometimes, it is difficult to sample according to the joint distribution of X but easy to
sample according to the conditional distributions P(Xj|X_;) . It is the case for
graphical models.

@ The Gibbs sampler simulates alternatively according to P(Xj|X_;) ,j € {1,--- ,d}.

@ Under some regularity assumptions, one can show that when (and if) the process is
stabilized the obtained sample is distributed as X.

@ Algorithm of Gibbs sampler

Gibbs Sampler

1. Choose initial values Xj(o),j € {000 @
2. Repeatfort=1,2,---
Forj=1,---,p
Sample X/.(') according to P(X,-|X(jj_1))

3. Continue step 2. until the distribution of (Xft), e ,Xé')) does not change anymore.
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Learning (discrete) undirected graph models

Gibbs sampler, Markov chain

@ A Markov chain is defined by a (finite) set of states and a transition matrix Q.
@ If the Markov chain is ergodic, it admits a stationary distribution 7 such that = = Q.
@ The Gibbs sampler is an ergodic Markov chain with transition matrix

Q = p(x1X-)

and its stationary distribution is the joint distribution of (Xj, - -, Xg).

@ In general, a large number of iterations if required to achieve the stationary
distribution. This number corresponds to the mixing time of the Markov chain. !

1. Roberts, G. O., Smith, A. F. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis-
Hastings algorithms. Stochastic processes and their applications, 49(2), 207-216.
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Examples

Moment dordre 2

Learning (discrete) undirected graph models

@ One simulates a Markov field over a 10 by 10 grid, with parameters © such that
0; = 1/4 if X; and X; are neighbours and 0 else.

@ Mixing time + 2 simulated fields

T T T T T T
0 2000 4000 6000 8000 10000

teration

V. Monbet Graphical models 67 /108



Graphical models with latent variables

Outline

e Graphical models with latent variables
@ When visible variables are continuous
@ Mixture models
@ When visible variables are discrete
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Graphical models with latent variables
Latent variables

@ In some applications, latent (or hidden) variables are introduced.
@ Discrete/discrete variables : Boltzmann machines.

cachées

visibles

@ Continuous/discrete variables : segmentation.

SST (RSS) & Currents (Aviso) Chl-a (MODIS) & Currents (Aviso)

Pierre Tandéo, Telecom Bretagne, Brest.

@ Continuous or discrete/continuous variables : latent factors.
Well known example : Principal component analysis.
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Graphical models with latent variables
Learning with latent variables

@ When a part of the variables is latent, there are 2 problems
1. Prediction of the hidden variables given the observations and the model. Usually,
the posterior probabilities are estimated

p(Xx | Xy; ©)

2. Estimation of model parameters ©.

@ ltis clear that the two problems are linked. If ® is unknown, parameters and posterior
probabilities have to be estimated simultaneously.

@ Example : clustering, mixture models.
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Outline

e Graphical models with latent variables
@ When visible variables are continuous
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Graphical models with latent variables When visible variables are continuous

Graphe with visible continuous variables

@ Image restoration and image segmentation, the considered graphs have specific
architecture.

@ Usually, the edges corresponding to the observed variables are connected.

@ A hidden variable is associated to each observed variable. For image restoration the

hidden variables are in the same space as the observed variables. For image
segmentation, the hidden variables can take only a finite number of values

{1,--- ,K}.
@ Each hidden variable is connected only to its neighbours.
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Graphical models with latent variables When visible variables are continuous

Example in vision, image segmentation

@ The problem is to discriminate the foreground from the background.
@ Observation x € X = image.

@ For each pixel /, a variable Y; € {0, 1} is defined such that y; = 1 if the pixel belongs
to the foreground and 0 elsewhere.

@ Then a score function g; is defined such that g;(1, x) > g;(0, x) if the pixels around /
belong to the foreground. Ex : g(y;, x) = p(yi|x) computed by a color model.

@ In order to restore a good spatial coherence, g; (or y;) is connected to its neighbors

n n
y*=arg max > gy, x)+ > 9ij(¥i )
yelo i ijex

with Z the neighborhood, and gj a function which returns a large value if all the points

of the neighborhood are in the same ground. Ex : g;(y;, ¥;) = exp(—~|lyi — ¥jl1?), v a
positive constant.

Fig. 1.1 Input image to be Fig. 1.2 Pixelwise separate Fig. 1.3 Joint optimum y*
segmented into foreground classification by g; only: with spatially consistent de-
and  background.  (Image noisy, locally inconsistent de- cisions.

source: http://pdphoto.org) cisions.

http ://www.nowozin.net/sebastian/papers/nowozin201 1structured-tutorial.pdf
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Graphical models with latent variables When visible variables are continuous

Example in vision, image segmentation

y* = arg r?oaf}nzp(yl\x )+ A Z exp(—7ly; — y;1I°)

ijeT

Fig. 4.2 A natural image to be %gm( ented.
(Image source: http: //pdphoto. org)

Fig. 4.4 Left: heatmap of unary potential values. Right: segmentation masks for large w.

Fig. 4.3 Resulting foreground region.

Fig. 4.5 Segmentation masks for medium and small w.

http ://www.nowozin.net/sebastian/papers/nowozin201 1structured-tutorial.pdf

Monbet Graphical models




Graphical models with latent variables When visible variables are continuous

Example in vision, image segmentation

@ The model can depend on unknown parameters 6 (and ~).
@ Problem

y* =arg 6r?Oa>1<}ane Yilx) + A Z exp(—lyi — yl1?)
iJET
only allows to infer Y given the observations x.

@ In order to learn the parameters, an EM algortihm can be used. It is an iterative
algorithm which consists in 2 steps
- E step : inference of Y given x and 0
- M step M : estimation of 6 given the complete data (x, Y)

@ The simplest use of EM algorithm is probably the mixture of distributions.
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Graphical models with latent variables Mixture models

Mixture models

@ Mixture models are used for clustering.

discrete S

1

continuous X

@ It may be interpreted as a soft version of the k-means.

@ A mixture model characterizes the distribution of X of a pair (S, X) such that
- S is a discrete random variable defined on {1,--- ,K}; S'is hidden.
- X is a random variable defined on RP such that P(X|S = k) admit a density f,(.; 0x)
forallk e {1,--- ,K}.
- From the theorem of total probabilities
P(X € A) =3 K . P(X € A|S = k)P(S = k)
then

K
f(x) = miche(x; k)
=

with 7, = P(S = k).
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Graphical models with latent variables Mixture models

Learning of mixture models

K
f(x) = mche(x; Ok)
P

@ Parameters m, and 6, k € {1,--- , K} are estimated by maximum likelihood using
the Expectation-Maximization algorithm (EM algorithm).

@ The algorithm proceeds in two step which are iterated.
- In E step, the parameter is fixed to its current values and the probability that a
sample i belongs to class k is estimated.
- In M step, parameters are estimated given probabilities computed at the previous
step.

@ EM algorithms for Gaussian mixture looks like a k-means algorithm.
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Graphical models with latent variables Mixture models

EM algorithm
Initialization Choose the number of classes K and Initialization Choose the number of classes K
initialize the parameter vector — 6(©) then sample randomly K class center in the
observations.
Iterate until the estimated parameter does not Iterate until the within class variance criteria does
change significantly any more not grow significantly any more
- E-step Fori =1, .. | n, estimated the - Allocation For i = 1, - - - , n, Alocate / to class
posteriori probabilities k such that d(x;, gk) < d(x;i, g¢) for all
o =1, K
Tk = P(S=k|X=x,6")
_ (% 01))
S w08 ;00
- M-step Estimate parameters fork =1, .- | K - Estimation Compute class centers g of K
N classes.
m ) = 5D Tk
i=1
L SOy ThiXi 1
k >SS Tk 9% =N, D%
t1 41 1€ Gk
S _ SR Tl — )6 = u)7
K=

S Thi
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Graphical models with latent variables Mixture models

Example

@ Data from french departments
@ Choice of the number of classes according to BIC criteria

BIC = —In(L) — kIn(n)

Number of classes 1 2 3 4 5
BIC -2412 -2390 -2479 -2505 -2458

Gaussian mixture model kmeans
E :
| 0 383
P % o Ty
E ~ 23 o E 3 ‘352‘%2‘1945% - .
° B 69
¥bos Fbog
P L X 0 4 e
Soft frontiers. Frontiers are hyperplans.
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Graphical models with latent variables When visible variables are discrete

Outline

e Graphical models with latent variables

@ When visible variables are discrete
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Graphical models with latent variables When visible variables are discrete

Graphes with discrete variables

@ As for continuous variables, a discrete Markovian network can include hidden edges.
@ Let us denote again X the hidden variables and X,, the observed ones.
@ The log-likelihood is given by

n
> ~log Pe(Xy = xiv)
i=1

3 (Iog > exp (Okxjxi — q’(9)))

i=1 X3 €X'y

)

@ The sum over x3; means that the sum is over all the possible realizations of the
hidden variables.

@ The gradient is given by

a0(©)
90y

= EvEo(XXk|Xy) — Eo(XjXk)
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Graphical models with latent variables When visible variables are discrete

Graph with discrete visible variables

@ The gradien of the log-likelihood is

9(0)

= EvEo (XX Xv) — Eo(XXk)
89/';(

@ The second term is an expectation given the model. It can by approximated by
simulation with a Gibbs sampler.

@ The first term is an empirical expectation conditionally to the visible edges.

XijXik ifj,ley
Eo(XiXk|Xv) = ¢ xjPa(Xk = 11Xy = Xiv) ifjeV,keH
P@(Xj=1,XkZ1|X\;:X/V) ifj,keH

@ And two separate runs of Gibbs sampling are required ; the first to estimate Eg (X;X)
by sampling from the model, and the second to estimate Eg (X Xk| Xy = xjv).

@ The learning task can have a very large computational costeven if the network is
quite small.
Indeed, expectations have to be computed at each iteration of the optimization
algortihm. And each expectation computation needs the convergence of a Gibbs
sampler...

@ For some graphes with a particular architecture, the algorithms can be improved.
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Graphical models with latent variables When visible variables are discrete

Boltzmann machines

@ The Restricted Boltzmann Machines are graphical models with a particular
architecture inspired from neural networks. The units are organized in 2 layers, one is
visible and the other one is hidden. Units belonging to the same layer are not
connected to each other.

cachées

visibles

@ This model is used (for instance, in deeplearning) to extract interesting features from
images.

@ Since the unit of a given layer are independent given the other variables, the Gibbs
sampler can be simplified.

@ Furthermore, it has been observed by Hinton (2006), that the Gibbs sampler does not
need to converge to the stationary distribution to give the right direction to the
optimization algorithm. His algorithm is called contrastive divergence.
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Graphical models with latent variables When visible variables are discrete

Boltzmann machines

@ Using contrastive divergence, it is possible to train an RBM to recognize hand-written
digits from the MNIST dataset (LeCun et al., 1998)

@ the RBM achieves an error rate of 1.9% on the test set without the two 500 units
layers and 1.25% with the two 500 units layers

@ The figure shows the nerwork architecture and some difficult examples which are
correctly classify.

V. Monbet
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Directed graph models
Outline

o Directed graph models
@ Bayesian networks
@ Example in biology
@ Hidden Markov models
@ Factor analysis
@ State space model
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Directed graph models Bayesian networks

Bayesian networks

@ Directed graph models are known as Bayesian networks or belief network.

p(X,- -, Xp) = Hp(lepaj)
I

where pa; denotes the parents of x;.
@ For the graph below,

p(xy, -, x7) = p(xq)p(x2)p(Xa)p(Xa] X1, X2, X3)P(Xs| X1, X3)P(X6| X4 )P(X7| X4, X5)

@ The learning task reduces to the estimation of the marginal probabilities and

conditional probabilities.

@

V. Monbet Graphical models 82/108



Directed graph models Bayesian networks

Bayesian networks, example

_p(C=1)_p(C=0)

p(C) 05 D5 cloudy
c | p(s=1) p(s=0) C | p(R=1) p(R=0)
¥’ rain g 08 02
1 08 0.1 1 0.2 08
pSIC) P(RIC)
wet grass
S R | p(W=0) p(W=1)
oo 10 00
PWIS.R) 1 g 01 08
01 01 08
11 0.01 099

@ The grass is wet can have 2 causes : rain or sprinkler.

@ For example, P(IW =T|S=T,R=F)=0.9 etdonc
PW=FS=T,R=F)=0.1.
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Directed graph models Bayesian networks

An other example

e " Asia Network’
- A trip to Asia @

: turbeculosis @
: smoking l / \\
Lung Cancer @

er ®
: Bronchitis \ /

: Turbeculosis/Lung Cancer @

e Given: X-rays, Dyspnea, patient went to Asia, patient smokes
e Wanted: posterior probability of Bronchitis

I
m@mrr n -

- X-ray results
— D: Dyspnea @

®
®
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Directed graph models Bayesian networks

Bayesian networks, example

P(C=1) p(C=0)

P(C) 05 05 cloudy
c | p(s=1) p(S=0) c | p(R=1) p(R=0)
0 05 05 sprinklev rain 0 08 02
1 09 01 / 1 02 08
p(SIC) P(RIC)
wet grass
S R | p(W=0) p(W=1)
00 10 00
PWIS.R) ¢ o 01 09
01 01 09
11 001 099

@ From the Bayes formula,
P(C,S,R, W) = P(W|C, S, T)P(R|C, S)P(S|C)P(C).

@ With the conditional dependencies properties, it simplifies to
P(C,S,R,W) = P(W|S, T)P(R|C)P(S|C)P(C).
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Directed graph models Bayesian networks

Bayesian networks, example

_P(C=1) p(C=0)

(© 05 05 £laudy
p(S=1) p(S=0) C | p(R=1) p(R=0)
0 05 05 sprinkler rain g 08 02
1 03 01 a 02 08
p(SIC) P(RIC)
wet grass
S R | p(W=0) p(W=1)
[] 1.0 0.0
POVIS.R) 1 o | 01 08
01 0.1 03
11 0.01 099

@ What is the most probable cause of wet grass ?
PS=1,W=1 >, P(C=c,S=1R=r,W=1)

P(S=1W=1)= PW=T) PW=1) =0.28/0.65
P(R=1|W=1) = P(i(};ﬂ)J Zc‘SP(CZCI;,(SV|/=:S’1?=1’W=1):0.46/0.65

@ Rain is more probable than sprinkler.
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Bayesian networks, example

_pC=1)_p(C=0)

p(C) 05 05 cloudy
C | p(S=1) p(S=0) C | p(R=1) p(R=0)
rain g 08 02
1 02 08
p(SIC) P(RIC)
wet grass
s p(W=0)
00 10 00
PWIS.R) 1 g 01 08
01 01 09
11 001 099

@ Conditional probabilities can be computed, even if only a part of the variables is
observed.

@ For instance, if "wet grass" and "rain" are observed

@ The posteriori probability of sprinkler on given wet grass and rain

P(S=1W=1,R=1)=0.19
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Bayesian networks, learning

@ In Bayesian network the structure of the network is usually known.
@ But some variables are hidden.

@ Parameters are estimated by maximum likelihood.

@ If some variables are hidden, EM algorithm is used.

@ Algorithme EM

Repeat until convergence

1. Compute the posterior probabilities of the hidden variables given the observed
ones and the paramter estimation obtain at the previous iteration.

2. Estimation of the parameters by maximum likelihood with each observation
weighted by its posterior probability in each group.

@ The properties of conditionnal dependancies usually allow to factorized the
optimization problem in smaller sub problems.
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Directed graph models in the framework of linear models

@ For multivariate Gaussian distribution, the Structural Equation Model (SEM) give a
common framework for directed and undirected (or bidirected) graph models.

@ Assume that the joint distribution of X = (Xj, - - ,Xp)T is multivariate Gaussian.
@ Each X; is a linear function of (X, - -, Xj_1, Xj;1,- - ,Xp)T and a stochastic noise
term ¢;

X=a+A X +e

where € ~ NV(0, Q).
o X ~N((1—A)Tay,(1-A)-TQl - A"
@ The graph associated to this model will contain

- the directed edge k — j when Ay; is required to be not zero,
- the bidirected edge k <> j when qy; is required to be not zero.

V. Monbet Graphical models 89/108



Directed graph models Example in biology

Outline

e Directed graph models

@ Example in biology

V. Monbet Graphical models




Directed graph models Example in biology

Proteine data

@ Following the work of Friedman et al. (2000), the expression level or the allele
frequency of each gene is associated with one node. In addition, we can include
additional nodes denoting other attributes that affect the system, such as
experimental conditions, temporal indicators, and exogenous cellular conditions.

@ As a result, we can model in a single, comprehensive BN both the biological
mechanisms we are interested in and the external conditions influencing them at the
same time.

@ BNs were, for instance, used to represent complex direct and indirect relationships
among multiple interacting molecules while accommodating biological noise.

@ Les us consider Sachs et al. (2005) protein-signalling data.

@ The data consist in the simultaneous measurements of 11 phosphorylated proteins
and phospholipids derived from thousands of individual primary immune system cells,
subjected to both general and specific molecular interventions.

@ We will consider only the 853 data manipulated with general interventions

> library(bnlearn)
> sachs <- read.table("sachs.data.txt", header = TRUE)
> head (sachs)
Raf Mek Plcg PIP2 PIP3 Erk Akt PKA PKC P38 Jnk

1 26.4 13.20 8.82 18.30 58.80 6.61 17.0 414 17.00 44.9 40.0
2 35.9 16.50 12.30 16.80 8.13 18.60 32.5 352 3.37 16.5 61.5
3 59.4 44.10 14.60 10.20 13.00 14.90 32.5 403 11.40 31.9 19.5
4 73.0 82.80 23.10 13.50 1.29 5.83 11.8 528 13.70 28.6 23.1
5 33.7 19.80 5.19 9.73 24.80 21.10 46.1 305 4.66 25.7 81.3
6 18.8 3.75 17.60 22.10 10.90 11.90 25.7 610 13.70 49.1 57.8
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Sachs’ data

@ The data consist in the simultaneous measurements of 11 phosphorylated proteins
and phospholipids derived from thousands of individual primary immune system cells,
subjected to both general and specific molecular interventions.

@ We will consider only the 853 data manipulated with general interventions

> library(bnlearn)
> sachs <- read.table("sachs.data.txt", header = TRUE)
> head(sachs)
Raf Mek Plcg PIP2 PIP3 Erk Akt PKA PKC P38 Jnk

26.4 13.20 8.82 18.30 58.80 6.61 17.0 414 17.00 44.9 40.

35.9 16.50 12.30 16.80 8.13 18.60 32.5 352 3.37 16.5 61.

59.4 44.10 14.60 10.20 13.00 14.90 32.5 403 11.40 31.9 19.

73.0 82.80 23.10 13.50 1.29 5.83 11.8 528 13.70 28.6 23.

33.7 19.80 5.19 9.73 24.80 21.10 46.1 305 4.66 25.7 81.

6 18.8 3.75 17.60 22.10 10.90 11.90 25.7 610 13.70 49.1 57.8

g W N
W= oo o

@ The data are continuous, as they represent the concentration of the molecules under
investigation.

P H
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Sachs’ data

Protein-signalling network from Sachs et al. (2005). Signalling pathways that are known
from literature but were not captured by the BN are shown with a dashed line.

@ Exercice — Rmarkdown
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Hidden Markov models

@ HMM are models for time series with regimes :
speech and writing recognition, dynamical systems,
meteorological time series, etc. Recall
Mixture model (e.g.
_ mixture of Gaussian)
@ Definition

{X;:} = {S1, Y1} € {S x Y} with {S;} hidden and discrete f
-P(S11So = 50, -+, St—1 =51, Y1 = -

Vi, Yt—1 — }’1—1) — P(St|sr—1 _ St—1) continuous Y
-P(Yt1So =50, , St =8, Y1 =y1,--, YVie1 =

Yi—1) = P(Yi|St = st)

State cee — Si_q — St — St+1 —
¥ + 2
Observation - - - Y1 Y: =

@ Parametrization of an HMM
- po(st]s:—1) transition probabilities
- po(y:|st) emission probabilities
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Learning and inference

@ Likelihood
pe(Yi=y1,--,Yr=yr) = - Po(S0)N{_1Po(St|St—1)Po(yi|st)dsodsy...dsT
= ntT:1/spe(}’t\st)ﬁe(st\}/h“' » Yt—1)0st
@ Prediction : compute pg(St|y1, -, Yi—1)

Po(Stly1,- - s Yi—1) = /Spa(sr|5t71)P9(5171\.Vh“' s Yi—1)dst_4

@ Filtering : compute py(Stly1, -, ¥t)

Po(Stly1,- -+ yt) < po(yelst)Pe(Stlyrs -+ s Y1)

@ Smoothing : compute po(St|y1, -+ , Ve, , Y1)

Po(stlys,- -+, yT)

Po(St1lst)
= po(silyr, -, ¥ /—p Ste1lyi, -+, y7)ds,
0 (Stly1 t) s Po(sa Iy - 70 o (St11¥1 T7)dSt 11
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HMM with finite state space

@ Example of simulation
Y, = m(S) 4 (SO W,

o W, ~ iidN(0,1)
1 _ @ _ ) _ @ _ _( 0.95 0.05
omN=1,m®=26M=02, 0 70.5,of< o1 0.9

3.

Y oY)

0 AN

P(S

@ For an HMM, forward-backward algorithm allow to compute the log-likelihood and
solve the filtering and smoothing problems.

@ For likelihood maximization, EM algortihms or gradient methods can to be
implemented.

95/108
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Example : modeling of wind time series

@ Motivations : Meteo, Pollution, Fatigue of structures, Covariate (waves)
@ Data (Ouessant, 44 ans, At = 6 h, january month)

@ Regimes are observed, but we remark that the time seriess are smoother tahn the
ones of HMM.

ezw\m

10+

U ms™

0 5 10 15 20 25 30
Time (day)
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Example : modeling of wind time series

@ [t suggests a graph with connected observations.

State e S[_1 — SZ‘ — SY—H —
s 4 4
Observation -+ — Y1 — Yy — Y4 —

@ [t leads to a Markov switching autoregressive model e.g. in each regime the time
series are described by an auto-regressive process

Yi= Oéés) + ocﬁs) Yioq + ¢

(s)

o ags), ags) for each regime s and the transition matrix of the

@ Parameters are «
Markov chain.

@ Estimation used an EM algorithm.
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Example : modeling of wind time series

@ The obtain model is interpretable (rresults for january in Ouessant)
v, — 146 4+0.79Y;_1 +1.37¢;  (St_1=1)
P~ 2244077Y,_1 +24¢  (Si_1 =2)

o Regime 1 : variability is lower , more stable regime, anticyclonic conditions
e Regime 2 :variability is higher, cyclonic conditions

" . .| 0.98 0.02 . T 0.40
@ Transition matrix : [ 0.03 097 ],statlonary distribution [ 0.60 ]

@ Smoothing probabilities P[St|y1, ..., yr] for Jan. 2000

| e

10 15 20 25
20
10 «/\/\J\W\WM
0 . . . . . .
0 5 10 15 20 25 30
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Directed graph models Factor analysis

Generalities

@ The factor analysis is a simple latent variable model. It can be view as an
unsupervized linear regression model.

@ The latent variable is assumed to lie in a lower-dimensional linear subspace of the
space of the observed variables.

@ The model is similar to the one of mixture except that the hidden variables are now
continuous (usually assumed to have Gaussian distribution).

@ Multivariate Gaussian distribution (recall)

X X
LT = I 1 Zo ))
p(x17x2 K, ) N (( Lo ) ) ( 212 222

then
p(x1) = N (p1, Z11)
and
p(x1[x2) = N (my2, Vq}2)
with

Mo = p1 + X5 (X2 — p22), Vi = E11 — E12X,5, o
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Factor analysis model

@ The observed variables Y follow a Gaussian distribution conditionally to the hidden
variables X.
p(x) = N(0,1)

p(yx) = N(p + Ax, ¥)

N is the loading matrix.
@ The second probability correspond to the model

y=p+AX+e e~N(0,WV)

@ V is a diagonal covariance matrix. It means that the components of y are
independent conditionally to x.

@ |tis easy to deduce the expression of the parameters of - the distribution of the
complete data
- the marginal distributions
- the conditional distributions .

@ Learning is performed by an EM algorithm.

V. Monbet Graphical models 100/108



Directed graph models Factor analysis

EM algorithm, Factor analysis model

o For the E-step, one need to compute Q;(x()) = p(x®|(y(D); u, A, W)
This probability is Gaussian with

Mypy = px + Ty X, (Y1), Vyy = Taxe — Ty Xy Ty

@ For the M-step, we need to maximize the expectation of the log-likelihood of the
complete data

€, A W) Z <0, [10g Py X 1, A, W) +log (p(x) — Qi(xM)) |

with respect to i, A and W.
@ Only the first term depends on A. Gradient of this term equals to zero leads to

n n 4
h= (Z(y(f) B “)Ex(")NQ,' [x(i)T]> (Z Ex(i)Noi [X(’)x(’)r]>
i=1

i=1

One recognize a form close to the estimation of the parameters of a linear model.
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EM algorithm, Factor analysis model (continuing)

@ The expectations
Exinq, [x(i)] = iy gy = ATAT +9) 7 (yD — )
Ny ()T T T —1
Exiq, [X(I)x(:) } = 11y gty + 1 = AT(AMT +0)7TA

In practice the estimation of the parameters obtained at the previous iterations of the
EM algorithms are used to update A.

@ The estimation of W is the diagonal of ® where

10 N ; T AT T T
= EZV(/)V(/) =Y 1y AT = iy y 0 Y+ Nty gty ) + Exy 0 A
i=1

@ Estimating p is trivial

f=

S|=

n
Sy
i=1
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State space model

@ The state space model (SSM) is a chain of factor models.
@ It has the same structure as the HMM, but the hidden variables are now continuous.

State e = X = Xe = X —
+ \ +
Observation - - - Yi_q Y: Yii

@ A standard form for SSM is

Xo ~ p(Xo)
X =f(X_1)+m  (hidden)
Yi = h(X;) + e (observed)

@ In the linear (Gaussian) case, it reduces to

Xo ~ N(po, Qo)
Xe=MX; 1 +m
Yi = HX; + ¢

with n; and ¢; centered Gaussian noises independant from the intial condition, with
variances Q and R. R is inversible.
@ Parametrization of an HMM
- po(X¢|X¢_1) transition probabilities : X;| X;_1 = x;_1 ~ N (Mx;_1, Q)
- Po(xt|X;) emission probabilities : Y¢|X; = x; ~ N (Hx:, R)
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Inference in SSM

@ Prediction : compute pg (X¢|y1, - 5 Yi—1)

Po(Xtly1,- - Yi—1) = /XPG(Xt‘XI—1)p0(Xt—1|y17'" 2 Yi—1)dst 1

@ Filtering : compute pg(Xt|y1, - , Vi)

Po(Xtly1,- -+, yt) o< po(yelx)Po (Xely1, -+ s Yi—1)

@ Smoothing : compute po(Xt|y1, -+, Y, , YT)

Po(Xely1,- -+, y7)

Po(Xt41]5t)
= Po(Xt|y1, -, ¥ / Po (X Vi, ) dx,
o (Xt|y1 t) s Do Ol - 1 70) 0 (X111 )Xt 11
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Kalman filter

@ Filtering problem : estimation of pg(xX¢|y1,- -+, ¥t)

@ In the linear (Gaussian) case, it reduces to the computation of
Xt = X = E[Xi| Yi.e = yr.] and Py = Var(Xi| Y1 = y1)

@ The Kalman filter is the Best Linear Unbiaises Estimator (BLUE) of X; given a
sequence of observations {y1,--- , ¥t}

Xt = (I — KH)Xyj¢—1 + Kyt with the predicted state Xj;_1 = Fx;_1|;—1

@ We remark that

Var(xy) = Pyt = XXy = Pye—1 — 2Py HT KT + K(R + HPy_1HT)KT

and the Kalman gain is defined by

K* =arg min (P,“_1 —2Py_1HTKT + K(R+ HPy_1 HT)K’T)
KeRrdxm

which leads to
K* = Pt|171HT(R+ "/F’t\rqHTr1

@ The filtering covariance P, is also computed by the Kalman filter.
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Filtre de Kalman

Filtre de Kalman

@ Initialisation

Xo ~ N(0, Qy) Remark : the Kalman gain is a variance
@ Prediction "rapport", which measures the

Xtjt—1 = FXp_1jt—1 confidence according to the state

Pyt—1=FP_q1F +Q approximations (prediction of the model
@ Correction and observation).

Ki = Pyi—1HT (HPy;_1HT + R)~"
Xtjt = Xtji—1 + Ke(yt — Hxyje—1)
Pyt = (I = KeH) Pyt

Ref : Kalman (1966)
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Kalman filter, example

@ A example is described in ...
@ The robot has a state x = (p, u)

@ The robot also has a GPS sensor, which is
accurate to about 10 meters, which is SN S
good, but it needs to know its location more
precisely than 10 meters.

. . [

@ We might also know something about how @f}?
the robot moves : It knows the commands ~ .
sent to the wheel motors, and its knows \n .0

that if it's headed in one direction and
nothing interferes, at the next instant it will
likely be further along that same direction.

@ But of course it doesn’t know everything
about its motion : It might be buffeted by

the wind, the wheels might slip a little bit, or @ Position sensor is

roll over bumpy terrain ; so the amount the combined to the

wheels have turned might not exactly stateupdate to give and
represent how far the robot has actually estimation of the position
traveled, and the prediction won't be and the velocity of the
perfect. robot.
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Some concluding remarks
Conluding remarks

Probability theory povides the glue whereby the parts are combined, ensuring that
the system as a whole consistent, and providing ways to interface models to data.
The graph theoretic side of graphical models provides both an intuitively appealing
interface by which humans can model highly-interacting sets of variables as well as a
data structure that lends itself naturally to the design of efficient general-purpose
algorithms.

Many of the classical multivariate probabilistic systems studied in fields such as
statistics, systems engineering, information theory, pattern recognition and statistical
mechanics are special cases of the general graphical model formalism.

The graphical model framework provides a way to view all of these systems as
instances of a common underlying formalism.

If you want to go further : lectures of Eric Xing
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