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Abstract

We provide quantitative bounds for the long time behavior of a class of Piecewise
Deterministic Markov Processes with state space Rd ×E where E is a finite set. The
continuous component evolves according to a smooth vector field that switches at the
jump times of the discrete coordinate. The jump rates may depend on the whole
position of the process. Under regularity assumptions on the jump rates and stability
conditions for the vector fields we provide explicit exponential upper bounds for the
convergence to equilibrium in terms of Wasserstein distances.
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1 Introduction and main results
Piecewise deterministic Markov processes (PDMPs in short) are intensively used in many
applied areas (molecular biology [31], storage modelling [7], Internet traffic [19, 22, 23],
neuronal activity [29, 8], populations growth models [27]...). Roughly speaking, a Markov
process is a PDMP if its randomness is only given by the jump mechanism: in particular,
it admits no diffusive dynamics. This huge class of processes has been introduced by Davis
(see [14, 15]) in a general framework. Several works [11, 18, 12] deal with their long time
behavior (existence of an invariant probability measure, Harris recurrence, exponential
ergodicity...). In particular, it is shown in [13] that the behavior of a general PDMP
can be related to the one of the discrete time Markov chain made of the positions at the
jump times of the process and of an additional independent Poisson process. Nevertheless,
this general approach does not seem to provide quantitative bounds for the convergence
to equilibrium. Recent papers have tried to establish such estimates for some specific
PDMPs (see [10, 20, 4]) or continuous time Markov chains (see [9]).

In the present paper, we investigate the long time behavior of an interesting subclass
of PDMPs that plays a role in molecular biology (see [31, 8]). We consider a PDMP on
Rd×E where E is a finite set. The first coordinate moves continuously on Rd according to
a smooth vector field that depends on the second coordinate whereas the second coordinate
jumps with a rate that may depend on the first one. This class of Markov processes is
reminiscent of the so-called iterated random functions in the discrete time setting (see [17]
for a good review of this topic).

Let E be a finite set, (a(·, i, j))i,j∈E2 be n2 nonnegative continuous functions on Rd,
and, for any i ∈ E, F i : Rd 7→ Rd be a smooth vector field such that the ordinary
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differential equation {
x′t = F i(xt), t > 0;
x0 = x,

has a unique and global solution t 7→ ϕit(x) on [0,∞) for any initial condition x ∈ Rd. Let
us consider the Markov process

(Zt)t>0 = ((Xt, It))t>0 on Rd × E

defined by its extended generator L as follows:

Lf(x, i) =
〈
F i(x),∇xf(x, i)

〉
+
∑
j∈E

a(x, i, j)(f(x, j)− f(x, i)) (1)

for any smooth function f : Rd ×E → R (see [15] for full details on the domain of L). A
simple case occurs when a(x, i, j) can be written as λ(x, i)P (i, j) for (λ(·, i))i∈E a set of
nonnegative continuous functions, and P an irreducible stochastic matrix, in which case:

Lf(x, i) =
〈
F i(x),∇xf(x, i)

〉
+ λ(x, i)

∑
j∈E

P (i, j)(f(x, j)− f(x, i)) (2)

Let us describe the dynamics of this process in this simple case, the general case being
similar. Assume that (X0, I0) = (x, i) ∈ Rd × E. Before the first jump time T1 of I, the
first component X is driven by the vector field F i and then Xt = ϕit(x). The time T1 can
be defined by:

T1 = inf
{
t > 0 :

∫ t

0
λ(Xs, i) ds > E1

}
,

where E1 is an exponential random variable with parameter 1. Since the paths of X are
deterministic between the jump times of I, the randomness of T1 comes from the one of
E1 and

T1 = inf
{
t > 0 :

∫ t

0
λ(ϕis(x), i) ds > E1

}
.

Remark 1.1. Notice that P(x,i)(T1 = +∞) > 0 if and only if∫ +∞

0
λ(ϕis(x), i) ds < +∞.

If we assume that λ := inf(x,i) λ(x, i) > 0 then the process I jumps infinitely often.

At time T1, the second coordinate I performs a jump with the law P (i, ·) and the
vector field that drives the evolution of X is switched. . .

Remark 1.2. In general, I is not a Markov process on its own since its jump rates depend
on X. In this paper, we will study both the simple — Markov — case and the general case.

The main goal of the present work is to provide quantitative bounds for the long time
behavior of ergodic processes driven by (2) thanks to the construction of explicit couplings.
For the first component X of the process, we will provide quantitative bounds in terms of
the Wasserstein coupling distance rather than total variation one. Recall that for every
p > 1, the Wasserstein distanceWp between two laws µ and µ̃ on Rd with finite pth moment
is defined by

Wp(µ, µ̃) =
(

inf
Π

∫
Rd×Rd

|x− x̃|p Π(dx, dx̃)
)1/p

(3)
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where the infimum runs over all the probability measures on Rd × Rd with marginals µ
and µ̃ (such measures are called couplings of µ and µ̃). It is well known that for any p > 1,
the convergence in Wp Wasserstein distance is equivalent to weak convergence together
with convergence of all moments up to order p. However, two probability measures can
be both very close in the Wp sense and singular. Choose for example µ = δ0 and µ̃ = δε.
In this case,

Wp(µ, µ̃) = ε and ‖µ− µ̃‖TV = 1.

See e.g. [30, 34] for further details and properties for Wasserstein distances.
Estimates for the Wasserstein distances do not require (nor provide) any information

about the support of the invariant measure (which is the set of the recurrent points). This
set may be difficult to determine and if the initial distribution of X is not supported by
this set, the law of Xt and the invariant measure may be singular. To illustrate this fact,
one can consider the following trivial example:

E = {0, 1}, λ(x, i) = 1, F i(x) = −(x− ia) with a = (1, 0).

The process (X, I) is ergodic and the first marginal µ of its invariant measure is supported
by the segment {ρa ; ρ ∈ [0, 1]} (it is shown in [7] that µ is a Beta distribution). Despite
its extreme simplicity, this process does not in general converge in total variation: if
X0 = (0, 1), the law of Xt is singular with the invariant measure for any t > 0, so
‖L(Xt)− µ‖TV is always equal to 1. On the contrary,Wp(L(Xt), µ) goes to 0 exponentially
fast (see below).

In [2], the authors provide Hörmander-like conditions on the vectors fields (F i)i∈E
that ensure, for constant jump rate (λi)i∈E , the uniqueness and the absolute continuity
of the invariant measure provided that it exists. The main drawback of this result is that
these regularity assumptions have to be checked at a point that can be reached starting
from any other point. It can be hard to determine the set of such points and it can
be empty. Several examples are studied in [6] that underline this fact. In particular,
even if the process evolves in a compact set, the process (X, I) may admit one or several
recurrent classes (and invariant measures) depending only on the values of jump rates
(λi)i∈E . Moreover, even when convergence results can be obtained (as in [6]), the rates of
convergence are given by compactness arguments and are not explicit.

We are able to get explicit rates of convergence in two situations. Firstly, if the
jump rates of I does not depend on X, then the vector fields (F i)i∈E will be assumed to
satisfy an averaged exponential stability. Secondly, if the jump rates of I are assumed to
be Lipschitz functions of X, then the vector fields (F i)i∈E will be assumed to satisfy a
uniform exponential stability.

In the sequel, µt stands for the first marginal law of Zt = (Xt, It).

1.1 Constant jump rates

If the jump rates of I do not depend on X, then (It)t>0 is a Markov process on the finite
space E and (Xs)06s6t is a deterministic function of (Is)06s6t. Many results are available
both in the discrete time setting (see [26, 33, 21, 25, 1]) and in the continuous time setting
(see [24, 16, 3]). Morevover [5] provides a simple example of surprising phase transition
for a switching of two exponentially stable flows that can be explosive (when the jump
rates are sufficiently large).
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Assumption 1.3. Assume that the jump rates (a(·, i, j))i∈E do not depend on x and that
I is an irreducible Markov process on E. Let us denote by ν its invariant probability
measure.

Remark 1.4. If a(·, i, j) does not depend on x, we can always write a(i, j) = λ(i)P (i, j)
with P (·, ·) a Markov transition matrix.

Assumption 1.5. Assume that for any i ∈ E, there exists α(i) ∈ R such that,〈
x− x̃, F i(x)− F i(x̃)

〉
6 −α(i)|x− x̃|2, x, x̃ ∈ Rd,

and that ∑
i∈E

α(i)ν(i) > 0

where ν is defined in Assumption 1.3.

Firstly, one can establish that the process X is bounded in some Lp space.

Lemma 1.6. Under Assumptions 1.3 and 1.5, there exists κ > 0 such that, for any q < κ,
the function t 7→ E(|Xt|q) is bounded as soon as E(|X0|q) is finite. More precisely, there
exists M(q,m) such that

sup
t>0

E(|Xt|q) 6M(q,m),

as soon as E(|X0|q) 6 m.

Let us now turn to the long time behavior estimate.

Theorem 1.7. Assume that Assumptions 1.3 and 1.5 hold. Let p < q < κ and denote by
s the conjugate of q: q−1 + s−1 = 1. Assume that µ0 and µ̃0 admit a finite qth moment
smaller than m. Then,

Wp(µt, µ̃t) 6 2p+1M(q,m)p/qC2(p) exp
(
− ηp

1 + sηp/ρ
t

)
,

where ρ and ηp are positive constants depending only on the Markov chain I.

The constants ρ, ηp and C2(p) are given below in equations (6), (7) and (8).

Corollary 1.8. Under Assumptions 1.3 and 1.5, the process Z admits a unique invariant
measure µ and

Wp(µt, µ) 6 2p+1M(q,m)p/qC2(p) exp
(
− ηp

1 + sηp/ρ
t

)
.

1.2 Non constant jump rates

Let us now turn to the case when the jump rates of I depend on X. We will assume that
the a(x, i, j) are smooth in the x variable and that each vector field F i has a unique stable
point.

Assumption 1.9. There exist a > 0 and κ > 0 such that, for any x, x̃ ∈ Rd and i, j ∈ E,

a(x, i, j) > a and
∑
j∈E
|a(x, i, j)− a(x̃, i, j)| 6 κ|x− x̃|,
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The lower bound condition insures that the second — discrete — coordinate of Z
changes often enough (so that the second coordinates of two independent copies of Z
coincide sufficiently often). This is a rather strong condition that can be relaxed in certain
situations. If for example if a(x, i, j) = λ(x, i)Pij as in (2), Lipschitz continuous λ bounded
from below and an aperiodic P are sufficient to get a similar rate of convergence.

Assumption 1.10. Assume that there exists α > 0 such that,〈
x− x̃, F i(x)− F i(x̃)

〉
6 −α|x− x̃|2, x, x̃ ∈ Rd, i ∈ E. (4)

Assumption 1.10 ensures that, for any i ∈ E,∣∣∣ϕit(x)− ϕit(x̃)
∣∣∣ 6 e−αt|x− x̃|, x, x̃ ∈ Rd.

As a consequence, the vector fields F i has exactly one critical point σ(i) ∈ Rd. Moreover
it is exponentially stable since, for any x ∈ Rd,∣∣∣ϕit(x)− σ(i)

∣∣∣ 6 e−αt|x− σ(i)|.

In particular, X cannot escape from a sufficiently large ball (this implies that the (contin-
uous) functions a(·, i, j) are also bounded from above along the trajectories of X). More
precisely, the following estimate holds.

Lemma 1.11. Under Assumptions 1.9 and 1.10, the process Z cannot escape from the
compact set B̄(0, r)×E where B̄(0, r) is the (closed) ball centered in 0 ∈ Rd with radius r
given by

r = maxi∈E
∣∣F i(0)

∣∣
α

. (5)

Moreover, if |X0| > r then(
|Xt|2 − r2

)+
6 e−αt

(
|X0|2 − r2

)+
.

In particular the support of any invariant measure is included in B̄(0, r).

Let us now state our main result which establishes the quantitative exponential ergod-
icity of the process Z under Assumptions 1.9 and 1.10.

Theorem 1.12. Assume that Assumptions 1.9 and 1.10 hold and that the supports of µ0
and µ̃0 are included in the ball B̄(0, r) where r is given by (5). Then there exists positive
constants c and γ such that

W1(µt, µ̃t) 6 2r(1 + ct) exp
(
− α

1 + α/γ
t

)
where α is given by (4).

The constants obtained in the proof are the following

γ = (α+ b)−
√

(α+ b)2 − 4bpα
2 and c = α

α+ γ

epαb√
(α+ b)2 − 4bpα

,

with p = e−2rκ/α and e = exp(1) and where b depends on the coalescence time of two
independent processes defined on E as the second coordinates of independent copies of Z.
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To obtain this result we couple two copies of our process and compare their distance to a
real-valued process that can pass instantly (less and less often) from small to large values
(2r). This may seem rough, but in the general case, nothing much better can be done
: if one of the flow is very strongly attractive, two trajectories may indeed very rapidly
diverge. For particular examples, or under additional assumptions on the flows, it must
be possible to get better rates.

Corollary 1.13. Under Assumptions 1.9 and 1.10, the process Z admits a unique invari-
ant measure µ and

W1(µt, µ) 6 2r(1 + ct) exp
(
− α

1 + α/γ
t

)
.

Section 2 is dedicated to the proof of Theorem 1.7. Theorem 1.12 is established in
Section 3.

2 Constant jump rates
The aim of this section is to prove Theorem 1.7. Assumption 1.3 ensures that (It)t>0 is an
irreducible Markov process on the finite space E. Its generator A is the matrix defined by
A(i, i) = −λ(i) and A(i, j) = λ(i)P (i, j) for i 6= j. Let us denote by ν its unique invariant
probability measure. The study of the long time behavior of I is classical: since I takes its
values in a finite set, it is quite simple to construct a coalescent coupling of two processes
starting from different points.

Lemma 2.1 ([32]). If Assumption 1.3 holds then there exists ρ > 0 such that for any
i, j ∈ E,

P(T > t|I0 = i, Ĩ0 = j) 6 e−ρt (6)
where (It)t>0 and (Ĩt)t>0 are two independent Markov processes with infinitesimal genera-
tor A starting respectively at i and j and T = inf

{
t > 0 : It = Ĩt

}
is the first intersection

time.

Remark 2.2. If E = {1, 2}, then the first intersection time is distributed as an exponential
random variable with parameter λ(1) + λ(2) and Equation (6) holds with ρ = λ(1) + λ(2).

The proof of Theorem 1.7 is made of two steps. Firstly we couple two processes starting
respectively from (x, i) and (x̃, i) to get a simple estimate as time goes to infinity. Then
we use this estimate and Lemma 2.1 to manage the general case.

2.1 Moments estimates

In this section we prove Lemma 1.6 and get an Lp estimate for |Xt|. For any p > 2 and
ε > 0,

d

dt
|Xt|p = p|Xt|p−2

〈
Xt, F

It(Xt)
〉

= p|Xt|p−2
〈
Xt, F

It(Xt)− F It(0
〉

+ p|Xt|p−2
〈
Xt, F

It(0)
〉

6 −(pα(It)− ε)|Xt|p + C(p, ε).

Thanks to Gronwall’s Lemma, we get that

E(|Xt|p) 6 C(p, ε)
∫ t

0
E
(
e−
∫ t
s
(pα(Iu)−ε) du

)
ds+ E(|X0|p)E

(
e−
∫ t

0(pα(Iu)−ε) du
)
.
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Remark 2.3. A similar estimate can be obtained for p > 1 using a regularization of the
application x 7→ |x|p.

The right hand side depends only on E(|X0|p) and (Is)06s6t. Thus, it is sufficient to
investigate the behavior of e(p, t) defined for any t > 0 by

e(p, t) = max
i∈E

Ei
(

exp
(
−
∫ t

0
pα(Iu) du

))
.

This study has been already performed in [3]. Let us state the precise result. We denote
by Ap the matrix A−pB where A is the infinitesimal generator of I and B is the diagonal
matrix with diagonal (α(1), . . . , α(n)) and associate to Ap the quantity

ηp := − max
γ∈Spec(Ap)

Re γ. (7)

The long time behavior of e(p, t) is characterised by ηp as follows. For any p > 0, there
exist 0 < C1(p) < 1 < C2(p) < +∞ such that, for any any t > 0,

C1(p)e−ηpt 6 e(p, t) 6 C2(p)e−ηpt. (8)

Moreover the following dichotomy holds:

• if α > 0, then ηp > 0 for all p > 0,

• if α < 0, there is κ ∈ (0,min{Aii/α(i) : α(i) < 0}) such that ηp > 0 for p < κ and
ηp < 0 for p > κ.

See [3] for further details.

Corollary 2.4. If p < κ then t 7→ E(|Xt|p) is bounded as soon as E(|X0|p) is finite.

2.2 Convergence rate

Let us now get the upper bound for the Wasserstein distance Wp for some p < κ. Assume
firstly that the initial law are two Dirac masses at (x, i) and (x̃, i). It is easy to construct
a good coupling of the two processes (X, I) and (X̃, Ĩ): since the jump rates of I do not
depend on X, one can choose I and Ĩ equal! As a consequence, for any p > 2,

d

dt
|Xt − X̃t|p = p|Xt − X̃t|p−2

〈
Xt − X̃t, F

It(Xt)− F It(X̃t)
〉

6 −pα(It)|Xt − X̃t|p.

As a consequence,

E
(
|Xt − X̃t|p

)
6 Ei

(
exp

(
−p

∫ t

0
α(Is) ds

))
|x− x̃|p

6 e−ηpt|x− x̃|p.

Let us now turn to a general initial condition. Choose (x, i) and (x̃, j) in Rd × E
and consider the following coupling: the two processes evolve independently until the
intersection time T of the second coordinates. Then, I and Ĩ are chosen to be equal for
ever. Now fix t > 0 and β ∈ (0, 1) and decompose:

E
(
|Xt − X̃t|p

)
= E

(
|Xt − X̃t|p1{T>βt}

)
+ E

(
|Xt − X̃t|p1{T6βt}

)
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Choose q ∈ (p, κ) and define r = q/p and s as the conjugate of r. The Hölder inequality
ensures that

E
(
|Xt − X̃t|p1{T>βt}

)
6 E

(
|Xt − X̃t|q

)p/q
P(T > βt)1/s

6 2pM(q,m)p/qe−(βρ/s)t.

Moreover,

E
(
|Xt − X̃t|p1{T6βt}

)
= E

(
|XT − X̃T |pEIT

(
exp

(
−p

∫ t

T
α(Is) ds

))
1{T6βt}

)
6 2pM(p,m)C2(p)e−ηp(1−β)t.

At last, one has to optimize over β ∈ (0, 1). With

β = ηp
ηp + ρ/s

,

one has
E
(
|Xt − X̃t|p

)
6 2p+1M(q,m)p/qC2(p) exp

(
− ρ/s

ηp + ρ/s
ηpt

)
.

This concludes the proof of Theorem 1.7.

3 Non constant jump rates
Let us now turn to the proof of Theorem 1.12. In this section we do not assume that the
jump rates depend only on the discrete component. Thus, the coupling is more subtle
since once I and Ĩ are equal, they can go apart with positive probability. The main idea is
the following. If I and Ĩ are equal, the distance between X and X̃ decreases exponentially
fast and then it should be more and more easier to make the processes I and Ĩ jump
simultaneously (since the jump rates are Lipschitz functions of X). This idea has been
used in a different framework in [10, 4].

This section is organized as follows. Firstly we prove Lemma 1.11 that ensures that
the process X cannot escape from a sufficiently large ball. In particular, the support of
the invariant law of X is included in this ball. Then we construct the coupling of two
processes (X, I) and (X̃, Ĩ) driven by the same infinitesimal generator (2) with different
initial condition. At last we compare the distance between X and X̃ to an companion
process that goes to 0 exponentially fast.

Proof of Lemma 1.11. Setting x̃ = 0 in (4) ensures that, for ε ∈ (0, α),〈
F i(x), x

〉
6 −α|x|2 +

〈
F i(0), x

〉
6 −(α− ε)|x|2 +M/(4ε),

if M = maxi∈E
∣∣F i(0)

∣∣2. In other words,

|Xt|2 − |Xs|2 =
∫ t

s
2
〈
F Iu(Xu), Xu

〉
du 6 −2(α− ε)

∫ t

s
|Xu|2 du+ M

2ε (t− s).

As a consequence,

|Xt|2 6
M

4ε(α− ε)(1− e−2(α−ε)t) + |X0|2e−2(α−ε)t.
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Choosing ε = α/2 ensures that(
|Xt|2 −

M

α2

)+
6 e−αt

(
|X0|2 −

M

α2

)+
.

In particular, X cannot escape from the centered closed ball with radius r =
√
M/α.

3.1 The coupling

Let us construct a Markov process on (Rd × E)2 with marginals driven by (2) starting
respectively from (x, i) and (x̃, j). This is done via its infinitesimal generator L which is
defined as follows:

• if i 6= j

Lf(x, i, x̃, j) =
〈
F i(x),∇xf(x, i, x̃, j)

〉
+
〈
F j(x̃),∇x̃f(x, i, x̃, j)

〉
+
∑
i′∈E

a(x, i, i′)(f(x, i′, x̃, j)− f(x, i, x̃, j))

+
∑
j′∈E

a(x̃, j, j′)(f(x, y, x̃, j′)− f(x, y, x̃, j)).

• if i = j:

Lf(x, i, x̃, j) =
〈
F i(x),∇xf(x, i, x̃, i)

〉
+
〈
F i(x̃),∇x̃f(x, i, x̃, i)

〉
+
∑
i′∈E

(a(x, i, i′) ∧ a(x̃, i, i′))(f(x, i′, x̃, i′)− f(x, i, x̃, i))

+
∑
i′∈E

(a(x, i, i′)− a(x̃, i, i′))+(f(x, i′, x̃, i)− f(x, i, x̃, i))

+
∑
i′∈E

(a(x, i, i′)− a(x̃, i, i′))−(f(x, i, x̃, i′)− f(x, i, x̃, i)).

Notice that if f depends only on (x, i) or on (x̃, j), then Lf = Af . Let us explain how
this coupling works. When I and Ĩ are different, the two processes (X, I) and (X̃, Ĩ)
evolve independently. If I = Ĩ then two jump processes are in competition: a sin-
gle jump vs two simultaneous jumps. The rate of arrival of a single jump is given by∑
i′∈E |a(x, i, i′)− a(x̃, i, i′)|. It is bounded above by κ|x− x̃|. The rate of arrival of a

simultaneous jump is given by
∑
i′∈E(a(x, i, i′) ∧ a(x̃, i, i′)).

Assume firstly that X0 and X̃0 belong to the ball B̄(0, r) where r is given by (5). Let
us define Dt as the distance between Xt and X̃t for any t > 0. The process (Dt)t>0 is
not Markovian. Nevertheless, as long as I = Ĩ, Dt decreases with a rate which is greater
than α. If it is no longer the case, then Dt can increase. Nevertheless it is still smaller
than d = 2r. After the coalescent time Tc of two independent independent copies of I, D
decreases once again. There exists b > 0 such that Tc is (stochastically) smaller than E(b)
(for example, if E = {0, 1}, then Tc is equal to the minimum of the jump times of the
two independent processes which are both stochastically smaller than a random variable
of law E(a) and Tc is stochastically smaller than E(2a)). Then E(Dt) 6 E(Ut) where the
Markov process (Ut)t>0 on [0, d] ∪ {d+ ε} is driven by the infinitesimal generator

Gf(x) =
{
−αxf ′(x) + κx(f(d+ ε)− f(x)) if x ∈ [0, d],
b(f(d)− f(d+ ε)) if x = d+ ε.
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3.2 The companion process

Theorem 3.1. For any t > 0,

E(Ut|U0 = d) 6
(
d+ (d+ ε)

(
pαbe√

(α+ b)2 − 4pαb

)
αt

α+ γ

)
exp

(
− 1

1 + α/γ
αt

)
(9)

where

p = e−dκ/α and γ = (α+ b)−
√

(α+ b)2 − 4pαb
2 = (α+ b)−

√
(α− b)2 + 4(1− p)αb

2 .

Remark 3.2. If α goes to ∞, then γ goes to d whereas γ ∼ pα/b if b goes to ∞.

Proof. Starting from d + ε, the process U jumps after a random time with law E(b) to d
and then goes to zero exponentially fast until it (possibly) goes back to d + ε. The first
jump time T starting from d can be constructed as follows: let E be a random variable
with law E(1). Then

T
L=

−
1
α

log
(

1− αE

dκ

)
if E <

dκ

α
,

+∞ otherwise.

Indeed, conditionally on {U0 = d},∫ t

0
λ(Vs)ds =

∫ t

0
dκe−αs ds = dκ

α
(1− e−αt).

In other words, the cumulative distribution function FT of T is such that, for any t > 0,

1− FT (t) = P(T > t) = exp
(
−dκ
α

(1− e−αt)
)
.

Let us define p = e−dκ/α. The law of T is the mixture with respective weights p and 1− p
of a Dirac mass at +∞ and a probability measure on R with density

f : t 7→ f(t) = dκ

1− pe
−αte−

dκ
α

(1−e−αt)1(0,+∞)(t) (10)

and cumulative distribution function

F : t 7→ F (t) =
(

1− e−
dκ
α

(1−e−αt)

1− e−
dκ
α

)
1(0,+∞)(t).

Starting at d, U will return to d with probability 1 − p. The Markov property ensures
that the number N of returns of U to 1 is a random variable with geometric law with
parameter p. The length of a finite loop from d to d can be written as the sum S + E
where the law of S has the density function f given in (10), the law of E is the exponential
measure with parameter b and S and E are independent.

Lemma 3.3. The variable S is stochastically smaller than an exponential random variable
with parameter α i.e. for any t > 0, F (t) > Fα(t) where Fα(t) = (1− e−αt)1{t>0}.

Proof. For any t > 0,

1− F (t) = e
dκ
α
e−αt − 1
e
dκ
α − 1

6 e−αt = 1− Fα(t).

This ensures the stochastic bound.

10



As a consequence, the Laplace transform LS of S with density f is smaller than the
one of an exponential variable with parameter α: for any s < α,

LS(s) 6 α

α− s
.

If Le is the Laplace transform of S + E, then, for any s < α ∧ b, we have

Le(s) 6
α

α− s
b

b− s
.

Let us denote by H the last hitting time of 1 i.e. the last jump time of X and by L its
Laplace transform. Let us introduce N ∼ G(p), (Si)i>1 with density f and (Ei)i>1 with
law E(b). All the random variables are assumed to be independent. Then

H
L=

N∑
i=1

(Si + Ei).

Classically, for any s ∈ R such that (1− p)Le(s) < 1, one has

L(s) = E
(
esH

)
= pLe(s)

1− (1− p)Le(s)
= p

1− p

( 1
1− (1− p)Le(s)

− 1
)
.

Let us denote by

γ = (α+ b)−
√

(α+ b)2 − 4pαb
2 and γ̃ = (α+ b) +

√
(α+ b)2 − 4pαb
2

the two roots of ξ2 − (α + b)ξ + pαb = 0. Notice that γ < α ∧ b < γ̃. For any s < γ, one
has (1− p)Le(s) < 1 and

L(s) 6 pαb

(γ − s)(γ̃ − s) 6
pαb

γ̃ − s
1

γ − s
. (11)

Let us now turn to the control of E(Ut|U0 = d). The idea is to discuss wether H > βt
or not for some β ∈ (0, 1) (and then to choose β as good as possible):

• if H < βt, then Ut 6 e−(1−β)αt,

• the event {H > βt} has a small probability for large t since H has a finite Laplace
transform on a neighbourhood of the origin.

For any β ∈ (0, 1) and s > 0,

E(Ut|U0 = d) = E
(
Ut1{T6βt}

)
+ E

(
Ut1{T>βt}

)
6 de−(1−β)αt + (d+ ε)L(s)e−sβt. (12)

From Equation (11), we get that, for any s < γ, logL(s)− βts 6 h(s) where

h(s) = log
(
pαb

γ̃ − γ

)
− log(γ − s)− βts.

The function h reaches its minimun at s(t) = γ − (βt)−1 and

h(s(t)) = log
(
pαb

γ̃ − γ

)
+ log(βt) + 1− γβt.

11



For t > 0 and β ∈ (0, 1), choose s(t) = γ − (βt)−1 in (12) to get

E(Ut) 6 de−(1−β)αt + (d+ ε)eh(γ(t))

6 de−(1−β)αt + (d+ ε)
(
pαbe

γ̃ − γ

)
βte−γβt.

At last, one can choose β = α(α+ γ)−1 in order to have (1−β)α = γβ. This ensures that

E(Ut) 6
(
d+ (d+ ε)

(
pαbe

γ̃ − γ

)
αt

α+ γ

)
exp

(
− αγ

α+ γ
t

)
.

Replacing γ̃ − γ by its expression as a function of α, b and p provides (9).

4 Example
The Morris–Lecar model introduced in [28] studies the evolution in time of the electric
potential V (t) in a neuron. The neuron exchanges different ions with its environment via
ion channels which may be open or closed. In the original — deterministic — model, the
proportion of open channels of different types are coded by two functions m(t) and n(t),
and the three quantities m, n and V evolve through the flow of an ordinary differential
equation.

Various stochastic versions of this model exist. Here we focus on a model described
in [35], to which we refer for additional information. This model is motivated by the fact
that m and n, being proportions of open channels, are better coded as discrete variables.
More precisely, we fix a large integer K (the total number of channels) and define a PDMP
(V, u1, u2) with values in R× {0, 1/K, 2/K . . . 1}2 as follows.

Firstly, the potential V evolves according to

dV (t)
dt

= 1
C

(
I −

3∑
i=1

giui(t)(V − Vi)
)

(13)

where C and I are positive constants (the capacitance and input current), the gi and Vi
are positive constants (representing conductances and equilibrium potentials for different
types of ions), u3(t) is equal to 1 and u1(t), u2(t) are the (discrete) proportions of open
channels for two types of ions.

These two discrete variables follow birth-death processes on {0, 1/K, . . . 1} with birth
rates α1, α2 and death rates β1, β2 that depend on the potential V :

αi(V ) = ci cosh
(
V − V ′i

2V ′′i

)(
1 + tanh

(
V − V ′i
V ′′i

))

βi(V ) = ci cosh
(
V − V ′i

2V ′′i

)(
1− tanh

(
V − V ′i
V ′′i

)) (14)

where the ci and V ′i , V ′′i are constants.
Let us check that our main result can be applied in this example. Formally the process

is a PDMP with d = 1 and the finite set E = {0, 1/K, . . . 1}2. The discrete process (u1, u2)
plays the role of the index i ∈ E, and the fields F (u1,u2) are defined (on R) by (13) by
setting u1(t) = u1, u2(t) = u2.
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The constant term u3g3 in (13) ensures that the uniform dissipation property (4) is
satisfied: for all (u1, u2),

〈
V − Ṽ , F (u1,u2)(V )− F (u1,u2)(Ṽ )

〉
= − 1

C

3∑
i=1

uigi(V − Ṽ )2

6 − 1
C
u3g3(V − Ṽ )2.

The Lipschitz character and the bound from below on the rates are not immediate.
Indeed the jump rates (14) are not bounded from below if V is allowed to take values in
R.

However, a direct analysis of (13) shows that V is essentially bounded : all the fields
F (u1,u2) point inward at the boundary of the (fixed) line segment S = [0,max(V1, V2, V3 +
(I + 1)/g3u3)], so if V (t) starts in this region it cannot get out. The necessary bounds all
follow by compactness, since αi(V ) and βi(V ) are C1 in S and strictly positive.
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