DS 1

(Calculatrices et documents interdits)

Connaissances élémentaires (2 points)

Décomposer 224 en produit de facteurs premiers.

Une population augmente de 10% par an. Quel est son taux d'augmentation en trois ans?

Question de cours (2 points)

Qu'est-ce qu'une partie ouverte de \mathbb{R}^n ?

Soient D une partie de \mathbb{R}^n et f une fonction définie sur D à valeurs réelles. Quand dit-on que f n'est pas bornée sur D?

QCM (5 points)

Aucune justification de réponse n'est demandée. Un demi point par bonne réponse, zéro par absence de réponse, moins un demi par réponse incorrecte. **Entourer la bonne réponse.**

- L'ensemble $\{(x,y) / x^2 2y^2 \le 1\}$ est une partie fermée de \mathbb{R}^2 . Vrai Faux.
- L'ensemble $\{(x,y) / x^2 + 2y^2 \le 1\}$ est une partie compacte de \mathbb{R}^2 . Vrai Faux.
- Une fonction positive sur un ensemble fermé non vide a une borne inférieure. Vrai Faux.
- Une fonction positive sur un ensemble fermé non vide atteint sa borne inférieure. Vrai Faux.
- Une réunion de parties compactes de \mathbb{R}^n est compacte. Vrai Faux.
- L'image d'une partie fermée de \mathbb{R}^n par une fonction continue définie sur \mathbb{R}^n est fermée. Vrai $\;$ Faux.
- L'image réciproque d'un ensemble ouvert par une fonction continue définie sur \mathbb{R}^n est ouverte. Vrai Faux.
- Si une partie de \mathbb{R}^n est compacte, sa partie complémentaire n'est pas bornée. Vrai Faux.
- La frontière d'une partie de \mathbb{R}^n est fermée. Vrai Faux.
- Une fonction continue sur une partie compacte de \mathbb{R}^n est bornée sur cet ensemble. Vrai Faux.

Exemples (1 point)

Donner un exemple de partie de \mathbb{R}^4 qui ne soit ni ouverte ni fermée.

Dessin (2 points)

Dessiner le domaine du plan défini par $\{(x,y) \mid |xy| \leq 1\}$

Exercice 1 (3 points) Montrer en utilisant la définition que les ensembles suivants sont ouverts :

(a)
$$]-1,1[\times]-1,1[,$$

(b) $\{(x,y) / x^2 + y^2 < 4\}.$

Exercice 2 (2 points)

Donner les coordonnées polaires de (1, -2).

Donner les coordonnées sphériques de (1, 2, 1).

(Dans les deux cas précisez quels intervalles vous choisissez pour définir les angles de vos coordonnées et donnez une réponse conforme à votre choix.)

Exercice 3 (3 points) Étudier la continuité en 0 de la fonction définie sur \mathbb{R}^2 par :

$$f(x,y) = \frac{x^2 - 2y^2}{x^2 + y^2}$$
 si $(x,y) \neq 0$, 0 si $(x,y) = 0$.