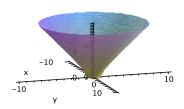
VAR - Correction du TD 02

Figures correspondant aux exercices 2 à 4 $\,$

Fig. 1 – Exercice 2

Fig. 2 – Exercice 3



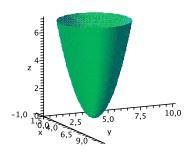
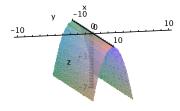


Fig. 3 – Exercice 4



Exercice 7

Soient f et g comme dans l'énoncé. Soit $x_0 \in \mathbb{R}^n$. On veut montrer la continuité de f+g en x_0 , c'est-à-dire que pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que pour tout $x \in B(x_0, \delta)$, on ait $|(f+g)(x) - (f+g)(x_0)| < \epsilon$.

Soit $\epsilon > 0$. Par continuité de f, il existe $\delta_f > 0$ tel que pour tout $x \in B(x_0, \delta)$, on ait $|f(x) - f(x_0)| < \epsilon$. Par continuité de g, il existe $\delta_g > 0$ tel que pour tout $x \in B(x_0, \delta)$, on ait $|g(x) - g(x_0)| < \epsilon$. Posons $\delta := \min\{\delta_f, \delta_g\}$. Soit x un élément de $B(x_0, \delta)$. Par l'inégalité triangulaire, on obtient :

$$|(f+g)(x_0) - (f+g)(x)| \le |f(x_0) - f(x)| + |g(x_0) - g(x)| \le \epsilon + \epsilon = 2\epsilon.$$

Comme ϵ (et donc 2ϵ) est arbitraire, on a montré la continuité de f+g en x_0 . Comme x_0 est un élément arbitraire de \mathbb{R}^n , on a montré la continuité de f+g sur \mathbb{R}^n .

Exercice 8

Soit f comme dans l'énoncé. Soit x_0 dans \mathbb{R}^n . On veut montrer la continuité de f en x_0 , c'est-à-dire que pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que pour tout $x \in B(x_0, \delta)$, on ait $|f(x) - f(x_0)| < \epsilon$.

Soit $\epsilon > 0$. Posons $I = (f(x_0) - \epsilon, f(x_0) + \epsilon)$. C'est un intervalle ouvert de \mathbb{R} . Par hypothèse, $f^{-1}(I)$ est une partie ouverte de \mathbb{R}^n . De plus, $f(x_0) \in I$ et donc $x_0 \in f^{-1}(I)$. Ainsi, il existe $\delta > 0$ tel que $B(x_0, \delta) \subset f^{-1}(I)$. On a alors, pour tout $x \in B(x_0, \delta)$, $f(x) \in f(f^{-1}(I)) = I$, d'où $|f(x_0) - f(x)| < \epsilon$.

Comme ϵ est arbitraire, on a montré la continuité de f en x_0 . Comme x_0 est un élément arbitraire de \mathbb{R}^n , on a montré la continuité de f sur \mathbb{R}^n .

Exercice 9

Soient X et f comme dans l'énoncé. On utilise la propriété suivante : "Si X est un compact de \mathbb{R}^n , alors toute suite d'éléments de X admet une sous-suite convergeant dans X".

Montrons que f(X) est un fermé de \mathbb{R} . Soit $(y_n) \in (f(X))^{\mathbb{N}}$ une suite convergeant vers $\ell \in \mathbb{R}$. On va montrer que ℓ appartient à X. Pour tout $n \in \mathbb{N}$, on se donne un élément $x_n \in X$ tel que $y_n = f(y_n)$. C'est possible car y_n appartient à f(X) pour tout n. L'ensemble K étant compact, par la propriété (P), il existe une suite extraite $(x_{n_k})_k$ de la suite (x_n) qui converge vers un point u de X. La fonction f étant continue, on a $\lim_{k\to\infty} y_{n_k} = \lim_{k\to\infty} f(x_{n_k}) = f(u)$. D'autre part, $\lim_{k\to\infty} y_{n_k} = \lim_{n\to\infty} y_n = \ell$, d'où, par unicité de la limite, $\ell = f(u) \in f(X)$. On vient ainsi de démontrer que f(X) est fermé dans \mathbb{R} .

Montrons maintenant que f(X) est une partie bornée de \mathbb{R} . Supposons que tel n'est pas le cas, en particulier il existe une suite $(x_n) \in X^{\mathbb{N}}$ telle que $\lim_{n\to\infty} |f(x_n)| = +\infty$. On peut, comme précédemment, extraire une sous-suite $(x_{n_k})_k$ de (x_n) qui converge vers un point $u \in X$. Par continuité, on a $|f(u)| = \lim_{k\to\infty} |f(x_{n_k})| = +\infty$, ce qui est absurde. Ainsi f(X) est bien une partie bornée de \mathbb{R} .

Finalement f(X) est fermé et borné dans \mathbb{R} : c'est un compact.