Feuille 1

Exercice 1. Soient
$$A = \begin{pmatrix} 1 & 3 & 5 & 8 \\ -2 & 0 & 8 & 1 \\ 2 & 0 & 3 & -5 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 1 & 1 \\ 0 & -1 & 5 \end{pmatrix}$, $X = \begin{pmatrix} 3 \\ -1 \\ -3 \end{pmatrix}$, $Y = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$, et

 $Z = \begin{pmatrix} 3 & 4 & 5 \end{pmatrix}$. Calculer tous les produits matriciels qui ont un sens.

Exercice 2. Soient A et B les matrices de l'exercice 1. Soient

$$E_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad F_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M_{\lambda,12} = \begin{pmatrix} 1 & \lambda & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Effectuez les produits E_{23} .A, E_{23} .B, B. E_{23} , F_{12} .A, F_{12} .B, B. F_{12} , $M_{\lambda,12}$.A, $M_{\lambda,12}$.B, B. $M_{\lambda,12}$. Observez, commentez.

Exercice 3. Une usine fabrique deux produits, A et B. Chaque produit contient quatre matières différentes W, X, Y, Z. La fabrication de chaque unité de chaque matière nécessite trois forme d'énergie, électricité, gaz, pétrole. Les deux tableaux suivants présentent les nombres d'unités nécessaires d'énergie pour produire une unité de chaque matière, les quantités de matières nécessaires pour produire une unité de chaque produit A et B. Utiliser la multiplication matricielle pour exprimer les quantités d'énergie nécessaires à la production d'une unité de chaque produit.

	W	X	Y	Z
A	2	3	1	1
В	4	2	0	1

	Electricité	Pétrole	Gaz
W	5	3	6
X	1	0	1
Y	0	4	0
Z	3	0	4

Exercice 4. Un magazin vend deux types d'articles. Lorsque leurs prix unitaires sont P_1 et P_2 , les quantités demandées pour chaque produit, D_1 et D_2 , et les quantités disponibles de chaque produit (l'offre), S_1 et S_2 , sont reliées par les équations

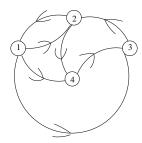
$$D_1 = 70 - 2P_1 + P_2$$
, $D_2 = 105 + P_1 - P_2$
 $S_1 = -14 + 3P_1$, $S_2 = -7 + 2P_2$.

- 1. Les deux articles sont-ils en compétition (comme deux modèles de petites voitures électriques) ou sont-ils complémentaires (tels une chemise et une cravate)?
- 2. Trouvez les prix d'équilibre de chaque produit, c'est-à-dire ceux pour lesquels l'offre et la demande sont égales.

Exercice 5. On définit la matrice d'adjacence d'un graphe de la façon suivante. On numérote les sommets du graphe de 1 à un certain nombre n. La matrice d'adjacence du graphe est la matrice A, de taille $n \times n$, dont le coefficient A_{ij} vaut 1 si une flèche va de i à j, 0 sinon.

- a. Comment peut-on voir si un graphe a des cycles à partir de sa matrice d'adjacence?
- b. Dessiner un arbre généalogique simple et lui associer sa matrice d'adjacence. Trouver une propriété remarquable de sa matrice d'adjacence.
- c. Montrer que si, pour tout $k \geq 1$, $A_{ii}^k = 0$, alors il existe k tel que $A^k = 0$.

Exercice 6. Donner le nombre de chemins de longueur 2 allant de 1 à 3 dans le graphe suivant. Combien y a-t-il de chemins de longueur 4 allant de 1 à 4? Combien y a-t-il de chemins de longueur 8 allant de 1 à 3? Combien y a-t-il de chemins de longueur 6 en tout? Combien y a-t-il de chemins de longueur 42 en tout? Se rendre compte que le calcul matriciel est très utile (la calculatrice aussi) pour répondre à ce genre de question quand les nombres considérés sont grands.



Exercice 7. Un modèle d'économie simple et irréaliste.

- a. Il y a n producteurs P_1, \ldots, P_n .
- b. If y a n biens B_1, \ldots, B_n .
- c. Le bien B_i est produit par le producteur P_i .
- d. On considère une période fixe (disons un an).
- e. Chaque producteur produit une unité de son produit (choix d'unité arbitraire).
- f. Pour produire le bien B_i le producteur P_i a besoin des autres biens. Nous désignons par $a_{i,j}$ la quantité de bien B_i nécessaire à la production d'une unité du produit B_j .
- g. Nous supposons que l'économie est fermée (pas d'échange avec l'extérieur).
- h. Nous supposons que tous les biens produits sont utilisés.

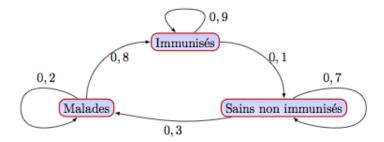
Le producteur P_i vend son produit au prix π_i .

- 1. Écrire mathématiquement que chaque producteur ne dépense pas plus qu'il ne reçoit.
- 2. Montrer que pour qu'aucun producteur ne fasse de déficit il faut que le bénéfice de tous soit nul. Commencer par le cas de deux producteurs.
- 3. Dans le cas de deux producteurs qui échangent réellement, montrer qu'il est possible de déterminer des prix assurant l'absence de déficit.

Exercice 8. Pour déterminer l'évolution d'une maladie au sein d'une population, on considère que chaque individu peut être malade (M), immunisé (I) ou sain mais non immunisé (S). D'une semaine à l'autre, on observe l'évolution suivante

- 20% des personnes malades le restent, 80% guérissent et deviennent donc immunisées
- -90% des immunisés le restent et 10% ne le sont plus mais restent sains (mutation du virus par exemple)
- 70% des personnes saines mais non immunisées le restent, et 30% tombent malades.

Ceci peut se résumer sur le schéma suivant



Les valeurs des proportions de personnes malades, immunisés ou sains non immunisés à la semaine numéro n sont alors répertoriées dans un vecteur colonne $X_n \in [0,1]^3$.

- 1. Trouver une matrice A telle que l'évolution de la maladie se modélise par la relation $X_{n+1} = AX_n$.
- 2. Montrer que s'il y a un état stationnaire X_{stat} , il vérifie $X_{stat} = AX_{stat}$.
- 3. Trouver des vecteurs X tels que X = AX. Parmi ces vecteurs quels sont ceux qui peuvent être des vecteurs stationnaires?
- 4. Calculer des puissances de A avec une calculatrice. Que constatez-vous?

Exercice 9. Soit A une matrice carrée $n \times n$ $(n \ge 2)$ dont les coefficients sont tous strictement positifs et telle que les sommes des éléments des colonnes soient égales à 1. Notons d le plus petit coefficient de A.

- 1. Montrer que d est inférieur ou égal à 1/2.
- 2. Pour tout Y vecteur $1 \times n$ dont les coefficients sont positifs ou nuls, notons m(Y) le plus petit coefficient de Y, M(Y) le plus grand. Montrer que, pour tout Y vecteur ligne positif ou nul, on a

$$M(YA) - m(YA) \le (1 - 2d)(M(Y) - m(Y)).$$

- 3. En déduire que YA^k converge vers un vecteur ligne dont toutes les coordonnées sont égales entre elles (lorsque k tend vers l'infini).
- 4. En déduire que A^k converge vers une matrice dont toutes les colonnes sont égales, puis que l'équation AX = X a une solution X positive.

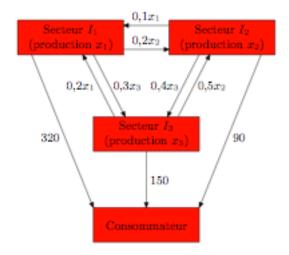
Exercice 10. Résoudre les systèmes linéaires suivants par l'algorithme de Gauss-Jordan.

Exercise 10. Résoudre les systèmes linéaires suivants par l'algorithme de Gauss-Jordan.
$$\begin{cases} x+y-2z &= 5 \\ 2x+3y+4z &= 2 \end{cases}, \quad \begin{cases} 3x+4y-z &= 8 \\ 6x+8y-2z &= 3 \end{cases}, \quad \begin{cases} x+2y+3z &= 4 \end{cases}, \quad \begin{cases} x+y &= 1 \\ 2x-y &= 5 \\ 3x+4y &= 2 \end{cases}, \\ \begin{cases} x_3+x_4 &= 0 \\ x_2+x_3 &= 0 \\ x_1+x_2 &= 0 \end{cases}, \quad \begin{cases} 4x_1+3x_2+2x_3-x_4 &= 4 \\ 5x_1+4x_2+3x_3-x_4 &= 4 \\ -2x_1-2x_2-x_3+2x_4 &= -3 \\ 11x_1+6x_2+4x_3+x_4 &= 11 \end{cases}, \quad \begin{cases} 3x+11y+19z &= 22 \\ 7x+23y+39z &= 10 \\ -4x-3y-2z &= 6 \end{cases}, \\ \begin{cases} 3x+6y+14z &= 22 \\ 7x+14y+30z &= 46 \end{cases}, \quad \begin{cases} 3x+5y+3z &= 25 \\ 7x+9y+19z &= 65 \\ -4x+5y+11z &= 5 \end{cases}, \quad \begin{cases} x-y+2z+t &= 1 \\ 3x-2y+2z+3t &= 2 \\ x+2y+z+3t &= 2 \end{cases}, \\ \begin{cases} x+2y+z+3t &= 2 \\ -x+3y+z+t &= -1 \end{cases}$$

Exercice 11. « Un coq vaut cinq pièces, une poule trois pièces et trois poussins une pièce. Avec 100 pièces, on veut acheter 100 volatiles. Combien de coqs, poules et poussins pouvons nous acheter? » (Chine, 5eme siècle)

Exercice 12. « Un seigneur avait cent personnes à son service et ordonna qu'on leur distribue cent mesures de grain. Il précisa que chaque homme devait recevoir trois mesures, chaque femme deux mesures et chaque enfant une demi-mesure. Combien d'hommes, de femmes, d'enfants avait-il à son service? » On précise qu'il avait au moins un homme, une femme, un enfant. (Alcuin, précepteur de Charlemagne, VIIIeme siècle)

Exercice 13. 1. Considérons une économie avec trois secteurs industriels, I1, I2, I3. Quelles quantités x1, x2, x3 doivent-elles produire pour satisfaire à la fois la demande des consommateurs et celle des autres secteurs? La demande requise de chaque secteur est représentée sur la figure ci-dessous.



2. Lorsqu'on considère un modèle entrée-sortie avec plus de trois secteurs industriels, il devient malaisé de représenter les demandes par un diagramme comme celui de la question précédente. Supposons qu'il y ait des secteurs I_1, \ldots, I_n , de productions x_1, \ldots, x_n . Les vecteurs de production x, de demande des consommateurs b et de demande pour le secteur I_j sont

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \cdot \\ \cdot \\ b_n \end{pmatrix}, v_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \cdot \\ \cdot \\ \cdot \\ a_{nj} \end{pmatrix},$$

où b_i est la demande des consommateurs au secteur I_i et a_{ij} est la demande du secteur I_j au secteur I_i , par euro de production du secteur I_j .

- a. Trouver les quatre vecteurs de demandes pour l'économie de la question 1).
- b. Quelle est la signification économique de $x_i v_i$?
- c. Quelle est la signification économique de $x_1v_1 + x_2v_2 + \ldots + x_nv_n + b$?
- d. Quelle est la signification économique de l'équation $x_1v_1 + x_2v_2 + \ldots + x_nv_n + b = x$?
- 3. Considérons l'économie d'Israël en 1958. Les trois secteurs industriels considérés sont : I_1 agriculture, I_2 biens manufacturés, I_3 énergie. Production et demande sont mesurés en millions de livres israéliennes, la monnaie d'Israël à cette époque. On nous dit que

$$b = \begin{pmatrix} 13, 2 \\ 17, 6 \\ 1, 8 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 0, 293 \\ 0, 014 \\ 0, 044 \end{pmatrix} \quad v_2 = \begin{pmatrix} 0 \\ 0, 207 \\ 0, 001 \end{pmatrix} \quad v_3 = \begin{pmatrix} 0 \\ 0, 017 \\ 0, 216 \end{pmatrix}$$

- a. Pour quoi la première composante des vecteurs v_2 et v_3 est-elle nulle?
- b. Trouver les productions x_1, x_2, x_3 qui satisfont la demande.