DS 1 (7 octobre)

(Durée 54 minutes, calculatrices et documents interdits)

Questions de cours (4 points)

1) Soit A une partie de \mathbb{R}^n . Quand dit-on qu'un point x de A est à l'intérieur de A? On dit qu'un point x de A est à l'intérieur de A si

$$\exists r > 0 \text{ tel que } B(x,r) \subset A.$$

2) Soit f une fonction à valeurs réelles définie sur \mathbb{R}^n . Quand dit-on que f est bornée sur \mathbb{R}^n ? On dit que f est bornée sur \mathbb{R}^n si

$$\exists M \in \mathbb{R} \text{ tel que } \forall x \in \mathbb{R}^n |f(x)| \leq M.$$

3) Rappeler la définition du produit scalaire usuel sur \mathbb{R}^n .

Soient $x=(x_1,\ldots,x_n)$ et $y=(y_1,\ldots,y_n)$ deux vecteurs de \mathbb{R}^n . Leur produit scalaire est défini par

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

4) Énoncer l'inégalité de Cauchy-Schwarz pour le produit scalaire usuel dans \mathbb{R}^n . Soient $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$ deux vecteurs de \mathbb{R}^n . On a

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Vrai-Faux (entre -3 et 3 points)

Aucune justification de réponse n'est demandée. Un demi point par bonne réponse, zéro par absence de réponse, moins un demi par réponse incorrecte. Entourer la bonne réponse.

- L'ensemble $\{(x,y) \ / \ 0 \le x^2 + 2y^2 \le 1\}$ est une partie compacte de \mathbb{R}^2 . Vrai .
- L'ensemble $\{(x,y) / x^2 + 2xy + y^2 \le 1\}$ est une partie compacte de \mathbb{R}^2 . Faux.
- Une fonction positive sur un ensemble fermé non vide a une borne inférieure. Vrai.
- Si une partie de \mathbb{R}^n est compacte, alors sa partie complémentaire n'est pas bornée. Vrai.
- La réunion de deux parties compactes de \mathbb{R}^2 est une partie compacte de \mathbb{R}^2 . Vrai.
- Une fonction à valeurs réelles définie sur \mathbb{R}^n peut avoir un minimum local en un point de \mathbb{R}^n mais ne pas être minorée sur \mathbb{R}^n . Vrai.

Exemples, contre-exemples (2 points)

Donner un exemple

– de partie de \mathbb{R}^2 non bornée, d'intérieur vide;

$$\mathbb{Z}^2$$
 ou $\{(x,y) \mid x=0\}$ ou $\{(x,y) \mid x=y\}$ ou $\{(x,y) \mid y=x^2\}$ ou...

- d'une fonction de \mathbb{R}^2 dans \mathbb{R} bornée n'atteignant pas sa borne supérieure.

La fonction f définie par $f(x,y) = 1 - \frac{1}{1+x^2+y^2}$, ou bien (exemple très proche d'un exemple du cours) $f(x,y) = 1 - \exp(-(x^2+y^2))$ ou...

Exercice 1 (3 points)

Donner les coordonnées polaires de

$$(-1,-2): (\sqrt{5},\pi+\arccos(1/\sqrt{5}))$$
 ou bien $(\sqrt{5},2\pi-\arccos(-1/\sqrt{5})),$

 $(1,-1):(\sqrt{2},2\pi-\pi/4)=(\sqrt{2},7\pi/4).$

Donner les coordonnées sphériques de

 $(0,2,-2):(2\sqrt{2},\pi/2,3\pi/4),$

 $(-1, -1, -1) : (\sqrt{3}, 5\pi/4, \arccos(-1/\sqrt{3})).$

Exercice 2 (4 points)

On considère la fonction de \mathbb{R}^2 dans \mathbb{R} définie par :

$$f(x, y) = x^2 + y^2 - 2x + 3.$$

Représenter les courbes de niveaux 0, 2, 3, 5 de f.

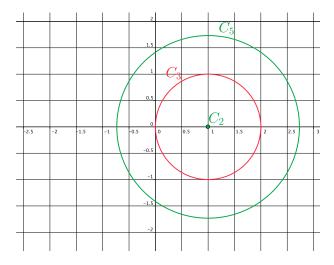
La courbe C_{α} de niveau α de f est donné par l'équation

$$x^2 + y^2 - 2x + 3 = \alpha,$$

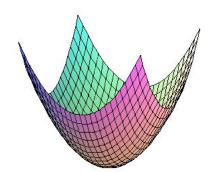
c'est-à-dire

$$(x-1)^2 + y^2 = \alpha - 2.$$

La courbe C_0 est donc vide; la courbe C_2 est le point (1,0), la courbe C_3 le cercle de centre (1,0) et de rayon 1, la courbe C_5 le cercle de centre (1,0) et de rayon $\sqrt{3}$.



Dessiner l'allure du graphe de f.

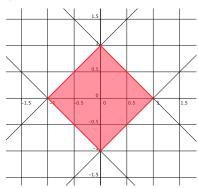


La fonction est-elle majorée? Non. Minorée? Oui, par 2 (pour $\alpha < 2$, la courbe de niveau α est vide).

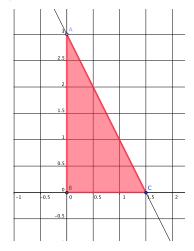
Dessins (6 points (2+1+3))

Dessiner les sous ensembles suivants de \mathbb{R}^2 :

(a) $\{(x,y) \mid \max(|x-y|, |x+y|) \le 1\}$



(b) $\{(x,y) \mid x \ge 0, y \ge 0, 2x + y \le 3\}$



(c) $\{(x,y) \mid -1 \le x \le 1, \ y^2 \le (x+y)^2 \le 1\}$

