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Abstract

Numerical simulation is a valuable tool for the study of magnetic susceptibility artifacts from metallic
implants. A major difficulty in the simulation lies in the computation of the magnetic field induced by
the metallic implant. A new method has been designed and implemented to compute the magnetic field
induced by metallic objects of very general shape. The magnetic field is expressed pointwise in terms of a
surface integral. Efficient quadrature schemes are proposed to evaluate this integral. Finally, the method
is linked to an artifact reconstruction model to get the simulated images.
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1 Introduction

In magnetic resonance imaging (MRI) even minor perturbations of the gradients can disturb the imaging
process and may render clinical image inaccurate or useless. Common causes of magnetic field perturbation
are changes of magnetic properties in the sample like metallic implanted objects, such as dental prosthesis,
orthopedic apparatus, etc. Metallic surgical instruments used in interventional MRI are also responsible
for magnetic field perturbation. In the case of guided stereotactic surgery, image distortions are especially
harmful since geometrical accuracy is required.

In the past, several studies involving numerical simulation have been undertaken to help in the under-
standing and to establish experimental conditions that determine susceptibility artifacts, see [1], [2], [3] for
instance. However, these simulation attempts have been restricted to simple test objects (cylinders, spheres
or ellipsoids) for which an analytical expression for the induced magnetic field is known. In general, a precise
calculation of the magnetic field involves a boundary value problem with partial differential equations (PDE)
derived from Maxwell’s equations and requires the use of PDE approximation schemes. Among the classical
numerical methods are the finite element method (FEM), the finite difference method (FDM) and the bound-
ary element method (BEM). For a comprehensive treatment of these numerical methods in electromagnetism
we refer to [4]. Our approach, which is based on a surface integral representation formula for the magnetic
flux density, is most similar to the BEM. In short, our method consists of expressing the problem in an
integral form over the boundary of the implant and dividing the boundary into elements in which the integral
is numerically computed. It is able to deal with objects of any shape provided that a mesh of the object
boundary is available. This requirement is not at all restricting since mesh generation tools are widely used
in computer assisted design (CAD). The advantages of our method compared to the FEM [5] or to the FDM
[6] are numerous. First, the computation depends only on the object boundary so that the discretization

of space is reduced from 3D to 2D. Furthermore, in the FDM/FEM the exterior domain must be truncated



and an approximation of the behavior of the field at infinity must be introduced on an artificial boundary.
With the BEM, the behavior at infinity is always exactly satisfied. Finally, for 3D problems the FEM and
the FDM lead to large linear systems to be solved, whereas in the proposed method the solution is obtained
pointwise by evaluating a surface integral.

In the current work, this magnetic field computation method has been linked to artifact reconstruction
algorithms ([1], [3]) to generate simulated images of MRI susceptibility artifacts from paramagnetic metallic
implants. Our algorithm could also be used in conjunction with the computer simulation program for MRI
imaging sequences described in [7]. Among the applications of a MRI susceptibility artifacts simulation
computer program are the systematic investigation of artifact behavior under various experimental conditions.
It may also be very useful in the design of new medical implants compatible with MRI. Implant properties

can be easily modified by changing parameters in the software.

2 Mathematical modeling

Let © be the domain filled by the metallic implant and ¥ be its boundary, see figure 1. The exterior domain
Q. = R3\Q is assumed to be a homogeneous medium having negligible magnetization (we assume that the
metallic implant has magnetic properties which are very different from the surrounding tissues). We only
consider the effect of the main static magnetic flux E)) and neglect the effect of the exciting RF pulses. In this
study, the metallic implant is supposed to be an isotropic linear paramagnetic material and its magnetization

M is assumed to be uniform and parallel to the applied field,

i =2XmF5, (1)
Ho

where X, is the magnetic susceptibility of the material. One has to point out that for ferromagnetic material,
constitutive laws for the magnetization are non linear and the mathematical model is much more difficult to
handle. However, patients bearing ferromagnetic implants are restricted from being examined by MRI.

In term of magnetic flux density E: . E)) the problem, deduced from Maxwell’s equations, is

divB, = 0in R,

curl ﬁ, = 0in Q and 9., (2)
[E: AR] = po (3 A7) at the interface 3,

with the condition at infinity lim B,(P) = 0. In equations (2), 7 is the unit outward normal to ¥ and []
—00

denotes the jump across the boundary ¥. One can prove (see [10]) that the solution ?, of problem (2) can
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be expressed as
-7
BUP) = 8,(P) T+ 42 [[ (31 1) 2(Q) as(@) Q
b

where 7 = QP and 0,(P) = 1 if P € Q and 0 otherwise.

Therefore, the magnetic flux density E: in P is obtained by computing the integral

) = [[ (3-5) 7@ as@ @

3 Method and computations

3.1 Computational method

We assume that the boundary ¥ is modeled as a finite union of flat and curved triangles, see figures 2 and
3. Let T} denote the set of all flat triangles and T? the set of all curved triangles. Then the integral in (3)

can be decomposed into two terms

~—

=Y [[ (#5) 7@ @+ X [[ (#I) 7@ s €

KeT} KeT?

In order to improve the accuracy of the method, these two sums noted S; (P) and S2(P) are evaluated in two
distinct ways.

For flat triangles, the normal 7 to ¥ is constant on each triangle and we can express S; (P) as

si(P) =Y (ﬁ//}{g as(@) 7 - (6)

KT}

Consequently to evaluate S;(P), one has to compute the integral of 7 /r® over a set of triangles. Such an



integral can be calculated exactly, see for instance [8] or [9] for the resulting formulae. This result is of great
practical importance since for the flat parts of the object boundary no numerical scheme (and therefore no
approximation) is needed to evaluate S; (P). Besides, it is important to notice that for any polyhedral object,
the induced magnetic field can therefore be calculated exactly.

To evaluate S(P), the integral over each curved triangle is computed by using a Gaussian quadrature
rule. It has to be noted that the computation of Sy(P) by a quadrature method is hampered by the singular
behavior of the function 3 - 7 /3 when the point P is very close to the boundary . However this difficulty
can be overcome by using an adaptative integration scheme (see [10]).

A full presentation of the way the integrals are calculated and a precise discussion of the numerical
accuracy of the method may be found in [10]. The source code is public domain and can be obtained from

the authors.

3.2 Numerical simulation

To demonstrate the accuracy of the method, results of the numerical computation have been verified against
analytic calculations for a 2 cm diameter titanium ball (its magnetic susceptibility is x,, = 2 107*) and a
magnetic flux density FS of 0.5 T. Figure 2 shows the mesh of the ball surface (680 triangles) and the isolines
for the component of the induced magnetic flux EZ along Eg , in a slice parallel to the magnetic flux density
ES passing through the center of the ball. The magnetic field has been computed for 128 x 128 points in the
slice. The maximal pointwise relative error does not exceed 0.05%. Computations have been done on a Sun
Enterprise 450 and have required 184 seconds.

The magnetic field computation method has been linked to an artifact reconstruction algorithm to illus-
trate its efficiency. We have used the algorithm described in ([1], [3]) that focuses on geometric distorsions
(distorsions of the slice and distorsions in the read-out gradient direction) due to perturbations of the mag-
netic field gradients, see [11] p. 209. We present some simulations carried out with a dental implant depicted
in figure 3. This implant had a magnetic susceptibility of 1072 usi and was placed in a 0.5 T magnetic flux
density ES . The mesh of the implant boundary used to compute the magnetic field perturbation had 1328
triangles (we have neglected the thread of the screw). The magnetic field has been computed for 128 x 128
points in the slice depicted in figure 3. The slice had a side length of 5 cm and was parallel to the magnetic
flux density 170). Computations have required 224 seconds. Figure 4 shows the isolines for the component of
?i along E)) . From the magnetic field values the computed image in figure 5 has been obtained by the above
mentionned image reconstruction algorithm. To obtain the corresponding experimental image the implant

was placed centrally in a box filled with a diamagnetic substance (CuSO4 at a concentration of 0.6 g/1). The
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Figure 2: Mesh of the sphere (680 triangles) and isolines for the component of F: along FS .

slice was recorded using a Spin-Echo sequence with a repetition time of 490 ms and an echo time of 25 ms.
The slice-selection gradient and the read-out gradient strength were 102 T/m. The slice thickness was 3

mim.

4 Discussion

The numerical experiments indicate that the magnetic field computation method is very accurate and fast.
This is of great importance since the results are to be linked to the image reconstruction procedure to obtain
the simulated images of susceptibility artifacts in MRI. These requirements would not be fully fulfilled by
standard numerical methods.

We obtained numerically simulated MRI susceptibility artifacts from the magnetic field computations
using the artifact reconstruction procedure described in ([1], [3]). This procedure only takes into account
geometric distortions due to perturbations of the magnetic field gradients by the induced magnetic field.
Therefore comparison between numerically simulated and experimental MRI images should concern the image
structure rather than absolute pixel value. We refer to [7] for some further developments in the direction of
sequence simulation.

Although we have restricted ourselves to magnetic susceptibility artifacts, there are other artifacts due to

metallic object, such as RF-induced eddy currents, see ([12], [13]).
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Figure 3: Dental implant chosen to illustrate the effectiveness of the method, position of the slice and mesh
(1328 triangles) of the implant boundary used to compute the magnetic field perturbation.
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Figure 4: isolines for the component of B, along Be. Field values range from —1.5 10~* to 3 10~* Tesla.
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Figure 5: (A) simulated spin-echo image - (B) experimental MRI image (SE 490/25). The frequency encoding
gradient direction is left-right, the width of the figures corresponds to 5 cm actual distance.

5 Conclusion

An original numerical technique has been presented for computing the magnetic field induced by a metallic
object. The advantages of the present approach are its simplicity and its computational efficiency. The
method has been combined with artifact reconstruction algorithms ([1], [3]) to simulate susceptibility artifacts
in MRI. It could also be used in conjunction with other simulation programs [7]. The various applications
for a method of accurately predicting susceptibility artifacts include facilitating the design of new medical
implants that are not as likely to cause image distortions. Currently, designers must construct and image
numerous prototypes in order to test new ideas. Further work includes combining the current method with

an algorithm for predicting the artifacts resulting from eddy currents induced by RF fields or field gradients.
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