Cancellation errors in an integral for calculating magnetic
field from reduced scalar potential

Stéphane Balac*
Laboratoire de Mathématiques Appliquées de Lyon
INSA de Lyon, 69621 Villeurbanne, France

Gabriel Caloz'
Institut de Recherche Mathématique de Rennes
Université de Rennes 1, 35042 Rennes, France

Abstract

In magnetostatic field computation with regions containing current sources, it is
classical to write the corresponding magnetostatic problem in terms of the reduced
scalar magnetic potential ¢. Usually numerical differentiation is used to get the mag-
netic field H from the potential values, which implies loss in accuracy. An alternative
is to compute H from ¢ from an integral formula. In fact the formula does not give a
straightforward method due to a cancellation in the integral. In this paper we inves-
tigate the mathematical reason why the formula is not suited for numerical purposes.
We do a careful numerical analysis with illustrations on a test example and propose a
way to circumvent this difficulty based on a sort of decomposition method.

1 Introduction

The situation under consideration is the computation of the magnetic field generated by
an electromagnetic device composed of a weakly ferromagnetic core 2 and an inductor €
characterized by a time independent current density j in a three dimensional geometry. The
domain € is a simply connected open set in R>. We denote by ¥ and %, the boundary of
and € respectively and by Q¢ and Q¢ their complement in R3. We assume for simplicity
that the metallic core €2 has a constant permeability. This assumption is not a limitation
of the study and we give in appendix the way to deal with the general case of a domain (2
with piecewise constant permeabilities.

It is classical to express the total magnetic field H as H = Hg + H,,, where Hg, the
field due to the source currents, satisfies

divHy; = 0 in R3,
rotH, = j in Qg

rotH, = 0 in Qf, (1)
[Hs A n] = 0 across g,
and Hy,, the reaction of the ferromagnetic piece, satisfies
rotH, = 0 in R,
divH,, = 0 in Q and QF, (2)

(u—1)Hyu-n = (1—pu) Hg-n across X,
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where pu is the relative magnetic permeability of the ferromagnetic core, n the outward
unit normal to ¥ or X;, and [ | the jump across these surfaces.

H; can be efficiently computed, see [1], [2], through the evaluation of the Biot and Savart
integral

o) =g [ (0a %) a ®)

with r = x — y. Thus the computation of the total magnetic field is reduced to the
computation of Hy,. The advantage of this approach is that although the conductors lie
within the computational area, they do not need to be meshed when using a finite element
discretization to solve problem (2). Moreover all what is needed for the computation of
H,, is the value of the field Hg over the surface X.

As the field H,, is curl free, we can introduce the so-called reduced scalar magnetic
potential (RSP) ¢ such that Hy,, = —V¢. The RSP satisfies the following problem deduced
from (2),

Ap=0 in Qand QF,
_9¢

Q Bn

o¢

(4)
K on

=(u—1)g across X,
Qe
where g = Hg - n is considered as a given function since Hy is computed using (3).

The main advantage of introducing the RSP is to transform a problem for a 3 compo-
nents vector field throughout the space into a problem for a scalar function, thus reducing
the number of degrees of freedom in the discretization. A numerical method widely used
to solve magnetostatic problems is the finite element method (FEM). As problem (4) is
set in an unbounded domain an artificial boundary can be introduced at a finite distance
from the electromagnetic device. The behavior of the solution at infinity is then handled
through an approximate boundary condition set on this artificial boundary that is derived
from an asymptotic expansion of the solution at infinity, see [3]. Another way to proceed
is to set an exact boundary condition obtained using a boundary integral representation
of the solution and to write a variational formulation in a bounded domain, see [4]. For
the magnetostatic problem (4) the method is discussed in [5] where numerical results are
presented. The goal in the paper is to focus on the numerical computation of the vector
field H,, from the RSP ¢, supposed to be numerically computed.

The evident way to compute the field Hy, from the RSP is to numerically differentiate
the FEM potential solution on each element of the mesh. This leads to loss in accuracy.
For instance, when problem (4) is discretized using Lagrange finite element of degree 1, a
constant field value is obtained on each element. Another way to proceed is to compute
H,, through the integral representation formula

Haly) = (1= [ gle) V,Glavy) do
—1-1) [ $0) Vg

T

z,y) dog, ()

where G denotes the Green kernel for the Laplacian. This formula would allow the com-
putation of Hy, in any point from the values of the RSP on Y. We have an explicit
representation formula for H,, since the integration applies only on the surface ¥. This
formula is of great interest when the magnetic field is needed in very few points on a
localized area. For an overview of derivative extraction methods we refer to [6] and [7].



Here we present a way to use formula (5) to compute the magnetic field from the RSP.
Indeed while attractive, formula (5) cannot be used in its present form. We observe from
numerical experiments that for large values of y (u ~ 103), which is the case in most
applications, the two integrals in the right-hand side of (5) nearly cancel. Another similar
phenomenon occurs when using the reduced scalar potential to compute the field within
a permeable region, see [8]. To compute the total magnetic field H it is necessary to add
the field Hg to the field Hy,. If the total field is small (for instance due to a shielding
effect of the permeable region), the 2 components of the field would tend to be of same
magnitude, but of different sign leading to an oscillating, error prone, solution for the total
field. However there are many situations where the total magnetic field is not needed in
the permeable region but in the exterior domain. For instance, our work originates from a
shape optimization study where the magnetic field is needed in a very small region on the
air-gap of an electromagnet. In such an example, formula (5) is the ideal way to compute
the magnetic field.

We investigate the mathematical reason for this cancellation and we propose a way to
compute these integrals based on an asymptotic expansion for ¢ function of y. This is an
example of an elegant and attractive mathematical formula useless for numerical purposes
without a careful mathematical analysis. Let us remark that in [9], the limit 1/p — 0 of
¢ function of y is studied to validate the boundary condition on a highly conducting wall.
The approach concerns the first term of the development. Our goal is different and we
use the expansion to compute the magnetic field out of an integral formula; our method
remains valid for a large range of u.

The content of the paper is the following. Section II is devoted to set up the integral
formula (5). In section IIT a careful analysis is done to know the dependence of ¢ on y. In
section IV we present the way relation (5) has to be used to compute the magnetic field
from the RSP accurately and we conclude in section V with numerical experiments.

For Q C R® let 1.2(Q) be the set of square integrable functions over Q. For m € N*
H™ () denotes the set of functions with derivatives up to the order m in 12(£2). To handle
functions defined over the unbounded domain Q¢ we will use the Sobolev spaces W} (R?)
and W} (92¢) defined by

v
VR

2 The integral representation formula

W () = { ; LX), Vel (@)},

The representation formula (5) is obtained by applying potential theory results to the
reduced scalar potential ¢. Let G denotes the Green kernel associated with the three-
dimensional Laplacian,

1

G(z,y) = m

for z,y e R,z #y,

and Gy (z,y) = V;G(z,y).n,z € X,y € R?, denotes its normal derivative on .

One can prove that problem (4) has a unique solution in the Sobolev space W} (IR?)
and that this solution is continuous in R®. Furthermore, since the magnetic potential ¢ is
harmonic in the exterior domain Q¢ we have the Green representation formula for y € Q°,



see [10],

o) = [ 0] (@) Gulay) o

Lo

Let’s take z € 2 and y € 2¢. We deduce from Green second identity the relations,

(z) G(z,y) dog. (6)

Q¢

o=/lAmuwﬂam—MMAﬁmw»dx

:/;(% (z) G(z,y) = | (z) Gn(w,y)) do. (™)

Q Q

Then we multiply (7) by p and add it to (6) to get for y € Q€

o) = [ (¢
-1 G

Using the boundary condition on ¥ in (4), we obtain the following representation formula
for y € Q°,

@)~ 18| @) Galor) ao

Q

0
0@—u£

S(]a:)) G(z,y) dog. (8)

ply) = (k-1) Lg(w) G(z,y) doy
~=1) [ 4(@) Gulo.y) dor. )
As a byproduct we can express for y € Q¢ the reaction field Hum(y) = —Vé(y) as
Huly) = (1-4) [ o(0) V,Gla.y) do
~(1=n) [ $(e) V,Gula,y) do. (10)

Suppose we have computed ¢ on ¥ with a certain numerical method (finite element method
or boundary integral method), then Hy,(y) can be computed via the formula (10) since
g and G are known functions. In fact for large values of p (1 ~ 103) the two integrals in
(10) nearly cancel. This can be observed from numerical computations. Table 1 shows the
values of the 2 integral terms as well as the value of Hy, computed using (10) in the case
of a metallic ball of relative magnetic permeability u = 103 for arbitrarily chosen points.

However one can observe, see section 5, that formula (10) gives the correct values of
H,, for small values of 1 (11 ~ 14+1073). Such values are valid for paramagnetic materials.
It follows that the numerical efficiency of formula (10) strongly depends on the value of the
relative magnetic permeability . In the next section we investigate through an asymptotic
expansion how ¢, and therefore Hy,, depends on p.

3 How ¢ depends on pu

Let us study how the solution ¢ to (4) depends on y considered now as a parameter. We
write down an asymptotic expansion of the RSP ¢ in power of % For convenience ¢°
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Table 1: Values of the third component of the 2 integral terms in (10), value of Hy, - z

computed using (10) and exact value of Hy, - z for p = 103.

H ‘ 1st term ‘ 2nd term ‘

Hp, by(10) | Hpy, exact |

P | 0.9266 10* | 0.9327 10* | —0.4792 10°% | —0.2284 10°
P, | 0.8897 10* | 0.8954 10* | —0.4522 105 | —0.2193 106
P3| 0.7437 10* | 0.7529 10* | —0.7301 105 | —0.1847 10°
P, | 0.8534 10* | 0.8629 10* | —0.7577 105 | —0.2116 10°
P5 | 0.6962 10* | 0.7087 10* | —0.9959 106 | —0.1740 10°

denotes the restriction of the RSP to the interior domain {2 and ¢¢ the restriction of the
RSP to the exterior domain Q°¢. Problem (4) then reads: find ¢! € H! (2) and ¢¢ € W} (Q°)

such that

\ ¢¢ =

(4 On

[ A¢' =0
Age =0

¢i

la(ﬁe B 8¢Z _

on

Let us look for ¢* and ¢ of the form

¢i
¢e

One can easily check that ¢} € H'

(P§

(P5)

(P

(P1)

) 1 . 1 .
= ¢p+ -1+ 5P +...
0 L 1 Mg 2

1 1
= ¢+ —PT + 55+ ...
0 7 1 //‘2 2

in €,

in Q°

on %,

(-—1)g on

Agk =0 in Q,
) odi
% =g on X,
Ags=0 in QF
P=¢ on %,
A¢i =0 in
agf _ 0g5 on
on  On
Ag¢=0 in QF
¢ =¢ on X.

3.

(11)

(12)

(13)

() and ¢¢ € W} (Q°), k € {0,1}, should be solutions
of the following interior Neumann and exterior Dirichlet coupled problems:



For k > 2, ¢fc and ¢f, should satisfy to

Agt =0 in Q,
(Pk;) 8¢}Lc _ % on E
on on ’

A¢e =0 in QF
¢ =¢.  on 3.

The key point in the above decomposition method is to prove there exists unique
sequences of functions (¢}, )ken, (#%)ken solution to the coupled problems (P}), (Pf), k > 0.

(Pk)

First to have existence for (P}) we need the compatibility condition [ g do = 0 which is
b

/ng:/Hs-nd(I:/divHsdx:O. (14)
by by Q

Therefore there exists a unique solution to (P}) in the functional space

{zp E]I-]Il(Q),/qu dsz}

and we numerically compute a solution 56 to the Neumann problem (7)) such that % =
¢4 — Co where Cj is an unknown constant.
The solution to the exterior Dirichlet problem (P§) is uniquely determined.

satisfied since

To have existence for (P}), the compatibility condition reads / 8¢0 do = 0. This
» ONn

condition is satisfied if problem (P§) has been solved with a good choice for Cy (namely if
the boundary values of ¢} on ¥ have been retrieved from the computed solution ¢). Let
us consider v € W; (€2¢) the unique solution of

Av=0 in QF
(Po)
v=1 on X.

a
/ ¢0 do N
Clearly / — do > 0 and we can set Cy = — with ¢§ given by

/—da

- AgE=0 in Qf,
(P§) {~ ’
o= ¢0 on 3.

Once Cj is computed we deduce ¢} from 53 and with ¢§ = 58 + Cov the compatibility
condition / 994 do = 0 for (P?) is satisfied. It is interesting to relate (P,) with the

cutting surface problem in [9]. In both cases we have a jump condition equal to 1, but in
a different context : once on the cutting surface for a non simply connected domain and
here on the physical surface X.

Similarly we continue to construct in a unique way the functions gbfe and ¢f, k> 1. It
is simple to check that the series (12) and (13) converge to ¢ in the energy norm.



4 Computation of the magnetic field

We are now in position to explain why for large values of the relative permeability u
formula (10) is unfitted for numerical computation and to present a way to circumvent
the issue.

Writing formula (10) for H,, with the developments (12) and (13), we get for y € Q¢

Hu) = (- [ (o) V.60
—~$(z) VyGalz,9)) do (15)
= (- [ (9) 9,Ga1)

~$3(a) VyGula,y)) do
o] 1 )

+(n - 1)/E (Z o ¢%(w)> VyGr(z,y) dog. (16)
k=1

Now, since ¢} is the solution of problem (P}), the second Green identity yields for y € Q¢

[ (6@ Gute) - S0 66 doe =0 )

and by differentiation with respect to y,

/E (qﬁé(:v) VyGr(z,y) — g(x) VyG(x,y)) do; = 0. (18)

Thus (16) reads for y € Q°

Hunlw) = [, (Z e ¢7;(x)> Y, Gn(z,y) dos. (19)
k=1

Now it is simple to know where the cancellation occurs; it occurs in formula (18). When
we compute the function ¢ for large values of i, we have essentially the first term ¢y which
gives a cancellation in (16). From (19) we deduce that the values of Hy, directly depend
on ngZi which is not given by a straightforward numerical resolution of (4). Indeed for large
values of u the RSP ¢ has a major contribution from ngf) and a lower contribution from ¢
with a ratio between the two contributions equal to 1/u. In numerical computations the
contribution from ¢’i falls under the numerical precision and the relevant information in
¢ to compute Hy, is missing.

For small values of the relative permeability p formula (10) gives accurate results as

shown in table 4. The reason is that ¢} is now not the largest term in the expansions (12),
i

each term ¢—llz has roughly the same magnitude as ¢}.

One can wonder whether formula (10) would give an accurate solution if the RSP was
computed more accurately. The answer is negative as it can be observed in section 5 where
we have used the exact value of the RSP to compute the boundary integral. The reason
is connected to the way the boundary integral is computed. A mesh with polygons of the
surface ¥ is used to decompose the integral over ¥ in a sum of integral over the polygons.
These integrals are then computed using numerical quadrature. Even if we have the exact



value for the RSP, the difference between the exact surface and the approach polyhedral
surface can be interpreted as a computational error on ¢ leading to an analogous effect to
the one described above.

For 41 in the range [102,10%], relation (19) shows that H,, can be approximated with
accuracy by

Hal) ~ = [ 4@ V,6u(e) do. (20)

L [ ) VyGaloy) don
K py

Thus, relation (20) gives a way to compute H,;, once ¢! and ¢} are known. To compute
gb’i and ¢é we can follow the steps presented in section III. The method reduces to solve
two Laplace equations, one in {2 and one in Q¢ with several right-hand sides.

Problems (P}) in the ferromagnetic core can be solved using the finite element method.
The matrix of the discretized problem is the same for all the (P) and therefore time is
saved in the matrix assembling process. Furthermore if a direct method is used to solve the
linear system then only one matrix factorization is required. If an iterative method is used,
depending on the preconditioning technique used this advantage can be lost. Problems
(Pf) are set in an unbounded domain. The method we used to compute ¢f, is discussed in
[5]. An artificial boundary is introduced at a close distance from the ferromagnetic core
and the behavior of ¢} at infinity is handle through an exact boundary condition which
is set on this artificial boundary. It has the advantage of greatly reducing the size of the
domain to be mesh and therefore the size of the linear system. The boundary can be set
very closely to €2 since the only relevant information for the following computations are
the values of ¢f, on the boundary ¥. There is no need to compute the RSP ¢ in this
approach since the magnetic field H is given from the functions ¢? and ¢5.

5 Numerical experiments

In order to illustrate our discussion we consider the case where the domain €2 is the ball of
radius 1 cm and of relative magnetic permeability p. The inductor field Hg is assumed to
be constant in intensity and direction so that an exact expression for the RSP ¢ is known.

To solve the exterior Dirichlet problems we use a coupling between a finite element
method and an integral representation method as described in [5]. The RSP is computed
on ¥ with a quadratic relative error of 0.8% and a maximum relative error of 0.7%. The
boundary X is meshed with 402 elements.

The numerical implementation is achieved using the program MELINA [11] developed
at the Institut de Recherche Mathématique de Rennes, University of Rennes 1. It is an
open collection of Fortran libraries dedicated to the solution of partial differential problem
by finite element methods. All the computations are done on an INTEL PIIT 700Mhz
biprocessor personal computer.

To compare the accuracy of formulae (10) and (20) we choose arbitrarily 5 points in
the exterior domain €,

P = (0.44,-1.42,-0.14), Py = (—0.07,—1.48,0.22),
P; = (0.55,—1.33,-0.40), P, = (0.83,—-1.21,-0.27),
Ps = (—0.14, 1.42,0.44).



Table 2 shows that accurate values of Hy, are obtained using formula (10) for small
values of the parameter y (= 1072 in the example). In that case the 2 integral terms in

(10) are distinct so that there is no difficulty in making their difference.

Table 2: Values of the third component of the 2 integral terms in (10), value of Hy, - z

computed using (10) and exact value of Hy, - z for = 1073.

‘ 1st term ‘ 2nd term ‘

H,, by(10) ‘ H,, exact H

P, [ 0.3069 10" | 0.9327 10% | —0.7420 10% | —0.7635 102
P, | 0.2947 10! | 0.8954 10* | —0.7123 102 | —0.7329 102
P3| 0.2462 10 | 0.7529 10* | —0.5989 102 | —0.6173 102
P, | 0.2826 10' | 0.8629 10* | —0.6865 10 | —0.7073 102
P5 | 0.2305 10! | 0.7087 10* | —0.5638 102 | —0.5815 102

Table 3 confirms that formula (10) is irrelevant for numerical computation even if the
exact value of the RSP is used.

Table 3: Values of the third component of the 2 integral terms in (10), value of Hy, - z
computed using (10) with the exact value of ¢ and exact value of Hy, - z for u = 103.

| | 1stterm | 2nd term | Hp, by(10) | Hp exact |

P, 109351 10% [ 0.9327 10%* | 0.1960 10° | —0.2284 10°
P, [ 0.8979 10* | 0.8954 10* | 0.1993 10% | —0.2193 10°
P3| 0.7499 10* | 0.7529 10* | —0.2343 105 | —0.1847 10°
P, | 0.8606 10* | 0.8629 10* | —0.1837 105 | —0.2116 10°
Ps | 0.7020 10* | 0.7087 10* | —0.5343 10% | —0.1740 10

Finally, Table 4 shows the values of H,, computed using the method proposed in
section IV. We compare the value obtained with one term in the expansion (20), to the
value obtained with two terms in the expansion and to the exact value of Hy, for u = 103.
One can see that taking into account two terms in the expansion does not improve the
accuracy of the computed approximation of Hy,. Indeed when p = 103, the second term is
roughly 103 smaller in magnitude than the first one. The second term is involved in the
third decimal of the approximation of H,,, which is under the precision of the computation
of the boundary integral.

Table 4: Values of Hy, - z computed using the asymptotic expansion taking one and two
terms and exact value of Hy, - z for u = 103.

H ‘ 1 term ‘ 2 terms H,, exact
P, | —0.2237 105 | —0.2233 10° | —0.2284 10°
P, | —0.2148 106 | —0.2144 106 | —0.2193 10°
P3| —0.1796 10 | —0.1792 105 | —0.1847 10
Py | —0.2061 106 | —0.2057 106 | —0.2116 10°
Ps | —0.1681 105 | —0.1678 106 | —0.1740 10°




6 Conclusion

In this paper we have investigated in detail an integral formula to compute the magnetic
field from the reduced potential in magnetostatics. First we have shown that while attrac-
tive, the formula cannot be used as it is due to a cancellation effect of the two involved
integrals. Then we have investigated the reason for this cancellation. Finally we have
proposed a way to accurately compute the magnetic field in the exterior domain using an
asymptotic expansion of the reduced potential.

Appendix

We consider the more general case where the core ) contains N regions of different per-
meabilities. However with the same order of magnitude . We denote by €;,i =1,--- | N
the domains of constant permeability compounding 2 and by u; their relative permeabil-
ity. We have pu; = C;u where C; € [0.1,10] are constant data and Q = Ufil Q;. For
convenience we denote by 21 the exterior domain Q¢ and by pn41 its relative magnetic
permeability (un41 = 1). We denote by %;; ¢,j € {1,--- ,N + 1},i # j the oriented
boundary between €2; and Q; with the normal vector from €Q; to ©; (possibly we have
¥ij = ) and by %; the whole boundary of Q;, ¥; = Ujvjil i, 1 € {1,--- ,N +1}. The
RSP satisfies the following equations that generalize (4),

AQS:O in Qla"'agN—kla

9¢ 96| _

“iom o Hion | o (j —pi) 9 (21)
through %;;,1 <i<j <N +1,

where g = Hg-n. Our concern is the computation of the induced magnetic field Hy,, = —V¢

in the exterior domain 2y 1 by the following integral formula which is the generalization
of (10),

N+1N+1

() = 3 Z b / G@VGle)

~¢(2)VyGn(z,y)) doy
= Ziu((/’j -a | (0@ G(z) )
C @)ViGalay) do
320 -40) [ (69,06

~¢(x)VyGy(z,y)) dog.

As in formula (10) this formula is unfit for the purpose of numerical computation due
to a cancellation in the integral terms. In the following we investigate the cancellation
phenomenon in (22).

For convenience we again denote by ¢¢ the restriction of the RSP to the domain €2 and
by ¢° the restriction of the RSP to the exterior domain Q¢ = Qpn11. We denote by I the
set of integers i such that %;x,1 # (. Problem (21) then becomes: find ¢* and ¢® such
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that

( A¢Z:O in Qj,jE{l,"',N},
A =0 in Qni1,
¢e = ¢z on EN—H;

S 10¢° 0’ 1 _ (23)
M 52— Ci ;; =. (ﬁ —-Ci)g on Yini1,Viel,

o ¢ i .

C] on Qj— C’B—n Qi_ (C] Cz) g

{ through X;;,Vi,j € {1,--- ,N},i < j.

Again we look for ¢ and ¢° of the form

L Rl |
¢$'=> —¢p  and ¢e=> o (24)
k=0 K k=0 K

One can easily check that ¢} € H! (2) and ¢¢ € W§(Q2°), k € {0,1}, should be solutions
of the following interior Neumann and exterior Dirichlet coupled problems:

\

And for k& > 2,

(A(:ZS%):O in Qj,jE{l,"',N},

00| 00

_C —(C:i — C:
J a'n/ Q; ! 8‘77, Q; ( J Z) g
through %;;,Vi,j € {1,--- ,N},i <,
¢t
8—7;) =g on Syii,
») AgE=0 in Qi
P =¢y on Xni1,
( A¢11:0 in Qjaje{]-a"'aN}a
O O _
¢ C] on Cz on Qi_ 0
through %;;,4,j € {1,--- ,N},i < j,
Ot Ot .
k z’;;lz ;;f—g on Yin41,Vi € 1,

A¢e =0 in Qyii,
(PY) {

1 .
i =91 on Lyt

( AQSZ;:O in Qjaje{]-a""N}a
OBt Pt
, . =0
CJ on Q. Cz on Q;
throught Yij,1,J € {1,- .- ,N},’i < J,

o), 0¢f_ .
{ C; aq:f = # on ;N4+1,Vi €1,

11



i

Ag = 0 in Qg
(Pf) { :

We write (22) with the asymptotic expansion (24) and arrange the expression in ascending
order in power of u,

N N
Hm(y) = M{Z > (G- Ci)/ (g(w)VyG(w,y)

i=1 j=1 Xij
j>i

~63(2)VyGula,y)) do

+Zoi/ (9($)VyG($a’!/) - ¢6($)VyGn(w,y)) dgz}

i€l TiN+1
N N .
_{Z Z(Cj - CZ)/ ¢Zl($)vyGn(-Tay) doy
i=1 =1 Zij
+Y6 [ @96 do, )
iel iN+1
+Z/ (g(x)VyG(m,y) - ¢6("L‘)VyGn(-Tay)) dUz}
iel Y ZiN+1
+o0 1 N N .
- m{z > (G- Cz')/ Gt1(2)VyGr(z,y) dog
k=1 i=1 ;i g
+ Z Ci/ b4 () VyGr(z,y) dog
iel YiN+1
o Z ¢7c($)VyGn($,y) daz}.
el YN+

By using Green second identity for ¢} solution of (P}) we get

N N
0=330;-0) [ (s0)V,6@)

1 i
—43(2)VyGn(z,)) do (26)

(9(2)V,G(2,y) - ¢b()V,Gula,y) ) do.

2

iel YiN+1

This means that the leading term (the power one of p) in the expression of Hy, given in
(25) cancels. When we compute the function ¢ for large values of u, we have essentially
the first term ¢ which gives a cancellation in (25). From (25) we deduce that the values
of Hy, directly depend on ¢% which is not given by a straightforward numerical resolution
of (21). To circumvent the cancellation, one should use the following formula deduced

12



from (25) and (26) that generalize (19),

N N )
Hm(y) = —{Z > (=) /E $ (2)VyGn(z,y) dog

i=1 j=1
J>1i
N .
+3°6[ @¥,Galay) do,
i=1 YiN 41
N .
i=1 Y ZiN+1
‘o | (N N (27)
o _k{z Z(Cj - Ci)éij/ ¢7€+1(.’E)VyGn(:E,y) dog
P e i
1>t
N .
+3°0[  Hha@V,Gulo) do
i=1 YiN+1

N

B ’LZ—; /;JiN+1 ¢;€(x)vyGn(J;’ y) dam}

Here again to use (27) we have to solve 2 Laplace equations, one in © and one in Q¢ with
several right hand sides.
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