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Abstract— In Magnetic Resonance Imaging, inhomo-
geneities of the static magnetic field lead to perturba-
tions in the resulting images, called artifacts. Our goal
is to numerically compute the disturbances induced by
a material having magnetic properties different from
that of the surrounding tissues (e.g. a paramagnetic
implant). Since the method is linked to an artifact
reconstruction model to get simulated images, it has
to be well suited for general three dimensional geome-
tries and to provide very accurate results in a fine grid
around the implant. Our method is based on a surface
integral representation of the magnetic field. An ana-
lytical expression is derived when the boundary of the
domain can be meshed in flat panels. For curved sur-
faces a numerical quadrature scheme is implemented.

I. INTRODUCTION

In a Magnetic Resonance Imaging (MRI) device [1], a
simple lies in a highly homogeneous static magnetic field
Bg. One of the most common measuring protocol is the
spin-echo spin-warp one. In this protocol, the nuclear
spins are excited by a 90° RF pulse and refocused by a
180° pulse. The resulting RF signal is collected. The
spatial localization is achieved by applying magnetic field
gradients along three space directions. A slice of the ob-
ject is selected with the help of a gradient — the slice se-
lection gradient — which is switched on during RF pulses.
An image of this slice is obtained with the aid of a fur-
ther gradient: the phase-encoding gradient just after the
excitation pulse and the read-out gradient during data
collection. The procedure is repeated when varying the
strength of the phase encoding gradient. Finally the im-
age is reconstructed through the two-dimensional Fourier
transform of the collected data.

If the sample contains an object having a magnetic sus-
ceptibility different from that of the tissue, then an ad-
ditional magnetic field appears. The static field is not
homogeneous any longer and artifacts will appear in the
images.
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The principles governing the resulting changes in the
image have been analysed, see for instance [2]-[4]. A point
in the sample where the static field differs from the ex-
pected one will have, in the imaging process, the proper-
ties expected from another point, shifted in the directions
of the slice selection and the read-out gradients.

Previous works [5], [3] have studied artefacts generated
by a metallic ball, for which an analytical expression for
the induced magnetic field is known. We propose a com-
putational procedure to calculate the magnetic field in-
duced by a paramagnetic body of a quite general geome-
try. The method is based on a surface integral represen-
tation of the magnetic field.

An analytical expression 1s derived when the boundary
of the domain can be partitioned into a set of flat panels.
For curved domains, a meshing of the surface as a collec-
tion of flat triangles is generally not efficient and to get the
desired accuracy the use of curved triangles is required.
Then analytical expressions cannot be obtained and a nu-
merical quadrature rule is needed. These two methods
are implemented altogether so that when the boundary is
formed of a set of both flat and curved panels the best
suited method can be used.

II. CoMPUTATION OF MAGNETIC FIELD
DISTURBANCES

A. Mathematical Modelling

Let us consider an object Q (€ is an open bounded
set in R® with boundary %) having magnetic properties
different from that of the surrounding tissue Q' = R3\Q,
assumed to be an homogeneous medium and placed in
an MRI device. Q is assumed to be an isotropic linear
magnetic material. The exciting RF pulses_a}re neglected.

Given an applied static magnetic field By we are con-
cerned with finding the magnetic field induced by €2. Since
the metallic body is assumed to be paramagnetic, the in-
duced field is very small compared to Bg and we will con-
sider the magnetization being uniform in Q. Moreover
we assume that the magnetization of the outward domain
can be neglected.

The basic equations for magnetostatics deduced from
Maxwell equations lead to the problem: find H such that
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where 7 the unit outward normal to ¥ and [ ] the jump
across the boundary. M denotes the magnetization in the
domain €.
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At infinity H satisfies
lim H(z) = 0. (4)
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Problem (1)—(4) is the classical magnetostatic problem
due to a surface current and is studied from a mathemat-
ical point of view in [7].
From equation (2) we can_i}ntroduce the scalar magnetic

potential @ as unknown, H = —V &. The potential @
satisfies

A® = 0in Qand (5)

[V@ . W] M - at the interface E,  (6)

@(z) — 0 when |z| — . (7)

As is well known, the potential @ can be represented by
the integral formula
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The quantity of interest 1n the artefact reconstruction
method is the flux density B = ,uH = —MV@ We have

Br) = ——vp///M @) . (9

where 7 = QP

Using the assumption that the magnetlzatlon M was
uniform in Q and the Gauss theorem, B defined by (9)
can be rewritten in the form

B(r) = ﬁ/L(ﬁrf)W(Q) ds(Q).

The numerical computation of B is discussed below.

(10)

B. Computational Method

We assume that the boundary ¥ is meshed in a finite
union of flat and curved triangles. Let T} denote the set
of all flat triangles and T} the set of all curved triangles.
(One of these sets can be empty.) We get

Y= U K U U K.
KeT} KeT?

We decompose B as given by (10) in two terms
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These two sums are evaluated using two distinct methods.

| o
QO L\:::::::""/""/"‘

- Q2

Q3

Fig. 1. Decomposition of triangle K.

C. Integration over flat triangles

Throughout this section we are concerned with the cal-
culation of the first sum in (11), denoted Sy . Since the
triangles are flat, the normal " to ¥ is constant on each
triangle K (it will be denoted 7k in the sequel). Since
the magnetization M is uniform on 2 we get

S

An analytical expression over a triangle domain has been
derived for the potential due to a uniform source distri-
bution in [8]. Our technique used for calculating the field
B is rather different.

Consider a triangle K having his vertices at the points
Q1,Q2,Q3. Let Qg be the projection of the point P on
the plane defined by K. We introduce the following tri-
angles: K1 = {Qo,@Q1,Q2}, K2 = {Qo,Q2,Qs}, K3 =
{QO)QB)QI}; see Flg 1.

We can decompose the integral over K in a sum of three

integrals over K1, K, K3,
—
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The sign to be taken into account for each of the three
integrals can be easily obtained by computing the area
co-ordinates of the triangle K for the point Qo. (For in-
stance, in the situation drawn in Fig. 1, the signs are
+,4 and —.)

Let us consider the i*? integral. For convenience of sim-
plicity we will denote by {Qo, Q;, @Q;} the vertices of the
triangle K;. We first introduce a new coordinate system
with origin @}y and orthogonal basis vectors

QoQ: / Qo]
=z (QoQi A QoQj) / 1QoQi A QoQjl

Si(p) = £ dS(Q)) T . (12)
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In this coordinate system the vertices are defined by:
Qo : (0,0), @; : (2;,0) with z; > 0, @Q; : (z;,y;) with
yj > 0.

Let (z, yL}e the coordinates of Q and h = QOP
then " =QP=—x72 —y y +h 7 .

The coordmates of the vector valued integral R =
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Once these integrals are comﬁ}uted, the reciprocal map-
ping is used to get the vector R in the original coordinate
system.

When using a parametrisation of the triangle K;, the
first two integrals can be expressed by considering the
primitive

F(a,byu) =
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Then introducing the parameters
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we get
Rl - F(AQ)xZay])_F(AQ;xZaO)_F(Alaanj)
+F(X,0,0), (19)

Ro =F(55,0,2;) — F(5-,0,0)+ F(0,0,0)
+F()\L2a A3; xl) - F(t’ )‘3a x]) - F(Oa 0; xl)
The third integral is much more complicated to handle
and the method used depends on the shape of the triangle.

We refer to [9], page 81, for a description of the method.
We integrate once in z (16) and get

R3 = G(/\Q; lz) - G(’\la 0) )

. (20)
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In order to express the algebraic form of G, we introduce
the function

Atg(t) Artan( b+ Wt ) (23)
==
_a(h®a — by;) _ a’h?
Let t; = bay; T b) and tg = 02

Depending on the parameters a and b corresponding to
the shape of the triangle, we distinguish six cases.

If ab # 0 we have

e Case 1: a > 0,

Gla,b) =1 M (Atg(t;) — Atg(to)). (24)
b
e Case 2: a < 0 and y; < ——,
a
h
G(a,b) = m(Atg(tj) — Alg(to)). (25)
b
e Case 3: a < 0 and y; > ——,
a
h
G(a,b) = |h|(Atg( )+ Atg(to)). (26)
If ab = 0 we have
e Case 4: a =0 and b # 0,
G(a,b) = —ATctan( by; (27)
|hl |h|\/y? + h2 + b2

e Case 5: a # 0 and b =0,

ah (a® + Dy; + h? 1
G(a,b) = a h|<Arctan( W) Arctan(|a|)>
28
e Case 6: ¢ =0 and b =0,
G(a,b)=0. (29)

The above analytical expressions have been validated by
comparing the obtained values to results computed by
using quadrature rule. We want to point out that if the
domain © i1s a polyhedron then B is evaluated exactly.
Moreover the accuracy does not depend on the size of the
triangle.

D. Integration over curved triangles

When a part of the boundary is curved, an approxi-
mation with flat triangles may not lead to the required
accuracy. The use of curved triangles imply the compu-
tation of the second sum in (11), denoted Sz. Analytical
expressions cannot be obtained anymore.



To numerically evaluate S; we first approximate the
curved triangle K by a quadratic curved triangle K. Then
we use a quadrature rule over K.

J 35 e )~ [[ 55 @) as(e)
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where w; and p; , j =1---k, are the quadrature weights
and nodes which are tabulated.

We point out that the computation of S; by a quadra-
ture method 1s hampered by the quasi-singular behavior
of the function M - 7 7 /r3 when the point P is close to
a triangle K. In this case we give a particular atten-
tion to the way the integral over K is evaluated. We use
a technique described in [10] that consists in subdividing
the integration region K and then use the quadrature rule
over each subdivision. We decide on the number of needed
subdivisions by evaluating the distance from P to K.

ITI. SIMULATED ARTIFACTS

The computing method of the magnetic field distur-
bance described above is linked to artifact reconstruction
models [3] to get simulated images of the artifacts. We
present a numerically computed artifact due to a tita-
nium cylinder that could represent part of a catheter used
in surgery. The experimental image was obtained using a
spin-echo sequence along with the two dimensional Fourier
transform as described in the introduction. The selection
gradient intensity is 1072 T.m~!. The magnetic field EO)
(0.5T) is aligned along the cylinder axis. The slice imaged
is transverse and is located at half height.

¥

Fig. 2. Numerically computed artifact due to a cylinder.

Fig. 3. Experimental image coresponding to Fig. 2.

IV. CoNcLUSION

An analytical technique has been successfully applied
for computing the magnetic field induced by a paramag-
netic polyhedric body. Since appropriate analytical inte-
grals over curved surfaces are generally not known, this
method is somewhat restrictive. We needed to resort to
quadrature methods to overcome this limitation.

The advantages of the presented approach is its sim-
plicity and its computational efficiency. This is of great
importance since the results are to be linked to the im-
age reconstruction procedure to get simulated figures of
susceptibility artifacts in M.R.I.
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