Mathematical modeling and numerical simulation of magnetic
susceptibility artifacts in Magnetic Resonance Imaging

S. Balac!) and G. Caloz(?)

(1) Département de Mathématiques, Université de Bretagne Occidentale,
29285 Brest, France (Stephane.BalacQuniv-brest.fr)

(2) Institut de Recherche Mathématiques de Rennes, Université de Rennes 1,

35042 Rennes, France (Gabriel.Caloz@univ-rennesi.fr)

Abstract

The technique used to spot information in Magnetic Resonance Imaging (MRI) is
based on electromagnetic fields. To a strong homogeneous magnetic field (order of
magnitude around one Tesla) is added a linearly varying field (around 102 Tesla per
meter). When these fields are disturbed by the presence of a paramagnetic material
in the sample for instance, the resulting image is usually distorted, these distortions
are called artifacts. Our goal is to present a method, assuming the field disturbances
are known, to construct the images. A mathematical model of the MRI process is
developed. The way the images are distorted in intensity and shape is explained and
an algorithm to simulate magnetic susceptibility artifacts is deduced.
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biomedical implant, artifact

1 Introduction

The Magnetic Resonance Imaging (MRI) technique requires a strong uniform magnetic
field B, (order of magnitude around one Tesla) to magnetize the sample. Then magnetic
field gradients, which are magnetic fields with a linearly varying intensity (around 1072
Tesla per meter), are applied to select a slice of the sample to be imaged, this ensures part
of the spatial encoding of the MRI signal.

Any perturbation of the gradients can disturb the imaging process and then render the
resulting image inaccurate. Sources of perturbations are various. First of all the static field
B, and the applied gradients are not exactly uniform. However these defects are properties
of the MRI device and they are minimized and taken into account in the reconstruction
algorithms, see for instance [Weis & Budinsky, 1990] or [Abele et al, 1994]. Another cause
for magnetic field perturbation is strong tissue magnetic susceptibility variations (as near
air sinuses). [Bhagwandien et al, 1994] and [Li et al, 1995] investigate the distortion of the
static magnetic field in 2D anatomical models using the finite difference method and the
finite element method. A common cause for magnetic field perturbations is the presence
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of an object, like a metallic biomedical implant, with magnetic properties different from
the ones of the surrounding tissue. As well metallic surgical instruments used in MRI
guided surgery are liable for magnetic field perturbations. These perturbations depend
on the position, size, shape, and magnetic susceptibility of the metallic objects involved.
They can be very important especially near the metallic device which is often the region
of interest in the image. The resulting distortions in the image are known as magnetic
susceptibility artifacts.

There are various solutions that can be used either to remove or to reduce magnetic
susceptibility artifacts. Omne would be to design new medical implants which possess
magnetic properties such that the magnetic field induced would be almost zero, canceling
the artifact effect, see [Chauvel et al, 1996]. To develop new medical implants numerous
experiments need to be carried out. Numerical simulation appears to be a valuable tool
to investigate this approach. To perform it it is necessary to solve two distinct problems.
The first one is to compute the magnetic field disturbances due to the medical implant.
The second one is to use the resulting computations of field disturbances to obtain the
image distortions. In the past several studies have been undertaken in that direction,
see [Ludeke et al, 1985], [Ericsson et al, 1988] or [Bakker et al, 1993], in the attempt to
construct numerical simulation methods. However these studies suffer from too limitative
assumptions on the implant geometry as well as on the algorithm used to simulate the
image distortions. We have developed a computational procedure to calculate the magnetic
field perturbations induced by a paramagnetic body of general shape, see [Balac & Caloz,
1996], [Balac & Caloz, 1998]. Now in this paper a model is presented from which we deduce
an algorithm to construct the image distortions. First a precise mathematical model of the
MRI imaging process is made out. Then this model is upgraded to take into account the
magnetic field inhomogeneities. It allows to derive algorithms for numerical simulation.
Moreover it enables to find again the well known effects of magnetic perturbations on
an MRI experiment, as described in standard textbooks, and to accurately quantify the
various distortions giving rise to the artifact. Finally we have developed a software to
simulate the artifacts for implants of very general shape with two basic MRI sequences,
namely the Spin-Echo sequence and the Gradient-Echo sequence.

Another approach to study magnetic susceptibility artifacts would be to model the
MRI sequences via the Bloch equations. In that direction [Olsson et al, 1995] propose a
computer simulation program to investigate magnetic susceptibility artifacts under various
imaging sequences. The basic idea is to solve repeatedly the Bloch equations for each voxel
of the object and for a given pulse sequence to get the magnetization vector. Then the
image is obtained through a Fourier transform of the sampled signal. This method is
in a certain sense more precise than ours to deal with various imaging sequences and
parameters. But its implementation and use are by far much more involved. For each
voxel the Bloch equations need to be solved and it is very costly to get a good resolution
image. The two approaches are quite different but appear to be complementary.

Our paper is organized as follows. In Section 2 we present a mathematical model of the
MRI imaging process. In Section 3 the model is upgraded to take into account magnetic
field inhomogeneities. Section 4 is devoted to an analysis of the model; in particular
we explain how magnetic field inhomogeneities give rise to image distortions. Finally in
Section 5 we present algorithms to simulate magnetic susceptibility artifacts and numerical
experiments with a dental implant.



2 The principle of nuclear magnetic resonance imaging

When certain atomic nuclei are placed in a magnetic field B, and stimulated by a radio
frequency pulse (RF pulse) B,, they re-emit some of the absorbed energy as a radio-signal.
This phenomenon is known as Nuclear Magnetic Resonance (NMR) and the collected signal
is the NMR signal. For sensitivity reason MRI concerns mainly the study of hydrogen
nucleus. The frequency of the RF pulse by which a given nuclear species (characterized
by its gyromagnetic ratio v) is stimulated (we say that the nuclei resonate) is expressed
by the Larmor relation
~

vy = ﬁB’ (2.1)
where B is the modulus of the applied magnetic field. The Larmor relation (2.1) also gives
the frequency of the NMR signal.

By analyzing the NMR signal, information about the nucleus density and the chemical
composition of the sample is obtained. However this information is integrated over the
whole sample. In order to localize where the information is coming from and to get an
image of the sample, a spatial encoding of the NMR signal is needed. The tools for spatial
encoding are the magnetic field gradients.

2.1 Magnetic field gradients

In the MRI terminology a gradient is a magnetic field applied along the same direction as
the main static field B, but with a strength that depends linearly on the position. The
gradient field strength is much weaker than the one of By, about 10* times. The major
characteristic of a gradient field is the linear variation in its strength along one direction
only, the other two directions being not affected. In the sequel the variation direction
will be referred as the gradient direction and the linear variation coefficient as the gradient
intensily. Let g denotes the gradient intensity, n its direction, * = O P, then the gradient
field is expressed by

G(P) = g(r n)z; (2.2)
here we will refer to the laboratory coordinate system (O, @, ¥y, 2) where 2 is defined by

the direction of B, (i.e. z is along the bore of the magnet) and the two other directions
x and y are taken arbitrarily.

2.2 Slice selection process

Assume we want to get the image of a plane cross section Il through the sample. Let n,
be a unit vector normal to the plane and let C' be the point belonging to IIs such that
OC = cng, see Figure 1. To select the plane I, a gradient G4 called the slice selection
gradient is turned on when applying the RF pulse B,. The gradient direction is m4 and
for P € I, it is expressed as

G,(P) = g,(OP -n,)z = g, (OC + CP) - n,) z = gycz. (2.3)

According to the Larmor relation (2.1), all nuclei of a given species in the plane II; have

the same resonance frequency given by
7 7

v = §|B0+Gs| = ﬂ(B0+gsc). (2.4)

Moreover, nuclei out of the plane II; have a Larmor frequency that differs from vs. There-

fore if the RF pulse B, is applied with a frequency vy tuned to v, then only the nuclei

belonging to the plane II; will resonate.
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Figure 1: Selection of a slice of the sample.

2.3 Signal encoding in the slice plane

Let n, and n, be two orthogonal unit vectors in the plane II;. Let (z,,z,) denote the
coordinates of a point P € Il in the coordinate system (C, n,, 1p), see Figure 1. In order
to get a signal that contains information on the variations of the nucleus density in the
plane II; two other gradients are used. The read-out gradient G, is switched on while the
signal is collected. The gradient direction is m, and G| is expressed as

G,(P)=¢,(OP -n,)z=g.(CP-n,)z = g z,2. (2.5)
Thus the frequency of the MRI signal given by the Larmor relation (2.1) is

v v
= 1B, + G, = L(By+g,z,). 2.6
14 27_‘_l ot r| 271_( o-I-gﬂE) ( )

A similar relation between the phase of the signal and the coordinate z, is obtained
by using a third gradient, the phase-encoding gradient G,,. The gradient direction is 1,
and Gy is expressed as

Gy(P) = g,(OP -ny)z = g,(CP -mp)z = gy, (2.7)

The phase-encoding gradient is switched on for a brief period T, before the signal is
collected. The phase of the signal given by the Larmor relation (2.1) is

¢ = 2mv(P)T, = v|Bo + Gp|Tp, = v(Bo + gpp) T (2.8)

Thus there exist simple relations between the frequency and the phase of the signal in
one hand and the coordinates (z,, z,) of a point P in the plane II; on the other hand. This
phase and frequency spatial encoding will enable, through a Fourier transform of the signal,
to obtain an image of the slice II;. Note that in both relations (2.6) and (2.8), frequency
and phase origins can be chosen so that the constant term arising from By vanishes.



2.4 Fourier Transform of the signal

In an ideal MRI experiment ignoring relaxation effects, the MRI signal is sinusoidal with
a frequency given by (2.6) and a phase given by (2.8). It has the representation

Sltrag) = [ p(ori) exp i 7(grote +g,0,Ty) dada, (29)

where the function p is the nucleus density of the species in the slice I, see [Callaghan,
1993] or [Morris, 1982].

To extract an expression for the density we write a Fourier transform of the signal,
called 2D-FT in the MRI terminology. We introduce the change of variables defined by
the mapping ¢ : R? — R?

G(r, 2p) = (11, 72) = (= L grar, —LTpa,). (2.10)
P ' 27 7 S
We denote by J the jacobian of the inverse mapping; J is given by J = (y%7,g,)~! where
v = v/2n. With this change of variables, the integral in (2.9) reads

S(tr,g,) = /R2 A(11,72) exp(=2mi(mit, + T2gp)) dridm (2.11)

where A(1y,73) = p(¢¥~'(71,72))J. Then (2.11) is the inverse Fourier transform of A. Let
I(my,72) denote the intensity of the point (7, 72) of the image (usually called the image
pixel). Then from (2.11) we get by taking the Fourier transform

1 Al T2

IT)T :fStmg :AT7T = y a AT
(ro72) = FIS(tr, 9] = Alriym2) = —qppl(=2 - =)

(2.12)

Therefore, the two dimensional transform of the collected signal leads to a representation
of the density p in the plane II,. The linear mapping (2.10) can be seen as a scaling
between the sample and the image. Note that in practice constant time intervals T, for
the phase encoding are used, the phase variation is achieved through the use of variable
phase encoding gradient intensity g,, see [Morris, 1982] p. 164. The MRI signal can be
obtained in practice only for a finite number of values of g,, each signal being sampled in
time in a finite number of points. A discrete Fourier transform is performed to get the
image.

3 Theoretical approach of artifacts in MRI

So far we have introduced the techniques of the imaging process. Our goal now is to
study in which way magnetic field inhomogeneities give rise to image distortions. This
will provide a theoretical basis for the understanding of the observed phenomena as well
as a model for the numerical simulation of magnetic susceptibility artifacts.

3.1 Slice selection process disturbances

We establish now the effects of a magnetic field inhomogeneity B’ on the slice selection
process as described in Section 2.2. During the slice selection process the total magnetic
field is given by

B(P) = B, + G,(P) + B'(P). (3.1)



We assume that the magnetic field inhomogeneities are much weaker than the field B,
and we make the following approximation

B(P) ~ By + G4(P) + BL(P), (3.2)

where B! represents the component of the field inhomogeneities along the z direction
of the laboratory coordinate system. Hence the Larmor frequency vy, given by (2.1) is
approximated by

v (P) = 5= (Bo+ Gy(P) + BL(P)). (3.3)

In order to select the plane II; the RF pulse B, is switched on at a frequency vy given
by (2.4),

~
27

v1 = —(Bg + gs¢). (3.4)
Nuclei in resonance are those for which the Larmor frequency vy, is equal to the frequency
v1. From both equalities (3.3) and (3.4) one deduces that they are not located in the plane
IT; anymore but in the set of points P satisfying

Gs(P) + BL(P) = gsc. (3.5)

Let us develop this last relation. We denote by (z,y,2) the coordinates of P in the
laboratory coordinate system and by (nq,n2,n3) the components of the vector ng,. Let
d(P)=OP -ngs=n1z+ nyy + nzz. According to the equation (2.2) we have

Gs(P) = gs¢(P) = gs(n1z + nay + n3z). (3.6)
Equation (3.5) can therefore be written as

!
n1x + noy + n3z + B.(z,y.2) =c. (3.7

Gs

4

It is useful to write Equation (3.7) in the coordinate system R. = (C,n,, npy, n,). We
have
B (z,,
s+ Balonznes) _ 0, (3.8)
gs

where (z,,zp,2s) denotes the coordinates of P in R.. Thus magnetic inhomogeneities
prevent the selection of a perfectly planar slice Il;. Instead a warped surface given by the
equation (3.7) or (3.8) is selected.

3.2 Signal encoding disturbances

We suppose that the magnetic field inhomogeneity B’ also exists when the signal is
recorded. Then the static magnetic field is B(P) = B, + G, (P) + B'(P). As before we
assume that the approximation B(P) = By + G,(P) + B.(P) holds. The frequency of the
signal is not given by (2.6) anymore. According to the Larmor relation (2.1) we have

Y Y
v = EB(P) = ﬂ(BO + gz, + BL(z,, Ty, Ts)). (3.9)



In a similar way the phase of the MRI signal becomes

¢(P) = 27w (P)T, = vB(P)T, = 7(Bo + gpap + BL(zr, 2p, 25)) T (3.10)
The effect of the phase shift in (3.10) depends on the MRI sequence, see [Morris, 1982]
for a complete description. For the Spin-Echo sequence, the phase shift due to magnetic
field inhomogeneities can be compensated when the signal is collected, contrarily for the
Gradient-Echo sequence it is not. Since we want to handle the two cases, we introduce a
parameter k; with value 0 when the phase shift can be ignored and with value 1 in the
other case. Moreover we need to take into account that the perturbation exists not only
during the time 7}, when the phase encoding gradient is turned on, but since the sequence
inception, that is for a time Tx. Therefore the phase of the signal is given by

¢(P) = 7(B0+gpprp‘|'kdB,lz(xrampa'rS)TE)' (3'11)

So to take into account the effects of field inhomogeneities represented by B'(z,,z,, z5),
we will replace the equations (2.6) and (2.8) for the frequency and the phase by the (3.9)
and (3.11) ones. From now on the frequency and phase origins are chosen so that the
constant term arising from B, vanishes in (3.9) and (3.11).

3.3 Fourier transform of the perturbed signal

We want to image now a slice of a sample in the presence of a magnetic field perturbation
B’. The phase and the frequency of the signal, as well as the location of the excited nuclei
are modified in a way given by the relations (3.11), (3.9), and (3.8). Accordingly like in
(2.9), the MRI signal has the representation

S(tragp) = /RQp(xraxpaxs(mmxp))

exp (z Y(grar + BL(xr, 2y, x5, wp)))t,,)

exp (17 (gpzp Ty + kBl (2,, 2p, 25(2,, 2p))TE)) dayda, (3.12)

X X

where z; is a solution of the nonlinear equation

!
o+ M =0. (3.13)

For ease of exposition we assume there exists a unique z; satisfying (3.13), while a de-
tailed exposition would include in (3.12) an additional summation term over the different
solutions of (3.13). We will write B.(z,,z,) instead of B.(z,, xp, zs(z,, z,)) and p(z,, z,)
instead of p(z,,z,, zs(z,,z,)). We also set ¥ = /27 and carry out a Fourier transform
of the signal to simulate the way in which the image is obtained. The function S given in
(3.13) doesn’t have the required regularity to achieve the Fourier transform in the usual
way. We will use the Fourier transform in the sense of distributions.

Let S(R?) be the space of infinitely differentiable functions with all derivatives decreas-
ing rapidly and S'(R?) be its dual space (S'(R?) is the space of tempered distributions).
The Fourier transform of S as a distribution is defined by, see [Schwartz, 1961],

< FS,¢>=< 5, ¢> Vo € S(R),



where ¢ is the Fourier transform of ¢ in the usual way and <,> the duality product
S'(R?) x S(R?). Let I be the Fourier transform of S. We have for ¢ € S(R?),

<I,p> = <8,¢>
= /RZ’ S(tragp)qg(tragp) dt.dg,

= / {/ p(mra xp) exp (’L 7(97‘567* + B_,Iz(xra mp))tr)
R2 R2
x exp (i7(gpz,Ty + kaBL (2, 2p)TE)) dwrdwp} b(tr, gp) dt,dg,. (3.14)

By interchanging the order of integration we obtain

<I,¢>= / p(x,, zy) exp (l ’)/kdB_é(xra xp)TE)
R2
X {/R? exp (2 v((g-2r + BL(xr, 2p))t, + gpmpr)) qg(t,, 9p) dtrdgp} da,dap. (3.15)

We set p(z,, ) = p(ar, ,) exp (i vkgBL(2,, v,)Tg) and recognize inside the brackets the
inverse Fourier transform of the function ¢ taken in (= (g,z,+BL(z,, 2,)), =y x,T,), that
is

[ exb (i9((ara, + BLlars o)+ 6,2,T,)) 6l1r,55) divdg,

= ¢(—%(grar +B_,/2(x7‘7xp))7 —yz,1y). (3.16)

Thus the Fourier transform I of S is given by
<I,¢>= /2 p(r, 2p) (=% (grx, + BL(z,, 2p)), —y2,Ty) da.dz,. (3.17)
R
Let us consider the change of variables defined by
¥ (zr, zp) € R? — (T1(2ry @), 7227, 2p)) € R?

where

{ r(ee, ) = —v(grttr + BL(2r, 1)), (3.18)

oz, zp) = —ya,T).

The function 1) is not necessarily bijective because of the term B! (z,, z,, (2., z,)) arising
from the field inhomogeneities. Nevertheless since B is piecewise regular, one can find
a covering of Ué\leﬁj = R? made up of a finite number N of open sets U; such that,
Vi=1,...,N,¢:(z,,2,) € Uj —> (11(2,, zp), 2(2,, zp)) € V; is bijective. Let J; be the
jacobian of the inverse of 1;, the restriction of v in U;

1
J; = > . (3.19)
¥, (gr + 5 B e wp))
We have
N [E—
<Il,p> = {Z plzr, z,) (= (grzr + Bl(z,, 2p)), —qupxp)NUj} dz,dz,

7=1

/ p(zr, 2,)0(—% (gr2r + Bl(2r,2p)), —¥Tpzp) da,dz,, (3.20)

||'M2 \



where Ry (2., 2,) = 1if (2., 2,) € U; and Ny, (2,,2,) = 0if (z,,2,) ¢ U; . The use of the
change of variables (3.18) in (3.20) gives

<I,¢p> = Z/ ¢ T1,T2 ] (7—177—2))1].(7_177_2) drydr
N
= /RQ{Z¢(7—177'2) ﬁ(,(/)j_l(Tl,Tg))Jj(Tl,Tg) N‘/J}dTldTQ
i=1

N
= <Y (Foy )Ny, 0> . (3.21)

7=

—_

Henceforth we have

Mz

I(11,72) Y1, m2)) i (71, T2) Ry (71, 72). (3.22)

j=1

Eventually from the expression (3.22) with the change of variables (3.18) we deduce
that the intensity of the image pixel (71, 72) is given by

1(7'137'2) = Z p(xraxp’xs) €xp (l 7kdB;($r’xp’xs)TE)
(erstprs)
solution of (3.24)
1
X , (3.23)
T
|1 + _ax Bz(xrv Lp, $3)|
where
o + DlEnTeld
gr
Zp = T (324)
x + B,Iz (wf"v wpv xs) — 0

gs

In (3.23) we have included the case where (3.13) has several solutions. Moreover, the con-
stant coefficients ¢ in (3.24) and 1/%%T,g, in (3.23) are omitted. They can be interpreted
as scaling coefficients.

3.4 The pulse bandwidth

For ease of exposition we have assumed so far that the RF pulse B, is emitted at a single

frequency vy. In practice the RF pulse contains a range of frequencies (or bandwidth)

n + %AI/l. Thus all the nuclei whose Larmor frequency is equal to one of the frequencies

in the bandwidth resonate. Consequently a layer of thickness e; around the plane Il is

imaged. One can check that the slice width is given by
2m Avq

€s = — .
Y Gs

(3.25)



Therefore in order to take into account the pulse bandwidth an additional summation
term over the slice thickness ez is to be introduced. The signal is expressed as

tlagp / / ajﬁmpa xrvajpaC))
——6s

X exp (Z 7(97"377" + Bz (377"7 Lp, $S($7‘7 Lp, C)))tr)
x exp (i 7(gprp Ty + kaBL(wr, p, v5(2r, 70, ())TE)) da,dz,dC (3.26)

where z; satisfies

B/Z r b S
ro+ (xgxp zs) —¢ with ¢ € [~1Les, Les]. (3.27)
Our development for the Fourier transform of the signal remains valid. One should read
I(z,,x,) = (2, 2p, v5(2r, 2, ¢)) and B. L(@r,xp) = Bl(xr, xp, s(2r, 2p,()), and carry an
integration over the variable ¢ € [—3es, 1e,]. Expressions (3.23) and (3.24) become

I(r,72) = /_

€s

(ST

Z p(xraxpvxS) exp <i7kdB;($Taxpa$5)TE)

(Ir 71'1371'5)
solution of (3.29)

1

€s

NI

X dc, (3.28)
|1+i O B (20, 2p,24)|
0w, ryLp;
where
!
T, + —Bz(wr,wp,xs) = T,
gr
QTP = T, (329)
!
Ts + Bz(wf“va7$8) — C

gs

4 Analysis of magnetic susceptibility artifacts

With the relations (3.28) and (3.29) we have formulae to get the intensity of the image
pixel (y, 7). They will be used first to study from a theoretical point of view the effects
of magnetic inhomogeneities on MRI images. We will see that these two mathematical
relations enable to find again the well known effects of magnetic perturbations on an MRI
experiment as described in [Ludeke et al, 1985], [Ericsson et al, 1988] or [Schenck, 1996]
for instance. These relations also enable to accurately quantify the various distortions
giving rise to the artifact. In the next section relations (3.28) and (3.29) will be used to
develop numerical methods to compute artifacts.

4.1 Geometric distortions

In Section 3.1 we saw that magnetic field inhomogeneities prevent the selection of the
plane Il of equation z; = 0. Instead a surface X5 with equation

B/Z r b S
v, 4 Bl 2) (4.1)
s

10



is selected, we recall that (z,,z,,z) are in the coordinate system (C,n,, n,, ny). Thus
the actual position of the points in the sample is shifted from the plane II; by a quantity
!
Ac(p) = 2B (1.2)
gS
in the direction m, of the slice selection gradient. Consequently a non planar surface
with a varying thickness is being imaged instead of the desired plane II;. We can observe
that the slice selection disturbances could be reduced by increasing the intensity g, of the
slice-selection gradient. Unfortunately this intensity is limited by technical constraints.
The first two equations in (3.29) express the disturbances of the phase and frequency
spatial encoding process. In the absence of magnetic field inhomogeneities, a point P =
(z,,z,,0) belonging to the plane Il is depicted in the image at the position (14 = z,, 7 =
zp). In the presence of a magnetic field B’ a point P = (z,, zp,z.) belonging to the
surface X is depicted at

B (2, 2p, 75)

(Tl = Ty +
gr

Ty = Tp). (4.3)
Thus field’s inhomogeneities are liable for distortions in the read-out gradient direction
n, but do not affect the image in the phase encoding direction n, this is one of the well
known advantages of the 2D-FT image reconstruction method, see [Morris, 1982], p.165.

In addition to that, due to the magnetic field inhomogeneities the distance between
two points in the sample is not preserved in the image. Let P = (z,,2,,25) and P’ =
(z',2',, x5) be two points in ¥,. Let §, = 2', — 2, and §, = 2’, — z,. The distance in
the sample between the two points is 6 = /82 + 62. If (1, 73) and (71, 7'3) are the two

corresponding image pixels, then we have from the system (3.29)

1
oo — (B’ ") - B
™ = T1+5r+g,(BZ(P) B.(P)), (4.4)
T = T2+5]9'

The distance between the two pixels in the image is

A:\/(5,,-|—gi(B/Z(P/)_B/Z(P)))2+5§. (4.5)
r
Thus in the presence of magnetic field inhomogeneities the actual distances are not pre-
served in the image. Moreover if the magnetic field B’ varies abruptly then two points
that are close to each other in the sample may appear far from each other in the image.
Such a steep variation happens for two points in two media with strongly different mag-
netic properties, for instance a metallic implant and a biological tissue. It is well known,
see [Jackson, 1975], that the magnetic field has a discontinuity at the interface between
the two media which is proportional to the variation of the magnetic susceptibility x,,.
In order to illustrate the image distortions we will consider the special case of a metallic
ball (the implant) embedded in a homogeneous diamagnetic substance (the biological
tissues) and submitted to the magnetic flux density B,. The ball radius is 1 ¢cm and
its magnetic susceptibility is y,, = 1073. The magnetic flux density strength is By = 1
Tesla and the intensity of the gradients is ¢ = 1072 Tesla per meter. The magnetic field
inhomogeneities are due to the magnetic field B’ induced by the ball, see [Jackson, 1975]
for its analytical expression. The slice I, to be imaged is parallel to B, and intersect the
ball through its center, see Figure 2. The slice is 3 cm long and 3 ¢cm wide. Figure 3 shows
the surface X5 with equation given in (4.1) and the geometric distortions given in (4.3).

11
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Figure 3: (a) Distortion of the slice to be imaged (in meter) and (b) geometric distortions.

4.2 Intensity distortions

Intensity distortions may have three different origins.

If there exist several solutions (&, z,, zs) to the equations (3.29) for a given right-hand
side (7, T2,(), then several points of the sample are associated to the same image pixel.
Contrarily if the system (3.29) has no solution, no point of the sample corresponds to the
given pixel. The result is an intensity enhancement in the first case and a cancellation in
the second case.

The intensity distortions are due as well to the variations of the field B’ (in fact its
component B.) in the read-out gradient direction. This distortion is given in (3.28) by
the term

1
D= . . (4.6)
14 o Bl(or, 2y, |
If B, increases in the direction of the read-out gradient then %B;(xr, Ty, xs) > 0 and the

intensity decreases, D < 1. On the contrary, if B, decreases then %B;(ajr,xp,a:s) <0
and the intensity raises, D > 1.

Finally the term exp (i vkqBL (2, 2, ¢5(2,, ,,())TrE) in (3.28) expresses that for some
imaging sequences (such as the Gradient-Echo sequence), magnetic inhomogeneities give
rise to intensity distortions due to additional phase shifts.
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5 Algorithms and numerical simulation

To compute magnetic susceptibility artifacts now it suffices to evaluate the integral in
(3.28), once the magnetic perturbation fields B’ is known.

5.1 A first algorithm

We wish to numerically compute the image intensity 7 in (3.28) on a given pixel (71, 72).
The integral is evaluated with a gaussian quadrature rule. We have

1. I2%]
28 €g

I = [ A Qdon § Y ord(rmaw) (1)
—36s k=1

where the w; € R are the quadrature weights and uy € [—1, 1] are the quadrature nodes.

The main task is then to determine the point(s) (z,2,,z.) in the sample that are
represented in (7, 73), that is to solve the system (3.29). This system can be written, by
combining the first and third equations, as follows

Js
T, + - C — T = T1,
gr( )
Tp = T (5.2)
B/
Ty + LAGIIID) = (, where ¢ € [—%e,, 3€,].
9s

Thus we have to solve the following non linear problem: find z; € R solution to

B (@, 2p, 25)

s

Ts+ =( (5.3)

where

Ty = T1+g_s(xs_C)a

r
Ip = T2, (54)
C € [—%657 %68]'

Let F: R — R be defined by

Tg —> F(a:s) = (a:s — C) + ilg;(Tl + &(xs - C)7T27$s)7 (55)

S r

where the parameters g, g,, g, 71, 72 and ¢ are fixed. Solving (5.3) and (5.4) is equivalent
to find the zeros x5 of F. The values of z, and z, are then obtained by (5.4).
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s

Figure 4: Graph of the function F in the case of the ball. The parameters 7, T3, and ¢
correspond to a point far from the ball (left), close to the ball (middle) and inside the ball
(right).

We derive the following formal algorithm

Algorithm 1

For each pixel (ry,73) do
For k=1,...,u4 do
For each x, solution of F(zs) =0 do
Set z, =1 + g—f(ﬂ% —(¢)and z, =1

Compute p(z,, zp, z5), BL(z,,2,, 25) and Bz, xp, x5)

Set

oz,

exp (i vkqB, (2, 2p, 25)TE)
|1 + liB,{z(wrv xpa w8)|

gr Ozy

I(Tla TQ) = I(Tlv TQ) + P(wr, Lp, :I?S)

End do
End do
End do

We have implemented Algorithm 1 in the case of a ball where the analytical expression
for F is known, see the example at the end of Subsection 4.1. One observes that the
function F given in (5.5) is not necessarily continuous (this is due to the jump of the
magnetic field B’ across the ball boundary) and the number of its zeros depends on the
values of the parameters 7y, 75, and (. In Figure 4 we have depicted the graph of F for
several values of 71, 72, and ¢ in the case of the ball discussed in Subsection 4.1. We can
observe that the number of zeros varies from 0 to 3. The behavior of F is therefore liable
to change depending on the experimental parameters gs, g, gp, 71, 72 and (. In practise,
for metallic implants of general shape there is no analytical expression for the magnetic
field B’ and therefore I’ can only be computed pointwise. Therefore no efficient numerical
code based on Algorithm 1 can be elaborated.

5.2 An alternative approach

It is possible to overcome the difficulty of finding the zeros of F’ by working in a different
way. The idea is to go over the sample and to test whether the nuclei at a given point
(z,,z,, ) resonate or not. In that case we compute the pixel where this point is depicted
in the image and we increase the pixel intensity by the corresponding value. This approach
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is applied in the following algorithm.

Algorithm 2

For (z,,2p,25) € R? do:
Compute (7, 72,¢) such that

B;(mrv Tpy Ts)

mn = Zr +
9r
Ty = pr
C = =, B;($r,$p,$s)

9s

If € [—%es, %es] and (7, 73) belongs to the image then

exp (Z 7kdB; (wf‘v Lp, xs)TE)

11+ g%aig;rB;(xrvxp7$5)|

I(ry, ) = I(71,72) + p(ar, 2p, 24)

End if
End do

In practice, a large volume around the object is chosen. This volume is subdivided
into small cubes. Inside each cube a point (z,,z,,zs) is chosen. Previous works on
numerical simulation of susceptibility artifacts were based on this approach, see [Ericsson
et al, 1988], [Bakker, 1993] for instance. The main disadvantage of this approach is that it
requires computations for a large number of points. Now most of these points would not
be depicted in the image. Fortunately it is possible to limit the area around the object in
which the points depicted in the image lie. We have implemented Algorithm 2 to simulate
MRI artifacts induced by metallic implants of general shape, see [Balac, 1997].

5.3 Computation of the magnetic field perturbations

Most of the previously presented computer simulations regarding magnetic susceptibility
artifacts have only consider the case when an analytical expression for the magnetic field
perturbations is known. It means that simulation were limited to simple geometrical
objects such as sphere, cylinder or ellipsoid, see [Ludeke et al, 1985], [Ericsson et al,
1988], [Bakker, 1993] for instance. In general, a precise calculation of the magnetic field
involves a boundary value problem with partial differential equations (PDE) derived from
Maxwell’s equations and requires the use of PDE approximation schemes. Among the
classical numerical methods are the finite element method (FEM) and the finite difference
method (FDM). These methods are used by [Bhagwandien et al, 1994] and [Li et al, 1995]
to investigate the distortion of the static magnetic field in 2D anatomical models.

As serious limitation of the FDM stands in the calculation of the boundary conditions
on non-planar boundaries. Furthermore, when applying the FDM or the FEM to electro-
magnetic field problems the exterior domain has to be truncated and an approximation of
the behavior of the field at infinity has to be enforced on an artificial boundary.

In [Balac & Caloz, 1996] and [Balac & Caloz, 1998] we have developed a method to
compute the magnetic field induced by paramagnetic implants of very general shape that
avoid the limitations of the FDM or the FEM for this particular problem. Our approach
is rather similar to the one used in the boundary element method (BEM) and is based
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on a surface integral representation formula for the magnetic flux density. For short, our
method consists in writing the problem into an integral form over the boundary of the
implant and chopping the boundary into pieces on each of which the integral is numerically
computed. It is able to deal with objects of any shape provided that a mesh of the object
boundary is available. This requirement is not at all restricting since mesh generation
tools are widely used in computer assisted design (CAD). The advantages of our method
compared to the FEM or to the FDM are numerous. First, the computation only turns on
the object boundary so that the discretization space is reduced from 3D to 2D. Moreover
the behavior at infinity is always exactly satisfied. Last, for 3D problems the FEM and
the FDM lead to large linear systems to be solved, whereas in the propound method the
solution is obtained pointwise by evaluating a surface integral.

5.4 Numerical results

In the case of the metallic ball of radius rg and magnetic susceptibility y,, a very efficient
way to numerically simulate magnetic susceptibility artifacts is given by Algorithm 1.
From the analytical expression of the magnetic field induced by a ball, see [Jackson, 1975],
we derive the following expression for F,

3 2
. 1
Fle) = (- o)+ XD (3(25” —T—B) it > o

2Xm BO
395

(5.6)

= (zs—0¢)+ if r < ro.

Multiplying each side of the equation F(zs) = 0 by an appropriate conjugate quantity we
obtain that the zeros of F' are among the roots of a polynomial P(z,) of degree 12. A
Matlab program that uses this approach to simulate artifacts induced by a metallic ball
can be obtained from the authors. Figure 5 (a) shows the experimental artifact obtained

when an MRI image of the slice depicted in Figure 2 is done. This experimental image
has to be compared to the numerically simulated image shown in Figure 5 (b) which is
obtained by using our Matlab program.

0.01

0.03
-0.03 -0.( -0.01 0 X X 0.03

Figure 5: Magnetic susceptibility artifact generated by a metallic ball; (a) experimental
image (left) and (b) numerically simulated image (right).

The computational method of the magnetic field perturbation induced by a metallic
implant described in section 5.3 is used together with Algorithm 2 to get simulated images
of the artifacts generated by objects of general shape. To illustrate the efficiency of the
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Figure 6: Dental implant chosen to illustrate the effectiveness of the method, position of
the slice and mesh (1328 triangles) of the implant boundary used to compute the magnetic

field perturbation.

method we present some simulations carried out with a dental implant depicted in Figure
6. This implant has a magnetic susceptibility of 1073 usi and is placed in a 0.5 T magnetic

flux density B,. The mesh of the implant boundary used to compute the magnetic field
perturbation has 1328 triangles (we have neglected the thread of the screw). The slice
depicted in Figure 6, has a side length of 5 cm and is parallel to the magnetic flux density
B,. The slice-selection gradient and the read-out gradient strength are 1072 T/m. The
slice thickness is 3 mm. Figure 7 shows the isolines for B, and the numerically computed
artifact. To obtain the corresponding experimental image the implant was placed centrally
in a box filled with a diamagnetic substance (CuSO4 at a concentration of 0.6 g/1). The
slice was recorded using a Spin-Echo sequence with a repetition time of 490 ms and an

echo time of 25 ms.

Figure 7: Isolines for B!, simulated Spin-Echo image and experimental MR Images (SE
490/25). The frequency encoding gradient direction is left-right, the side length of the
figures corresponds to 5 cm actual distance.
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6 Conclusion

We have developed and analyzed a mathematical model which represents image distor-
tions in MRI generated by magnetic field inhomogeneities. Algorithms for the numerical
simulations are derived. These algorithms are implemented in a software to get simulated
images of the magnetic susceptibility artifacts generated by implants of very general shape.
The software could be very useful to investigate new medical implants that would not be
so sensitive to artifacts, see [Chauvel et al, 1996]. Presently many experiments on MRI
imagers have to be carried out. In the future we intend to merge our approach with the
one presented in [Olsson et al, 1995] to simulated images of the magnetic susceptibility
artifacts generated by implants of general shape for any MRI pulses sequence. A last
step in the mathematical study of MRI susceptibility artifacts would be to propose post
processing methods to retrieve the original image.
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