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SUMMARY

We present an original method to compute the magnetic field generated by some electromagnetic
device through the coupling of an integral representation formula and a finite element method. The
unbounded three dimensional magnetostatic problem is formulated in terms of the reduced scalar
potential. Through an integral representation formula, an equivalent problem is set in a bounded
domain and discretized using a standard finite element method. A complete error analysis of the
method is achieved and presented in the paper.
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1. Introduction

Our goal is to present an original method in order to compute the magnetic field generated
by an electromagnetic device made of a weak ferromagnetic material. Nowadays a lot of work
has been done in magnetostatics and numerous numerical methods are known to solve such
problems. The choice of the physical unknown either the magnetic strength H, or the magnetic
induction B, or the magnetic potential, the choice of the numerical approximation methods
either finite difference (FD) or finite element (FEM) or boundary element (BEM) methods
will lead to many different schemes. Each one has its own advantages and drawbacks.

The features of the magnetostatic problem considered in the following are : it is a
three dimensional problem set in an unbounded domain. As the problem is set in an
unbounded domain, an artificial boundary is generally introduced at a finite distance from
the electromagnetic device to use FEM methods [1] and the behaviour of the solution at
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infinity is handled through an approximate boundary condition set on this artificial boundary,
see [2], [3]. We also have the boundary element method [4] where an integral representation
formula is used to write the problem as an integral equation on the boundary of the device. As
a drawback of this method we need to compute nearly singular integrals which require the use
of elaborated quadrature schemes. It can also be irrelevant to use the integral representation
formulae to compute the solution in a large number of points in the interior or exterior domains.

Here we present a third way to compute the magnetic unknowns through the coupling
of a finite element method with an integral representation formula. Namely, an integral
representation formula is used to take into account the behaviour of the solution in the exterior
domain while a finite element approximation is used in the interior domain. This approach
is now classical and there exist different ways to write the coupled problem. The one we use
originates from the work of A. Jami and M. Lenoir in the field of hydrodynamics, see [5]. The
magnetostatic problem is written using the reduced scalar potential [6]. The basic idea of the
method is to bound the exterior domain using an artificial boundary that can be close to the
device boundary but always distinct from it. The boundary condition to set on this artificial
boundary is obtained using a boundary integral representation formula of the solution, the
support for the integral representation being the device boundary. As the two boundaries are
distinct, all the involved integrals are regular and standard quadrature schemes are used. The
magnetic potential in the interior domain surrounded by the artificial boundary is computed
using a standard finite element approximation. Then we use an integral representation formula,
deduced from the one for the potential, to compute the magnetic field in any point of the space.

Our method reconciles the advantages of both FEM and BEM. The behaviour of the solution
at infinity is handled exactly by an exact boundary condition set on an artificial boundary. As
the artificial boundary and the device boundary differ, all the involved integrals are regular.
This computational approach is well suited for shape optimisation where the area of interest is
often well localised, the air-gap of an electromagnet for instance. The coupling boundary can
be chosen close to the electromagnetic device to reduce the size of the interior domain where
the finite element method is employed. The magnetic field at the node on the control surface
can be computed efficiently using the integral representation formula.

The content of the paper is the following. In section 2 we present the magnetostatic problem
and the variational formulation obtained for the problem set in a bounded domain with a
integral representation formula set as boundary condition. The finite element discretisation is
presented in section 3. A careful error analysis of the method is achieved in section 4.

For ) C R?,1?(9) denotes the set of square integrable functions over  and H™ () (m € N*)
denotes the set of functions with derivatives up to the order m in L?(2). To handle functions

defined over the unbounded domain CQ we will use the standard weighted Sobolev spaces
W (R?) and W* (CQ) defined by

Y

W () = {¢ ) \/TW

c12(00), Vye L2(cﬁ)3}_

This set is equipped with the norm | . |, gg defined for ¢ € W' (CQ) by [¢|? o5 = [oq V¥~V da.
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Figure 1. Situation under consideration.

2. The continuous problem
2.1. The magnetostatic problem

The situation under consideration is the computation of the magnetic field generated by
an electromagnetic device composed of a weakly ferromagnetic core  and an inductor Qg
characterised by a time independent current density j in a three dimensional geometry. The
domain Q is a simply connected open set in R®. We denote by ¥ and X the boundary of
and €, respectively and by [Q and 0Q, the complement of their adherence in R®. We assume
for simplicity that the metallic core Q has a constant permeability. This assumption is not a
limitation of the study but avoid cumbersome notations.

The magnetic field H satisfies the basic equations of magnetostatics

div uH = 0 in Q,

divH = 0 in CQ,

pH|,-n = H (T across %, 1)
rot H = j in Q,

rot H =0 in CQ,,

[H An] =0 across X,

where n is the outward unit normal to ¥ or ¥;, H | o (resp. H | Cﬁ’) denotes the restriction of

H to the domain Q (resp. (Q) and [ ] indicates the jump across the interface. It is classical,
see [6], to express the total magnetic field H as H = Hg + H,,, where Hg, the field due to the
source currents, satisfies

divHs = 0 in RS,

rotHy = j in Q,,

rotHs = 0 in [0, (2)
[HsAn] = 0 across %,
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and H,,, the reaction of the ferromagnetic piece, satisfies

rotH, = 0 in R3,
divHm = 0 in Qand CQ, (3)
(u—1)Hp-n = (1—p) Hg-n across X.

On the one hand, Hg can be efficiently computed, see [7], [8], through the evaluation of the
Biot and Savart integral
1 r

H) =g [ (i0n5) (4)
with r = x — y. Thus the computation of the total magnetic field H is reduced to the
computation of H,,. One advantage of this approach is that although the conductors lie
within the computational area, they do not need to be meshed when using a finite element
discretisation to solve problem (3). Moreover all what is needed for the computation of H,y, is
the value of the field Hg over the surface X.

On the other hand, as the field H,y, is curl free, we can introduce the so-called reduced scalar
magnetic potential (RSP) ¢ such that Hy, = —Vp. The RSP satisfies the following problem
deduced from (3),

ayp (5)

Fon

where g = Hg-n is considered as a given function since Hg is computed using (4). One can prove

that problem (5) has a unique solution in the Sobolev space W' (R?) and that this solution is

continuous in R3. The main advantage of introducing the RSP is to transform a problem for

a 3 components vector field throughout the space into a problem for a scalar function, thus
reducing the number of degrees of freedom in the discretisation.

A numerical method widely used to solve magnetostatic problems is the finite element
method (FEM). To deal with the unboundedness of the domain in problem (5), an artificial
boundary can be introduced at a finite distance from the electromagnetic device. The behaviour
of the solution at infinity is usually handled through an approximate boundary condition set
on this artificial boundary deduced from an asymptotic expansion of the solution at infinity
[2],[3].- A drawback of this approach is that the artificial boundary has to be introduced at a
sufficiently large distance from the electromagnetic device in order the approximate boundary
condition gives satisfactory numerical results. An other way to proceed is to set an exact
boundary condition on the artificial boundary. It is the approach we develop in this paper in
the context of magnetostatics. Our exact boundary condition is obtained using a boundary
integral representation formula for the reduced scalar potential. As the boundary condition is
an exact one, the artificial boundary can be placed very close to the electromagnetic device.

{ Ap=0 in Qand (0,
9y
|Q—%|c§:(,u—1)g across X,

2.2. Integral representation formulae

The boundary condition on the artificial boundary introduced to bound the domain is obtained
by applying potential theory results to the reduced scalar potential . Let G denotes the Green
kernel associated with the three-dimensional Laplacian,

1

=——— f R?
G(ny) 471_'1_ _ y| or ny E 7‘7‘. 75 y)
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and G, (z,y) = V,G(z,y).n,z € B,y € R®, denotes its normal derivative on X.
Since the magnetic potential ¢ is harmonic in the exterior domain CQ we have the Green
representation formula for y € CQ, see [4],

Op
o) = [ olm@ Gl do. ~ [ 22]05(0) Glay) don. ©)
X » On
Let’s take 2 € Q and y € [Q. We deduce from Green second identity the relation,
0 = [ (860 Ga) ~ 9(0)AsCla.) o
- O G G d 7
- 5 6_n|9(w) (:v,y)—(,0|9(:1:) n(Z,y) Og- (7
Then we multiply (7) by u and add it to (6) to get for y € CQ

oly) = / (0] e(@) — 19| o (&) Gala,y) doy

0 0
~ [ (B oot -1 5 1o@) G do. ®

Using the boundary condition on ¥ in (5), we obtain the following representation formula
for y € CQ,

o) = (-1 [ 9@ G) dow = (1=1) [ ¢@)Gulo,) do. )
b b
As a byproduct we can express for y € 0Q the reaction field Hy,(y) = —Vo(y) as
Hun(y) = (1= 1) [ (0)V,G(a,0) doz = (1= 1) [ ¢l@)V,Gulop) dow (10)
P b

Suppose we have computed ¢ on ¥ then Hy, can be computed via the formula (10) since g
and G are known functions.

Let T be an artificial surface surrounding 2. We define a boundary differential operator on T'
by D'u = 2% + u. From (9) we have for y in T,

Dy(y) = (u—l)/zg(w) D" G(z,y) dom—(u—l)/zso(sv) D'Gy(z,y) do,.  (11)

Relation (11) will be used as boundary condition on T'. In the following we denote by Qr the
open set delimited by the boundary I and by Qsr the open set Qr \ §, see Fig. 2.2.

Thus, we now consider the following problem set in the bounded domain Qr : find
¢ € H! (Qr) such that
(( Ap=0 in Q,
A¢ = 0 in QEF:

86 0¢
< Ma_n|9_8_n|9>31“:(u_l)g on E; (12)

DY 4(y) = (u— 1) / 9(x) D' G(z,y) doy

) KL T
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Figure 2. Notations for the problem set in a bounded domain.

Remark More generally we could define a family of boundary differential operators on the
artificial boundary I’ by D*u = g—z + Au where ) is a non negative real, see [9]. o

Proposition 1. Problem (12) has a unique solution ¢. This function ¢ is the restriction of
the solution ¢ to problem (5) to the open set Qr. Moreover, the function ¢ prolongated to the
open set CQr by the relation

) = (u—1) / 9(2) Gz, ) doy + (1 — p) / 6(2) Guleyy) doy Wy e COr (1)

is solution of problem (5).

Proof The existence of a solution to problem (12) is obvious since the solution ¢ to problem (5)
satisfies all the conditions in (12). Let us examine the uniqueness of the solution.

The solution ¢ to problem (12) is a harmonic function in Qxr and © and as a consequence
it admits the following integral representation in Qxr:

o) = [ (60)Gule) - @) Gan) .

s |

P

(9(@) G(@,9) = $(2) G (a,1)) dos. (14)
Let ¢ € W' (CQ) be the harmonic function defined by
vw) = (- 1) [ (9) Gla) - 9(2) Gule,p) do Wy € 0 (15)
s

and let w = ¢ — v in Qyr. Relations (12) and (15) imply that
vyeT  Dfw(y) =D'¢(y) =D ¢(y) =0



COUPLING OF FEM AND INTEGRAL REPRESENTATION IN MAGNETOSTATICS

and relations (14) and (15) imply that

wetsr  w) = [ (60 Guloy) - 50 Glo) i

7

(16)

We deduce from (16) that w is the restriction to Qsr of the harmonic function @ defined in Qp

by:

- 09

) = [ (0) Guliry) = G () Glo.9)) e
Now, it is well known that the following problem

find @ € H' (Qr) such that:

Aw = in OF

0
DMy = 0 onT

has the zero solution as an unique solution. It follows that ¢ = in Qxr.
Let us now consider the function v € W' (R?) defined by

¢ in ﬁ,
v = ¢ = ’d) in QE,
’(,[} in CQF
This function is harmonic in each of the set  and CQ and satisfies

[ug—Z] = [ug] =(u—-1)g across X.

This means that v is a solution of problem (5). Thus any solution ¢ to problem (12) is the
restriction to the set Qr of a solution of problem (5). From the uniqueness of the solution of

problem (5) we can conclude that problem (12) admits a unique solution.

2.8. Variational formulation

<

To dicretise problem (12) it is convenient to write it in variational form. It is not difficult to

check that its variational formulation reads :

find ¢ € H! (Qr) such that forall ¢ € H' (Qr)
b(d,¥) + k(d,¢) = f(¥)

where we define the bilinear forms b, k : H' (Qr) x H' (Qr) — R by

bby) = u/Qws-de V¢-vwdw+/r¢wd%

Qsr
ko.0) = =1 [ 00){ [ 6)D Caley) o} a,

and the linear form f : H' (Qr) — R by

10 = =1 [gvaor+ w1 [ o0 { [ 9D G do. ] a,

(17)

(18)

(19)
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The equivalence between problems (12) and (17) can be easily established in the usual way.

We set a = b+ k and we denote by A, B and K the linear operators associated with 1the
bilinear forms a, b and k respectively. As the mapping v € H'(Qr) — (Jvf3 o, + 0[5 ) ? is
a norm on H! (Qr) equivalent to the canonical norm || ||1,oy, the bilinear form b is continuous
and elliptic on H! (Qr). Unfortunately, the bilinear form k is not elliptic on H! (Qr). Still it is
a compact and continuous linear operator on H! (2r). Indeed we have for ¢ € H! (Qr),

ver (or) [[¥ll,0r

N 1/2
< sup (n—1) //¢(x)DFGn(w,y) do,| dvy 1 lo.r
YEH (Qr) rl/s 191, 0r
< Cligllo,s-

The continuity of the trace mapping from H' (2r) onto L?(X) implies that K is continuous
on H' (Qr). From a bounded sequence (¢,,), in H! (Qr) we extract a subsequence (¢,,),, that
weakly converge in H! (Qr) to a function 1. Now, as K is continuous on H! (2r), the sequence
(K1), weakly converge in H'(Qr) to K1). The continuity of the trace mapping 7o from
H! (Qr) into H2 () implies that the sequence (¢,)n weakly converge in H2(Z) to 9. The
compact embedding of H2 (%) in L2 () enables the extraction of a subsequence (¢,),, from
(n)n that strongly converge to ¢ in L2 (X). Finally, the inequality

| K n — K| < Cllthn — llo.n

implies that the sequence (¢,), strongly converge in H (Qr).
The operator A can therefore be considered as a compact perturbation of a continuous
elliptic operator on H!' (1), which ensure existence and uniqueness of the solution to problem

(17).

Remark In [10] a similar problem is analysed through a different coupling of a boundary
integral method and a finite element method. The authors introduce a mixte variational
formulation using = gg | r as unknown. °

3. Discretisation

We compute an approximation of the RSP ¢ in the bounded domain Qsr using the finite
element method. If the value of the RSP is needed in some points on the exterior domain
CQsr one use the integral formula (8) to compute them.

3.1. Triangulation of Qr

We denote by (I? ,H’k,f]) the degree k Lagrange finite element where K is the reference
tetrahedron with vertex the points (0,0,0),(0,0,1),(0,1,0) and (1,0,0). We denote by IIj

the degree k Lagrange interpolation operator over K. We assume the boundaries ¥ and T' can
be decomposed in an union of smooth surfaces each of them with a parameterisation given by



COUPLING OF FEM AND INTEGRAL REPRESENTATION IN MAGNETOSTATICS

Element of the
interpolated domain

K

Element of the exact domain

Element of the domain of
the chart for the boundary

Figure 3. The various mapping involved.

a mapping of the following type:

m:(s,t) EDC R — x =1(s,t) €L CR(or €T)

where D is a polygonal domain in the plane. We will denote the mapping by m> or 7! when
an explicit reference to the boundary ¥ or I" will be necessary. For convenience, we will assume
in the following that each of the boundaries ¥ and T' can be parameterised with an unique

mapping.

Let (7¢)¢ be a family of regular triangulations of D and let T' denote the generic simplex
of the triangulation 7;. By G we denote the affine mapping that map the face 91 K of the
tetrahedron K located in the plane Z; = 0 onto the triangle T" and by my, the degree k Lagrange

interpolation of the mapping m defined by my, o Gr = (7R o Gr), see Fig. 3.
We have the following classical results in surface interpolation theory.

Lemma 1. For oll T € T; and for all integer j such that j < k+ 1, there exists a positive real

a; (not depending on £) such that:

1D (m — mp)loo,r = sugIID"(m —my)(@)|| < a; £
k1S
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Let Jp, (resp. Jm, ) the absolute value of the Jacobian determinant of 1 (resp. my). There
exists a positive real o (not depending on £) such that:

sup | S () = I, (@)] < a L.
zeT

We denote by Xj, (resp. I'y) the piecewise degree k Lagrange interpolated boundary obtained
from the triangulations 7,

Sh=|J mi@  Th= | mp(D).
TeT: TeT:

As well, we denote by 2 the open domain delimited by the boundary X, by Qg the
open domain delimited by the boundary I'p, and by QEF the open domain delimited by the
boundaries ¥ and T'y,.

We consider a regular triangulation (7), over the domain 2} of Lagrange type k
isoparametric tetrahedral finite elements compatible with the triangulations of the boundaries
¥ and T in the following sense: VK € Tj such that K N Xy, # 0 (resp. K N Ty, # ()

T eT, Vie K Fg(z)=mioGr(2)

where for all K € Ty, we have denoted by Fk the one-to-one mapping that maps K onto K
(Fk is a degree k polynomial mapping). Under this assumption we have £ = O(h).

We denote by ®; the mapping that maps the approximated domain Ql,: onto the exact
domain Qr. The procedure to exhibit the mapping ®; in the context of approximation by
isoparametric finite elements in 3D is given in [11]. The restriction of ®; to each element
K € Ty is denoted by % . The properties of the mapping ®; are given in the following
lemma. We refer to [11] for the proof and to [9] for further details.

Lemma 2. - For all integer s < k + 1, there exists a positive real v, such that

1D° (T = Dlloo,xc = sup |1D? (T = D) ()| < s W72
zE

- The mapping % is a C**' diffeomorphism from K onto K.

- There exists a positive real v such that

sup |Jgn () — 1| < v h*
zeEK K

where Jq,;;( (z) denotes the absolute value of the jacobian determinant of ¥% at point .

L satisfies :

Lemma 3. The mapping (¥% )~
- for all integer s < k + 1, there exists a positive real §s such that

||DS((\1;§()—1 — I)”oo,f( = sup ||DS((III§()_1 —I)(2)|| <6, ph+1-s,
zeK

- there exists a positive real § such that

sup |Jeghy-1(z) — 1| < S k.
zeK K
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3.2. Finite element approximation

Let V}, be the Lagrange isoparametric degree k finite element space over the triangulation 7Tj
of QE For every K € T, we denote by II; the interpolation operator over K and by mp, the
interpolation operator over the whole triangulation 7}, :

Yo €CO(Q)) VK E€Th (mv)x =k(vk)-
We define the approximation g, of g by the following formula
ghomy oGr =M (g o™ o Gy) vI' eT. (21)

As well, we define the respective approximations D};Gn and DEG of DI'G,, and D'G by the
formulae :

D} Gn(m} o Gr,m}, o Gr) = (i, x Tx)DT Gp (™ o Gr, " o Gr), (22)

and
DY G(m} o Gr,mk o Gr) = (I x II;)D' G(1n” o Gr,m" o Gr). (23)

We can thus consider the following approximate problem:

{ find ¢, € V}, such that for all vy € V4, 24)
br (@, vn) + kn(bn,vn) = falvn),
where the bilinear forms b;, and kj, over V}, are defined by
bn(up,vp) = Vup Vo, dz + p Vup. Vo, dz + / upvp dy (25)
Qzr Qn s
Buunen) = (= 1) [ o) [ un(e) DEGu(s,0) dow dy, (26)
Ty Xn

and the linear form fj over V}, is defined by

folon) = /Eh gn(x) v (z) d0z+/

() / on(@)DLG(z,y) dog dyy.  (27)
T o

As well we introduce the bilinear form a; over V}, defined by ap = by, + k.
If {{i}1<i<n denotes a basis of the approximation space Vi, and {¢;}i<i<n denotes the
components of the solution ¢, to problem (24) in this basis then problem (24) reads,

find {¢;}i1<i<n such that for all i€ {1,...,N}

D dibal(&i &)+ D bikn(& &) = fal&)-
j=1 j=1
In a matrix notation, we have:
find U € RY such that
(29)
(B+K)U=F
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where U € RY is the vector of the ¢;, 1 < i < N F € RV is the vector of the f(&),
1<i< N and B e Mpy(R) and K € My (R) stand respectively for the matrices of generic
term b;; = by (&;,&) and ki; = kn(€;,&)- The matrix B is a sparse and symmetric matrix but
K is a full and not symmetric matrix, see Fig. 5 for the matrix profiles.

We can notice that V}, a subspace of H! (2},) but it is not a subspace of H! (). The mapping
®,, previously defined will enable us to recover the framework of internal approximation. Let
us define

Vh = {17}1;3'1)}1 € Vp,0p =wvp 0 @;1} .
If ¢, € Vj denotes the solution of problem (24), then ¢, = ¢y o @gl is a solution of the
following problem:

{ find ¢y, € Vj, such that for all o, € Vj, (30)

br(Bn, Or) + kn(dn,0n) = fn(n),
where the bilinear forms by, and k&, are defined by
bh(Ph,Un) = bu(dn © Bp, 0h 0 1), ke ($n, On) = kn(dn o Bp,0p 0 Bp)

and the linear form fj, by fu(0n) = fa(on o ®p). We set ap = by + kp, and we denote by Ay,
By, and K}, the linear operators associated to ap, by, and kj respectively.

We finish the section by giving some classical results (see [12] and [11]) useful for the error
estimate carried out in the next section.

Lemma 4. - For all integer s < k+ 1, the norms vy, € C°(K) — |lvp||s,x and vy € C°(K) —
llon o @, |5, are uniformly equivalent with respect to h.
- For all integer s < k + 1, the semi-norms vy, € C°(K) — |vp|s,x and v, € CO(K) —

lun 0 ;Y50 are uniformly equivalent with respect to h.

Lemma 5. Assume that v belongs to CO(Qr) N HF (Qr) and set o, = (Ip(vo ®p)) 0 B, "
Then
o = Bnll0r < CR*[[ollkt1,0: (31)

Furthermore, the mapping v € H*(Q) +— [, [|[D*v(x)|| dz define a semi-norm over HF ()
equivalent to the canonical semi-norm | |5, over Hf (), see [12].

4. Abstract error estimate

4.1. The abstract error estimate

Our aim in this section is to obtain an estimate of the error [|¢ — énll1,0r where ¢ denotes the
solution to problem (17) and ¢} denotes the solution to problem (30). The classical abstract
error estimate (see [12], [13])

6= dnlhor < C(~infv{||¢—m||l,or+ sup '“(U”’w”)_ah(vh’wm}

V€ WrEVR ||wh||179r

+ sup (32)

’lIJhEVh ||1I}h|

| f(n) — fh(wh)|)

1,Qr
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who usually arise from the coerciveness of the bilinear form a = b+ k on H! (Qr) is deduced
for our problem from the coerciveness of the bilinear form b on H! (Qr) and the compactness
of K as detailed below under the assumption:

(H) there exists a continuous function « of h which vanishes with h such that
|a(0n,wn) — an(On, wa)| < c(h)l|OnllL,a0 10l

Lemma 6. Under the assumption (M), there exists § € R such that for all sufficiently

small h .
|(Anon, ion)|
sup —————

. > Bllonllior  Vin € Vi (33)
ey onlliar

Proof If the inequality doesn’t hold, one can find a sequence (h,,), that converges to 0 and a
sequence (Op,, )n such that 95, belongs to V4, and ||0p, ||1,0r = 1 for any integer n with
Ay, On,, 0
fm sup @)l o (3
N> eV, Wk ll10r

For any w € H' (Qr) and wy,, € V},, we have

[(AVp,,,w)| < [(Adp,,w —wn,)| + |((A = An,)Oh,, 0n,)| + |(An, On,, Wn,)|
< AR 100 lw = Da, 1,00 + alha) (|08, (11,00 [0, 11,00
5 (An, On,, 8)
+[|wh, [l1,0r sup |V7’|
sev,  I8ll0r

Since ||0n, ||l1,0r = 1, it follows that

((A0n,,w)| < [JA]] inf - lw —dn, [lor +a(hn) inf ([, [0

Why, €Vhn Wh,, €Vh,,
Ay op 3
+ sup | ( h:, hn s ) | infg ”H)hn ||1,Qp ) (35)
sevn,  WSlluer ) on, eV,

Now from lemma 5 we have

I inf — =0.
n—1>I-EOO Whnlré‘v/hn ”w W HI’QF ’

We deduce from relation (35) and assumption (34) that for any w € H! (Qr),
lim |(Adp,,w)| = 0.

n—+4o0o

It follows that the sequence (Avy, ), weakly converge in HE (Qr) to 0 and therefore that the
sequence (¥, ), weakly converge in H! (Qr) to 0. In particular the sequence (@y,, ),, is bounded
in H' (Qr). From the coerciveness of the bilinear form b and under assumption (#) there exists
a non negative real y such that

ow, 3 o < (Bin,,0n,)
(A= Ap,)0n,,0h,) — (K0, ,0n,) + (An, On, , On,)

|(Ahn Oh,, , Wh, )|

IA

a(h)|[on, |

Lor + 1K, 1100 16n, 1100 + 108,110 sup

Wh, Eth ||whn||1;QI‘
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We thus have

|(Ahn Up,, ; Wh,, ) |

Lor < alhn)l[on, [luor + 1Kk, [l1Lor +  sup (36)

Y|9n., | -
an, eV Wn, 100

Now as K is compact in H! (), the sequence (K¥p, ), strongly converge to 0 in H!(Qr).
This implies the following contradiction:

Jim lon, llier =0 and - [[Ok, e =1 VneEN

<

To establish the abstract error estimate (32) we proceed as follows. First, the triangular
inequality yields

llg — dnlliar < ing {ll¢ = Bnllr. 00 + 19n — énllion (37)

Y=
and from lemma 6 we have

|(An(én — Un),wn)|

. . 1
||¢h - Uh”l,Qr‘ S E wilél‘)_/h ||1I}h| 1.0p (38)
Now
(Ap(@n —on),0n) = (Ardn,wn) — (Aptn,wn)
= fu(dn) + ((A— Ap)On, i) — (A, W)
= fa(wn) + (A — Ap)on,wn) — (A(Or — ¢n), wr) — f(W@n),

[(An(@n = 0n),0n)| < |fa(@n) = F(@n)| + [((A = An)Tn, @n)| + I ANI5n — Pullr.gcll@nlls,on

|(Ah(J)h — Bp), Wn)| < |fh(u7h) — flwn)| (A - Ah)ﬁh,wh”
l|@n |1, 0r - l|wn |1, 0r l@n |1, 0r
+[Allllon = ¢ll1,0r + [|Allll¢ — T ll1,0r- (39)

The estimate (32) is then a consequence of relations (37), (38) and (39).

4.2. Estimation of the various components of the error

We must now estimate the terms in the right hand side member of relation (32) and check
assumption (). In the following the same letter C' may represent several different non negative
constants.

Proposition 2. For all wy, vy € Vi, we have

|a(n, Bn) = an(@h, o) < Ch*[ldnllurl0nll10r- (40)



COUPLING OF FEM AND INTEGRAL REPRESENTATION IN MAGNETOSTATICS 15

Proof Let Wy, 9, € Vi, and set wy, = wp, 0 By, v, = U, 0 B. We have

b(wn, ) — b (Wh,08) = b(wn,Tp) — bu(Wh © B, Ty 0 Bp) = b(Wn, Bn) — ba(wh, vp)

V(&) - Vo (&) di — / Vuwp(z) - Vop(z) dz
Qe

Qzr

+u (/Q V(&) - Vop(E) di — Vwp(z) - Vo () dx)

Qp

n ( [ an@ 5@ dvs - [ wn(@)on(o) d%)
= FE) + pFEs + Es. '

Let us first consider the term F; :

E = Qth(aﬁ) Vo (%) di — i V() - Vou(z) dz
= Z /K{V?IJh(‘I’fIL{(SU)) Vf)h(lI!hK(w)) J\I,K(Z')—th(x).vvh(x)} dr

Since 0y, = vy, o (TF)~! for any y € K we have
3ion(y) = Do (y) - ei = Dua((T5) () - (D ((T) ™) (v) - i)
and therefore for any z € K,
Biton (Py; (z)) = Don (T () - e = Do () - (D ((T5) ") (T () - €i).-

It follows that E; reads

3
CIEED O BV (CACREICAISIHEIRY

KEeTy,
KCQy

x (Duwn(z) - (D ((T)™) (WK (@) - ) Jug (@)~ (Dune) -e:) (Duwn() e} da.
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We decompose E, in By = Ey 1 + E 2 + E1 3 where

3
B = 3 [ 3 (Tup@ -1) (Dunta)- 0 () (¥ @) - e0)

KETy
KCQy

x (Dwp(2) - (D (TE) 1) (¥E (2)) -e;)) dz,

3
Fia = Y /KZ(Dvh(a:)-(D((lIlf)*l)(lIlf(:c))—I)-ei) (Dwn (@) - e) da,

Bs = ¥ /K > (Dun) - (0 ((¥)) (¥ @) - D))

x (Dop(z) - (D ((TF)7) (5 (2)) - e5)) da.
We have to estimate the three terms E; 1, Ei 2 and Ep 3. The first one can be estimated as
follow:

Bl < 3 % [ |Tar(@) = 1]ID ((#5) ) (#F @I IDen @) IDws(a)]| dz

KETy,
KCQy

< 3% g = UleoulID (F) )P 2

KETy,
KCQp
2

< ([ Ipua@? dw)m ([ 1w ar? dx)l/ .

We deduce from lemmas 2, 3 and 4 the estimate

|E11| < Ch¥|op1,0|wn1,0- (41)
The term FE; 5 can be estimated in the following way:
3
Bzl = | Y /K > (Dun(@) - (D () ") (T (@) = 1) - ;) (Dwn () - e;)
W
< 3y /K |IDvs (@) [ [|Dwn () ][]D (TF) ™) (25 (2)) - I|| dz
e
1/2 1/2
< 3 Y D)) T ([ IDw@Pdas) ([ IDun@IP az)
KETy K K
KCQp

From lemma 3 we have
ID ((TF)™") = Illoo i < CH*

and from lemma 4

1/2
( [ Ipu@? dw) < Clunlx < Clonly i
K
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and
1/2
([ IDwn@P az) " < Clunly < Clan, k.
K
Thus we have
|B1a| < Ch¥lop1,0ldn]1,0- (42)
As well we have

|Brgl < 3 ) AIIDvh(w)IIIIth(x)IIIID((‘I’ff)_l)(‘I’ff(ﬂf))ll

KETy
KCQy

x[ID ((®5)™") (TR (2) = I|| dz
3> 1D ((TE) ™) = Tloo, 1D (TF) ™) lloo, i

K€Ty
KCQy

< ([ IDua? dm)m ([ uncar® dx)m

and from lemmas 3 and 4 we deduce

A

IA

|B1 3| < Ch*|up|1,alwnli0. (43)
As a consequence of relations (41), (42) and (43) we have
|Ev| < Ch* |on|1,lwh1e- (44)
We proceed on the same manner to get the following estimate for Es:
| Ea| < Ch* |9n]1, 00 [0h]1 00 - (45)

The last stage is the estimation of E3 given by
Bo = [ wn@)on@) dvs = [ wn@) (o) o (46)
r T'n

We decompose each integral term in a sum of integrals over the triangles of the triangulation
of the domains of the charts for the boundary I':

E; = ;‘/T(wh(m(&t)) 6h(m(sat)) an(sat) - wh(mk(sat)) vh(mk(s7t)) Jmk (S’t)) ds dt
The relation oy ((s,t)) = vp(mg(s,t)) leads to
|Bs] < > / |p (10(s, 1)) Dn (1(s, 1)) (T (s,t) — T, (s,1)) | ds dt
T Jr
< Y 1 = Jmglloo,rllon 0 1allo, |k © 1i2lo, -
T

From lemma 1, it follows that

| B3] < Ch¥||5plo,rllwllo,r- (47)
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From relations (44), (45) and (47) we deduce that
|b(wn, Bn) — b (Wn, )| < Ch* (|on]1,eldnlre + 941,050 [Whl1.0se + [[Ballorll@allo.r)
< Ol (1B gy + I5nlE ) (00l g, + linllEr) )
We can therefore conclude the first part of the proof with the estimate:
[b(wh, On) = b (@n, 0n)| < Ch*(|5nl1,0r lldnll10n- (48)

We now turn out to the estimate of
k(tn, Un) — kn(n, 0p) = / on () (/ wn (%) DY Gr(, 9) d%) dvy
r p)

_ /F h (¥ ) /E (U (@) D} G (2,y) do. ) doy.

h

We can decompose each integral term in a sum of integrals over the triangles of the
triangulation of the domains of the charts for the boundaries I' and ¥. On the one hand
we have

= |J »*@) r=J » ()
TeT? TeT,
and on the other hand
Sh=J mi(T) Tn=|J mp(D).
TeT? TeTy
It follows that 3
(W, 0p) — kp(Wn, 0n) = Z Z Esr (49)

TRETR T T

where
Bur= [ [ 000" 0) 0000 (2) DT G (17 ) 1" () e 4) T o) o b
— [, | onmE @) w0 () DG (mF @), (1) T () (@) oz

The relations o, (" (y)) = vi(m}, (y)) and Wy (1= (z)) = wi(m} (z)) give

Bur = [ ] onnf ) intn @)

x (DF G (0 (@), 1" (1) T (4) 5 () = DG (3 (@), 10§ (1)) T () o (2)) i iy,
Thus, we have

< |lon o L llo.ze llion 0 1o 7= / /

T JTT

D] G (&), (1)) J ()T (@) do dy.

| By D' G, (" (x),m" () Jar (y) Tz (z)
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Now,

| [P Gt @, 1) I ()73 (2) = DG (@), () o () o )| dre

<Joo s
“J ),

+ [ ] [PhGumE @) mE ) (s @) = Jup @) Tae )] doe .

The first term in the right hand side can be estimated using classical interpolation results :

fo S
= (I = T x T)D Gr (™, ") |lo,r= e < CHFFL

Using lemma, 1 to estimate the two other terms, we obtain

(D Gn(1™ (@), (3)) = DG (my (@), mE 1)) Jour (9) T (2)| oz

D} G (m (@), m (9) (T (8) = T () Jon (@) do oy,

k

D' G (10 (z), 1" (y)) = D} Gin (mF (2), m. ()| do a3

|Ea,r| < Ch¥||og o iy [lo 7 || © 1725 [lo,77=-
It follows that
|k(wn, 0n) — kn(n, 9n)| < CHF|[on]lo,rlldonllo,r- (50)
From relations (48) and (50) we deduce that
la (W, ) — an(Wp, 0p)| < |6k, On) — b (Bh, Op)| + |k (W, On) — kn (W, )|
< CR*||lwnlly,or I19nll 00 (51)

The proof is achieved. ©

Proposition 3. We have

|F(bn) — fr(n)n]
Sup =
BneVn lln |1,00

Proof It follows from (20) and (27) that

/E 9(#) wn (&) dos — / on(2) tn (B () dos

P78

< Ch¥(lglli+1,5- (52)

| f(@h) — fu(n)| <

+ . (53)

/F &n (5) / 9(#) DV G(&,§) doy dyy — / (@4 (1)) / gn(x) DLG (z,y) do, dv,

Fh Eh

To estimate the first term of the right hand side of (53) we decompose the integrals as the sum
of integrals over the triangles of the triangulation of the domain of the chart of the boundary X.
Namely,

|Bs| =

/ 9(&) wn (&) dos — / on(@) B (Bn (2)) do
>

Xh
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From the relations wy(®r(mk(s,t))) = wn(m(s,t)) and gn(me(s,t)) = k(g o m)(s,t) we
deduce that

|Bs| =

3 / — Tk © 1)(5, £))) Jony (5, ) (15, 1))

TeTh

—g((s,1)) Wh (172(s, 1)) (Jomy (5,1) — Jm(s,t))) ds dt‘

A

< 3 (Wi lloo,rllin 0 llozllg o i — (g 0 1)
TETh

+llg o 1llo,llin © Mo rl| T = T lloe,)
From classical interpolation results we have
llg o i — Mg (g o 1) [lo,r < CH**lg o f[gya,7

and from lemma 1

||Jm - Jmk”OO,T < ahk.
We deduce that

|Es| < Ch*

(54)

Let us now consider the second term in relation (53). Once more, we decompose each integral
in a sum of integrals over the triangles of the triangulation of the domains of the charts for
the boundaries I' and ¥. We have

Es = /th(g)/zg(-’i') D"G(#,7) doz dyy _/rh TIJh(CI)h(y))/Eh gn(2) DEG(z,y) do, dy,
Z Z Es.r

TEeTETTETY

where

EG’T:/E/F Wi (" (s1,1)) g™ (s2,12)) D' G ™ (52, t2), " (51,1)) Jinr (51, 1) Tz (82, )
T T

— b (Pr (M (s1,11))) gn(my (s2,12)) DL G(my (52, t2), my (51, 81)) T (51,11) (Sz,tz)) do dy.

;Ths relations H)h(@h(rh};(sl,tl))) = u’;h(rhr(sl,tl)) and gh(mE(SQ,tQ)) = Hk( ( (SQ,tQ)))
ead to

Boa= [ [ onn o, t0) x (g0 (s2,02) DGR (50, t0), 07 o1, ) T (s1,1) T s, )

—T0i(g(1™ (52, 12))) Dy G(my, (s, ta), my (51, 1)) Jmi‘(sl,tl)Jm)kZ(SQ,tg)) do dr.
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In order to estimate Eg 7 we split its expression as follows:

Bar = [ [ on G t0) x ((nmFon, ) = Tl o )0, 1)
xDYG (¥ (s, t2), ™t (s1,t1)) Jsr (51, 1) Tz (52, t2)
+ (DG (™ (s, 12), 1" (51, 81)) = DEG(m3 (s, 82),mf (51,11)) )
X gn(m¥ (s2,t2)) Jr (81, t1) = (82, t2)
+gn(mF (52,12)) DEG(m3 (s, 12),mh (51,40)) (Jor (51,01) = T (51,1) ) Tos (52, 12)
+gn(my; (s2,t2)) DR G(my; (s2,t2), M (51, 1)) Ipnr (51, 11) (ng (s2,t2) — 2 (82,752))) do dv,
We then deduce the relation
|Bs,r| < Cllaon o " Jo,rx (
llgn o iy, = Tk (g 0 ™) [lo,r=[IDV G o (0, 1" [lo, 7= xrw [| T [l o, 2w | Tz [l oo, 7=
+llgn o my; llo,7=IDT G o (1™, 10") = D},G o (my,mi)llo, 7% xrr [| i lloo, 70| T oo, 7=
+llgn o m%”o = ||D£G © (m%amg)ﬂo 12 x7r || e — JmF lloo, 77 || T2 [ 0o, =
+llgn o m llo,=IDLG © (my; s mi)llo,7= xrw | Tt oo,z | Tz — nglloo,Tz)-
From interpolation theory, we have

llg o — i (g 0 )0, r < Ch* g o ™ ||ks1,7

and
IDYG(m™, m") = DRG(mi ,mi)llormwrr = (I =T x T)D G (1™, 10" [lo 1= e
< CR*YDT G (™, ") ||j 1,72 x1r -
It follows from lemma 1 that
e = Tt loo,zr < h® and 7= = Tz oo, < ahb.

Therefore we have

| Bo,r| < Cllin o 11" [lo,7r (hk“IIg o> ||k, + h¥lgn o mfllo,ﬂ)

and
Eel< > > lnllo,rlgllk+1,5 (55)
TEETE TV ETy
Using (54) and (55) we conclude that
W) — fr(
|f (n) = fuln)n] < CH¥{lgllesr 5. (56)

eV lln |1,00
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We are now in position to conclude the error analysis of our method.

Theorem 1. If ¢ denotes the solution to problem (17) and én denotes the solution to
problem (30) then

¢ = dullior < CR*(gllesr,00 + llgllisrs) - (57)

Proof From (32) we have

6 — dnllior < C(Vifgy{ﬂdﬁ—@hHLQFjL sup |a(vh,wh)—ah(vh,wh)|}

o W EVh l[@nl]1,0r

s |f () — fh(@h)|)_

anevn  onller

(58)

We must estimate the three terms in the right hand side of the latter inequality. First, from
proposition 3 we have

f(n) = fr(in
sup L) = Fu@ o (59)
anevn  wnllier

The estimate
sup |a(On,wn) — an(On,wh)|

- < Ch*||9nll1.0r» (60)
an eV llWn]1,0r

from proposition 2 implies that

inf {||¢>—17h||1,9r+ sup |a(vh’wh)_ah(”hawh)l}

VpEVR wn €Va ||'1I]h||1,9r
< inf {16~ onllor + CH* onllnor )
D EVR
< ¢ = dnlli,or + CR¥||Bnll1 00

where ¢, denotes the solution to problem (30). From lemma 5 we have

¢ = Snllor < CR¥|IBll10n

and since [|¢nll1,o0 < 165 = dllnor + [¢ll0r we obtain

, 5 a0, ) — an(On, @
inf {16 = onllar + sup (2O ZBOLIIY g0 (o)
VhEVh wn€Va ”wh”l,Qr‘
The estimate (57) is then a consequence of (59) and (61). o

Theorem 1 shows that the error is of the same order as the error in the degree k Lagrange
finite element method provide the boundaries involved are approximated by piecewise degree
k interpolated surfaces according to the way presented in section 3.1.
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Figure 5. Sparsity pattern for the symmetric matrix B (on the left) and K (on the right). As B is
symmetric, only its lower part is shown.

Figure 6. Left: electromagnet which consists of a cylindrical core situated inside a pair of coils.
Right: isolines for the reduced scalar potential in the plane shown on the left figure.

The computation of the reduced scalar potential required 136 s while the computation of the
magnetic field in 570 arbitrary points took 107 s.

6. Conclusion

We have presented a numerical method to solve magnetostatic problems in three dimensional
unbounded domains based on the coupling of the finite element method and integral
representation formulae. The basic idea of the method was to bound the exterior domain
using an artificial boundary that can be close to the device boundary but always distinct from
it. The boundary condition to set on this artificial boundary was obtained using a boundary
integral representation formula of the solution, the support for the integral representation
being the device boundary. As the two boundaries are distinct, all the involved integrals are
regular and standard quadrature schemes can be used. The magnetic potential in the interior
domain surrounded by the artificial boundary is computed using a standard finite element
approximation. We have carried out an error analysis of the method and we have shown that
the convergence order of the method is O(h*) when isoparametric Lagrange type k finite
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elements are used for the discretisation.

This computational approach is well suited for electromagnetic device shape optimisation
where the area of interest is localised; with slight modifications it can be used to treat also
axisymmetric problems. The coupling boundary can be placed close to the electromagnetic
device to reduce the size of the interior domain where the finite element method is employed.
The magnetic field at the node of the control surface can be computed using an integral
representation formula.

N
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11.
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13.

14.
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