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Abstract

A method to compute the magnetic field induced by a metallic body embedded in a
uniform external field is presented. It is based on boundary integral representation
formulae for the magnetic induction B. A computational procedure is proposed
which consists in using analytic expressions to compute the integral over the flat
panels of the boundary and a piecewise quadratic interpolation of the surface for
the curved panels. Superconvergence occurs in the latter case. The method supplies
both high accuracy and low computation time, requirements that are not fulfilled
when using standard numerical methods.

1 Introduction

Our goal is to develop a method to compute the magnetic field induced by
a metallic body either paramagnetic or diamagnetic embedded in a uniform
external magnetic field. We encounter such problems in Magnetic Resonance
Imaging (MRI) where the metallic body is a medical implanted device (or-
thopedic device, dental implant, ... ) and the external magnetic field is one
of the fields used to produce the image. In a MRI experiment, the metallic
body produces an induced magnetic field that perturbs the magnetic field,
resulting in a distortion of the image. Such distortions (called artifacts) may
render the clinical diagnosis impossible. Numerical simulations appear to be
a valuable tool to study and prevent MRI artifacts. In fact in the whole nu-
merical simulation process, magnetic field computations are linked with image
reconstruction algorithms; that is why we need to provide a high accuracy and
low computation time method to compute the induced magnetic field.
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So we have developed an efficient method taking advantage of the fact the
metallic body is a paramagnetic material, so that an integral representation
formula can be used for the induction. The computation of the magnetic field
is then reduced to the evaluation of an integral over the body boundary. One
major advantage of this approach is the fact the integral can be evaluated ex-
actly for the flat boundary parts leading to accurate and fast computed results.
For the curved parts of the boundary, the integral is evaluated numerically.
First we approximate the boundary by a piecewise quadratic interpolation of
a curvilinear triangulation of the surface. Then we use a quadrature rule over
each quadratic interpolated triangle.

Our paper is organized as follows. In Section 2 we present the notations and the
magnetostatic problem under consideration. In Section 3 we derive analytical
expressions to compute the integral over the flat parts of the boundary while
in Section 4 we present our approximation method to compute the integral
over the curved parts. Section 5 is devoted to a careful error analysis of the
approximation method. In particular we prove that the order of convergence
is h* which is higher than what would be expected based on the underlying
interpolation theory, namely h3. This superconvergence result is due to cancel-
lation of terms in the development of the error for pairs of symmetric triangles.
A similar phenomenon was already observed by D. Chien and K. Atkinson,
see [1] and [2], with a piecewise polynomial collocation method for integral
equation on a surface in R?. Finally in Section 6 we present numerical results
to illustrate the method.

2 The magnetostatic problem

Let us briefly describe the magnetostatic problem under consideration. € is an
open bounded domain in R?, whose boundary is denoted by ¥. The metallic
body €2 is embedded in a constant magnetic field EO) . Let be the magnetic
flux density and H be the magnetic field intensity. The basic equations of
magnetostatics are

divB =0in R,

(1)
rot H = 0 in IRS.

At a distance far from €2 the magnetic field tends to become homogeneous; we
have

lim B (z) = By. 2)

|z| o0



In the exterior region ' = R3\ Q, H and B are related through the relation
1

H=-3, (3)
Ho

where 1 is the magnetic permeability of vacuum, while in €2 they are con-
nected to the magnetization M by the relation

ﬁ:%?-ﬁ. (4)

For the magnetic flux induction B=TF- Eﬁ the problem reads: find B e
L*(R?)? such that

divB = 0in R,
— .
rot B =0in Q and , (5)

_>

[B’ A W] = Lo (ﬁ A ™) at the interface ¥,
where 7 is the unit outward normal to ¥ and H denotes the jump across
the boundary X. To deal with a well posed problem we still need to add some
relation between the magnetization and the field B’.

The metallic implant is assumed to be an isotropic linear paramagnetic or
diamagnetic material. We will assume, this is our main assumption, the mag-
netization M to be parallel to the applied field, that is

M=2"5 (6)
Ho

where X, is the magnetic susceptibility of the magnetic material. The relation
(6) is justified since for non ferromagnetic material the order of magnitude for
the induced field is up to 107 times the order of magnitude of 170), see [3] and
[4] for details in MRI applications.

The assumption (6), that is the magnetization is uniform in €, is crucial in
our study. Indeed for ferromagnetic material constitutive laws are non lin-
ear and the mathematical model is different. Studies for problems involving
ferromagnetic material are numerous in the literature, with regard to their
mathematical analysis, see [5] for instance, or to their numerical resolution,
see [6], [7]. The reason why we have restricted our study to paramagnetic ma-
terial is that patients bearing ferromagnetic implants are usually kept off from
MRI.

The interface condition in (5) with the assumption (6) takes the form

_)
[B'ATR])=7n where Jn=xm (BoAT). (7)



Remark 1 We can check that divy j_g = 0 so that j_g can be interpreted as
a fictitious current density over the surface X, see [8]. Then problem (5) with
the interface condition (7) can be interpreted as a standard magnetostatic
problem for surface currents. Variational formulations for such problems are
given in [9]. However, these formulations are not satisfying at all for numerical
computation. o

Our approach to deal with (5) and (7) consists in introducing the scalar mag-
netic potential and using standard results fgm the potential theory to deduce
(see [10], [8] for details) that the solution B’ of (5) and (7) can be expressed
as

ﬁ

B =i+ 4 [(T- 1) 7@ do(@) (8)

for P € (2, and
-
3

B'(P) = @/Z (A_f

=4 ) 7@4do(@ ©)

r
for P in the exterior domain €', where 77 = P —(Q and the magnetization M
is given by (6). So we have reduced our problem to quadrature formulae. On
one hand, (8) and (9) give an explicit representation for B’, no system needs
to be solved. On the other hand, the integration bears only on the interface
>} and not on the whole domain 2.

Therefore the computation of the magnetic flux induction B’ is reduced to
the evaluation of the integrals

-

B = [ (M-5) 7(@Qdo(@). (10)

To compute it we introduce a triangulation of the interface ¥ made up of
a finite union of flat and curved triangles. Let T} denote the set of all flat
triangles and T} the set of all curved triangles. We have the relation

s=| UK|u | U K| (11)
KeT} KeT?

Therefore the integral in (10) can be split into two terms in the following way

—

5P =% [ (3 5) 7@ @)
BT

These two terms are evaluated using two distinct methods. The first term is
computed exactly. The analytical formulae are given in section 3. To com-



pute the second term, we approximate the curved triangles in 77 by quadratic
interpolated triangles and we use a quadrature rule over each curvilinear tri-
angle. This method is presented in section 4 and the error analysis is given in
section 5.

3 Computation of the integral over the flat panels

For flat triangles, the normal vector 7 to X is constant on each triangle. Since
the magnetization M is uniform in 2 we can write the first sum in (12) as

s =¥ ([ I ao@) (13)

KeT}!

Consequently, S; is obtained by computing the integrals
_>

T
These integrals can be calculated exactly.
P\
3
i o

Q2

o3
Fig. 1. Decomposition of triangle K

Let @1, Q2, @3 be the vertices of triangle K and (g be the projection of the
point P on the plane defined by K. We introduce the following triangles:

Ky = {Qo,Q2,Qs}, Ky = {Qo, @3, @1}, K3 = {Qo, Q1,Q2}, see Figure 1. We

can decompose the integral over K in a sum of three integrals over K1, K5, K3,

/K ey ds = sign(A) /Kl ey ds + sign(Az) /K2 o ds + sign(\3) /K3 s ds ,

where )\; denotes the i-th area co-ordinate of K in (Qg. Let us consider the
integral over K, (k = 1,2,3). For convenience we will denote by {Qo, @i, @;}



the vertices of the triangle K. We first introduce a new coordinate system
with origin @)y and orthogonal basis vectors

2o @0 QO
S0 T Tarnar YT AMNT

In this coordinate system the vertices are defined by: Qg : (0,0), Q; : (x;,0)
with z; > 0, Qj : (xj,yj) with y; > 0. Let (x,y) be the coordinates of @) and
h = Qofg ,then 7 = QP = —_@: —y ¥ +h Z . The coordinates of the

vector valued integral R = / 3 ds are
Ky,

- 0 1
R :/ dedy = dedy, (15
Uk @ T Kkam\/:c2+y Ty, 1)
—y 9
R :/ de dy = dedy . (16
k@ y? YT Jkoy :c2+y T drd, 09
1

When using a parametrization of the triangle Ky, the first two integrals can
be expressed by considering the primitive

1
F(a,b,u) = / du
\/(a2—|- 1)u? + 2abu + b? + h? (18)
1 ab
= In a? 4+ Du? + 2abu+ 62+ >+ Va2 +1 u+ :
Nz {V( ) ” 75 1}
Introducing the parameters A\; = Li , Ag = R , A3 = — Tilj , we get
Yj Yj Tj— Ty
Rl :F()\Zaxi:yj) - F(/\Zamiao) - F(/\laovy]) + F()\l,0,0) ) (19)
1 1 1
RQZF( 0 IJ) F(—,0,0)+F(0,0,0)+F(—,)\3,LE,)
1
2

The third integral is much more complicated to handle and the method used
depends on the shape of the triangle. We refer to [11], page 81, for a description
of the method. We integrate once in x (17) and get R3 = G(Ag, z;) — G(A1,0),
where

(ay +b) dy
G(a’b):h/ 2 2 2.2 2 2 2
o (Y24 h?%)Vy?a® +y*+2aby+02+h

(21)



In order to express the algebraic form of G, we introduce the function

Vb2 + h%a? t
Atg(t) = Arctan( tbzahQ —— ) . (22)
|h|\/t2 + ﬂ%l
20 — bu. 212
Let t; = H and t, = %. Depending on the parameters a and
ayj

b that is on the shape of the triangle, we distinguish six cases. If ab # 0 we
have

e Case 1: a > 0,

G(a,b) = —% (Atg(t;) — Atg(to)). (23)
o Case 2: a < 0 and y; < —g,

G(a,b) = %(Atg(tj) — Atg(ty))- (24)
e Case 3: a < 0 and y; > —g,

G(a,b) = —|—Z|(Atg(tj) + Atg(to))- (25)

If ab = 0 we have

e Case 4: a =0 and b # 0,

h
G(a,b) = — Arctan .
(@) I (|h\ y§+h2+b2)

e Case 5:a# 0 and b =0,

Gla,b) = -2 (Arctan(\/ @+ Vs + 17y Amtan(i)) (27)

~ |ahl a’h? |a|
e Case 6: a=0and b =0,

G(a,b) = 0. (28)

An alternative method to compute (14) is given in [12]. We want to point
out that the accuracy of the computations does not depend on the size of the
triangle K € T}. One should use triangles with a maximal size to reduce the
number of integrals to evaluate.



4 Computation of the integral over the curved panels
4.1 Approzimation of the surface

We consider the case where the interface Y is made of curved panels. As
discussed in [13], we assume that the surface ¥ can be written as ¥ = ¥; U
Yo U---UX,; where each X; is a closed smooth surface in R®. A pair of sub-
surface can intersect only along a common portion of edges. We also assume
each Y; has a parametrization six time continuously differentiable, i.e. there
is a mapping F; : D; — X;, where D; is a polygonal domain in the plane
and F; € C%(D;).

Since the D; domains are polygonal, they can be written as a union of trian-
gles and without loss of generality we will assume that the D; domains are
triangles. To each D; we associate a triangulation T,{, T,{ = {f{c, 1<k < N}
Here the parameter h represents the mesh size of the triangulation, that is

h= max diam(KJ) where diam(K})= max |P — Q|

1<k<Ni PQek
with | - | being the usual euclidian norm.

Then a triangulation of ¥ can be constructed via a triangulation of each panel
%;, the image of T} through the parametrization F;. More precisely let T!
be the image of the triangulation Th of ¥, by the mapping F; and let K
denote a generic element of that trlangulatlon. The Correspondlng triangle in
T,Z is denoted by K whose vertices are U1, Vg, and v3. We shall also use the
reference element o, the unit simplex in the plane, o = {(s,t) € [0,1]*> \ 0 <
s+t < 1} and the set {p;;i = 1,---,6} of its vertices and its midpoints
numbered according to Figure 2. We define now the mapping mg : (s,t) €
o — mg(s,t) € R by

mK(s,t):F](u 1/)\1+t 1/)\2"‘51/}\3)7 Uzl—S—t, (29)

then the curved triangular element K is precisely the image of o by the map-
ping my, see Figure 2 for a complete picture. We will also use the following
notation, for (s,t) € o

mi(s,t) = | 2%(s,t) |- (30)

In fact to carry out the computations over a surface ¥; we need to know



explicitly the mapping F; or the mg ones. Usually in effective computations,
they are not known explicitly, only points of the surface are used. Then it is
convenient to approximate 3 by using a piecewise quadratic interpolation of
the surface. The approximate surface X;, is then composed of elements K
quadratic approximations of the elements K. If{L;i= .,6} is the set of
the six basis functions associated to the nodes p;,7 = 1, cen 6, for quadratic
interpolation over o, then K is the image of o by mg where

2, xlp) Lo, 1) (s, 1)
ZmK pi) Li(s,t) = ;aﬁ((pi) Li(s,t) | = | #%(s,t) |- (31)
Y akio) Lis.oy |\

Clearly each component of mg(s,t) is quadratic in (s,t). In the sequel the
index 7 will be omitted when not necessary.

4.2 Approrimation of the integral

With the approximation of the surface given above we are in position to present
the actual quadrature formulae used to compute the surface integral (10). We
note ® the function given by

_)

=
®(P,Q) = M5 (P,Q). (32)
Then the integral in (10) reads

B(P) = / 2(P,Q) ®(Q) do(Q)

33
—2/ (P,Q) 7(Q)do(Q). )

For ease of exposition we will consider the integral over one panel 3; and we
will omit the index j. Therefore our analysis will be carried out for a surface
integral B(P) given by
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Fig. 2. The global picture of mappings

with J(s,t) = | Osmi(s,t) AOymk(s,t) |. The unit normal vector to the surface
> is given by

o) =60 = L R smate T

As mentioned before the mappings mg are not known explicitly, but the mg
ones are. That is why we will consider an approximation of B in (34) given by

B,(P)= Y [ ®(P,mik(s,t) n(s,t) J(s,t)dsdt, (36)

KeTy, %

Vg



with J(s,t) =| O,k (s,t) A Oy (s,t) | and the approximation of the normal

Osmik (s,t) A Ogmg (s, t)
| Osmic(s,t) A Oy (s, t) |

n(s,t) = (37)

Note that By (P) can be rewritten as

= ¥ o0 a@ do@Q = [ ¢(PQ Q) do(Q. ()

KETh

Now to numerically compute the integrals in (36) the standard approach is to
use a quadrature rule over the unit simplex o,

Lid
[ Fls,t) dsdtm 3o w;f(uy) (39)
g ]:1
where the w; € R are the quadrature weights and u; = (s;,¢;) € o the

quadrature nodes. The quadrature formula we will generally use is the 3 —
points rule

[ F(s.t) dsat~ - Zf pi). (40)

This formula is exact for polynomials of degree up to 2. Then the integral in
(38) is approximated by the expression

By(P)= Zwa (P, M (ug)) (Osmir (uz) A O (u;)), (41)

KeTy, j=1

which represents precisely what is computed.

We point out that the integrand in (36) is always analytical since P ¢ 3.
However, it is increasingly peaked as the distance from P to Y decreases.
Such integrals are known as quasi-singular integrals. A special attention has
to be paid for points P closed to the boundary . There are two ways to handle
such integrals, see [14]. In the first one we do a change of variables to reduce
the singular behavior of the integrand. The second one consists in increasing
the number of quadrature nodes, either by changing the quadrature rule or
by subdividing the integration domain. Here we use a method introduced in
[15] that consists in subdividing the reference element o and then use the
quadrature rule 72 : 5.1 of [16],

[ s,1) dsdem (o 5) + B AT 0) + F(0,5) + £(5,00)

+ C{f () + () + F(G O} (42)

11



with

([ 6-+h 5—9+2\/ﬁ 6+
“= 71 P T T T Ty
<C_9—2\/ﬁ 15—V 15+ VT5
- 21 T 2400 7T 2400

on each sub-element. The number of subdivisions to use depends on the dis-
tance from P to the triangle. As the distance between P and K increases, the
number of subdivisions of o decreases, eventually reaching an integration over
o with no subdivision needed and where the use of the 3 — points rule (40) is
accurate enough. It appears from numerical experiments, see Section 6, that
for a point P at a distance exceeding 3h, h being the mesh size, the 3 — points
rule (40) is adequate.

Let us mention that if the surface ¥ is approximated via a piecewise linear ap-
proximation, then the integrals in (36) can be evaluated analytically. However,
a piecewise linear approximation would not lead to results accurate enough,
due to the presence in the integrand of the normal vector.

5 Error estimates

Let E(P) denote the error between the exact integral B(P) in (34) and its
approximation By (P) in (36); E(P) = B(P) — B,(P) for P € R3. Our goal is
to carefully overestimate F(P). In our study we are using tools introduced in
[1] in the framework of piecewise polynomial collocation for integral equations
on surfaces in R®. Here the integrals, although having different integrands, can
be handled in a similar way.

First we shall study the error E(P), only due to the approximation of the
surface 3, for a point P not in X fixed. We prove that the order of convergence
is h*, which is higher than the convergence rate h*® that would be expected
based on the underlying interpolation error estimates. Then we will study
the error when using quadrature formulae. The argumentation is somewhat
technical, we will leave the obvious details to the reader. In the following,
we will give up reference to index K when not necessary and refer to the
derivation with respect to the variable s by 0, or by the subscript s. We also
set @p(.) = @(P,.).

We decompose the error E(P)

12



E(P)= 3 | @plmuc(s,)) @muc(s,) A dimac(s, 1))
—®p(Tix(s,t)) (Osmx (s, t) A Oyiig(s, b)) dsdt (43)
into two terms,
E(P) = E1(P) + Ey(P), (44)
where

E(@P)=Y / Bp(mi(s, 1)) x {0mi(s,t) A dym(s, )

KeTy, g
—0smi(s,t) A Oymk(s,t)} dsdt, (45)

By(P)= Y [ {®p(mi(s,t)) = @p(ix(s, 1))}

KeT, 79
X Dk (s,t) A Oyiigc (s, 1)) dsdt. (46)

The first term gives the error when approximating the normal to the sur-
face ¥ and the second one the error when computing the integrand on the
approximated surface ¥j,.

5.1 Error when approximating the normal

We start with an estimate on each triangle between the normal to the surface
and the normal to the approximated surface. More precisely our result is the
following.

Lemma 2 For each triangle K € T, and V(s,t) € o,

| Oymi (s, t) A Oymi (s, t) — Osmk (s, 1) A Oymk (s, t) |= O(h?).

Proof. We set e, k(s,t) = 0smg(s,t) A Oymg(s,t) — Osmg (s, t) A Oymi (s, ).
Componentwise we have with the notations (30), (31),



To get estimates for e, x(s,t), we need to develop the functions z’(s,t) and
7'(s,t). The Taylor expansion of z'(s,t) in a neighborhood of the origin gives

(o g LN PRI
2 (5,8) =24(0,0) + (575 +1)a%(0,0) + 5 (55~ + ¢5)%%(0,0)
9 1, 9

9

(s=— +1 0 —+ t2)4x’(0, 0) + O(R%). (47)

3z
5 Tigp) @ (0.0)+ 5 (s5. +io

L1
6

Then the function z%(s,t) in (31) admits the development

8)=3 (FO0.0+ (g + 520,056+ 150 a'0.0)
0 3.t 1 0 0 4 14 5
(s i) (0,0) 4+ 5 (55 + 1) (0,0) + O(h )) Lj(s,1).(48)

It is not difficult to check that the basis functions L;(s,t) satisfy to

6
ZLJ(S:t):
ZSJ i(s,t) = s, Ztht) t
] 1
6
Zs Li(s,t) =5 Zsjt Lj(s,t) =st, Y 7 Li(s,t) = t*.
j=1 j=1

We make the difference z'(s,t) — Z%(s, t) in (47) and (48) and use the relations
above to finally obtain

2 (s, t) = i'(s,t) + H(s,t) + G'(s,t) + O(Rh®), (49)

where

14



Notice that
H'(s,t) = O(h*) and G'(s,t) = O(hY), (52)
since the derivatives of z* with respect to (s,t) give rise to formula involving

U9 — U1 and 03 — 01. For example

Osz'(8,t) =V F"(u 01+t g + s D3) - (D3 — By

0,z (5,8) = VF*(u 01 + t Oy + 5 U3) - (g — 01

~— ~—
Il
S o
—_~~
S
~— ~—
—_~
v Ot
- W
~— ~—

the generalization for derivatives of any order is immediate.

We use equation (49) to express e, k(s,t) as a function of the derivatives of
z', H*, and G". For instance the first component of e, (s,?) becomes

en i (5,) =5(5,8) (H (s,1) + G(s, 1)) + 7 (s, ) (H{ (5,1) + G5(s, 1))
w3(s, ) (H (5,1) + G(5,1)) — i (5,1) (H(5,1) + G{(s, 1))
+(H{(s,t) + G5(5,1)) (H (s, 1) + G (5, 1))
= (H{(s,) + G{(s, 1)) (H(s,1) + G{(s,1)) + O () (55)

enxc(s,t) ={23(0,0) + s 23,(0,0) + t 23,(0,0)}{ H (s, 1) + G (s, 1)}
+{23(0,0) + s 22,(0,0) + ¢ 23.(0,0){ H2(s,t) + G*(s,1)}
—{2%(0,0) + s 22,(0,0) + ¢ 22,(0,0) }{H(s,t) + Gi(s,1)}
—{27(0,0) + 5 27,(0,0) +t 23(0,0) H{H (s, 1) + G3(s,1) }

Finally the :"* component of the error e, x(s,t) can be expressed as
enx(5,1) = Ej(s,t) + E5(s,t) + O(h°) (57)
where

Ej(s,t) =2."1(0,0)H; (s, 1) + 27(0,0) H; 7 (s, ¢
— 2P0, 0)Hy (s, 1) — 2y (0, 0 H (s, 1) (58)

S

is a collection of term which are of order 4 in A and

15



Eg(s,t)=x§+1(0 0)G§+2(s,t) + 212(0,0)G (s, 1)
_ z+2(0 O)Gz—l—l(s t) z—|—1(0 O)Gz+2(8 )
7 + 142

+{s 211(0,0) +t 271 (0,0) H{H; (s, 1) + G**(s, 1)}
+{s 27%(0,0) + ¢t z}2(0,0)H{H (s, 1) + GL' (s, 1)}
—{s 212(0,0) + ¢ 237%(0,0){H; ' (s,t) + Gy (s, 1)}
—{s 271(0,0) + ¢ 23/ (0, 0) H{H (s, 1) + G4 (s, 1)} (59)
is a collection of term which are of order 5in A. O
5.2  Some intermediate technical results
Lemma 3 For alli € {1,2,3}, we have for E¢ given in (58)
/ Ei(s,t) dsdt = 0. (60)

Proof. With the expression (58) the lemma is proved once we prove for i =
1,2,3

8 (2 Z
/83H(8 t)dsdt =0 and /8H (s,t) dsdt = 0. (61)

We know the particular form of H'(s,t) in (50). Then (61) is a consequence
of the following result. Let f be the function defined by f(s,t) = ¢;s° +
co5%t + ¢35t + c4t?, where ¢y, o, c3, ¢4 € R. The quadratic interpolant of f is
given by I1(s,t) = 3%, f(pi)Li(s,t). Then we can check by a straightforward
calculation that

/U%(f(s,t) —1I(s,t)) dsdt =0 = /U %(f(s,t) —1II(s,t)) dsdt. (62)

The next lemma is the key-point of our error analysis. It uses the notion of
pair of symmetric triangles that was introduced by D. Chien [2] for his error
analysis of a collocation method for some integral equations. We call pair of
symmetric triangles, see Figure 3, two triangles K;, Ky € T, with vertices
V1, Ug, 03 and vy, vy, Us respectively, having the following property

(63)

16



Va4 Vg
N
Vi
A N
V3 V2

Fig. 3. A pair of symmetric triangles and the pattern made of 3 such pairs.

Lemma 4 Let D be a right-angled, isosceles triangle. Let Ty, be a triangulation
of D composed of N? right-angled, isosceles triangles. Then if N is odd, there
erists % (N% — N) pairs of symmetric triangles and N unmatched triangles. If
N 1is even, there exists %(N2 —3N +2) pairs of symmetric triangles and 3N —2
unmatched triangles.

Proof. The proof of the lemma is elementary. The basic idea consists in con-
sidering the pattern shown in Figure 3 made of 3 pairs of symmetric triangles
and reproducing this pattern in the triangulation of D a maximum number of
times. Counting the number of remaining triangles in the triangulation gives
the result. [

Due to pairs of symmetric triangles cancellation will occur among the terms
contributing to the local error.

Lemma 5 Let f{\l, ff\z be a pair of symmetric triangles and Ky, Ky be their
images in Ty, then

Ezi(sﬂt)‘Kl :Ei(sat)‘Kz (64)
and

Eé(é‘,t)h(l + Eé(sat)h(z = O(hﬁ) (65)

Proof. Let v, 95,75 and vy, 7y, U5 be the vertices of the two triangles f{\l and
K, as in Figure 3. Let (a;, b;) denote the coordinates of 7;. We have

ap —ag = ag —ay, by —by = by — by, (66)
ap —ag = a5 — ay, bl—b3:b5—b1.
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Then Vi € {1,2,3}

853'3(1 (0,0)=(az — a1) alFi(al, b1) + (bs — by) 82Fi(a1, b1)
= —(Cbs - al) 31Fi(a1,bl) - (bs - bl) aZFi(alabl)
= 0,7, (0,0). (67)

A similar development leads to d,z% (0,0) = —d,z%,(0,0) and

92 2% (0,0) = 2 2%,(0,0), Yo € {ss, st, tt},
33 2%,(0,0) = — 83 2%, (0,0), Vo € {sss, sst, stt, ttt}, (68)
Os 2%, (0,0) = 92 2%,(0,0), Vo € {ssss, ssst, sstt, sttt, tttt}.

This last result is used in (50) and (51) combined with (58) and (59) to check
(64), (65). O

5.8  Error estimate for B(P) — B (P) with P fized not in X

We will assume now that the triangulation T}, of the domain D is structured so
that it is composed of O(N?) pairs of symmetric triangles and O(N) pairs of
unmatched triangles. Such a triangulation exists, only to transform the mesh
so as to apply Lemma 4.

Lemma 6 Let P be a point not in X. Then the error Ey(P) defined in (45)
behaves in O(h*),

Ei(P) = O(hY).

Proof. The error on the element K is

erx(P) = /U ®p(muc(s, 1)) {0smic(s, 1) A Sy (s, 1)

(69)
—0smi(s,t) N Oymg(s,t)} dsdt.
The Taylor expansion of ®p(mg(s,t)) at (s,t) = (0,0) leads to
@p(mK(S, t)) = @p(mK(O, 0)) + s V(I)p(m[((o, 0)) . asmK(O, 0)
+t V®p(mg(0,0)) - 9;mg(0,0) + O(h?). (70)

Using Lemmas 2 and 3 we get the expression for the i component of e g,
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¢i < (P)= / 3 p(my(0,0)) Ei(s,t) dsdt

+ / {5 VO p(m(0,0)) - dymu (0,0)
+t V®p(mg(0,0)) - Oymi(0,0)} Ei(s, t) dsdt + O(h®). (71)

Therefore the local error e i over a triangle K is of order h° and summing
over the N? triangles of the triangulation would lead to a global error E; of
order h?’.A To improve the estimate we consider a pair of symmetric triangles
K; and K, and their corresponding images K; and K, in T}. By using the
relations (68), it can be easily verified that

S V(I)P(m](l (0, 0)) - asmkl (O, 0) +1 V@p(m[{l (O, 0)) . 8th1 (O, 0)

(72)
= —S V@p(mKQ(O, 0)) . 85771[(2 (0, 0) —t V(I)p(sz(O, 0)) . 8th2(O, 0)
It then follows from Lemma 5 that
e’i,Kl + e?’[,KQ = O(h6)' (73)

Thus cancellation happens for a pair of symmetric triangles and the error for a
pair of symmetric triangles is of order k8. To conclude, we use the assumption
made on the structured triangulation of D. Since h is proportional to 1/N, we
have

El(P): Z el,K(P) = Z el,K(P) + Z 61,K(P)

KETy matched unmatched
triangles triangles
= O(N?) O(h) + O(N) O(K®)
= O(h2)O(h%) + O(h~H)O(h®) = O(hY). (74)

O

Lemma 7 Let P be a point not in . Then the error Ey(P) defined in (46)
behaves in O(h*), Eo(P) = O(h*).

Proof. The error on the element K is

es. i (P) = / {®p(mi(s,t)) — Pp(mi(s,t))} (Osmk(s,t) A Oymk(s,t)) dsdt.
We write a Taylor expansion of ®p at mx (s, t), use the expansion V®p(mg (s, t)) =
V®p(mk(0,0)) + O(h) and the relation (49) to get

(Dp(mK(s,t)) — @P(mK(S,t)) = Hl(S, t) al@p(ﬁK(O, 0)) (75)
+H?2(s,t) 02®p(mi(0,0)) + H*(s,t) 3Pp(mx(0,0)) + O(h*) = O(h3).
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Then the error on the element K reads

62,K(P) :/U{Hl(s,t) 81@1)(%[{(0,0)) + H2(8,t) ag@p(ﬁK(O,O))

%JP@J)%@ﬂﬁk@JW}{&ﬁKwﬂ)A@ﬁKmJn}mdt+0m%
—O(hY), (76)

since Oy (s,t) A Oy (s,t) = 0smi(0,0) A Oy (0,0) + O(h*) = O(h?).
Again, for a pair of symmetric triangles K; and K, and their corresponding
K1 and K2 in Th

{Hi(s,t)Kl = —H'(s,1)|x,, (77)

s, (0,0) A Oimik, (0,0) = 05k, (0,0) A Oymik, (0, 0).

With the same argument already used in the last proof to sum over the N?
triangles of the triangulation, we obtain Fy(P) = O(h?*). O

Collecting the results of both Lemmas 6 and 7, we easily deduce a major result
of our paper.

Proposition 8 We assume that the triangulation T), is structured in the sense
precised at the beginning of the section and that P ¢ ¥. Then the error E(P)
in (43) behaves in h*, E(P) = O(h?).

Remark 9 So far we have fixed the point P and got estimates for the error
E(P). We can wonder what happens when P is getting closer and closer to 3.
We know that the integrand ®p behaves like 1/d* where d is the distance from
P to the boundary X. It is advisable then to take into account this behavior
in the error analysis.

We assume now that the point P is at a distance O(h) from . Then we can
check that the error E(P) in (44) behaves in O(h?). To prove it we need to
slightly modify the previous study. Let dx denotes the distance from P to a
triangle K € T}, and d = min dk.
KET,
We use the same notations and results as in Section 5.3 to investigate the two
error terms E; and Ej in (44). Expanding ®p(mg(s,t)) at (s,t) = (0,0) and
using Lemmas 2 and 3, we obtain

erx = O (78)
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The next step is to add errors over all K. A special attention is given to the
way this summation is done. For triangles far away from P (dx >> h) we
have a global error in O(h*). Let us consider the set 7} of triangles close to P.
Let Ky be the triangle in T}, such that d = dist(P, X) = dist(P, Kj). We then
consider an arrangement of the triangles in 7, depending on their distance to
Ky. Let V,,, n=1,--- , N be the set of all the triangles K in 7, at a distance
rk from Kj such that (n — 2)h < rx < (n+ )h. The number of triangles in
V,, is an affine function of n for an uniform triangulation. Moreover, we have
the following approximation, d% =~ r% + d? ~ n® h* + ¢ h* = (n? + ) h*

Finally we sum over the triangles in 7,

N N ho N Bo )
> D axP)=3 > O(5)=> (ant+b)0(5)=0F). (79
=1 gev,, n=lgev, K n=1 K

The estimate for F5(P) uses the same techniques. o

5.4 Error estimate for B(P) — By (P)

In Section 5.3, we considered the computation of (36) by evaluating the inte-
grals exactly. Here we will examine the error when the integrals are evaluated
numerically by using the quadrature rule (41). The error E(P) = B(P)—8},(P)
is given by

E(P)= Y / Bp(mi(s,t)) (Osmi(s, ) A dymi(s, b)) dsdt

KeTy 7%

- Z id: wi®p(Mmi(uy))(Osmi(u;) A Ok (uj)), (80)

KeTy, j=1

and can be decomposed as £ = Ey + E; + F,, where

B=Y / Bp(m(s,1)) B (s, 1) A dymuc(s,1)) dsdt

KeTy,

- Z iwﬂ)p(m;{(ug—)) (ang(’U,]) A\ 6th(u])) y

EDY idle(bP(mK(uj)) {0smic (uj) A Oym (u;) — O (uj) A Oy (ug)}
Eam Y 3, (0pmi) — 00 ()} (0,7 (1) A 0k (0).
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The first term represents the error due to the numerical integration. The other
two terms are analogous to F1 and E; in (44) with the integral over o replaced
by the quadrature rule.

Lemma 10 We assume that the triangulation Th 18 structured and the nu-

merical integration scheme integrates exactly all polynomials of degree inferior
or equal to u, then Ey is of order h*

N w+2 if poest even,
where [i =
w41 of pest odd.

Proof. Our proof follows the one in [17] and is completely detailed in [8]. Let
G(s,t) = Pp(mi(s,t)) (Osmi(s,t) N Oymg(s,t)). Then,

{/Gst dsdt—Zw] (84,1 } (81)

KeTy,

The Taylor expansion of G(s,t) in the neighborhood of the origin gives
G(s,t) = H)(s,t) + H}\(s,t) + H.(s, 1), (82)

with

I k
H)(s,t)=>" (gﬁ +t§> G(0,0),

k=0
e — L (0 0\
Hu(s,t)—(u+1)! 888+t6t G(0,0),
1 ! d" G
2 _ _ pu+1
H,(s,t)= Gt /0 (1-v) T (vs,vt) dv.

Since HB(s,t) is a polynomial of degree p it is integrated exactly. Thus, the
error can be decomposed as Eg = > ey + €%, where

KeTy,
eK—/K s, ) dsdt—Zu)]K1 (sj,t5), (83)
7j=1
6K—/K28t) dfsdt—Z:wJK2 (sj,t5)- (84)
j=1
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The error term €3 can be written as

1 _ I/ u—|—1 du—|—2G Hd du+2G
_/ TES { ng“”(VS vt) dsdt—Zw]d +2(1/8],I/t)}d

By using Liebnitz formula one can show that

d" 2@

dy,u'f‘Z

(vs,vt) = O(h*t4). (85)

It then follows readily that €3 = O(h#t*).

For the error term e}, a similar argument leads to the estimate e}, = O(h#*3).
Summing the two error terms over the N? triangles of the triangulation gives
a global error of order A#*. Then the lemma is proved if u is odd. If 4 is even
the estimate can be improved by considering pairs of symmetric triangles. Let
K, and K, be a pair of symmetric triangles and K, K5 their corresponding
triangles in T}, then one can show that ey +ej, = 0. The estimate is obtained
by summing the error term el over the N? triangles collecting the pairs of

symmetric triangles as in the proof of Lemma 6. [

Lemma 11 We assume that the triangulation T, is structured and the nu-
merical integration scheme integrates exactly all polynomials of degree inferior
or equal to p with p > 2, then Ey is of order h*.

Proof. The error on the element K is

oy = i_djlecbp(mz((um (0o ) A Dy (u;) — Oise (1) A O (u;))

We use the relations (57) and (70) to expand the two terms Jymg(u;) A

Omi (uj) — Osmg (uj) A Oymg (u;) and @p(mg(u;)). We get

Sp(mi(uj)) {0sm (u;) A Oymi (uj) — Osmii (uj) A Oy (uz)} =
®p(mi(0,0)) {Es(us) + Es(uy) } + {s VOp(mx(0,0)) - 95mx(0,0)
+t V®p(mi(0,0)) - ym (0,0)}Eq(u;) + O(h). (86)

Since Ej; is a polynomial of degree 2 in the variables (s,t), it is integrated
exactly if 4 > 2. Then from Lemma 3 we have

S, Ex(uy) /&st@&—o (87)

j=1
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Thus,

e’f’K = i (I)p(mK(O, 0))E5(8, t) + {S V@p(mK(O, 0)) . 6SmK((), O)

=1

+t V®p(mg(0,0)) - 0ymg (0,0)} Ey(s, t) + O(Rh°), (88)

which is the analogous of (71). The result is then derived by considering the
pairs of symmetric triangles as in the proof of Lemma 6. [

Lemma 12 We assume that the triangulation Ty, is structured. Then Es is of
order h*.

Proof. To get this result one has to follow the proof of Lemma 6 with the
exact integration replaced by the quadrature rule. This result is not affected
by the degree of precision of the numerical scheme. [

Collecting the results of Lemmas 10, 11, and 12 we deduce the error estimate
for B(P) — BJ/(P).

Proposition 13 We assume that the triangulation Tp, is structured and that
the numerical integration scheme integrates exactly all polynomials of degree
inferior or equal to p with p > 2. Then if P ¢ X the error E(P) in (80)
behaves in h*, E(P) = O(h*).

Remark 14 One can show that for a point P closed to ¥ we still have
Ei(P) = O(h?) and E5(P) = O(h?) in (80). However due to the quasi-singular
behavior of the integrand, we have Ey(P) = O(1) and the method does not
converge anymore. o

6 Numerical results

When the domain €2 is a ball, then an analytical expression is known for the
magnetic field induced by a uniformly magnetized ball. Then we can illustrate
some of the results we have mentioned. The ball has a radius of 1 cm and a
magnetization M = 795 Ampere per meter (X,, = 1073 usi , By = 1 Tesla).
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Fig. 4. Error as a function of the number of triangles for a point far from the
boundary.

6.1 Convergence rate

To illustrate the convergence rate of the method shown in Proposition 13, we
consider a point P at a distance of 2 radius from the center of the ball. The
magnetic field is computed at that point with meshes having an increasing
number of triangles. In Figure 4 we present the logarithm of the error versus
the logarithm of the number N of triangles. As h is proportional to 1/ VN we
numerically observe a convergence rate of order h*.

6.2 Handling the quasi-singularity

As discussed before, the integrand in (36) is quasi-singular, leading to numer-
ical difficulties when the point P is close to the surface . In Figure 5 we
present the relative error versus the distance between > and the points P.
The different curves correspond to the different integration schemes we are
using: the 3 — points rule (40) and the 7 — points quadrature rule (42) with
a varying number [ of subdivisions for the parametrization domain o. The
number of triangles used to mesh the surface X is 648 giving h ~ 2.2 mm. One
can observe that up to a distance of 3h, the 3 —points rule is accurate enough.
For points closed to the boundary ¥ (d ~ h/2) the error increases. A way to
obtain better results for these points is to refine the mesh of the surface.
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Fig. 5. Error as a function of the distance to the center of the sphere. The boundary
is located at d = 0.01 m.

6.3 Numerical examples

We present some computational results for 3 test objects: the ball, the cylin-
der and the cube, illustrating 3 ways of computing the induced magnetic field.
For the ball, an approximation of the surface with a piecewise quadratic in-
terpolation is required and the integral over each triangle is computed using
numerical quadrature rules. For the cube, the boundary is piecewise flat and
we use a mesh of the surface made of 12 flat triangles (they are obtained by
dividing each face in 2 triangles). The integral over each triangle is calculated
analytically giving a very accurate value for the magnetic field. For the cylin-
der, the two methods are used altogether. A quadratic interpolation is used to
approximate the lateral side of the cylinder and the corresponding integrals
are evaluated numerically. The top and the bottom parts can be meshed with
flat triangles (except for those on the exterior ring) and the integrals can be
calculated analytically. Figure 5 shows the 3 meshes. The sphere (radius 1 cm)
is meshed with 680 triangles. The cube (side length 1 ¢cm) is meshed with 12
triangles and the cylinder (radius 1 cm, height 5 cm) with 320 triangles. For
the computation we have assumed that these 3 bodies had a magnetic suscep-
tibility x,, of 103 usi and that they were embedded in an applied magnetic
field By along the Y axis of 1 Tesla. We have computed the induced magnetic
field for 1282 points in a plane parallel to (O, X,Y’) and passing through each
body at half its height. Figure 6.3 shows the component of the induced mag-
netic flux B’ along Y. Computations were done on a Sun Enterprise 450.
Computation requires 184 sec. for the ball, 15 sec. for the cube and 186 sec.
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Fig. 6. Mesh of the sphere (680 triangles), of the cube (12 triangles) and of the
cylinder (320 triangles).

Fig. 7. Component of the induced magnetic flux B’ along Y in a plane parallel to
(0,X,Y) and passing at half the height of each of the 3 geometries (from left to right:
the ball, the cube, the cylinder). Each picture corresponds to a square of length 8
cm.

for the cylinder.

7 Conclusion

In this paper we have analysed a method to compute the magnetic field in-
duced by a paramagnetic or diamagnetic body embedded in a uniform external
magnetic field. The method is based on an integral representation formula for
the induced magnetic flux. To compute the integral, we use both numeri-
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cal quadrature rules and analytical computations. The curved panels of the
boundary are approximated with a piecewise quadratic interpolation and nu-
merical quadrature rules are used. The flat panels of the boundary are meshed
with triangles of maximal size and the integral over each of these triangles is
calculated analytically. This allows both high accuracy and low computation
time, requirements that are not fulfilled when using standard numerical meth-
ods to solve this problem. These requirements are of great practical impor-

tance since the method is used to numerically simulate magnetic susceptibility
artifacts in MRI [8], [18].
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