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Stéphane Balac
UMR FOTON, CNRS, Université de Rennes 1
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Abstract

spip is a portable command-line driven utility written in C language for Linux
and MS-Windows aimed at solving the Generalized Non-Linear Schrödinger Equa-
tion (GNLSE) as well as the Non-Linear Schrödinger Equation (NLSE) involved in
optics in the modelling of light-wave propagation in an optical fibre. In the spip
program is implemented the Interaction Picture method, a new efficient alterna-
tive method to the Symmetric Split-Step method together with a dedicated costless
adaptive step-size control based on the use of a 4th order embedded Runge-Kutta
method.
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1 Introduction

In optics, the non-linear Schrödinger equation occurs for modeling light-wave propaga-
tion into an optical fibre. This particular form of the Schrödinger equation is obtained
from the general set of Maxwell equations taking advantage of a certain number of as-
sumptions made possible from the very specific characteristics of (quasi-)monochromatic
wave propagation in a medium such as a fibre [1, 6]. One of the major assumption,
referred as the slowly varying envelope approximation, concerns the expression of the
electric field in the optical fibre. It assumes that the electric field E is linearly polarized
along a direction ex transverse to the direction of propagation ez defined by the fibre
and can be represented as a function of time τ and position r = (x, y, z) in a reference
frame (O, ex, ey, ez) as

E(r, τ) = A(z, t)F (x, y) e−i(ω0τ−kz) ex (1)

where the complex valued function A represents the slowly varying electric pulse enve-
lope, F is the electric wave transverse representation, k is the wave number, ω0 is the
wave frequency, and t denotes a local time in a moving frame travelling along with the
pulse at the group velocity vg = c/ng where ng is the fibre group index and c the speed
of light in vacuum. The relationship between the absolute time τ and the local time t is:
t = τ − z/vg. The expression of the electric wave transverse representation F can most
of the time be computed explicitly using the classical method of separation of variables
for partial differential equations (PDE). For instance, for circular constant transverse
section fibres, it is expressed in terms of Bessel functions [1, 6].

In the simplest cases of light-wave propagation in an optical fibre, the evolution of
the slowly varying pulse envelope A is governed by the following PDE referred in the
literature as the Non-Linear Schrödinger Equation (NLSE) [1, 6]

∂

∂z
A(z, t) = −α

2
A(z, t)− i

2
β2

∂2

∂t2
A(z, t) + iγA(z, t)|A(z, t)|2. (2)

Equation (2) describes wave propagation in a single mode fibre taking into account
phenomena such as the optical Kerr effect through the non-linear coefficient γ, linear
attenuation through the linear attenuation coefficient α and linear dispersion through
the chromatic dispersion coefficient β2.

In a more accurate model of light-wave propagation in an optical fibre, the evolu-
tion of the slowly varying pulse envelope A obeys the so-called Generalized Non-Linear
Schrödinger Equation (GNLSE) [1, 6]
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hR(s) |A(z, t− s)|2 ds

)]
.

In equation (3) linear dispersion is now taken into account through the dispersion coef-
ficients βn, n = 2, . . . , nmax whereas non linear dispersion is taken into account through
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the simplified optical shock parameter τshock = 1/ω0. Instantaneous Kerr effect mani-
fests itself through the term (1− fR) |A|2. The delayed Raman contribution in the time
domain is taken into account through the convolution product between the instantaneous
power |A|2 and the Raman time response function hR. The constant fR represents the
fractional contribution of the delayed Raman response to non-linear polarization.

Both evolution type PDE (2) and (3) have to be considered together with an initial
condition at z = 0 in the form

∀t ∈ R A(0, t) = a0(t) (4)

where a0 is a given function referred as the incident slowly varying electric pulse envelope
in the following. Both equations are solved for all t ∈ R and all z ∈ [0, L] where L denotes
the length of fibre. The aim of the spip program is to solve the GNLSE (3) and the
NLSE (2).

The spip program solves the PDE problem corresponding to the GNLSE (3) or
to the NLSE (2) by means of the Interaction Picture (IP) method. The main idea
of the IP method is a change of unknown in order to transform the GNLSE for the
unknown A into a new equation where only remains an explicit reference to the partial
derivation with respect to the space variable z and where the time variable t appears
as a parameter, see [3]. This new equation can be solved numerically using the usual
methods for ordinary differential equations (ODE) such as the fourth order Runge-Kutta
(RK4) method. Then, by using the inverse transform we obtain approximate values for
the unknown A at the grid points of a subdivision of the fibre length interval [0, L]. This
numerical approach is referred to as the RK4-IP method. Recently an efficient embedded
RK method based on Dormand and Prince RK4(3)-T formula and specifically designed
for the IP method has been proposed in [4] to provide a costless adaptive step-size
control in the RK4-IP method. It is this method, termed the ERK4(3)-IP method, that
is implemented in the spip program. We refer to [2] for details on the ERK4(3)-IP
method for solving the GNLSE.

The spip program is written in C language. It has been tested under Linux and
MS-Windows. The acronym SPIP stands for Simulation of light-wave Propagation by
the Interaction Picture method. Spip is also the name of one of the central characters of
the long-running Franco-Belgian comic series Spirou and Fantasio. He is a courageous
and sharp, grouchy pet squirrel.

2 Copyright

Copyright or c© or Copr : Stéphane Balac (stephane.balac@univ-rennes1.fr) and
Arnaud Fernandez (afernand@laas.fr), September 2013.

This software is a computer program whose purpose is to solve the Generalized Non-
Linear Schrödinger Equation (GNLSE) as well as the Non-Linear Schrödinger Equation
(NLSE) involved in optics in the modelling of light-wave propagation in an optical fibre.

This software is governed by the CeCILL license under French law and abiding by
the rules of distribution of free software. You can use, modify and/ or redistribute the
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software under the terms of the CeCILL license as circulated by CEA, CNRS and INRIA
at the following URL: http://www.cecill.info.

As a counterpart to the access to the source code and rights to copy, modify and
redistribute granted by the license, users are provided only with a limited warranty and
the software’s author, the holder of the economic rights, and the successive licensors
have only limited liability.

In this respect, the user’s attention is drawn to the risks associated with loading,
using, modifying and/or developing or reproducing the software by the user in light of its
specific status of free software, that may mean that it is complicated to manipulate, and
that also therefore means that it is reserved for developers and experienced professionals
having in-depth computer knowledge. Users are therefore encouraged to load and test
the software’s suitability as regards their requirements in conditions enabling the security
of their systems and/or data to be ensured and, more generally, to use and operate it in
the same conditions as regards security.

3 Installation

3.1 External librairies

spip requires 2 external librairies:

• FFTW a C subroutine library for computing the discrete Fourier transform (DFT)
developed at MIT by Matteo Frigo and Steven G. Johnson, see http://www.fftw.
org for details.

• Gnuplot a portable command-line driven graphing utility, see http://www.gnuplot.
info for details.

3.1.1 Installation of FFTW

Under Linux

First download the current stable version of FFTW form the FFTW home page: http:
//www.fftw.org/download.html Then, untar the FFTW gzipped archive fftw-3.3.

4.tar.gz in the usual location for such installations (e.g. /usr/local/).

$ tar -xzf fftw-3.3.4.tar.gz

In short, installation can be as simple as typing in a shell window the following Unix
command as root:

$ cd fftw-3.3.4

$ ./configure

$ make

$ make install
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This will build the uniprocessor complex and real transform libraries along with the test
programs. The “make install” command installs the FFTW libraries in standard places,
and typically requires root privileges. You can also type “make check” to put the FFTW
test programs through their paces. Read chapter 10 ”Installation and Customization” of
the manual fftw3.pdf located in directory fftw-3.3.4/doc for additional information
on the installation procedure and option setting.

Under MS-Windows

There exists precompiled FFTW 3.3.4 MS-Windows DLLs that can be download from
FFTW website: http://www.fftw.org/install/windows.html. They are sufficient
for compiling the spip program, so that you need not worry about compiling FFTW
yourself.

• 32-bit version: fftw-3.3.3-dll32.zip (2.4MB) available from
ftp://ftp.fftw.org/pub/fftw/fftw-3.3.3-dll32.zip

• 64-bit version: fftw-3.3.3-dll64.zip (2.8MB) available from
ftp://ftp.fftw.org/pub/fftw/fftw-3.3.3-dll64.zip

For convenience, the FFTW DLLs are included in the spip archive so that you don’t
have to worry about downloading them.

Alternatively, it is of course possible to compile FFTW on MS-Windows. See the
Installation on non-Unix Systems section of the FFTW 3 manual or MS-Windows In-
stallation Notes at the following URL: http://www.fftw.org/install/windows.html.

3.1.2 Installation of Gnuplot

Under Linux

Check to see if you already have Gnuplot in your Linux distribution, e.g. by typing
’which gnuplot’ in a shell window.

If you need to install Gnuplot, you can download the current stable version of Gnuplot
from the Gnuplot project website: http://www.gnuplot.info/. Once you have down-
load the gzipped tar file (e.g. gnuplot-4.6.6.tar.gz) with Gnuplot sources, untar the
archive in the usual location for such installations (e.g. /usr/local/).

$ tar -xzf gnuplot-4.6.6.tar.gz

Installation can be made as simple as typing the following Unix commands as root in
a shell window (see the installation instructions available in the source archive itself for
more detailed information on the installation procedure).

$ cd gnuplot-4.6.6

$ ./configure

$ make

$ make install
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Alternatively RPMs for Gnuplot are available from rpmfind.net. If you are us-
ing Debian Linux, Gnuplot will be downloaded and installed if you issue the following
command as root: ’apt-get install gnuplot’.

Display requests to a Gnuplot session from spip is achieved thanks to the gnuplot_i

module developed by Nicolas Devillard, see http://ndevilla.free.fr/gnuplot/. The
2 files gnuplot_i.c and gnuplot_i.h useful for the spip program are provided in the
spip archive so that there is no need to download the gnuplot_i module.

Under MS-Windows

Self-installer package of Gnuplot MS-Windows binaries is available from the following
URL: http://sourceforge.net/projects/gnuplot/files/gnuplot/4.6.6/ where it
is referred as gp466-win32-setup.exe or gp466-win64-setup.exe.

The gnuplot_i module designed to display requests to a Gnuplot session from the
spip program has been extended to support MS-Windows by Robert Bradley, see http:

//robert-bradley.co.uk/gnuplot/. Unfortunately a bug in the display systematically
occurs. Therefore the possibility to interactively display the slowly electric pulse envelope
at the fibre entrance and at the fibre end under MS-Windows had been disabled. The
user can view the draws of the slowly electric pulse envelope after exiting the spip
program using Matlab/Octave drawing facilities thanks to the scripts provided in the
spip archive, see Section 4.2.

3.2 Installing spip

3.3 Under Linux

Unzip the spip archive spip-1.1.zip in a suitable location of the home directory by
typing in a shell window:

$ unzip spip-1.1.zip

Go to the Linux directory:

$ cd spip-1.1/linux

Compile the C program thanks to the Makefile available in the directory:

$ make

The executable is named spipxx. Optionally, you can delete object files by typing:

$ make clean
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3.4 Under MS-Windows

If you have installed the Linux-like environment Cygwin for Windows (https://www.
cygwin.com/) you can install the spip program proceed pretty much as the for a Linux
installation.

Otherwise, untar the spip gzipped archive spip-1.1.tar.gz in a suitable location of
the home directory with your favourite MS-Windows utility for manipulating archives. A
compiled version of the spip program is available in the spip archive in directory windows

as file spipxx_windows.exe. You can launch the spip program by double-clicking on
the spipxx_windows.exe.

Alternatively, you can use an C language IDE (e.g. Code::Blocks, http://www.

codeblocks.org/) to compile the sources. A Code::Blocks project spip_windows.cbp

is available in the archive under the directory windows for convenience. Compilation of
the sources will be required e.g. if you want to add an other shape type for the incident
slowly varying electric pulse envelope, see Section 4.3.

Note that display requests to a Gnuplot session from spip is not available under
Windows. It is however possible to display the slowly varying electric pulse envelope
using the Matlab/Octave scripts provided in the archive, see section 4.2 for details.

4 Running the spip program

4.1 An annotated execution example

The spip program is launched under Linux by typing the following command in a shell
window:

$ ./spipxx

Under MS-Windows, you can launch the spip program by double-clicking on the
spipxx_windows.exe located in the windows directory of the spip archive.

In the spip command line user interface, the user is first asked to provide the name
and path of the directory where the result files will be stored.

[?] Directory where result files will be stored (must exist): [. by default]: res

Typing a carriage return will set this directory to the current directory by default.
If the folder doesn’t exist, the program will end to let the user create it. For instance,
one gets:
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[?] Directory where result files will be stored (must exist): [. by default]: Res

:-( *** Error : cannot access directory [Res]. Create it!

Then the user is asked to provide a keyword for the simulation. The result files gener-
ated by the spip program will automatically bear this keyword in their name with an
additional unique key corresponding to the elapsed time in second from Epoch.

[?] Keyword for the present simulation: sol3

At the end of the run, the result files directory (here res) will contain the following
execution files, all of them ending with the same label made from the keyword provided
by the user (here: sol3) and the unique key generated by the program (here: 1421248167):

$ ls res

data_sol3_1421248167.txt out_time_sol3_1421248167.png

in_spec_sol3_1421248167.png pulse_in_sol3_1421248167.txt

in_time_sol3_1421248167.png pulse_out_sol3_1421248167.txt

out_spec_sol3_1421248167.png zstep_sol3_1421248167.txt

Then the type of equation to solve must be specified: Non-Linear Schrödinger Equation
or Generalized Non-Linear Schrödinger Equation.

[?] Equation type [0 for the NLS or 1 for the GNLS] = 0

Four pre-defined incident shapes for the slowly varying electric pulse envelope are avail-
able: Soliton, Gaussian and Super-Gaussian, Hyperbolic Secant. The mathematical
expressions of these incident pulses are given in Section 4.3. Additionally, it is possible
to provide any other incident pulse shape in the program. To do so, one must append
the expression of the incident pulse in file inpulse shape.c in the space provided and
one must re-compile the program.

[?] Shape of the incident slowly varying pulse envelope [1: Soliton, 2: Gaussian,

3: Hyperbolic Secant, 4: Super-Gaussian, 5: user-defined] = 1

The next stage consists in providing the incident pulse envelope features. The items
may vary depending on the selected shape. For the Soliton they are : the Soliton order,
the wavelength of the pulse and the half-width at 1/e-intensity point of the pulse.
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[?] Soliton order = 3

[?] Central wavelength of the pulse [nm] = 1550

[?] Width parameter of the incident pulse [ps] : T0 = 2.8365

It is followed by the features of the optical fibre, i.e. the values of the parameters
involved in equation (2) or (3). For the NLSE they are: fibre length L, linear loss/gain
coefficient α, number nmax of non-zero dispersion coefficients and values of these coeffi-
cients β2, . . . , βnmax , non-linear coefficient γ.

[?] Fiber length [km] = 0.637

[?] Linear loss/gain coefficient alpha [km^-1] = 0

[?] Number of non-zeros beta_k (k>=2) coefficients = 1

[?] Value of beta_2 [ps^2 km^-1]= -19.83

[?] non-linear coefficient gamma [W^-1 km^-1] = 4.3

In the case of the GNLSE (3), the fractional contribution of the delayed Raman response
fR must also be supplied. Note that the expression of the Raman time response function
hR provided in [1] is used in the spip program but this function can be easily modified
in file hraman.c (the program must then be re-compiled).

In a last stage, the user must provide the values of the tuning parameters of the
ERK4(3)-IP method: size of the time window and number of sampling point for the
FFT as well as the initial step-size and tolerance for the adaptive step-size method.

[?] Size of the time window; winT [ps] = 50

[?] Number of time sampling points 2^p with p = 14

[?] Initial step-size length [m] = 1

[?] Tolerance value = 1e-6

Before computations start, the variation with respect to time of the modulus, real
and imaginary parts of the slowly varying pulse envelope A(L, t) at the fibre entrance are
depicted in a Gnuplot graphics window (this feature is not available under MS-Windows).
In a second window are depicted the Fourier Transform of these quantities, see Fig.
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1. The 2 figures are automatically recorded in the results directory (in the current
simulation: res) into 2 files in PNG format named respectively in_spec_xxx.png and
in_time_xxx.png respectively, where xxx stands for the key label of the simulation.

Figure 1: Screen-shot of the Gnuplot graphics windows where are depicted the time
variation of the modulus, real and imaginary parts of the slowly varying pulse envelope
A(L, t) at the fibre end (on the left) and the Fourier Transform of these quantity (on
the right).

During the computations, the current step number, the current step-size and the
progress of the calculations are printed in the console window.

Once the computations are achieved, the time variation of the modulus, real and
imaginary parts of the slowly varying pulse envelope A(L, t) at the fibre end are de-
picted in a Gnuplot graphics window (this feature is not available under MS-Windows).
In a second graphics window are depicted the Fourier Transform of the modulus, real
and imaginary parts of the slowly varying pulse envelope A(L, t) at the fibre end, see
Fig. 5. The 2 figures are also automatically recorded in the results directory into 2 files
in PNG format named respectively out_spec_xxx.png and out_time_xxx.png respec-
tively, where xxx stands for the label key of the simulation. Additionally, the L2 norm,
the L1 norm and the L∞ norm of the solution are printed. They are respectively defined
by:

‖A(L)‖2 =

(∫
R
|A(L, t)|2 dt

) 1
2

, ‖A(L)‖1 =

∫
R
|A(L, t)| dt, ‖A(L)‖∞ = sup

t∈R
|A(L, t)|.

Dispersion length = 4.057353e-01 km

Non-linear length = 4.508170e-02 km

Number of spatial steps = 439

L 2-norm of the solution at fibre end = 5.409691e+00
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L 1-norm = 2.023695e+01

L infinity-norm = 2.271319e+00

Figure 2: Screen-shot of the Gnuplot graphics windows where are depicted the time
variation of the modulus, real and imaginary parts of the slowly varying pulse envelope
A(L, t) at the fibre end (on the left) and the Fourier Transform of these quantity (on
the right).

When required, one can record the solution to the Schrödinger equation at every
computational step. In the header file spip.h one must first set the macro REC to the
value 1 and recompile the program. During the next executions of the spip program, the
computed solution to the Schrödinger equation will be recorded at every computational
step in a binary file name pulse_all_xxx.spip. This functionality is not set by default
in the spip program since it generates very large files on the disc depending on the
problem to be solved or on the simulation parameters. To circumvent this issue, it
is also possible to record the solution at periodical steps. The period must be chosen
depending on the problem to be solve. The period value is specify in the header file
spip.h and corresponds to the macro NREC. The program must be recompiled to take
into account any modification in the value. In the header file spip.h the two macros
REC and NREC are set by default as follows.

#define REC 0 // When REC = 1 all the intermediate results are stored in a file

// To be used with care due to the huge data file generated !!!!

#define NREC 1 // When REC = 1, it prompts the record the solution every NREC steps

// (use this option to avoid too large recorded files)

At the end of the simulation, the directory specified to store the results files contains
the following files (xxx stands for the key label of the current execution):

• data_xxx.txt: this ASCII file contains the values of the physical and numerical
parameters used for the current simulation.

10



• pulse_in_xxx.txt: this ASCII file contains the incident slowly varying electric
pulse envelope sampled over the time window.

• pulse_out_xxx.txt: this ASCII file contains the slowly varying electric pulse
envelope at the fibre end sampled over the time window.

• zstep_xxx.txt: this ASCII file contains the step-size values along the propagation
direction computed by the adaptive step-size method.

• in_time_xxx.png: image of the time variation of the incident slowly varying elec-
tric pulse envelope in PNG format as generated by Gnuplot, see Fig. 1.

• in_spec_xxx.png: image of the frequency variation of the Fourier Transform of
the incident slowly varying electric pulse envelope in PNG format as generated by
Gnuplot, see Fig. 1.

• out_time_xxx.png: image of the time variation of the slowly varying electric pulse
envelope at fiber end in PNG format as generated by Gnuplot, see Fig. 5.

• out_spec_xxx.png: image of the frequency variation of the Fourier Transform of
the slowly varying electric pulse envelope at fiber end in PNG format as generated
by Gnuplot, see Fig. 5.

For instance, for the current simulation we have the following files in the directory res:

$ ls res

data_sol3_1421248167.txt out_time_sol3_1421248167.png

in_spec_sol3_1421248167.png pulse_in_sol3_1421248167.txt

in_time_sol3_1421248167.png pulse_out_sol3_1421248167.txt

out_spec_sol3_1421248167.png zstep_sol3_1421248167.txt

The last 4 files in PNG format are not generated by the spip program under MS-
Windows. However the pictures can be obtained from the 2 files pulse_in_xxx.txt

and pulse_out_xxx.txt thanks to the Matlab/Octave script plotsol.m provided in
the spip archive, see Section 4.2 for details.

The file data_sol3_1421248167.txt recording the simulation data contains the fol-
lowing information:

$ more data_sol3_1421248167.txt

Simulation date : Thu Jan 15 14:56:31 2015

Solving the NLSE by the ERK4(3)-IP method

CPU time for the simulation : 1.762619 s.

Incident slowly varying pulse envelope [1: Soliton, 2: Gaussian,

3: Hyperbolic Secant, 4: Super-Gaussian, 5: user-defined] = 1

Wavelength = 1550 nm

Fiber length = 0.637210 km

Half-width of the incident pulse: T0 = 2.836500 ps
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PeakPower = 5.158592 W

Linear attenuation coefficient : alpha = 0.000000 km^(-1)

linear dispersion coefficients :

beta_2 = -19.830000 ps^2/km

non-linear parameter : gamma = 4.300000 W^(-1) km^(-1)

Linear fiber length = 0.405735

non-linear fiber length = 0.045082

Time windows size = 50.000000

Time step-size = 0.003052

Number of FFT points = 16384

Tolerance set for the adaptive space step-size = 1.000000e-06

Initial step-size for the spatial discretization = 0.001000 Km

Number of iterations of the ERK4(3)-IP method = 185

Number of FFT achieved = 2961

L^2 norm of the solution at fiber end = 5.4096852398216813e+00

L^1 norm of the solution at fiber end = 2.0235598036077338e+01

L^infinity norm of the solution at fiber end = 2.2712537077671460e+00

4.2 Matlab/Octave tools

Together with the spip program are provided under directory matlab in the spip archive
several Matlab1 /Octave2 scripts to handle spip results files. These scripts can be copied
in the user result files directory or a symbolic link to these scripts from the user result
files directory can be created.

4.2.1 Solution plotting tool

File plotsol.m contains a script to draw under Matlab/Octave the slowly varying electric
pulse envelope A at fibre entrance or end, respectively from files pulse_in_xxx.txt and
pulse_out_xxx.txt generated by the spip program. It also plots the Fourier Transform
of the slowly varying electric pulse envelope A. The script allows to plot again the
solution when the Gnuplot graphical windows of the spip program have been closed.

For instance, under Matlab/Octave, typing

>> plotsol

Filename = pulse_out_sol3_1421248167.txt

Size of the time windows [ps] = 50

produces the plots depicted in Fig. 3.
Moreover graphics tools available under Matlab/Octave allow image manipulations

such as to zoom in to enlarge the draw of the Fourier Transform of the pulse or to modify
the figure setting.

1Matlab is a numerical computing environment developed by the MathWorks company, see http:

//www.mathworks.com/.
2GNU Octave is a high-level interpreted language, primarily intended for numerical computations,

distributed under the terms of the GNU General Public License. The Octave language is quite similar
to Matlab so that most programs are easily portable. See https://www.gnu.org/software/octave/
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Figure 3: Screen-shot of the Octave graphics windows where is depicted the time vari-
ation of the modulus, real and imaginary parts of the slowly varying pulse envelope
A(L, t) at the fibre end (on the left) and the Fourier Transform of these quantity (on
the right).

As we point out in the last section, when required, the solution to the Schrödinger
equation at every computational step (or according to a period) can be recorded and
these recorded data can be used to plot the solution at various positions along the fibre
length. The Matlab/Octave script entitled plotspip.m has been written to draw the
variations of the solution in the time domain as well as in the wavelength (frequency)
domain at various positions along the fibre length.

For instance, under Matlab/Octave, typing

octave:1> plotspip

Filename = pulse_all_sol3_1421248167.spip

Size of the time windows [ps] = 50

Central wavelength of the pulse [nm] = 1550

Time window to be plotted [t_min,t_max] = [-25 25]

produces a plot of the power of the slowly varying pulse envelope power |A|2 as a surface
plot as well as as a contour plot, see Fig. 4.
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Figure 4: Time variation of the power of the slowly varying pulse envelope power |A|2
along the fibre for the 3rd order Soliton.

It also produces a plot of the power spectral density in dB as a function of the
wavelength and position along the fibre, see Fig. 5.

4.2.2 Step-size plotting tool

The script plotstep.m can be used under Matlab/Octave to draw the variation of the
step-size along the fibre length resulting from the adaptive step-size strategy used in the
spip program. Since the step-size is adapted so that the local error matches the given
tolerance at each computational step, small step-sizes indicate an area in the fibre where
the slowly varying pulse envelope varies a lot. On the contrary, larger step-sizes indicate
areas where the solution varies in a very smooth way.

For instance, under Matlab/Octave, typing
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Figure 5: Power spectral density in dB as a function of wavelength and position along
the fibre for the propagation of a 3rd order Soliton.

>> plotstep

Filename = zstep_sol3_1421248167.txt

produces the plots depicted in Fig. 6.

4.3 Predefined incident pulse shapes

In the spip program are implemented the usual shapes for the incident field as described
in [1]. They are defined in file inpulse shape.c and commented below.

4.3.1 Soliton

The incident slowly varying electric pulse envelope A corresponding to an optical Soliton
is of the form

a0(t) = A(z = 0, t) =
Ns√

γLD cosh(t/T0)
(5)

where Ns is the Soliton order, T0 is the pulse half-width and LD = −T 2
0 /β2 is the

dispersion length. These quantity are related to the peak power P0 by the relation

P0 = N2
s

γ LD
.

4.3.2 Gaussian pulse

Pulses emitted from many lasers can be approximated by a Gaussian shape. In the case
of a Gaussian pulse the incident slowly varying electric pulse envelope A is of the form

a0(t) = A(z = 0, t) =
√
P0 exp

(
−1

2

t2

T 2
0

)
(6)
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Figure 6: Screen-shot of the Octave graphics window where is depicted the variation of
the step-size resulting from the adaptive step-size strategy used in the spip program for
the 3rd order Soliton.

where T0 is the half-width at 1/e-intensity point of the pulse and P0 is the peak-power of
the pulse. In practice, it is customary to use the full width at half maximum (FWHM)
in place of T0. For a Gaussian pulse, the two are related as: TFWHM = 2

√
ln 2T0 ≈

1.665T0.
We also consider the case of linearly chirped Gaussian pulses for which the slowly

varying electric pulse envelope A can be written as

a0(t) = A(z = 0, t) =
√
P0 exp

(
−1

2
(1 + iC)

t2

T 2
0

)
(7)

where C is the chirp parameter (a positive or negative real number).

4.3.3 Hyperbolic secant pulse

The hyperbolic secant pulse shape occurs naturally in the context of optical Solitons and
pulses emitted from some mode-locked lasers. The incident slowly varying electric pulse
envelope A takes the form

a0(t) = A(z = 0, t) =
√
P0

exp(−1
2 iC t2/T 2

0 )

cosh(t/T0)
(8)

where T0 is the half-width at 1/e-intensity point of the pulse and C is chirp parameter
(a positive or negative real number).

4.3.4 Super-Gaussian pulse

For a super-Gaussian pulse, relation (7) is generalized to take the form

A(z = 0, t) =
√
P0 exp

(
−1

2
(1 + iC)

tm

Tm0

)
(9)
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where the parameter m controls the degree of edge sharpness. For m = 1 we recover
the case of chirped Gaussian pulses. For larger value of m, the pulse becomes square
shaped with sharper leading and trailing edges. In general, a pulse with steeper leading
and trailing edges broadens more rapidly with propagation simply because such a pulse
has a wider spectrum to start with.

4.3.5 User defined pulse

It is also possible for the user to define its own shape for the the incident slowly varying
electric pulse envelope. It suffices to append the expression of the incident pulse in file
inpulse shape.c in the space provided and to re-compile the program.

5 Running examples

In this section, we present examples where the spip program is used to simulated light-
wave propagation in an optical fibre under various experimental conditions. All the sim-
ulation were achieved under Linux Ubuntu 14.04 LTS on a desktop computer equipped
with an Intel Core i5-4200M processor and 8 GO RAM.

5.1 Solving the GNLSE (I)

We consider the case of the GNLSE (3) with the following set of physical parameters:
ω0 = 1770 Thz, γ = 4.3 W−1km−1, β2 = 19.83 ps2km−1, β3 = 0.031 ps3km−1 and βn = 0
for n ≥ 4, α = 0.046 km−1, L = 96, 77 m, fR = 0.245. The Gaussian pulse at the fibre
entrance (z = 0) is expressed as

∀t ∈ R a0(t) =
√
P0 e−

1
2
(t/T0)2 (10)

where T0 = 2.8365 ps is the pulse half-width and P0 = 100 W is the pulse peak power.
The number of sampling points for the FFT computations was set to 214. The tolerance
for the step-size control was set to 10−6 and the initial step-size was 1 m. The number of
discretisation steps along the fibre was found to be 300 and the computation time was
4.52 s. We have depicted in Fig. 7 the modulus, real and imaginary parts of the slowly
varying pulse envelope A at the fibre entrance and at fibre end.

The detail of the execution of the spip program is given below.

$./spipxx

[?] Directory where result files will be stored (must exist): [. by default]: res

[?] Keyword for the present simulation: green

[?] Equation type [0 for the NLS or 1 for the GNLS] = 1

******************************************

**** Incident pulse envelope features ****
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Figure 7: Modulus, real and imaginary parts of the slowly varying pulse envelope A at
the fibre entrance (on the left) and at fibre end (on the right).

******************************************

[?] Shape of the incident slowly varying pulse envelope [1: Soliton, 2: Gaussian,

3: Hyperbolic Secant, 4: Super-Gaussian, 5: user-defined] = 2

[?] Central wavelength of the pulse [nm] = 1064

[?] Peakpower [W] = 100

[?] Chirp constant = 0

[?] Half-width of the incident pulse [ps] : T0 = 2.8365

******************************************

**** Optical fibre features ****

******************************************

[?] Fibre length [km] = 96.77e-3

[?] Linear loss/gain coefficient alpha [km^-1] = 0.046

[?] Number of non-zeros beta_k (k>=2) coefficients = 2

[?] Value of beta_2 [ps^2 km^-1]= 19.83

[?] Value of beta_3 [ps^3 km^-1]= 0.031

[?] non-linear coefficient gamma [W^-1 km^-1] = 4.3

[?] Fractional contribution of the delayed Raman response: fr = 0.245

******************************************

**** Numerical parameters setting ****

******************************************

[?] Size of the time window; winT [ps] = 50

[?] Number of time sampling points 2^p with p = 14

[?] Initial step-size length [m] = 0.1

[?] Tolerance value = 1e-6
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--------------------------------------------------

Computations start on: Fri Jan 16 15:13:40 2015

Computations end on: Fri Jan 16 15:13:45 2015

Simulation lasted (s) : 4.517599

--------------------------------------------------

******************************************

**** Results (see also files in dir. [./res/])

******************************************

Dispersion length = 4.057354e-01 km

Non-linear length = 2.325581e-03 km

Number of spatial steps = 300

L^2-norm of the solution at fibre end = 2.237221e+01

L^1-norm = 1.161340e+02

L^infinity-norm = 4.979086e+00

Press [Enter] to close figures and exit program ...

5.2 Solving the GNLSE (II)

We use the spip program to solve the GNLSE on a test example chosen to match with
a typical case of high speed data propagation through a L = 20 km single mode fibre in
optical telecommunication with a data’s carrier frequency located in the C band of the
infra-red spectrum (f0 = 193 Thz). The following set of fibre’s parameters were used for
the simulation: α = 0.046 km−1, γ = 4.3 W−1km−1, fR = 0.245, β2 = −19.83 ps2km−1,
β3 = 0.031 ps3km−1 and βn = 0 for n ≥ 4. The source term a0 = A(z = 0) was
represented as a first order Gaussian pulse:

a0 : t 7→
√
P0 e−

1
2
(t/T0)2

where T0 is the pulse half-width at 1/e intensity point and P0 is the pulse peak power.
Simulations were carried out for a pulse-width T0 = 6.8 ps and for a peak power value
of 25 mW.

The number of sampling points for the FFT computations was set to 214. The
tolerance for the step-size control was set to 10−6 and the initial step-size was 1 m. The
number of discretisation steps along the fibre was found to be 26 and the computation
time was 1.16 s. We have depicted in Fig. 9 the modulus, real and imaginary parts of
the slowly varying pulse envelope A at the fibre entrance and at fibre end.

The detail of the execution of the spip program is given below.

$./spipxx
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Figure 8: Modulus, real and imaginary parts of the slowly varying pulse envelope A at
the fibre entrance (on the left) and at fibre end (on the right).

[?] Directory where result files will be stored (must exist): [. by default]: res

[?] Keyword for the present simulation: telcom

[?] Equation type [0 for the NLS or 1 for the GNLS] = 1

******************************************

**** Incident pulse envelope features ****

******************************************

[?] Shape of the incident slowly varying pulse envelope [1: Soliton, 2: Gaussian,

3: Hyperbolic Secant, 4: Super-Gaussian, 5: user-defined] = 2

[?] Central wavelength of the pulse [nm] = 1550

[?] Peak power [W] = 25e-3

[?] Chirp constant = 0

[?] Half-width of the incident pulse [ps] : T0 = 6.8

******************************************

**** Optical fibre features ****

******************************************

[?] Fibre length [km] = 20

[?] Linear loss/gain coefficient alpha [km^-1] = 0.046

[?] Number of non-zeros beta_k (k>=2) coefficients = 2

[?] Value of beta_2 [ps^2 km^-1]= -19.83

[?] Value of beta_3 [ps^3 km^-1]= 0.031

[?] non-linear coefficient gamma [W^-1 km^-1] = 4.3

[?] Fractional contribution of the delayed Raman response: fr = 0.245

******************************************

**** Numerical parameters setting ****
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******************************************

[?] Size of the time window; winT [ps] = 500

[?] Number of time sampling points 2^p with p = 14

[?] Initial step-size length [m] = 1

[?] Tolerance value = 1e-6

--------------------------------------------------

Computations start on: Fri Jan 16 16:15:40 2015

Computations end on: Fri Jan 16 16:15:41 2015

Simulation lasted (s) : 1.160005

--------------------------------------------------

******************************************

**** Results (see also files in dir. [./res/])

******************************************

Dispersion length = 2.331820e+00 km

Non-linear length = 9.302326e+00 km

Number of spatial steps = 26

L^2-norm of the solution at fibre end = 3.465264e-01

L^1-norm = 4.717671e+00

L^infinity-norm = 3.675944e-02

Press [Enter] to close figures and exit program ...

We have depicted in Fig. 9 the time variation along the fibre of the slowly varying
pulse envelope power |A|2 (top figure) and the power spectral density expressed in dB as
a function of the wavelength along the fibre (bottom figure). The figures were obtained
using the plotspip.m Matlab script.

5.3 Soliton collisions

We now present numerical simulation results for the collision of 2 first order Solitons [1].
It is known that when two neighbouring Solitons are launched with the same phase, they
are initially attracted towards each other and then the two pulses periodically coalesce
to form one pulse and separate [5]. The source term was

a0 : t ∈ R 7→ 1√
γLD

(
1

cosh((t− T1)/T0)
+

Reiφ

cosh(R(t+ T1)/T0)

)
where T0 is the pulse half-width, LD = −T 2

0 /β2 is the dispersion length, R accounts for
the relative amplitude, φ for the relative phase shift and T1 for the initial separation
time.

In order to take into account this new incident pulse shape, file inpulse_shape.c

has been appended as follows:
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Figure 9: Slowly varying pulse envelope power |A|2 in W (left) as a function of time and
space and power spectral density in dB (right) as a function of wavelength and space for
the propagation of a Gaussian pulse along a 20 km long fibre.

case 5: // source for the 2 solitons collision

q0=3.5;

r = 1; // relative amplitude

theta=0;// relative pulses shift

LD=pow(T0,2.0)/fabs(betaw[2]); // Dispersion length [km]

*PeakPower=1/(gamma*LD); // Peak power [W]

for(k=0; k<nt; k++)

{

u0[k]=sqrt(*PeakPower)*(1/cosh((t[k]-q0*T0)/T0)+

r*cexp(I*theta)/cosh(r*(t[k]+q0*T0)/T0));

}

break;

and the spip program recompiled.
The following physical parameters were taken for the numerical experiment: L =

5000 km, λ = 1550 nm, γ = 2.2 W−1 km−1, β2 = −0.1 ps2 km−1, T0 = 4 ps, T1 = 100 ps,
R = 1 and φ = 0. For the simulation, the time windows was 400 ps and the number of
FFT nodes was 214. The initial step-size was set to 1 km and the tolerance to 10−6.

We have depicted in Fig. 13 the modulus, real and imaginary parts of the slowly
varying pulse envelope A at the fibre entrance and at fibre end.

With the values considered in the simulation, the collision of the 2 Solitons is pre-
dicted to happen at a distance of 4161 km [1]. This is confirmed by the plot of the
variation of the step-size resulting from the adaptive step-size strategy, see Fig. 11.
When the 2 Solitons catch up, the numerical solution varies a lot over a small distance
and therefore the step-size decreases so that the local error meets the prescribed toler-
ance. Using the following Matlab/Octave commands gives a value of 4165.3± 2.9 km for
the Solitons collision.

22



Figure 10: Modulus, real and imaginary parts of the slowly varying pulse envelope A at
the fibre entrance (on the left) and at fibre end (on the right).

octave:1> plotstep

Filename: zstep_solcol_1421424189.txt

octave:2> k0=20;

octave:3> dzz=dz(k0:length(dz));

octave:4> [vmin,k]=min(dzz)

vmin = 2.8933

k = 363

octave:5> Lz(k+k0-1)

ans = 4165.3

Figure 11: Variation of the step-size resulting from the adaptive step-size strategy (left)
and zoom in the area of collision (right).

We have depicted in Fig. 12 the modulus, real and imaginary parts of the slowly
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varying pulse envelope A at a distance of 4161 km where the 2 Solitons collapse.

Figure 12: Modulus, real and imaginary parts of the slowly varying pulse envelope A at
a distance of 4161 km where the 2 Solitons collapse.

The detail of the execution of the spip program is given below.

$./spipxx

[?] Directory where result files will be stored (must exist): [. by default]: res

[?] Keyword for the present simulation: solcol

[?] Equation type [0 for the NLS or 1 for the GNLS] = 0

******************************************

**** Incident pulse envelope features ****

******************************************

[?] Shape of the incident slowly varying pulse envelope [1: Soliton, 2: Gaussian,

3: Hyperbolic Secant, 4: Super-Gaussian, 5: user-defined] = 50

[?] Central wavelength of the pulse [nm] = 1550

[?] Peak power [W] = 0

[?] Chirp constant = 0

[?] Half-width of the incident pulse [ps] : T0 = 4

******************************************

**** Optical fibre features ****

******************************************

[?] Fibre length [km] = 5000

[?] Linear loss/gain coefficient alpha [km^-1] = 0

[?] Number of non-zeros beta_k (k>=2) coefficients = 1

[?] Value of beta_2 [ps^2 km^-1]= -0.1

[?] non-linear coefficient gamma [W^-1 km^-1] = 2.2
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******************************************

**** Numerical parameters setting ****

******************************************

[?] Size of the time window; winT [ps] = 400

[?] Number of time sampling points 2^p with p = 14

[?] Initial step-size length [m] = 1e3

[?] Tolerance value = 1e-6

--------------------------------------------------

Computations start on: Fri Jan 16 17:05:53 2015

Computations end on: Fri Jan 16 17:05:57 2015

Simulation lasted (s) : 3.851490

--------------------------------------------------

******************************************

**** Results (see also files in dir. [./res/])

******************************************

Dispersion length = 1.600000e+02 km

Non-linear length = 1.600000e+02 km

Number of spatial steps = 481

L^2-norm of the solution at fibre end = 2.145575e-01

L^1-norm = 1.336797e+00

L^infinity-norm = 5.070566e-02

Press [Enter] to close figures and exit program ...

We have depicted in Fig. 13 the evolution of the lowly varying pulse envelope power
|A|2 as a function of time and space and the evolution of the power spectral density
in dB as a function of wavelength and space. The figures were obtained thanks to the
plotspip.m Matlab/Octave script. We can easily identify in the two figures the position
of the Solitons collision. With the values considered for this simulation, the collision of
the two Solitons is predicted to happen at a distance of 4161 km [1].
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Figure 13: Slowly varying pulse envelope power |A|2 in W (left) as a function of time
and space and power spectral density in dB (right) as a function of wavelength and space
for the propagation of two neighbouring Solitons in a 5000 km long fibre.
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