The Geometry of Markoff Numbers

Markoff Irrationalities

It is well known that any irrational number 6 can be
approximated by a sequence of rationals p, /g, which
are “good approximations” in the sense that there ex-
ists a constant ¢ so that |8 — p,/g,| < ¢/g2. The rationals
p./q, are of course the convergents, or nth step trunca-
tions, of the continued fraction expansion

1
n1+1/n2+"

ng + - = [ngnyny, .. ] of 8.
It is natural to ask for the least possible value of c, in
other words, for given 6, find

v(8) = Inf{c: |0 — p/g| < c/¢? for infinitely many g}.

It turns out that v(8) < 1/V/5 with equality only if 8 is
a “noble number”" whose continued fraction expan-
sion ends in a string of ones. In 1879 Markoff improved
this result by showing that there is a discrete set of
values v; decreasing to /3 so that if v(8) > /3 then v(6)
= v, for some i [8].

The numbers v; are called the Markoff spectrum and
the corresponding 6’s, Markoff irrationalities. Markoff
irrationalities have continued fraction expansions
whose tails satisfy a very special set of rules, often
called the Dickson rules [4]. The tail 1,1,1, . . . is the
simplest example. What these rules are will become
clear as we proceed. Markoff gave a prescription for
determining all of these irrationalities starting from the
solutions of a certain diophantine equation and linked
his results to the minima of associated binary quadratic
forms.

Recently there has been a revival of interest in this
topic, starting from the realisation that each v; together
with its corresponding class of Markoff irrationalities
is associated to a simple (non-self-intersecting) loop on

t This term was invented by I. C. Percival. Noble numbers are those
numbers whose tails agree with that of the golden ratio
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the punctured torus, as shown in Figure 1.

The details have been worked out most fully by A.
Haas [6], based on earlier work of Cohn [2, 3], and
Schmidt [10]. Lehner, Scheingorn and Beardon [7]
tackle the same problem but base their analysis on a
sphere with four punctures.

It turns out that almost all the results follow from
some rather simple observations about the way in
which straight lines cut certain tessellations of the Eu-
clidean and hyperbolic planes and it is these ideas
which we want to explain here. Before understanding
approximations we shall need to make a fairly lengthy
digression to investigate such cutting patterns, for
which I offer no apology, for the approach via the pat-
terns is quite as fascinating as Markoff’s theory itself.

The Square Grid

Let us begin with a problem in Euclidean geometry.
Take the square grid A in Figure 2 and label vertical
sides by a4 and horizonal sides by b. Let L be any
straight line in the plane, for definiteness directed into
the positive quadrant. Walking along L one meets the

Caroline Series
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sides a,b in a certain sequence, babbabbbabbabbab in the
diagram, which we shall call the cutting sequence of L.
(If L goes through a vertex, record the sequence as
either ab or ba.) The problem which we pose is this:
describe precisely which sequences of a’s and b’s occur as
cutting sequences of lines in the plane.

Figure 3 depicts L drawn horizontally with the po-
sitions of the a’s and b’s marked along its length. If B
denotes the distance along L between two vertical seg-
ments and a is the distance between horizontal seg-
ments then N = slope (L) = B/a. If A > 1 we make
two observations:

Observation 1. The appearances of 4 are isolated, that is,
between any two 4’s is at least one b.

Observation 2. Between any two a’s there are either [A]
or [\] + 1b's. (Here [A] is the integer part of \.)

Of course, if A < 1, the roles of a and b are reversed,
and in observation 2 we read 1/ for . If L were di-
rected into some other quadrant we would replace a
by a~! and b by b~! as appropriate.

Let us call any sequence of a’s and V’s satisfying 1
and 2, whether or not it is obtained as the cutting
sequence of some L, almost constant, and call the ex-
ponent [A] or [1/A] its value.

Given any almost constant sequence s of value n, set
a' = ab", b’ = b. It is clear that we can rewrite as a
sequence s’ in the symbols a’, b’, called the derived
sequence of s. Of course, s’ may itself be almost con-
stant, in which case we may derive it again. Call a
sequence which can be derived arbitrarily many times,
characteristic.

The solution to our problem is now remarkably neat:
The cutting sequence of a line L is characteristic and the
values of the successive derived sequences are ng,ny,n,, . . .
where X = slope (L) = [ng,nqy,n,, .. .].

Here is an example of such a sequence: a°ba*ba’ba?
ba? ba? ba? ba* ba> ba? ba® ba® ba® ba® ba® ba? ba® ba> ba? ba? ba? ba®
ba’ba*bababa’ba*ba®ba®h. It corresponds to a line of
slope [0,2,4,3,2] = 3.

The beautiful patterns obtained in this way seem
first to have been noticed by Christoffel [1] and H. J. S.
Smith [11]. I was first introduced to them by D. H.
Fowler in connection with Greek mathematics, of
which more below. The procedure which we have de-
scribed, based on deriving almost constant sequences,
was discovered (or rediscovered?) by E. C. Zeeman
[12].

We have already observed that the cutting sequence
for a line of slope [ng, 1y, . . .] is almost constant of value
ng. Why does the derived sequence have value n,? The
derivation a’ = ab"™, b’ = b is really a linear map ¢ =
(o D of the plane which takes the square grid A to
the grid ® (A) of parallelograms in Figure 4. It is not
hard to convince oneself by examining Figure 4 that
the cutting sequence of L relative to ®(A) is nothing

Figure 1. A simple curve on the punctured torus.

/L

/
//
a a / b
a a a / b
/ b
Figure 2.
? ? 1 SR P ey o E) ? 1
s ' T
Figure 3.

THE MATHEMATICAL INTELLIGENCER VOL. 7, NO. 3, 1985 21



S~
N~
NN~

=

>~
N

4
/
/

SN

Figure 4.

I AL Fllle_J'l_‘_‘r'l_lf l‘:‘l’r‘l—rl—r—.rnucxnrrl—r—l—r-"-

Figure 5. Tally marks showing lunar months and solar
years.

other than the derived sequence of the cutting se-
quence of L relative to A. This derived sequence s’,
being itself a cutting sequence, is also almost constant.
We can compute its value by observing that s’ is, of
course, the same as the cutting sequence of ®~X(L)
relative to A. Now ®~!(L) has slope A — ny, and X —
1y < 1. Thus in s’ the roles of 4 and b are interchanged
and b’ is isolated. Reflecting in the line x = y inter-
changes a’ and b’ and gives a line of slope /A — n; =
[1,1,, . . .], from which point the argument repeats.

Does every characteristic sequence occur as the cut-
ting sequence of a line? Not quite; for example, the
sequence b™a b* has an unfortunate “‘blip’’ in the
middle. However, it is easy to see that every finite
characteristic sequence is linear, that is, it comes from
a line, for the sequence of derivations eventually ter-
minates in a single symbol a" or b" which is obviously
the cutting sequence of a line relative to some derived
grid. Applying in succession the inverse derivations
we obtain a line segment with the given sequence as
its cutting sequence.

22 THE MATHEMATICAL INTELLIGENCER VOL. 7, NO. 3, 1985

Characteristic sequences are nothing other than the
limits of linear ones.

Lunar Cycles

Let us pause for a moment and digress to that most
ancient of sciences, astronomy. The patterns of occur-
rences of one heavenly event relative to another, pat-
terns which must surely have been observed from ear-
liest times, provide natural examples of our cutting
sequences. For example, in some years twelve new
moons would have been observed, in others thirteen.
One could well imagine this data recorded by a se-
quence of tallies along a rod, perhaps as in Figure 5.
What more natural question to ask than what is the
pattern of tallies which appear? Of course, the anom-
alies, or irregularities of the heavens, mean that in fact
the interval between two like events is never exactly
fixed, so that the tally sequence would deviate slightly
from any cutting sequence based on two fixed lengths.
A calendar based on the assumption of equal intervals
would gradually drift away from observation. Never-
theless, David Fowler has speculated that Plato and
Eudoxus might have studied the theoretical properties
of tally sequences, and perhaps even the problem of
relating tally sequences to continued fractions. This is
not so unlikely as it sounds when one recalls that the
procedure for expressing a number as a continued frac-
tion is closely related to the Euclidean algorithm. The
reciprocal subtraction process used in the algorithm
was called by the Greeks anthiphairesis, and is thought
by David Fowler to be the basis of a pre-Eudoxan
theory of proportion [5].

Some ancient calendars in fact embody astonish-
ingly accurate astronomical data. For example, in the
calendar called the Metonic cycle, found in Babylonia
from around 490 B.C. and introduced to Athens by
Meton in 432 B.C., one finds the approximation 19
years = 235 months = 6940 days. This gives a mean
synodic month of 29.5319 days, compared to the
modern value of 29.5305 days. Incidentally, the
number 19 is to be found at the back of the Book of
Common Prayer in the formula for calculating the date
of Easter, and reaches us via the Jewish calculations
for Passover. The ratio 19:235 was used in the gearing
of the Antikythera Mechanicism, a remarkable clock-
work calendar dating from about 80 B.C. It can in fact
be derived from much cruder data than that in the
relevant tally sequence and the continued fraction
method.

The Punctured Torus

Leaving the Greeks to their anthiphaireses, let us
move on some 2,000 years to hyperbolic geometry.
Our original problem has, of course, an analogue in
the hyperbolic plane. Taking one of the basic squares
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Figure 6. The hyperbolic grid £ .

in A and glueing the a and b sides, one obtains a torus.
We can think of these glueings as implemented by
maps a: (x,y) = (x + Ly) and b: (x,y) = (x,y + 1).
(Incidentally, this explains why we chose to label the
sides in Figure 2 as we did.) Now take the hyperbolic
grid ¢ illustrated in Figure 6 and glue the A and B
sides, this time by the maps A: z— (z + 1)/(z + 2) and
B:z— (z — 1)/(— z + 2).f What you get is again a torus,
except that since the corners of the “’squares” in { are
on the boundary of hyperbolic space, one point is
missing on the torus and the effect of the hyperbolic
metric is to draw out the region around this puncture
into an infinitely long spike or cusp as in Figure 1. Just
as the maps a,b of the Euclidean plane generate the
abelian group Z? which is the fundamental group of
the torus, so the maps A,B of the hyperbolic plane
generate a free group F which is the fundamental
group of the punctured torus T*. Each ““square” in {
is an image of the central shaded square S under ex-
actly one element of F, and the labelling of the sides
in each square is just a copy of the labels in S.

Recall that straight lines or geodesics in H are semi-
circles centered on R, or vertical lines. We can pose
the same question as before: Which A,B sequences occur
as the cutting sequences of lines across £2 Of course, our
sequences may now contain not only the symbols A,B
but also A~1,B~! (henceforth written as A,B), de-
pending on the direction in which we cut sides of £.

Observation 3. In a cutting sequence across £ a symbol
is never immediately followed by its inverse. A se-

t For more details about hyperbolic geometry and tessellations see
the author’s earlier Intelligencer article “Non-Euclidean Geometry,
Continued Fractions and Ergodic Theory” in Vol. 4, No. 1, 1982.

N {w

quence with this property is called reduced. The so-
lution to our problem is this time remarkably simple:

With one exception, every reduced sequence occurs as the
cutting sequence of some geodesic in H, terminating se-
quences corresponding to lines beginning or ending at the
puncture,

_ The exception is the periodic sequence . .. ABA
BABAB. . . . This corresponds to a loop encircling the
puncture, which is a homotopy class with no geodesic
representative.

The idea of the proof is to construct a polygonal path
in H whose cutting sequence is the same as that of a
given reduced sequence s. This path will consist of line
segments joining one square in £ to an adjacent one.
Each segment is labelled by the side it cuts. Starting
from S, we can construct a path whose cutting se-
quence coincides with s, shown by dotted lines in
Figure 6. The fact that s is reduced simply means that
the path never doubles back on itself. It is not hard to
prove that such paths always converge to two definite
distinct points at infinity with the exception of the bad
case (ABAB)™. Joining these points one obtains a geo-
desic whose cutting sequence is exactly s.

The same method shows that two geodesics have the
same cutting sequence if and only if they can be transformed
one into the other by an element in F. Since transforma-
tions in F preserve { and its labelling, sufficiency is
obvious. Suppose that two geodesics have the same
cutting sequence. By applying a transformation in F to
one of them we can suppose that both cut the same
side of ¢ at the same point in their cutting sequence.
Fixing an initial side fixes the edge paths of both se-
quences, which therefore coincide. It follows that the
two geodesics are the same.
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Figure 7. The tessellation I' subdivided into fundamental regions for SL(2,Z).

SL(2,7) and Continued Fractions

There was no real reason to take the basic shape S in
{ to be a square. One can play the same game with
any tessellation 77 provided that the vertices of the
fundamental region R all lie at infinity. One such tes-
sellation is illustrated in Figure 7. This is associated to
I'(2), a subgroup of index 3 in SL(2,Z)." The sides of
the fundamental region R are mapped to each other
by the maps Q: z— — 1/z, W:z— 2 — 1/z, and this
gives the labelling in Figure 7. As shown in the dia-
gram 7 is subdivided into three regions each of which
is a fundamental region for SL(2,Z). The matrix {} =

@ -} is a rotation by 27/3 about 1 + V/3i/2 and rotates
these regions onto each other.

The cutting sequences of geodesics relative to 7 are
of the form . . . QW"MQW™Q . . ., where n; € Z. No-
tice that Q? never appears since Q I=Q.

Since SL(2,Z) is generated by Q,W and (), its action
preserves the tessellation 7 although not the Q,W la-
belling. We can, however, label segments of geodesics
cutting across the triangles in 7 so as to be invariant
under SL(2,Z), by labelling a segment L or R according
to whether the vertex of the triangle cut off by the

t Recall SL(2,Z) = {(t)|a,b,c,d € Z, ad — bc = 1}. Of course SL(2,Z)
acts on Hby z — az + blcz + d.
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segment is to left or right, as we have done in Figure
8. It is easy to write down a recipe for conversion from
Q,W to L,R sequences:
QW WW WQ QW Ww WQ
! S 2 R S
L L L R R R

It now follows that two geodesics in H are equivalent under
SL(2,Z) if and only if their L,R sequences agree.

But this is not all. The L,R sequences bring us back
to continued fractions! Let 8 be any positive real
number, and as in Figure 8 let y(0) be a geodesic ray
joining any point on the imaginary axis to 6. Reading
off the L,R sequence of y(0) we obtain a sequence

L®WR™ML" . . . (if < 1 the sequence begins with R not
L). Then [ng,ny,n, . . .}is the continued fraction expan-
sion of 6!

The proof is not hard. First, it is obvious that ny =
[6]. Let D be the point where y(6) cuts 6 = ny. Ap-
plying the map 7: z— —1/z — ny, D is mapped to a
point D' on the imaginary axis and () becomes a ray
¥’ through D' pointing in the negative direction with
endpoint at —1/8 ~ ny. The n; segments of type R in
v(6) which follow the initial n, segments of type L are
now apparent as the n, vertical strips crossed by 7; (y)
before it descends to 71(8). Thus n; = 1/6 — ny, so that
6 =ny + 1ny + 1,0 <r <1 Now apply 7: z—
—1/(z + n;) to ¥’ and proceed as before [9].



Simple Curves on the Punctured Torus and the
Dickson Rules

We indicated at the beginning that Markoff irration-
alities are associated to simple loops on the punctured
torus T*. We are now in a position to understand ex-
actly what these loops are. In fact: A geodesic on T is
closed and simple if and only if its cutting sequence is peri-
odic and characteristic. By the cutting sequence of a
curve on T* we mean, of course, the cutting sequence
of any of its lifts to H. Since all these lifts are equivalent
under F, we know that cutting sequences coming from
different lifts are the same. Closed geodesics corre-
spond exactly to those with periodic cutting se-
quences. We know that periodic characteristic se-
quences correspond exactly to lines of rational slope
on the square grid A. Let L be such a line, and move
L if necessary so as to avoid the vertices of A.

Since L is disjoint from all its images under the ver-
tical and horizontal translations 2 and b, its image on
T cannot contain any self-intersections; in other words,
it is simple. Now there is exactly one F-equivalence
class of geodesics on the hyperbolic plane H with the
same cutting sequence as L, and it is not hard to show
that the corresponding geodesic on T* is also simple.
This geodesic is obtained, if you like, by pulling tight
the curve L on T relative to the hyperbolic metric
on T*.

Figure 9. The curve -~fAAABAAA:-.
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Figure 10. Curves containing A%B? and BAB intersect H.

Now let X be the set of all geodesics on T* which
are limits of simple closed geodesics. Any limit of
simple geodesics is simple, and any sequence which
is a limit of characteristic sequences is characteristic,
for to see that a sequence is not characteristic you only
need to look at a sufficiently long finite block. Thus
we find that a geodesic on T* lies in X if and only if its
cutting sequence is characteristic. Incidentally, there are
geodesics on T* which are simple but do not lie in X.
An example is the non-characteristic sequence . . .
AAABAAA. . . . This curve spirals into the loop A from
opposite directions on the two sides as shown in
Figure 9.

Returning to Figures 6 and 7, notice that { is a sub-
tessellation of the I'(2) tessellation 7. This means that
A,B sequences can also be converted into L,R se-
quences. The map is as follows:

AB AB AA BA BA BB

2 2

LL R LR RR L RL

and so on. Characteristic sequences have, of course, a
very special form: they convert to either . . . (LR)"RL
(LR"RL . . . or . .. (LR)"LLRR(LR)"LLRR. . . . In ad-
dition, these special L,R sequences can be derived in
an obvious way and the derived sequences will be of
the same kind. Suppose that 8 € R is the endpoint of
the lift of a simple geodesic a on T*. The LR sequences
of a and of any ray +y(6) joining R to 6 will eventually
agree. So we can read off the tail of the continued
fraction expansion of 6 from the L,R sequence of a. It
wilbe [....1,1,...,1,221,...,1,221,...],
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where for some n the blocks of 1’s are of length 2n or
2(n + 1), and all derived sequences are of the same
form.

Needless to say, these tails are exactly those which
obey the Dickson rules!

Approaching the Puncture

We have established that Markoff irrationalities are ex-
actly the endpoints of lifts of simple geodesics in X.
But what have simple geodesics to do with Diophan-
tine approximation? The key is the observation that
geodesics in X never approach too close to the punc-
ture P. In fact, in H they never rise above the line Imz
= 3/2. What is even more remarkable is that the con-
verse is also true: A geodesic y on H projects to a geodesic
in X if and only if Imz < 32 for all z € Fy, where Fy is the
set of all translates of y under F.

For the proof it will be useful to consider two iso-
metries of H which preserve the lattice £ while altering
the labelling. One is the reflexion r in the imaginary
axis, which interchanges the labels A and B. The other
is translation t: z— z + 3, which interchanges A with
A and B with B. Notice that vy lies below the line Imz
= 34 if and only if y N #(y) = 0.

On the grid A the substitution f: a —> @, b — b is
implemented by rotation by = about 0. Any line L is
either disjoint from or coincides with #L) and hence L
and L) project to disjoint or coincident curves on T.
But then the same is true of y(L), the corresponding
geodesic on T*. It follows that any curve whose cutting
sequence is linear lies below Imz = 3/2. Taking limits,
the same holds for the lifts of any curve in X.
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Figure 11. Curves containing AB*A cut H.

The converse statement is the deepest result which
we shall prove here, although the methods are really
no harder than those we have used to date. First, no-
tice that just as the derivation a — ab", b — b of A was
induced by a linear map ® of R? so the derivation A
— AB, B— A is induced by the isometry 8: z —> z —
1 of H. The new set of generators A’ = AB, B’ = A of
F is associated to a tessellation ¢’ identical with £ and
with the same pattern of labels but translated one unit
to the left.

The cutting sequence of a geodesic v relative to £’ is
the derived sequence of the cutting sequences of vy
relative to {, where we now extend the meaning of
““derived” to mean the sequence obtained substituting
B' for A and B'A’ for B jn s.

Suppose that s is a non-characteristic sequence.
Using the observations above we may assume that s
has been derived enough times that we see in s either
a sequence XY"X or X?YXY ... XY% Let H be the
region above Imz = %:2. Figure 10 illustrates that curves
containing sequences XYX or X?Y? intersect H.

Suppose inductively that any curve whose sequence
contains XY"X has a lift cutting H. Figure 11 illustrates
a curve y containing AB"*1A and its image #(y) con-
taining A B"*1A. One can see that y N t(y) # 0 unless
the sequence AB"*!A is preceded by B"A. But then vy
would contain the sequence AB"A, which we have al-
ready dealt with. Obvious symmetries deal with the
other cases.

Using the substitutions r and t we are now reduced
to the case where s contains either A2BA B . . . AB? or
ABAB . . . AB? In the first, the derivation & produces
a sequence containing a block XY"X; in the second it
gives a sequence all of whose exponents are negative

which is, after applying ¢, already disposed of.
Notice that this proof depends only on looking at
finite blocks in the cutting sequence; in other words,
to see that a geodesic enters H, it is enough to look at
any finite segment along which the derivation rules
are violated. This fact will be important to us below.

Diophantine Approximation

We are now finally able to bring all the pieces together
and return to Markoff’'s original approximation
problem. What we proved in the last section amounts
to showing that a geodesic in X avoids the image H of
H on T*. Thus the lifts of such geodesics avoid not
only H but all images of H under F. By a simple cal-
culation the image of H under (¢ %) € F is a circle tan-
gent to R at a/c, of radius 1/3c%. Moreover, as (¢ §) runs
through F, a/c takes on all possible rational values. Let
us denote the union of all these horocycles by N.

We can divide irrational points 6 € R into three
types, according to the asymptotic behaviour of the
L,R cutting sequence of the vertical line v(8) joining 6
to infinity. Denote the L,R sequence of v(8) from the
nth term on by s5,(6). There are three possibilities:

(i) For some n, s,(0) is characteristic and periodic.

(ii) For some n, s,(8) is characteristic but s,(8) is not
periodic for any m.

(iii) s,(0) is never characteristic.

In case (i), 5,(0) represents a simple closed geodesic
@ on T*. Of course @ lifts to a geodesic a on H with
endpoint at 8. Since the image 7(8) of v(8) approaches
o asymptotically on T*, and since @ is a bounded dis-
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tance outside H, we see that v(0) enters N only a finite
number of times. Thus one sees from Figure 12 that
the inequality |6 — a/c| < 1/3¢? has only a finite number
of solutions so that v(8) > Y.

One can actually calculate that the closest approach
of a to H is log coth £ (a)/2 where £ (o) is the hyperbolic
length of « [6]. This gives an exact value for v(8).

In case (ii) the tail of v(8) is characteristic and hence
7 can be approximated by a sequence of simple curves
@,. Since there are only finitely many curves with
lengths below a given bound, the sequence of lengths
tends to infinity and hence the distance to H ap-
proaches zero. Thus v(8) approaches N arbitrarily
closely although from some point on it never enters N
since s,(8) is eventually characteristic. Combining
these facts one sees that v(8) = 1/a.

Finally, in case (iii) the tails s, (8) are never charac-
teristic and so v(8) enters N infinitely often. Thus there
are infinitely many solutions to [0 — a/c] < 1/3¢% in
other words, v(8) < Ya.

Trace Formulae, Diophantine Equations and
Quadratic Forms

Hoping that the reader’s patience is not completely
exhausted, we will conclude by giving some brief
pointers to the connection of our approach to another
well known aspect of Markoff’s theory, the mimima of
binary quadratic forms.

The Markoff spectrum if frequently calculated by in-
troducing Markoff triples. These are integer triples
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(x,y,z) which are solutions of the Diophantine equa-
tion
(D)

Associated to such a triple is a pair of real quadratic
numbers §,¢ = Y2 + y/xz + 29 — 4/z%"%. The num-
bers £,&' are Markoff irrationalities with v(§) = v(§') =
V9 — 4/22 > Y.

In fact, as explained in [2], Markoff triples are (up
to a factor of 3) the traces of triples (U,V,V U) such that
U,V are a pair of generators for the group F with fun-
damental region as shown in Figure 13. The simplest
solution (1,1,1) corresponds to the A,B generators we
used above. The formula (D) is nothing other than one
of Fricke’s trace identities relating traces of matrices in
SL(2,R). Starting with the solution (1,1,1) the opera-
tions (x,y,2) = (z,x,y) and (x,y,z) = (x,3xy — z,y) gen-
erate all possible solutions to (D). These operations are
the same as the operations of derivation and substi-
tution which we used above.

The geodesics ¥(A), ¥(B) corresponding to the min-
imal solution (1,1,1) of (D) are simple. Since the op-
eration of derivation is induced by an isometry of T%,
the same is actually true of all solutions of (D). Now
the geodesic ¥(M) associated to a matrix M = (¢ b€
F is the projection of a geodesic y(M) on H whose
endpoints are the fixed points &4,&y of M on R. These
endpoints are of course roots of c§ + (d — a) — b =
0. Thus we see in another way that Markoff irration-
alities are the endpoints of lifts of simple geodesics
on T*.

One can associate to M the quadratic form

X2+ y? + z2 = 3y



Figure 13. Fundamental
region for the punctured
torus.

duxy) = cx® + (d — a)xy — by*.

Since y(M) is simple it lies below the line Imz = %, in
other words, [§, — &yl < 3. Now |§, — &yl = A%/
Qu(1,0) where A = Tr®M — 1 is the discriminant of
Qu1r so that Qy(1,0)/A": > Y3,

But we know more. Since the action of SL(2,Z) on
H preserves L,R sequences, it preserves simple geo-
desics on T*. Thus if y(M) is simple, so is y(gMg 1) for
any g € SL(2,Z). One easily computes that

Quxy) = QgMg -1(8x,8Yy)

and that Qy and Q-1 have the same discriminant
A. Given any pair (x,y) € Z*> we can always find g ¢
SL(2,Z) with (gx,gy) = (1,0). Hence

Qux.y) = Qemg-1(1,0) > A%/3;
in other words,

min

QM(xly) 1
ry €22 pn > 3.

Al

Of course the actual value of the minimum can be cal-
culated and is, not surprisingly, v(§,). For matrices M
which do not correspond to simple geodesics, the min-
imum lies on or below the value /3.

These are the results of Markoff on minima of binary
quadratic forms.

It seems clear from the foregoing that the next level
of approximation should be studied by looking at geo-
desics with one self-intersection. Such geodesics pen-
etrate only a bounded distance into H. One wonders

if these further levels of approximation are perhaps
related to phenomena of successive transitions from
periodicity into chaos?

References

1. E. B. Christoffel, Observatio Arithmetica, Annali di Mathe-
matica, 2nd series, 6(1875), 148-152.

2. H. Cohn, Approach to Markoff’s minimal forms through
modular functions. Ann. Math. 61(1955), 1-12.

3. H. Cohn, Representation of Markoff’s binary quadratic
forms by geodesics on a perforated torus. Acta Arithme-
tica XVIII(1971), 125-136.

4. L. E. Dickson, Studies in the theory of numbers. Chi-
cago: 1930.

5. D. Fowler, Anthyphairetic ratio and Eudoxan propor-
tion. Archive for History of Exact Sciences 24(1981), 69-72.

6. A. Haas, Diophantine approximation on hyperbolic Rie-
mann surfaces, Bull. A.M.S. 11(1984), 359-362.

7. ]. Lehner, M. Scheingorn, Simple closed geodesics on
H*/T'(3) arise from the Markoff spectrum, preprint.

8. A. A. Markoff, Sur les formes binaires indefinies, I,
Math. Ann. 15(1879), 281-309; 11, 17(1880), 379-400.

9. C. Series, The modular surface and continued fractions.
J. London Math. Soc. (1984).

10. A. L. Schmidt, Minimum of quadratic forms with respect
to Fuchsian groups 1. ]. Reine Angew. Math. 286/7 (1976),
341-368.

11. H.J. S. Smith, Note on continued fractions. Messenger of
Mathematics, 2nd series, 6(1876), 1-14.

12, E. C. Zeeman, An algorithm for Eudoxan and anthi-
phairetic ratios, preprint.

Department of Mathematics
University of Pennsylvania
Philadelphia, Pennsylvania 19104 U.S.A.

THE MATHEMATICAL INTELLIGENCER VOL. 7, NO. 3, 1985 29



