
The Geometry of Markoff Numbers 
Caroline Series 

Markoff Irrationalities 

It is well known that any irrational number 0 can be 
approximated by a sequence of rationals pn/qn which 
are "good approximations" in the sense that there ex- 
ists a constant c so that 10 - pn/qnl < c/q 2. The rationals 
PJqn  are of course the c o n v e r g e n t s ,  or nth step trunca- 
tions, of the continued fraction expansion 

1 
n o + = [n0,nl,n 2 . . . .  ] of 0. 

n 1 + 1 /n  2 + . . .  

It is natural to ask for the least possible value of c, in 
other words, for given 0, find 

v(0) = Inf{c: 10 - P/ql < c/q 2 for infinitely many q}. 

It turns out that v(0) ~ 1/V~ with equality only if 0 is 
a "noble number ' ' t  whose continued fraction expan- 
sion ends in a string of ones. In 1879 Markoff improved 
this result by showing that there is a discrete set of 
values v i decreasing to 1/3 so that if v(0) > 1/3 then v(0) 
= v i for some i [8]. 

The numbers v i are called the M a r k o f f  s p e c t r u m  and 
the corresponding O's, M a r k o f f  i rra t ional i t ies .  Markoff 
irrationalities have cont inued fraction expansions 
whose tails satisfy a very special set of rules, often 
called the Dickson rules [4]. The tail 1,1,1 . . . .  is the 
simplest example. What these rules are will become 
clear as we proceed. Markoff gave a prescription for 
determining all of these irrationalities starting from the 
solutions of a certain diophantine equation and linked 
his results to the minima of associated binary quadratic 
forms. 

Recently there has been a revival of interest in this 
topic, starting from the realisation that each v i together 
with its corresponding class of Markoff irrationalities 
is associated to a simple (non-self-intersecting) loop on 

the punctured torus, as shown in Figure 1. 
The details have been worked out most fully by A. 

Haas [6], based on earlier work of Cohn [2, 3], and 
Schmidt [10]. Lehner, Scheingorn and Beardon [7] 
tackle the same problem but base their analysis on a 
sphere with four punctures. 

It turns out that almost all the results follow from 
some rather  simple observations about the way in 
which straight lines cut certain tessellations of the Eu- 
clidean and hyperbolic planes and it is these ideas 
which we want to explain here. Before understanding 
approximations we shall need to make a fairly lengthy 
digression to investigate such cutting patterns, for 
which I offer no apology, for the approach via the pat- 
terns is quite as fascinating as Markoff's theory itself. 

The Square Grid 

Let us begin with a problem in Euclidean geometry. 
Take the square grid A in Figure 2 and label vertical 
sides by a and horizonal sides by b. Let L be any 
straight line in the plane, for definiteness directed into 
the positive quadrant. Walking along L one meets the 
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t This term was  i n v e n t e d  by I. C. Percival. Noble  n u m b e r s  are those 
nu mb er s  whose  tails agree  wi th  that  of the go lden  ratio 
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1 + . . .  
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sides a,b in a certain sequence, babbabbbabbabbab in the 
diagram, which we shall call the cutting sequence of L. 
(If L goes through a vertex, record the sequence as 
either ab or ba.) The problem which we pose is this: 
describe precisely which sequences of a's and b's occur as 
cutting sequences of lines in the plane. 

Figure 3 depicts L d rawn  horizontally wi th  the po- 
sitions of the a's and  b's marked along its length. If [3 
denotes the distance along L between two vertical seg- 
ments  and o~ is the distance between horizontal seg- 
ments  t h e n K  = slope (L) = [3/oc If ~ > l w e m a k e  
two observations: 

Observation 1. The appearances of a are isolated, that is, 
be tween any two a's is at least one b. 

Observation 2. Between any  two a's there are either [~] 
or [~] + 1 b's. (Here [h] is the integer part of ~.) 

Of course, if ~ < 1, the roles of a and b are reversed, 
and in observation 2 we read 1/~ for k. If L were di- 
rected into some other quadrant  we would  replace a 
by a-1 and b by b-1 as appropriate. 

Let us call any  sequence of a's and b's satisfying 1 
and 2, whether  or not  it is obtained as the cutting 
sequence of some L, almost constant, and call the ex- 
ponent  [)q or [1/M its value. 

Given any almost constant  sequence s of value n, set 
a' = ab n, b' = b. It is clear that we can rewrite as a 
sequence s' in the symbols a', b', called the derived 
sequence of s. Of course, s' may  itself be almost con- 
stant, in which case we may derive it again. Call a 
sequence which can be derived arbitrarily m a n y  times, 
characteristic. 

The solution to our  problem is now remarkably neat: 
The cutting sequence of a line L is characteristic and the 
values of the successive derived sequences are no, n l ,n  2 . . . .  
where )~ = slope (L) = [ n o ,  n l ,n  2 . . . .  ]. 

Here is an example of such a sequence: a3ba2ba2ba 2 
ba g ha 2 ha 2 ha 2 ha 3 ba 2 ba 2 ba 2 ba 3 ba 2 ba 2 ba 2 ba 2 ha 3 ha 2 ha 2 ha 2 ba 3 
ba2ba2ba2ba3ba2ba2ba2ba2b. It cor responds  to a line of 
slope [0,2,4,3,2] = 30/67. 

The beautiful pat terns obtained in this way  seem 
first to have been noticed by Christoffel [1] and  H. J. S. 
Smith [11]. I was first introduced to them by D. H. 
Fowler  in connec t i on  wi th  Greek m a t h e m a t i c s ,  of 
which more below. The procedure which we have de- 
scribed, based on deriving almost constant  sequences, 
was discovered (or rediscovered?) by E. C. Zeeman 
[12]. 

We have already observed that the cutting sequence 
for a line of slope [n0,n I . . . .  ] is almost constant of value 
n 0. Why  does the derived sequence have value nl? The 
derivation a' = ab no, b' = b is really a linear map  9 = 
(1 1 ~ of the plane which takes the square grid A to 
the grid  9 (A) of parallelograms in Figure 4. It is not 
hard to convince oneself by examining Figure 4 that 
the cutting sequence of L relative to ~(A) is nothing 

Figure 1. A simple curve on the punctured torus. 

Figure 2. 

Figure 3. 
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F19ure 4. 

F19ure 5. 7a11y mark5 5h0w1n9 1unar m0nth5 and 501ar 
year5. 

0ther than the der1ved 5e4uence 0f the cutt1n9 5e- 
4uence 0f L re1at1ve t0 A. 7h15 der1ved 5e4uence 5•, 
6e1n9 1t5e1f a cutt1n9 5e4uence, 15 a150 a1m05t c0n5tant. 
We can c0mpute 1t5 va1ue 6y 065erv1n9 that 5• 15, 0f 
c0ur5e, the 5ame a5 the cutt1n9 5e4uence 0f ~-1(L) 
re1at1ve t0 A. N0w ~-1(L) ha5 510pe )~ - n 0, and ~, - 
n 0 < 1.7hu5 1n 5• the r01e5 0f a and 6 are 1nterchan9ed 
and 6• 15 1501ated. Ref1ect1n9 1n the 11ne x = y 1nter- 
chan9e5 a• and 6• and 91ve5 a 11ne 0f 510pe 1/K - n 0 = 
[n1,n 2 . . . .  ], fr0m wh1ch p01nt the ar9ument repeat5. 

D0e5 every character15t1c 5e4uence 0ccur a5 the cut- 
t1n9 5e4uence 0f a 11ne• N0t 4u1te; f0r examp1e, the 
5e4uence 6~a 6 ~ ha5 an unf0r tunate  ••611p•• 1n the 
m1dd1e. H0wever, 1t 15 ea5y t0 5ee that every f1n1te 
character15t1c 5e4uence 15 11near, that 15, 1t c0me5 fr0m 
a 11ne, f0r the 5e4uence 0f der1vat10n5 eventua11y ter- 
m1nate5 1n a 51n91e 5ym601 a n 0r 6 n wh1ch 15 06v10u51y 
the cutt1n9 5e4uence 0f a 11ne re1at1ve t0 50me der1ved 
9r1d. App1y1n9 1n 5ucce5510n the 1nver5e der1vat10n5 
we 06ta1n a 11ne 5e9ment w1th the 91ven 5e4uence a5 
1t5 cutt1n9 5e4uence. 

Character15t1c 5e4uence5 are n0th1n9 0ther than the 
11m1t5 0f 11near 0ne5. 

Lunar Cyc1e5 

Let u5 pau5e f0r a m0ment and d19re55 t0 that m05t 
anc1ent 0f 5c1ence5, a5tr0n0my. 7he pattern5 0f 0ccur- 
rence5 0f 0ne heaven1y event re1at1ve t0 an0ther, pat- 
tern5 wh1ch mu5t 5ure1y have 6een 065erved fr0m ear- 
11e5t t1me5, pr0v1de natura1 examp1e5 0f 0ur cutt1n9 
5e4uence5. F0r examp1e, 1n 50me year5 twe1ve new 
m00n5 w0u1d have 6een 065erved, 1n 0ther5 th1rteen. 
0 n e  c0u1d we11 1ma91ne th15 data rec0rded 6y a 5e- 
4uence 0f ta111e5 a10n9 a r0d, perhap5 a5 1n F19ure 5. 
What m0re natura1 4ue5t10n t0 a5k than what 15 the 
pattern 0f ta111e5 wh1ch appear• 0 f  c0ur5e, the an0m- 
a11e5, 0r 1rre9u1ar1t1e5 0f the heaven5, mean that 1n fact 
the 1nterva1 6etween tw0 11ke event5 15 never exact1y 
f1xed, 50 that the ta11y 5e4uence w0u1d dev1ate 5119ht1y 
fr0m any cutt1n9 5e4uence 6a5ed 0n tw0 f1xed 1en9th5. 
A ca1endar 6a5ed 0n the a55umpt10n 0f e4ua1 1nterva15 
w0u1d 9radua11y dr1ft away fr0m 065ervat10n. Never- 
the1e55, Dav1d F0w1er ha5 5pecu1ated that P1at0 and 
Eud0xu5 m19ht have 5tud1ed the the0ret1ca1 pr0pert1e5 
0f ta11y 5e4uence5, and perhap5 even the pr061em 0f 
re1at1n9 ta11y 5e4uence5 t0 c0nt1nued fract10n5.7h15 15 
n0t 50 un11ke1y a5 1t 50und5 when 0ne reca115 that the 
pr0cedure f0r expre551n9 a num6er a5 a c0nt1nued frac- 
t10n 15 c105e1y re1ated t0 the Euc11dean a190r1thm. 7he 
rec1pr0ca1 5u6tract10n pr0ce55 u5ed 1n the a190r1thm 
wa5 ca11ed 6y the 6reek5 anth1pha1re515, and 15 th0u9ht 
6y Dav1d F0w1er t0 6e the 6a515 0f a pre-Eud0xan 
the0ry 0f pr0p0rt10n [5]. 

50me anc1ent ca1endar5 1n fact em60dy a5t0n15h- 
1n91y accurate a5tr0n0m1ca1 data. F0r examp1e, 1n the 
ca1endar ca11ed the Met0n1c cyc1e, f0und 1n 8a6y10n1a 
fr0m ar0und 490 8.c. and 1ntr0duced t0 Athen5 6y 
Met0n 1n 432 8.c., 0ne f1nd5 the appr0x1mat10n 19 
year5 = 235 m0nth5 = 6940 day5. 7h15 91ve5 a mean 
5yn0d1c m0nth  0f 29.5319 day5, c0mpared t0 the 
m0dern  va1ue 0f 29.5305 day5. 1nc1denta11y, the 
num6er 19 15 t0 6e f0und at the 6ack 0f the 800k 0f 
C0mm0n Prayer 1n the f0rmu1a f0r ca1cu1at1n9 the date 
0f Ea5ter, and reache5 u5 v1a the Jew15h ca1cu1at10n5 
f0r Pa550ver. 7he rat10 19:235 wa5 u5ed 1n the 9ear1n9 
0f the Anf1kythera Mechan1c15m, a remarka61e c10ck- 
w0rk ca1endar dat1n9 fr0m a60ut 80 8.c. 1t can 1n fact 
6e der1ved fr0m much cruder data than that 1n the 
re1evant ta11y 5e4uence and the c0nt1nued fract10n 
meth0d. 

7he  Punctured 70ru5 

Leav1n9 the 6reek5 t0 the1r anth1pha1re5e5, 1et u5 
m0ve 0n 50me 2,000 year5 t0 hyper6011c 9e0metry. 
0 u r  0r191na1 pr061em ha5, 0f c0ur5e, an ana109ue 1n 
the hyper6011c p1ane. 7ak1n9 0ne 0f the 6a51c 54uare5 
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Figure 6. The hyperbolic grid ~B. 

in A and glueing the a and b sides, one obtains a torus. 
We can think of these glueings as implemented by 
maps a: (x,y) --~ (x + 1,y) and b: (x,y) ~ (x,y + 1). 
(Incidentally, this explains why we chose to label the 
sides in Figure 2 as we did.) Now take the hyperbolic 
grid e illustrated in Figure 6 and glue the A and B 
sides, this time by the maps A: z ~ (z + 1)/(z + 2) and 
B: z --~ (z - 1)/( - z + 2)d What you get is again a toms, 
except that since the corners of the "squares" in I are 
on the boundary  of hyperbolic space, one point is 
missing on the torus and the effect of the hyperbolic 
metric is to draw out the region around this puncture 
into an infinitely long spike or cusp as in Figure 1. Just 
as the maps a,b of the Euclidean plane generate the 
abelian group :7/2 which is the fundamental group of 
the toms, so the maps A,B of the hyperbolic plane 
generate a free group F which is the fundamenta l  
group of the punctured torus 7-*. Each "square" in 
is an image of the central shaded square S under ex- 
actly one element of F, and the labelling of the sides 
in each square is just a copy of the labels in S. 

Recall that straight lines or geodesics in H are semi- 
circles centered on R, or vertical lines. We can pose 
the same question as before: Which A,B sequences occur 
as the cutting sequences of lines across t? Of course, our 
sequences may now contain not only the symbols A,B 
but  also A-1 ,B  -1 (henceforth writ ten as A,B), de- 
pending on the direction in which we cut sides of e. 

Observation 3. In a cutting sequence across f a symbol 
is never immediately followed by its inverse. A se- 

t For more  details abou t  hyperbol ic  geomet ry  a n d  tessel la t ions see 
the  au t h o r ' s  earlier Intelligencer article "Non-Euc l idean  Geometry ,  
C o n t i n u e d  Fractions a n d  Ergodic Theory"  in Vol. 4, No. 1, 1982. 

quence with this property is called reduced. The so- 
lution to our problem is this time remarkably simple: 
With one exception, every reduced sequence occurs as the 
cutting sequence of some geodesic in H, terminating se- 
quences corresponding to lines beginning or ending at the 
puncture. 

The exception is the periodic sequence . . . ABA 
BABAB . . . .  This corresponds to a loop encircling the 
puncture, which is a homotopy class with no geodesic 
representative. 

The idea of the proof is to construct a polygonal path 
in H whose cutting sequence is the same as that of a 
given reduced sequence s. This path will consist of line 
segments joining one square in r to an adjacent one. 
Each segment is labelled by the side it cuts. Starting 
from S, we can construct a path whose cutting se- 
quence coincides with s, shown by dot ted lines in 
Figure 6. The fact that s is reduced simply means that 
the path never doubles back on itself. It is not hard to 
prove that such paths always converge to two definite 
distinct points at infinity with the exception of the bad 
case (ABA B)C Joining these points one obtains a geo- 
desic whose cutting sequence is exactly s. 

The same method shows that two geodesics have the 
same cutting sequence if and only if they can be transformed 
one into the other by an element in F. Since transforma- 
tions in F preserve f and its labelling, sufficiency is 
obvious. Suppose that two geodesics have the same 
cutting sequence. By applying a transformation in F to 
one of them we can suppose that both cut the same 
side of ~ at the same point in their cutting sequence. 
Fixing an initial side fixes the edge paths of both se- 
quences, which therefore coincide. It follows that the 
two geodesics are the same. 
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Figure 7. The tessellation P subdivided into fundamental regions for SL(2,Z). 

SL(2,77) a n d  C o n t i n u e d  Fract ions  

There was no real reason to take the basic shape S in 
to be a square. One  can play the same game with 

any tessellation ~ prov ided  that the vertices of the 
fundamenta l  region R all lie at infinity. One  such tes- 
sellation is i l lustrated in Figure 7. This is associated to 
F(2), a subgroup  of index 3 in SL(2,/7). * The sides of 
the fundamenta l  region R are m a p p e d  to each other  
by the maps  Q: z ~ - l / z ,  W: z ~ 2 - l /z,  and this 
gives the labelling in Figure 7. As shown  in the dia- 
gram ~ is subdiv ided  into three regions each of which 
is a fundamenta l  region for SL(2,Z). The matrix f~ = 
(0 -~) is a rotat ion by  2-rr/3 about  1 + V~l/2 and rotates 
these regions onto  each other.  

The cutt ing sequences  of geodesics relative to U are 
of the form . . . Q W ' , Q W n 2 Q  . . . .  whe re  n i E 7~. No- 
tice that Q2 never  appears  since Q-1  = Q. 

Since SL(2,77) is genera ted  by Q , W  and  fl, its action 
preserves  the tessellation ~ a l though not  the Q,W la- 
belling. We can, however ,  label segments  of geodesics 
cutting across the triangles in U so as to be invariant 
unde r  SL(2,Z), by  labelling a segment  L or R according 
to whe ther  the ver tex of the triangle cut off by the 

t Recall SL(2,77) = {(3 b~)la,b,c,d E 7/, ad - bc = 1}. Of course SL(2,77) 
acts o n H b y z ~ a z  + b/cz + d. 

segment  is to left or right, as we have done in Figure 
8. It is easy  to write dow n  a recipe for conversion f rom 
Q , W  to L ,R  sequences: 

Q W  W W W Q  Q W  W W  W Q  
$ $ ~ $ J, $ 
L L L R R R 

It n o w  follows that  two geodesics in H are equivalent under 
SL(2,•)  if  and only  if their L ,R  sequences agree. 

But this is not  all. The L,R sequences  bring us back 
to c o n t i n u e d  fract ions!  Let  0 be an y  pos i t ive  real  
number ,  and  as in Figure 8 let ~(0) be a geodesic ray 
joining any  point  on the imaginary  axis to 0. Reading 
off  the  L,R s e q u e n c e  of ~/(0) we  obta in  a s e q u e n c e  
LnoRnlLn2 . . . (if 0 < 1 the sequence begins with R not  
L). Then  [no, n l , n  2 . . .] is the cont inued  fraction expan-  
sion of 0! 

The proof  is not  hard. First, it is obvious that n o = 
[0]. Let  D be the point  where  ~/(0) cuts 0 = n 0. Ap- 
plying the map "rl: z ~ - 1 / z  - n 0, D is m ap ped  to a 
point  D' on  the imaginary axis and ~/(0) becomes a ray 
~/' t h rough  D' pointing in the negative direction wi th  
endpo in t  at - 1 / 0  - n 0. The n I segments  of type  R in 
~(0) which  follow the initial n o segments  of type L are 
n o w  appa ren t  as the n 1 vertical strips crossed by r (~) 
before it descends  to ~-1(0). Thus  n I = 1/0 - n o, so that  
0 = n o + 1In 1 + r, 0 < r < 1. N o w  apply-r1: z---* 
- 1 / ( z  + nl) to ~/' and proceed  as before [9]. 
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] Figure 8. Reading off the continued fraction expansion of 0 from 3 : 0 = 3 + 1 + .... 

Simple Curves on the Punctured Torus and the 
Dickson Rules 

We indicated at the beginning that Markoff  irration- 
alities are associated to simple loops on the punc tu red  
torus T*. We are n o w  in a position to unde r s t and  ex- 
actly what  these loops are. In fact: A geodesic on T* is 
closed and simple if and only if its cutting sequence is peri- 
odic and characteristic. By the  cu t t ing  s e q u e n c e  of a 
curve on T* we mean,  of course, the cutt ing sequence 
of any of its lifts to H. Since all these lifts are equivalent  
unde r  F, we k n o w that  cutt ing sequences coming from 
different  lifts are the same. Closed geodesics corre- 
s p o n d  exact ly  to t h o s e  wi th  pe r iod ic  cu t t ing  se- 
quenc e s .  We k n o w  tha t  pe r iod ic  charac te r i s t i c  se- 
quences  cor respond exactly to lines of rational slope 
on  the square grid A. Let  L be such a line, and  move  
L if necessary so as to avoid the vertices of A. 

Since L is disjoint f rom all its images u n d e r  the ver- 
tical and horizontal  translat ions a and b, its image on 
T cannot  contain any  self-intersections; in o ther  words,  
it is simple. N o w  the re  is exact ly one  F-equiva lence  
class of geodesics on  the hyperbolic plane H wi th  the 
same cutting sequence  as L, and it is not  ha rd  to show 
that  the cor responding  geodesic on T* is also simple. 
This geodesic is obtained,  if you  like, by  pull ing tight 
the  cu rve  L on  T r e l a t ive  to the  h y p e r b o l i c  metr ic  
on  T*. 

/ 

\ / 

/ 
, ' /  

Figure 9. The curve ...AAABAAA.... 
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No w  let X be the set of all geodesics on T* which 
are l imits  of s imp le  c losed  geodes ics .  A n y  limit of 
simple geodesics is simple, and any sequence which 
is a limit of characteristic sequences is characteristic, 
for to see that  a sequence  is not  characteristic you  only 
need  to look at a sufficiently long finite block. Thus 
we find that a geodesic on 7* lies in X if and only if its 
cutting sequence is characteristic. Incidentally, there are 
geodesics on 7* which  are simple bu t  do  not  lie in X. 
An example  is the  non-charac ter i s t ic  s equence  . . . 
A A A B A A A  . . . .  This curve spirals into the loop A from 
oppo s i t e  d i r e c t i on s  on  the  two s ides  as s h o w n  in 
Figure 9. 

Returning to Figures 6 and 7, notice that  r is a sub- 
tessellation of the F(2) tessellation ~.  This means  that 
A,B s e q u e n c e s  can  also be c o n v e r t e d  in to  L,R se- 
quences.  The map  is as follows: 

AB AB A A  -BA B A B B 

LL R LR RR L RL 

and so on. Characteristic sequences have,  of course, a 
very  special form: they  convert  to e i t h e r . . .  (LR)nRL 
(LR)nRL . . . or . . . (LR)nLLRR(LR)nLLRR . . . .  In ad- 
dition, these special L,R sequences can be der ived in 
an obvious way  and  the der ived sequences  will be of 
the same kind. Suppose  that 0 ~ ~ is the endpo in t  of 
the lift of a simple geodesic oL on 7*. The L,R sequences 
of oL and of any  ray ~/(0) joining ~ to 0 will eventual ly 
agree. So we can read off the tail of the cont inued 
fraction expans ion  of 0 from the L,R sequence of e~. It 
will be [ . . . .  1,1 . . . . .  1,2,2,1 . . . . .  1,2,2,1 . . . .  ], 

where  for some n the blocks of l ' s  are of length 2n or 
2(n + 1), and all der ived sequences  are of the same 
f o r m .  

Needless  to say, these tails are exactly those which 
obey the Dickson rules! 

Approach ing  the Puncture 

We have established that Markoff  irrationalities are ex- 
actly the endpoin ts  of lifts of simple geodesics in X. 
But wha t  have simple geodesics  to do with Diophan-  
fine approximat ion? The key  is the observat ion that  
geodesics in X never  approach  too close to the punc-  
ture P. In fact, in H they neve r  rise above the line Imz 
--- 3/2. What  is even  more  remarkable is that the con- 
verse is also true: A geodesic ",/on H projects to a geodesic 
in X if and only if Imz ~ 3/2 for all z ~ F~, where F~/ is the 
set of all translates of ~/ under F. 

For the proof  it will be useful  to consider two iso- 
metr ies  of H which preserve the lattice f while altering 
the labelling. One is the reflexion r in the imaginary 
axis, which  interchanges the labels A and B. The other  
is t ranslat ion t: z ~ z + 3, which  interchanges A wi th  

and  B with B. Notice that  ~ lies below the line Imz 
= 3/2 if and  only if "y A t(~/) = 0. 

On  the grid A the subst i tut ion t: a --* ~, b --> b is 
imp lemen ted  by  rotation by  "rr about  0. Any line L is 
ei ther disjoint f rom or coincides with t(L) and hence  L 
and t(L) project  to disjoint or coincident curves on  T. 
But t hen  the same is t rue of ~(L), the cor responding  
geodesic  on 7*. It follows that  any  curve whose  cutt ing 
sequence is linear lies be low Imz = 3/2. Taking limits, 
the same holds for the lifts of any  curve in X. 

26 THE MATHEMATICAL INTELLIGENCER VOL. 7, NO. 3, 1985 



A 

(v) 

--1 0 
Figure 11. Curves containing AB3A cut H. 
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The converse s ta tement  is the deepest  result  which 
we shall prove here, a l though the methods  are really 
no harder  than those we have used to date. First, no- 
tice that just as the derivation a ~ ab n, b --~ b of A was 
induced by a linear map   9 of ~2, so the derivation A 

A B ,  B ~ A is induced  by the isometry 8: z ~ z - 
1 of H. The new set of generators A' = A B ,  B'  = A of 
F is associated to a tessellation f '  identical with e and 
with the same pat tern of labels but translated one unit  
to the left. 

The cutting sequence of a geodesic ~/relative to l '  is 
the derived sequence of the cutting sequences of ~/ 
relative to f ,  where  we now extend the meaning of 
"der ived"  to mean  the sequence obtained substi tuting 
B' for A and B ' A '  for B ~n s. 

Suppose  tha t  s is a non-charac te r i s t ic  sequence .  
Using the observations above we may  assume that s 
has been derived enough  times that we see in s either 
a sequence XYnX or X 2 y x Y  . . . X Y  2. Let H be the 
region above Imz = 3/2. Fig___ure 10 illustrates that  curves 
containing sequences X Y X  or X2y 2 intersect H. 

Suppose inductively that  any  curve whose  sequence 
contains x y n x  has a lift cutting H. Figure 11 illustrates 
a curve ~/containing A B n + I A  and its image t(~/) con- 
taining A Bn+IA.  One can see that ~/N t(~) ~a 0 unless 
the sequence A B  n + 1X is preceded by BnA. But then ~/ 
would  contain the sequence A B n A ,  which we have al- 
ready dealt with. Obvious symmetries deal with the 
other cases. 

Using the substi tutions r and t we are now reduced 
to the case where  s contains either A 2 B A  B . . .  A B  2 or 
A2BA-B . . . A B  2. In the first, the derivation 8 produces 
a sequence containing a block XY"Yr in the second it 
gives a sequence all of whose  exponents are negative 

which is, after applying t, already disposed of. 
Notice that  this proof depends  only on looking at 

finite blocks in the cutting sequence; in other words,  
to see that  a geodesic enters H, it is enough to look at 
any  finite segment  along which the derivation rules 
are violated. This fact will be important  to us below. 

Diophantine Approximation 

We are n o w  finally able to bring all the pieces together 
and  r e t u r n  to Markof f ' s  or iginal  app rox ima t ion  
problem. What  we proved in the last section amounts  
to showing  that a geodesic in X avoids the image H of 
H on 7*. Thus the lifts of such geodesics avoid not  
only  H but  all images of H under  F. By a simple cal- 
culation the image of H under  (~ b) E F is a circle tan- 
gent to ~ at a/c, of radius 1/3c 2. Moreover, as (~ b) runs  
through F, a/c takes on all possible rational values. Let 
us denote  the union of all these horocycles by N. 

We can d iv ide  i r ra t ional  po in t s  0 ( R into three  
types, according to the asymptot ic  behaviour of the 
L ,R  cutt ing sequence of the vertical line v(0) joining 0 
to infinity. Denote the L,R sequence of v(0) from the 
nth term on by sn(O ). There are three possibilities: 

(i) For some n, Sn(O ) is characteristic and periodic. 
(ii) For some n, sn(O ) is characteristic but  Sm(O ) is not  

periodic for any m. 
(iii) Sn(O ) is never characteristic. 

In case (i), Sn(O ) represents a simple closed geodesic 
on 7*. Of course ~ lifts to a geodesic e~ on H with  

endpoin t  at 0. Since the image V(0) of v(0) approaches 
asymptotically on T*, and since ~ is a bounded  dis- 
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Figure 12. Simple curves 
avoiding horocycles. 

tance outside H, we  see that v(0) enters N only a finite 
number  of times. Thus  one sees from Figure 12 that 
the inequality 10 - a/c I < 1/3c 2 has only a finite number  
of solutions so that  v(0) > 1/3. 

One can actually calculate that the closest approach 
of a to H is log coth f (o0/2 where  r (o 0 is the hyperbolic 
length of o~ [6]. This gives an exact value for v(0). 

In case (ii) the tail of v(0) is characteristic and hence 
V can be approximated  by  a sequence of simple curves 
~ , .  Since the re  are on ly  f ini tely m a n y  cu rves  wi th  
lengths be low a given bound ,  the sequence  of lengths 
tends to inf in i ty  an d  hence  the d i s t ance  to H ap- 
p roaches  zero .  T h u s  v(0) a p p r o a c h e s  N arbi t rar i ly  
closely a l though from some point  on it never  enters N 
since s,(O) is e v e n t u a l l y  character is t ic .  C o m b i n i n g  
these facts one sees that  v(0) = 1/3. 

Finally, in case (iii) the tails sn (0) are never  charac- 
teristic and so v(0) enters  N infinitely often. Thus there 
are infinitely m a n y  solutions to 10 - a/c I < 1/3c2; in 
other words ,  v(0) ~ 1/3. 

Trace Formulae, Diophantine Equations and 
Quadratic Forms 

Hoping that the reader 's  patience is not  completely 
e x h a u s t e d ,  w e  will  conc lude  by  g iv ing  s o m e  brief  
pointers to the connect ion of our approach to another 
well k n o w n  aspect  of Markoff 's  theory,  the mimima of 
binary quadratic forms. 

The Markoff spec t rum if frequently calculated by  in- 
t roduc ing  Markof f  triples. These  are in t ege r  t r iples 

(x,y,z) which are solutions of the Diophantine equa- 
tion 

X 2 q_ y 2  + Z 2 = 3xyz. (D) 

Associated to such a triple is a pair of real quadratic 
number s  ~,~' = 1/2 + y/xz + 1/2(9 - 4/z2) '/2. The num-  
bers ~,~' are Markoff irrationalities with v(~) = u(~') = 
V 9  - 4 / z  2 > 1/3. 

In fact, as explained in [2], Markoff triples are (up 
to a factor of 3) the traces of triples (U,V, VLO such that 
U,V are a pair of generators  for the group F with fun- 
damenta l  region as s h o w n  in Figure 13. The simplest  
solution (1,1,1) corresponds  to the A,B  generators w e  
used  above.  The formula (D) is nothing other than one 
of Fricke's trace identities relating traces of matrices in 
SL(2,R). Starting with the solution (1,1,1) the opera- 
tions (x,y,z) ~ (z,x,y) and (x,y,z) ~ (x,3xy - z,y) gen- 
erate all possible solutions to (D). These operations are 
the same as the operat ions of derivation and substi- 
tut ion which  we  used  above.  

The geodesics ~(A), ~(B) corresponding to the min- 
imal solut ion (1,1,1) of (D) are simple. Since the op- 
eration of derivation is induced  by an isometry of T*, 
the same is actually true of all solutions of (D). N o w  
the geodesic  ~(M) associated to a matrix M = (~ b) ( 
F is the projection of a geodesic  ~(M) on H w h o s e  
endpoin ts  are the fixed points  ~M,~M of M on R. These 
endpoin ts  are of course roots of c~ 2 + (d - a)~ - b = 
0. Thus  we  see in another  w a y  that Markoff irration- 
alities are the endpoints  of lifts of simple geodesics 
on T*. 

One  can associate to M the quadratic form 

28 THE MATHEMATICAL INTELLIGENCER VOL. 7, NO. 3, 1985 



V~ LIV~ = VU~ U ~  

Figure 13. Fundamental  
region for the punctured 
torus. 

~bM(x,y ) = c x  2 4- ( d  - a ) x y  - b y  2. 

Since y(M) is simple it lies below the line Imz = 3/2, in 
o ther  words,  I~M -- ~MI < 3. Now I~M - ~1  = A'/q 
QM(1,0) where  & = TraM - 1 is the discriminant of 
QM, so that QM(1,0)/AV2 > 1/3. 

But we know more .  Since the action of SL(2,Z) on 
H preserves L,R sequences,  it preserves  simple geo- 
desics on  T*. Thus  if y(M) is simple, so is y(gMg -1) for 
any g E SL(2,Z). One  easily computes  that  

QM(x,Y) = QgMg- ffgx,gy) 

and that  QM and  QgMg-1 have the same discriminant 
4. Given any pair  (x,y) ~ 77 2 we can always find g 
SL(2,Z) with (gx,gy) = (1,0). Hence 

QM(X,y) = QgMg-l(1,0) > A'/q3; 

in other  words,  

min QM(x,y) - - >  lb. 
x,y E 772 ~v2 

Of course the actual value of the mi n i mu m can be cal- 
culated and is, no t  surprisingly,  V(~M). For matrices M 
which do not  cor respond  to simple geodesics,  the min- 
imum lies on or be low the value 1/3. 

These are the results  of Markoff on minima of binary 
quadratic forms. 

It seems clear f rom the foregoing that  the next  level 
of approximat ion should  be s tudied by looking at geo- 
desics with one self-intersection. Such geodesics pen-  
etrate only a b o u n d e d  distance into H. One  wonders  

if these fur ther  levels of approximat ion  are pe rhaps  
related to p h e n o m e n a  of successive transitions f rom 
periodici ty into chaos? 
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