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It is now recognized that the branch of classical number theory 
pertaining to the study of binary indefinite quadratic forms and their 
minima enjoys an intimate connection with the theories of Fuchsian 
groups and hyperbolic Riemann surfaces. This view was pioneered and 
nurtured by Harvey Cohn through a series of papers he wrote beginning 
in 1954 [Cl-C5], in which the central theme is the relationship 
between Diophantine approximation and the geometry of the subgroup r' 
of the classical modular group SL2(Z) and the associated quotient 
Riemann surface IH/F' 

Asmus Schmidt took a step away from the classical setting of r' 
by redefining the minimum of a quadratic form with respect to an 
arbitrary zonal Fuchsian group. He succeeded in giving a proof of 
Markoff's theorem for all zonal Fuchsian groups topologically 
conjugate to r. [sc]. His proof combines elements of the two 
classical arguments with Cohns approach via Fricke groups. 

The more recent ventures in this spirit have been by Lehner & 
Sheingorn [L-S], Series [Se] and the author [HI. We share a point of 
view which emphasizes the role of the space of geodesics on hyperbolic 
Riemann surfaces, 

In this article I will try to motivate and explain the geometric 
viewpoint. 

~I. Quadratic Forms 

Let ~ denote the space of binary indefinite quadratic forms; 
these are functions of two variables 

(I.I) f(x,y) = ax 2 + flxy + ~y2 

where ~,@ , and v are real numbers, a2 + 2 # 0 , and the 

discriminant D(f) = ~2 - 4a~ > 0 . We take as the minimum of a form 
f the quantity 
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M(f) = inf If(x'Y)l 
~q77 

where the infimum is over all pairs of integers (x,y) excluding 
(O,0) 

Two forms f and g are said to be equivalent if either 
i. g = af for some nonzero a E ~ or 
2. g = f° A = f(ax + by , cx + dy) for some 

Equivalent £orms have the same minima. This is clear for (I), 

and for (2) it follows if one observes that A e SL2(Z ) is 
2 invertible, preserves the integer lattice z and preserves the 

discriminant of a form. 
With the above definitions the natural problem becomes one of 

describing the set of values {M(f) I f e ~) ; and for any value p 
to determine those f with M(f) = p In light of the equivalence 

relation on ~ this last problem is more manageable if we instead ask 
for a set of forms with minimum p so that every form with minimum 
is equivalent to one of those. 

The most successful approach to this problem is due to A. Markoff 
[M]. What he proved was the 

~ r e m  1.2. There is a discrete sequence o£ values M. , decreasing 
z 

to I/3 so that MCF) > 113 iF and only iF MC£) = M i £or some 

positive integer i 

We refer to a form f with M(f) > 1/3 as a Markoft form. 

Markoff's theorem also provides a means for constructing the 
values M i and maximal sets of inequivalent forms with minima M i 
from solutions to the Diophantine equation 

(1,3) x 2 + y2 + z 2 = 3xyz 

~ 2 .  F r i c k e  g r o u p s  

L e t  r '  b e  t h e  s u b g r o u p  o f  S L 2 ( Z )  w h i c h  i s  f r e e l y  g e n e r a t e d  b y  
t h e  m a t r i c e s  
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We call a matrix A a generator if there is another matrix B 
which together with A generates r, 

Fricke showed that if A and B generate r' then the traces 
of the matrices A,B , and AB satisfy the equation 

(2 .1 )  (trA) 2 + (trB) 2 + (trAB) 2 = (trA)(trB)(trAB) 

The similarity between (1.3) and (2.1) was observed by Cohn who 
subsequently developed a new approach to Markoff Theory in terms of 

the group r' Given a matrix A = [a b] define the form [c ~J 

fA(x,y) = cx 2 + (d-a)xy - by 2 

The link with Markoff's theorem is expressed by the 

Theorem 2 . 2 .  (Cohn [Cl]) F is a Markoff Form i F  and only if F 

equivalent to a Form F M where M is a generator of F' 

is 

The spectral values M. are now constructed in terms of the 1 
traces of generators of r, 

Schmidt proved a variant of Theorem 2.2 in the context of what he 
calls extended Fricke groups. He also succeeded in deriving a 
description of those forms f with M(f) z I/3 [Sc] 

A 2 x 2 matrix A = [~ ~] E SL2(~ ) with real entries and 
determinant I , aside from representing a linear transformation of 

~2 , acts on the Riemann sphere ~ according to the rule 

az + b 
A(z) = cz + ~ " 

The restriction to real coefficients and determinant 1 guarantees that 

A is a conformal homeomorphism of ~ which maps the upper half plane 
onto itself. 

When ~ is equipped with the metric ds - Idzl it becomes the 
Y 

Poincar~ model for the (nonEuclidean) hyperbolic plane. The 

hyperbolic length of an arc • : [a,b] ~ ,H is then ~ (~) = [ b ~  dt . 
a 
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The orientation preserving isometries of IH are precisely the self 

maps induced by the elements of SL2(~) 

A geodesics in ~ is an arc of the form ~ = ~ n C where C is 

a circle or straight line in • which is orthogonal to the real axis. 

The easiest way to describe a geodesic in ~ is to specify its two 

endpoints in ~ = ~ u {~} We let ~ denote the space of all 

geodesics in IH . 

%3. MarkoF£ geodesics in hyperbolic space 

To each binary indefinite quadratic form f there is associated 

a unique hyperbolic geodesic vf whose endpoints ~ and ~ are 

roots of the equation f(x,l) = 0 (if f(x,l) is first order, which 

happens when ~ = 0 , then one endpoint is ~) 

Let # be the map from ~ to ~ taking a form f to a 

geodesic ~f • is onto, and the preimage of geodesic ~ e ~ with 

endpoints ( and ~ is a one parameter family of forms tf for 

t e ~ where f(x,y) = (x-~y)(x-~y)(if ~ = ~ , f(x,y) = y(x-~y)) 

If we let ~9 denote the space of real projective classes of forms in 

then the induced map @ : ~ ~ ~ will in fact be a homeomorphism 

in the natural topologies on ~ and 

SL2(Z ) acts on the set ~ by treating geodesics as point sets 

in IH and letting matrices act as Mobius transformations. We may 

also define an action of SL2(Z) on m~ by A(f) = fOA -I ~ is 

equivariant with respect to this action. 

In order to see this we let Q be a symmetric matrix with 

f(x,y) = (x,y) Q (x,y) t The form A(f) = f° A -I is determined by 

the matrix (A -I) Q (A-I) t It follows that the roots of the 

equation f° A-l(x,l) = O are A(~) and A(~) In particular it 

follows that two forms f and g are equivalent if and only if there 

is a transformation B e SL2(Z ) with B(~f) = ~g 

If A is a matrix in SL2(Z ) with absolute trace greater than 

2 then there is a unique geodesic in IH whose endpoints are the 

fixed points of A(z) When f = fA the roots of the equation 

f(x,l) = O are exactly the fixed points of A(z) , and therefore f 
is the fixed axis of A . 

When f is a Markoff form we refer to ~f as a MarRoFF 

geodesic. 
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Define the height of a geodesic ~ with endpoints ~ and ~ by 

ht(~ ) = f I ~ - ~ l  if ~ and ~ < 
2 

otherwise 

The quantity H(v) = sup{hi(g(?)) 1 g E r'} iS constant on the 

r, orbit of the geodesic • and is related to the minimum of a form 

by way of 

I Lemma 3.1. (Cohn [C2]). H(~f) = ~ . 

In order to clarify the relationship between M and H we will 

argue the lemma. 

Proof: There is no loss of generality if we restrict attention to 

forms with discriminant I. If a ~ 0 in (I.i) then the end[points 

-p+l -p-i I 
of ~f are ~-~ and ~ , and ht(?f) = ~ . 

Let <(xi,Yi)> be a sequence of points in Z 2 with 

lim If(xi,Yi)l = M(f ) Choose Ai ~ SL2(Z) with Ai[~l = [~i ] and 

2 2 
set f° A i = g~ ~ = aix + bixy +ciy Then lim ]gi(l,O)] = M(f) # 

1 from which it follows that M(f) = lim fail = lim ; where 
i~ i~ 

1 1 ~ i  = ~gi Therefore, g(~f) Z ht(~i) = ~ e ~ . 

If the inequality were strict then there would exist a form 

2 2 g = ax + bxy + cy with discriminant 1 equivalent to f with 

l I ht(Tg) > ~ . As we observed above ht(Tg) = ~ . It follows 

that Ig(l,O) I = lal < M(f) = M(g) contrary to the definition of 

S(g) 

If a = O then we clearly have both H(~f) = ~ and 

M(f) = O . 0 

An immediate consequence of the lemma is a characterization of 

Markoff geodesics in terms of the height function: 

( 3 . 2 )  • i s  a M a r k o F F  g e o a e s i c  i F  a n a  o n l y  t ~  H C ~ )  < 3 1 2  . 

T h i s  i s  t h e  f i r s t  s t e p  i n  a g e o m e t r i z a t i o n  o f  t h e  M a r k o f f  t h e o r y .  
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~4. MarkoFr geodesics on the punctured torus 

The group r' acts discontinuously on the upper half plane and 

the quotient space IH/F' = T z is a hyperbolic Riemann surface which 

is homeomorphic to a torus from which a point has been removed. This 

is easily seen by looking at a standard fundamental domain F for the 

[I ~] and action of r' on IH See figure 4.1. The generators 1 

[~ i i sides of F This is much like the pair opposite 
1 

identification of opposite sides on a rectangle to produce a torus 

except that now the vertices are out at infinity in hyperbolic space; 

thus the puncture. 

!~ii~;~i~ !~, i~ ~i~ii ̧ i~ ~ ~ :~I 

-i o I 

Fig. 4. I. The fundamental domain F for r' (shaded) 
with adjacent r'-translates of F. 

A geodesic ~ in IH projects to a geodesic ~ on T z . Every 

geodesic on T z arises in this fashion. We say a geodesic ~ on T z 

is closed if it is the projection of a geodesic ~ in IH which is 

mapped onto itself by a nontrivial transformation A E r' A closed 

geodesic • is therefore one which can be parameterized by the circle 

S I ~ is a simple geodesic if for a preimage ~ in IH and any 

transformation A ~ r' , • n A( ) ~ # implies that ~ = A( ) Thus 

will have no transverse self intersections, see Figure 4.2. 

a. b. c. 

Fig. 4.2. (a) A simple closed geodesic. (b) A closed 
geodesic which is not simple. (c) A simple 
geodesic which is not closed. One end is 
asymptotic to the puncture and the other end is 
asymptotic to a simple closed geodesic. 
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Due to the simplicity of the surface T Z there is an elegant 

relationship between generators of r' and simple closed geodesics 

on T Z which was first observed by Nielsen. 

P r o p o s i t i o n  4 . 3 .  [ N ] .  A g e o d e s i c  ~ i n  IH p r o j e c t s  t o  a s i m p l e  
N 

c l o s e d  g e o d e s i c  ~ on  T z i f  a n d  o n l y  i f  ~ i s  t h e  f i x e d  a x l s  o f  a 

generator o£ r' 

Combining this proposition with Cohn's Theorem 2 . 2  we may 
conclude that 

( 4 . 4 )  
on r z is a simple closed geodesic if and only if 

is the projection of a Markoff geodesic in IH . 

We shall refer to a geodesic on T z which is the projection of a 
Markoff geodesic in IH also as a MarkoFF geodesic. 

It only remains to define "Markoff geodesic" intrinsically in the 
geometry of T z and without recourse to the Markoff theorem. 

When k z 1 the half plane ~k = {z I Imp> I/k} in ~ projects 
to a domain ~k on the surface T Z which is conformally a punctured 
disc. ~k is called a cusp neighborhood on T Z and is characterized 
intrinsically by its hyperbolic area, which is 6k . 

Let us put things together. We just saw that the simple closed 

geodesics on T z are precisely the Markoff geodesics. Applying 3.2 

we conclude that • in IH covers a simple closed geodesic ~ on T Z 

if and only if H(~) < 3/2 . The last inequality may be rephrased as 

follows: for all A ~ r' , A(~) N ~2/3 = ~ " Down on T Z this is 
equivalent to the assertion that = is disjoint from ~2/3 ' the cusp 
neighborhood of area 4. 

We have proven 

Theorem 4.5. The geodesic • on r z is a simple closed geodesic if 

and only if ~ lies }n the complement of a cusp neighborhood of 
area ~. 

This is an intrinsic geometric version of Markoff's theorem. It 
says that simple closed geodesics stay further away from the puncture 

than all other geodesics. 
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The surface T Z represents only one of many possible conformal 
structures which can be put on a punctured torus. In fact there is a 

two real parameter family of such structures. It is natural to ask 
whether an analogue to Theorem 4.5 holds for these other surfaces. 
The answer is yes. 

Let v be a geodesic on a hyperbolic once-punctured surface N . 

The quantity A(v) is defined as the area of the largest open cusp 
neighborhood on N disjoint from ~ See Figure 4.6. 

Fig. 4.6. The shaded region represents the largest cusp 
neighborhood which is disjoint from 

The discussion prior to the statement of Theorem 4.5 shows that 
N 

when N = T z , A(~) = 6H-I(~) where ~ is a lift of • to IH 

Consequently, a form f with ~ = ~f satisfies 12M(f) = A(~) 
Thus A(~) is the intrinsic analogue to the minimum M(f) 

Let S denote the set of simple closed geodesics on a hyperbolic 

surface N and let S be the set of geodesics which are limits of 

those in S . In other words, a geodesic ~ belongs to S if there 

is a sequence ~n of simple closed geodesics on N with lifts ~i 

having endpoints x~ and Yi in ~ so that lim x i = x and 

lim Yi =y where x and y are the endpoints of a lift • of 

All of the geodesics belonging to S are simple, but in general 
there may be simple geodesics with compact support on N which are 

not in S . This is the case, for example, when N is a punctured 
torus. 

We can now state 4.5 in a strengthened form. 
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Theorem 4.7. M geodesic • on a hyperbolic punctured torus T 

belongs to S iF and only i£ ACv) ~ ~ When 7 belongs to S , 

ACT) = ~ coth --~6~) . When ~ ~s a l i m i t  geodesic in S \ S 
2 

AC~) = 9 

This theorem can be proven directly using geometric and 
topological arguments as in [HI or it can be derived as a corollary to 
Schmidt's Theorem 4.1 in [Sc] by translating the results there as we 

did above for Cohn's version 2.2 of the Markoff theorem [Sh]. 

Similar results are known for other punctured surfaces: the 
hyperbolic four times punctured spheres [L-S,H], and the branched 

surfaces with signature (0;2,2,2,~) [Sh]. That we have such knowledge 

regarding these particular surfaces is explained by the fact that 
every (0;2,2,2,~) surface is finitely covered by a punctured torus as 
well as by a four times punctured sphere. Moreover, as both Series 

and Sheingorn have observed the spaces S are in a sense the same for 

a]l three surfaces. 
In general, the structure of the spectrum of values A(~) for 

geodesics on a surface N , which we call the Cohn spectrum of N , 
will not admit a description of the form of 4.7; although one is led 

to suspect that a Markoff-like structure for the upper part of the 
spectrum is not uncommon. To see the difficulty in higher genus we 

consider the punctured surface N illustrated in Figure 4.8 with the 

geodesic a separating N into subsurfaces N 1 and N 2 . Any 
geodesic lying on N 1 is closer to the cusp than a geodesic on N 2 
Simply knowing whether a geodesic ~ on N self intersects will 

afford little assistance in computing A(~) 

F~g. 4.8. For higher genus surfaces the Cohn spectrum will 
have a more complex structure. 
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