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INTRODUCTION

0.1 Groupes kleiniens birationnels

0.1.1 Définitions

Soient Y une variété projective complexe lisse et U ⊂Y un ouvert en topologie usuelle. Soit
Γ ⊂ Bir(Y ) un groupe infini de transformations birationnelles. Nous imposons les conditions
suivantes sur Γ:

1. Les points d’indétermination de Γ sont disjoints de U et Γ préserve U , c.-à-d. tout élément
de Γ induit un difféomorphisme holomorphe de U ;

2. L’action de Γ sur U est libre, proprement discontinue et cocompacte.

Autrement dit, U s’identifie à un revêtement galoisien de la variété complexe compacte X =

U/Γ et Γ s’identifie au groupe de revêtement. Quand U est simplement connexe, Γ est isomor-
phe au groupe fondamental de X ; dans le cas général Γ est un groupe quotient de π1(X). On
appelle la donnée de (Y,Γ,U,X) un groupe kleinien birationnel. Lorsqu’il n’y a pas d’ambiguïté
(cf. la discussion sur l’ensemble limite dans Section 0.1.2), on appellera Γ un groupe kleinien
birationnel tout court.

On dit que deux groupes kleiniens birationnels (Y,Γ,U,X) et (Y ′,Γ′,U ′,X ′) sont géométrique-

ment conjugués s’il existe une application birationnelle ϕ : Y 99K Y ′ qui est biholomorphic sur
U telle que U ′ = ϕ(U) et Γ′ = ϕΓϕ−1. Les variétés quotient X et X ′ sont biholomorphes. Si
(Y,Γ,U,X) est un groupe kleinien birationnel et si Γ′ est un sous-groupe d’indice fini de Γ, alors
(Y,Γ′,U,X ′) est aussi un groupe kleinien birationnel où X ′ est un revêtement fini de X .

Pour autant que l’auteur sache, la notion de groupes kleiniens birationnels est considérée
par Shing-Tung Yau and Fedor Bogomolov en premier, et puis par Serge Cantat.

0.1.2 Comparaison avec les groupes kleiniens classiques

De nos jours un groupe kleinien signifie un sous-groupe discret arbitraire de PGL2(C). Dans
ce texte nous les appellerons groupes kleiniens classiques pour éviter la confusion. La théorie
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Introduction

des groupes kleiniens classiques est un domaine riche et actif; nous renvoyons les lecteurs à
[Mas88] et [Ser05] pour une introduction aux groupes kleiniens classiques.

Domaine de discontnuité et ensemble limite. Si Γ ⊂ PGL2(C) est un groupe kleinien clas-
sique, alors il existe un unique sous-ensemble maximal ΩΓ ⊂ P1 ouvert, Γ-invariant, non néces-
sairement connexe, sur lequel Γ agit de manière discontinue; il est appelé le domaine de discon-

tnuité de Γ. Son complément P1\ΩΓ est appelé l’ensemble limite de Γ.
En dimension supérieure la notion de domaine de discontnuité et celle d’ensemble limite ne

sont pas bien définies. Nous renvoyons les lecteurs à [Kul78] et [CNS13] pour des discussions à
ce propos. Même pour un groupe d’automorphismes d’une variété projective complexe lisse, un
ouvert invariant sur lequel le groupe agit de manière discontinue et maximal parmi les ouverts
ayant cette propriété n’est pas nécessairement unique, voir [CNS13] pour des exemples. C’est
pourquoi nous définissons un groupe kleinien birationnel comme un quadruple (Y,Γ,U,X):
Y,Γ,U déterminent X mais a priori U n’est pas uniquement déterminé par Γ⊂ Bir(Y ).

Groupe de fonction cocompact. Soit Γ un groupe kleinien classique de type fini et sans
torsion. Théorème de finitude d’Ahlfors affirme que ΩΓ/Γ est une union finie de surfaces de
Riemann de type fini, c.-à-d. courbes quasi-projectives lisses (il y a une lacune dans la preuve
originale d’Ahlfors dans [Ahl64], voir par exemple [Sul85] pour une preuve rigoureuse). Si Γ

est un groupe kleinien classique de type fini et sans torsion tel que ΩΓ possède une composante
connexe invariante Ω0

Γ
, alors Γ est appelé un groupe de fonction; dans ce cas Ω0

Γ
/Γ est une

courbe quasi-projective lisse connexe.
Par conséquent notre notion de groupe kleinien birationnel est une généralisation directe

de groupe de fonction cocompact. Puisqu’il n’y a pas encore de théorie générale en dimension
supérieure, nous préférons les appeler “groupes kleiniens birationnels” plutôt que “groupes de
fonction birationnels cocompacts” que nous trouvons peu clair pour ceux qui ne connaissent
pas la terminologie classique.

0.1.3 Comparaison avec les groupes kleiniens complexes projectifs

Si un groupe kleinien birationnel (Y,Γ,U,X) satisfait que Y = Pn et Γ⊂ PGLn+1(C), alors
nous l’appellerons un groupe kleinien complexe projectif. Les groupes kleiniens complexes pro-
jectifs sont classifieés en dimension deux (cf. [KO80], [Kli98], [MY93], [CS14]), et en dimen-
sion supérieure à deux si la variété quotient est projective (cf. [JR15]). Dans ces classifications
déjà obtenues la situation est très rigide, en particulier quand le quotient est projectif; il y a
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peu d’exemples et ils n’ont pas de déformation riche comme les groupes kleiniens classiques.
Nous renvoyons les lecteurs à Chapitre 3 pour une présentation de ces résultats. En général les
groupes kleiniens complexes projectifs en dimension ≥ 3 à quotients non nécessairement pro-
jectifs sont encore très mystérieux. Nous renvoyons les lecteurs à la référence récente [CNS13]
où les auteurs utilisent la terminologie “groupe kleinien complexe”.

Pour n ≥ 2 le groupe de transformations birationnelles de Pn est beaucoup plus grand que
PGLn(C): il faut un nombre infini de paramètres pour le décrire. On insiste sur le fait que
l’action d’un groupe de transformations birationnelles sur une variété n’est pas une vraie action
de groupe au sens ensembliste: il se peut qu’une transformation birationnelle n’est pas définie
en certains points, ou n’est pas localement un biholomorphisme en certains points où elle est
définie. Néanmoins dans notre situation l’action de Γ sur U est bien sûr une action de groupe
bien définie au sens usuel. Données ci-dessus sont quelques raisons pour lesquelles les groupes
kleiniens birationnels semblent être beaucoup plus généraux et compliqués que les groupes
kleiniens complexes projectifs.

0.2 Uniformisation

Le théorème d’uniformisation de Koebe-Poincaré affirme que toute surface de Riemann sim-
plement connexe est biholomorphe soit à P1, soit à C, soit à D. Il joue un rôle omniprésent dans
l’étude des groupes kleiniens classiques. Les revêtements universels des variétés projectives de
dimension ≥ 2 peuvent être très compliqués, sans parler des varit́és complexes compactes en
général. Une manière raisonnable de les étudier consiste à ajouter des hypothèses de nature
algébrique.

Les trois éléments clés d’uniformisation sont le groupe fondamental, le revêtement uni-
versel et l’action du groupe de revêtement sur le revêtement universel. Il y a de différentes
manières pour spécifier ces données. Par exemple dire qu’une surface de Riemann est revêtue
par le disque unité avec groupe de revêtement inclus dans PSL2(R) ne dit rien sur les pro-
priétés arithmétiques des coefficients des matrices. Nous nous intéressons ici à des hypothès
de nature algébrico-géométrique. Donnés ci-dessous sont trois résultats de ce type dont le
premier fait une hopothèse algébrique sur le groupe fondamental, le second fait une une hy-
pothèse algébrico-géométrique sur le revêtement universel, et le troisième fait des hypothèses
sur le groupe fondamental et le revêtement universel. Le premier théorm̀e cité ci-dessous a
été démontré pour les variétés projectives complexes lisses par Eyssidieux-Katzarkov-Pantev-
Ramachandran [KR98], [Eys04], [Eys+12], et a été généralisé aux variétés Kählériennes com-
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pactes par Campana-Claudon-Eyssidieux [CCE15]:

Théorème 0.2.1 (Conjecture de Shafarevich linéaire) Si le groupe fondamental d’une var-

iété Kählérienne compacte Y admet une représentation linéaire fidèle, alors le revêtement uni-

versel de Y est holomorphiquement convexe.

Théorème 0.2.2 (Claudon-Höring-Kollár [CHK13]) Soient Y une variété projective normale

sur C et Ỹ son revêtement universel. La conjecture d’abondance implique que les assertions

suivantes sont équivalentes:

1. Ỹ est biholomorphe à une variété quasi-projective.

2. Ỹ est biholomorphe à un produit Cm×F où m≥ 0 et F est une variété projective simple-

ment connexe.

3. Il existe un revêtement galoisien fini Y ′ de Y qui est un fibré au-dessus d’une variété

abélienne à fibres simplement connexes.

Théorème 0.2.3 (Kollár-Pardon [KP12]) Soit Γ un groupe qui agit librement, proprement dis-

continûment et de manière cocompacte sur un domaine borné symétrique M de dimension ≥ 2.

Soit Y une variété projective complexe lisse, π1(Y )→ Γ un homomorphisme surjectif et ỸΓ le

revêtement galoisien correspondant. Les assertions suivantes s’équivalent:

1. ỸΓ est biholomorphe à un sous-ensemble semi-algébrique d’une variété projective.

2. ỸΓ est biholomorphe à M×F où m≥ 0 et F est une variété projective.

3. Y est un fibré au-dessus de M/Γ.

Le souhait principal de Kollár-Pardon [KP12] est de généraliser Théoréme 0.2.2 aux domaines
symétriques bornés; ils conjecturent dans [KP12] que les seuls sous-ensembles semi-algébriques
des variétés projectives qui revêtent des variétés projectives normales sont biholomorphes à des
produits de la forme Cm×M×F où M est un domaine borné symétrique et F est une variété
projective simplement connexe. Par plongement de Borel un domaine borné symétrique M se
plonge comme un sous-ensemble semi-algébrique dans un espace symétrique hermitien com-
pact dual M̂ qui est une variété projective complexe lisse. En plus tout auto-biholomorphisme de
M est la restriction d’un automorphisme de M̂. Autrement dit, les domaines bornés symétriques
donnent lieu à des groupes kleiniens birationnels, qui sont des groupes d’automorphismes. Ainsi
l’étude des groupes kleiniens birationnels consiste à mettre, dans le problème d’uniformisation,
une hypothèse algébrico-géométrique sur l’action du groupe de revêtement, en essayant de
généraliser ce qui se passe pour les domaines bornés symétriques.
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Nous disposons de très peu d’exemples de domaines dans des varétés projectives de dimen-
sion > 1 qui sont des revêtements infinis des variétés projectives. Soit m ≥ 2 un entier. Wong
[Won77] et Rosay [Ros79] ont prouvé que si un domaine borné à bord lisse dans Cm revête
une variété projective alors il est biholomorphe à la boule unité euclidienne. Frankel [Fra89] a
prouvé que les seuls domaines bornés convexes dans Cm qui revêtent des variétés projectives
sont les domaines bornés symétriques. Ces résultats suggèrent que les domaines qui revêtent des
variétés projectives sont compliqués et difficiles à décrire lorsqu’ils ne sont pas des domaines
bornés symétriques.

À part les Cms et les domaines bornés symétriques, les seuls exemples de domaines revê-
tant des variétés projectives de dimension > 1 que l’auteur connaît sont les revêtements uni-
versels des fibrations de Kodaira et leurs variantes. Une fibration de Kodaira est une surface
projective complexe lisse avec une fibration submersive non-isotriviale au-dessus d’une surface
de Riemann hyperbolique à fibres des surfaces de Riemann hyperboliques. Il suit des travaux
fondamentaux de Bers sur la structure analytique complexe des espaces de Teichmüller (cf.
[Ber60]) que le revêtement universel d’une fibration de Kodaira est une fibration submersive
au-dessus du disque unité à fibres toutes biholomorphes aux disques, et qu’il est biholomorphe
à un domaine borné dans C2 (voir [Gri71] pour des variantes en dimension supérieure). Nous
verrons qu’il n’existe pas de groupe kleinien birationnel (Y,Γ,U,X) tel que X soit une fibration
de Kodaira (cf. Chapitre 5 Section 5.7). Nous verrons aussi qu’un problème majeur non résolu
dans notre classification de groupes kleiniens biationnels en dimension deux concerne un type
de domaines, s’ils existent, qui sont analogues aux domaines qui revêtent des fibraitons de Ko-
daira: ces domaines sont aussi des graphes de mouvements holomorphes; le rôle des fibrations
de Kodaira est remplacé par certains feuilletages; les espaces de Teichmüller de dimension finie
sont remplacés par les espaces de Teichmüller de dimension infinie (voir Chapitre 7).

0.3 Résultats principaux

Nous observons d’abord qu’une variété doit avoir un groupe de transformations birationnelles
suffisamment grand pour admettre un groupe kleinien birationnel.

Théorème 0.3.1 Il n’existe pas de groupe kleinien birationnel agissant sur une variété projec-

tive complexe lisse de dimension ≥ 0.

Tous nos autres résultats sont en dimension deux. Une version courte de notre classification
est:
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Théorème 0.3.2 Soit (Y,U,Γ,X) un groupe kleinien birationnel en dimension deux tel que U

est simplement connexe et X est kählérienne. Alors quitte à faire une conjugaison géométrique

et quitte à prendre un sous-groupe d’indice fini de Γ, nous sommes dans l’une des situations

suivantes:

1. Y =P2, U =C2, Γ est un groupe de translations isomorphe à Z4 et X est un tore complexe.

2. Y = P1×P1, U est le bidisque D×D et Γ est un réseau irréductible cocompact sans

torsion dans PSL2(R)×PSL2(R)⊂ Aut(P1)×Aut(P1).

3. Y = P2, U est la boule unité euclidienne B2, Γ est un réseau cocompact sans torsion dans

PU(1,2)⊂ PGL3(C) = Aut(P2).

4. Γ= Γ1×Γ2 est un produit de deux groupes kleiniens classiques dont l’un peut être trivial,

U est un produit D1×D2, où Di ⊂ P1 est une composante simplement connexe invariante

du domaine de discontinuité de Γi.

5. Y = P1×P1, U = D1×C où D1 est une composante simplement connexe invariante du

domaine de discontinuité d’un groupe kleinien classique Γ1. La projection de P1×P1 sur

le premier facteur est équivariant par rapport à un homomorphisme surjectif Γ→ Γ1. La

surface X un fibré principal elliptique au-dessus de D1/Γ1. Tout élément de Γ s’écrit de

la forme (x,y) 99K (γ1(x),y+R(x)) où γ1 ∈ Γ1 et R ∈ C(x) n’a pas de pôles dans D1.

6. Y = P1× P1, U = D1× P1 where D1 où D1 est une composante simplement connexe

invariante du domaine de discontinuité d’un groupe kleinien classique Γ1. La projection

de P1×P1 sur le premier facteur est équivariant par rapport à un isomorphisme Γ→ Γ1.

La surface X est géométriquement réglée au-dessus de D1/Γ1.

7. Y = P1×P1. U est contenu dans le sous-ensemble D×P1 et la projection r : Y → P1 sur

le premier facteur induit une fibration de U au-dessus du disque unité D ⊂ P1 dont les

fibres, toutes biholomorphes au disque unité, s’organisent en un mouvement holomorphe.

Le bord de U dans D×P1 est aussi le graphe d’un mouvement holomorphe. Γ préserve

la fibration r. La surface X est de type général et est munie d’un feuilletage holomorphe

régulier transversalement hyperbolique dont toute feuille est dense dans X.

Remarque 0.3.3 Les groupes kleiniens classiques qui apparaissent dans Théorm̀e 0.3.2 sont
des B-groupes. Un B-groupe est un groupe kleinien classique de type fini ayant une composante
simplement connexe; donc les B-groupes sont isomorphes aux groupes de surface et sont des
exemples particuliers de groupes de fonction (cf. Section 0.1.2). À part les groupes quasi-
fuchsiens, il existe aussi des B-groupes plus compliqués découverts par Bers [Ber70], obtenus
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comme limite dégénérée de groupes quasi-fuchsiens (voir aussi [Mas70], [Abi75], [Mas88]).
Bers a conjecturé que tout B-groupe est une limite algébrique de groupes quasi-fuchsiens; ceci
a été démontré par Brock-Canary-Minsky (cf. [BCM12] page 4).

Remarque 0.3.4 Dans Théorm̀e 0.3.2, Cas 2) est un cas particulier de Cas 7). L’auteur ignore
si Cas 7) contient d’autres exemples que Cas 2). Nous parlerons de cette question dans Chap-
titre 7. Nous nous attendons à ce que Cas 7) du Théorm̀e 0.3.2 est réduit à Cas 2); nous le
prouverons sous certaines hypothèses supplémentaires. En fait les seuls exemples connus de
surfaces de type général munies de feuilletages holomorphes réguliers minimaux sont les quo-
tients du bidisque et la question de savoir s’il existe d’autres exemples de tels feuilletages reste
ouverte depuis l’apparition de [Bru97] il y a une vingtaine d’années. S’il n’existe pas de tels
feuilletages alors Cas 7) est automatiquement vide.

Dans Cas 7), nous notons par ∂h(U) le bord de U dans D×P1. Deux questions se posent na-
turellement: 1) quand est-ce que U est biholomorphe au bidisque? 2) Lorsque U est biholomor-
phe au bidisque, est-ce que nous sommes nécessairement dans Cas 2)? Nous donnons quelques
réponses partielles. Voir Section 7.4.2 pour la notion de mouvement holomorphe à distorsion
bornée utilisée dans l’énoncé suivant.

Théorème 0.3.5 1. Supposons que nous sommes dans Cas 7) de Théorm̀e 0.3.2. Supposons

que U est le graphe d’un mouvement holomorphe à distorsion bornée. Alors U est bi-

holomorphe au bidisque.

2. Supposons que nous sommes dans Cas 7) de Théorm̀e 0.3.2 et que U est biholomorphe

au bidisque. Supposons que ∂h(U) est localement connexe de mesure de Lebesgue nulle.

Alors nous sommes dans Cas 2).

3. Supposons que nous sommes dans Cas 7) de Théorm̀e 0.3.2. Supposons que ∂h(U) est C1

à un point. Alors nous sommes dans Cas 2).

Les deux hypothèses artificielles que nous supposons dans la seconde partie du Théorm̀e ci-
dessus sont partiellement inspirées par ce qui se passe en dimension une:

Remarque 0.3.6 La conjecture d’Ahlfors, connue sous le nom de «Ahlfors measure conjec-
ture» en anglais, affirme que l’ensemble limite d’un groupe kleinien classique (au sens usuel,
c.-à-d. un sous-groupe discret de PGL2(C)) est soit P1 tout entier soit de mesure de Lebesgue
nulle. La conjecture a été démontrée pour les groupes de fonction par Bonahon [Bon86] et com-
plètement par Calegari-Gabai [CG06] et Agol [Ago]. En ce qui concerne la connexité locale,
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Mj [Mj14] a prouvé, pour les groupes kleiniens classiques de type fini, que l’ensemble limite
est localement connexe s’il est connexe.

Si nous ne supposons plus que U est simplement connexe et que X est Kählérienne, alors
nous avons la classification conditionnelle ci-dessous. Voir Section 1.3 pour la notion de trans-
formation birationnelle loxodromique utilisée dans l’énoncé.

Théorème 0.3.7 Soit (Y,U,Γ,X) un groupe kleinien birationnel en dimension deux. Supposons

que Γ n’est pas virtuellement un groupe cyclique engendré par un élément loxodromique et que

Γ ne contient pas d’éléments loxodromiques lorsque X est de classe VII. Alors quitte à faire une

conjugaison géométrique et quitte à prendre un sous-groupe d’indice fini de Γ, nous sommes

dans l’une des situations dans le tableau suivant:

Groupes kleiniens birationnels en dimension deux

Y U Γ X

1 B × P1 où B

est une surface

de Riemann

compacte

B×D1 où D1 est

une composante

invariante d’un

groupe kleinien

classique Γ1

{Id} × Γ1 ⊂
Aut(B) ×
Aut(P1)

B× (D1/Γ1)

2 P(E ) où E est

une extension de

OB par OB et B

est une surface

de Riemann com-

pacte

le complément

d’une section

de la fibration

rationnelle

isomorphe à Z2 un fibré principal

elliptique

3 une surface

réglée éclatée

un ouvert de

Zariski dont

l’intersection

avec toute fibre

de la fibration

rationnelle est C∗

isomorphe à Z une fibration

elliptique dont

toute fibre sin-

gulière est du

type mI0

14
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Y U Γ X

4 B× P1 où B est

une courbe ellip-

tique

B×D1 où D1 est

une composante

invariante d’un

groupe kleinien

classique Γ1

∃ρ : Γ1 →
Aut(B),∀γ ∈
Γ,∃γ1 ∈ Γ1,γ =

(ρ(γ1),γ1) ∈
Aut(B) ×
Aut(P1)

fibré en B au-

dessus de D1/Γ1

5 une surface

géométrique-

ment réglée

indécomposable

au-dessus d’une

courbe ellip-

tique ayant une

section d’auto-

intersection

nulle

le complément de

la section d’auto-

intersection nulle

isomorphe à Z2 tore complexe

6 une surface

géométriquement

réglée décompos-

able au-dessus

d’une courbe

elliptique

le complément de

deux sections dis-

jointes

isomorphe à Z tore complexe

7 P2 C2 isomorphe à Z4 tore complexe

8 P2 C×C∗ isomorphe à Z3 tore complexe

9 P2 C∗×C∗ isomorphe à Z2 tore complexe

10 P2 C2 un groupe de

transformations

affines, une ex-

tension de Z2 par

Z2

surface de Ko-

daira primaire

11 P2 C2\{0} isomorphe à Z surface de Hopf
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Y U Γ X

12 P2 H×C un groupe résol-

uble de transfor-

mations affines

surface d’Inoue

13 P2 B2 un réseau co-

compact dans

PU(1,2)

quotient de la

boule

14 P1×P1 D1×D1 un réseau ir-

réductible co-

compact dans

PSL2(R) ×
PSL2(R)

quotient du

bidisque

15 une surface

de Hirzebruch

éclatée au-dessus

d’au plus deux

fibres

un ouvert de

Zariski dont

l’intersection

avec toute fibre

de la fibration

rationnelle est C∗

un groupe

cyclique en-

gendré par

(x,y) 7→ (ax,by)

surface de Hopf

16 une surface

de Hirzebruch

éclatée au-dessus

d’au plus une

fibre

un ouvert de

Zariski dont

l’intersection

avec toute fibre

de la fibration

rationnelle est C∗

un groupe cy-

clique engendré

par (x,y) 7→
(x+a,by)

surface de Hopf

17 P1×P1 D1×D2 où Di est

une composante

invariante d’un

groupe kleinien

classique Γi

Γ1 × Γ2 ⊂
PGL2(C) ×
PGL2(C)

(D1/Γ1) ×
(D2/Γ2)
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Y U Γ X

18 P1×P1 D1×C∗ où D1 est

une composante

invariante d’un

groupe kleinien

classique Γ1

isomorphe à une

extension cen-

trale de Γ1 par Z,

tout élément a la

forme (x,y) 99K

(γ1(x),R(x)y)

où γ1 ∈ Γ1 et

R ∈ C(x)∗

fibré princi-

pal elliptique

au-dessus de

D1/Γ1

19 P1×P1 D1×C où D1 est

une composante

invariante d’un

groupe kleinien

classique Γ1

isomorphe à une

extension cen-

trale de Γ1 by Z2,

tout élément a la

forme (x,y) 99K

(γ1(x),y + R(x))

où γ1 ∈ Γ1 et

R ∈ C(x)

fibré princi-

pal elliptique

au-dessus de

D1/Γ1

20 P1×P1 D1×P1 où D1 est

une composante

invariante d’un

groupe kleinien

classique Γ1

isomorphe à Γ1,

préserve la pro-

jection de P1 ×
P1 sur le premier

facteur

surface

géométrique-

ment réglée

au-dessus de

D1/Γ1

21 P1
1×P1

2 le graphe d’un

mouvement

holomorphe au-

dessus de D ⊂ P1
1

d’un domaine

connexe U0 ⊂ P1
2

préserve la pro-

jection sur P1
1

surface de type

général munie

d’un feuilletage

régulier minimal

La surface Y est rationnelle sauf dans les six premiers cas. Le groupe Γ est un groupe

d’automorphismes sauf dans les quatres derniers cas. Dans les cas 18), 19), 20), il se peut que

Γ n’est conjugué au groupe d’automorphismes d’aucune surface projective.

Remarque 0.3.8 Les groupes kleiniens classiques apparus dans Théorème 0.3.7 sont des groupes
de fonction cocompacts. La conjecture de densité de Bers-Sullivan-Thurston a prédit que tout
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groupe kleinien de type fini est une limite algébrique de groupes géométriquement finis, et a été
prouvée par Namazi-Souto [NS12], en tant qu’une généralisation du résultat de Brock-Canary-
Minsky’s que nous avons mentionné dans Remarque 0.3.3.

Remarque 0.3.9 Nous expliquons maitenant comment Théorème 0.3.2 se déduit de Théorème
0.3.7. Sous l’hypothèse que U est simplement connexe et que X est kählérienne, le groupe Γ

isomorphe au groupe de Kähler π1(X). Par Théorème de Hodge l’abélianisation d’un groupe
de Kähler est de rang pair, donc n’est pas cyclique. Ainsi l’hypothèse de Théorème 0.3.2 im-
plique l’hypothèse de Théorème 0.3.7. Il suffit donc de remarquer que dans la liste donnée dans
Théorème 0.3.7 les seuls cas où U est simplement connexe et X est kählérienne sont les sept
cas dans Théorème 0.3.2.

0.4 Structures birationnelles

Nous introduisons dans cette section la notion de structure birationnelle qui a déjà émergé
dans les travaux de Dloussky [Dlo16]. C’est une généralisation de structure géométrique d’Ehresmann.
L’une des motivations pour cette généralisation est la suivante: la surface de Riemann quotient
d’un groupe kleinien classique est munie d’une (PGL2(C),P1)-structure; si (Y,Γ,U,X) est un
groupe kleinien birationnel, alors X est munie d’une (Bir(Y ),Y )-structure. Une autre motiva-
tion est que les structures birationnelles comprennent toutes les structures géométriques mod-
elées sur les actions algébriques par des groupes algébriques. Nous n’allons pas discuter des
structures birationnelles dans le corps de cette thèse et nous renvoyons les lecteurs à [Zhab] et
Appendice B Section 2.2 pour plus de détails et pour les preuves des propositions données dans
cette section.

Définition 0.4.0.1 Soit V une variété complexe. Soit Y une variété projective complexe lisse.

Une (Bir(Y ),Y )-structure sur V est la donnée d’un atlas maximal de cartes locales ϕi : Ui→Yi

tel que

— les Ui sont des ouverts de V et forment un recouvrement;

— les Yi sont des variétés projectives lisses birationnelles à Y ;

— les ϕi sont des biholomorphismes sur image;

— les changements de coordonnées ϕi ◦ϕ
−1
j : ϕ j(Ui ∩U j)→ ϕi(Ui ∩U j) sont des difféo-

morphismes holomorphes qui s’étendent en applications birationnelles de Yj vers Yi.
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Définition 0.4.0.2 Soit V une variété complexe. Soit Y une variété projective complexe lisse.

Une (Bir(Y ),Y )-structure stricte sur V est la donnée d’un atlas maximal de cartes locales

ϕi : Ui→ Y tel que

— les Ui sont des ouverts de V et forment un recouvrement;

— les ϕi sont des biholomorphismes sur image;

— les changements de coordonnées ϕi ◦ϕ
−1
j : ϕ j(Ui ∩U j)→ ϕi(Ui ∩U j) sont des difféo-

morphismes holomorphes qui s’étendent en transformations birationnelles de Y .

Soit Y ′ un modéle lisse birationnel de Y . Il découle directement de la défintion qu’une
(Bir(Y ),Y )-structure sur V la même chose qu’une (Bir(Y ′),Y ′)-structure sur V , et qu’une (Bir(Y ),Y )-
structure stricte induit une (Bir(Y ),Y )-structure. Mais en général une (Bir(Y ),Y )-structure n’induit
pas une (Bir(Y ),Y )-structure stricte. Une variété projective lisse birationnelle à Y admet tou-
jours une (Bir(Y ),Y )-structure, mais non nécessairement une (Bir(Y ),Y )-structure stricte. Par
exemple si Y est une surface K3 alors un éclatement de Y ne possède pas de (Bir(Y ),Y )-
structures strictes (cf. [Zhab] et Appendice B Section 2.2).

Comme pour les structures géométriques classiques, nous disposons des applications dévelop-
pantes et des représentations d’holonomie pour les structures birationnelles:

Proposition 0.4.1 Soit Y une variété projective complexe lisse. Soit V une (Bir(Y ),Y )-variété.

Notons par Ṽ le revêtement universel de V et π l’application quotient. Fixons un point de base

v ∈ V et un point w ∈ Ṽ tels que π(w) = v. Il existe un modèle birationnel lisse Z de Y , a

homomorphisme Hol : π1(V,v)→ Bir(Z) et une application méromorphe π1(V,v)-equivariante

Dev : Ṽ 99K Z tels que

∀ f ∈ π1(V,v),Dev◦ f = Hol( f )◦Dev .

Si (Z′,Hol′,Dev′) un autre tel triple, alors il existe une application birationnelle σ de Z vers Z′

telle que Hol′ = σ Holσ−1 et Dev′ = σ ◦Dev. Nous pouvons choisir (Z,Hol,Dev) de sorte que

Dev soit holomorphe à w.

Remark 0.4.2 Une application développante est localement birationnelle, c.-à-d. elle s’écrit
sous une expression birationnelle dans certaines cartes locales holomorphes.

Comme les variétés rationnelles ont les groupes de transformations les plus compliqués, il
est naturel de poser:

Question 0.4.3 1. Est-ce qu’une (Bir(Pn),Pn)-structure induit toujours une (Bir(Pn),Pn)-

structure stricte?
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2. Est-ce que toute variéte rationnelle lisse X de dimension n admet une (Bir(Pn),Pn)-

structure stricte?

Proposition 0.4.4 Questions 0.4.3.1 et 0.4.3.2 sont équivalentes.

Une variété rationnelle lisse X de dimension n est dite uniformément rationnelle si tout x∈X

admet un voisinage Zariski ouvert qui est isomorphe à un ouvert de Zariski dans l’espace affine
An. Étant rationnelle, X possède un tel point; il s’agit de savoir si un tel voisinage existe pour
tout point, d’où la terminologie “uniformément rationnelle”. Gromov a demandé:

Question 0.4.5 (Gromov [Gro89] page 885, voir aussi [BB14]) Est-ce que toute variété ra-

tionnelle complexe lisse est uniformément rationnelle?

Il se trouve que la question de Gromov est équivalente à Question 0.4.3 dont la formulation
ne semble pas être complètement algébrique à première vue:

Proposition 0.4.6 Une variété projective rationnelle lisse sur C de dimension n est uniformé-

ment rationnelle si et seulement si elle admet une (Bir(Pn),Pn)-structure stricte.

Toute variété rationnelle lisse complexe de dimension une ou deux est uniformément rationnelle.
Autrement dit pour les structures birationnelles modelées sur P2, il n’est pas nécessaire de dis-
tinguer les structures birationnelles strictes et les non-strictes. La question de Gromov est encore
ouverte en dimension ≥ 3 (cf. [BB14]).

0.5 Stratégie et plan

0.5.1 Stratégie principale

Soit (Y,U,Γ,X) un groupe kleinien birationnel en dimension deux. Pour simplicité et pour
expliquer la stratégie dans le cas le plus important, nous supposons que Y est une surface ra-
tionnelle, que X est kählérienne et que U est simplement connexe. Le groupe fondamental π1(X)

peut alors être identifié à Γ. Nous donnons ici une esquisse des étapes de la preuve de Théorème
0.3.2. Les quatres sujets principaux dans la preuve sont:

1. dynamique des transformations birationnelles ou des groupes de transformations bira-
tionnelles;

2. groupes fondamentaux des variétés kählériennes compactes c.-à-d. les groupes de Kähler;
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3. feuilletages holomorphes sur des surfaces projectives complexes;

4. propriétés analytiques complexes des espaces de Teichmüller.

Nous expliquons brièvement comment ces sujets intéragissent parmi eux. Manin [Man86]
a introduit une action fidèle de Bir(Y ) par isométries sur un espace hyperbolique HY de di-
mension infinie. Ainsi nous obtenons une action de Γ = π1(X) sur HY . Très fortes contraintes
sur les actions isométriques des groupes de Kähler sur les espaces hyperboliques de dimension
finie ont été trouvées par Carleson-Toledo [CT89] et elles ont été généralisées par Delzant-Py
[DP12] aux espaces hyperboliques de dimension infinie; leurs travaux sont basés sur la théorie
très développée des applications harmoniques sur les variétés kählériennes, c.-à-d. la théorie
de Hodge non abélienne. Nous comibnons les résultats de Delzant-Py avec la propriété kleini-
enne de Γ pour montrer que l’action de Γ sur HY admet des points fixes dans HY ou dans son
bord. Cantat a montré dans [Can11] que les actions sur Y des groupes de transformations bi-
rationnelles, de type fini et avec des points fixes dans HY ∪ ∂HY , ont des caractéristiques très
particulières. En ce qui concerne les groupes kleiniens birationnels, nous déduisons des travaux
de Cantat que soit Γ est conjugué à un groupe d’automorphismes, soit à un groupe préservant
une fibration rationnelle.

Si Γ est conjugué à un groupe d’automorphismes, alors nous pouvons réduire le problème
aux groupes kleiniens complexes projectifs. Comme nous avons déjà dit, les groupes kleiniens
complexes projectifs en dimension deux sont complètement classifiés par Kobayashi-Ochiai,
Mok-Yeung, Klingler et Cano-Seade.

Considérons le cas où Γ préserve une fibration rationnelle. Nous observons que la fibration
rationnelle induit un feuilletage holomorphe régulier sur X . Brunella a obtenu une classifica-
tion quaisment complète des feuilletages holomorphes réguliers sur des surfaces complexes
compactes dans [Bru97]; il reste un cas ouvert concernant les feuilletages réguliers minimaux
transversalement hyperboliques. En mettant la classification de Brunella sur place avec les pro-
priétés des groupes de transformations birationnelles préservant une fibration rationnelle, nous
examinons quel feuilletage sur X pourrait être réalisé par un groupe kleinien birationnel et com-
ment il serait réalisé. Un résultat technique que nous allons utiliser à plusieurs reprises dans
cette partie de la preuve est une description détaillée des centralisateurs des transformations bi-
rationnelles préservant une fibration rationnelle. Cette description a été précédemment obtenue
par l’auteur [Zhaa] et est donnée dans Appendice A.

Pour les feuilletages minimaux transversalement hyperboliques, notre classification n’est
pas complète. Dans ce cas nous construisons une lamination par disques holomorphes dans
le bord de U dans Y . En utilisant le λ -lemme de Slodkowski et les propriétés universelles des
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espaces de Teichmüller, nous relions la dynamique de Γ à la dynamique des groupes modulaires
de Teichmüller sur les espaces de Teichmüller et les espaces fibrés de Bers.

0.5.2 Plan

Chapitre 1 présente les préliminaires nécessaires sur les groupes de transformations bira-
tionnelles des surfaces projectives. Il s’agit de l’action de Bir(P2) sur un espaces hyperbolique
de dimension infinie, la classification des éléments de Bir(P2) selon leurs croissances de degrés,
la classification des sous-groupes de type fini de Bir(P2) et la classification des sous-groupes
abéliens libres de Bir(P2).

Dans Chapitre 2 nous prouvons qu’il n a pas de groupes kleiniens birationnels sur les variétés
projectives de dimension de Kodaira ≥ 0. C’est très lié à un théorème de Nakamura-Ueno que
nous présenterons une preuve.

Dans Chapitre 3 nous présentons la classification déjà connue des groupes kleiniens com-
plexes projectives. Nous en donnons une preuve dans le cas où X est kählérienne, sauf la rigidité
par déformation des quotients de la boule.

Chapitre 4 concerne les représentations des groupes de Kähler. D’abord nous expliquons
comment les techniques d’applications harmoniques permettent de donner de contraintes sur
les actions de groupes de Kähler sur les espaces hyperboliques. Puis nous déduisons Théorème
de Delzant-Py sur les représentations des groupes de Kähler dans Bir(P2) de leurs travaux sur
actions de groupes de Kähler sur les espaces hyperboliques. À la fin nous appliquons Théorème
de Delzant-Py aux groupes kleiniens birationnels, et prouvons qu’ils fixent des points dans
HY ∪∂HY .

Dans Chaptitre 5 nous étudions les groupes kleiniens birationnels préservant une fibra-
tion rationnelle. Soit (Y,Γ,U,X) un groupe kleinien birationnel en dimension deux tel que Γ

préserve une fibration rationnelle. Comme nous avons dit dans Section 0.5.1, dans ce cas X est
munie d’un feuilletage holomorphe régulier. Nous commençons ce chapitre par une présentation
de la classification de Brunella des feuilletages réguliers sur des surfaces complexes compactes.
Ensuite nous divisons l’étude en plusieurs sous-cas, selon le type de feuilletage sur X et selon
la dynamique de Γ. Toute situation possible sera examinée dans ce chapitre sauf celle des feuil-
letages minimaux transversalement hyperboliques. Puisqu’il y a beaucoup de sous-cas dans ce
chapitre, nous recommendons les lecteurs de lire Chaptire 6 en parallèle.

Chaptitre 6 est un chapitre récapulatif où les résultats des chapitres précédents sont re-
groupés. Il sert aussi comme un guide pour lire les chapitres précédents, surtout Chapitre 5.
Nous recommendons les lecteurs de lire Chaptire 6 en parallèle avec les chapitres précédents.
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Dans Chapter 7 nous étudions Cas 7) de Théorème 0.3.2. La première section du chapitre est
une introduction aux feuilletages minimaux transversalement hyperboliques sur des surfaces de
type général, dans l’état actuell du sujet. Puis nous employons essentiellement un approche de
théorie de Teichmüller. Nous construisons un mouvement holomorphe associé à notre groupe
kleinien birationnel et en utlisant ce mouvement holomorphe nous prouvons ensuite quelques
résultats qui renforcent Cas 7) de Théorème 0.3.2. Nous allons relier Γ aux groupes modulaires
de Teichmüller en dimension infinie. Les préliminaires sur les mouvements holomorphes et sur
les espaces de Teichmüller seront rappelés.
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CHAPTER 1

GROUPS OF BIRATIONAL

TRANSFORMATIONS

This chapter is a glossary of notions and theorems on groups of birational transformations
of surfaces that we will use in this thesis. We refer the reader to [Can18] and the references
therein for most materials presented in this chapter except for the last section. Background on
birational geometry of surfaces can be found in [Bea96] and [Bar+04].

1.1 Birational transformations

Let Y be a complex projective manifold. An automorphism of Y is a holomorphic diffeo-
morphism from Y to itself. The group of automorphisms of Y has a natural structure of complex
Lie group and is denoted by Aut(Y ). The connected component of the identity is denoted by
Aut0(Y ). A birational transformation of Y is an isomorphism between two Zariski open and
dense subsets of Y which can not be extended to any larger Zariski open subset. Equivalently
a birational transformation of Y is a C-algebra automorphism of the function field of Y . The
group of birational transformations of Y is denoted by Bir(Y ). It contains Aut(Y ) as a subgroup.

The group of birational transformations of Pn is called the Cremona group. The Cremona
group is the C-algebra automorphism group of the field of rational functions C(X1, · · · ,Xn). The
elements of the Cremona group have a concrete description in homogeneous coordinates: they
are of the form

[x0; · · · ;xn] 99K [P0; · · · ;Pn]

where Pi,0≤ i≤ n are homogeneous polynomials in (x0, · · · ,xn) and they have an inverse map
in the same form.

In this text we almost only deal with algebraic surfaces. Unless stated otherwise, the Cre-
mona group always means Bir(P2). Here are two subgroups of Bir(P2) that we will encounter
several times in this text.
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Part , Chapter 1 – Groups of birational transformations

The toric subgroup In the projective plane P2, the complement of three coordinates axes

is isomorphic to C∗×C∗. A matrix

(
a b

c d

)
∈ GL2(Z) acts by monomial transformation on

C∗×C∗: (x,y) 7→ (xayb,xcyd). The group C∗×C∗ acts on itself by multiplication. We obtain
thus an embedding of C∗×C∗oGL2(Z) into the Cremona group Bir(P2). We call its image the

toric subgroup of the Cremona group. The toric subgroup depends on a choice of homogeneous
coordinates in P2. Different choices of coordinates yield conjugated subgroups of the Cremona
group and the conjugation is by an element of PGL3(C).

The Jonquières group. Fix an affine chart of P2 with coordinates (x,y). The Jonquières group

is the subgroup of the Cremona group of all transformations of the form

(x,y) 7→
(

ax+b
cx+d

,
A(x)y+B(x)
C(x)y+D(x)

)
,

(
a b

c d

)
∈ PGL2(C),

(
A B

C D

)
∈ PGL2(C(x)).

In other words, the Jonquières group is the maximal group of birational transformations of P1×
P1 permuting the fibres of the projection onto the first factor; it is isomorphic to the semidirect
product PGL2(C)nPGL2(C(x)). A different choice of the affine chart yields a conjugation by
an element of PGL3(C). More generally a conjugation by an element of the Cremona group
yields a maximal group preserving a pencil of rational curves; conversely any two such groups
are conjugated in Bir(P2). The Jonquières group is “infinite-dimensional” since it contains all
transformations of the form (x,y) 7→ (x,y+P(x)) where P(x) is a polynomial of arbitrary degree.
We denote by Jonq the Jonquières group and by Jonq0 the subgroup PGL2(C(x)).

1.2 An infinite dimensional hyperbolic space

Let Y be a smooth complex projective surface. Denote by H1,1(Y,Z) the intersection of
H1,1(Y,R) with the image of H2(Y,Z) in H2(Y,R); it is a free abelian group of rank ρ(Y ). The
intersection form is a symmetric quadratic form on H1,1(Y,Z) with signature (1,ρ(Y )−1). An
automorphism of Y induces a pull-back linear transformation on H1,1(Y,Z) which preserves the
intersection form.

If p :Y ′→Y is a birational morphism, then the induced pull-back linear map p∗ : H1,1(Y,Z)→
H1,1(Y ′,Z) is injective; H1,1(Y ′,Z) is the orthogonal sum of p∗(H1,1(Y,Z)) with the subspace
generated by exceptional curves of p. If p1 : Y1 → Y and p2 : Y2 → Y are two birational mor-
phisms then there are birational morphisms q1 : Y3 → Y1 and q2 : Y3 → Y2 such that p1 ◦ q1 =
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p2 ◦q2.
Thus we can define the direct limit of the groups H1,1(Y ′,Z) where p : Y ′ → Y runs over

all birational morphisms over Y . The limit will be denoted by PM(Y ) and is called the Picard-

Manin space. It is a free abelian group of infinite rank with a symmetric bilinear form of signa-
ture (1,∞). By construction H1,1(Y,Z) embeds into PM(Y ).

Consider two birational morphisms p1 : Y1→Y and p2 : Y2→Y . A point z1 ∈Y1 is said to be
equivalent to z2 ∈Y2 if p−1

1 ◦ p2 is a local isomorphism at z2 and sends z2 to z1. The bubble space

B(Y ) is the union of all points of surfaces over Y modulo the above equivalence relation. To any
point of z∈B(Y ) we associate an element ez of PM(Y ) as follows. If z is represented by z1 ∈Y1

then we consider the blow-up Y ′1 → Y1 at z1 and let ez be the divisor class of the exceptional
divisor; it is an element of H1,1(Y ′1,Z)⊂ PM(Y ). We have a direct sum decomposition

PM(Y ) = H1,1(Y,Z)⊕
⊕

z∈B(Y )

Zez.

Denote by Z (Y ) the completion of PM(Y )⊗R. An element of Z (Y ) can be written as an
infinite sum u+∑z∈B(Y ) azez where u∈H1,1(Y,Z) and ∑z∈B(Y ) a2

z <+∞. The intersection form
extends continuously to Z (Y ). Let κ ∈ H1,1(Y,Z) be an ample class. The set of vectors v of
Z (Y ) such that v · v = 1 and v ·κ > 0 is an infinite dimensional hyperbolic space. We denote it
by HY .

Let f ∈ Bir(Y ). There is a sequence of blow-ups Y ′ → Y such that f lifts to a morphism
f ′ : Y ′→Y . The pull-back action of f ′ induces an isometry ( f ′)∗ : Z (Y )→Z (Y ′). Identifying
Z (Y ) with Z (Y ′), we obtain an isometry f ∗ of Z (Y ). Denote by f∗ the isometry ( f−1)∗.

Theorem 1.2.1 (Manin [Man86]) The map f 7→ f∗ is an injective homomorphism from Bir(Y )
to the group of isometries of Z (Y ). Each f∗ preserves HY and this gives an injective homomor-

phism Bir(Y )→ Isom(HY ).

1.3 Degree growth

Let f ∈ Bir(Y ). Let κ ∈ H1,1(Y,R) be an ample class of self-intersection 1. The degree

of f with respect to κ is degκ( f ) = f∗κ · κ . The translation length of f∗ on HY is L( f∗) =

infx∈HY d(x, f∗(x)).

Proposition 1.3.1 The sequence (degκ( f n))
1
n converges to a real number λ ( f )≥ 1, called the

dynamical degree of f ; its logarithm log(λ ( f )) is the translation length L( f∗).
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Theorem 1.3.2 ([Giz80], [Can01a], [Can01b], [DF01]) Elements of Bir(Y ) are classified into

four types:

1. The sequence (degκ( f n))
1
n is bounded, f is birationally conjugate to an automorphism of

a smooth birational model of Y and a positive iterate of f lies in the connected component

of identity of the automorphism group of that surface. f∗ is an elliptic isometry of HY . We

call f an elliptic element.

2. The sequence (degκ( f n))
1
n grows linearly, f preserves a unique pencil of rational curves

and f is not conjugate to an automorphism of any birational model of Y . f∗ is a parabolic

isometry of HY . We call f a Jonquières twist.

3. The sequence (degκ( f n))
1
n grows quadratically, f is conjugate to an automorphism of

a smooth birational model preserving a unique genus one fibration. f∗ is a parabolic

isometry of HY . We call f a Halphen twist.

4. The sequence (degκ( f n))
1
n grows exponentially, i.e. λ ( f )> 1. f∗ is a loxodromic isometry

of HY . We call f a loxodromic element.

Loxodromic elements have very rich dynamics (cf. [Can01a], [DF01], [BD05], [Duj06])
and a general birational transformation is loxodromic in the following sense:

Theorem 1.3.3 (J-Y. Xie [Xie15]) Let d ≥ 2 be an integer. Denote by Bird(P2) the space of

birational transformations of degree d. Then for any λ < d, the subset { f ∈Bird(P2)|λ ( f )> λ}
is Zariski open and dense in Bird(P2).

1.4 Tits alternative

We say that a group G satisfies the Tits alternative if any subgroup of G contains either a
solvable subgroup of finite index, or a non-abelian free subgroup; we say that a group G satisfies
the finitely generated Tits alternative if any finitely generated subgroup of G contains either a
solvable subgroup of finite index, or a non-abelian free subgroup. Tits [Tit72] proved that any
linear algebraic group over a field of characteristic zero satisfies the Tits alternative and any
linear algebraic group over a field of positive characteristic satisfies the finitely generated Tits
alternative. Lamy [Lam01a] proved that the group Aut(C2) of polynomial automorphisms of the
affine plane C2 satisfies the Tits alternative. For Bir(P2), the Tits alternative has been proved
by Cantat [Can11] for finitely generated subgroups and in general by Urech [Ure]. Furthermore
for solvable subgroups, [Can11], [Dés15], [Ure] refined the Tits alternative according to geo-
metric properties of the birational action on P2. We summarize the classification of subgroups
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of Bir(P2) in the following theorem. We list the contribution to each case in the classification:
Case 1) is due to Weil [Wei55], Case 4) is due to Gizatullin [Giz80], Case 5) is due to Blanc-
Cantat [BC16], Case 6) is due to Déserti [Dés15] and Urech [Ure], the bulk of the classification
is done by Cantat [Can11] and is finished by Urech [Ure].

Theorem 1.4.1 (Strong Tits alternative for Bir(Y )) Let Y be a smooth complex projective sur-

face and let Γ be an infinite subgroup of Bir(Y ). Then up to taking a finite index subgroup Γ fits

in one of the following mutually exclusive situations:

1. There is a projective surface Y ′ and a birational map φ : Y →Y ′ such that Γ′ = φΓφ−1 is

contained in Aut0(Y ′).

2. There is a projective surface Y ′ and a birational map φ : Y → Y ′ such that Γ′ = φΓφ−1

preserves a rational fibration on Y ′. All elements of Γ are elliptic but their degrees are not

uniformly bounded and the group Γ is not conjugate to a group of automorphisms of any

projective surface.

3. There is a projective surface Y ′ and a birational map φ : Y → Y ′ such that Γ′ = φΓφ−1

preserves a rational fibration on Y ′. At least one element of Γ is a Jonquières twist, i.e.

has linear degree growth.

4. There is a projective surface Y ′ and a birational map φ : Y → Y ′ such that Γ′ = φΓφ−1

acts by automorphisms and preserves a genus one fibration. The group Γ is virtually a

free abelian group of rank ≤ 8.

5. Γ is virtually a cyclic group generated by a loxodromic element.

6. Γ is solvable but not virtually abelian. There is a birational map φ : Y → C∗×C∗ such

that Γ′= φΓφ−1 is virtually contained in the toric subgroup Aut(C∗×C∗) = (C∗×C∗)o
GL2(Z). The loxodromic elements of Γ form an infinite cyclic group.

7. Γ contains a non-abelian free group all of whose non-trivial elements are loxodromic.

8. Γ is a torsion group, is not finitely generated, and is not conjugate to a group of automor-

phisms of any projective surface.

In the first case Γ is called an elliptic subgroup of Bir(Y ); in the third or the fourth case, Γ

is called a parabolic subgroup; in the seventh case Γ is called non-elementary. The last case is
impossible for finitely generated subgroups. It is still an open question whether the second case
is possible for finitely generated subgroups. There are examples of finitely generated subgroups
in all other cases.

We will only need Theorem 1.4.1 for finitely generated subgroups. In other words Case 8)
is irrelevant in this text.
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1.5 Centralizers

In this section we collect a series of results that we will use several times in this text. They
can all be found, with proofs, in [Zhaa] or in Appendix A. Let Y be a smooth rational surface
and r : Y → P1 be a rational fibration. The subgroup of Bir(Y ) that preserves the fibration r will
be identified with the Jonquières group. For an element f ∈ Jonq (resp. a subgroup Γ ⊂ Jonq)
we denote by fB (resp. ΓB) the element (resp. subgroup) of Aut(P1) induced by the action on the
base of the fibration. The centralizer in Bir(Y ) of an element f ∈ Jonq is denoted by Cent( f ).
If f is a Jonquières twist then Cent( f ) is necessarily a subgroup of Jonq and we denote by
Cent0( f ) the normal subgroup of Cent( f ) that preserves fiberwise the fibration r.

Theorem 1.5.1 ([BD15]) Let f ∈ Bir(P2) be an elliptic element of infinite order. There exists

an affine chart with affine coordinates (x,y) on which f acts by automorphism of the following

form:

1. (x,y) 7→ (αx,βy) where α,β ∈ C∗ are such that the kernel of the group homomorphism

Z2→ C∗,(i, j) 7→ α iβ j is generated by (k,0) for some k ∈ Z;

2. (x,y) 7→ (αx,y+1) where α ∈ C∗.

The centralizer Cent( f ) of f in Bir(Y ) is described as follows:

1. In the first case

Cent( f ) = {(x,y) 99K (η(x),yR(xk))|R ∈ C(x),η ∈ PGL2(C),η(αx) = αη(x)}.

If α is not a root of unity, i.e. if k = 0, then R must be constant.

2. In the second case

Cent( f )= {(x,y) 99K (η(x),y+R(x))|η ∈PGL2(C),η(αx)=αη(x),R∈C(x),R(αx)=R(x)}.

If α is not a root of unity then R must be constant and η(x) = βx for some β ∈ C∗.

Theorem 1.5.2 ([Zhaa], see Appendix A) Let f ∈ Jonq be a Jonquières twist such that fB has

infinite order. Then the exact sequence

{1}→ Cent0( f )→ Cent( f )→ CentB( f )→{1}

satisfies the following two assertions.
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— If Cent0( f ) is not trivial then it is {(x,y) 7→ (x, ty), t ∈ C∗}, {(x,y) 7→ (x,y+ t), t ∈ C},
or a group with two elements generated by (x,y) 7→ (x,−y) or a Jonquières involution;

— CentB( f ) ⊂ PGL2(C) is isomorphic to the product of a finite cyclic group with Z. The

infinite cyclic subgroup generated by fB has finite index in CentB( f ).

We will also use the above two theorems in the following form:

Theorem 1.5.3 ([Zhaa], see Appendix A) Let Γ ⊂ Jonq. Suppose that Γ is isomorphic to Zn

and that ΓB is infinite. Then there is a subgroup Γ′ of finite index of Γ with generators γ1, · · · ,γn

such that one of the following assertions holds up to conjugation in Jonq:

1. For any i, γi has the form (x,y) 7→ (aix,biy) with ai,bi ∈ C∗.

2. For any i, γi has the form (x,y) 7→ (x+ai,biy) with ai ∈ C and bi ∈ C∗.

3. For any i, γi has the form (x,y) 7→ (aix,y+bi) with ai ∈ C∗ and bi ∈ C.

4. For any i, γi has the form (x,y) 7→ (x+ai,y+bi) with ai,bi ∈ C.

5. γ1 is a Jonquières twist of the form (x,y) 99K (η(x),yR(x)) where η ∈ PGL2(C) and

R ∈ C(x)∗. For any i > 1, γi has the form (x,y) 7→ (x,biy) with bi ∈ C∗.

6. γ1 is a Jonquières twist of the form (x,y) 99K (η(x),y+R(x)) where η ∈ PGL2(C) and

R ∈ C(x). For any i > 1, γi has the form (x,y) 7→ (x,y+bi) with bi ∈ C.

In general we have:

Theorem 1.5.4 ([Giz80],[Can11],[CD12b],[BD15],[BC16],[Zhaa]) Let Γ be a subgroup of

Bir(P2) which is isomorphic to Z2. Then Γ has a pair of generators ( f ,g) such that one of

the following (mutually exclusive) situations happens up to conjugation in Bir(P2):

1. f ,g are elliptic elements and Γ⊂ Aut(X) for some projective surface X;

2. f ,g are Halphen twists which preserve the same genus one fibration on a rational surface

X, and Γ⊂ Aut(X);

3. one or both of the f ,g are Jonquières twists, and there exist m,n ∈ N∗ such that the finite

index subgroup of Γ generated by f m and gn is in an 1-dimensional algebraic subgroup

over C(x) of Jonq0 = PGL2(C(x));

4. f is a Jonquières twist with an action of infinite order on the base, and g is elliptic. In

some affine chart, we can write f ,g in one of the following forms:
— g is (x,y) 7→ (αx,βy) and f is (x,y) 99K (η(x),yR(xk)) where α,β ∈C∗,αk = 1,R ∈

C(x),η ∈ PGL2(C),η(αx) = αη(x) and η is of infinite order;

— g is (x,y) 7→ (αx,y+1) and f is (x,y) 99K (η(x),y+R(x)) where α ∈C∗,R∈C(x),R(αx)=

R(x),η ∈ PGL2(C),η(αx) = αη(x) and η is of infinite order.
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CHAPTER 2

NON-NEGATIVE KODAIRA DIMENSION

2.1 Invariant measure

Kodaira dimension. Let Y be a smooth projective variety of dimension n. The canonical
bundle of Y is the line bundle KY of holomorphic n-forms, i.e. KY =

∧n
ΩX is the n-th exterior

power of the holomorphic cotangent bundle. If for any m ∈ N∗ the line bundle Km
Y has no non-

trivial sections, then the Kodaira dimension of Y is κ(Y ) =−∞. Otherwise for some m the linear
system |Km

Y | induces a rational map from Y to a projective space of dimension dimH0(Y,Km
Y )−

1; denote the dimension of the image by Dm. Then the Kodaira dimension of Y is κ(Y ) =

maxm∈N∗{Dm}.

Invariant open subsets. The objective of this section is to prove the following theorem:

Theorem 2.1.1 Let Y be a smooth projective variety of non-negative Kodaira dimension. Let

f ∈ Bir(Y ). Then any Fatou component of f is non-wandering and recurrent. For any f -

invariant open subset V ⊂ Y , the action of f on V is recurrent.

Here f -invariant means that f and f−1 are regular on V and f (V ) = V ; recurrent means that
for any open subset W ⊂V , for almost all x ∈W (with respect to Lebesgue measure), there are
infinitely many n ∈ N such that f n(x) ∈W .

If we have a birational Kleinian group (Y,Γ,U,X), then for any γ ∈ Γ the open subset U

is γ-invariant but not recurrent. Therefore the following theorem is a consequence of Theorem
2.1.1.

Theorem 2.1.2 There is no birational kleinian group (Y,Γ,U,X) for which Y is a projective

variety with non-negative Kodaira dimension.

Poincaré recurrence theorem says that a measure preserving dynamical system on a space
of finite measure is always recurrent. Thus Thereom 2.1.1 is a consequence of the following
statement (the particular case Γ = Z is sufficient):
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Lemma 2.1.3 Let Y be a smooth projective variety of non-negative Kodaira dimension. Let

Γ be a subgroup of Bir(Y ). Then there is a Γ-invariant probability measure on Y absolutely

continuous with respect to the Lebesgue measure.

Remark that a measure which is absolutely continuous with respect to the Lebesgue measure
associated with some Riemannian metric does not charge algebraic sets of codimension ≥ 1,
so the pull-forward of such a measure by a birational transformation is well-defined and we
can talk about Γ-invariant measure. More precisely for ν such a measure, γ ∈ Γ a birational
transformation and E ⊂ Y a subset, γ∗ν(E) = ν(γ−1(E\Ind(γ−1))).

We prove Lemma 2.1.3 in the sequel of this section. Let us explain firstly the construction
of the measure. When Y is an abelian variety or a Calabi-Yau variety, the canonical bundle
is trivial and we just use the measure associated with the natural non-vanishing volume form
defined up to a multiplicative scalar. In the general case we take a non-zero pluricanonical
section α ∈ H0(Y,mKY ) which in local coordinates writes as α(z1, . . . ,zn)(dz1 ∧ ·· · ∧ dzn)

m

where n is the dimension of Y . Then the differential 2n-form

(α ∧α)
1
m = in

2
|α(z)|

2
m dz1∧·· ·∧dzn∧dz1∧·· ·∧dzn (2.1)

is a singular volume form which is > 0 on the complement of the divisor {α = 0}. The finite
measure defined by this singular volume form is of full support and is absolutely continuous
with respect to the Lebesgue measure associated with any Riemannian metric on Y . A pri-
ori this measure need not to be Γ-invariant. Hence the bulk of the proof is the existence of a
Bir(Y )-invariant pluricanonical form. This follows immediately from Nakamura-Ueno’s theo-
rem which asserts that the linear representation of Bir(Y ) on the space of pluricanonical forms
has finite image. We give an elementary argument in this section which is already sufficient for
our purpose and we include in the next section a proof of Nakamura-Ueno’s theorem taken from
[Uen75] Chapter VI.

For a pluricanonical form α ∈ H0(Y,mKY ) and a birational transformation f ∈ Bir(Y ), we
can pull back α by f outside the indeterminacy locus of f and then extend it in a unique way
by Hartogs’ Principle. In this way we obtain a linear representation

ρ : Bir(Y )→ GL
(
H0(Y,mKY )

)
.

The pull-back of an arbitrary measure by a birational transformation is not well defined. How-
ever we can pull back the measure associated with the singular volume form (2.1) because it
does not charge algebraic subsets of codimension≥ 1. The pull-back measure is the measure as-
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sociated with the pull-back pluricanonical form. Lemma 2.1.3 is a consequence of the following
statement:

Lemma 2.1.4 Let Y be a smooth projective variety of non-negative Kodaira dimension. Let Γ

be a subgroup of Bir(Y ). For any m ∈ N∗ such that the linear system |Km
Y | is not empty, there is

α ∈ H0(Y,Km
Y )\{0} such that for any γ ∈ Γ we have γ∗α = α .

Proof There is a norm on the vector space H0(Y,Km
Y ):

‖α‖2 =
∫

Y
(α ∧α)

1
m .

For f ∈ Bir(Y ), a change of variables gives

‖α‖2 =
∫

Y
(α ∧α)

1
m =

∫
Y

(
f ∗α ∧ f ∗α

) 1
m = ‖ f ∗α‖2 .

This means that the image of the representation ρ : Bir(Y )→ GL(H0(Y,Km
Y )) is contained in

the compact group preserving the norm ‖·‖. Denote by G the Zariski closure of ρ(Bir(Y )) in
GL(H0(Y,Km

Y )). The group G is compact and admits a left and right invariant Haar measure ν .
Let β be a non-zero element of H0(Y,Km

Y ). Then

α =
∫

G
g(β )dν(g) ∈ H0(Y,Km

Y )

satisfies the desired properties. �

2.2 Nakamura-Ueno theorem

The existence of a finite measure invariant under the group of birational transformations is
a particular instance of the following stronger result:

Theorem 2.2.1 (Nakamura-Ueno) Let Y be a smooth projective variety of Kodaira dimension

≥ 0. For any m ∈N∗, the linear representation ρ : Bir(Y )→GL
(
H0(Y,mKY )

)
has finite image.

Remark 2.2.2 The theorem holds also for dominant rational self-maps by [NZ09].

Lemma 2.2.3 For any f ∈ Bir(Y ), the eigenvalues of ρ( f ) are algebraic integers.
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Proof Let us consider an eigenvector α ∈ H0(Y,mKY ) such that f ∗α = λα for f ∈ Bir(Y ) and
λ ∈ C.

Let us first look at the case m = 1. The cohomology group H0(Y,KY ) can be seen as a sub-
space of Hn(Y,C). The birational transformation f induces a pull-back action on Hn(Y,C) too:
if Z is the desingularization of the graph of f and if π1,π2 : Z→ Y are projections onto domain
and target, then f ∗ : Hn(Y,C)→Hn(Y,C) is the composition of π∗2 and the Gysin morphism π1∗

defined by Poincaré dual. In this way the pull-back action of f on Hn(Y,C) is the restriction of
that on Hn(Y,C). Since the action f ∗ on Hn(Y,C) preserves the non-torsion part of Hn(Y,Z), the
complex number λ , being an eigenvalue, must be an algebraic integer whose degree is bounded
by the n-th Betti number of Y .

When m > 1, λ is still an algebraic integer: we can reduce to the case of m = 1 by using
a covering trick as follows. Write α in local coordinates as a(z1, . . . ,zn)(dz1∧ ·· · ∧ dzn)

m and
consider the degree m cover W of Y defined in the total space T of the line bundle KY by

wm = a(z1, . . . ,zn)

where w denote the fiber coordinate. The variety W is possibly singular and non-connected.
Let µ denote a m-th root of λ and mµ denote the scaling automorphism of T defined by
(z1, . . . ,zn,w) 7→ (z1, . . . ,zn,µw). A birational transformation f ∈ Bir(Y ) induces a birational
transformation f ∗ of T . The composition mµ ◦ f ∗ is a birational transformation of T preserving
W . We desingularize W ⊂ T by blowing up T , obtaining a finite surjective morphism q : W̄ →Y .
We have a birational map h of W̄ induced by mµ ◦ f ∗. By lifting the n-form wdz1∧·· ·∧dzn from
T to W̄ , we obtain a holomorphic n-form β on W̄ such that

(β )m = q∗α and h∗β = µβ .

The case m = 1 implies that µ is an algebraic integer, thus λ too. Furthermore the degree of λ

is bounded by the n-th Betti number of W̄ . �

According to [Uen75], the following lemma is due to Deligne.

Lemma 2.2.4 The degrees of the eigenvalues (as algebraic integers) are uniformly bounded for

all birational transformations f ∈ Bir(Y ).

Proof By the previous proof, it suffices to show that the Betti numbers of W̄ are uniformly
bounded. We see from the fact that W̄ only depends on α but not f that the degree of the eigen-
value only depends on the eigenvector but not the endomorphism. We will use the notation
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Wα ,W̄α to emphasize that these varieties are constructed using the pluricanonical form α; re-
mark that if we use a multiple of α then the varieties stay isomorphic. The varieties Wα form a
family over P(H0(Y,mKY )) in the following way. Let (α0,α1, · · · ,αN) be a base of H0(Y,mKY )

and let [u0;u1; · · · ;uN ] be the corresponding homogeneous coordinates on P(H0(Y,mKY )). Then
the subvariety W of P(H0(Y,mKY ))×Z defined by

wm =
N

∑
j=0

u jα j

gives the construction of Wα in family. Resolving singularities of the fiber over the generic point
of P(H0(Y,mKY )), we obtain a family of W̄α over a Zariski open set of P(H0(Y,mKY )). Denote
by A1 this Zariski open set and by B1 the complement. Consider the family Wα over B1. By
resolving singularities of the fiber over the generic point of B1, we obtain a Zariski open set A2

of B1 over which we obtain a family W̄α . We continue this process with B2 = B1\A2. Finally we
get a stratification P(H0(Y,mKY )) = tA j and a stratified family of W̄α : over each A j the family
is a genuine fibration of algebraic varieties. Then Thom-Mather isotopy theorem (cf. [Mat12]
Proposition 11.1) gives the uniform boundedness of Betti numbers of the W̄α , thus also that of
degrees of the eigenvalues. �

Lemma 2.2.5 The eigenvalues are roots of unity.

Proof First from the equation∫
Y
(α ∧α)

1
m =

∫
Y

(
f ∗α ∧ f ∗α

) 1
m = |λ |

2
m

∫
Y
(α ∧α)

1
m

we obtain |λ | = 1. Then we embed Y in some projective space so that Y and f are given by
some polynomial formulas. For a field automorphism σ of C, changing the coefficients of these
polynomial formulas by using σ , we get a new variety with a birational transformation for
which the previous argument gives |σ(λ )|= 1. As λ is an algebraic integer, this implies it is a
root of unity. �

Lemma 2.2.6 For any f ∈ Bir(Y ), the linear automorphism ρ( f ) is semisimple, i.e. diagonal-

izable.

Proof Suppose that ρ( f ) is not semisimple. By looking at the Jordan normal form we find two
linearly independent pluricanonical forms α1,α2 ∈ H0(Y,mKY ) such that

f ∗α1 = λα1 +α2, f ∗α2 = λα2.
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Then∫
Y

(
( f l)∗(α1)∧ ( f l)∗(α1)

) 1
m
= in

2
l

2
m

∫
Y
|α1(z)

l
+

α2(z)
λ
|

2
m dz1∧·· ·∧dzn∧dz1∧·· ·∧dzn.

The right-hand side goes to infinity as l goes to infinity. However the left-hand side is always
equal to

∫
Y (α1∧α1)

1
m , contradiction. �

Proof (of Theorem 2.2.1) Finally we are about to conclude. The fact that f ∗ is semisimple
and has roots of unity as eigenvalues implies that it is of finite order. Furthermore this or-
der is uniformly bounded. So we have proved that the elements in the image of ρ : Bir(Y )→
GL
(
H0(Y,mKY )

)
are of uniformly bounded finite order. Burnside’s Theorem says that the im-

age is itself a finite group. �

2.3 Genus one fibrations.

For surfaces with Kodaira dimension 0, the invariant measure is easy to construct and the
birational transformation groups of general type surfaces are finite. So the most interesting
application of Theorem 2.1.2 in dimension two is for elliptic surfaces of kodaira dimension
1. However for elliptic surfaces we can also use an elementary topological argument. This
argument works also for genus one fibrations on rational surfaces and we will need this later.

Lemma 2.3.1 Let Λ be an infinite group of automorphisms of an elliptic curve E. Then the orbit

of a point v ∈ E is not discrete and its closure is a real subtorus (not necessarily connected).

Proof Topologically we identify E as the quotient of R2 by a lattice L. A finite index subgroup
Λ′ ⊂ Λ is an infinite group of translations. Take an arbitrary point v ∈ E. We can suppose that
v is the origin. Then the orbit Λ′ · v is a subgroup of E. Since it is infinite, it is not discrete. Its
closure is thus a real subtorus of positive dimension. �

Lemma 2.3.2 Let Y →C be a genus one fibration. Let U be an open set of Y which is preserved

by an infinite finitely generated subgroup Γ of Bir(Y ). Suppose that Γ preserves the genus one

fibration Y → C and that the induced action on C is finite. Then the action of Γ on U is not

discrete.

Proof There is an induced morphism φ : Γ→ Aut(C). We denote by Γ0 the kernel of this
morphism, its elements preserve fibrewise the genus one fibration. If the image of φ is finite,
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then Γ0 is infinite and finitely generated. We can always find a fibre F of the genus one fibration
such that 1) F is a smooth elliptc curve; 2) F intersects U ; 3) Γ0 acts faithfully on F . Then
lemma 2.3.1 shows that the action of Γ on F is nowhere discrete. In particular the action of Γ

on U is not discrete. �

Lemma 2.3.2 and Theorem 2.2.1 (recall that Theorem 2.2.1 is easy in dimension two) imply

Corollary 2.3.3 There is no birational Kleinian groups on an elliptic surface of Kodaira di-

mension 1.

Remark that if an automorphism of a rational surface preserves a genus one fibration, then
its induced action on the base has finite order (cf. [CF03] Proposition 3.6). Thus by Lemma
2.3.2 we have:

Corollary 2.3.4 Let (Y,Γ,U,X) be a birational kleinian group on a ratioal surface Y . Then Γ

does not contain an infinite parabolic subgroup which preserves a genus one fibration.
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CHAPTER 3

KLEINIAN SUBGROUPS OF PGL3(C)

3.1 Introduction

In this chapter we study groups with Kleinian property that act by automorphisms on the
projective plane P2. This case has been studied by several people and a complete answer has
been obtained:

Theorem 3.1.1 (Kobayashi-Ochiai [KO80], Mok-Yeung [MY93], Klingler [Kli98] [Kli01])
Let (P2,U,Γ,X) be an infinite Kleinian group such that Γ⊂ PGL3(C). Then up to taking finite

index subgroup and up to conjugation inside PGL3(C), we are in one of the following situations:

1. U = C×C,C×C∗ or C∗×C∗ and X is a complex torus; here C×C,C×C∗,C∗×C∗

are the standard Zariski open subsets of P2 and Γ is a lattice in U viewed as a Lie group.

2. U is the Euclidean ball Bn embedded in the standard way in P2 and X is a ball quotient.

3. U = C2\{0} where C2 is embedded in the standard way in P2 as a Zariski open set and

X is a Hopf surface.

4. U is the standard Zariski open set C2 ⊂ P2 and X is a primary Kodaira surface.

5. U =H×C embedded in the standard way in the Zariski open subset C2 and X is an Inoue

surface.

6. U is biholomorphic to H×C∗ and X is an affine-elliptic bundle; here H×C∗ is not

embedded in a standard way in C2, see Section 3.3.1 for terminology and description.

We refer to Section 3.3 for precise descriptions of all the cases. Remark that X is Kähler only
in the first two cases.

Whenever we have such a Kleinian group, the quotient surface is equipped with a com-
plex projective structure. Theorem 3.1.1 breaks down to two different problems. The first one
is to determine which surfaces admit complex projective structures and the second one is to
find all complex projective structures on those candidates. The first problem was initiated by
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Kobayashi-Ochiai [KO80] and previous work of Gunning played an important role (see The-
orem 3.2.5); it is completed by Klingler in [Kli98]. In [Kli98], the second problem is also
investigated and is almost completed, except the particularly difficult case of ball quotients. The
fact that the natural complex projective structure on a ball quotient is the only one is proved by
Mok-Yeung in [MY93]. Their proof is based on a deep theorem of Mok [Mok87]; in [Kli01]
Klingler gave a different algebraic proof. We should also mention the work of Cano-Seade
[CS14] where more precise information and an orbifold version of Theorem 3.1.1 are obtained.
In higher dimension, Jahnke-Radloff [JR15] classifies all projective manifolds admitting com-
plex projective structures. Admitting Mok-Yeung’s theorem on uniqueness for ball quotients,
we will give in this chapter a quick proof of Theorem 3.1.1 when X is assumed to be Kähler.
We follow mainly the arguments of [JR15].

Though not every complex projective structure arises from Kleinian subgroups of PGL3(C),
it is easier to study firstly the geometry of surfaces with complex projective structures than to
look directly at the dynamics of subgroups of PGL3(C). However we will see in other chapters
that it is not the case for general birational Kleinian groups: we will need a good understanding
on groups of birational transformations.

3.2 Complex affine and projective structures

Here we are interested in two types of geometric structures, complex projective structure
and complex affine structure. We will show that the existence of such a structure on X imposes
strong restrictions on Chern classes of X . We will omit the factor 2πi in all formulas of this
section.

Atiyah class and Chern classes. Let X be a compact complex manifold of dimension n. Let
ΩX be the cotangent bundle of X . Let E be a holomorphic vector bundle of rank r on X . Let
(Uα ,ψα : E|Uα

→Uα×Cr) be a system of local holomorphic trivializations. The local transition
matrices are denoted by ψαβ . The dψαβ s are matrices whose entries are local differential forms.
Thus the ψ

−1
β
◦ (ψ−1

αβ
dψαβ )◦ψβ}s are local sections of ΩX ⊗End(E). The Atiyah class of E is

the element of H1(X ,ΩX ⊗End(E)), denoted by a(E), given by the Čech cocyle {Uαβ ,ψ
−1
β
◦

(ψ−1
αβ

dψαβ )◦ψβ}. The Atiyah class is the obstruction for the holomorphic splitting of the first
jet sequence ([Ati57])

0→ΩX ⊗E→ J1(E)→ E→ 0.
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A holomorphic connection on E is a C-linear map of sheaves D : E→ΩX ⊗E such that

D( f · s) = ∂ ( f )⊗ s+ f ·D(s)

for any local holomorphic function f on X and any local holomorphic section s of E. It is easy
to check that E admits a holomorphic connection if and only if its Atiyah class a(E) is trivial
(see [Huy05] 4.2).

Let Sk be the GLr(C)-invariant homogeneous polynomial on End(Cr) of degree k such that
for any M ∈ End(Cr) we have

det(Id−M) = 1+S1(M)+S2(M)+ · · ·+Sr(M).

If we think of a(E) ∈ H1(X ,ΩX ⊗ End(E)) as a Dolbeault cohomology class with value in
End(E), then we can define by using cup-product Sk(a(E)) as an element of Hk(X ,Ωk

X) =

Hk,k(X ,C). Atiyah used Chern-Weil theory to obtain:

Theorem 3.2.1 (Atiyah [Ati57]) If X is a compact Kähler manifold. Then ck(E) = Sk(a(E))

where ck(E) is the k-th Chern class of E.

Chen-Ogiue inequality The following theorem, combined with Aubin and Yau’s solution of
Calabi conjecture, is very usefull for studying existence of complex affine or complex projective
stuctures. See our next section for the definition of ball quotient.

Theorem 3.2.2 (Chen-Ogiue [CO75]) Let (X ,κ) be a compact Kähler-Einstein manifold of

dimension n. Then ∫
X

(
nc2

1−2(n+1)c2
)
∧κ

n−2 ≤ 0.

The equality holds if and only if X is Pn, an étale quotient of a torus or a ball quotient.

Complex affine structures. There is a natural holomorphic connection given by the usual
differential operator ∂ on the holomorphic tangent and cotangent bundle of the affine space Cn.
It is invariant under the group of affine transformations. If X is equipped with a complex affine
structure, then ∂ induces a holomorphic connection on the tangent bundle of X . Therefore the
Atiyah class of its tangent bundle is trivial. And by Theorem 3.2.1 we have

Proposition 3.2.3 If X admits a complex affine structure then a(TX) = 0. If moreover X is

Kähler, then X is a complex torus.
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Proof By Theorem 3.2.1 all Chern classes of X are trivial. By Yau’s solution of Calabi conjec-
ture, X admits a Kähler-Einstein metric because the first Chern class is trivial. The only compact
Kähler-Einstein manifolds with trivial Chern classes are complex tori by Theorem 3.2.2. �

Complex projective structures. Now let X be a compact complex manifold of dimension
n ≥ 2 equipped with a complex projective structure and let (Uα ,(zα1, · · · ,zαn)) be a system of
local coordinates compatible with the complex projective structure. Using Einstein notation for
tensors, the Atiyah class of the tangent bundle

a(TX) ∈ H1(X ,ΩX ⊗End(TX)) = H1(X ,ΩX ⊗TX ⊗ΩX)

is represented by the Čech cocycle (Uαβ ,Λ
k
αβ jldzα j⊗ ∂

∂ zαk
⊗dzαl) where

Λ
k
αβ jl = ∑

b

∂ zαk

∂ zβb

∂ 2zβb

∂ zα j∂ zαl
.

By hypothesis the changes of coordinates are linear fractional, i.e. of the form

zβ j =
e0 +∑k ekzαk

f0 +∑k fkzαk
.

By a calculation (cf. [Gun78] pages 48-50) this implies (in fact equivalent to, but we only need
one implication):

Λ
k
αβ jl = δ

k
j σαβ l +δ

k
l σαβ j (3.1)

where δ is the Kronecker symbol and

σαβ j =
1

n+1

∂ logdet
(
(

∂ zβb
∂ zαa

)b,a

)
∂ zα j

.

The local holomorphic functions det(
∂ zβb
∂ zαa

)b,a are the transition functions of the canonical bundle
KX . Thus (Uαβ ,(n + 1)∑ j σαβ jdzα j) is the Čech cocycle representing the first Chern class
c1(KX) which is viewed as an element of H1(X ,ΩX) (cf. [Huy05] 4.2.20).

The identification ΩX ⊗TX ⊗ΩX = ΩX ⊗End(TX) = End(ΩX)⊗ΩX allows us to make two
different changes of coefficients from H1(X ,ΩX) to H1(X ,ΩX⊗End(E)). Hence Equation (3.1)
shows
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Proposition 3.2.4 If a compact complex manifold X has a complex projective structure, then

a(TX) =
1

n+1
(c1(KX)⊗ IdTX + IdΩX ⊗c1(KX)) ∈ H1(X ,ΩX ⊗End(E))

where the notation ⊗ at the right hand side means change of coefficients for cohomology.

Theorem 3.2.5 (Gunning [Gun78]) If X is a compact Kähler manifold of dimension ≥ 2 with

a complex projective structure, then its Chern classes satisfy cl =
1

(n+1)l

(
n+1

l

)
cl

1. In partic-

ular for surfaces we have c2
1 = 3c2.

Proof We keep in mind the following commutative diagram for comparison between Dolbeault
and Čech cohomology with value in a vector bundle V .

ΩX ⊗V C0({Uα},ΩX ⊗V ) C1({Uα},ΩX ⊗V )

A 1,0(V ) C0({Uα},A 1,0(V )) C1({Uα},A 1,0(V ))

A 1,1(V ) C0({Uα},A 1,1(V ))

∂̄

δ1

∂̄

As the sheaf of C∞-differential forms is fine (has a partition of unity), the Čech cocycle
(Uαβ ,∑ j σαβ jdzα j) representing 1

n+1c1(KX) is exact in the C∞-category. There exist C∞ 1-forms
Θα =∑ j θα jdzα j on Uα such that ∑ j σαβ j∂ zα j =Θα−Θβ . The (1,1)-forms ∂̄Θα glue together
to give a global (1,1)-form on X . This global (1,1)-form represents 1

n+1c1(KX) viewed as a
Dolbeault cohomology class, we will denote it by ∂̄Θ.

Consider the following local matrix valued (1,1)-form on Uα :

Ω jk = ∂̄Θδ
k
j + ∂̄ θα j∧dzαk.

Though it may not be a global form, it almost represents the Dolbeault cohomology class of
a(TX) (compare with Proposition 3.2.4) and we will use it to compute Sk(a(TX)). We will omit
the index α in the sequel. We have

det(Id−Ω) =
n

∑
l=0

(
1− ∂̄Θ

)n−l
(−1)lPl
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where Pl is the sum of all principal minors of size l of Ω. The minor corresponding to indexes
j1, · · · , jl is

∑
ε

∂̄ θ j1 ∧dzε( j1)∧·· ·∧ ∂̄ θ jl ∧dzε( jl)

=l!∂̄ θ j1 ∧dz j1 ∧·· ·∧ ∂̄ θ jl ∧dz jl .

Thus
Pl = l! ∑

( j1,··· , jl)
∂̄ θ j1 ∧dz j1 ∧·· ·∧ ∂̄ θ jl ∧dz jl = (∂̄Θ)l

and

det(Id−Ω) =
n

∑
l=0

(
1− ∂̄Θ

)n−l
(−∂̄Θ)l

=
n

∑
l=0

(
n+1

l

)
(−∂̄Θ)l.

Remark that this (1,1)-form is globally defined on X . By Theorem 3.2.1, the Chern class

cl(X) is represented by

(
n+1

l

)
(−∂̄Θ)l if X is Kähler. Hence the formula in the theorem. �

Remark 3.2.6 If we do not use Atiyah class but identify Ω with the (1,1)-part of the curvature
of some connection on TX , then the above computation gives also information when X is not
Kähler (see [KO80]). For example for non-Kähler surfaces the conclusion c2

1 = 3c2 still holds.

3.3 Examples

3.3.1 Dimension two.

Here we list all examples in dimension two, some of them exist in any dimension.

Projective spaces. A projective space has a natural complex projective structure for which
the holonomy is trivial and the developping map is the identity.

Complex tori. A complex torus is a quotient of the commutative Lie group Cn by a lattice,
thus is equipped naturally with a complex affine structure from its universal covering. There
are many complex projective structures on a complex tori, all of them are affine (cf. [Ben94],
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[Kli98], the main arguments will be given in Section 3.4.2). Vitter [Vit72] describe all complex
affine structures on a complex tori X : they are in bijection with holomorphic connections on the
tangent bundle of X with zero torsion and zero curvature. If on an open set U with coordinates
z1, . . . ,zn the connection is given by d+ω where ω = ∑ j A jdz j is a End(TX)-valued differential
form, then an affine coordinate u on U can be obtained by solving

∂u
∂ z j

= a jdz j, da j = a jω. (3.2)

Denote by dz1, · · · ,dzn the standard base of holomorphic 1-forms on X induced by the uni-
versal cover. A connection with zero torsion and curvature is given by ω = ∑k Akdzk where
the Ak are complex (n× n)-matrices such that for any j,k we have A jAk = AkA j and the k-th
colomn of A j equals to the j-th column of Ak. We will be only interested in the cases where the
holonomy representation gives a Kleinian group. We will see in the next section that for a two
dimensional torus the only possibilities correspond to the infinite coverings C×C, C×C∗ or
C∗×C∗ embedded in the standard way in P2.

When n = 1, Equation (3.2) is easy to solve. The complex affine structures on an elliptic
curve are parametrized by C. For z the coordinate on the universal cover C, a developping map
of the affine structure corresponding to adz with a ∈ C∗ is given by u = eaz

a2 ; it is equivalent to
the developping map eaz−1

a . For a = 0, the corresponding affine structure is just the natural one
induced by C. These complex affine structures form a holomorphic family in the sense that

C2→ C,(a,z) 7→

eaz−1
a a 6= 0

z a = 0

is a holomorphic map.

Hopf manifolds. Let γ ∈ GLn(C) be a contracting linear automorphism of Cn such that
γn(x) → 0 for any x ∈ Cn\{0}. Then the quotient of Cn\{0} by the action of γ is a com-
pact manifold with a complex affine structure. Such manifolds are among the so called Hopf
manifolds and are not Kähler.
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Primary Kodaira surfaces. Consider the subgroup G of Aff2(C) generated by the following
four elements

z 7→ z+

(
0
1

)
, z 7→

(
1 0
c 1

)
z+

(
1
0

)

z 7→ z+

(
0
a

)
, z 7→

(
1 0
d 1

)
z+

(
b

0

)
.

The quotient C2/G is a primary Kodaira surface, i.e. a non Kähler principal bundle of elliptic
curves over an elliptic curve; its Kodaira dimension is zero (cf. [Bar+04]).

Inoue surfaces. Let M ∈ SL3(Z) be a matrix with eigenvalues α,β , β̄ such that α > 1 and β 6=
β̄ . Note that α is irrational and |β |< 1. We choose a real eigenvector (a1,a2,a3) corresponding
to α and a complex eigenvector (b1,b2,b3) corresponding to β . Let GM be the subgroup of
Aff(C2) generated by

g0 :(x,y) 7→ (αx,βy)

gi :(x,y) 7→ (x+ai,y+bi) for i = 1,2,3.

Denote by H the upper half plane, viewed as an open subset of C. The action of GM preserves
H×C; it is free and properly discontinuous. The quotient H×C/GM is a compact non-Kähler
surface without curves called an Inoue surface of type S0. It has a complex affine structure by
construction.

Consider the following solvable Lie group which is a subgroup of Aff2(C):

Sol0 =


|λ |

−2 0 a

0 λ b

0 0 1

 ,λ ∈ C∗,a ∈ R,b ∈ C

 .

The group Sol0 is a semi-direct product (C×R)oC∗. It acts transitively on H×C; the stabilizer
of a point is isomorphic to S1. The group GM defining the Inoue surface SM is a lattice in Sol0;
conversely any torsion free lattice of Sol0 gives an Inoue surface of type S0.
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Let n ∈ N∗. Consider the group of upper-triangular matrices

Λn =


1 x z

n

0 1 y

0 0 1

 , x,y,z ∈ Z

 .

The center of Λn is the infinite cyclic group Cn generated by

1 0 1
n

0 1 0
0 0 1

. The quotient Λn/Cn

is isomorphic to Z2. Let N ∈ SL2(Z) be a matrix with eigenvalues α, 1
α

such that α > 1. Let
ϕ be an automorphism of the group of real upper-triangular matrices which preserves Λn, acts
trivially on Cn and acts on Λn/Cn ∼= Z2 as N. We form a semi-direct product ΓN = ΛnoZ where
the Z factor acts on Λn as ϕ . The group ΓN acts on the group of real upper-triangular matrices
which is identified with R3 = R×C. Define an action of ΓN on H×C = R>0×R×C with Λn

acting trivially on R>0 and 1 ∈ Z acting on H as x 7→ αx. This action is holomorphic and the
quotient SN =H×C/ΓN is a compact non-Kähler surface called an Inoue surface of type S+.

The group ΓN can be identified with a lattice in one of the two following solvable Lie groups
which are subgroups of Aff2(C) (cf. [Kli98]):

Sol1 =


1 a b

0 d c

0 0 1

 ,a,b,c,d ∈ R,d > 0

 , Sol1
′
=


1 a b+ i log(d)

0 d c

0 0 1

 ,a,b,c,d ∈ R,d > 0

 .

Conversely any torsion free lattice of these two groups gives an Inoue surface of type S+. Note
that a finite unramified cover of an Inoue surface of type S+ is an Inoue surface of type S+.

Concretely ΓN has four generators g0,g1,g2,g3 which act on H×C as:

g0 : (x,y) 7→ (αx,y+ t)

gi : (x,y) 7→ (x+ai,y+bix+ ci) i = 1,2

g3 : (x,y) 7→ (x,y+
b1a2−b2a1

n
)

where t is a complex number, (a1,a2) (resp. (b1,b2)) is a real eigenvector of N corresponding
to the eigenvalue α (resp. α−1) and c1,c2 are some complex numbers. Thus Inoue surface of
type S+ are also equipped with complex affine structures by construction.

An Inoue surface of type S− has a double cover which is an Inoue surface of type S+. It is

49



Part , Chapter 3 – Kleinian subgroups of PGL3(C)

the quotient of H×C by a group generated by affine transformations g0,g1,g2,g3 of the form

g0 : (x,y) 7→ (αx,−y)

gi : (x,y) 7→ (x+ai,y+bix+ ci) i = 1,2

g3 : (x,y) 7→ (x,y+
b1a2−b2a1

n
)

and has a complex affine structure.

Affine-elliptic bundles. Let S =H/π1(S) be a compact hyperbolic Riemann surface. Let ρ̄ :
π1(S)→ PGL2(C) and φ : H→ P1 be the holonomy and developping map of some complex
projective structure on S. By [Gun67], ρ̄ always lifts to a representation ρ : π1(S)→ GL2(C).
Consider C2\{0} as a C∗-bundle over P1 and denote it by W . Consider the C∗-bundle φ∗W

over H obtained by pulling back W via φ . The natural complex affine structure on W as an
open set of C2 induces a complex affine structure on φ∗W . The group π1(S) acts on φ∗W via its
natural action on H and the representation ρ . This action preserves the affine structure on φ∗W .
Multiplication in the fibers also preserves this affine structure. Hence the quotient of φ∗W by
the group generated by π1(S) and a multiplication in the fibers is a compact elliptic surface with
a complex affine structure. We call them affine-elliptic bundles as in [Kli98].

Ball quotients. Let Bn be the unit ball {[z0; · · · ;zn]; |z0|2−∑
n
j=1 |z j|2 > 0} ⊂ Pn. The group

of biholomorphisms of Bn is PU(1,n). If Γ is a torsion-free cocompact lattice of PU(1,n), then
Bn/Γ is a projective manifold of general type equipped with a complex projective structure.

Classification.

Theorem 3.3.1 (Kobayashi-Ochiai [KO80], Klingler [Kli98]) If a compact complex surface

X admits a complex projective structure, then X is biholomorphic to the projective plane, a

complex torus, a Hopf surface, a primary Kodaira surface, an Inoue surface, an affine-elliptic

bundle or a ball quotient.

Theorem 3.3.2 (Klingler [Kli98], Mok-Yeung [MY93]) The examples described in this sec-

tion exhausts all possible complex projective structures on compact complex surfaces.

Remark 3.3.3 We can see from the examples described above that the uniqueness of complex
projective structure on a given surface does not always hold: some of the examples depend
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on parameters. See [Kli98] for complete description of deformations of complex projective
structures on surfaces.

3.3.2 Projective examples in higher dimension

Kuga fiber varieties. Kuga fiber varieties are total spaces of families of abelian varieties over
Shimura varieties. Only those which fiber over a Shimura curve have projective structures. The
details of the construction are a little bit lengthy but classical. We give here a rough presentation
to show how the projective structure arises and refer to [JR15] for details. Let Γ be a torsion
free quaternionic cocompact lattice of SL2(R) such that H/Γ is a compact hyperbolic Riemann
surface. To such a lattice we can associate a representation ρ : Γ→ GLg(R) for some g ∈ N
and a lattice Λ in the additive group Mg,2(R) of (g×2)-matrices that satisfy various arithmetic
properties. Consider the group ΓΛ formed by matrices in GLg+2(R) of the following block
form:

γλ =

(
ρ(γ) ρ(γ)λ

0g×2 γ

)
∈ GLg+2(R), γ ∈ Γ,λ ∈ Λ.

The group ΓΛ is a semi-direct product ΛoΓ which acts on Cg×H⊂ Pg+1 as follows:

γλ (z,τ) =


ρ(γ)

(
z+λ

(
τ

1

))
cτ +d

,
aτ +b
cτ +d

 ,γ =

(
a b

c d

)
.

The arithmetic properties of ρ and Λ guarantees that the quotient (Cg×H)/ΓΛ is a polarized
family of abelian varieties over H/Γ. In particular it is a projective manifold with a complex
projective structure. Finally remark that these Kuga fiber varieties exist for any g ≥ 2 but not
for g = 1.

We mention the following classification in higher dimension:

Theorem 3.3.4 (Jahnke-Radloff [JR15]) Projective spaces, complex tori, ball-quotients and

Kuga fiber varieties over a quaternionic Shimura curve are the only projective manifolds that

admit complex projective structures.
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3.4 Proof for X Kähler

3.4.1 Existence of complex projective structures

In this section a rational curve on a compact complex manifold is a non-constant holomor-
phic map P1→ X .

Proposition 3.4.1 If a compact Kähler manifold X of dimension n has a rational curve and a

complex projective structure, then X = Pn.

Proof Let ι : P1→ X be a rational curve and h : X̃ → Pn be the developping map. Then ι∗TX =

(h ◦ ι)∗TPn is an ample vector bundle on P1. This implies that X is rationally connected (cf.
[Deb01] 4.3). A rationally connected manifold is simply connected (cf. [Deb01] 4.3). Thus the
holonomy is trivial and the developping map X → Pn must be an isomorphism. �

Theorem 3.4.2 If X is of general type and admits a complex projective structure, then X is a

ball quotient.

Proof For d large enough, the pluricanonical linear system |dKX | is base point free (cf. [KM98])
and the Iitaka fibration is a birational morphism. The exceptional fibers of the Iitaka fibration
contain rational curves by [Deb01] Proposition 1.43. Proposition 3.4.1 then implies that the
Iitaka fibration is an isomorphism. In other words the canonical bundle KX is ample. Thus X

admits a Kähler-Einstein metric. Once X is Kähler-Einstein, the equality c2
1 =

2(n+1)
n c2 given by

Theorem 3.2.5 implies by Theorem 3.2.2 that X is a ball quotient (in dimension two see Yau’s
theorem [Yau77]). �

Theorem 3.4.3 (Kobayashi-Ochiai [KO80]) The only compact Kähler surfaces with complex

projective structures are P2, complex tori and ball quotients.

Proof Let X 6= P2 be a compact Kähler surface with a complex projective structure. By Propo-
sition 3.4.1 the Kodaira dimension κ(X) is 0,1 or 2 because a surface with Kodaira dimension
−∞ has many rational curves. If κ(X) = 2 then X is a ball quotient by Proposition 3.4.2. If
κ(X) = 0,1, then Theorem 3.2.5 implies c2

1 = c2 = 0. If moreover κ(X) = 0 then Enriques-
Kodaira’s classification of surfaces implies that X is a complex torus.

Now suppose by contradiction that κ(X) = 1. X is an elliptic surface, there is a fibration f :
X →C over a smooth curve C such that general fibers are smooth elliptic curves. By Noether’s
equality ([Bar+04] I.5) the Euler characteristic χ(OX) is 1

12(c
2
1+c2) = 0. Therefore by [Bar+04]
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V.12.2 and the remark preceding it, the only singular fibers of f are multiples of smooth elliptic
curves and the fibration is locally trivial around a general fiber. Now think of C as an orbicurve of
which the special points correspond to multiple fibers. It is a hyperbolic orbicurve uniformized
by H (cf. [Bar+04] V.12 and [BN06]). In particular there is a covering B→ C where B is an
ordinary curve. Then X ×C B is an unramified covering of X and the fibration X ×C B→ B has
no multiple fibers. An unramified covering of a manifold with a complex projective structure
has an induced complex projective structure. Therefore up to replacing X with X ×C B we may
assume that f : X→C is a genus one fibration with no multiple nor singular fibers. Up to taking
another unramified covering, we can also assume f∗KX/C = OC (cf. [Bar+04] III.18). Then the
canonical bundle formula ([Bar+04] V.12) gives KX = f ∗KC. The pull-back map f ∗KC → ΩX

gives a short exact sequence:

0 f ∗KC = KX ΩX OX 0.ι ρ
(3.3)

Using c2
1 = c2 = 0 we have h2,0 = h1,0 + 1 by Noether’s equality ([Bar+04] I.5). This means

that Sequence (3.3) is exact at H0 level and splits holomorphically. Consider the maps α :
H1(X ,OX ⊗O∗X ⊗ΩX)→ H1(X ,OX ⊗TX ⊗ΩX) and β : H1(X ,ΩX ⊗TX ⊗ΩX)→ H1(X ,OX ⊗
TX⊗ΩX) induced respectively by Id⊗ρ∗⊗Id and ρ⊗Id⊗ Id. We have β (a(ΩX))=α(a(OX))=

0. By Proposition 3.2.4 we have a(ΩX) =
1

n+1(c1(KX)⊗ Id+ Id⊗c1(KX)). Thus

0 = β (a(ΩX)) = β (
1

n+1
Id⊗c1(KX)) =

1
n+1

α(Id⊗c1(KX)).

However α is injective because Sequence (3.3) splits. Hence c1(KX) = 0, contradicting the fact
κ(X) = 1. �

3.4.2 Complex tori

To finish the proof of Theorem 3.1.1 for those Kleinian groups with Kähler quotients, it
remains to prove that the only ways to realize complex tori and ball quotients are the ones de-
scribed in Theorem 3.1.1. We said that the fact that the natural complex projective structure on
a ball quotient is unique is a difficult result and we simply refer to [MY93] and [Kli01] for the
proof. Here we give a proof for complex tori. The proof is based on some arguments of Yves
Benoist [Ben94] that apply not only to tori but also to compact manifolds with nilpotent fun-
damental groups. The contribution of [Kli98] to Theorem 3.1.1 is to apply Benoist’s arguments
to all possible surfaces. We focus here on complex tori: the proof is simpler and represents the
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main idea.

Let (P2,U,Γ,X) be a Kleinian group such that Γ ⊂ PGL3(C) and X is a complex torus.
There is a developing map D : X = C2→U and a holonomy representation h : Z4 = π1(X)→ Γ.
Let N be a maximal connected nilpotent subgroup of PGL3(C) that contains the identity com-
ponent of the complex Zariski closure of Γ⊂ PGL3(C). Then N∩Γ is a finite index subgroup of
Γ. Denote by N the universal covering of the complex Lie group N and π : N→ N the covering
map.

Lemma 3.4.4 (Benoist [Ben94]) There is a holomorphic action of N on X lifting the action of

N on P2, i.e.

D(φ · x) = π(φ) ·D(x), x ∈ X , φ ∈ N.

Proof As N is unipotent, there are normal subgroups {Nk}0≤k≤l of N such that {e} = Nl ⊂
·· · ⊂ N0 = N and Nk/Nk−1 is one-dimensional. We make a proof by recurrence on k. Suppose
that the action of Nk−1 on P2 lifts to an action of Nk−1 on X . Denote by Lk the Lie algebra of Nk.
Let a be an element of Lk such that Lk = Lk−1⊕Ca. The element a corresponds to a vector field
A on P2 that integrates to exp(a) ∈ PGL3(C). We pull back A by D, obtaining a vector field A

on X . Denote by Φt the flow of A. It suffices to prove that Φt is defined everywhere for any time
t because then the action of Nk on X could be defined by

(exp(ta) f ) ·w = Φt( f ·w) f ∈ Nk−1, w ∈ X .

Denote by tw the lifetime of Φt at w ∈ X , i.e. the supremum of t for which Φt is defined at
w. We firstly prove that tw = tγw for any γ ∈ π1(X) such that h(γ) ∈ N ∩Γ. We define a path pt

in Nk as follows:
pt = exp(ta)h(γ)exp(ta)−1h(γ)−1.

Since Nk−1 is a normal subgroup of Nk, the path pt is in fact in Nk−1. We lift pt to a path pt on
Nk−1 such that p0 = Id. Consider the following path on X :

qt = ptγΦt(w).

It is only defined for t < tw and is an integral curve of A starting from γw because D(qt) =

exp(ta)D(γw). Hence tγw ≥ tw. By considering γ−1 we have tγw = tw.

Thus the function w 7→ tw comes from a function defined on a compact quotient of X . It is
a standard fact that the lifetime tw is a lower semicontinuous function in w. By compactness it
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has a minimum on X and this minimum is strictly positive. This implies that the flows Φt are in
fact defined for all t. The proof is finished. �

As an immediate consequence we have:

Corollary 3.4.5 The open set U is a union of N-orbits.

Proof Let z = D(w) ∈U with w ∈ X̃ . Then N · z = D(Ñ ·w)⊂U . �

We need a basic result from Lie theory to describe the orbits of N. Define

N(λ ,d) = {g ∈ GL(Cd)|(g−λ Id) is strictly upper triangular}.

Lemma 3.4.6 Let M be a maximal connected nilpotent subgroup of GLn(C). Then there is a

unique decomposition Cn = ⊕1≤k≤lEk and M = M1×·· ·×Ml such that Mk = M∩GL(Ek) is

conjugate in GL(Ek) to N(λk,dimEk) for some λk ∈ C∗.

Proof It suffices to prove the corresponding result for Lie algebras. Denote by L and Lk the
Lie algebras of M and Mk. By [Var84] Theorem 3.5.8, the L-algebra Cn decomposes into a
direct sum of L-algebras ⊕1≤k≤lEk where each Ek corresponds to a weight λk. Engel’s theorem
implies that the representation of M in GL(Ek) is contained in N(λk,dimEk) up to conjugation.
Hence the maximality of M allows us to conclude. �

Now we combine the two lemmas to obtain:

Theorem 3.4.7 (Klingler [Kli98]) The open set U is one of the Zariski open subsets C×C,

C∗×C and C∗2 of C2 ⊂ P2 and Γ is a lattice in U viewed as a Lie group.

Proof There are d orbits of N(λ ,d) in Cd\{0} and they are of the form

{(z1, · · · ,zd) ∈ Cd,z j 6= 0,z j−1 = · · ·= z1 = 0}

where the coordinates (z1, · · · ,zd) are written in a base with respect to which N(λ ,d) is upper-
triangular. Recall that N is a maximal connected nilpotent subgroup of PGL3(C) such that
N ∩Γ is of finite index in Γ. Lemma 3.4.6 implies that N has an open orbit in P2 of the form
P(C∗3),P(C∗2×C) or P(C∗×C2), i.e. the complement of three lines, two lines or one line.
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Such an open orbit must be contained in U by Corollary 3.4.5. As U is a union of N-orbits by
Corollary 3.4.5, there are only eight possibilities for U : P2 minus 0,1,2 or 3 points, C2\{0},
C×C, C∗×C and C∗2. The first five open sets cannot be infinite coverings of a complex torus.
Therefore U is one of the three desired Zariski open sets. �
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CHAPTER 4

REPRESENTATIONS OF KÄHLER GROUPS

INTO THE CREMONA GROUP

4.1 Birational Kleinian groups are elementary

The goal of this chapter is to show

Theorem 4.1.1 Let (Y,U,Γ,X) be a birational Kleinian group in dimension two. If X is not a

surface of class VII then Γ is an elementary subgroup of Bir(Y ).

It is based on the following theorem of Delzant-Py (the terminology factors through a fibration

is explained below):

Theorem 4.1.2 (Delzant-Py [DP12]) Let X be a compact Kähler manifold and Y a rational

surface. Let ρ : π1(X)→ Bir(Y ) be a non-elementary representation, then one of the following

two cases occurs:

1. There is a birational map ϕ : Y 99KC∗×C∗ such that ϕρϕ−1 is a representation into the

toric group C∗×C∗oGL2(Z).

2. There is a finite index subroup Γ′ of Γ corresponding to a finite étale cover X ′ of X such

that the induced representation π1(X ′)→Γ′→Bir(P2) factors through a fibration X ′→Σ

onto a hyperbolic orbicurve Σ.

Factorization through orbicurves. In this article a hyperbolic orbicurve Σ will be a Rie-
mann surface with finitely many marked points with multiplicities, obtained as a quotient of the
Poincaré half-plane by the action of a cocompact lattice in PSL2(R); marked points are images
of the fixed points of the action and multiplicities are orders of the stabilizers. The cocompact
lattice is isomorphic to the orbifold fundamental group πorb

1 (Σ) of Σ. A continuous map from
a complex manifold X to Σ is holomorphic if it lifts to a holomorphic map from the universal
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cover X̃ of X to the half-plane, i.e. if there exists a holomorphic map from X̃ to H such that the
following diagram is commutative:

X̃ H

X Σ

A fibration of X onto Σ is a holomorphic surjective map f : X → Σ with connected fibres.
A fibration f : X → Σ induces a homomorphism f∗ : π1(X)→ πorb

1 (Σ). We say that a group
representation ρ : π1(X)→ G factors through the fibration f if there exists a homomorphism
ρ̂ : πorb

1 (Σ)→ G such that ρ = ρ̂ ◦ f∗.
We will show in Section 4.5 how to deduce Theorem 4.1.1 from Delzant-Py’s work. Since

the use of Delzant-Py’s work is a crucial step in our study of birational Kleinian groups in
dimension two, we will firstly explain where Theorem 4.1.2 comes from. Fundamental groups
of compact Kähler manifolds are called Kähler groups. The proof of Theorem 4.1.2 can be
divided into two parts: the first part (cf. Theorem 4.2.1) is about representations of Kähler
groups into isometry groups of hyperbolic spaces and the second part consists of applying the
first part to the action of the Cremona group on an infinite dimensional hyperbolic space. The
first part relies on methods from non-abelian Hodge theory, i.e. the theory of harmonic maps
on compact Kähler manifolds (or on their universal covers). These methods have a long history
and are highly involved. We give a sketch of the strategy in Section 4.2. In Section 4.3 we will
show in detail how this first part is applied to representations into Cremona groups. Readers
who for the moment are not interested in the proof of Delzant-Py’s theorem can skip Sections
4.2 and 4.3. In the last section of this chapter we discuss to which extent the proof of Theorem
4.1.1 can be adapted to surfaces of class VII.

4.2 Harmonic maps and factorization

Hyperbolic spaces. We recall here the hyperboloid construction of hyperbolic spaces. Let H

be a real Hilbert space. Let (ei)i be a Hilbert basis of H; we assume nothing on the cardinality
of the base. For A = ∑a je j ∈H, define < A,A >= a2

0−∑ j>0 a2
j . Then <,> defines a symmetric

bilinear form of signature (1,dim(H)−1) on H. The hyperboloid {A∈E|<A,A>= 1} has two
connected components. We can choose the component with first coordinate a0 > 0 to be a model
of the hyperbolic space. The tangent space at a point A can be identified with the orthogonal
of RA in H and the Riemannian metric is given by the opposite of the restriction of <,> to
this orthogonal. If the Hilbert space H has finite dimension m+ 1, then the hyperbolic space
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is of dimension m and will be denoted by Hm. If H is infinite dimensional, then no matter the
cardinality of its basis is we will denote by H∞ the corresponding hyperbolic space, by abuse of
notation. The boundary ∂Hm of the hyperbolic space can be identified with the set of isotropic
lines in H.

We say that an isometric action of a finitely generated group on Hm(m ∈ N∪{∞}) is el-

ementary if it fixes a point or a pair of points (i.e. a geodesic) in Hm ∪ ∂Hm, non-elementary

otherwise. The action is said to be minimal if Hm contains no non-empty closed totally geodesic
strict subspace that is invariant.

Carlson-Toledo and Delzant-Py’s theorem. We can now state the main theorem of this sec-
tion the proof of which we will try to explain:

Theorem 4.2.1 (Carlson-Toledo [CT89], Delzant-Py [DP12]) Let X be a compact Kähler man-

ifold. Let ρ : π1(X)→ Isom(Hm) be a non-elementary representation into the isometry group

of a possibly infinite dimensional hyperbolic space. Assume that ρ is minimal, i.e. that Hm con-

tains no non-trivial closed ρ-invariant totally geodesic subspaces. Then one of the following

two cases happens:

1. ρ factors through a fibration onto a hyperbolic orbicurve;

2. ρ = Ψ ◦ θ where θ : π1(X)→ PSL2(R) is a homomorphism with dense image and Ψ :
PSL2(R)→ Isom(Hm) is a continuous homomorphism. This is only possible when m = 2
or ∞ by minimality.

The theorem is due to Carlson-Toledo [CT89] when m is finite and the image of ρ is con-
tained in a cocompact lattice of Isom(Hm). Though the strategy is essentially the same, the
generalization to H∞ needs still a lot of extra work. Especially it relies on the heavy machinery
of Korevaar-Schoen [KS93], [KS97]. We will present the main steps of the proof and say where
the infinite dimensional case presents more technical difficulties.

Harmonic maps. Let f : M→ N be a smooth map between two finite dimensional Rieman-
nian manifolds. The energy density e f (x) of f at a point x ∈ M is by definition ‖d fx‖2 where
‖d fx‖ is the operator norm of d fx with respect to the Riemannian metrics on M and N. For
compact M, the total energy of f is E( f ) =

∫
M e f (x) and f is a harmonic map if it is a criti-

cal point of the energy functional E. For N of non-positive sectional curvature, Eells-Sampson
[ES64] proved that in each homotopy class of continuous maps from M to N there is a harmonic
representative.
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Assume still that M is compact. Let ρ : π1(M)→ Isom(N) be a group morphism into the
isometry group of N. A ρ-equivariant map is a smooth map f from the universal covering M̃ of
M to N such that f (γ · x) = ρ(γ) ḟ (x) for any x ∈ M̃ and γ ∈ π1(M). In this situation the energy
density of f descends to a function on M, thus is integrable. Therefore the notion of harmonic
maps makes sense for such equivariant maps. For N of non-positive sectional curvature, the ex-
istence of ρ-equivariant harmonic maps is established by Corlette [Cor88], Donaldson [Don87]
and Labourie [Lab91] under some reductive assumption on ρ . We refer to [Amo+96] pages
68-69 for this reductive assumption because we will not need it.

Note that the above results are sufficient for the use of harmonic maps in the proof of
Carlson-Toledo’s early version of Theorem 4.2.1. However to treat H∞, we need a more general
notion of harmonic maps due to Korevaar-Schoen [KS93].

Now assume that (N,d) is merely a metric space, not necessarily locally compact. To define
harmonic maps from a compact Riemannian manifold M to N, or equivariant harmonic maps
from M̃ to N, we only need a new definition of energy density. Let f : M→ N be a map. For
ε > 0 and x ∈M, denote by S(x,ε) the hypersurface in M of points at distance ε from x. Define

e f (ε,x) =
∫

S(x,ε)

d( f (x), f (y))2

ε2
dν(y)
εd−1

where ν is the measure on S(x,ε) induced by the Riemannian metric of M and d is the dimension
of M. If the e f (ε,x) are regular enough, for example uniformly bounded in ε , then e f (ε,x)dx

converge weakly, as ε goes to 0, to a measure e f (x)dx absolutely continous with respect to
the Lebesgue measure (cf. [KS93]). The energy density is thus defined to be the L1 function
e f (x). It coincides with the previous definition when f is a smooth map with values in a finite
dimensional Riemannian manifold N. The following is probably the most difficult ingredient in
the proof of Delzant-Py’s theorem:

Theorem 4.2.2 (Korevaar-Schoen [KS97]) Let N be a CAT(-1) complete metric space and ρ :
π1(M)→ Isom(N) be an action which fixes no points on the boundary of N, i.e. no equivalence

class of geodesic rays. Then there exists a ρ-equivariant harmonic map from M̃ to N.

Harmonic maps on Kähler manifolds. From now on we assume that the compact Rieman-
nian manifold M has a complex structure and that the Riemannian metric on M is induced by a
hermitian metric with fundamental form κ . We also assume that N is a Riemannian manifold.

Let us first assume dim(N)<+∞. We will denote by f a smooth map M→ N or a smooth
equivariant map M̃ → N. Denote by T N the tangent bundle of N and f ∗T N the pulled-back
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bundle on M. We denote by A k( f ∗T N) the sheaf of complex k-forms with value in the pull-
back tangent bundle. We will think of d f as a section of A 1( f ∗T N). Denote by ∇ both the
Levi-Civita connection on T N and the induced connection on f T N. We define a connection
d∇ : A k( f ∗T N)→A k+1( f ∗T N) as follows:

d∇(α⊗ s) = dα⊗ s+(−1)k
α⊗∇s.

We refer to [Amo+96] for the following formula:

Proposition 4.2.3 The map f is harmonic if and only if d∇(κ
n−1∧dc f ) = 0.

We say that f is pluriharmonic if d∇dc f = 0. This means that f is harmonic restricted to any
holomorphic disc in M.

Example 4.2.4 ([ES64]) Holomorphic maps between Kähler manifolds are harmonic.

To state the next result concerning harmonic maps, we need Koszul-Malgrange theorem. If
δ : A k(V )→A k+1(V ) is a connection on a complex vector bundle V over a complex manifold,
then its (0,1)-part δ 0,1 is the composition

A 0,k(V )→A k(V )
δ−→A k+1(V )→A 0,k+1(V )

where the first arrow is the natural injection and the last arrow is the natural projection.

Theorem 4.2.5 (Koszul-Malgrange [KM58]) A complex vector bundle on a complex manifold

has a structure of holomorphic vector bundle if it has a connection δ with (δ 0,1)2 = 0. Then

δ 0,1 is ∂̄ with respect to that holomorphic structure.

We say that a Riemannian manifold has non-positive Hermitian sectional curvature if R(X ,Y, X̄ ,Ȳ )≤
0 where R is the usual curvature tensor extended to the complexified tangent bundle and X ,Y are
arbitrary vectors in the complexified tangent space. In particular such a Riemannian manifold
has non-positive sectional curvature.

Theorem 4.2.6 (Siu [Siu80], Sampson [Sam86]) Let M be a compact Kähler manifold and N

a Riemannian manifold with non-positive Hermitian sectional curvature. Let f be a harmonic

map M→ N or an equivariant harmonic map M̃→ N. Then

1. f is pluriharmonic, i.e. d∇dc f = 0;
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2. (d0,1
∇

)2 = 0 so that f ∗T N⊗C is a holomorphic vector bundle by Koszul-Malgrange the-

orem;

3. The complex linear part d f 1,0 of d f is a holomorphic 1-form with values in the holomor-

phic vector bundle f ∗T N⊗C.

This nice theorem makes the transition from Riemannian geometry to complex geometry; it is
a kind of Bochner-type formula (cf. [Amo+96] Chapter 6).

When the target N is an infinite dimensional manifold, Korevaar-Schoen’s harmonic map
is a priori not necessarily a smooth map. Nevertheless when the harmonic map is smooth, it is
still characterized by Proposition 4.2.3 and Theorem 4.2.6 still holds: the same proof works (cf.
[DP12]).

Hyperbolic targets. Now we come back to the setting of Theorem 4.2.1, i.e. X is compact
Kähler, Hm is a possibly infinite dimensional hyperbolic space and ρ : π1(X)→ Isom(Hm)

is a non-elementary representation. As ρ is non-elementary, we can apply Korevaar-Schoen’s
theorem to find a ρ-equivariant harmonic map f : X̃ → Isom(Hm). Delzant-Py verified that
for hyperbolic targets the harmonic maps constructed by Korevaar-Schoen are actually smooth.
Therefore Theorem 4.2.6 holds for f . Using the fact that Hm is a symmetric space of rank one,
we have

Proposition 4.2.7 (Sampson [Sam86]) The real rank of the differential d f is everywhere ≤ 2.

In other words, the holomorphic 1-form d f 1,0 with values in the holomorphic vector bundle

f ∗T N⊗C is everywhere of complex rank ≤ 1.

The proof is same for finite or infinite dimensional Hm (cf. [Amo+96], [DP12]). The next step
is to prove

Theorem 4.2.8 (Delzant-Py [DP12]) Under the assumption of Theorem 4.2.1, there is a holo-

morphic map g from X̃ to the upper half plane H and a smooth harmonic map u : H→Hm such

that f = u◦g. There exist two group morphisms ρ1 : π1(X)→ PSL2(R) and ρ2 : ρ1(π1(X))→
Isom(Hm) such that ρ = ρ2 ◦ρ1 and g is ρ1-equivariant and u is ρ2-equivariant.

The main remaining task for proving Theorem 4.2.8 is to construct the holomorphic map g

from the holomorphic form d f . The fact that d f is of rank ≤ 1 indicates that the target should
be a Riemann surface. The holomorphic form d f defines a singular holomorphic foliation on X̃ .
Intuitively the fibers of g are unions of leaves of this foliation. Carlson-Toledo did the construc-
tion of g for harmonic maps f : X → Hm. For equivariant harmonic maps the foliation is more
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difficult to study because of the non-compactness of X̃ . The infinite dimension of Hm does not
bother for the construction of g. Nevertheless when Hm is of infinite dimension, one needs to
prove that the harmonic map u is smooth after the construction of the factorization f = u◦g.

Once we have Theorem 4.2.8, the first case in Theorem 4.2.1 is automatic: if ρ1 has discrete
image, then g : X̃ → H descends to X → H/ρ1(π1(X)). The second case of Theorem 4.2.1 is
another novelty in Delzant-Py’s work; one needs to show

Proposition 4.2.9 (Delzant-Py) Under the assumption of Theorem 4.2.8 and using the same

notations, if the image of ρ1 is not discrete in PSL2(R), then it is dense in the euclidean topology.

Furthermore ρ2 extends to PSL2(R) and u is equivariant with respect to the extended ρ2.

Such wild factorizations really exist for H∞, but we will see in next section that they don’t occur
for applications to the Cremona group.

4.3 Representations into the Cremona group

4.3.1 Factorization

In this section we prove Theorem 4.1.2 from Theorem 4.2.1.

Proof (of Theorem 4.1.2) Consider a non-elementary representation

ρ : π1(X)→ Bir(Y ) ↪→ Isom(H∞
Y ).

We denote by Γ both the images of ρ in Bir(Y ) and Isom(H∞
Y ); it is a non-elementary subgroup.

There exists a unique ρ-invariant subspace W of H∞
Y on which the action of π1(X) is minimal

(see the first paragraph of Section 4.2 for the definition of minimal) and non-elementary. We
can apply Theorem 4.2.1 to π1(X)→ Isom(W).

We firstly show that we are not in the second case of Theorem 4.2.1. Suppose by contradic-
tion that our representation ρ factorizes through a dense representation ρ1 : π1(X)→ PSL2(R).
By Theorem 4.2.8 and Proposition 4.2.9, there are a representation ρ2 : PSL2(R)→ Isom(H∞

Y )

such that ρ = ρ2◦ρ1, a ρ1-equivariant holomorphic map g : X→H and a ρ2-equivariant smooth
map u : H→H∞

Y . We claim first that there is an element γ of π1(X) such that ρ1(γ) is an infinite
order elliptic element of PSL2(R). This is because being elliptic in PSL2(R) is characterized
by the open condition trace∈ (−2,2), and because the elements of finite order are all in the
subgroup SO2(R). Let q be the fixed point of ρ1(γ) in H. Then u(q) is a fixed point of ρ(γ). In
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particular ρ(γ) is an elliptic element. The map u is of rank two at some point because its image
is not contained in a geodesic. Because u is ρ2-equivariant, it is also of rank two at q. Hence the
tangent space at q is sent by u to a plane in the tangent space at q(u) which is invariant under
ρ(γ) and on which ρ(γ) acts by irrational rotation. Lemma 4.3.1 in the next subsection says
that this is impossible.

Therefore we are in the first case of Theorem 4.2.1, i.e. π1(X) → Isom(W) factorizes
through a fibration X → Σ onto a hyperbolic orbicurve Σ. The kernel of π1(X)→ πorb

1 (Σ),
denoted by H, fixes pointwise W. The image ρ(H)⊂ Bir(Y ) is thus an elliptic subgroup and its
normalizer, which contains Γ, is non-elementary.

If the normalizer of an infinite elliptic group in Bir(P2) is non-elementary, then the whole
normalizer is conjugate to a subgroup of the toric group by a theorem of S. Cantat (see [DP12][Appendix]).
Thus, if ρ(H) is infinite there is a birational map ϕ : Y 99K C∗×C∗ such that ϕρϕ−1 is a rep-
resentation into the toric group C∗×C∗oGL2(Z), i.e. we are in the first case of Theorem
4.1.2.

Now consider the case where ρ(H) is a finite group. We want to show that we are in the
second case of Theorem 4.1.2, i.e. there exists a finite index subgroup of π1(X) corresponding
to a finite unramified covering X ′→ X such that ρ restricted to π1(X ′) factorizes through X ′→
X → Σ. What may cause problem is the finite group ρ(H) which acts trivially on W but not
on the whole space H∞

Y . If the representation ρ factorizes through the group ρ(H)×πorb
1 (Σ),

then we can get rid of ρ(H) by taking the preimage of {1}×πorb
1 (Σ) in π1(X). Thus the task

is to show that such a factorization can be achieved after replacing π1(X) with a finite index
subgroup. Let us look at the conjugation action of Γ on the normal subgroup ρ(H). Since ρ(H)

is finite, the kernel of this action is a finite index subgroup Γ1 of Γ; the elements of Γ1 commute
with ρ(H). We take further a finite index subgroup Γ2 of Γ1 such that its image Λ2 in πorb

1 (Σ)

is a surface group thus torsion free. By construction ρ(H)∩Γ2 is a finite abelian subgroup of
Γ2. Consider the following central extension:

1→ ρ(H)∩Γ2→ Γ2→ Γ2/(ρ(H)∩Γ2) .

The extension corresponds to an element of H2(Γ2/(ρ(H)∩Γ2) ,ρ(H)∩Γ2). The group Γ2/(ρ(H)∩Γ2)

being a quotient of Λ2, we can pull back this class to H2(Λ2,ρ(H)∩Γ2). As Λ2 is a surface
group, H2(Λ2,ρ(H)∩Γ2) is identified with the second singular cohomology group on some
compact Riemann surface and a cohomology class becomes trivial after taking some covering.
Therefore we can take a finite index subgroup Λ3 ⊂ Λ2 and its preimage Γ3 ⊂ Γ2 such that the
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corresponding element in H2(Λ3,ρ(H)∩Γ3) is trivial. Then ρ restricted to the preimage of Γ3

factorizes through ρ(H)×πorb
1 (Σ). The proof of Theorem 4.1.2 is finished. �

4.3.2 Discreteness

Recall that the action of Bir(Y ) on H∞
Y comes from the action of Bir(Y ) on a Hilbert space

ZY in which the hyperboloid model of H∞
Y is embedded. The Hilbert space ZY is the orthogonal

direct sum of H1,1(Y,R) and another Hilbert space BY with a Hilbert basis indexed by the points
on Y and on all of its blow-ups, i.e. the points in the bubble space of Y .

Lemma 4.3.1 Let f ∈ Bir(Y ) be an elliptic element. If its action on ZY preserves a two-

dimensional linear subspace, then it does not act by irrational rotation on this plane.

Proof Suppose by contradiction that f acts as an irrational rotation on a plane P. As f is elliptic,
a power of f is conjugate to an automorphism isotopic to identity on some surface birational to
Y . Up to replacing f with some positive power of such an iterate, we may assume that f is an
automorphism of Y isotopic to identity. Therefore the action of f on H1,1(Y,R) is trivial and the
plane P must be contained in BY . Let (u,v) be a basis of P for which we have

f (u) = cos(θ)u+ sin(θ)v, f (v) =−sin(θ)u+ cos(θ)v

where θ is the angle of the irrational rotation. Write u,v in the standard base of BY :

u = ∑axex, v = ∑bxex

where ex is the vector indexed by a point x on Y or some of its blow-ups. Since f is an automor-
phism on Y , f (ex) is just e f (x) for any point x on Y or its blow-ups. Take a x such that ax or bx

is not zero. We have

a f n(x) = cos(nθ)ax + sin(nθ)bx, b f n(x) =−sin(nθ)ax + cos(nθ)bx.

For any n the point f n(x) is different from x because otherwise (ax,bx) would be a vector in R2

fixed by the irrational rotation of angle nθ . But then we have

∑
n

(
a2

f n(x)+b2
f n(x)

)
= ∑

n
(a2

x +b2
x) = +∞.

This is a contradiction because the a f n(x),b f n(x) are coefficients of the two vectors u,v. �
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4.4 Conjugation

The goal of this section is to prove a preparatory lemma which will be used in the proof
of Theorem 4.1.1 and also in other chapters. Roughly speaking the lemma says that a conjuga-
tion of birational Kleinian groups is always a geometric conjugation. Throughout this section
(Y,Γ,U,X) will be a birational kleinian group.

Remark 4.4.1 Since Γ acts regularly on U , the indeterminacy points and contracted curves of
elements of Γ are disjoint from U .

Lemma 4.4.2 Suppose that there exists a birational map φ : Y 99K Y ′ to a second surface Y ′

and a non-empty Zariski open set Z′ ⊂ Y ′ such that Γ′ = φ ◦Γ ◦φ−1 is in Aut(Z′). Then there

exist a third surface Y ′′, a non-empty Zariski open set Z′′ ⊂ Y ′′ and a birational kleinian group

(Y ′′,Γ′′,U ′′,X ′′) geometrically conjugate to (Y,Γ,U,X) such that Γ′′ ∈ Aut(Z′′).

The Zariski open set Z′′ can be obtained by blowing up Z′. If Y ′ = Z′, then Y ′′ = Z′′; in this

case if moreover Γ′ ⊂ Aut0(Y ′), then a finite index subgroup of Γ′′ is in Aut0(Y ′′).

Proof We first claim that φ−1 does not contract any curve intersecting Z′ onto a point in U .
Suppose by contradiction that u ∈U is an indeterminacy point of φ and a curve C′ intersecting
Z′ is contracted onto u by φ−1. Pick a non trivial element γ ∈ Γ. Denote φ ◦ γ ◦ φ−1 by γ ′.
As γ acts freely by diffeomorphism on U , γ(u) is a point different from u. And as γ ′ is an
automorphism of Z′, the strict transform γ ′(C′) is still a curve which intersects Z′. Thus γ ′(C′)

is contracted by φ−1 onto γ(u). This implies that {γ(u)|γ ∈ Γ} is an infinite set of indeterminacy
points of φ , which is impossible.

Replacing Y with the blow up at the indeterminacy points of φ outside U , we can assume
from the beginning that φ−1 does not contract any curve intersecting Z′. We can also assume that
no (-1)-curves contracted by φ onto a point of Z′ lies outside U . This means that the connected
chains of (rational) curves contracted by φ onto a point of Z′ intersect U in their components
which are (-1)-curves. In particular if an indeterminacy point of φ−1 is in Z′ then it is the image
of a point in U at which φ is regular.

Pick u′ ∈ Z′ an indeterminacy point of φ−1. Let C be the connected chain of curves on Y con-
tracted onto u′. Then C∩U 6= /0 and for γ ∈ Γ the strict transform γ(C) = γ(C\{ind points of γ})
is still a chain of curves intersecting U . As γ ′ acts by automorphism on Z′, γ ′(u′) is still a point
in Z′ and γ(C) is contracted onto it. Therefore Γ′ permutes the indeterminacy points of φ−1 in
Z′.
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Let Y1
φ1−−→ Y ′ be the blow-up at the indeterminacy points of φ−1 that are in Z′. Let Z1 be

the preimage φ
−1
1 (Z′)⊂Y1. Since Γ′ permutes the indeterminacy points of φ−1 in Z′, the group

Γ1 = φ
−1
1 ◦Γ′◦φ1 acts by automorphisms on Z1. Some finite index subgroup of Γ1 is in Aut0(Y1)

if we had Y ′ = Z′ and Γ′ ⊂ Aut(Y ′). Then we continue the process for Y1,Z1 and Γ1. After
finitely many times, say m times, we get Ym,Zm,Γm such that the birational map ϕ : Ym 99K Y

induced by φ−1 has no indeterminacy points in Zm. Then our hypothesis at the beginning of the
second paragraph implies that ϕ restricted to Zm is an isomorphism onto image. Hence Γ acts
by automorphisms on the Zariski open set ϕ(Zm)⊂ Y . The proof is finished. �

4.5 From Delzant-Py’s theorem to birational Kleinian groups

This section is a proof of Theorem 4.1.1. Let (Y,Γ,U,X) be a birational kleinian group in
dimension two. We want to show that Γ is elementary. We have proved that the Kodaira dimen-
sion of Y is necessarily −∞ (cf. 2.1.2). If Y is a non-rational ruled surface, Bir(Y ) preserves the
ruling thus has no non-elementary subgroups. Thus we can and will assume that Y is a rational
surface.

The open set U is an infinite intermediate Galois covering of X and Γ, being the deck
transformation group of the covering, is a quotient of π1(X). Thus we have a representation
ρ : π1(X)→ Bir(Y ), composition of the quotient morphism π1(X)� Γ and the inclusion Γ ↪→
Bir(Y ).

The proof is divided into three independent parts. In the first part we show that Γ is not
conjugate to an elementary subgroup of the toric group. In the second part we show that the
representation ρ does not factorize through a curve. In the third part we make the additional
assumption that the quotient X is a non-Kähler surface which is not of class VII; in this case we
essentially only need to treat elliptic surfaces.

If X is Kähler we can apply Theorem 4.1.2 to this representation. There are two cases if ρ

is non-elementary: either it factorizes through an orbicurve or it is conjugate to a subgroup of
the toric subgroup. Thus the first part and the second part of this section allow us to finish the
proof of Theorem 4.1.1 for Kähler X .

4.5.1 Toric subgroup

A valuation on the function field C(Y ) = C(x,y) is a Z-valued function v on C(Y )∗ such
that
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Part , Chapter 4 – Representations of Kähler groups into the Cremona group

1. v(a) = 0 for any a ∈ C∗;

2. v(PQ) = v(P)+ v(Q) and v(P+Q)≥min(v(P),v(Q)) for any P,Q ∈ C(Y )∗;

3. v(C(Y )∗) = Z.

The elements of C(Y )∗ with valuations ≥ 0 together with 0 form the valuation ring Av; those
with valuations > 0 form a maximal ideal Mv. If the residue field Av/Mv has transcendence
degree 1 over C, then v is called a divisorial valuation. The set of divisorial valuations is in
bijection with the set of irreducible hypersurfaces in all birational models of Y (cf. [ZS75]). If
vE is the divisorial valuation associated with an irreducible hypersurface E in some birational
model of Y , then for any P ∈ C(Y )∗ the value vE(P) is the vanishing order of P along E. We
can identify Bir(Y ) with the group of automorphisms of C(Y ). Thus Bir(Y ) acts on the set of
valuations by precomposition. It preserves the subset of divisorial valuations.

Lemma 4.5.1 Suppose that Y is a smooth compactification of C∗×C∗. Let γ ∈ Bir(Y ) be a

loxodromic map in the toric subgroup. Then any irreducible component of Y\(C∗ ×C∗) is

contracted by a power of γ .

Proof The complement Y\(C∗×C∗) has only finitely many irreducible components. Let vE be
a divisorial valuation with E outside of C∗×C∗. It is sufficient to prove that vE has an infinite
orbit under γ . Let (x,y) be the stardard coordinates on C∗×C∗. As E is outside C∗×C∗, at
least one of x,y has non-zero valuation.

The tranformation γ can be written as (x,y) 7→ (αxayb,βxcyd) where α,β ∈C∗ and

(
a b

c d

)
∈

GL2(Z) is a hyperbolic matrix. We have for any n ∈ Z(
(γn · vE)(x)

(γn · vE)(y)

)
=

(
a b

c d

)n(
vE(x)

vE(y)

)
.

Since

(
vE(x)

vE(y)

)
is a non-zero integer vector and

(
a b

c d

)
is a hyperbolic matrix, the orbit of(

vE(x)

vE(y)

)
under

(
a b

c d

)
is infinite. This implies that the orbit of vE under γ is infinite. �

Proposition 4.5.2 Suppose that there is a birational map φ : Y 99K C∗×C∗ such that φΓφ−1

is contained in the toric subgroup. Then Γ contains no loxodromic element.
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4.5. From Delzant-Py’s theorem to birational Kleinian groups

Proof By Lemma 4.4.2 we can suppose that Y is a compactification of C∗ ×C∗ and Γ ⊂
C∗×C∗oGL2(Z). Suppose by contradiction that Γ contains a loxodromic element η . Then
by Lemma 4.5.1 any irreducible component of Y\(C∗×C∗) is contracted by a power of η . This
implies that the open set U on which η acts by biholomorphism is a subset of C∗×C∗.

Consider the exponential map π from C2 to C∗×C∗; it is a covering map. The exponential
also gives rise to a homomorphism ρ : Aff2(C) = C2 oGL2(Z)→ C∗×C∗oGL2(Z). Then π

is ρ-equivariant. Consider a connected component Ū of π−1(U) and the subgroup Γ̄ of ρ−1(Γ)

that preserves Ū . Then Γ̄ is a complex affine Kleinian group. We can apply Theorem 3.1.1 to
Γ̄. There are five possibilities for X : it is a torus, a Hopf surface, an Inoue surface, a primary
Kodaira surface or an affine-elliptic bundle. From the descriptions that we give in Section 3.3,
we see that, for the linear part of Γ̄ to have a hyperbolic matrix, the only possibilities are Inoue
surfaces and affine-elliptic bundles. But in these two cases the group cannot be included in
GL2(Z). For Inoue surfaces we can see this directly from the formulas (see also [Zhab]) and
for affine-elliptic bundles it is because the group comes from a cocompact lattice in PGL2(R).
Hence the hypothesis that Γ contains a loxodromic element is absurd. �

4.5.2 Factorization through curves

Proposition 4.5.3 Suppose that Γ is a non-elementary subgroup. Then the representation ρ :
π1(X)� Γ ↪→ Bir(Y ) does not factorize through a hyperbolic orbicurve.

Proof Suppose by contradiction that ρ is non-elementary and factorizes through a hyperbolic
orbicurve Σ. Let F be a general fibre of the fibration X → Σ. The image of φ : π1(F)→ π1(X)

is in the kernel of π1(X)→ πorb
1 (Σ), thus in the kernel of ρ . This contradicts Lemma 4.5.4

below. �

Lemma 4.5.4 If Γ contains a loxodromic element of Bir(Y ), then for any compact curve C on

X the image of the composition π1(C)→ π1(X)� Γ is infinite.

Proof By Theorem 2.1.2 we can assume that Y is a birationally ruled surface. As all birational
transformations of a non rational ruled surface preserve the ruling thus cannot be loxodromic,
we can and will further assume that Y is rational.

Suppose by contradiction that C is a compact curve on X such that π1(C)→ Γ has finite
image. Denote by D the normalization of C. Then there is a finite unramified cover D̄→D such
that the composition π1(D̄)→ π1(D)→ π1(X)� Γ is trivial. This implies the existence of a
map ı : D̄→U lifting D̄→ D→C→ X . Only a finite subgroup of Γ preserves ı(D̄) by Lemma
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4.5.5 below. Therefore {γ(ı(D̄))}γ∈Γ form an infinite family of disjoint smooth compact curves
in U ⊂ Y . Every element of Γ permutes these curves. Denote by α j, j ∈ N∗ the classes of these
curves in the Picard group which is isomorphic to the Néron-Severi group because Y is rational.
The intersection number αi ·α j is zero for i 6= j since the corresponding curves are disjoint.
As the Néron-Severi group has finite rank, we can suppose that for some r ∈ N∗, the classes
α1, · · · ,αr are linearly independent and for any n> r the class αn is equal to a linear combination
of the α j, j ≤ r. Among the α j, j ≤ r, at most one has zero self-intersection because otherwise
there would exist a two-dimensional totally isotropic space which contradicts the Hodge index
theorem. When we write αn as a linear combination of the the α j, j≤ r, if the coefficient before
α j is non-zero then α j is of zero self-intersection because αn ·α j = 0. This implies that all but
finitely many of the α j are equal to a class β of zero self-intersection. Thus the linear system
associated with β has dimension ≥ 1. Since the group Γ permutes the curves γ(ı(D̄)), the class
β is Γ-invariant. Hence we obtain a pencil of curves invariant under Γ. However a loxodromic
birational transformation preserves no pencils of curves. �

Lemma 4.5.5 An infinite order automorphism of an irreducible compact curve cannot be free

and properly discontinuous.

Proof An automorphism of a singular irreducible curve permutes the singular points and is not
free. An automorphism of P1 has a fixed point. An automorphism of infinite order of a genus
one curve without fixed points is an irrational translation; its action is not properly discontinous
by Lemma 2.3.1. An automorphism of a general type curve is of finite order. �

4.5.3 Elliptic surfaces

According to Kodaira’s classification of surfaces (cf. [Bar+04]), a non-Kähler surface which
is not of class VII fits in one of the two following possibilities: either X is a primary or secondary
Kodaira surface or X is an elliptic surface with Kodaira dimension 1. The fundamental group of
a Kodaira surface is solvable and has no non-elementary representations into Bir(Y ). It remains
to consider the elliptic surfaces of Kodaira dimension 1.

Assume that X → Σ is a genus one fibration; we consider the base curve Σ as an orbicurve
whose multiple points correspond to multiple fibers. Assume that X is of Kodaira dimension 1.
This is equivalent to say that Σ is a hyperbolic orbicurve. We have an exact sequence

1→ H→ π1(X)
ϕ−→ π

orb
1 (Σ)→ 1
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where H is the image of the fundamental group of a regular fiber. Suppose by contradiction
that the representation ρ : π1(X)→ Γ ↪→ Bir(Y ) is non-elementary. By Proposition 4.5.3 ρ(H)

is not finite. Hence ρ(π1(F)) must be an infinite abelian group. Since Γ is non-elementary,
there exists at least one element a ∈ π1(X) such that ϕ(a) is of infinite order and ρ(a) is a
loxodromic birational transformation. Consider < ϕ(a)> the infinite cyclic subgroup of π1(Σ)

generated by ϕ(a) and denote by G the subgroup ϕ−1(< ϕ(a) >) of π1(X). Then G is an
extension of < ϕ(a) > by π1(F) = Z2; in particular it is solvable. The group ρ(G) is solvable
but not virtually cyclic; it contains a loxodromic element. By the strong Tits alternative we infer
that ρ(G) is up to conjugation contained in the toric subgroup and that ρ(π1(F)) is an infinite
elliptic subgroup. The whole group Γ normalizes ρ(π1(F)). Thus again by Cantat’s theorem
(cf. Appendix [DP12]) we infer that Γ is up to conjugation contained in the toric subgroup. This
contradicts Proposition 4.5.2.

4.6 Non-Kähler surfaces

One may need to go through Section 4.2 before reading this section.

All known surfaces of class VII have solvable fundamental groups. Non-elementary sub-
groups of Bir(Y ) are not solvable. Thus an analogue of Theorem 4.1.1 for non-Kähler X does
not seem to be very interesting. But this does not mean that such a result is easy to prove. We
try to see to which extent the methods used for Theorem 4.1.1 can be carried out for X of class
VII.

Let X be an n-dimensional compact hermitian manifold with fundamental form κ . Let N be
a complete Riemannian manifold and let f : X → N be a smooth map. Recall that the map f

is harmonic if d∇(κ
n−1∧ dc f ) = 0 (cf. Proposition 4.2.3) and that the map f is pluriharmonic

if d∇dc f = 0. In [JY93] Jost-Yau introduced a different notion of harmonicity: the map f is
called hermitian harmonic if κn−1∧d∇dc f = 0. If X is Kähler, then harmonicity and hermitian
harmonicity coincide. The following is an analogue of Eells-Sampson’s theorem:

Theorem 4.6.1 (Jost-Yau [JY93]) Let X be a compact hermtian manifold. Let N be a compact

Riemannian manifold with negative sectional curvature. Let g : X→N be a continuous map not

homotopic to a map onto a geodesic. There exists a hermitian harmonic map homotopic to g.

Though it is not clear how to generalize the notion of hermitian harmonic maps for general
metric space targets, we can still use the definition κn−1∧d∇dc f = 0 for targets that are infinite
dimensional Riemannian manifolds. We would like to have the following:
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Hope 4.6.2 Let X be a compact hermtian surface. Let Hm be a hyperbolic space of possibly

infinite dimension. Let ρ : π1(X)→ Isom(Hm) be a non-elementary discrete representation of

Isom(Hm). There is a ρ-equivariant hermitian harmonic map X̃ → N.

Theorem 4.6.1 asserts that the hope is true when m is finite and the representation is into a
cocompact lattice of Isom(Hm).

We have also an analogue of Siu-Sampson’s theorem:

Theorem 4.6.3 (Jost-Yau [JY93]) Let X be a hermtian manifold of dimension n whose fun-

damental form κ satisfies ddcκn−2 = 0. Let N be a Riemannian manifold with non-positive

hermtian sectional curvature. Then any hermtian harmonic map from X to N is pluriharmonic.

Remark that if X is a surface, then the condition on X is vacuous. In [CT97] Carlson-Toledo
already used Jost-Yau’s work to generalize their theorem (cf. Theorem 4.2.1) to fundamental
groups of surfaces of class VII. Once the existence of the desired hermtian harmonic maps
is guaranteed, all the other discussions in Section 4.2 work in the same way. In the proof of
Theorem 4.1.1, we only use the Kähler hypothesis on X in Theorem 4.2.1. Hence Hope 4.6.2
would imply

Hope 4.6.4 There is no non-elementary birational Kleinian groups in dimension two.

Remark 4.6.5 The finite dimensional case of Hope 4.6.2, which is more likely to be true, would
imply that there is no non-elementary groups of automorphisms with Kleinian property in di-
mension two.

As we said, there is no known compact non-Kähler surface of class VII with non-solvable
fundamental group. So the discussion in this section could be a too difficult approach towards a
vacuous statement.
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CHAPTER 5

RULED SURFACES

In this chapter we study birational Kleinian groups preserving a rational fibration. The first
section is a glossary of regular holomorphic foliations on compact complex surfaces. Proofs
begin from the second section. One may start from the second section and goes back to the
first section whenever needed. Since the study in this chapter is divided into many subcases, we
recommend the reader to read this chapter in parallel with Chapter 6 which outlines what we do
in this chapter.

5.1 Foliated surfaces

Let {U j} j∈J be an open covering of a complex surface X . For each j ∈ J, let v j be a nowhere
vanishing holomorphic vector field defined on U j. We require that on each Ui ∩U j, there is a
nowhere vanishing holomorphic function gi j such that vi = gi jv j. Two such collections {U j,v j},
{U ′k,v′k} are equivalent if on each U j ∩U ′k, there is a nowhere vanishing holomorphic function
h jk such that v j = h jkv′k. A regular holomorphic foliation F on a complex surface X is an
equivalence class of such a collection {U j,v j}. The condition on the local vector fields v j means
their local integral curves can be glued together. A maximal glued integral curve is called a leaf.
Equivalently a regular holomorphic foliation can also be defined as (the equivalence class of)
a collection of nowhere vanishing holomorphic 1-forms ω j on U j such that on U j ∩Ui the two
forms ω j,ωi differ multiplicatively by a nowhere vanishing holomorphic function. See [Bru15]
for background on holomorphic foliations.

Let us describes some examples of regular holomorphic foliations.

Fibrations. Let X be compact complex surface and let f : X→B be a fibration whose singular
fibers are all multiples of smooth curves. The fibration equips X with a regular foliation whose
leaves are the underlying manifolds of the fibers. Let mFb be a multiple fiber lying over a point
b ∈ B. Let w be a local coordinate on B which vanishes at b, let h be a local equation of Fb in X ,
then f ∗(dw)/hm−1 is a local differential form defining the foliation.
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Linear foliations on tori. Let Λ be a lattice in C2 and X = C2/Λ a two dimensional complex
torus. Let (z,w) be the natural coordinates on C2. A constant holomorphic differential adz+bdw

on C2 with a,b ∈ C and ab 6= 0 descends onto X and defines a regular foliation F on X ; this
is called a linear foliation on the torus X . Choosing such a linear foliation amounts to choose a
one dimensional C-linear subspace W = ker(adz+bdw) of C2. If W ∩Λ is a lattice in W , then
the leaves of F are elliptic curves and the foliation is a fibration. If W ∩Λ is non empty but not
a lattice, then the leaves of F are biholomorphic to C∗. If W ∩Λ is empty, then the leaves of F

are biholomorphic to C and are dense in X . When the leaves of F are not compact, we say the
linear foliation F is irrational.

Hopf surfaces A Hopf surface has a finite unramified cover which is a primary Hopf surface
and a primary Hopf surface is the quotient of C2\{0} by a transformation of the form

H(α,β ,γ,m) : (z,w) 7→ (αz+ γwm,βw), α,β ,γ ∈ C,m ∈ N∗,0 < |α| ≤ |β |< 1

with α = β m if γ 6= 0. We call C2/<H(α,β ,γ,m) > a standard primary Hopf surface. See [Kod66]
for the above assertion and the following:

1. The standard primary Hopf surface has an elliptic fibration if and only if γ = 0 and αk =

β l for some k, l ∈ N∗.

2. If γ = 0 but αk 6= β l for any k, l ∈ N∗, then the two smooth elliptic curves given by z = 0
and w = 0 are the only curves on the primary Hopf surface.

3. If γ 6= 0 then the smooth elliptic curve given by w = 0 is the only curve on the primary
Hopf surface.

Suppose that γ = 0. The complex lines in C2 parallel to z = 0 and to w = 0 form two regular
foliations on C2\{0} that descend to regular foliations on the Hopf surface. A vector field of the
form az ∂

∂ z + bw ∂

∂w with a,b ∈ C and ab 6= 0 is invariant under (z,w) 7→ (αz+ γwm,βw), thus
descends to the Hopf surface. It gives rise to a regular foliation of which the leaves in C2\{0}
different from the two axes are given by (eaz,cebz). When a = b this is just the foliation by
complex vector lines.

Suppose that γ 6= 0. The complex lines parallel to w = 0 give a regular foliation on the Hopf
surface. There exist also regular foliations associated with certain vectors fields on C2\{0} of
Poincaré-Dulac’s form

[z(1+aw)+wF(z,w)]
∂

∂ z
+bw

∂

∂w
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where a ∈ C,b ∈ C∗ and F vanishes at 0 of order 1. When m = 1 the normal form (z,w) 7→
(αz+ γw,βw) is a linear transformation and the foliation by complex vector lines in C2\{0} is
one of these foliations.

The foliations described above will be called obvious foliations on Hopf surfaces.

Inoue surfaces. See [Ino74] for the precise formulas defining Inoue surfaces. An Inoue sur-
face of type S0 is the quotient of H×C by a group generated by affine transformations g0,g1,g2,g3

of the form

g0 :(x,y) 7→ (αx,βy)

gi :(x,y) 7→ (x+ai,y+bi) for i = 1,2,3.

The vertical and horizontal foliations on H×C descend to two regular foliations on the Inoue
surface of type S0. An Inoue surface of type S+ is the quotient of H×C by a group generated
by affine transformations g0,g1,g2,g3 of the form

g0 : (x,y) 7→ (αx,y+ t)

gi : (x,y) 7→ (x+ai,y+bix+ ci) i = 1,2

g3 : (x,y) 7→ (x,y+
b1a2−b2a1

n
)

An Inoue surface of type S− is the quotient of H×C by a group generated by affine transfor-
mations g0,g1,g2,g3 of the form

g0 : (x,y) 7→ (αx,−y)

gi : (x,y) 7→ (x+ai,y+bix+ ci) i = 1,2

g3 : (x,y) 7→ (x,y+
b1a2−b2a1

n
)

An Inoue surface of type S− has a double cover which is an Inoue surface of type S+. The
vertical foliation on H×C descends to a regular foliation on an Inoue surface of type S+ or S−.
The foliations described above will be called obvious foliations on Inoue surfaces.

Suspensions. Let M be a Riemann surface. We denote by M̂ a Galois covering of M with
deck transformation group G. Let N be another Riemann surface. Let α : G→ Aut(N) be a
homomorphism of groups. The group G acts on M̂×N in the following way: g · (m,n) = (g ·
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m,α(g) · n). Then the quotient X = (M̂×N)/G fibers onto M = M̂/G via the first projection;
the fibers are all isomorphic to N. The foliation by {M̂×{n}}n∈N descends to a foliation on X

which is everywhere transverse to the fibration. We call such a foliation a suspension of N over

M with monodromy α : G→ Aut(N). If M,N are compact, then X is compact; this is the only
case we will consider. If moreover α(G) is a finite subgroup of Aut(N), then the leaves of the
foliation are compact and the foliation is in fact a fibration. When α(G) is infinite (since N is
compact this is only possible if N is P1 or an elliptic curve) the leaves are non-compact and we
call such a suspension infinite.

Remark that if X is a compact complex surface with an infinite suspension foliation, then
X is Kähler. This is clear if it is a suspension of P1 in which case X is ruled. Assume that
it is a suspension of an elliptic curve. We use the notations in the previous paragraph. Up to
replacing G by a subgroup of finite index we can assume that α(G) ⊂ Aut(N) is an abelian
group of translations on the elliptic curve N. Thus there is an action of N on X by translations
in the fibers of the elliptic bundle X →M. In other words X →M is a principal elliptic bundle
(cf. [Bar+04] V.5.1). Furthermore the suspension process says exactly that the bundle X →M

is defined by a locally constant cocycle. By [Bar+04] V.5.1 and V.5.3 we infer that the second
Betti number of X is even. This implies that X is Kähler by [Bar+04] IV.3.1.

Turbulent foliations. Let X be a compact complex surface and X → B an elliptic fibration
with constant functional invariant (i.e. all regular fibers are isomorphic) whose singular fibers
are all multiples of smooth elliptic curves. Let F be a regular foliation on X . If a finite number
of fibers of the elliptic fibration are F -invariant and all other fibers are transverse to F , then
F is called a turbulent foliation. The underlying elliptic fibration is locally trivial outside the
invariant fibers of F ; the trivialization is given by the foliation. The invariant fibers are regular
or multiples of elliptic curves. Locally around an invariant fiber, let (z,w) be a system of local
coordinates such that the fibration is given by (z,w) 7→ zm where m is the multiplicity of the
fiber. Then the foliation F is locally defined by a local differential form dz−A(z)dw where A

is a holomorphic function which vanishes at 0.

Transversely hyperbolic foliations. Let X be a compact complex surface with a regular holo-
morphic foliation F . A closed positive current T of bidegree (1,1) is called F -invariant if in a
neighbourhood of any point we have T ∧ω = 0 where ω is some holomorphic one-form which
defines locally the foliation. The foliation F is called transversally hyperbolic if there exists
an F -invariant closed positive current T such that, in any open set of X where the leaves of F
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are given by the level sets of a submersion z, there exists a subharmonic function ϕ which only
depends on z and satifies

T =
i
π

∂ ∂̄ϕ and
∂ 2ϕ

∂ z∂ z̄
=−e2ϕ .

Roughly speaking, the current T equips the space of leaves with a hyperbolic metric. For exam-
ple, if X → B is a smooth fibration onto a hyperbolic Riemann surface, then the corresponding
foliation is transversally hyperbolic.

Let Γ be a torsion free cocompact irreducible lattice in PSL2(R)×PSL2(R), then the bidisk
quotient D×D/Γ is a general type surface with two regular transversally hyperbolic holomor-
phic foliations induced by the product structure of D×D which are called tautological folia-

tions. Since Γ is irreducible, its projections in the two factors PSL2(R) are dense and the leaves
of the tautogical foliations are dense in D×D/Γ. This is the only known example of transver-
sally hyperbolic regular foliations on general type surfaces which is not a fibration. See Section
7.1 for more details.

An almost complete classification. Brunella classified all regular holomorphic foliations on
compact complex surfaces.

Theorem 5.1.1 (M.Brunella [Bru97]) Let (X ,F ) be a regularly foliated compact complex

surface. Then one of the following situations holds:

1. F comes from a fibration of X onto a curve;

2. F is an irrational linear foliation on a complex torus;

3. F is an obvious foliation on a non-elliptic Hopf surface;

4. F is an obvious foliation on an Inoue surface;

5. F is an infinite suspension of P1 or an elliptic curve over a compact Riemann surface;

6. F is a turbulent foliation with at least one invariant fiber;

7. F is a transversely hyperbolic foliation with dense leaves whose universal cover is a

fibration of disks over a disk.

Remark 5.1.2 The overlaps in the above list are case 2 with case 5, case 3 with case 6, case 5
with case 6. When a complex torus admits an elliptic fibration, it is straightforward to see that
an irrational linear foliation is also a suspension of an elliptic curve. For overlaps between case
3 and case 6, or case 5 and case 6, see Section 5.5.1.
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5.2 Invariant rational fibration

In this chapter we suppose that (Y,Γ,U,X) is a birational kleinian group and there is a Γ-
invariant rational fibration r : Y → B over a smooth projective curve B. Note that when B is
not a rational curve, any birational transformation group of Y preserves automatically r. We
have a group homomorphism Γ→ Aut(B) whose image will be denoted by ΓB. The ruling r is
equivariant with respect to the action of Γ on Y and that of ΓB on B. By contracting (−1)-curves
which are contained in the fibers of r but which are disjoint from U , we can assume, without loss
of generality, that if a fiber of r intersects U , then its irreducible components of self-intersection
−1 all intersect U .

We recall a basic fact about non relatively minimal ruled surface:

Proposition 5.2.1 Let F be a singular fiber of a ratinoal fibration. Then F is a tree of rational

curves whose components are of self-intersection ≤−1.

Proof The singular fiber F is obtained by successive blow-ups from a regular fiber of a rela-
tively minimal rational fibration, thus a tree of rational curves. The second assertion is because
original regular fiber is of self-intersection 0 and that a blow-up decreases the self-intersection
of the components. �

Lemma 5.2.2 Let F be a fiber which intersects U. Then no element of Γ has an indeterminacy

point on F and no component of F is contracted by an element of Γ.

Proof Let γ ∈ Γ be a non trivial birational transformation. Let us first show that γ does not
contract anything on F . If F is a regular fiber, then it has only one irreducible component and
this component intersects U by hypothesis. Since the action of Γ on U is regular, F can not be
contracted. Now assume that F is a singular fiber. Let Y ε←− Z δ−→Y be the minimal resolution of
indeterminacy of γ , i.e. Z is a smooth projective surface, ε,δ are birational morphisms and γ =

δ ◦ε−1. The irreducible components of a singular fiber are of self-intersection≤−1 and the self-
intersection numbers decrease after blowing up. Thus, by Lemma 5.2.1, the strict transforms of
the irreducible components of F in Z are of self-intersection ≤−2, unless those of some (−1)-
components of F . But by the hypothesis of our initial setting the (−1)-components of F all
intersect U and can not be contracted by γ . This means δ can not contract any (−1)-curve on
the total transform of F in Z, i.e. γ does not contract any component of F .

We remark that the total transform of F by γ is also a fiber of r which intersects U . The
above reasoning, applied to γ−1, says that γ−1 does not contract anything onto F , i.e. γ does not
have any indeterminacy point on F . �
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Corollary 5.2.3 The group Γ acts by holomorphic diffeomorphisms on r−1(r(U)). In particular

if r(U) = B then Γ⊂ Aut(Y ).

The following proposition shows how holomorphic foliations come in our study.

Proposition 5.2.4 Let (Y,Γ,U,X) be a birational kleinian group. Suppose Γ ⊂ Bir(Y ) pre-

serves a fibration r : Y → B. If a fiber F of the invariant fibration intersects U, then F ∩U

contains no singular point of F. Therefore the fibration descends to a regular holomorphic

foliation on X.

Proof Suppose by contradiction that F is a singular fiber and p ∈ F ∩U is a singular point of
F . If γ ∈ Γ, then γ(p) is a singular point of the singular fiber γ(F) since Γ preserve the fibration
and acts by holomorphic diffeomorphisms on U . But a fibration has only finitely many singular
fibers and each singular fiber has only finitely many singular points, so the infinite group Γ

could not act freely on U . �

5.3 Finite action on the base

In this section we will consider the case where ΓB is a finite group. We will prove:

Theorem 5.3.1 Let (Y,Γ,U,X) be a birational kleinian group on a surface Y which is ruled

over a curve B. Assume that Γ preserves the ruling, and Γ induces a finite action on the base

curve B. Then up to geometric conjugation and up to taking finite index subgroup, we are in one

of the following situations:

1. Y =B×P1, Γ⊂{Id}×PGL2(C) and U =B×D where D⊂P1 is an invariant component

of the domain of discontinuity of Γ viewed as a classical Kleinian group.

2. Y is P(E ) where E is an extension of OB by OB. The extension determines a section s of

the ruling. We have U = Y − s. The subgroup of AutB(Y ) fixing s is isomorphic to C in

which Γ is a lattice. The group Γ is isomorphic to Z2 and the surface X is a principal

elliptic fiber bundle.

3. Y is obtained by blowing up a decomposable ruled surface, U is a Zariski open set of Y

whose intersection with each fiber is biholomorphic to C∗. The group Γ is isomorphic to

Z and is generated by an automorphism which acts by multiplication in each fiber. The

quotient surface X is an elliptic fibration over B with isomorphic regular fibers and whose

only singular fibers are multiples of smooth elliptic curves.
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There are examples for each of the three cases.

In the first subsection we will study how Γ acts on each fiber of the ruling. In the second
subsection we present some results on automorphisms of ruled surfaces due to Maruyama that
we will need. In the third subsection we finish the proof of Theorem 5.3.1.

We start the proof of Theorem 5.3.1 by making the following reduction: replacing Γ with

a finite index subgroup, we can and will assume that ΓB = {Id} and that every component of

singular fibers of r is invariant by Γ.

5.3.1 Fiberwise study

Lemma 5.3.2 We have r(U) = B, Γ⊂ Aut(Y ) and the foliation F on X is a fibration.

Proof The set V = r(U) is open because a holomorphic map is an open map. Since ΓB = {Id}
the fibration r induces a commutative diagram:

U π−−−→ Xyr
y f

V −−−→ V

As X is compact, V should be compact too. This implies that V is the whole curve B. By
Corollary 5.2.3, we have Γ ∈ Aut(Y ). The leaves of the foliation on X are the fibers of the map
X →V . They are compact, so the foliation is a fibration. �

Proposition 5.3.3 We have:

— If F ∼= P1 is a general fiber of r : Y → B, then F ∩U, as a subset of P1, is a union of

connected components of the discontinuity of a classical Kleinian group.

— If moreover r : Y → B has at least one singular fiber, then for any singular or non-

singular fiber F, the intersection F ∩U is biholomorphic to C∗ and Γ is isomorphic to

Z.

Proof For any fiber Fb (possibly singular) over a point b ∈ B, there is a homomorphism Γ→
Aut(Fb) with image Γb and the action of Γb on Fb preserves U ∩Fb. The group Γb is isomorphic
to Γ because the action of Γ on U is free. We have a commutative diagram

U π−−−→ Xyr
y f

B −−−→ B

(5.1)
�
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where f is a surjective proper holomorphic map. By [Bar+04] III.11 the sheaf f∗OX is locally
free and the non-singular fibers of f have the same number of connected components. For b∈ B

a general point, Fb is isomorphic to the projective line P1. The quotient of U∩Fb by the action of
Γb is a general fiber of f , that is, a disjoint union of smooth compact curves. This means that Γb

is a classical Kleinian group and U ∩Fb is a union of connected components of the discontinuity
set of Γb.

Suppose that Y has a singular fiber Fb. Every irreducible component of Fb contains at least
one singular point of Fb; by our hypothesis the singular points of Fb are fixed by Γb. If an irre-
ducible component of Fb intersects U then it contains one or two singular points of Fb because
otherwise it would be pointwise fixed by Γb. In particular Γb restricted to each component of
Fb is isomorphic to a solvable subgroup of PGL2(C). So if there is at least one singular fiber,
then the group Γ is solvable. A solvable torsion free classical Kleinian group is isomorphic to
Z or Z2 and its set of discontinuity is biholomorphic to C or C∗ (cf. [Har78]). This implies
that the intersection of U with any fiber is biholomorphic to C or C∗. In particular f : X → B

has connected fibers. Thus for the singular fiber Fb the intersection Fb∩U is connected and is
contained in one component Cb of Fb. The component Cb is necessarily a (−1)-curve because
by our hypothesis every (-1)-curve in the fiber Fb intersects U .

Suppose by contradiction that Γ is isomorphic to Z2. Then the fibration f : X → B is an
elliptic fibration of which general fibers are all isomorphic, i.e. it is isotrivial. Let ∆ be a small
disk centred at b ∈ B and let (x,y) be the local coordinates around the singular fiber Fb where r

is given by x and Fb is defined by x = 0. The isotriviality of f implies that, locally over ∆\{0},
up to holomorphic (not necessarily algebraic) conjugation the action of Γ is generated by two
transformations γ j : (x,y) 7→ (x,y+a j), j = 1,2 where Za1+Za2 is a lattice in C. In other words
there is a sequence of blow-downs r−1(∆)→ ∆×P1 which sends Fb to P1 such that the action
of Γ on r−1(∆) is the lift of the action of Z2 on ∆×P1 generated by γ j : (x,y) 7→ (x,y+a j), j =

1,2. To obtain r−1(∆) from ∆×P1 we blow up the common fixed (infinitely near) points of
γ j, j = 1,2. However in this case the action of γ j, j = 1,2 on the exceptional divisors are always
trivial. Thus we have r−1(∆) = ∆×P1 which contradicts that Fb is a singular fiber.

5.3.2 Automorphism groups of geometrically ruled surfaces

Before continuing our study of birational Kleinian groups preserving a rational fibration, we
collect some preliminaries on automorphism groups of geometrically ruled surfaces. They are
studied by Maruyama in [Mar71]; we will present some of his main results. Our notations are
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those of [Har77] but are different from those of [Mar71]. Let Y be a geometrically ruled surface.
The geometrically ruled surface Y over B is isomorphic to the projective bundle P(E ) where E is
a rank two vector bundle (not unique) over B such that H0(B,E ) 6= {0} and H0(B,E ⊗L ) = {0}
for every line bundle L with deg(L )< 0. The opposite of the degree of

∧2 E , denoted by e, is
an invariant of Y ; the number−e is the minimal self-intersection number of a section of Y → B.
A section with self-intersection number −e is called a minimal section; the sub line bundle of
E which corresponds to the minimal section is called a maximal line bundle. The geometrically
ruled surface Y is called decomposable if there exists a decomposition E = L1⊕L2 where
L1,L2 are line bundles, otherwise Y is called indecomposable. There exist two sections which
do not intersect each other if and only if Y is decomposable.

The group of automorphisms of Y which preserve fiberwise the ruling is denoted by AutB(Y ).
Theorem 2 of [Mar71] says:

Theorem 5.3.4 (Maruyama [Mar71]) 1. If e < 0, then AutB(Y ) is a finite group.

2. If e> 0 and if Y is indecomposable, then AutB(Y )∼= Ck where k = dimH0(B,(detE )−1⊗
L 2) and L ⊂ E is the unique maximal line bundle.

3. If Y ∼= P1×B, then AutB(Y )∼= PGL2(C).

4. If Y ∼= P(E ) with E = L ⊕ (L ⊗N ), N 2 = OB and N 6= OB, then AutB(Y ) is an

extension of C∗ by Z/2Z.

5. If Y is decomposable and does not fit in the previous two cases, then AutB(Y ) is isomor-

phic to the following subgroup of GLk+1(C):

Hk =





α t1 · · · · · · tk
0 1 0 · · · 0
... . . . ...
... . . . ...

0 · · · 0 1


∈ GLk+1(C)


where k = dimH0(B,(detE )−1⊗L 2) and L is a maximal line bundle.

In the second and last case, the action of an element of Hk on the fiber Fb over b ∈ B is basically
(with some abusive identifications) x 7→ αx+ t1l1(b)+ · · ·+ tklk(b) where l1, · · · , lk form a base
of H0(B,(detE )−1⊗L 2).

Corollary 5.3.5 If AutB(Y ) is infinite and not solvable, then Y = B×P1.
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5.3.3 Classification

We turn back to our problem without assuming that Y is geometrically ruled. We still assume
that ΓB = {Id} and that the components of every singular fiber of r is fixed by Γ. By Proposition
5.3.3 we know that if Y is not geometrically ruled then the intersection of U with a general fiber
is biholomorphic to C∗.

Non-abelian case

Proposition 5.3.6 If Γ is not solvable, then Y = P1×B and U = W ×B where W ⊂ P1 is a

connected component of the set of discontinuity of a non-elementary classical Kleinian group.

The quotient surface X is the product of B with a hyperbolic curve.

Proof In particular Γ is not cyclic and Proposition 5.3.3 implies that Y is geometrically ruled.
By Corollary 5.3.5 Y = P1×B. In this case AutB(Y ) = PGL2 C and the intersection of U with
each fiber is the set of discontinuity of some classical Kleinian group. This classical kleinian
group does not depend on the fiber. Since U is connected, the intersection of U with each fiber
is the same component of the discontinuity set. �

Translation in the fibers

As Γ is isomorphic to a classical Kleinian group by Proposition 5.3.3, if it is solvable then
it is isomorphic to Z2 or Z, depending on whether the intersection of U with a fiber is C or C∗.

We first investigate the case where Γ = Z2; in this case Γ acts on each fiber by translations
(translation means parabolic automorphism of P1). In case 2 (resp. case 5) of Maruyama’s
theorem, the action is given, in local coordinate z of the fiber, by

z 7→ z+ t1e1 + · · ·+ tkek (resp. z 7→ αz+ t1e1 + · · ·+ tkek) (5.2)

where e1, · · · ,ek extend to a global base of H0(B,(detE )−1⊗L 2). Since a line bundle has a
nowhere vanishing section if and only if it is trivial, an automorphism can act by non-trivial
translation in every fiber only if the line bundle (detE )−1⊗L 2 is trivial. Writing 0→L →
E →L ′→ 0, we have (detE )−1⊗L 2 = L ⊗ (L ′)−1. Therefore the triviality of (detE )−1⊗
L 2 implies that L −1⊗E is an extension of two trivial line bundles. Thus we obtain:

Proposition 5.3.7 Suppose that the intersection of U with a fiber is C. There is a rank two

vector bundle E on B such that
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1. Y is isomorphic to P(E );

2. We can write E as an extension 0→ OB→ E → OB→ 0 such that U = Y − s(B) where

s : B→ Y is the section determined by this extension, i.e. s 7→ s(b) with s(b) = P(Ob) ∈
P(Eb).

As (detE )−1⊗L 2 = OB, the subgroup of AutB(Y ) fixing s(B) is isomorphic to C by Theo-

rem 5.3.4, in which Γ is a lattice. The surface X is an elliptic fiber bundle over B with fiber

isomorphic to C/Γ.

Remark 5.3.8 The action of C on U descends to an action of C/Γ on X ; this implies that
X is a principal elliptic bundle by Lemma V.5.1 of [Bar+04]. A principal elliptic bundle is
topologically a product of the circle S1 with an S1-bundle (Proposition V.5.2 of [Bar+04]).
We claim that in our case the corresponding S1-bundle is a product. The reason is that the
rank two vector bundle E is topologically trivial because an extension of a trivial bundle by
a trivial bundle always splits in the topological category. If B = P1 and X is Kähler, then the
only possibility is X = (C/Γ)×P1; if B = P1 and X is Kähler, then X is a complex torus or a
hyperelliptic surface (see [Bar+04] Chapter V).

Multiplication in the fibers

We now investigate the case where Γ = Z. We first show that Y can be non geometrically
ruled (cf. Proposition 5.3.3).

Given a decomposable geometrically ruled surface Y0 = P(E ) over B, after tensoring E

with a line bundle, we can suppose that it decomposes as E = OB⊕L . The decomposition
determines two sections S1,S2 on Y0 without intersection. Pick a finite family of fibers F1, · · · ,Fn

over b1, · · · ,bn ∈ B. Choose a positive integer m 6 n. Denote by p1, · · · , pm the intersection
points of F1, · · · ,Fm with S1 and pm+1, · · · , pn the intersection points of Fm+1, · · · ,Fn with S2.
Construct a birationally ruled surface Y over B as follows: Y is obtained from Y0 by successive
blow-ups at p1, · · · , pn and some infinitely near points. For i ≤ m (resp. i > m) the successive
blow-ups on the fiber over pi are executed either at the intersection point of two irreducible
components of the fiber or at the intersection point of the fiber with (the strict transform of)
S1 (resp. S2). We denote by π : Y → Y0 the contraction map. The singular fibers of Y

φ−→ B are
chains of smooth rational curves, i.e. the singular fiber corresponding to Fi is

F̃i =
l(i)

∑
k=0

di,kFi,k;
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here Fi,0 is the strict transform of Fi and the Fi,k are all smooth rational curves among which the
only non vanishing intersection pairings are Fi,k ·Fi,k+1 = 1. We have di,0 = 1 and di,1, · · · ,di,l(i) ∈
N+. Each Fi,k has two distinguished points {0i,k,∞i,k} which are the two intersection points of
Fi,k with other components of the fiber or with (strict transforms of) the two sections S1,S2.
Let’s say that the one which points to S1 is 0i,k.

S1

S2

Fi2

Fi1 = blow up of Fi0 ∩Fi2

Fi0

×λ ×λ 2

×λ

×λ

×λ

0i2

∞i2 = 0i1

∞i1 = 0i0

∞i0

By Theorem 5.3.4, the subgroup of AutB(Y0) fixing S1,S2 is isomorphic to C∗; it acts by
multiplication in the fibers. The C∗-action lifts to an action on Y by automorphisms because
the blow-ups which we did to obtain Y are all at the fixed points of the C∗-action. An element
λ ∈ C∗ acts on a component Fi,k of the singular fiber F̃i by multiplication by λ di,k with fixed
points {0i,k,∞i,k}.

Now for each F̃i, choose a component Fi,k0(i) and consider the open set

U = Y\
(

S1
⋃

S2
⋃
(∪i∪k 6=k0(i) Fi,k)

)
.

We remark that U is Zariski open in Y . The ruling φ restricted to U is a surjective holomorphic
map onto B with fibers biholomorphic to C∗. The quotient of U by λ ∈C∗, |λ | 6= 1 is a compact
complex surface X which admits an elliptic fibration over B. If a fiber of X → B comes from a
non-singular fiber of φ : Y → B, i.e. the fiber over a point that is not one of the p1, · · · , pn, then
it is isomorphic to the elliptic curve C∗/ < λ >. If a fiber of X → B comes from Fi, then it is
the quotient of C∗ = Fi,k0(i)\{0i,k0(i),∞i,k0(i)} by < λ

di,k0(i) >. Hence the only singular fibers of
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the elliptic fibration X → B are multiples of smooth elliptic curves, the multiplicities being the
di,k0(i).

Actually the above construction exhausts all possibilities.

Proposition 5.3.9 If the intersection of U with a fiber is C∗, i.e. if Γ = Z then X is obtained

from the above process. In particular the surface X is an elliptic fibration over B whose singular

fibers are all multiples of smooth elliptic curves.

Proof Recall that by Lemma 5.3.2 Γ ⊂ Aut(Y ). We have also assumed that Γ fixes each irre-
ducible component of a fiber. Therefore the action of Γ descends to an action by automorphisms,
after blowing down some exceptional curves in a fiber. Continuing the blow down untill a ge-
ometrically ruled surface, we infer that the action of Γ on Y comes from a C∗-action on a geo-
metrically ruled surface Y0; and Y is obtained from Y0 by blowing-up fixed points (or infinitely
near fixed points) of the C∗-action. This is exactly how the above process works. �

We denote by X0 the quotient of Y0\S1 ∪ S2 by λ . It is a principal elliptic fiber bundle
over B because the C∗-action descends to X0 (Proposition V.5.2 of [Bar+04]). The surface X is
obtained from X0 by logarithmic transformations which replace the fibers over b1, · · · ,bn ∈ B

with d1,k0(1)E1, · · · ,dn,k0(n)En where Ei = C∗/ < λ
di,k0(i) >.

5.4 Elliptic base

We start with a lemma that will be used in this section as well as in other sections of this
chapter.

Lemma 5.4.1 Suppose that ΓB is an infinite group. Then B is an elliptic curve or P1. Up to

geometric conjugation of birational Kleinian groups, Y is geometrically ruled, r(U) = B and

Γ⊂ Aut(Y ).

Proof The open set r(U) is invariant under the infinite group ΓB. Suppose by contradiction that
r(U) 6= B. Then according to Lemma 2.3.1, it is a connected component of the complement of
a finite union of real subtori, thus a band. The action of ΓB on the band r(U) is by translations
along the direction of the band. Such an action on a band is never cocompact, i.e. the union of
the images under Γ of a compact subset of the band never covers the band. This contradicts the
cocompactness of the action of Γ on U .

By Corollary 5.2.3, the fact r(U) = B implies that Γ ⊂ Aut(Y ). Since ΓB is infinite and B

is an elliptic curve, every point of B has an infinite ΓB-orbit. If there existed a singular fiber of
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r, then its translations by elements of Γ would give rise to an infinite number of singular fibers.
Therefore Y is geometrically ruled. �

In this section we prove:

Theorem 5.4.2 Let (Y,Γ,U,X) be a birational kleinian group on a surface Y which is ruled

over an elliptic curve B. Then up to geometric conjugation and up to taking finite index sub-

group, we are in one of the following situations:

1. Y = P1×B, U = D×B where D ⊂ P1 is a connected component of the discontinuity

domain of a classical Kleinian group. X is a fiber bundle over B or a suspension of B.

2. Y = R0, U = Y − s and U has a structure of algebraic group which is isomorphic to

Aut0(Y ). As a complex analytic Lie group U is isomorphic to C∗×C∗ and the group Γ is

isomorphic to a lattice in U. The quotient X is a torus.

3. Y is decomposable with e = 0, U =Y −(s1∪s2) and U has a structure of algebraic group

which is isomorphic to Aut0(Y ). The quotient X is a torus.

4. Y is obtained by blowing up a decomposable ruled surface, U is a Zariski open set of

Y whose intersection with each fiber is isomorphic to C∗. The group Γ is generated by

an automorphism which acts by multiplication in each fiber. The quotient X is an elliptic

fibration over B whose only singular fibers are multiples of smooth elliptic curves.

Remark 5.4.3 In every case of the above theorem, the open set U is not simply connected.
Except in the first case, U is a Zariski open set.

Let (Y,Γ,U,X) be a birational Kleinian group satisfying the hypothesis of the theorem. The
ruling r : Y → B is identified with the Albanese morphism and is preserved by each element of
Γ. We have an exact sequence

0→ Γr→ Γ→ ΓB→ 0

where Γr preserves fiberwise the fibration and ΓB ⊂ Aut(Y ).

Proposition 5.4.4 If B is an elliptic curve and ΓB is infinite, then X is a complex torus with a

linear irrational foliation or a suspension of B. In the two cases we have r(U) = B.

Proof We apply Theorem 5.1.1 to investigate the possibilities for X . The orbit of a point on B

under ΓB is not discrete and its closure contains a real subtorus (cf. Lemma 2.3.1). This implies
that no leaf of the foliation on X is a submanifold of X . Thus the foliation is not a fibration,
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is not a turbulent foliation because a turbulent foliation has at least one invariant elliptic curve,
is not an obvious foliation on a Hopf surface because the smooth elliptic curves on the Hopf
surface are invariant. Here the base curve B is elliptic so the foliation is transversely Euclidean;
this rules out transversely hyperbolic foliations on surfaces of general type (cf. [Bru97] p592
first paragraph) and obvious foliations on Inoue surfaces because (cf. [Zhab]). The foliation on
X cannot be a suspension of P1 because otherwise U would be covered by P1s and the only P1

in Y are the fibers of the rational fibration so there is no P1 transverse to the foliation. There
are only two possibilities left: either X is a complex torus with an irrational linear foliation
or X is an infinite suspension of a hyperbolic curve over an elliptic curve (note that an infinite
suspension of an elliptic curve over an elliptic curve is an irrational linear foliation on a torus).�

Remark 5.4.5 Automorphisms of geometrically ruled surfaces are faily well understood and
we do not really need the full strength of Brunella’s work to study those groups with Kleinian
property, as we shall see shortly.

We use the notations of section 5.3.2. We recall that AutB(Y ) is the subgroup of Aut(Y )
which preserves each fiber; it is described by Theorem 5.3.4. It is well known that, up to iso-
morphisms, there are only two indecomposable geometrically ruled surfaces over an elliptic
curve B: R0 with e = 0 and R1 with e = 1 (see [Har77][Chapter 5]). Now we describe the whole
automorphism group of the geometrically ruled surface Y :

Theorem 5.4.6 (Maruyama [Mar71]) Let Y be a geometrically ruled surface over an elliptic

curve B.

1. If Y = P1×B, then Aut(Y ) = PGL2(C)×Aut(B).

2. If Y is decomposable and e 6= 0, then we have an exact sequence of algebraic groups

0→ AutB(Y )→ Aut(Y )→ G→ 0

where G is a finite subgroup of Aut(B).

3. If Y is decomposable with e = 0 and if Y 6= P1×B, then we have an exact sequence of

algebraic groups

0→ AutB(Y )→ Aut(Y )→ G→ 0

where AutB(Y ) is isomorphic to C∗ or an extension of C∗ by Z/2Z, and G is a subgroup

of Aut(B) containing Aut0(B). If s1, s2 are the minimal sections, then Y − (s1 ∪ s2) is

a principal C∗-bundle over B which has a structure of commutative algebraic group.

88



5.4. Elliptic base

The algebraic group Y − (s1 ∪ s2) is isomorphic to the connected component of identity

Aut0(Y ).

4. If Y = R0, then we have an exact sequence of algebraic groups

0→ C→ Aut(Y )→ Aut(B)→ 0.

If s is the minimal section, then Y −s is a principal C-bundle over B which has a structure

of commutative algebraic group. The algebraic group Y−s is isomorphic to the connected

component of identity Aut0(Y ).

5. If Y = R1, then we have

0→ AutB(Y )→ Aut(Y )→ Aut(B)→ 0

where AutB(Y ) is isomorphic to Z/2Z×Z/2Z.

Remark 5.4.7 In the case of Y = R0, the group law on Y − s is explicitly computed in terms
of the Weierstrass function in [LMP09]. As a complex analytic Lie group, it is isomorphic to
C∗×C∗ but the isomorphism is not algebraic. The variety Y−s is the space of linear connections
on B and the holomorphic isomorphism Y − s→ C∗×C∗ is the Riemann-Hilbert mapping (cf.
[LMP09]).

Remark 5.4.8 We describe here more in detail the geometry of R1. The sections of R1 → B

which have self-intersection 1 are in bijection with line bundles of degree one on B; thus they are
parametrized by B (cf. [Mar71]). There exist two sections of self-intersection 1 passing through
a general point of R1; through some points only one section of self-intersection 1 passes. This
assertion is summarized in a morphism from B×B to R0 which is a ramified double cover:
a point (b,β ) ∈ B× B is sent to the intersection point of the fiber over b with the section
of self-intersection 1 parametrized by β . The involution associated with this ramified double
cover is (b,β ) 7→ (b,−b−β ) (cf. [Dia]). Let a,a′ ∈ B such that a = 2a′. The automorphism of
B×B defined by (b,β ) 7→ (b+ a,β − a′) commutes with the involution, thus descends to an
automorphism of R1 whose action on the base B is b 7→ b+ a. Theorem 5.4.6 says that every
automorphism of R1 comes from this construction.

Proof (of Theorem 5.4.2) We already treated the case when ΓB is finite in theorem 5.3.1. This
is covered by case 1), 2), 4) of Theorem 5.4.2.
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From now on we assume that ΓB is infinite. We apply Theorem 5.4.6 case by case. From
the infiniteness of AutB(Y ) we infer that Y is not decomposable with e 6= 0. The surface Y is
not R1 because Aut(R1) is compact and an infinite subgroup of a compact group cannot act
discontinuously.

Assume that Y is decomposable with e = 0. The two minimal sections s1 and s2 are disjoint
from U because they are invariant under Aut(Y ). The universal cover of the complex analytic Lie
group Y − (s1∪ s2) is necessarily C2 because it is commutative. Hence we obtain immediately
that U = Y − (s1∪ s2) and X is a complex torus. Assume that Y = R0. The same reasoning tells
us that U = Y − s and X is a torus.

Assume that Y = P1×B. By Proposition 5.4.4 the foliation on X induced by Y → B is a
linear foliation on a torus or a suspension of B over a hyperbolic curve. If X is a torus then the
intersection of U with any fiber of Y → B is biholomorphic to C or C∗; the conclusion follows
immediately in this case. Assume that X is a suspension over a hyperbolic curve. The fibration
Y → P1 induces a second regular foliation on X which is transverse to the first one; this second
foliation must be the elliptic fibration subjacent to the suspension. The conclusion follows. �

5.5 Turbulent foliations, Hopf surfaces, suspensions of P1

From now on we consider the case where B = P1 and ΓB is infinite. By Proposition 6.2.1
the rational fibration Y → B induces a regular foliation F on X . We apply Theorem 5.1.1 to the
induced foliation on X and study it case by case. We will treat all cases in this chapter except
Inoue surfaces and the case where X is of general type and F is a minimal transversely hyper-
bolic foliation. Minimal transversely hyperbolic foliations will be studied in the next chapter.
The case of Inoue surfaces is treated in [Zhab] and Appendix B where results stronger than what
we need are proved; a corollary of the main result is:

Theorem 5.5.1 ([Zhab], Appendix B) Let S be an Inoue surface. Then up to geometric conju-

gation there is only one birational Kleinian group (Y,Γ,U,X) such that X = S. It corresponds

to the standard construction of the Inoue surface by taking the quotient of H×C by a group of

affine transformations.

We need here only the case where Γ preserves a rational fibration. As the proof is still a bit
lengthy, we refer simply the reader to [Zhab] and Appendix B.
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5.5.1 Some examples

The Hirzebruch surface Fn is the projectivization of the rank two vector bundle O⊕O(n) on
P1. The subbundles O and O(n) determine two sections. The complement of these two sections,
denoted by Wn, is isomorphic to the principal C∗-bundle over P1 associated with the line bundle
O(n). The quasi-projective variety W0 is a product C∗×P1. The quasi-projective variety W1 is
isomorphic to C2\{0}. For n ≥ 1, W1 is an unramified cover of degree n of Wn; the cover is
given in each fiber by w 7→ wn.

The automorphism group of Fn is connected and fits in the following exact sequence (cf.
[Mar71]):

1→ Hn+1→ Aut(Fn)→ Aut(P1)→ 1

where Hn+1 is the group defined in Theorem 5.3.4. Using coordinates we have

Aut(Fn)=

{
(x,y) 99K

(
ax+b
cx+d

,
y+ t0 + t1x+ · · ·+ tnxn

(cx+d)n

)
|

(
a b

c d

)
∈ GL2(C), t0, · · · , tn ∈ C

}
.

The action around the fiber at infinity is obtained by the change of coordinates (x,y) 7→ (1
x ,

y
xn ).

In particular for the automorphism (x,y) 7→ (ax,by) with a,b ∈ C∗, the action on the fiber at
infinity is multiplication by b

an ; for the automorphism (x,y) 7→ (x+ c,by) with a,b ∈ C∗, the
action on the fiber at infinity is multiplication by b.

Example 5.5.2 Take a,b ∈ C∗ such that 0 < |b| < 1 and |b| < |a|n. The automorphism fn,a,b :
(x,y) 7→ (ax,by) of Fn preserves Wn and acts freely properly discontinuously and cocompactly
on Wn. The action of f1,a,b on W1 is nothing else but the linear contraction (z,w) 7→ (bz, b

an w)

on C2\{0}. Let X denote the quotient surface =Wn/ < fn,a,b >. If a is a root of unity then the
foliation on X induced by the rational fibration is a genus one fibration.

Assume that a is not a root of unity. When n = 0, the quotient is a ruled surface over the
elliptic curve C∗/ < b >; the foliation induced by the rational fibration is a suspension of P1.
When n > 0 the surface X is a Hopf surface with two elliptic curves isomorphic to C∗/ < b >

and C∗/ < b
an >; the foliation on X comes from the foliation by straight lines on the universal

cover C2\{0} (one of the obvious foliations). No matter what n is, a and b are multiplicatively
dependent if and only if X is equipped with an elliptic fibration; in this case the foliation on X

is a turbulent foliation with respect to that elliptic fibration.
We can modify the above examples by adapting the construction in Section 5.3.3. We blow

up Fn at the fibers over x = 0 or x = ∞ to obtain a new surface Y ; the points we blow up are
intersection points of irreducible components with other irreducible components or with the
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strict transforms of the two sections of Fn. The points we blowed up are fixed points of the
fn,a,b. Thus fn,a,b acts also by automorphism on Y ; its action on an irreducible component of
a fiber is by multiplication. Let U ⊂ Y be a C∗-fibration over P1 which is the complement in
Y of the union of strict transforms of the two sections with some components of the singular
fibers, as in Section 5.3.3. Then for suitable choice of a,b, the action of fn,a,b on U is free,
properly discontinuous and cocompact. The quotient is either a Hopf surface or a ruled surface
over an elliptic curve. If the quotient is a ruled surface then U is foliated by rational curves of
self-intersection 0; this forces U to be a product. Hence the quotient is a ruled surface if and
only if the birational Kleinian group is conjugate to the action of f0,a,b on F0 = P1×P1.

Example 5.5.3 Take 0 < |b| < 1 and c ∈ C∗. The automorphism gn,b,c : (x,y) 7→ (x+ c,by)

of Fn preserves Wn; its action on the fiber at infinity is multiplication by b. If n = 0 then the
quotient of W0 by g0,b,c is a ruled surface over an elliptic curve equipped with a suspension
foliation. The action of g1,b,c on W1 is nothing else but the contraction (z,w) 7→ (bz+bcw,bw)

on C2\{0}. For n ≥ 1 the quotient of Wn by gn,b,c is a Hopf surface with only one elliptic
curve. It has un unramified cover which is a primary Hopf surface corresponding to the normal
form (z,w) 7→ (bz+ γw,bw) where γ is some number depending on n,b,c. Remark that this
construction does not give all primary Hopf surfaces with only one elliptic curve, but only
those with linear normal form. The foliation induced by the rational fibration corresponds to the
foliation by lines in C2\{0}.

As in Example 5.5.2 we can modify the above construction by blowing up the invariant
fiber.

Example 5.5.4 Consider two automorphisms fi : (x,y) 7→ (x+ ai,y+ bi), i = 1,2 of P1×P1.
Suppose that Zb1 +Zb2 is a lattice in C. Then f1 and f2 preserve U = P1×C ⊂ P1×P1; the
data (P1×P1,< f1, f2 >,U) give a birational Kleinian group. The quotient X =U/ < f1, f2 >

is a ruled surface over the elliptic curve C/(Zb1 +Zb2) and the foliation on X induced by the
rational fibration is a suspension. If moreover Za1 +Za2 is a lattice in C such that the elliptic
curve C/(Za1 + Za2) is isogeneous to C/(Zb1 + Zb2), then X is equipped with an elliptic
fibration so that the foliation is turbulent. The turbulent foliation has one compact leaf.

Consider two automorphisms g1,g2 of P1×P1 defined by g1 : (x,y) 7→ (x,y+ b1) and g2 :
(x,y) 7→ (ax,y+b2). Suppose that Zb1+Zb2 is a lattice in C. Then g1 and g2 preserve U = P1×
C ⊂ P1×P1; the data (P1×P1,< g1,g2 >,U) give a birational Kleinian group. The quotient
X =U/ < g1,g2 > is a ruled surface over the elliptic curve C/(Zb1+Zb2) and the foliation on
X induced by the rational fibration is a suspension. If moreover < a > is a lattice in C∗ such that
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the elliptic curve C∗/< a> is isogeneous to C/(Zb1+Zb2), then X is equipped with an elliptic
fibration so that the foliation is turbulent. The turbulent foliation has two compact leaves.

Remark 5.5.5 There are no analogues of Example 5.5.4 for Fn with n ≥ 1. For n ≥ 1 the
action of (x,y) 7→ (x+ a,y+ b) on the fiber at infinity is trivial and (x,y) 7→ (ax,y+ b) acts as
multiplication by 1

an on the fiber at infinity.

We can see in another way that there are no such analogues when n ≥ 1. Let Un be the
complement of the minimal section in Fn; it is a C-bundle over P1. If the quotient of Un by an
automorphism group isomorphic to Z2 is a compact surface then the compact surface would
be Kähler because a compact complex surface with even second Betti number is Kähler (cf.
Theorem IV.3.1 [Bar+04]). However Un is not the universal cover of any compact Kähler surface
because if the universal cover of a compact Kähler surface is non-compact and quasi-projective
then it is C2 or C×P1 (cf. [Cla]).

5.5.2 Some characterizations

Proposition 5.5.6 If r(U) = B then F is a turbulent foliation, an obvious foliation on a Hopf

surface or a suspension of P1.

Proof We assume that r(U) = B.

Assume that X is of general type and that F is a minimal transversely hyperbolic foliation.
In this case there is a fibration f : X̃ → D from the universal cover X̃ to the disk D with fibers
all biholomorphic to D; furthermore there is a representation ρ : π1(X)→ PSL2(R) with dense
orbits with respect to which f is equivariant (cf. Theorem 7.1.1). The leaves of F come from
the fibers of f . In our situation F comes also from the fibration U → r(U). We obtain thus a
commutative diagram

X̃ −−−→ Uy y
D −−−→ r(U)

where all arrows are equivariant. The map D→ r(U) is surjective and equivariant under the
homomorphism ρ(π1(X))→ ΓB. In particular r(U) is a hyperbolic Riemann surface, thus a
proper subset of B.

Assume that F is a linear foliation on a torus. A linear foliation on C2 is induced by the
projection of C2 onto some subvector-space of dimension one. The induced action of π1(X) on
that subspace, which is isomorphic to C, is by translations; the image of π1(X) is a free abelian
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group of rank 2,3 or 4, depending on whether the leaves of F are elliptic curves, C∗ or C. As
in the previous case, we obtain a surjective holomorphic map C→ r(U) that is equivariant with
respect to the homomorphism π1(X)→ ΓB. This forces r(U) to be C or C∗.

F is not a fibration by Lemma 5.7.1 that we prove later. Inoue surfaces are excluded by
Proposition 5.5.1. By Theorem 5.1.1 the only possibilities for which r(U) = B are those listed
in the proposition. �

Proposition 5.5.7 If F is a turbulent foliation then up to a geometric conjugation preserving

the rational fibration and up to replacing Γ with a finite index subgroup we are in one of the

cases described in Examples 5.5.2 and 5.5.4.

Proof Let f : X → C be the elliptic fibration subjacent to the turbulent foliation. At least one
fiber of f is a leaf of F ; let E be such a fiber. Denote by π the covering map from U to X .
A connected component of π−1(E) is a connected component of the intersection of U with
some fiber of r; it must be biholomorphic to C or C∗. Recall that we have an exact sequence
π1(E ′)→ π1(X)→ πorb

1 (C)→ 1 where E ′ is a general fiber of f . If E ′′ is a multiple fiber of f

then the image of π1(E ′′) in π1(X) includes the image of π1(E ′) as a subgroup of finite index.
Let G⊂ Γ be the image of the composition π1(E ′)→ π1(X)→ Γ. Then G is a normal subgroup
of Γ; it is the image of π1(E) in Γ if E is non-multiple and is a finite index subgroup of it if E

is multiple. Let F be a fiber of r such that π(U ∩F) = E. The action of G preserves U ∩F and
(U ∩F)/G = E. Furthermore for any fiber E ′ of f , for any connected component Ω of π−1(E ′),
G preserves Ω and Ω/G is an elliptic curve which is E ′ if E ′ is non multiple. Thus U/G is an
elliptic fibration over a possibly non-compact base. G is cyclic if U ∩F = C∗ and is isomorphic
to Z2 if U ∩F = C.

Denote by GB the image of G in ΓB. We claim that GB is infinite. Take a general fiber E ′

of f which is transverse to the turbulent foliation F . Let Ω ⊂ U be a connected component
of π−1(E ′). Ω is transverse to the rational fibration r and r restricted to Ω is a covering map.
Therefore r(Ω)⊂ r(U) is C∗ or C. The claim follows because Ω/G = E ′ and r|Ω is equivariant
under the homomorphism G→ GB.

We claim that an element of infinite order of Γ is contained in G. Let γ ∈ Γ be of infinite
order. γ(U∩F) is also a connected component of π−1(E) and γ(U∩F)/G is also E because G is
a normal subgroup. This implies in particular that G preserves the fiber γ(F). As GB is infinite,
there are at most two fibers preserved by G. By replacing γ with γ2 we have γ(F) = F . The
action of < γ,G > on U ∩F is discrete if and only if γ is already in G because (U ∩F)/G = E

is already compact and γ is of infinite order.
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Therefore G is a normal abelian subgroup of Γ of finite index. Up to raplacing Γ with a
finite index subgroup of G, we can and will suppose that G = Γ and that Γ,ΓB are free abelian
groups of rank one or two. Let us say that the fiber F is over the point at infinity ∞ of B = P1.
Denote by R⊂ B the set of fixed points of GB. It contains ∞ and has at most two elements; we
let the other element be 0 if it exists. r(U)\R is C or C∗; ΓB acts respectively by translations or
multiplications. Any point in r(U)\R has an infinite ΓB-orbit. Thus by Corollary 5.2.3 r has no
singular fibers over r(U)\R. The fibers over points of R correspond to fibers of f : X →C that
are tangent to F . Denote by S the subset of C over which the fibers are tangent to F ; it has the
same cardinality as R. The foliation F restricted to f−1(C\S) is everywhere transverse to the
elliptic fibration f , thus is a suspension. We have

π
−1 ( f−1(C\S)

)
= r−1(r(U)\R)∩U

and we denote this open set by M.
Let Ω be the preimage in M of a fiber E ′ of f over C\S. It is biholomorphic to C if Γ

is of rank two and to C∗ if Γ is of rank one. It is transverse to the rational fibration r. It is
invariant under Γ; the quotient is E ′. The projection Ω→ r(U)\R induced by r is equivariant
with respect to Γ→ ΓB and is an unramified covering. This implies that (r(U)\R)/ΓB is an
elliptic curve isogeneous to E ′ and we are in one of the following situations:

1. Γ and ΓB are cyclic, r(U)\R is C∗;

2. Γ and ΓB have rank two, r(U)\R is C;

3. Γ is of rank two, ΓB is cyclic, r(U)\R is C∗.

Let us consider firstly the first two cases. In these two cases the covering map Ω→ r(U)\R
is finite. For any x∈ r(U)\R, r−1(x)∩Ω is a finite set. Thus a leaf of F transverse to f intersects
a fixed fiber only a finite number of times. This implies that for any x ∈ r(U)\R, r−1(x)∩U is
biholomorphic to a finite unramified cover of C\S, thus a Riemann surface of finite type. This
is only possible if C = P1 because r−1(x)∩U is an open set of P1. In the first case we obtain
that R = {0,∞}, r(U) = B and r−1(b)∩U is biholomorphic to C∗. In the second case we obtain
that R = {∞}, r(U) = B and r−1(b)∩U is biholomorphic to C. The fact r(U) = B allows us to
suppose Γ⊂ Aut(Y ) by Corollary 5.2.3.

Recall that Y has no singular fibers over r(U)\R. In the first case we can conclude from
the discussions in Example 5.5.2 that we are in Example 5.5.2. We need to show that if we are
in the second case then we are in Example 5.5.4. In this case U is a C bundle over P1 and is
necessarily a Zariski open set. Then Remark 5.5.5 allows us to conclude.
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Finally let us consider the third case. In this case r−1(∞)∩U is isomorphic to C and Γ

acts by translations on them. In this case an infinite cyclic subgroup H of Γ preserves fiber by
fiber the rational fibration. The projection Ω→ r(U)\R is an infinite cyclic covering, i.e. the
exponential map from C to C∗. Using again the fact the foliation on M is a suspension of E ′

over C\S, we deduce that for any b ∈ r(U)\R, r−1(b)∩U is an infinite cyclic cover of C\S.
Moreover the quotient of r−1(b)∩U by H is a finite cover of C\S, thus a Riemann surface
of finite type. Therefore H can be viewed as a cyclic (not neccessarily cocompact) classical
Kleinian group in the fiber r−1(b). Then we have two possibilities because S has cardinality 1
or 2: 1) r−1(b)∩U is C, C = P1 and C\S is C∗; 2) r−1(b)∩U is the complement in C∗ of one
or two orbits under a multiplication map and C is an elliptic curve.

Suppose by contradiction that C is an elliptic curve. Then for any b∈ r(U)\R=C∗, r−1(b)∩
U is biholomorphic to the complement in C∗ of one or two orbits under a multiplication map
because S has cardinality 1 or 2. In this case Γ = Z2 is generated by an element γ1 whose action
over r(U)\R = C∗ is by multiplications in the fibers and another element γ2 whose image in ΓB

is a multiplication. By Theorem 1.5.3 (the part we use here is due to [CD12b]), γ1,γ2 can be
written respectively as (x,y) 7→ (x,ay) and (x,y) 7→ (bx,R(x)y) with a,b ∈ C∗ and R ∈ C(x)∗.
Recall that we have an Γ-invariant fiber F over x = ∞ such that F ∩U = C and Γ acts by
translations on F ∩U . This gives a contradiction because γ1 acts on any component of F by
multiplication.

Therefore we obtain that C = P1, C\S = C∗ and r−1(b)∩U = C. As S has cardinality two,
we have R = {0,∞} and r(U) = B. Again r(U) = B implies Γ ⊂ Aut(Y ) by Corollary 5.2.3.
Thus we infer that U is the complement in Y of a section, thus a C-bundle over P1. This implies
again by Remark 5.5.5 that Y is P1×P1. Hence we are in Example 5.5.4. �

Proposition 5.5.8 Suppose that F is an obvious foliation on a non-elliptic Hopf surface. Then

up to a geometric conjugation preserving the rational fibration and up to replacing Γ with a

finite index subgroup we are in one of the following situations:

1. X has two elliptic curves and we are in Example 5.5.2.

2. X has one elliptic curve and we are in Example 5.5.3.

3. U is the standard open set C2\{0} of Y = P1×P1 and Γ is generated by the normal form

(x,y) 7→ (αx+ γym,βy).

Proof Since the fundamental group of Hopf surface is virtually cyclic, the open set U is a
finite quotient of C2\{0}. If F comes from the foliation by parallel lines on C2\{0}, then
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the intersection of U with a fiber of r is C except for one which is C∗. Such an open set is
necessarily C2\{0}. As the normal form is already birational and preserves a rational fibration,
our situation is necessarily conjugate to it.

Assume now that F is not a foliation by parallel lines. The space of leaves of any infinite
cover of X is P1. Thus r(U) = P1. By Corollary 5.2.3 this implies Γ⊂ Aut(Y ). The open set is
necessarily one of the Zariski open sets appeared in Examples 5.5.2 and 5.5.3 because every leaf
is biholomorphic to C∗. Hence we are in Example 5.5.2 if ΓB is generated by a multiplication
and in Example 5.5.3 if ΓB is generated by a translation. �

Proposition 5.5.9 Suppose that r(U) = B and that F is a suspension foliation. Then it is a

suspension of P1 and we have, up to a geometric conjugation preserving the rational fibration

and up to replacing Γ with a finite index subgroup, that Y = P1×P1, Γ⊂ PGL2(C)×PGL2(C).

The projection of Γ onto the second factor is a classical Kleinian group; we have U = P1×D

where D⊂P1 is a connected component of the domain of discontinuity of that classical Kleinian

group.

Proof As the leaves in U are parametrized by r(U) = P1, the suspension must be over P1.
Therefore any unramified cover of X is covered by smooth rational curves. In particular U is
covered by rational curves of self-intersection 0 which are transverse to the rational fibration.
This implies that we have up to geometric conjugation U ⊂ P1×P1 and the the rational curves
in U are fibers of the other rational fibration. The conclusion follows. �

5.6 Suspensions

We continue our study under the hypothesis B = P1 and ΓB is infinite. We denote the cov-
ering map U → X by π . Denote by Γr the subgroup of Γ that preserves the fibration r : Y → B

fiber by fiber. We have an exact sequence

1→ Γr→ Γ→ ΓB→ 1.

By Corollary 5.2.3 Γ acts by holomorphic diffeomorphisms on r−1(r(U)). In this section we
consider the case where the induced foliation F on X is an infinite suspension of N over M.
Either N is an elliptic curve or it is P1. We have a fibration f : X → C of which all fibers are
isomorphic to N; the foliation F is transverse to this fibration f . The foliation induced by f

lifts to a second foliation G on U , transverse to the rational fibration r. By the transversality, we
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infer that, restricted to every leaf of G , r is an unramified covering map onto r(U). The covering
map π restricted to a leaf of G is a covering map onto a fiber of f , which is isomorphic to N.
From this we deduce immediately:

Lemma 5.6.1 If N is P1 then r(U) = B and the situation is described by Proposition 5.5.9. If

N is an elliptic curve then r(U) is isomorphic to C or C∗.

From now on we assume that N is an elliptic curve. Recall the construction of suspension.
There exist an infinite covering M̄ of M with deck transformation group G and a representation
α : G→ Aut(N) such that X is the quotient of M̄×N by the action of G defined by g · (m,n) =

(g ·m,α(g) · n). Up to replacing M̄ with a quotient, we can assume that α is injective. Up to
replacing G with a subgroup of finite index, we can assume that it is an abelian group, i.e. α(G)

is a group of translations on N. The fundamental group of M̄×N is π1(M̄)× π1(N) and the
fundamental group of X fits in the exact sequence

1→ π1(M̄)×π1(N)→ π1(X)→ G→ 1.

Denote by M̃ the universal cover of M. The universal cover of X is M̃×N. Any element of π1(X)

acts on M̃×C in a diagonal way; the action on the C factor is a translation. Thus π1(N) is in the
center of π1(X). Our birational Kleinian group Γ is a quotient of π1(X). Denote respectively by
Γ1 and Γ2 the images of π1(N) and π1(M̄) in Γ; they are normal subgroups of Γ. Up to replacing
Γ by a subgroup of finite index, we can and will assume that Γ1 is a free abelian group of rank
one or two. The center of Γ includes Γ1. Remark that we do not have necessarily Γ1∩Γ2 = {1}
because we are taking quotients. Denote by Γ3 the quotient Γ/(Γ1Γ2); it is isomorphic to a
quotient of G. Denote by q the epimorphism Γ→ Γ3.

Lemma 5.6.2 1. Γ1 preserves each leaf of the foliation G . The image Γ1B of Γ1 in ΓB is

an infinite group of translations if r(U) = C or an infinite group of multiplications if

r(U) = C∗.

2. r has no singular fibers over r(U) and r−1(r(U)) = r(U)×P1.

3. Let Ω be a connected component of the intersection of U with a fiber of the rational

fibration r and let ΓΩ be the subgroup of Γ that preserves Ω. Then ΓΩ = Γ2 ⊂ Γr.

Proof The foliation G on U is the pull-back of the elliptic fibration on X . The first assertion is
a consequence of the following two observations that we made earlier: 1) r restricted to a leaf
of G is a covering map onto r(U) and that r(U) is C∗ or C; 2) π restricted to a leaf of G is a
covering map onto a fiber of the elliptic fibration f .
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By Corollary 5.2.3 Γ acts by holomorphic diffeomorphisms on r−1(r(U)). If there was a
singular fiber then there would be an infinite number of them by the first assertion. Hence the
second assertion.

Let us prove now the third assertion. The connected component Ω is a leaf of π∗F and π(Ω)

is a leaf of F ; π(Ω) =Ω/ΓΩ is biholomorphic to M̄. Thinking of a fundamental group as a deck
transformation group, it follows from the definition of Γ2 that ΓΩ = Γ2. As a consequence ΓΩ

is a normal subgroup of Γ and does not depend on Ω. This implies that ΓΩ ⊂ Γr. �

Lemma 5.6.3 ΓB is not virtually cyclic.

Proof Suppose by contradiction that ΓB is virtually cyclic. We know already that Γ1B is infinite.
Thus ΓB is virtually Γ1B. By the first assertion in the above lemma, we know that the action of ΓB

on r(U) is discrete. Therefore r(U)/ΓB is an orbifold Riemann surface and we have a surjective
holomorphic map from X to r(U)/ΓB whose fibers are leaves of F . This contradicts that F is
an infinite suspension foliation. �

Lemma 5.6.4 Up to geometric conjugation of birational Kleinian groups realized by elemen-

tary transformations, we have Y =P1×P1 (we let r to be the projection onto the first factor) and

Γ1 is a subgroup of one of the following four groups: {(x,y) 7→ (ax,by)|a,b ∈ C∗},{(x,y) 7→
(ax,y+b)|a ∈C∗,b ∈C},{(x,y) 7→ (x+a,by)|a ∈C,b ∈C∗} or {(x,y) 7→ (x+a,y+b)|a,b ∈
C}. In the first two cases r(U) = C∗; in the last two cases r(U) = C.

Proof Recall that Γ1 is in the center of Γ. The action on B of the centralizer of a Jonquières
twist is virtually cyclic by Theorem 1.5.2. Thus by the previous lemma we conclude that Γ1

contains no Jonquières twists and is an elliptic free abelian group. Then there exist a birational
map φ : Y → P1×P1, composition of elementary transformations, such that φΓ1φ−1 is included
in one of the four groups in the statement (see Theorem 1.5.3). It remains to show that the
conjugation φ can be chosen to be a geometric conjugation of birational Kleinian group; the
reason is as follows. Up to post-composition with an automorphism of P1×P1 we observe that
the elementary transformations composing φ can be made over any point in B. As r(U) is a
proper subset of B, we can do elementary transformations on a fiber over a point outside r(U).
Such an elementary transformation has no effects on U or on the dynamics of Γ on U ; in other
words elementary transformations outside U realize a geometric conjugation of Γ. �

Proposition 5.6.5 Γ is a subgroup of PGL2(C)×PGL2(C) acting on Y = P1×P1. The open

subset U ⊂ Y is Ω1×Ω2 where Ω2 is C or C∗ and Ω1 ⊂ P1 is biholomorphic to M̄.
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Proof We see from the previous lemma that Γ1 acts separately on the x and y, the action on the
x coordinate being Γ1B. Assume first that its action on the y coordinate is finite. Since Γ1 is a
central abelian subgroup of Γ, we can replace Γ with a subgroup of finite index to assume that
the action of Γ1 on the y coordinate is trivial. Let L be a leaf of G . Recall that L is biholomorphic
to C or C∗, is transverse to the rational fibration (x,y) 7→ x, is preserved by Γ1 and L/Γ1 is
isomorphic to N, being a fiber of X→C. This forces L to be r(U)×{y} for some y∈ P1. Hence
the open set U is as described in the statement. We obtain also that the foliation G is induced by
the projection of P1×P1 =Y onto the second factor. Therefore Γ preserves this second rational
fibration as well. This implies that Γ is a subgroup of PGL2(C)×PGL2(C) (cf. ).

Now assume that the action of Γ1 on the y coordinate has transformations of infinite order.
Then Γ1 contains elements with infinite actions on both x and y coordinates. Recall that Γ1 is
in the center of Γ. Thus by Theorem 1.5.1, Γ is a subgroup of PGL2(C)×PGL2(C). Therefore
the projection of P1×P1 =Y onto the second factor induces a foliation F ′ on X . This foliation
is transverse to F and is not the elliptic fibration f because the sets {y = constant} are not
invariant under Γ1. Remark that X has Kodaira dimension ≥ 0 because it is a genus one bun-
dle over M which is a compact Riemann surface with infinite fundamental group. Proposition
4.3 of [Bru97] tells us that a regular foliation on a genus one bundle of non-negative Kodaira
dimension is either the genus one fibration or a (not necessarily infinite) suspension or a turbu-
lent foliation. We said that F ′ is not the fibration; it is not a turbulent foliation either by the
characterizations given in Proposition 5.5.7. Therefore F ′ is another (possibly finite) suspen-
sion foliation. The genus one fibration, F and F ′ are transverse to each other. Thus these three
foliations trivialize the projectivized tangent bundle of X . Consequently X has trivial first Chern
class, and is a complex torus or a K3 surface. As there are no regular foliations on a K3 surface
(cf. [Bru97] 5.Proposition 7), X is a complex torus. As a consequence, F is a irrational linear
foliation on X and its leaves are biholomorphic to C or C∗. This implies that the intersection of
U with a fiber of r is C or C∗. Together with the fact Γ ⊂ PGL2(C)×PGL2(C), this implies
that U is either C×C, or C×C∗, or C∗×C, or C∗×C∗. Thus in this case the proposition also
holds. �
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5.7 Fibrations

5.7.1 Classical Kleinian groups in base and fibers

We continue our study under the hypothesis B = P1 and ΓB is infinite. In this section we
consider the case where the induced foliation F on X is a fibration f : X →C. We denote the
covering map U→X by π . Denote by Γr the subgroup of Γ that preserves the fibration r : Y →B

fiber by fiber. We have an exact sequence

1→ Γr→ Γ→ ΓB→ 1.

By Corollary 5.2.3 Γ acts by holomorphic diffeomorphisms on r−1(r(U)). For a point x ∈
r(U) we denote by Γx the subgroup of Γ that preserves the fiber r−1(x). The group Γx acts by
automorphims on r−1(x). The group Γr is a normal subgroup of Γx for any x.

Lemma 5.7.1 1. For any x ∈ r(U), the intersection of U with r−1(x) has finitely many con-

nected components.

2. If Ω is a connected component of U ∩ r−1(x), then the subgroup ΓΩ of Γ preserving Ω is

a finite index subgroup of Γx.

3. For any x ∈ r(U), the fiber r−1(x) is non-singular, i.e. r−1(x) = P1.

4. r(U) is a proper subset of B = P1.

Proof Let Ω be a connected component of U ∩r−1(x) for some point x∈ r(U). It is a leaf of the
foliation π∗F on U , i.e. π(Ω) is a fiber of f : X →C. We assume that it is not a multiple fiber.
Denote by ΓΩ the subgroup of Γ that preserves Ω; it is a subgroup of Γx. The quotient of Ω by
ΓΩ is the fiber π(Ω). The group ΓΩ is the image of the composition π1(π(Ω))→ π1(X)→ Γ.
The fibration f : X →C induces an exact sequence

π1(π(Ω))→ π1(X)→ π
orb
1 (C)→ 1.

Therefore ΓΩ is a normal subgroup of Γ and it does not depend on the leaf Ω as long as π(Ω)

is a general fiber of f : X → C; in particular ΓΩ preserves fiberwise the rational fibration, i.e.
ΓΩ ⊂ Γr. For a leaf Ω′ such that π(Ω′) is a multiple fiber, ΓΩ is a subgroup of finite index of
ΓΩ′ .

Suppose that r−1(x) is a singular fiber of the rational fibration. In this case the group ΓΩ

preserves the set of singular points of r−1(x) and is solvable. Thus Ω is biholomorphic to C
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or C∗ and the intersection of U with an irreducible component of r−1(x) is either empty or
connected. Thus the first assertion of our lemma is true if r−1(x) is a singular fiber. Let us
assume now that r−1(x) is not singular, i.e. is isomorphic to P1. Then we can think of ΓΩ as
a classical Kleinian group with an invariant component Ω. The intersection of U with r−1(x)

is a union of connected components of the discontinuity domain of the Kleinian group ΓΩ; by
the above discussion all of them are invariant, or invariant under a finite index subgroup of ΓΩ

if π(Ω) is a multiple fiber. Ahlfors’s finiteness theorem [Ahl64] (see also [Sul85]) says that
(U ∩ r−1(x))/ΓΩ is a finite union of compact Riemann surfaces. This implies that r−1(x)∩U

has only finitely many connected components.

In the first paragraph of the proof we infered ΓΩ ⊂ Γr; we also have an inclusion Γr ⊂ Γx.
The above finiteness of connected components implies that ΓΩ has finite index in Γx. From this
and the infiniteness of ΓB we deduce that the orbit of any point x ∈ r(U) has an infinite orbit
under ΓB. As Γ acts by holomorphic diffeomorphisms on r−1(r(U)), we conclude that r has no
singular fibers over r(U).

Any element of ΓB has a fixed point in B = P1. If r(U) = B then a fixed point x of some
element of infinite order of ΓB would give rise to a Γx such that Γr has infinite index in Γx,
contradicting the second point of the lemma. �

Up to making elemantary transformations on a fiber over a point outside r(U) we can and
will assume that Y = P1×P1 and that r is the projection onto the first factor. We will denote by
x and y the first and the second coordinate of P1×P1. Γ is a subgroup of the Jonquières group
PGL2(C(x))oPGL2(C) and Γr is a subgroup of PGL2(C(x)). An element of Γ can be written
as

(x,y) 7→
(

ax+b
cx+d

,
A(x)y+B(x)
C(x)y+D(x)

)
,

(
a b

c d

)
∈ PGL2(C),

(
A B

C D

)
∈ PGL2(C(x)).

For a point x ∈ B, we denote by P1
x the fiber of r over x, and by Ux the intersection U ∩P1

x .
For any x ∈ B and any connected component Ω of P1

x ∩U , the group ΓΩ is a subgroup of finite
index of Γr and Γr is a subgroup of finite index of Γx by Lemma 5.7.1. ΓΩ is finitely generated
because it is a quotient of the fundamental group of a compact Riemann surface. Thus Γr and
Γx are also finitely generated groups. As a finitely generated subgroup of PGL2(C), ΓB has a
torsion free subgroup of finite index by Selberg’s lemma (cf. [Sel60], [Alp87]). Up to replacing
Γ with the preimage of such a subgroup of ΓB, we can and will assume that ΓB is torsion free.
This implies that for any x ∈ B, we have Γx = Γr.
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As a group of birational transformations Γr is determined by its actions in all fibers of r. We
can identify all the P1

x ,x ∈ B to a fixed P1 via the projection of P1×P1 onto the second factor.
In this way we think of Γr as a family of representations {ρx : Γr → Aut(P1

x) = PGL2(C)}x

parametrized by x ∈ B\I where I ⊂ B is the set of points over which the fibers of r contain
indetermincay points of birational transformations in Γr. The set I is finite because Γr is finitely
generated. Thus Γr is an algebraic family of representations over the quasi-projective curve B\I.
Remark that I ∩ r(U) = /0. We will denote by Gx ⊂ PGL2(C) the image of ρx. It is a classical
Kleinian group and Ux is a finite union of some of its connected components.

Lemma 5.7.2 ΓB is a classical Kleinian group and r(U) is an invariant component of its do-

main of discontinuity.

Proof The rational fibration r induces a surjective holomorphic map r′ from the quotient U/Γr

to r(U) with compact fibers. The group of deck transformations of the covering U/Γr → X is
isomorphic to ΓB = Γ/Γr. The action of ΓB on U/Γr permutes the fibers of r′. Since the fibers of
r′ are compact, this action is discrete on the base which is r(U). We have an induced holomor-
phic map X = (U/Γr)/ΓB→ r(U)/ΓB. Therefore r(U)/ΓB is a compact Riemann surface. �

Denote by C′ the quotient compact Riemann surface r(U)/ΓB and by f ′ the morphism X →
D. As each fiber of f ′ is a union of finitely many leaves of F , there is a morphism g : C→C′

such that f ′ = g ◦ f . Since C′ is not P1, C is not P1 either. Now think of C as an orbicurve
with multiple points corresponding to multiple fibers of f . As the underlying compact Riemann
surface is not P1 it is uniformizable as an orbicurve; there is a finite orbifold covering C̄ of C

which is an orbicurve with no multiple points, i.e. a compact Riemann surface. Using the base
change C̄→C, we obtain a commutative diagram

X̄ −−−→ Xy y
C̄ −−−→ C

where X̄ → C̄ is a fibration without multiple fibers and X̄ → X is un unramified covering (cf.
[Bar+04] III.9). Thus replacing Γ with a subgroup of finite index we can and will assume that
f : X → C has no multiple fibers. Thus for any x ∈ r(U), for any connected component Ω of
P1

x ∩U , the group ΓΩ is identified with the image of π1(F) in Γ where F is any fiber of f .
From this we deduce that for any x ∈ r(U), the finite group Γr/ΓΩ acts freely on the set of
connected components of P1

x ∩U . Note that the fibers of f are the Ω/ΓΩ and the fibers of f ′ are
the (P1

x ∩U)/Γr. This implies that
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Lemma 5.7.3 The morphism C→C′ is an unramified covering. The number of connected com-

ponents of P1
x ∩U does not depend on x ∈ r(U).

Remark 5.7.4 We have a fibration f : X→C without singular nor multiple fibers. If C is elliptic
then the fibration is necessarily locally trivial (cf. [Bar+04] III.15.4). If the fibers of f are elliptic
or rational then it is also locally trivial (cf. [Bar+04] V). Hence the only case where f is not
locally trivial is the case of Kodaira fibrations, where the base and the fibers all have genus≥ 2.

5.7.2 Representation varieties

We refer to [HP04] for a detailed introduction to PGL2(C)-character varieties; here we
give a brief account for what we need. Let G be a finitely generated abstract group. The
set of all representations of G into PGL2(C) is denoted by R(G). Given a presentation G =

〈g1, · · · ,gs|hi, i ∈ I〉, we have an embedding:R(G)→ PGL2(C)×·· ·×PGL2(C)

ρ → (ρ(g1), · · · ,ρ(gs))
.

PGL2(C) is a complex algebraic group, the product PGL2(C)× ·· · × PGL2(C) is a complex
affine algebraic variety. The image of R(G) in PGL2(C)× ·· · × PGL2(C) is determined by
the ideal generated by the algebraic functions corresponding to the relations {hi}i∈I . Therefore
R(G) has naturally a structure of complex affine algebraic variety (which in fact does not de-
pend on the choice of the presentation), we call it the PGL2(C)-representation variety of G.
The action by conjugation of PGL2(C) on R(G) is algebraic with respect to this structure of
algebraic variety. The topological quotient R(G)/PGL2(C) is usually not Hausdorff, so it is
more convenient to consider the quotient χ(G) = R(G)//PGL2(C) in the sense of geometric
invariant theory. Since PGL2(C) is reductive, χ(G) is a complex affine variety. Denote by τ the
projection morphism R(G)→ χ(G). We call χ(G) the PGL2(C)-character variety of G.

A representation ρ : G→ PGL2(C) is called irreducible if its action on P1 does not fix
any point. If two representations ρ,ρ ′ ∈ R(G) are conjugate, then they are mapped by τ to the
same point in χ(G). The converse is not true in general, but if ρ and ρ ′ are irreducible and
τ(ρ) = τ(ρ ′) then ρ and ρ ′ are conjugate.

We have a homomorphism G→Aut(G) where each element of G acts on G by conjugation;
the automorsphism in the image Inn(G) are called inner automorphisms. Inn(G) is a normal
subgroup of Aut(G) and the quotient Aut(G)/Inn(G) is called the outer automorphism group
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of G and is denoted by Out(G). An element η ∈ Aut(G) induces an automorphism of R(G)

defined by ρ 7→ ρ ◦η ; we have thus an action of Aut(G) on R(G) by automorphisms of algebraic
variety. Via τ : R(G)→ χ(G) it induces an action of Out(G) on χ(G) by automorphisms.

5.7.3 Isotrivial fibrations

Let us return to our group Γ. Recall that Γr is the data of an algebraic family of representa-
tions {ρx : Γr→Aut(P1

x) = PGL2(C)}x parametrized by the quasiprojective curve B\I. In other
words Γr gives a morphism of algebraic varieties

Φ : B\I→ R(Γr).

From the short exact sequence 1 → Γr → Γ → ΓB → 1 we deduce a homomorhism ΓB →
Out(Γr), thus an action of ΓB on χ(Γr). Let us describe concretely this action.

For γ ∈ Γ, denote its image in ΓB by γB. For x,x′ ∈ B such that γB(x) = x′ and such that γ

is regular on r−1(x), denote by γxx′ the induced map P1
x → P1

x′ . Identifying P1
x → with P1

x′ via
the projection of P1×P1 onto the second factor, we think of the morphism γxx′ as an element of
PGL2(C).

Pick two points x,x′ ∈ B\I such that γB(x) = x′ for some γ ∈ Γ and such that γ is regular
on P1

x . We have γxx′(ρx(Γr))γ
−1
xx′ = ρx′(Γr) but not necessarily γxx′ ◦ ρx(α) ◦ γ

−1
xx′ = ρx′(α) for

every α ∈ Γr. In other words γ induces an automorphism ηγ ∈ Aut(Γr) such that ρx ◦ηγ = ρx′

whenever x′ = γB(x). The image of ηγ in Out(Γr) depends only on γB. In summary we have

Lemma 5.7.5 We have an action of ΓB on χ(Γr) by automorphisms such that the morphism

τ ◦Φ : B\I → χ(Γr) satisfies that for any β ∈ ΓB and x ∈ r(U) we have β · (τ ◦Φ(x)) = τ ◦
Φ(β (x)).

Corollary 5.7.6 The image τ ◦Φ(B\I) is either a point or an irreducible algebraic curve in the

affine variety χ(Γr) which is invariant under the action of ΓB. If it is a curve then the action of

ΓB on it is faithful.

Proof Lemma 5.7.5 implies that τ ◦Φ(r(U)) is a set invariant under ΓB. It is a Zariski dense
subset of τ ◦Φ(B\I). Hence the invariance. Recall that we assumed that ΓB is torsion free. Let
β be a non-trivial element of ΓB. There is a point x ∈ r(U) which has an infinite β -orbit. If β

acts trivially on τ ◦Φ(r(U)) then by Lemma 5.7.5 the whole β -orbit of x is sent by τ ◦Φ to a
single point. As τ ◦Φ is an algebraic morphism from a curve to another algebraic variety, this
is possible only if τ ◦Φ is a constant map. �
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Lemma 5.7.7 τ ◦Φ is a constant map.

Proof Assume by contradiction that the morphism τ ◦Φ : B\I→ χ(Γr) is not constant. Then
ΓB acts faithfully on the irreducible algebraic curve τ ◦Φ(B\I). The curve τ ◦Φ(B\I) is not
projective because χ(Γr) is an affine variety. By Lemma 5.7.8 below we infer that the classical
Kleinian group ΓB is solvable. Therefore C′ = r(U)/ΓB is necessarily an elliptic curve. Thus by
Lemma 5.7.3 C is also an elliptic curve. Consequently the fibration f : X →C is locally trivial.

Consider the exact sequence π1(F)→ π1(X)→ π1(C)→ 1 where F is any fiber of f . If the
fibers of f have genus one, then after a finite base change we get a finite unramified cover X ′ of
X which is a principal elliptic bundle and the image of the fundamental group of any fiber is a
central subgroup of π1(X ′) (cf. [Bar+04] V.5). If the fibers of f have genus≥ 2 then after a finite
base change we get a finite unramified cover X ′ of X which is simply a product (cf. [Bar+04]
V.6). Thus the local triviality of f implies that the homomorphism π1(C)→ Out(Im(π1(F)→
π1(X))) has finite image. Recall that the image of π1(F) in Γ is ΓΩ and it is a subgroup of finite
index in Γr. Hence the homomorphism ΓB → Out(Γr) has also finite image. This contradicts
Corollary 5.7.6 that ΓB acts faithfully on τ ◦Φ(B\I). �

Lemma 5.7.8 The automorphism group of an irreducible quasi-projective curve is infinite and

non-solvable if and only if the curve is P1.

Proof Let M be an irreducible quasi-projective curve and M̄ be its normalization which is a
smooth quasi-projective curve. Let M̂ be a non-singular compactification of M̄; it is a smooth
projective curve. Any automorphism of M lifts to M̄ and extends to M̂. Hence Aut(M) is a
subgroup of the automorphism group of a smooth projective curve. The automorphism group
of a hyperbolic curve is finite. The automorphism group of a curve of genus one is an extension
of a finite cyclic group by the elliptic curve itself, thus solvable. The automorphism group of
P1 preserving any finite subset is either finite or solvable. Hence if Aut(M) is infinite and non-
solvable then M = M̄ = M̂. �

Proposition 5.7.9 1. The fibration f : X →C is locally trivial.

2. There exists φ ∈ PGL2(C(x)) without indeterminacy points over r(U) such that φΓrφ
−1

is included in the subgroup {Id}×PGL2(C) of Aut(P1×P1).

3. After conjugating by φ , U = r(U)×D where D⊂P1 is an invariant connected component

of the domain of discontinuity of Γr viewed as a classical Kleinian group via the second

projection.
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Proof If the fibers of f are rational curves then it is automatically locally trivial. In this case Γr

is a trivial group and for any x ∈ r(U), P1
x ∩U = P1

x .

Assume that the fibers of f have genus ≥ 2. Then for any x ∈ r(U) the classical Kleinian
group αx(Γr) is non-elementary. Thus from the previous lemma we deduce that the represen-
tations αx,x ∈ r(U) are conjugate to each other. The conjugation depends algebraically in x

because αx is an algebraic family. The second assertion of the proposition is rephrasement of
this. We can thus assume that Γr ⊂ {Id}×PGL2(C). Therefore for any x ∈ r(U), P1

x ∩U is a
union of finitely many connected components of a fixed classical Kleinian group. By connect-
edness of U we infer the third assertion. Also we obtain that (P1

x ∩U)/Γr does not depend on
x ∈ r(U), which implies that f is locally trivial.

From now on we assume that the fibers of f have genus one. As f has no singular nor
multiple fibers it is locally trivial. Since the only infinite coverings of an elliptic curve are C and
C∗, we infer that we are in one of the following situations:

1. For any x ∈ r(U), P1
x ∩U is biholomorphic to C; Γr is isomorphic to Z2.

2. For any x ∈ r(U), P1
x ∩U is biholomorphic to C∗; Γr is isomorphic to Z.

In both cases we deduce immediately from the local triviality that αx,x ∈ r(U) are conjugate to
each other. As previously the conjugation depends algebraically on x and we obtain the second
assertion. The last assertion follows immediately. �

Proposition 5.7.10 Suppose that the fibers of f have genus ≥ 2. Then up to geometric conju-

gation and up to finite index subgroup the birational Kleinian group (Y,Γ,U,X) is such that

Y = P1×P1, Γ = ΓB×Γr and U = D1×D2 where D1,D2 are respectively connected compo-

nents of the classical Kleinian groups ΓB,Γr.

Proof Let F be a fiber of f . Since F has genus ≥ 2, after replacing X with a finite unramified
cover we can and will assume that X is a product F ×C and f is the projection onto C (cf.
[Bar+04] V.6). In particular π1(X) splits into a product π1(F)×π1(C). Recall that the image of
π1(F) in Γ is exactly Γr. Therefore the image of π1(C) in Γ maps isomorphically onto ΓB so
that Γ is actually isomorphic to the product ΓB×Γr. By Proposition 5.7.9 we can assume that
Γr a subgroup of {Id}×PGL2(C). We need to prove that ΓB ⊂ PGL2(C)×{Id}.

Let γ be an element of ΓB viewed as a subgroup of Γ. As γ commutes with Γr, for any x ∈
r(U), the restriction of γ to P1

x realizes a conjugation between αx and αγB(x) which are the same
representation after identifying P1

x with P1
γB(x)

. In other words for any x ∈ r(U) the birational
transformation γ realizes a self-conjugation of the classical Kleinian group Γr. However a non-
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elementary classical Kleinian group has no non-trivial self-conjugations (the limit set has more
than three points and is fixed by a self-conjugation). The conclusion follows. �

Proposition 5.7.11 Suppose that the fibers of f have genus 1. Then up to geometric conjugation

and up to finite index subgroup the birational Kleinian group (Y,Γ,U,X) is in one of the two

following situations

1. Y = P1×P1, U = D1×C∗ and D1 is a connected component of the classical Kleinian

group ΓB. Γ is a subgroup of J+ := {(x,y) 99K (η(x),R(x)y)|η ∈ PGL2(C),R∈C(x)∗}=
C(x)∗oPGL2(C). Γr ⊂ {Id}×PGL2(C) is a cyclic central subgroup of Γ.

2. Y = P1×P1, U = D1×C and D1 is a connected component of the classical Kleinian

group ΓB. Γ is a subgroup of J∗ := {(x,y) 99K (η(x),y+R(x))|η ∈ PGL2(C),R∈C(x)}=
C(x)oPGL2(C). Γr ⊂ {Id}×PGL2(C) is a cyclic central subgroup of Γ isomorphic to

Z2.

Proof A finite unramified cover of X is a principal elliptic bundle (cf. [Bar+04] V.5); up to
replacing X with this cover we have that Γr is central in Γ. We need to show that Γ is included
in J+ or J∗; other assertions follow from Proposition 5.7.9. This is because Γr is central in Γ;
the centralizer of Γr is respectively J+ or J∗ by Thereom 1.5.1. �

Let us see two examples where the group Γ is not conjugate to a subgroup of PGL2(C)×
PGL2(C).

Example 5.7.12 Consider the subgroup Γ of Aff2(C) generated by the following four elements

(x,y) 7→ (x,y+1), (x,y) 7→ (x,y+a)

(x,y) 7→ (x+1,y+bx), (x,y) 7→ (x+ c,y+dx)

where a,c ∈ C∗ and b,d ∈ C are such that bd ∈ C∗. The quotient C2/Γ is a primary Kodaira
surface.

Example 5.7.13 Consider the group Γ generated by the following two elements

(x,y) 7→ (x,ay)

(x,y) 7→ (bx,cxky), a,b,c ∈ C∗,k ∈ Z∗ |a|, |b| 6= 1.

By lifting the deck transformations to C2 we see that the quotient C∗×C∗/Γ is a primary
Kodaira surface. Remark that Γ is included in the toric subgroup and that Γ is not an elliptic
subgroup because (x,y) 7→ (bx,cxky) has linear degree growth.
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We reformulate Proposition 5.7.9 in the case of rational fibrations; we cannot say much
more about this situation.

Proposition 5.7.14 Suppose that the fibers of f are rational. Then up to geometric conjugation

the birational Kleinian group (Y,Γ,U,X) is such that Y =P1×P1, U =D1×P1, Γ is isomorphic

to ΓB and D1 is a connected component of the classical Kleinian group ΓB.

Example 5.7.15 Consider the group Γ generated by

(x,y) 7→ (bx,cxky), b,c ∈ C∗,k ∈ Z∗ |b| 6= 1.

The quotient C∗×P1/Γ is a geometrically ruled surface over an elliptic curve; it is a decom-
posable ruled surface because of the two disjoint sections {y = 0},{y = ∞}. This is our only
example of birational Kleinian group for which Γ is non-elliptic and X is Kähler.

5.8 Complex tori

Proposition 5.8.1 Assume that B = P1, ΓB is infinite and X is a complex torus. Then up to

geometric conjugation the birational Kleinian group (Y,Γ,U,X) satisfies that

— Y = P1×P1. U is one of the three Zariski open sets: C2, C×C∗ or C∗×C∗.
— Γ can be identified with a lattice in U with its natural structure of algebraic group, i.e.

the elements of Γ have respectively the form (x,y) 7→ (x+a,y+b), (x,y) 7→ (x+a,by)

or (x,y) 7→ (ax,by).

Proof The fundamental group of a complex torus is isomorphic to Z4. After replacing Γ with a
subgroup of finite index we can and will assume that Γ and ΓB are free abelian groups. Remark
that the only regular foliations on complex tori are turbulent foliations and linear foliations and
we know by Proposition 5.5.7 that turbulent foliations on tori do not appear in our study.

Assume that the F is a linear foliation, not necessarily irrational. A linear foliation on C2

is induced by the projection of C2 onto some subvector-space of dimension one. The induced
action of π1(X) on that subspace, which is isomorphic to C, is by translations; the image of
π1(X) is a free abelian group of rank 2,3 or 4, depending on whether the leaves of F are elliptic
curves, C∗ or C. As in the previous case, we obtain a surjective holomorphic map C→ r(U) that
is equivariant with respect to the homomorphism π1(X)→ ΓB. This forces r(U) to be C or C∗

and that ΓB is respectively a discrete group of translations or multiplications. In particular every
point of r(U) has an infinite ΓB-orbit. Thus r does not have singular fibers over r(U) because by
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Corollary 5.2.3 Γ acts by diffeomorphisms on r−1(r(U)). Consequently U is a C or C∗ bundle
over C or C∗. This implies that U is biholomorphic to C2, C×C∗ or C∗×C∗, though we do
not know yet if U is the corresponding standard Zariski open set; in other words we know that
r−1(r(U))\U is one or two holomorphic sections of r over r(U) but we do not know if these
sections are algebraic. However we do know now that Γ is a free abelian group of rank ≥ 2.

We assume firstly that ΓB is free of rank ≥ 2. In this case the descriptions of Γ and U

given in the statement follows from Theorem 1.5.3; we only need to observe that the change
of coordinates that we need to write the transformations in the adequate forms is a geometric
conjugation of birational Kleinian groups. This is because a change of coordinates is a sequence
of elementary transformations. If we let the elementary transformations to be done outside U ,
then the conjugation is geometric. We make also a remark on the hypothesis that the rank of
ΓB is ≥ 2: it is always satisfied when F is irrational because the action of ΓB on r(U) is not
discrete.

Consider now the case where ΓB is cyclic. In this case r(U) is necessarily C∗, F is an
elliptic fibration and Γr, the subgroup of Γ preserving fiberwise the rational fibration, is a free
abelian group of rank 1 or 2. If Γr is of rank 1 then r−1(x)∩U = C∗ for any x ∈ r(U) and Γr

acts by multiplications in the fibers; if Γr is of rank 2 then r−1(x)∩U = C for any x ∈ r(U) and
Γr acts by translations in the fibers.

Firstly look at the case where Γr is of rank 1. By Theorem 1.5.3 up to conjugation Γr is
generated by an element γ1 : (x,y) 7→ (x,ay) and Γ is generated by γ1 and γ2 : (x,y) 7→ (bx,R(x)y)

with R ∈ C(x)∗; the conjugation being a sequence of elementary transformations can be done
outside U so it is a conjugation of birational Kleinian groups. Therefore U is the standard Zariski
open set C∗×C∗. As γ2 acts in a regular way over r(U) = C∗, the rational function R has no
zeros nor poles over C∗. Thus R(x) = xk for some k ∈ Z. If k 6= 0 then the quotient C∗×C∗

would be a primary Kodaira surface (cf. Example 5.7.13). Hence the conclusion.

Finally look at the case where Γr is of rank 2. By Theorem 1.5.3 up to conjugation Γr is
generated by two elements γ j : (x,y) 7→ (x,y+ a j), j = 1,2 and Γ is generated by γ1,γ2 and
γ3 : (x,y) 7→ (bx,y + R(x)) with R ∈ C(x); the conjugation being a sequence of elementary
transformations can be done outside U so it is a geometric conjugation of birational Kleinian
groups. Therefore U is the standard Zariski open set C∗×C. As γ2 acts in a regular way over
r(U) = C∗, the rational function R has no poles over C∗. Thus R(x) = Q(x)

xk for some k ∈ Z and
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Q ∈ C[x]. The iterates of γ3 can be written as

γ
n
3 : (x,y) 7→ (bnx,y+S(x)) where S(x) =

1
xk

n−1

∑
j=0

Q(bx)
bk .

Thus γ3 has bounded degree growth and is an elliptic element. By conjugating Γ with elements
of the form (x,y) 7→ (x,y+ P(x)

xk ) with P ∈ C[x] we do not change γ1,γ2 and can put γ3 in the
form (x,y) 7→ (bx,y). Hence the conclusion. �
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CHAPTER 6

SYNTHESIS

In this chapter we explain how what we have proved so far can be assembled into Theorem
0.3.2 and Theorem 0.3.7. It suffices to prove Theorem 0.3.7 by Remark 0.3.9.

Now we begin the proof of Theorem 0.3.7. Let (Y,Γ,U,X) be a birational Kleinian group in
dimension two. By Theorem 2.1.2 Y is a birational to a ruled surface.

6.1 Non-rational ruled surfaces

Suppose that Y is not rational. Then there is a rational fibration r : Y → B onto a curve B

of genus ≥ 1. The fibration r is induced by the Albanese morphism of Y . Thus every birational
transformation of Y preserves the fibration r. Therefore we are in the setting of Chapter 5 and
Γ induces an action ΓB ⊂ Aut(B) on the base. If ΓB is a finite group then all possibilities are
classified by Theorem 5.3.1; this gives the first three cases in Theorem 0.3.7. If ΓB is infinite
then B is an elliptic curve and all possibilities are classified by Theorem 5.4.2; this gives cases
1), 4), 5) and 6) in Theorem 0.3.7.

6.2 Rational surfaces

Now we assume that Y is a rational surface. We apply Theorem 1.4.1 to Γ. There are eight
cases in Theorem 1.4.1, let us look at them case by case. In the first subsection we deal with the
cases where a pencil of rational curves is preserved by Γ. We deal with the remaining cases in
the second subsection.

6.2.1 Rational fibrations

Assume that Γ preserves a pencil of rational curves. This hypothesis includes Cases 2), 3)
and partially case 1) of Theorem 1.4.1.
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Lemma 6.2.1 Suppose Γ ⊂ Bir(Y ) preserves a pencil of rational curves on Y . Then the bira-

tional Kleinian group is birationally conjugate to (Y ′,Γ′,U ′,X) such that the pencil of rational

curves becomes a regular rational fibration of Y ′ onto P1 and Γ′ preserves this fibration.

Proof Since the action of Γ on U is free, the set of base points of the pencil does not intersect
U . We can blow up the base points to get the fibration. �

Therefore we can and will assume that Γ preserves a rational fibration r : Y → B where
B = P1 because Y is rational. Hence we are in the setting of Chapter 5. As always we denote by
ΓB ⊂ Aut(B) the action of Γ on B. By Proposition 6.2.1 the rational fibration r induces on X a
regular holomorphic foliation F .

If ΓB is a finite group then all possibilities are classified by Theorem 5.3.1; this gives the
first three cases in Theorem 0.3.7. In this case the foliation F is a fibration.

Assume now that ΓB is infinite. We distinguish two cases, the first one where r(U) = B and
the second one where r(U) is a proper subset of B.

The case r(U) = B

If r(U) = B then by Proposition 5.5.6 the foliation F is a turbulent foliation, an obvious
foliation on a Hopf surface or a suspension of P1.

Assume that F is a turbulent foliation. Then by Proposition 5.5.7, up to taking a subgroup
of finite index of Γ, we are in Examples 5.5.2 and 5.5.4. In the situation of these two examples
the quotient X is a Hopf surface or a geometrically ruled surface over an elliptic curve. If X is
a Hopf surface then this gives Case 15) of Theorem 0.3.7. If X is a geometrically ruled surface
over an elliptic curve, then the situations described in Examples 5.5.2 and 5.5.4 are particular
cases of Case 20) in Theorem 0.3.7.

Assume that F is an obvious foliation on a Hopf surface. Then Proposition 5.5.8 classifies
all possibilities. There are three cases in Proposition 5.5.8. The last case does not satisfy r(U) =

B. The first two cases satisfy r(U) = B and they correspond to Cases 15) and 16) of Theorem
0.3.7.

Assume that F is a suspension of P1. Then Proposition 5.5.9 says that we are in Case 20)
of Theorem 0.3.7.

The case r(U) 6= B

Assume now that r(U) 6= B.
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If F is an obvious foliation on an Inoue surface then Theorem 5.5.1 says that we are in Case
12) of Theorem 0.3.7.

If F is an obvious foliation on a Hopf surface then Proposition 5.5.8 classifies all possibil-
ities; only the last case of Proposition 5.5.8 satisfies r(U) 6= B and it corresponds to Case 11) in
Theorem 0.3.7.

By Propositions 5.5.8 and 5.5.9 the fact that r(U) 6= B implies that F is not a turbulent
foliation, nor a suspension of P1.

If F is a suspension of an elliptic curve, then Proposition 5.6.5 says that the situation is
a particular case of Case 18) or 19) of Theorem 0.3.7. Here Γ is a group of automorphisms.
However note that in general Γ is not necessarily a group of automorphisms in Cases 18) and
19) of Theorem 0.3.7.

Assume that F is a fibration. If the genus of a fiber is ≥ 2 then Proposition 5.7.10 says that
we are in Case 17) of Theorem 0.3.7. If the fibers are elliptic curves then Proposition 5.7.11
says that we are in Cases 18) and 19) of Theorem 0.3.7. If the fibers are P1 then Proposition
5.7.14 says that we are in Case 20) of Theorem 0.3.7.

If F is an irrational linear foliation on a complex torus, then Proposition 5.8.1 says that we
are in Cases 7), 8) or 9) of Theorem 0.3.7.

According to Theorem 5.1.1 the only remaining possibility for F is a minimal transversely
hyperbolic regular foliation on a surface of general type. This case is studied in Chapter 7 and
the description given in Theorems 0.3.2 and 0.3.7 will follow from Proposition 7.2.8.

6.2.2 Other cases in strong Tits alternative

We dealt with the case where Γ preserves a rational fibration in the previous subsection and
now we consider other possibilities for Γ, i.e. Cases 1), 4), 5), 6) and 7) of Theorem 1.4.1.
Note that we do not need to consdier Case 8) of Theorem 1.4.1 because being a quotient of the
fundamental group of a compact manifold, Γ is finitely generated.

Genus one fibrations. Let us consider the fourth case of Theorem 1.4.1. There is a ratioal
surface Y ′ and a birational map φ : Y → Y ′ such that Γ′ = φΓφ−1 acts by automorphisms and
preserves a genus one fibration. By Lemma 4.4.2 we can choose Y ′ and φ so that the conjugation
φ is a geometric conjugation of birational Kleinian groups. Then Corollary 2.3.4 says that this
case is impossible.
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Elliptic groups. Let us consider the first case of Theorem 1.4.1. In this case Γ is an elliptic
subgroup, i.e. there is a projective surface Y ′ and a birational map φ : Y → Y ′ such that Γ′ =

φΓφ−1 is a group of automorphisms of Y ′ and a finite index subgroup of Γ′ is in Aut0(Y ′). By
Lemma 4.4.2 we can choose Y ′ and φ so that the conjugation φ is a geometric conjugation of
birational Kleinian groups. Thus we can and will assume that Γ⊂ Aut0(Y ).

Assume that Y is not P2. Then there is a birational morphism ϕ : Y → Y ′ to a Hirzebruch
surface Y ′ and we have ϕ ◦Aut0(Y )◦ϕ−1 ⊂ Aut0(Y ′). Since the Aut0 of a Hirzebruch surface
preserves a rational fibration, Γ preserves a rational fibration on Y . Hence we reduce the situation
to the case where a rational fibration is preserved and where the classification is already done.

In the remaining case Y = P2 and Γ ⊂ PGL3(C) = Aut(P2). This is exactly the case of
complex projective Kleinian groups. The complete classification is given by Theorem 3.1.1;
this gives Cases 7)–13) in Theorem 0.3.7.

Toric subgroup. Proposition 4.5.2 says that if Γ is conjugate in Bir(Y ) to a subgroup of the
toric subgroup then it contains no loxodromic elements. Thus Case 6) of Theorem 1.4.1 is
impossible.

Non-elementary subgroups. Theorem 4.1.1 says that Γ is not a non-elementary subgroup of
Bir(Y ) under the hypothesis that X is not of class VII, thus rules out Case 7) of Theorem 1.4.1.

Virtually cyclic subgroups. The author is not able to handle Case 5) of Theorem 1.4.1 and
we put it as a hypothesis in Theorem 0.3.7.
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CHAPTER 7

MINIMAL TRANSVERSELY HYPERBOLIC

FOLIATIONS

In this chapter we deal with a birational Kleinian group (Y,Γ,U,X) such that Γ preserves
a rational fibration r : Y → B with B = P1 which induces a minimal transversely hyperbolic
regular foliation on X . The first section is a state-of-the-art introduction to these foliations; it
is completely independent and some of the results are not used in the sequel. From the second
section we work with the birational Kleinian group (Y,Γ,U,X). We will show that a part of
the boundary of U in Y is the graph of a holomorphic motion, i.e. is laminated by holomorphic
disks. Everything in the rest of this chapter is based upon this structure of holomorphic motion.
There will be two types of results: 1) under some additional hypothesis U is biholomorphic to
the bidisk (see Theorems 7.4.10, 7.4.23); 2) under the hypothesis that U is a bidisk, we try to
rigidify the dynamics of Γ (see Theorems 7.4.21, 7.4.23). Preliminaries on holomorphic motions
and on Teichmüller theory will be recalled.

7.1 Corlette-Simpson and Brunella-McQuillan

We introduced minimal transversely hyperbolic regular foliations on general type surfaces
in Section 5.1. We explained that examples of such foliations are given by quotients of D×D by
torsion free irreducible cocompact lattices in PSL2(R)×PSL2(R) and that no other examples
are known. The two natural foliations on a quotient of the bidisk will be called tautological

foliations. We will call a Brunella exotic foliation a minimal transversely hyperbolic regular
foliation on a general type surface which is not a tautological foliation on a bidisk quotient.
In this section we collect some known properties of these foliations. Two important results are
Theorem 7.1.11 which says that Brunella exotic foliations are similar to bidisk quotients in
some sense and Theorem 7.1.13 which says that they are drastically different in some other
sense.

Let X be a smooth complex projective surface of general type equipped with a transversely
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hyperbolic regular foliation F which is not a foliation induced by a fibration. Denote by X̃ the
universal cover of X . The pioneer work of Brunella asserts:

Theorem 7.1.1 (Brunella [Bru97]) The canonical bundle of X is ample. The foliation F is

minimal, i.e. every leaf of F is dense in X. There is a homomorphism ρ : π1(X)→ PSL2(R)

and a ρ-equivariant holomorphic map s : X̃ → D such that

— every fiber of s is biholomorphic to D;

— F is induced by s.

and

Theorem 7.1.2 (Brunella [Bru97]) If X is a bidisk quotient, then F is one of the two tauto-

logical foliations. We have always c1(X)2 ≥ 2c2(X). If the equality holds then X is a bidisk

quotient.

Proposition 7.1.3 X and X̃ are Kobayashi hyperbolic manifolds.

Proof A complex manifold is Kobayashi hyperbolic if and only if its universal cover is (cf.
[Kob98]). Thus it suffices to prove that X is Kobayashi hyperbolic. Since X is compact, Brody
Lemma (cf. [Bro78]) says that it is Kobayashi hyperbolic if and only if there are no non-constant
holomorphic map from C to X . Suppose by contradiction that ξ : C→ X is a non-constant
holomorphic map. Then it lifts to a non-constant holomorphic map ξ̃ : C→ X̃ . The composition
s◦ ξ̃ has values in D, thus is constant. Therefore the image of s◦ ξ̃ is contained in a fiber of s.
But as a fiber of s is also a disk, s◦ ξ̃ must be constant, contradiction. �

The fact that every leaf of F is dense implies that the ρ(π1(X))-orbit of every point in D is
dense in D. Thus we have:

Proposition 7.1.4 The image of ρ does not factorize through a hyperbolic orbicurve and is

dense in PSL2(R) with respect to the usual topology.

Proof We apply Theorem 4.2.1 to ρ; either it factorizes through a hyperbolic orbicurve or it has
dense image in PSL2(R). Thus it suffices to prove that ρ does not factorize through a hyperbolic
orbicurve. Suppose by contradiction that there is a fibration f : X→ Σ and a homomorphism η :
πorb

1 (Σ)→ PSL2(R) such that ρ = η ◦ f∗. Let F be a general fiber of f . It is a compact Riemann
surface of genus ≥ 2 because X is of general type; its universal cover is D. Let g : D→ X̃ be
a map that lifts the embedding F → X . By our hypothesis the composition π1(F)→ π1(X)

ρ−→
PSL2(R) is trivial. Thus g(D) is included in a fiber of r : X̃ → D. This implies that g(D) is a
fiber of r and F is a leaf of F , contradiction. �
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A little lemma that we will use several times is

Lemma 7.1.5 A dense torsion free subgroup of PSL2(R) contains elements of infinite order.

Proof This follows from the fact that being a non trivial elliptic element is an open condition in
PSL2(R). Indeed if an element is represented by a matrix in SL2(R) then the element is elliptic
if and only the trace of the matrix has absolute value < 2. �

Known results. The results that we will present in the rest of this section will not be directly
used in the sequel. A reader who is mainly interested in the results of Section 0.3 can skip
directly to the next section.

We firstly mention a theorem describing the group of biholomorphisms of X̃ .

Theorem 7.1.6 (Nadel [Nad90], Frankel [Fra95]) If Y is a smooth complex projective variety

with ample canonical bundle and if the universal cover Ỹ is not a product of a bounded her-

mitian symmetric domain with some other manifold, then π1(Y ) has finite index in the group of

self-biholomorphisms of Ỹ .

Non-abelian Hodge theory gives very strong constraints on representations of Kähler groups
into PGL2(C). We introduce first some terminology. Let n ≥ 2 and Λ be a torsion free irre-
ducible lattice in a product of n copies of PSL2(R). Then the quotient of a product of n disks
by Λ is a quasi-projective variety Z of dimension n by Baily-Borel’s theorem [BB66]; we will
call Z a polydisk Shimura variety. The fundamental group of Z is identified with Γ and has
n natural faithful representations into PSL2(R) with dense images induced by projections of
PSL2(R)× ·· · × PSL2(R) onto its factors. These n representations τi,1 ≤ i ≤ n of π1(Z) are
called tautological representations. There are n regular codimension 1 foliations on Z induced
by the product structure of the polydisk; we call them tautological foliations and denote them
by Gi,1 ≤ i ≤ n. The i-th tautological representation is the holonomy of the i-th tautological
foliation.

Theorem 7.1.7 (Corlette-Simpson [CS08]) Let Y be a smooth complex projective variety. Let

ϕ : π1(Y )→ PGL2(C) be a representation with Zariski dense image. Then up to replacing Y

with a finite unramified cover there are two possibilities:

1. There is a fibration f : Y → C onto a compact hyperbolic Riemann surface C and a

representation η : π1(C)→ PGL2(C) such that ϕ = η ◦ f∗.

2. There is a morphism f : Y → Z to a polydisk Shimura variety Z and a tautological repre-

sentation τi : π1(Z)→ PSL2(R) such that ϕ = τi ◦ f∗.
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Remark 7.1.8 The two cases in the above theorem are not mutually exclusive. In the second
case the polydisk Shimura variety is not necessarily projective; a priori neither Z nor f are
uniquely determined by ϕ .

Remark 7.1.9 The theorem still holds when Y is a smooth quasiprojective variety by [CS08],
[LPT16]. The projective case we use here was known before [CS08]; a proof can be obtained
by combining [Cor88], [Sim92], [Sim91], [GS92].

Remark 7.1.10 P1(C) is the boundary of the three dimensional real hyperbolic space H3 and
the action of PGL2(C) on P1(C) is induced by the isometric action of PGL2(C) on H3. We
can compare Theorem 7.1.7 with Theorem 4.2.1. Note that the representation is minimal in the
sense of hyperbolic geometry if and only if it is Zariski dense with respect to the real algebraic
structure of PGL2(C); a complex Zariski dense subgroup of PGL2(C) may not be minimal, for
example PSL2(R).

As PSL2(R) ⊂ PGL2(C) we will consider ρ : π1(X)→ PSL2(R) also as a representation
into PGL2(C). Since its image is dense in PSL2(R) with respect to the usual topology, it is
dense in PGL2(C) with respect to the Zariski topology of the complex variety PGL2(C). Hence
we can apply Corlette-Simpson’s theorem to our representation ρ . Since ρ does not factorize
through a curve by Proposition 7.1.4, it factorizes through a polydisk Shimura variety Z with its
i-th tautological representation τi. It is only natural to observe that:

Theorem 7.1.11 (Touzet [Tou16]) Up to replacing X with a finite unramified cover, there is a

morphism f : X → Z such that ρ = τi ◦ f∗ and the foliation F is induced by the corresponding

tautological foliation on Z, i.e. F = f ∗Gi.

Proof The above discussion gives us the existence of a morphism g : X → Z such that ρ =

τi ◦ g∗. This morphism may not be unique and it may not satisfy F = g∗Gi; we will show
that there is at least one with desired properties. The morphism lifts to a holomorphic map
(g1, · · · ,gn) : X̃ → D×·· ·×D which is equivariant; here the gi are holomorphic functions on
X̃ with values in D. Recall that s is the fibration X̃ → D. We define a new holomorphic map
f̃ = (g1, · · · ,gi−1,s,gi+1, · · · ,gn) : X̃ → D× ·· · ×D. This map f̃ is also equivariant because
ρ = τi ◦g∗. Thus it descends to a morphism f : X → Z. By construction it satisfies F = f ∗Gi.�

Remark 7.1.12 By Margulis superrigidity there are no homomorphisms with infinite image
from an irreducible lattice in (PSL2(R))k to an irreducible lattice in (PSL2(R))l if l,k ≥ 2 and
l 6= k. Therefore when X is a bidisk quotient, the polydisk Shimura variety Z must be X itself.
This recovers the fact that bidisk quotients and Brunella exotic foliations do not mix.
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The tangent bundle TF of the foliation F is the sub-line bundle of the tangent bundle of X

defined by the directions tangent to the foliation F . The canonical bundle KF of F is the dual
of TF . The canonical bundle of a singular foliation can be easily defined in the same way and
there is a theory of minimal model program for foliations on surfaces established by Brunella
and McQuillan. We refer to [Bru15] for the foliated MMP theory. Here we just mention that
bidisk quotients play a special role in the theory: compact bidisk quotients or compactification
of quasiprojective bidisk quotients are the only singular foliations on projective surfaces that
violate the abundance principle. We only state the result for our regular foliation F on X :

Theorem 7.1.13 (Brunella-McQuillan [Bru03], [McQ08]) — If X is a bidisk quotient,

then KF is nef and not numerically trivial. The Kodaira dimension of KF is −∞, i.e. for

any m ∈ N∗, K⊗m
F has no sections.

— If X is a Brunella exotic foliation, then KF is nef and big, i.e. KF is nef, has Kodaira

dimension 2 and KF ·KF > 0.

plurisubharmonic variation of leafwise Poincaré metrics. Let V be a small open subset
of X where F is generated by a holomorphic vector field v. This vector field induces a local
trivialization of TF thus KF over V . For p ∈ V let Lp be the leaf through p and denote by
‖v(p)‖poin the norm of the vector v(p) with respect to the Poincaré metric on Lp. One of the
main ingredient of Thereom 7.1.13 is the following result.

Theorem 7.1.14 ([Bru03]) The function h(p) = log‖v(p)‖poin is continuous and plurisubhar-

monic.

Thus the function h is the local weight of a singular hermitian metric on KF (cf. [Dem92]
for singular hermitian metrics), in the local trivialization induced by v. The curvature of the
metric can be locally written as Ω = −1

2πi∂∂h. The function h is pluriharmonic if and only if Ω

is a closed positive current. The Chern class of KF is the de Rham cohomology class of Ω. A
reformulation of Theroem 7.1.14 is

Theorem 7.1.15 ([Bru03]) The Poincaré metrics on the leaves of F induce a singular Hermi-

tian metric on KF ; the curvature of this current is a closed positive current.

Note that the existence of a singular Hermitian metric whose curvature is a closed positive
current is just a consequence of the fact that KF is nef (cf. [Dem92]); the feature of the above
theorem is to construct such a metric in a natural way from the geometry of the foliation.
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7.2 Holomorphic motions

7.2.1 Holomorphic motions and λ -Lemma

We refer to [AM01] and [Dou95] for more details on holomorphic motions.
A real valued function defined on an interval [a,b] is absolutely continuous if there is a

Lebesgue integrable function g on [a,b] such that f (x) = f (a)+
∫ x

a g(t)dt for all x ∈ [a,b]. A
continuous map f : A→ C defined on a domain A⊂ C is absolutely continuous on lines (ACL)

if for each closed rectangle {x+ iy|a ≤ x ≤ b,c ≤ y ≤ d} ⊂ A, the function x 7→ f (x+ iy) is
absolutely continuous on [a,b] for almost all y∈ [a,b] and y 7→ f (x+ iy) is absolutely continuous
on [c,d] for almost all x ∈ [a,b]. As an absolutely function is almost everywhere differentiable,
an ACL map has partial derivatives almost everywhere. Let κ ∈ [1,+∞). A sense-preserving
continuous map f : A→ C which is homeomorphic onto the image is κ-quasiconformal if 1)
f is ACL; 2) |∂ f (z)|+ |∂ f (z)| ≤ κ

(
|∂ f (z)|− |∂ f (z)|

)
almost everywhere. If f : A→ C is

quasiconformal then its complex dilatation, or its Beltrami differential, is the Borel measurable
function µ f : z 7→ ∂ f (z)

∂ f (z) . If f is κ-quasiconformal then |µ f (z)| ≤ κ−1
κ+1 < 1. The dilatation of f is

the infimum of κ for which f is κ-quasiconformal. A 0-quasiconformal map is a holomorphic
map. We can define quasiconformal maps for domains in P1.

Now let A be an arbitrary subset of P1. An injective map A→P1 is said to be quasiconformal

if it is the restriction of a quasi-conformal map.
A holomorphic motion of a subset A⊂ P1 over a complex manifold T is a map Ψ : A×T →

P1 such that

1. for any a ∈ A, the map z 7→Ψ(a,z) is holomorphic;

2. for any z ∈ T , the map a 7→Ψ(a,z) = Ψz(a) is an injection;

3. Ψ0 is the identity map.

The base manifold of a holomorphic motion will always be D unless stated otherwise. A holo-
morphic motion Ψ is called constant if Ψ does not depend on z. Two holomorphic motions
Ψ1,Ψ2 of A are equivalent (resp. algebraically equivalent) if there is a holomorphic map
f : D → PGL2(C) (resp. which extends to a rational function on C) such that Ψ2(a,z) =

Ψ1( f (z)(a),z). A holomorphic motion is trivial (resp. algebraically trivial) if it is equivalent

(resp. algebraically equivalent) to a constant holomorphic motion.

Theorem 7.2.1 (λ -Lemma [MnSS83], [Lyu83]) If Ψ : A×D→ P1 is a holomorphic motion

of A ∈ P1, then Ψ extends to a holomorphic motion Ψ : Ā×D→ P1 of the closure Ā and Ψ is

necessarily continuous.
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Remark 7.2.2 The continuity implies that the extension is unique.

Two naturally raised questions are whether Ψ can be extended over a neighbourhood of 0∈D to
a set larger than Ā, and how regular the functions Ψz are. Some partial answers are obtained in
[ST86] and [BR86]. Using different methods, Slodkowski proved the following optimal result:

Theorem 7.2.3 (Slodkowski’s Extended λ -Lemma [Slo91]) If Ψ : A×D→ P1 is a holomor-

phic motion of A⊂ P1, then it has an extension Ψ̃ : P1×D→ P1 such that

1. Ψ̃ is a holomorphic motion of P1;

2. For any z ∈ D, Ψ̃z is a quasiconformal self-homeomorphism of P1 of dilatation not ex-

ceeding 1+|z|
1−|z|

3. Ψ̃ is continuous.

When we have a holomorphic motion Ψ of A, we denote by Az the set Ψz(A) ⊂ P1; Az is
homeomorphic to A for any z ∈ D. The graph of a holomorphic motion Ψ of A is {(z,w) ∈
D×P1|∃a ∈ A,w = Ψ(z,a)}. A holomorphic motion is not uniquely determined by its graph;
for example D×P1 is the graph of every holomorphic motion of P1. A subset of the graph of Ψ

of the form {(z,w) ∈ D×P1|w = Ψ(z,a)} where a is fixed is called a leaf of the holomorphic
motion.

7.2.2 Construction of a holomorphic motion

From now on in this chapter we assume that (Y,Γ,U,X) is a birational Kleinian group in
dimension two such that Γ preserves a rational fibration r : Y → B with B = P1 which induces
a minimal transversely hyperbolic regular foliation on X . As in Chapter 5 we denote by ΓB the
image of Γ in Aut(B) and we denote by γB the image of an element γ ∈ Γ in ΓB. By Selberg’s
lemma, up to replacing Γ with a subgroup of finite index we will assume that ΓB is torsion free.
Up to contracting (−1)-curves outside U we assume that every (−1)-curve contained in some
fiber of r intersects U .

When we speak about disks (resp. circles) in P1 we mean round disks (resp. circles) that
are images of the unit disk (resp. circle) D under Aut(P1); topological disks in P1 will just
be called simply connected domains or domains biholomorphic to D, and topological circles
will be called Jordan curves. The image of an injective holomorphic map from D to a complex
manifold will be called a holomorphic disk.

The terminology and notations from Section 7.1 will be used for our X . We recall the fol-
lowing properties. There is a fibration s : X̃ → D from the universal cover X̃ to the disk D with
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Part , Chapter 7 – Minimal transversely hyperbolic foliations

fibers all biholomorphic to D and a representation ρ : π1(X)→ PSL2(R) with dense orbits with
respect to which s is equivariant (cf. Theorem 7.1.1). The leaves of F come from the fibers of
s.

Proposition 7.2.4 Up to conjugation in Aut(B), the projection r(U) is the unit disk in P1 and

ΓB is a dense subgroup of PSL2(R). The action of ΓB on r(U) is just the action of ρ(π1(X)) on

D. The fibers of r : U → r(U) are connected.

Proof In our situation F comes from the map r : U → r(U). We obtain thus a commutative
diagram

X̃ −−−→ Uy y
D −−−→

q
r(U)

where all arrows are equivariant. In particular q : D→ r(U) is equivariant under a homomor-
phism η : ρ(π1(X))→ ΓB ⊂ PGL2(C). Recall that we have assumed that ΓB is torsion free
by Selberg’s lemma. We know that ρ(π1(X)) is dense in PSL2(R) (cf. Proposition 7.1.4), thus
contains elliptic elements of infinite order by Lemma 7.1.5. Let g ∈ ρ(π1(X)) be an elliptic
element of infinite order and let x ∈ D be a point which is not the center of g. The closure of
the g-orbit of x is a circle in D. The image of this circle in r(U) is a curve contained in the
closure of the η(g)-orbit of q(x). This implies that η(g) is an elliptic element of infinite order
of PGL2(C) = Aut(B). Thus being η(g)-invariant r(U) is a disk and q sends concentric circles
associated with g to concentric circles associated with η(g). If we normalize so that the center
of g and η(g) are origins and that r(U) is the unit disk, then we see that q is the identity map.
This implies that the fiber of r : U → r(U) over b ∈ B is connected, being the image of the fiber
of s over q−1(b). �

Every ΓB-orbit in r(U) being infinite and dense in r(U), we have:

Corollary 7.2.5 r : Y → B has no singular fibers over r(U).

Therefore the open set r−1(r(U)) is D×P1. We can perform elementary transformations
outside U to realize a geometric conjugation Y 99K P1×P1 of birational Kleinian groups. From
now on in this chapter we will assume that Y = P1×P1, r(U) = D.

For any Γ-invariant metric on U , the injectivity radius is the supremum of R such that balls
of radii R inject into X =U/Γ; it is a positive number. We have seen in Corollary 7.1.3 that X

124



7.2. Holomorphic motions

and U are Kobayashi hyperbolic. Thus the Kobayashi hyperbolic metric is a Γ-invariant metric
on U .

We denote by ∂U the boundary of U in Y = P1×P1. The boundary of U in D×P1 will
be called the horizontal boundary and be denoted by ∂hU . Note that r(∂hU) = D and it is only
a subset of the total boundary ∂U in Y = P1×P1. A holomorphic disk in P1×P1 is called
a horizontal holomorphic disk over a simply connected domain D ⊂ B if it is a holomorphic
section of r over D.

Let K be a subset of U , a point p in ∂U is said to be a K-accessible point if every neigh-
borhood of p intersects γ(K) for infinitely many γ in Γ. We say that a subset V ⊂U is a weak

fundamental domain if 1) Γ-translates of V cover U ; 2) the projection V →U/Γ is proper. The
following two lemmas are taken from [Kul78].

Lemma 7.2.6 There exists a compact connected weak fundamental domain.

Proof We denote the covering map U → X by π . For any x ∈ X and x′ ∈U such that π(x′) = x,
pick a compact connected neighborhood Ux′ ⊂ U of x′ such that Ux = π(Ux′) is a compact
neighborhood of x. Since X is compact, there exist finitely many points xi,1 ≤ i ≤ k in X such
that the associated Uxi cover X . Then the union of Ux′i

is a compact subset of U which projects
surjectively onto X . We can make this union connected by translating the Ux′i

by elements of
Γ. �

Lemma 7.2.7 Every point in ∂U is a K-accessible point for any compact connected weak fun-

damental domain K.

Proof Let p be a point in ∂U and V a compact connected neighborhood of p in the closure Ū .
Assume by contradiction that p is not K-accessible. Then V − ∂U is covered by finitely many
translates of K, so it is compact. But this implies that ∂U is open in V , which is absurd. �

Proposition 7.2.8 The horizontal boundary ∂hU ⊂D×P1 is laminated by horizontal holomor-

phic disks over D= r(U). In other words, ∂hU is the graph of some holomorphic motion.

Proof The holomorphic leaves in the lamination will be constructed as limits of holomorphic
disks in U .

Let p be a point in ∂hU . We want to construct a holomorphic disk in ∂hU containing p.
Let K be a weak fundamental domain in U . We cover K by finitely many small round bidisks
(D j

1×D j
2) j∈J such that
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1. The D j
1s are disks in r(U) = D with hyperbolic radii all equal to δ .

2. The D j
2s are disks in P1.

3. For any j ∈ J, D j
1×D j

2 ⊂U .

4. For j ∈ J denote by E j
1 the disk having the same center as D j

1 but with hyperbolic radius
4δ . For any j the radius of E j

1×D j
2 with respect to the Kobayashi hyperbolic metric of U

is less than half of the injectivity radius.

A consequence of the fourth point is:

— For any j1, j2, there is at most one element γ ∈ Γ such that E j1
1 ×D j1

2 intersects γ(E j2
1 ×

D j2
2 ). In particular for any j, E j

1×D j
2 injects into X .

By Lemma 7.2.7 p is K-accessible, there is a sequence (γn)n of distinct elements of Γ such
that for every neighborhood V of p, V intersects γn(K) for large enough n. As K is covered by
the finitely many bidisks D j

1×D j
2, j ∈ J, we infer that there exists a j such that V intersects

γn(D
j
1×D j

2) for infinitely many n. Note that the γn(D
j
1×D j

2) are disjoint.

Projecting everything to r(U) = D, we infer that r(p) ∈ D is a D j
1-accessible point for the

action of ΓB. Denote by Dr(p) the disk of hyperbolic radius 2δ centered at r(p). For n large
enough, the center of the disk γnB(D

j
1) is contained in Dr(p). As the E j

1 have radii 4δ , γnB(E
j
1)

contains Dr(p) for large enough n. After throwing a finite number of terms in the sequence
(γn)n, we will assume that every γnB(E

j
1) contains Dr(p). Now consider the sequence of regions

Ln = γn(E
j
1×D j

2)∩ (Dr(p)×P1); they are holomorphic bidisks because γnB(E
j
1) contains Dr(p).

Let βn : Dr(p)×D→ Ln,(z,w) 7→ (z,bn(z,w)) be a sequence of biholomorphic parametrizations
of the Ln.

Lemma 7.2.9 There is a subsequence of (βn)n which converges locally uniformly to a holo-

morphic map β such that

1. the image of β is a horizontal disk Dp over Dr(p);

2. Dp is contained in ∂hU ∩ (Dr(p)×P1);

3. Dp contains p;

4. Dp does not depend on the chosen subsequence.

Proof Choose three disjoint horizontal disks R1,R2,R3 in L0. There is a holomorphic diffeo-
morphism φ of Dr(p)×P1 preserving fiberwise r : Dr(p)×P1→Dr(p) such that φ(Ri), i = 1,2,3
are Dr(p)×{0},Dr(p)×{1} and Dr(p)×{∞}. Up to conjugating everything by φ , we can and
will assume that R1,R2,R3 are Dr(p)×{0},Dr(p)×{1} and Dr(p)×{∞}. Thus (Dr(p)×P1)\L0 is
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a subset of Dr(p)× (C∗\{1}) which is the product of two hyperbolic Riemann surfaces; for any
n≥ 1, Ln is contained in Dr(p)× (C∗\{1}). We apply Montel’s theorem to the parametrization
mappings βn and obtain a subsequence of (βn)n which converges uniformly on compact sets to
a limit holomorphic mapping β : Dr(p)×D→ (U ∪∂hU),(z,w) 7→ (z,b(z,w)). For z fixed, the
function w 7→ b(z,w) must be constant because it is a limit function of a sequence of holomor-
phic maps D→ C∗\{1} with disjoint images. Therefore the image of β is a horizontal disk Dp

over D. Since every neighbourhood of p intersects Ln, Dp contains p. Suppose by contradiction
that a point q ∈ Dp is in U . Then q is contained in a translate of the weak fundamental do-
main K. Thus there exist γ ′ ∈ Γ and k ∈ J such that γ ′(Dk

1×Dk
2) is an open neighbourhood of q.

Therefore γ ′(Dk
1×Dk

2) intersects Ln, thus γn(E
j
1×D j

2) for n large enough. However by our initial
hypothesis there is at most one n such that γn(E

j
1 ×D j

2) intersects γ ′(Dk
1×Dk

2), contradiction.
Hence Dp ⊂ ∂h(U).

Suppose by contradiction that using the above process we can construct two distinct limit
horizontal disks Ds,Dt over Dr(p) with non-empty intersection which correspond to two subse-
quences s(n), t(n). For large enough n we choose a horizontal holomorphic disk Ds(n) over S in
Ls(n) (resp. Dt(n) in Lt(n)). The holomorphic disk Ds(n) (resp. Dt(n)) is the graph of a holomor-
phic function fs(n) (resp. ft(n)) on S. The sequence of holomorphic functions fs(n) (resp. ft(n))
converges locally uniformly to a holomorphic function fs (resp. ft). The intersection Ds∩Dt is a
discrete set in Ds and in Dt . We chose a small relatively compact disk S⊂Dr(p) which contains
the projection of a point in Ds∩Dt . Thus fs− ft has a zero in S. For n large enough, fs(n)− ft(n)
is close to fs− ft on S̄; by Rouché’s theorem fs(n)− ft(n) has also a zero in S. This contradicts
the fact that the regions Ln are disjoint. �

Remark that, if for each n we choose a horizontal disk Mn over Dr(p) contained in Ln, then the
corresponding subsequence of (Mn)n converges also to Dp. To construct Dp we have chosen a j

such that p is D j
1×D j

2-accessible. The following lemma shows that Dp does not depend on the
choice of j (by taking p = q in the following lemma), and not even on p.

Lemma 7.2.10 Let q ∈ ∂h(U) and let k ∈ J such that q is Dk
1×Dk

2-accessible. Let Dq be the

limit horizontal disk constructed by the above process. Then either Dp∩Dq = /0 or they intersect

in a relative open subset, i.e. Dp and Dq glue together to a Riemann surface.

Proof We can assume that r(q) is at hyperbolic distance < 4δ from r(p); otherwise Dp and Dq

are trivially disjoint because their projections in r(U) =D are disjoint. Let (γ j
n)n (resp. (γk

n)n) be
a sequence of elements in Γ such that Ln = γ

j
n((E

j
1×D j

2)∩ (Dr(p)×P1)) (resp. Mn = γk
n((D

k
1×

Dk
2)∩ (Dr(q)×P1))) converges to a limit horizontal disk D j

p (resp. Dk
q). If the γ

j
n(E

j
1×D j

2) and
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the γk
n(E

k
1 ×Dk

2) are all disjoint, then the parts over Dr(p) ∩Dr(q) of the limit disks coincide
by Rouché’s theorem as at the end of the proof of the previous lemma. Suppose that infinitely
many of them intersect. We said that there is at most one h ∈ Γ such that E j

1 ×D j
2 intersects

h(Ek
1 ×Dk

2). Therefore up to taking subsequences of (γ j
n)n and (γk

n)n, we can assume that for
any n, γk

n = γ
j

n ◦ h. Then (Ln ∩Kn)n is a sequence of open domains that converges to both an
open subset of D j

p and an open subset of Dk
q. Thus D j

p glues with Dk
q by analytic continuation.�

In summary, once we fixed K and the finitely many round bidisks (D j
1×D j

2) j∈J covering K,
we have a process to construct locally for each p ∈ ∂h(U) a unique horizontal disk Dp such that

1. Dp ⊂ ∂h(U).

2. p ∈ Dp.

3. r(Dp)⊂ D is a disk of hyperbolic radius 2δ .

4. for p 6= q, if Dp∩Dq 6= /0 then Dp∪Dq is a connected Riemann surface.

To finish the proof it remains to show that the projection in r(U) = D of a maximal connected
horizontal Riemann surface glued from the Dps is the whole D. Suppose by contradiction that
L is such a maximal Riemann surface with r(L) contained strictly in D. Then there exits a point
p ∈ L such that r(p) is at distance < δ from the boundary of r(L) in D. By glueing L with Dp,
we get a contradiction to the maximality of L because r(Dp) has radius 2δ . �

7.2.3 Action on the holomorphic motion

We fix some notations that we will use throughout this chapter. Denote by ψ the holomor-
phic motion we constructed in the previous subsection; its graph is ∂h(U). For x ∈ D = r(U),
we will denote by Ux the intersection U ∩P1

x . Denote by Ax the boundary of Ux in P1
x and denote

A0 by A. Then we have

Proposition 7.2.11 ∂h(U) is the graph of ψ which is a holomorphic motion of A over D. The

intersection of ∂h(U) with P1
x is Ax.

The extended λ -Lemma (cf. Theorem 7.2.3) allows us to extend φ to the whole P1. The
extension is not unique but when there is no ambiguity we will always use Ψ to denote an
extension of ψ . As a consequence of the extended λ -Lemma we have

Proposition 7.2.12 U is the graph of a holomorphic motion.

Another consequence is
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Proposition 7.2.13 A horizontal holomorphic disk over D contained in ∂h(U) is necessarily a

leaf of ψ and ψ is the unique holomorphic motion whose graph is ∂h(U).

Proof Let {(x,h(x))|x ∈ D} be a horizontal holomorphic disk over D. Let Ψ be a holomorphic
motion of U0 with graph U . Consider two holomorphic motions of U0 ∪ {h(0)}. The first is
defined by (x,w) 7→Ψ(x,w) if x ∈U0 and (x,w) 7→ h(x) if w = h(0). The second is defined by
(x,w) 7→Ψ(x,w) if x ∈U0 and (x,w) 7→ ψ(h(0)) if w = h(0). Since h(0) is in the closure of U0,
these two holomorphic motions coincide by the continuity assertion in λ -Lemma (cf. Theorem
7.2.1). �

Corollary 7.2.14 Γ permutes the leaves of the holomorphic motion ψ . This induces a homo-

morphism ζ : Γ→ Qc(A) into the group of quasiconformal homeomorphisms of A.

Proof By Corollary 5.2.3 Γ acts by holomorphic diffeomorphisms on D×P1. The image of
a leaf in ∂h(U) by an element of Γ is still a leaf in ∂h(U) by Proposition 7.2.13. Let γ ∈ Γ.
The homeomorphism ζ (γ) : A→ A is the composition ψ

−1
γB(0)
◦ γ|A0 . It is quasiconformal by

λ -Lemma. �

7.3 Teichmüller Spaces and Bers fiber spaces

Before we continue to investigate the birational kleinian group Γ and the transversely hy-
perbolic foliation F , we introduce some preliminaries on Teichmüller theory in this section.
All assertions without proofs and explicitly mentioned references can be found in [Leh87].

7.3.1 Teichmüller spaces

The following fundamental result is at the heart of the preliminaries that we are going to
introduce in this section.

Theorem 7.3.1 (Ahlfors-Bers [AB60]) Let µ be a bounded measurable function in AP1 such

that ‖µ‖
∞
< 1. Then there exists a unique quasiconformal map fµ : P1→ P1 which fixes 0,1,∞

and whose Beltrami differential agrees with µ almost everywhere. Such a quasiconformal map

depends holomorphically in µ , i.e. for ν another bounded measurable function, for any a ∈ P1,

fµ+zν(a) is holomorphic in z for z in a neighbourhood of 0.
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Let G be a Fuchsian group, i.e. an arbitrary discrete subgroup of PSL2(R), acting on the upper
half plane H, hence also on the lower half plane L. The space of Beltrami differentials for G is

M(G) = {µ ∈ L∞(H)|‖µ‖
∞
< 1,∀g ∈ G,(µ ◦g)

∂g
∂g

= µ}.

For µ ∈ M(G) denote by wµ the unique quasiconformal self-map of P1 that fixes 0,1,∞, is
holomorphic in L and whose Beltrami differential equals to µ almost everywhere in H. For
µ ∈M(G) denote by wµ the unique quasiconformal self-map of H that fixes 0,1,∞ ∈ ∂H and
whose Beltrami differential equals to µ almost everywhere in H (a quasiconformal self-map of
H always extends to the boundary circle).

Proposition 7.3.2 (see [Leh87] III.1.3) Let µ,ν ∈M(G). The following are equivalent

1. wµ ,wν agree on L.

2. wµ ,wν agree on the circle R∪{∞}.

Two elements µ,ν ∈ M(G) are called equivalent if they satisfy the conditions in the above
theorem. The equivalence class of µ is denoted by [µ]. The set of equivalence classes is the
Teichmüller space of G, denoted by T (G). Thus the domains wµ(H) and wµ(L) depend only on
[µ]∈ T (G). If µ ∈M(G) and g ∈G then wµ ◦g◦ (wµ)

−1 agrees with an element of PGL2(C) =

Aut(P1) in L and wµ ◦ g ◦ (wµ)−1 agrees with an element h(g,µ) of PGL2(C) = Aut(P1) on
R∪{∞}. More precisely, if we set gµ =wµ ◦(wµ)−1◦h(g,µ)◦wµ ◦w−1

µ in the closure of wµ(H)

and gµ = wµ ◦ g ◦ (wµ)
−1 in wµ(L), then gµ ∈ PGL2(C). We denote by Gµ the group formed

by the gµ ; it is a quasifuchsian group which depends only on [µ] ∈ T (G).
If f is a holomorphic function in a domain with nowhere vanishing derivative, then its

Schwarzian derivative is the holomorphic function

S f =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

The Schwarzian derivative of a function is zero if and only if the function is the restriction of a
transformation in PGL2(C) = Aut(P1). The space of quadratic differentials Q(G) is the space
of all holomorphic functions S on L such that S = (S ◦ g)(g′)2 for all g ∈ G. We have a map
from M(G) to Q(G) that sends µ to Swµ |L .

Theorem 7.3.3 (Bers embedding) The map M(G) → Q(G),µ 7→ Swµ |L is holomorphic and

induces an embedding T (G) ↪→ Q(G).
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Thus the Teichmüller space T (G) is equipped with a structure of complex (Banach) mani-
fold. When G = {Id} is the trivial group, we denote T (G) by T (1) and call it the universal

Teichmüller space. For G1 ⊂ G2 we have natural inclusions Q(G2) ⊂ Q(G1) and T (G2) ⊂
T (G1). Thinking of the T (G)s as open subsets of the Q(G)s, and thinking of the Q(G)s as
sub-vectorspaces of Q(1), we have T (G) = Q(G)∩T (1). Hence the terminology “universal Te-
ichmüller space”. If C is a hyperbolic Riemann surface then it is the quotient of H by a fuchsian
group G; the Teichmüller space T (C) of C is defined to be T (G).

7.3.2 Bers fiber spaces

The map T (G)× P1 → P1,([µ],y) 7→ wµ(y) is a holomorphic motion over T (G) by the
holomorphic dependence of solutions of Beltrami differential equations. The Bers fiber space
F(G) is a complex manifold that fibers over T (G) with fibers all biholomorphic to D; it is
defined to be the following open subset of T (G)×P1:

F(G) = {([µ],y) ∈ T (G)×P1|y ∈ wµ(H)}.

It is the graph of a holomorphic motion of H over T (G) and its boundary in T (G)×P1 is the
graph of a holomorphic motion of R∪{∞}. The domain F(G) itself is not a bounded domain
in T (G)×P1, but it is biholomorphic to one:

Theorem 7.3.4 ([Ber73]) There is an embedding F(G)→ T (G)×P1 which preserves fiberwise

the fibration F(G)→ T (G) such that the image is contained in T (G)×D.

From now on we will assume that the fuchsian group G is torsion free, i.e. H/G is a Riemann
surface. The group G acts on F(G) by g(([µ],y)) = ([µ],gµ(y)). The action is discontinuous
and by biholomorphisms. The quotient V (G) = F(G)/G is a complex (Banach) manifold which
fibers over T (G) with fibers all quasiconformal to H/G. We call V (G) the Teichmüller curve,
or the universal family.

It turns out that F(G) is itself a Teichmüller space:

Theorem 7.3.5 ([Ber73]) Let Ġ be a torsion free fuchsian group such that H/Ġ is biholomor-

phic to the complement of a point in H/G. Then F(G) is biholomorphic to T (Ġ).

Denote by QC the group of quasiconformal self-maps of H and by QC0 the subgroup of
those quasiconformal self-maps that fix all points on the boundary circle R∪{∞}. Denote by
N(G) and Nc(G) the normalizers of G in respectively QC and PSL2(R). Define mod(G) to be
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the group N(G)/(N(G)∩QC0). The quotient map N(G)→ N(G)/(N(G)∩QC0) is injective
restricted to G so that G may be considered as a subgroup of mod(G). It is actually a normal
subgroup and we define Mod(G) to be the quotient group mod(G)/G.

Let ω ∈ QC. For µ ∈M(G) consider the Beltrami differential of the map wµ ◦ω−1 that we
denote by ω∗(µ). It is a Beltrami differential for ωGω−1 and its class [ω∗(µ)] ∈ T (ωGω−1)

only depends on [µ]∈ T (G) and on the image of ω in QC/QC0. This defines a biholomorphism
from T (G) to T (ωGω−1). It can be extended to a biholomorphism F(G)→F(ωGω−1),([µ],y) 7→
([ω∗(µ)], ŷ) where ŷ = wω∗(µ) ◦ω ◦ (wµ)

−1(y). These assertions are proved in [Ber73] and lead
to

Theorem 7.3.6 ([Ber73]) The group Mod(G) acts by biholomorphisms on T (G) and V (G)

and the group mod(G) acts by biholomorphisms on F(G) so that the maps F(G)→V (G) and

V (G)→ T (G) are equivariant. The action of mod(G) on F(G) and the action of Mod(G) on

V (G) are faithful while the action of Mod(G) on T (G) is not always faithful.

We will call Mod(G) the Teichmüller modular group and mod(G) the extended Teichmüller

modular group.

Remark 7.3.7 We said that the boundary of F(G) in T (G)×P1 is a graph of a holomorphic
motion of the circle over T (G). The action of Mod(G) on F(G) extends to this boundary;
Mod(G) permutes the leaves of the holomorphic motion in the boundary and induces an action
on the circle which is the space of leaves. This action on the circle is nothing else but the action
of QC/QC0 on the boundary circle of H as we can see from the formula ([µ],y) 7→ ([ω∗(µ)], ŷ)

where ŷ = wω∗(µ) ◦ω ◦ (wµ)
−1(y).

The group of self-biholomorphisms of T (G) has been studied in [Roy71], [EK74], [EG96],
[Lak97], [Mar03], and that of F(G),V (G) in [EF85], [She06], [HS06]. We will need essentially
only [EF85]. For completeness we gather all known results in the following statement:

Theorem 7.3.8 1. If G is torsion free and H/G is not a Riemann surface of genus g with

n punctures such that 2g + n ≤ 4, then the group of self-biholomorphisms of T (G) is

Mod(G).

2. If G is torsion free then the group of self-biholomorphisms of V (G) preserving the fibra-

tion V (G)→ T (G) is Mod(G).

3. If G is torsion free and H/G is not a once punctured disk then the group of self-biholomorphisms

of V (G) is Mod(G).
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4. If G is torsion free and H/G is not a twice punctured affine plane or a once punctured

elliptic curve then the group of self-biholomorphisms of F(G) preserving the fibration

F(G)→ T (G) is mod(G).

7.3.3 Universal properties

A holomorphic family of Riemann surfaces with fiber model S is the data of two complex
(Banach) manifolds C and E, a connected Riemann surface S and a holomorphic submersion
f : E→C locally trivial in the topological category with fibers all homeomorphic to S. We define
an admissible holomorphic family of Riemann surfaces of fiber model S as a holomorphic family
of Riemann surfaces (E,C,S, f ) satisfying the following additional conditions:

1. C is simply connected;

2. for any x ∈C, there is an open neighbourhood W ⊂C of x such that there exists a home-
omorphic trivialization t : W ×S→ f−1(W ) such that w 7→ t(w,s) is a holomorphic map
from W to E for any fixed s ∈ S.

When the context is clear, we just say that E is an admissible holomorhic family. A morphism of
admissible holomorphic families from (E1,C1,S1, f1) to (E2,C2,S2, f2) is a pair of holomorphic
maps h : C1 → C2 and ĥ : E1 → E2 such that for any x ∈ C, ĥ restrited to the fiber f−1

1 (x) is
a bijective map onto f−1

2 (h(x)); in particular it satifies f2 ◦ ĥ = h ◦ f1. A morphism (h, ĥ) of
admissible holomorphic families is an isomorphism if h, ĥ are biholomorphic. See also [Nag88]
p360 for the following theorem:

Theorem 7.3.9 (Earle-Fowler [EF85] Theorem 2, Paragraphs 7.7 and 7.8) Let G be a tor-

sion free Fuchsian group and S be the Riemann surface H/G. The natural fibration V (G)→
T (G) is an admissible family of Riemann surfaces with fiber model S such that:

1. Given any admissible holomorphic family of Riemann surfaces (E,C,S, f ), there is a

morphism of admissible holomorphic families (h, ĥ) from E to V (G).

2. The morphism above (h, ĥ) is unique up to an automorphism of V (G). In other words if

(h1, ĥ1) and (h2, ĥ2) are two morphisms from E to V (G) then there is an isomorphism

(g, ĝ) of admissible holomorphic families of V (G) to itself such that h2 = g◦h1 and ĥ2 =

ĝ◦ ĥ1.

Notations.
— We denote by Aut(T (G)) the group of self biholomorphisms of T (G).
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— We denote by Aut(V (G)) (resp. Aut(F(G))) the group of automorphisms of V (G) (resp.
F(G)) as an admissible holomorphic family of Riemann surfaces over T (G) with fiber
model H/G (resp. H).

Theorem 7.3.8 tells us that Aut(V (G)) coincides with the Teichmüller modular group and that
Aut(T (G)) (resp. Aut(F(G))) coincides with the Teichmüller modular group (resp. the extended
Teichmüller modular group) unless in some exceptional cases.

7.4 From birational Kleinian groups to Teichmüller modular
groups

Let us come back to birational Kleinian groups.

7.4.1 Morphisms into Teichmüller spaces

By Slodkowski’s extended λ -Lemma, we know that U is the graph of a holomorphic motion
of U0 (cf. Proposition 7.2.12). As a consequence (U,D,r,U0) is an admissible holomorphic
family of Riemann surfaces with fiber model U0. In the sequel we think of U as an admissible
family. Since Γ preserves the fibration r, it is a group of automorphisms of admissible family.

Theorem 7.4.1 There is a morphism of admissible families ϕ̂ : U → V (U0) which is equiv-

ariant under a homomorphism Γ→ Aut(V (U0)). More precisely there are holomorphic maps

ϕ : D→ T (U0) and ϕ̂ : U → V (U0), a homomorphism θ̂ : Γ→ Aut(V (U0)) = Mod(U0) and a

homomorphism θ : Γ→ Aut(T (U0)) which factorizes through Γ→ ΓB such that

— ϕ̂ restricted to Ux for any x ∈ D is a bijection onto the fiber of V (U0)→ T (U0) over

ϕ(x);

— ϕ ◦ γB = θ(γ)◦ϕ and ϕ̂ ◦ γ = θ̂(γ)◦ ϕ̂ for any γ ∈ Γ.

If ϕ is not a constant map then ϕ is a holomorphic embedding; the image is geodesic with

respect to the Teichmüller metric on T (U0).

Proof By Theorem 7.3.9 there is a morphism of admissible families (ϕ, ϕ̂) from U to V (U0),
unique up to automorphisms of V (U0). For any γ ∈ Γ, (ϕ ◦ γB, ϕ̂ ◦ γ) is also a morphism of
admissible families. By uniqueness there is an automorphism (θ(γ), θ̂(γ)) ∈ Aut(V (U0)) such
that ϕ ◦ γB = θ(γ)◦ϕ and ϕ̂ ◦ γ = θ̂(γ)◦ ϕ̂ . Thus the equivariance.

Let us show that if ϕ is not constant then it is an embedding. Since every ΓB-orbit is dense
in D and ϕ is equivariant, if the differential of ϕ does not vanish at one point then it vanishes
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nowhere. Therefore it suffices to prove that ϕ is injective if not constant. Suppose that there
are x,y ∈ D such that ϕ(a) 6= ϕ(b). By Lemma 7.1.5 we can find an elliptic element g ∈ ΓB

of infinite order. Up to conjugating g by other elements in ΓB, we can assume that x,y are not
the center of g and are on two distinct concentric circles with center the center of g. As ϕ is
equivariant, for any n ∈ Z, gn(x) and gn(y) have the same image under ϕ . The closures of the
g-orbits of x and y are two concentric circles and ϕ takes the same values on these two circles.
The quotient of the annulus domain between these two circles by identifying them is an elliptic
curve. Thus ϕ induces a holomorphic function on that elliptic curve. This implies that ϕ is
constant.

The Teichmüller metric on T (U0) is a Finsler metric, i.e. it is determined by a continuous
function defined on the tangent bundle of T (U0) which associates to a tangent vector its norm
(cf. [EE67]); it is preserved by the Teichmüller modular group. Consider the norm function N

of the pull-back Teichmüller metric on the unit tangent bundle of D with respect to the Poincaré
metric. Note that PSL2(R) acts transitively on the unit tangent bundle. By equivariance and the
density of ΓB in PSL2(R), N is a continuous function which is constant on a dense subset of
the unit tangent bundle of D. Thus N is a constant function, i.e. the image of ϕ is complex
geodesic. �

Recall that the universal cover X̃ has a fibration s : X̃ → D equivariant under a representa-
tion ρ : π1(X)→ PSL2(R). The fibration r : U → D is induced by s and ρ(π1(X)) = ΓB (cf.
Proposition 7.2.4). Since U is an admissible family, (X̃ ,D,s,D) is also an admissible family (cf.
[EF85] Theorem 3). Then Theorem 7.3.9 implies

Lemma 7.4.2 X̃ is biholomorphic to the graph of a holomorphic motion of a simply connected

domain over D.

Along the same way we have

Theorem 7.4.3 There is a morphism of admissible families X̃ → V (1) = F(1) which is equiv-

ariant under a homomorphism π1(X)→Aut(V (1)) = Mod(1) = QC/QC0. The classifying map

D→ T (1) is either constant or a holomorphic embedding with geodesic image.

Corollary 7.4.4 X̃ is biholomorphic to a bounded domain in C2.

Proof Recall that V (1)=F(1) is biholomorphic to a bounded domain in T (1)×C (cf. Theorem
7.3.4). If X̃ is a bidisk there is nothing to prove. Otherwise the above theorem tells us that it is
just the part of V (1) over a holomorphic disk in T (1). �
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Variation of Poincaré metrics. Usually complex analytic data associated with a domain vary
in a real analytic way when the domain moves in a holomorphic motion (cf. [EM00]). In partic-
ular we have

Theorem 7.4.5 (Rodin [Rod86]) Let Ψ be a holomorphic motion of a simply connected do-

main Ω over D. Let a ∈Ω. There is a neighbourhood W of 0 ∈ D such that

1. a ∈Ωx = Ψx(Ω) for x ∈W.

2. Let Rx : D→ Ωx be the biholomorphism normalized so that Rx(0) = a and R′x(0) > 0.

Then R(x,y) = Rx(y) is real analytic for x ∈W and y ∈ D.

With Lemma 7.4.2 the above theorem implies that leafwise Poincaré metrics of the foliation
F vary in a real analytic way. Recall that in general we know that KF is nef and big, and
by Theorem 7.1.15 that leafwise Poincaré metrics give rise to a continuous singular hermitian
metric on KF . Here we obtain something better:

Proposition 7.4.6 Leafwise Poincaré metrics give a smooth Hermitian metric and KF is Her-

mitian semipositive.

7.4.2 Quasisymmetric groups

A quasisymmetric self-homeomorphism of the circle is a homeomorphism which extends to
a quasiconformal self-homeomorphism of the closed disk. The group of quasisymmetric self-
homeomorphisms of the circle is exactly QC/QC0 = Mod(1). A direct definition of quasisym-
metric hemeomorphism is as follows. Let f be a self-homeomorphism of the circle R∪{∞} ⊂
P1 such that f (∞) = ∞. Then f is κ-quasisymmetric if and only if there exists κ ∈ R such
that 1

κ
≤ f (x+t)− f (x)

f (x)− f (x−t) ≤ κ for all x ∈ R and all t > 0. For a given κ there is a κ ′ such that any
quasisymmetric self-homeomorphism of the circle which extends to a κ-quasiconformal self-
homeomorphism of D is κ ′-quasisymmetric.

Let Ψ be a holomorphic motion over D. Recall that λ -lemma asserts that for any z ∈ D, Ψz

is a quasiconformal map with dilatation ≤ 1+|z|
1−|z| . We say that the holomorphic motion Ψ has

bounded distortion if there is κ ∈ R such that Ψz is κ-quasiconformal for any z ∈ D.

Theorem 7.4.7 (Hinkkanen [Hin85],[Hin90], Markovic [Mar06]) A subgroup of Mod(1) such

that every element is κ-quasisymmetric for some κ ∈ R is conjugate to a subgroup of PSL2(R)

by a κ ′-quasisymmetric self-homeomorphism where κ ′ depends only on κ .
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Remark 7.4.8 If the subgroup extends to a group of quasiconformal self-homeomorphisms of
D, i.e. if there is a section of QC→ QC/QC0 over this subgroup, then the theorem is proved
much earlier by Tukia [Tuk80] and Sullivan [Sul81].

Lemma 7.4.9 Suppose that X̃ is not the bidisk. Then the image of the homomorphism π1(X)→
Mod(1) in Theorem 7.4.3 is not conjugate in Mod(1) to a subgroup of PSL2(R).

Proof Suppose the contrary. Up to post-composing the classifying map X̃ → V (1) by the
element of Mod(1) which realizes the conjugation, we can assume that the homomorphism
α : π1(X)→Mod(1) has image in PSL2(R). By Theorem 7.4.3 we have the following equiv-
ariant commutative diagram

X̃ −−−→ V (1)y y
D −−−→ T (1)

where horizontal arrows are embeddings. Thus the representation ρ : π1(X)→ PSL2(R) asso-
ciated with the foliation F is the composition of α with some homomorphism α(π1(X))→
PSL2(R). As ρ does not factorize through an orbicurve by Proposition 7.1.4, α does not fac-
torize through an orbicurve either. Thus by Theorem 4.2.1 the image of α is a dense subgroup
of PSL2(R). Let ( fn)n be a sequence of elements of π1(X) such that α( fn) approaches to Id in
PSL2(R). We want to show that as elements of Aut(X̃) the sequance ( fn)n converges to Id too;
this will contradict the discreteness of π1(X)⊂ Aut(X̃).

We denote α( fn) by ωn if we think of it as an element of PSL2(R) and by gn if we think
of it as an element of Mod(1). In other words ωn acts on H∪ ∂H and gn acts on T (1) and
V (1). We need to show that gn converges to the identity map. We recall how gn acts on T (1)
and V (1) (see the paragraph before Theorem 7.3.6). If [µ] ∈ T (1) is represented by a Beltrami
differential µ then gn([µ]) is represented by the Beltrami differential of ωn∗(µ) = wµ ◦ω−1

n . As
ωn is holomorphic, the formula for changes of variables (cf. [Leh87] I.4.2) gives

ωn∗(µ)(z) = µ(z)
(

ω ′n(z)
|ω ′n(z)|

)2

.

Thus ωn∗(µ) converges to µ as ωn goes to Id. The action of gn on V (1) = F(1) is described as
follows. If ([µ],y) ∈V (1) then its image under gn is ([ωn∗(µ)], ŷ) where

ŷ = wωn∗(µ) ◦ωn ◦w−1
µ (y).
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By Theorem 7.3.1, when ωn∗(µ) is close to µ , wωn∗(µ) is close to wµ . Thus ŷ converges to y as
ωn goes to Id. Hence gn converges pointwise to Id. �

Theorem 7.4.10 If U is the graph of a holomorphic motion of bounded distorsion then X̃ is

biholomorphic to the bidisk.

Proof If U is the graph of some holomorphic motion of bounded distorsion then the same is true
for X̃ . Suppose that X̃ is not the bidisk and is the graph of a holomorphic motion Ψ of bounded
distorsion. We think of X̃ as embedded in V (1). Denote by X̃x the fiber of s : X̃ →D over x ∈D.
Since the action of Mod(1) on T (1) is transitive we can assume that X̃0 is H. An element of
π1(X) acts on X̃ by biholomorphisms and acts on the circle ∂H by quasisymmetric homeomor-
phisms via the embedding α : π1(X)→Mod(1). The relation between these two actions is as
follows. Let f ∈ π1(X). The fiber X̃0 is sent by f to another fiber X̃x where x = ρ( f )(0), then
it can be sent back to itself by following the holomorphic motion Ψ; in this way we obtain a
quasiconformal self-homeomorphism of X̃0 = H associated with f . The extension of this qua-
siconformal map to the boundary circle is nothing else but the quasisymmetric homeomorhism
α( f ) (cf. Theorem 7.3.6 and Remark 7.3.7); in particular it does not depend on the holomor-
phic motion Ψ. Thus we see that if Ψ has bounded distorsion then every element of α(π1(X))

is κ-quasisymmetric for some fixed κ . By Theorem 7.4.7 α(π1(X)) is conjugate to a subgroup
of PSL2(R) in Mod(1), contradiction to Lemma 7.4.9. �

Remark 7.4.11 Since U is determined by ∂h(U), the condition that U is not the graph of any
holomorphic motion of bounded distorsion is a condition on ∂h(U). But it is weaker than saying
that the unique holomorphic motion of which ∂h(U) is the graph has bounded distorsion. For
example the complement of the closure of F(1) =V (1) in T (1)×P1 is biholomorphic to T (1)×
H but its boundary is the same as the boundary of F(1) and does not have bounded distorsion.

On the other hand even if ∂h(U) is the graph of a constant holomorphic motion, U may be
the graph of a holomorphic with unbounded distorsion; see [McM07] for such an example.

Actually what we proved is a theorem of independant interest for Brunella exotic foliations:

Theorem 7.4.12 The universal cover of a Brunella exotic foliation is not the graph of a holo-

morphic motion of bounded distorsion.

Remark 7.4.13 We hope that our approach (cf. Question 7.5.6) shed some light on the study
of Brunella exotic foliations, though Theorem 7.4.12 is still far from answering the question
whether Brunella exotic foliations exist. It seems that Theorem 7.4.12 is so far the only result
on Brunella exotic foliations after the work of Brunella himself [Bru97], [Bru03].
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7.4.3 Carathéodory’s theorem

In this subsection we assume that U is simply connected and ∂h(U) is locally connected. In
other words we assume that for any x ∈ D, Ux is a simply connected domain in P1

x and Ax is
locally connected. We recall a classical theorem of Carathéodory:

Theorem 7.4.14 (Carathéodory [Pom92] Chapter 2) Let W ⊂P1 be a simply connected open

set. Let f : D→W be a biholomorphism. Then the following assertions are equivalent

1. f extends continuously to the closures D→W.

2. ∂W is locally connected.

3. P1\W is locally connected.

The extension is a bijection if and only if it is a homeomorphism if and only if ∂W is a Jordan

curve.

Recall that by Theorem 7.4.1 there is a morphism of admissible families given by ϕ :
D→ T (1), ϕ̂ : U → V (1) and θ̂ : Γ→ Aut(V (1)). More precisely there are holomorphic maps
ϕ : D→ T (U0) and θ : Γ→ Aut(T (U0)), ϕ̂ : U → V (U0). For convenience we introduce the
following notations:

1. If U is not biholomorphic to the bidisk, then we denote ϕ̂(U) by U ′. The boundary of
V (1) = F(1) in T (1)×P1 is the graph of a holomorphic motion of the circle over T (1),
we denote by ∂h(U ′) the part of that boundary over ϕ(U). We identify D with ϕ(D). Then
∂h(U ′) is the graph of a holomorphic motion of a quasicircle A′ over D. Since Mod(1)
acts transitively on T (1), up to postcomposing ϕ̂ by an element of Aut(V (1)) we can and
will assume that U ′0 = D and A′0 is the unit circle.

2. If U is biholomorphic to the bidisk, U ′ =D×D, ∂U ′ =D×S1 and ϕ̂ is a fiber preserving
biholomorphism U →U ′.

In other words the admissible family U ′ → D is isomorphic to U → D, but is embedded in
D×P1 in a different way so that the boundary is the graph of a holomorphic motion of a Jordan
curve.

Lemma 7.4.15 ϕ̂−1 extends to a continuous map F : ∂h(U ′)→ ∂h(U) which sends leaves to

leaves.

Proof Consider the restriction of ϕ̂−1 to the fiber U ′0. It extends to a continuous map f0 : A′0 =

(S)1→ A0 by Carathéodory’s theorem. Let Ψ, Ψ′ be holomorphic motions of respectively A0∩
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U0 and A′0∩U0 such that 1) U ∩∂h(U) and U ′∩∂h(U ′) are graphs of respectively Ψ and Ψ′; 2)
ϕ̂ sends the leaves of Ψ in U to leaves of Ψ′ in U ′, i.e. Ψ coincides in U with Ψ′ via ϕ . Define
a map F : ∂h(U ′)∩U ′→ ∂h(U)∩U by

F
(
(x,Ψ′x(y))

)
= (x,Ψx( f0(y))).

The map F restricted to U ′ is nothing else but ϕ̂−1. It is continuous because topologically it is
just the map D×D∩ (S)1 → D×D∩A that sends (x,y) to (x,y) if y ∈ D and to (x, f0(y)) if
y ∈ (S)1. It sends leaves to leaves by construction. �

Recall that Γ acts on ∂h(U) (cf. Corollary 7.2.14) and also on ∂h(U ′) (cf. Remark 7.3.7) via
θ̂ : Γ→Mod(1); both actions send leaves to leaves. Since a continuous map from a Hausdorff
space to a Hausdorff space extends in at most one way to its closure and F is Γ-equivariant in
U ′, we have

Lemma 7.4.16 F is Γ-equivariant.

Lemma 7.4.17 If U is biholomorphic to the bidisk then F is injective, i.e. A is a Jordan curve

Proof Since F sends the leaves in ∂h(U ′) to leaves in ∂h(U), it induces a continuous map
g : A′ = S1 → A. Γ is isomorphic to an irreducible lattice in PSL2(R)×PSL2(R). The map g

is Γ-equivariant, the action of Γ on A′ being induced by the projection of Γ onto the second
factor PSL2(R). Suppose by contradiction that g(a) = g(b) for two distincts points a,b ∈ A′.
Let c,d ∈ A′ such that g(c) 6= g(d). Then there are neighbourhoods Wc,Wd respectively of c and
d such that g(Wc)∩g(Wd) = /0. As PSL2(R) acts 2-transitively on S1 and the projection of Γ in
PSL2(R) is dense, there is γ ∈ Γ such that γ · a ∈Wc and γ · b ∈Wd . By equivariance we have
g(γ ·a) = g(γ ·b), contradiction. �

Lemma 7.4.18 If A is locally connected and U is biholomorphic to the bidisk then V = D×
P1\(U ∩∂h(U)) is biholomorphic to the bidisk.

Proof By the previous lemma ∂h(U) is the graph of a holomorphic motion of a Jordan curve.
Thus V = D×P1\(U ∩ ∂h(U)) is the graph of a holomorphic motion of a simply connected
domain, i.e. is an admissible family over D of fiber model D. Suppose by contradiction that V

is not biholomorphic to the bidisk. As in Theorem 7.4.1 we have an embedding of admissible
family φ̂ : V →V (1), equivariant under a homomorphism ς̂ : Γ→Mod(1). If we think of ς̂(Γ)

as a quasisymmetric group of the circle, then its action is just conjugate to the action of Γ on
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the Jordan curve A. Since U is biholomorphic to the bidisk, this action is conjugate to the action
of a dense subgroup of PSL2(R) on S1. As in Lemma 7.4.9, we obtain a sequence of birational
transformations in Γ which approaches the identity map on V . Thus the sequence approaches
the identity on U as well, contradiction. �

Lemma 7.4.19 If A is locally connected and has zero Lebesgue measure in P1 and if U is

biholomorphic to the bidisk, then ψ is a trivial holomorphic motion.

Proof By the previous lemma we know that U and V are biholomorphic to the bidisk under the
hypothesis. We can extend to ψ to a holomorphic motion Ψ of P1 such that for any x ∈ D, Ψx

is holomorphic in P1\A. Since A has zero Lebesgue measure, the Beltrami differential of Ψx

vanishes almost everywhere for any x. By Theorem 7.3.1 Ψx is holomorphic everywhere and is
in fact a Möbius transformation. Thus ψ is a trivial holomorphic motion. �

7.4.4 Trivial holomorphic motions

Proposition 7.4.20 Suppose that the holomorphic motion ψ of which ∂h(U) is the graph is

trivial. Then up to geometric conjugation in the Jonquières group, the birational Kleinian group

(Y,Γ,U,X) satisfies

— Y = P1×P1 and U = D×D;

— Γ is an irreducible cocompact lattice in PSL2(R)×PSL2(R)⊂ PGL2(C)×PGL2(C) =

Aut(P1×P1).

Proof Under the hypothesis U is biholomorphic to a product. Thus X̃ is the bidisk. Then ρ :
π1(X)→ PSL2(R) is just the projection of an irreducible lattice in PSL2(R)×PSL2(R) onto
one factor. In particular ρ is injective and U = X̃ . Let H : D×P1→D×P1,(x,y) 7→ (x,h(x)(y))

be the biholomorphism that sends ∂h(U) to D×A⊂D×P1 where h is a holomorphic map from
D to PGL2(C). Then HΓH−1 preserves both the projections D×P1→D and D×P1→ P1, i.e.
it is a subgroup of PSL2(R)×PGL2(C). By Margulis superrigidity the projection of HΓH−1 in
the PGL2(C) factor is in PSL2(R) up to conjugation. This means that A is a round disk in P1.

To finish the proof we need to prove that the conjugation H is algebraic, i.e. h is the restric-
tion to D of a rational map on P1.

The fact that Γ is isomorphic to a cocompact irreducible lattice in PSL2(R)× PSL2(R)

implies the following two observations:

1. Γ has subgroups isomorphic to Z2 because PSL2(R)×PSL2(R) has real rank two.
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2. Elements of ρ(Γ)⊂ PSL2(R), or equivalently elements of ΓB, are either elliptic or loxo-
dromic because every element of a cocompact lattice is semisimple.

Thus by Theorem 1.5.3 there are two birational transformations γ1,γ2 ∈ Γ which generate a
subgroup isomorphic to Z2 and can be written, up to conjugation in Jonq, as γi : (x,y) 7→
(aix,biy), i = 1,2 or γi : (x,y) 7→ (aix,bi +y), i = 1,2. Here the latter case is impossible because
the holomorphic conjugation H, in D×P1, is supposed to make γi, i = 1,2 also multiplicative
in the y coordinate. Hence we can write them as γi : (x,y) 7→ (aix,biy), i = 1,2.

The two horizontal disks S1 = {y = 0,x ∈ D},S2 = {y = ∞,x ∈ D} are invariant under
γi, i = 1,2. We want to show that they are leaves in ∂h(U). Consider the actions of γi, i = 1,2 on
the x coordinate, i.e. the γiB, i = 1,2. The subgroup of C∗ generated by a1,a2 is isomorphic to
Z2, thus dense. Therefore there is a sequence of birational transformations (δn)n in the subgroup
generated by γ1,γ2 such that δnB tends to the identity. Up to extracting a subsequence from (δn)n,
δn|U converges to a holomorphic map from U to U ∩∂U . By discontinuity of Γ, the limit map
has values in ∂U ; as δnB tends to the identity, the image of the limit map is a horizontal disk in
∂h(U). Since each δn has the form (x,y) 7→ (cnx,dny), the limit horizontal disk is either S1 or
S2. By considering the sequence (δ−1

n )n, we infer that S1 and S2 are both leaves in ∂h(U).
Thus the holomorphic conjugation map H has the form (x,y) 7→ (x,h(x)y) where h is a

holomorphic function D→ C∗. To conclude that h is algebraic, it suffices to exhibit another
algebraic leaf in ∂h(U). We can conjugate the γ1,γ2 in Γ to obtain γ3,γ4 ∈ Γ such that < γ3,γ4 >

is isomorphic to Z2 but γ3,γ4 do not commute with γ1,γ2. We apply the above discussion to γ3,γ4

and obtain other algebraic leaves in ∂h(U), actually infinitely many. The proof is finished. �

As a corollary of Lemma 7.4.19 and Proposition 7.4.20, we obtain

Theorem 7.4.21 Suppose that there is a point x ∈ D such that the intersection of ∂U with the

fiber of r over x is locally connected and has zero Lebesgue measure in P1. Suppose that U

is biholomorphic to the bidisk. Then up to geometric conjugation in the Jonquières group, the

birational Kleinian group (Y,Γ,U,X) satisfies

— Y = P1×P1 and U = D×D;

— Γ is an irreducible cocompact lattice in PSL2(R)×PSL2(R)⊂ PGL2(C)×PGL2(C) =

Aut(P1×P1).

Circles If we do not assume that U is biholomorphic to the bidisk, then we can prove the same
conclusion under a strong hypothesis on A.

Lemma 7.4.22 If Ax is a round circle for some x ∈D then the holomorphic motion ψ is trivial.
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Proof Suppose that Ax is a circle. Then for any γ ∈ Γ, AγB(x) = γ(Ax) is also a circle. Thus for
z in a dense subset of D, Az is a circle. Let a,b,c,d be three distinct points in A. Consider the
function CR(a,b,c,d) which associates to z ∈ D the cross ratio of (ψz(a),ψz(b),ψz(c),ψz(d)).
It is a holomorphic in z and takes value in R for z contained in a dense subset of D. Thus
CR(a,b,c,d) is constant with value in R. If we fix a,b,c and let d vary, then we see that for any
z and any d, ψz(d) lies on the circle that passes through ψz(a),ψz(b),ψz(c). This implies that the
circle that passes through ψz(a),ψz(b),ψz(c) is exactly Az for any z ∈ D. Let h(z) ∈ PGL2(C)

be the Möbius transformation that sends ψz(a),ψz(b),ψz(c) respectively to 0,1,∞; it depends
holomorphically on z. Then the biholomorphism (x,y) 7→ (x,h(x)(y)) of D×P1 sends ∂h(U) to
D×∂H. �

As a corollary of Proposition 7.4.20 and Lemma 7.4.22, we have

Theorem 7.4.23 Suppose that there is a point x ∈ D such that the intersection of ∂U with the

fiber of r over x is a round circle. Then up to geometric conjugation in the Jonquières group,

the birational Kleinian group (Y,Γ,U,X) satisfies

— Y = P1×P1 and U = D×D;

— Γ is an irreducible cocompact lattice in PSL2(R)×PSL2(R)⊂ PGL2(C)×PGL2(C) =

Aut(P1×P1).

7.5 Smoothness of the boundary

We say that ∂h(U) is C1 at a point p ∈ ∂h(U) if there are a neighbourhood W of p in Y such
that ∂h(U)∩W is a C1 real hypersurface of W . The goal of this section is to prove:

Theorem 7.5.1 Suppose that ∂h(U) is C1 at a point. Then up to geometric conjugation in the

Jonquières group, the birational Kleinian group (Y,Γ,U,X) satisfies

— Y = P1×P1 and U = D×D;

— Γ is an irreducible cocompact lattice in PSL2(R)×PSL2(R)⊂ PGL2(C)×PGL2(C) =

Aut(P1×P1).

Remark 7.5.2 We did not assume that U is simply connected in Theorem 7.5.1. Thus Theorem
7.5.1 is stronger than what we stated in Theorem 0.3.5.

Under the hypothesis of Theorem 7.5.1, we can find an open subset W ⊂ D×P1 such that
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1. W =W1×W2 where W1 is a disk in D of hyperbolic radius 3δ for some δ > 0 and W2 is
a disk in P1;

2. ∂h(U)∩W is a connected C1 real hypersurface of W ;

3. for any x ∈W1, (∂h(U)∩W )∩P1
x = Ax∩W is a connected C1 open arc, i.e. the image of

a C1 embedding from (0,1) to P1
x .

Let p ∈W be a point such that r(p) is the center of the disk W1. Let K ⊂ U be a compact
connected weak fundamental domain (cf. Lemma 7.2.6). As in the proof of Proposition 7.2.8,
we cover K by finitely many small round bidisks (D j

1×D j
2) j∈J such that

1. The D j
1s are disks in r(U) = D with hyperbolic radii all equal to δ and the D j

2s are disks
in P1.

2. For any j ∈ J, M j = D j
1×D j

2 ⊂U .

Since ΓB is dense in PSL2(R), we can find a transformation γ ∈ Γ such that γB is an elliptic
element with center x ∈ D j

1. We denote by γx ∈ Aut(P1
x) = PGL2(C) the restriction of γ to P1

x .
By Lemma 7.2.7 the point p is K-accessible. Thus there is at least one j∈ J such that p is M j-

accessible. Let j ∈ J and (γn)n be a sequence of elements of Γ such that for any neighbourhood
Ω of p there exists N(Ω) ∈ N such that γn(M j)∩Ω 6= /0 for any n > N(Ω). Since r(W ) has
radius 3δ and D j

1 has radius δ , we can and will assume that for any n, γnB(D
j
1) ⊂ r(W ). We

take a Cartan KAK decomposition in PSL2(R): γnB = FnGnHn where Fn,Hn ∈ PSO(2) and Gn

is represented by a diagonal matrix in SL2(R). By extracting a subsequence we can and will
assume that Fn,Hn converge in Fn,Hn ∈ PSO(2). Since γnB(D

j
1)⊂W1 for any n, we can and will

also assume that Gn converges to a loxodromic element. In other words we can and will assume
that γnB converges to γBlim ∈ PSL2(R).

Consider the restriction of γn to P1
x . It is an isomorphism from P1

x to P1
γB(x)

; we denote it
by γnx. By identifying P1

x with P1
γB(x)

, we think of γnx as an element of PGL2(C). We take a
Cartan KAK decomposition: γnx = fnxgnxhnx where fnx,hnx ∈ PU(2) and gnx is represented by a
diagonal matrix in SL2(R). Up to extracting a subsequence, we can and will assume that fnx,hnx

converge respectively to fxlim and gxlim in PU(2). By discontinuity of Γ, we can and will assume
that gnx converges to a map gxlim : P1→ P1 that fixes one point and maps all other points to a
point. In other words we can and will assume that γnx converges to a map γxlim : P1

x → P1
y such

that

1. y = γBlim(x) ∈ r(W );

2. except one point qx ∈ P1
x , γxlim maps all points of P1

x to a point in Ay∩W = (∂h(U)∩P1
y)∩

W ;
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3. for any compact subset C⊂ P1
x\{qx}, there exists N ∈N such that for any n > N, γnx(C)∈

W .

Lemma 7.5.3 Ax is a Jordan curve containg qx.

Proof For n large enough, y = γnB(x) ∈W1. Consider Ay∩W = Ay∩W2; it is a connected C1

arc. The image of Ay∩W2 by γ−1
nx is the part of Ax in the open disk γ−1

nx (W2); it is also a C1 arc.
By our hypothesis the union of the γ−1

nx (W2)s is P1
x\{qx}. Thus Ax∩(P1

x\{qx}) is a connected C1

curve. Furthermore qx is its cluster point and is the only one. Thus Ax =
(
Ax∩ (P1

x\{qx})
)
∪{qx}

is either a Jordan curve or there is a homeomorphism h : [0,1]→ Ax such that h(0) = qx. The
latter is not possible because for any neighbourhood Ω of qx, Ax\Ω is diffeomorphic to an open
interval in W . �

Lemma 7.5.4 If γx is a loxodromic element of PGL2(C), then Ax is a circle.

Proof Suppose that γx is a loxodromic element. We choose adequate coordinate on P1
x so that

γx is z 7→ λ z for some λ ∈C∗. At least one of its two fixed points is not qx; let us say that 0 6= qx.
The boundary Ax is a closed subset of P1

x invariant under γx. Under positive or negative
iterates of γx, every point of P1

x\{0,∞} converges to 0 or ∞. Thus 0,∞ ∈ Ax. Since γnx(0) ∈W

for n large enough, locally around 0 the boundary Ax is a C1 arc. As the tangent direction to Ax

at 0 should be preserved by γx, we infer that λ ∈R∗. By γx-invariance, to prove that Ax is circle,
it suffices to prove that Ax is a circular arc locally around 0. If Ax is the pure imaginary axis then
it is a circle. Assume that Ax is not the pure imaginary axis and parametrize it loccaly around 0
as u+η(u)i, where u∈R and η is a real C1 function. The γx-invariance gives η(λu) = λ (η(u))

for any u in a neighbourhood of 0 in R. By differentiating we obtain η ′(u) = η ′(λu) and thus
η ′(u) = η ′(0) is a constant function. Hence Ax is a circle. �

By Theorem 7.4.23 we have immediately

Corollary 7.5.5 If γx is a loxodromic element of PGL2(C), then the conclusion of Theorem

7.5.1 holds.

Note that γx is not elliptic because otherwise its action on P1
x would not be discontinuous.

To finish the proof of Theorem 7.5.1 it suffices to prove that γx is not parabolic.
Now we assume by contradiction that γx is parabolic. Since Ax is a Jordan curve by Lemma

7.5.3, Ux is a simply connected domain. Let ϕ : H→Ux be a biholomorphism. By Carathéodory
Theorem (cf. Theorem 7.4.14) it extends to a homeomorphism H∪ ∂H→Ux∪Ax. Thus as γx
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fixes only one point in Ax, γ ′x = ϕ−1 ◦ γx ◦ϕ has only one fixed point in ∂H and is a parabolic
element of PSL2(R). Without loss of generality, we can assume that γ ′x is the map z 7→ z+ 1.
For u ∈ R let Lu be the horizontal segment in H connecting ui and 1+ ui = γ ′x(ui). Since a
holomorphic map can only decrease the Kobayashi hyperbolic distance, the length of ϕ(Lu)

with respect to the Kobayashi distance of U is smaller than the length of Lu with respect to the
Poincaré distance which goes to 0 when u goes to +in f ty. However for any u the curve ϕ(Lu)

descends to a loop in X which represents the same non trivial class in π1(X). This contradicts
the compactness of X . Thus γx is not parabolic and the proof of Theorem 7.5.1 is finished.
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QUESTIONS

Cocompact Fatou components

We have no classification for birational Kleinian groups (Y,Γ,U,X) in dimension two where
Γ is virtually cyclic. If (Y,Γ,U,X) is a birational Kleinian group such that Γ is generated by a
birational transformation γ , then U is contained in an invariant Fatou component of γ . More
generally one may ask for a classification of invariant Fatou components of birational transfor-
mations of surfaces on which the action is cocompact. First of all do such Fatou components
exist?

The only virtually cyclic birational Kleinian group that we are able to treat is the case where
X is an Inoue surface (cf. [Zhab] and Appendix B); in this case we combined birational dynam-
ics with the very particular geometry of foliations on Inoue surfaces.

Lifting classical Kleinian groups

In Cases 18), 19), 20) of Theorem 0.3.7, can we give a more precise classification of Γ ⊂
Jonq. More generally what can we say about subgroups of PGL2(C(x))oPGL2(C) that project
isomorphically onto classical Kleinian groups in PGL2(C)?

Irreducible cocompact lattices in PSL2(R)×PSL2(R)

Let Γ be an irreducible cocompact lattice in PSL2(R)×PSL2(R) and ρ : Γ→ Bir(P2) be an
embedding. Is ρ(Γ) necessarily birationally conjugate to a subgroup of PSL2(R)×PSL2(R)⊂
Aut(P1×P1)? If the unswer is yes, then in Case 7) of Theorem 0.3.7 we are automatically in
Case 2) under the additional hypothesis that U is biholomorphic to the bidisk.

Embeddings into Bir(P2) of irreducible lattices in semisimple Lie groups of rank ≥ 2 have
been studied in [Dés06a], [Can11], [CX18], [CC19]. If a lattice has property (T ), or congruence
subgroup property, or property FW, then the classification is complete. However irreducible co-
compact lattices in PSL2(R)×PSL2(R) are still not known to have any of these three properties.

Brunella exotic foliations and Teichmüller modular groups

We extract from our approach in Chapter 7 the following problem (see Theorem 7.4.1).
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Let T (G) be a Teichmüller space where G is a torsion free fuchsian group. Let π : V (G)→
T (G) be the universal curve. The automorphism group of V (G) that preserves the fibration π is
Mod(G). Let D be a holomorphic disk in T (G) totally geodesic with respect to the Teichmüller
metric and let E → D be the restriction of the universal curve. Let ΓE be the subgroup of
Mod(G) that preserves E. We denote by ΓD its image in PSL2(R) = Aut(D).

Assume that H/G is a compact Riemann surface. Then ΓD is a discrete subgroup of PSL2(R)

related to the so called Veech group. Veech proved that E/ΓE is never compact (cf. [Vee89]). If
moreover ΓD is a lattice in PSL2(R), then it is a non-uniform lattice and E/G is a fibration over
the quasi-projective curve D/ΓD, called a Teichmüller curve. The study of Teichmüller curves
is currently very active because of its relations to billard dynamics and algebraic geometry;
variations of Hodge structures play an important role in the study of Teichmüller curves (cf.
[Möl]).

Assume that H/G is not a Riemann surface of finite type. Then T (G) and V (G) are infi-
nite dimensional complex Banach manifolds. It is possible for ΓD to be a dense subgroup of
PSL2(R) (cf. [PSV11]).

Question 7.5.6 For infinite dimensional T (G), is it possible that ΓD is dense in PSL2(R) and

1. E/ΓE is a quasi-projective surface?

2. E/ΓE is compact?

If yes what is the classification?

Suppose that Γ is a subgroup of finite index of ΓE such that X = E/ΓE is a smooth quasi-
projective surface. Then the fibration E→D induces a regular transversally hyperbolic foliation
F on X ; if X is compact then it is a Brunella exotic foliation. As in Section 7.1, by using
Theorem 7.1.7 from non-abelian Hodge theory, we know that up to taking a finite étale cover
there is a morphism f : X → Z to a polydisk Shimura variety Z such that F is the pullback of
one of the tautological foliations on Z (cf. [Tou16]). The most interesting case would be where
f is an embedding. Question 7.5.6 is thus also a question about certain subvarieties of polydisk
Shimura varieties.
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APPENDIX A

CENTRALIZERS OF ELEMENTS OF

INFINITE ORDER IN PLANE CREMONA

GROUPS

A.1 Introduction

Let K be an algebraically closed field. The plane Cremona group Cr2(K) is the group of bi-
rational transformations of the projective plane P2

K . It is isomorphic to the group of K -algebra
automorphisms of K (X1,X2), the function field of P2

K . Using a system of homogeneous coor-
dinates [x0;x1;x2], a birational transformation f ∈ Cr2(K) can be written as

[x0 : x1 : x2] 99K [ f0(x0,x1,x2) : f1(x0,x1,x2) : f2(x0,x1,x2)]

where f0, f1, f2 are homogeneous polynomials of the same degree without common factor. This
degree does not depend on the system of homogeneous coordinates. We call it the degree of
f and denote it by deg( f ). Geometrically it is the degree of the pull-back by f of a general
projective line. Birational transformations of degree 1 are homographies and form Aut(P2

K) =

PGL3(K), the group of automorphisms of the projective plane.

Four types of elements. Following the work of M.H. Gizatullin, S. Cantat, J. Diller and C.
Favre, we can classify an element f ∈ Cr2(K) into exactly one of the four following types
according to the growth of the sequence (deg( f n))n∈N (The standard reference [DF01] is written
for K = C but it is known that the same proof works over an algebraically closed field K of
characteristic different from 2 and 3. The only problem with characteristics 2 and 3 is that the
important ingredient [Giz80] does not deal with quasi-elliptic fibrations. This minor issue has
been clarified in [CD12a] and [CGL] so that the following classification holds for arbitrary
characteristic.):
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1. The sequence (deg( f n))n∈N is bounded, f is birationally conjugate to an automorphism
of a rational surface X and a positive iterate of f lies in the connected component of the
identity of the automorphism group Aut(X). We call f an elliptic element.

2. The sequence (deg( f n))n∈N grows linearly, f preserves a unique pencil of rational curves
and f is not conjugate to an automorphism of any rational surface. We call f a Jonquières

twist.

3. The sequence (deg( f n))n∈N grows quadratically, f is conjugate to an automorphism of a
rational surface preserving a unique elliptic fibration. We call f a Halphen twist.

4. The sequence (deg( f n))n∈N grows exponentially and f is called loxodromic.

The Jonquières group Fix an affine chart of P2 with coordinates (x,y). The Jonquières group

Jonq is the subgroup of the Cremona group of all transformations of the form

(x,y) 99K
(

ax+b
cx+d

,
A(x)y+B(x)
C(x)y+D(x)

)
,

(
a b

c d

)
∈ PGL2(K),

(
A B

C D

)
∈ PGL2(K (x)).

In other words, Jonq is the group of all birational transformations of P1×P1 permuting the fi-
bres of the projection onto the first factor; it is isomorphic to the semi-direct product PGL2(K)n
PGL2(K (x)). A different choice of the affine chart yields a conjugation by an element of
PGL3(K). More generally a conjugation by an element of the Cremona group yields a group
preserving a pencil of rational curves; conversely any two such groups are conjugate in Cr2(K).
Elements of Jonq are either elliptic or Jonquières twists. We denote by Jonq0(K) the normal
subgroup of Jonq that preserves fibrewise the rational fibration, i.e. the subgroup of those trans-
formations of the form (x,y) 99K

(
x, A(x)y+B(x)

C(x)y+D(x)

)
; it is isomorphic to PGL2(K (x)). A Jonquières

twist of the de Jonquières group will be called a base-wandering Jonquières twist if its action
on the base of the rational fibration is of infinite order.

If K = Fp is the algebraic closure of a finite field, then K ,K ∗ and PGL2(K) are all
torsion groups. Thus, if K = Fp then base-wandering Jonquières twists do not exist. Whenever
char(K) = 0, or char(K) = p > 0 and K 6= Fp, there exist base-wandering Jonquières twists.

The group of automorphisms of a Hirzebruch surface will be systematically considered as a
subgroup of the Jonquières group in the following way:

Aut(Fn)=

{
(x,y) 99K

(
ax+b
cx+d

,
y+ t0 + t1x+ · · ·+ tnxn

(cx+d)n

)
|

(
a b

c d

)
∈ GL2(K ), t0, · · · , tn ∈K

}
.
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Main results.

Theorem A.1.1 Let f ∈ Cr2(K) be an element of infinite order. If the centralizer of f is not

virtually abelian, then f is an elliptic element and a power of f is conjugate to an automorphism

of A2 of the form (x,y) 7→ (x,y+1) or (x,y) 7→ (x,βy) with β ∈K ∗.

Theorem A.1.2 Let Γ be a subgroup of Cr2(K) which is isomorphic to Z2. Then Γ has a pair

of generators ( f ,g) such that one of the following (mutually exclusive) situations happens up to

conjugation in Cr2(K):

1. f ,g are elliptic elements and Γ⊂ Aut(X) where X is a rational surface;

2. f ,g are Halphen twists which preserve the same elliptic fibration on a rational surface X,

and Γ⊂ Aut(X);

3. one or both of the f ,g are Jonquières twists, and there exist m,n ∈ N∗ such that the finite

index subgroup of Γ generated by f m and gn is in an 1-dimensional torus over K (x) in

Jonq0(K) = PGL2(K (x));

4. f is a base-wandering Jonquières twist and g is elliptic. In some affine chart, we can write

f ,g in one of the following forms:
— g is (x,y) 7→ (αx,βy) and f is (x,y) 99K (η(x),yR(xk)) where α,β ∈K ∗,αk = 1,R∈

K (x),η ∈ PGL2(K),η(αx) = αη(x) and η is of infinite order;

— (only when char(K) = 0) g is (x,y) 7→ (αx,y+1) and f is (x,y) 99K (η(x),y+R(x))

where α ∈K ∗,R ∈K (x),R(αx) = R(x),η ∈ PGL2(K),η(αx) = αη(x) and η is of

infinite order.

Remark A.1.3 When K is the algebraic closure of a finite field, the above list can be shortened
since there is no elliptic elements of infinite order nor base-wandering Jonquières twists.

Remark A.1.4 From Theorem A.1.2 it is easy to see that (we will give a proof), when Γ is
isomorphic to Z2, the degree function deg : Γ→ N is governed by the word length function
with respect to some generators in the following sense. In the first case of the above theorem
it is bounded. In the second case it is up to a bounded term a positive definite quadratic form
over Z2. In the third case, if f is elliptic then deg is up to a bounded term f i ◦ g j 7→ c| j| for
some c ∈ Q+; otherwise we can choose two generators f0,g0 of Γ∩ Jonq0(K) such that deg

restricted to Γ∩ Jonq0(K) is up to a bounded term f i
0 ◦g j

0 7→ c1|i|+ c2| j| for some c1,c2 ∈Q+.
In the fourth case the degree function is up to a bounded term f i ◦ g j 7→ c|i| for some c ∈ Q+.
Note that if f and g are two Jonquières twists of Jonq that do not necessarily commute, then the
degree of f i ◦g j is always dominated by deg( f )|i|+deg(g)| j| (see Lemma 5.7 [BC16]).
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A direct corollary of Theorem A.1.2 is:

Corollary A.1.5 Let G ⊂ Cr2(K) be a subgroup isomorphic to Z2. If G is not an elliptic sub-

group then there exists a non-trivial element of G which preserves each member of a pencil of

rational or elliptic curves.

Theorem A.1.2 is based on several known results. The main new feature is the fourth case. We
reformulate this special case as a corollary (see Theorem B.1.1 for a more precise reformula-
tion):

Corollary A.1.6 Let G ⊂ Jonq be a subgroup isomorphic to Z2. Suppose that the action of G

on the base of the rational fibration is faithful. Then G is an elliptic subgroup.

A maximal abelian subgroup is an abelian subgroup which is not strictly contained in any
other abelian subgroup. Over the field of complex numbers, finite abelian subgroups of Bir(P2)

have been classified in [Bla07] and Déserti [Dés06b] has a rough classification of maximal
abelian subgroups. We will use Theorem A.1.2 to classify maximal abelian subgroups of Cr2(K)

which contain at least one element of infinite order, see Theorem A.4.1.

Previously known results. Let us begin with the group of polynomial automorphism of the
affine plane Aut(A2). It can be seen as a subgroup of Cr2(K). It is the amalgamated product of
the group of affine automorphisms with the so called elementary group

El(K ) = {(x,y) 7→ (αx+β ,γy+P(x))|α,β ,γ ∈K ,αβ 6= 0,P ∈K [x]}.

Let K be the field of complex numbers. S. Friedland and J. Milnor showed in [FM89] that an
element of Aut(C2) is either conjugate to an element of El(K ) or to a gengeralized Hénon map,
i.e. a composition f1 ◦ · · · ◦ fn where the fi are Hénon maps of the form (x,y) 7→ (y,Pi(y)−δix)

with δi ∈C∗, Pi ∈C[y], deg(Pi)≥ 2. S. Lamy and C. Bisi showed in [Lam01b] and [Bis04] that
the centralizer in Aut(C2) of a generalized Hénon map is finite by cyclic, and that of an element
of El(C) is uncountable (see also [Bis08] for partial extensions to higher dimension). Note that,
when viewed as elements of Bir(P2), a generalized Hénon map is loxodromic and an element
of El(C) is elliptic.

As regards the Cremona group, centralizers of loxodromic elements are known to be finite
by cyclic (S. Cantat [Can11], J. Blanc-S. Cantat [BC16]). Centralizers of Halphen twists are
virtually abelian of rank at most 8 (M.K. Gizatullin [Giz80], S. Cantat [Can11]). When K is
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the field of complex numbers, centralizers of elliptic elements of infinite order are completely
described by J. Blanc-J. Déserti in [BD15] and centralizers of Jonquières twists in Jonq0(K)

are completely described by D. Cerveau-J. Déserti in [CD12b]. Centralizers of base-wandering
Jonquières twists are also studied in [CD12b] but they were not fully understood, for example
the results in loc. cit. are not sufficient for classifying pairs of Jonquières twists generating a
copy of Z2. Thus, in order to obtain a classification of embeddings of Z2 in Cr2(K), we need
a detailed study of centralizers of base-wandering Jonquières twists, which is the main task of
this article. Regarding the elements of finite order and their centralizers in Cr2(K), the problem
is of a rather different flavour and we refer the readers to [Bla07], [DI09], [Ser10], [Ure] and
the references therein.

Remark A.1.7 There is a topology on Cr2(K), called Zariski toplogy, which is introduced by
M. Demazure and J-P. Serre in [Dem70] and [Ser10]. Note that the Zariski topology does not
make Cr2(K) an infinite dimensional algebraic group (cf. [BF13]). With respect to the Zariski
topology, the centralizer of any element of Cr2(K) is closed (J-P. Serre [Ser10]). When K is a
local field, J. Blanc and J-P. Furter construct in [BF13] an Euclidean topology on Cr2(K) which
when restricted to PGL3(K) coincides with the Euclidean topology of PGL3(K); centralizers are
also closed with respect to the Euclidean toplogy. In particular the intersection of the centralizer
of an element in Cr2(K) with an algebraic subgroup G of Cr2(K) is a closed subgroup of G,
with respect to the Zariski topology of G (and with respect to the Euclidean topology when the
later is present).

Comparison with other results. S.Smale asked in the ’60s if, in the group of diffeomor-
phisms of a compact manifold, the centralizer of a generic diffeomorphism consists only of
its iterates. There has been a lot of work on this question, see for example [BCW09] for an
affirmative answer in the C1 case. Similar phenomenons also appear in the group of germs of
1-dimensional holomorphic diffeomorphisms at 0∈C ([É81]). See the introduction of [CD12b]
for more references in this direction. With regard to Cr2(K), it is known that loxodromic ele-
ments form a Zariski dense subset of Cr2(K) (cf. [Xie15], [BD05]) and that their centralizers
coincide with the cyclic group formed by their iterates up to finite index (cf. [BC16]). Central-
izers of general Jonquières twists are also finite by cyclic (Remark A.3.5).

One may compare our classification of Z2 in Cr2(K) to the following two theorems where
the situations are more rigid. The first can be seen as a continuous counterpart and is proved by
F. Enriques [Enr93] and M. Demazure [Dem70], the second can be seen as a torsion counterpart
and is proved by A. Beauville [Bea07]:
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1. If K ∗r embeds as an algebraic subgroup into Cr2(K), then r≤ 2; if r = 2 then the embed-

ding is conjugate to an embedding into the group of diagonal matrices ∆ in PGL3(K ).

2. If p≥ 5 is a prime number different from the characteristic of K and if (Z/pZ)r embeds

into Cr2(K), then r ≤ 2; if r = 2 then the embedding is conjugate to an embedding into

the group of diagonal matrices ∆ in PGL3(K ).

The classification of Z2 in Cr2(K) is a very natural special case of the study of finitely
generated subgroups of Cr2(K); and information on centralizers can be useful for studying
homomorphisms from other groups into Cr2(K), see for example [Dés06a]. We refer the reader
to the surveys [Fav10],[Can18] for representations of finitely generated groups into Cr2(K) and
[CX18] for general results in higher dimension.

A.2 Elements which are not base-wandering Jonquières twists

This section contains a quick review of some scattered results about centralizers from [Can11],[BD15],[CD12b],[BC16].
Some of the proofs are reproduced, because the original proofs were written over C on the one
hand, and because we will need some by-products of the proofs on the other hand.

A.2.1 Loxodromic elements

Theorem A.2.1 ([BC16] Corollary 4.7) Let f ∈ Cr2(K) be a loxodromic element. The infinite

cyclic group generated by f is a finite index subgroup of the centralizer of f in Cr2(K).

Proof We provide a proof which is simpler than [BC16]. The Cremona group Cr2(K) acts faith-
fully by isometries on an infinite dimensional hyperbolic space H and the action of a loxodromic
element is loxodromic in the sense of hyperbolic geometry (see [Can11], [Can18]). In particular
there is an f -invariant geodesic Ax( f ) on which f acts by translation and the translation length
is log(limn→∞ deg( f n)1/n). The centralizer Cent( f ) preserves Ax( f ) and by considering trans-
lation lengths we get a morphism φ : Cent( f )→ R. We claim that the image of φ is discrete
thus cyclic. Let us see first how the conclusion follows from the claim. Let x ∈ H be a point
which corresponds to an ample class and let y be an arbitrary point on Ax( f ). Since the kernel
Ker(φ) fixes Ax( f ) pointwise, for any element g of Ker(φ) the distance d(x,g(x)) is bounded by
2d(x,y). This implies that Ker(φ) is a subgroup of Cr2(K) of bounded degree. If Ker(φ) were
infinite then its Zariski closure G in Cr2(K) would be an algebraic subgroup of strictly positive
dimension contained, after conjugation, in the automorphism group of a rational surface. As
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Cent( f ) is Zariski closed, the elements of G commute with f . The orbits of a one-parameter
subgroup of G would form an f -invariant pencil of curves. This contradicts the fact that f is
loxodromic. Consequently Ker(φ) is finite and hence Cent( f ) is finite by cyclic.

Now let us prove the claim that the image of φ is discrete. This follows directly from a
spectral gap property for translation lengths of loxodromic elements proved in [BC16]. We
give here an easier direct proof found with S. Cantat. Suppose by contradiction that there is a
sequence (gn)n of distinct elements of Cent( f ) whose translation lengths on Ax( f ) tend to 0
when n goes to infinity. Without loss of generality, we can suppose the existence of a point y

on Ax( f ) and a real number ε > 0 such that ∀n,d(y,gn(y))< ε . Let x ∈H be an element which
corresponds to an ample class. Then it follows that

∀n,d(x,gn(x))≤ d(x,y)+d(y,gn(y))+d(gn(y),gn(x))< 2d(x,y)+ ε =: d,

i.e. the sequence (gn)n is of bounded degree d. Elements of degree less than d of the Cremona
group form a quasi-projective variety Crd

2(K ). JunYi Xie proved in [Xie15] that for any 0 <

λ < log(d), the loxodromic elements of Crd
2(K ) whose translation lengths are greater than λ

form a Zariski open dense subset of Crd
2(K ). Thus the gn give rise to a strictly ascending chain

of Zariski open subsets of Crd
2(K ), contradicting the noetherian property of Zariski topology.

This finishes the proof. Note that [Xie15] is also used to prove the spectral gap property in
[BC16]. �

A.2.2 Halphen twists

We only recall here the final arguments of the proofs.

Theorem A.2.2 ([Giz80] and [Can11] Proposition 4.7) Let f ∈ Cr2(K) be a Halphen twist.

The centralizer Cent( f ) of f in Cr2(K) contains a finite index abelian subgroup of rank less

than or equal to 8.

Proof Being a Halphen twist, the birational transformation f is up to conjugation an automor-
phism of a rational surface and preserves a relatively minimal elliptic fibration. This f -invariant
fibration is unique. As a consequence Cent( f ) acts by automorphisms preserving this fibration.
It is proved in [Giz80] (see [CGL] for a clarification in characteristics 2 and 3) that the automor-
phism group of a rational minimal elliptic surface has a finite index abelian subgroup of rank
less than 8. �
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A.2.3 Elliptic elements of infinite order

In this section we reproduce a part of [BD15]; we follow the original proofs (for char(K) =

0) in loc. cit. and some extra details are added in case char(K)> 0.
We omit the proof of the following key proposition which is based on a G-Mori-program

for rational surfaces due to J. Manin [Man67] and V. Iskovskih [Isk79].

Proposition A.2.3 ([BD15] Proposition 2.1) Let S be a smooth rational surface over K . Let

f ∈ Aut(S) be an automorphism of infinite order whose action on Pic(S) is of finite order. Then

there exists a birational morphism S→ X where X is a Hirzebruch surface Fn (n 6= 1) or the

projective plane P2, which conjugates f to an automorphism of X.

Proposition A.2.4 ([BD15] Proposition 2.3) Let f ∈ Cr2(K) be an elliptic element of infinite

order. Then f is conjugate to an automorphism of P2. Furthermore there exists an affine chart

with affine coordinates (x,y) on which f acts by automorphism of the following form:

1. (x,y) 7→ (αx,βy) where α,β ∈K ∗ are such that the kernel of the group homomorphism

Z2→K ∗,(i, j) 7→ α iβ j is generated by (k,0) for some k ∈ Z;

2. (x,y) 7→ (αx,y+1) where α ∈K ∗ and α is of infinite order if char(K)> 0.

Remark A.2.5 If K = Fp then every elliptic element is of finite order.

As a byproduct of the proof of Proposition A.2.4, we will get the following:

Proposition A.2.6 Let f be an automorphism of a Hirzebruch surface which preserves the

rational fibration fibre by fibre (we do not assume that f is of infinite order). Then there exists

an affine chart on which f acts as an automorphism of the following form:

1. (x,y) 7→ (x,βy) where β ∈K ∗;

2. (x,y) 7→ (x,y+1).

Here x is the coordinate on the base of the rational fibration.

Proof (of Proposition A.2.4) Proposition A.2.3 says that f is conjugate to an automorphism of
P2 or of a Hirzebruch surface.

Let’s consider first the case when f ∈ Aut(P2) = PGL3(K). By putting the corresponding
matrix in Jordan normal form, we can find an affine chart on which f is, up to conjugation, of
one of the following form: 1) (x,y) 7→ (αx,βy); 2) (x,y) 7→ (αx,y+1); 3) (x,y) 7→ (x+y,y+1).
If char(K)> 0 then f can not be of the third form since it would be of finite order; if char(K)= 0
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then in the third case f is conjugate by [x : y : z] 99K [xz− 1
2y(y−z) : yz : z2] to (x,y) 7→ (x,y+1).

We now show that in the first case α,β can be chosen to verify the conditon in the proposition.
Let φ : (x,y) 7→ (αx,βy) be a diagonal automorphism, we denote by ∆(φ) the kernel of the

group morphism Z2 → K ∗,(i, j) 7→ α iβ j. For M =

(
a b

c d

)
∈ GL2Z, we denote by M(φ)

the diagonal automorphism (x,y) 7→ (αaβ bx,αcβ dy), i.e. the conjugate of φ by the monomial
map (x,y) 99K (xayb,xcyd). We have the relation ∆(M(φ)) = (Mᵀ)−1(∆(φ)). This implies that
up to conjugation by a monomial map we can suppose that our elliptic element f satisfies
∆( f ) =< (k1,0),(0,k1k2)> where k1,k2 ∈ Z. Since f is of infinite order, k1k2 must be 0.

If f ∈Aut(F0) = Aut(P1×P1), then we reduce to the case of P2 by blowing up a fixed point
and contracting the strict transforms of the two rulings passing through the point. If f ∈Aut(Fn)

for n≥ 2 and if f has a fixed point which is not on the exceptional section, then we can reduce
to Fn−1 by making an elementary transformation at the fixed point.

Suppose now that f ∈ Aut(Fn),n≥ 2 and its fixed points are all on the exceptional section.
By removing the exceptional section and an invariant fibre of the rational fibration, we get
an open subset isomorphic to A2 on which f can be written as: (x,y) 7→ (αx,βy+Q(x)) or
(x,y) 7→ (x+1,βy+Q(x)) where α,β ∈K ∗ and Q is a polynomial of degree ≤ n.

In the first case, the fact that there is no extra fixed point on the fibre x = 0 implies β = 1 and
Q(0) 6= 0. The action on the fibre at infinity can be obtained by a change of variables (x′,y′) =
(1/x,y/xn), so the fact that there is no extra fixed point on it implies β = αn and deg(Q) = n.
This forces α to be a primitive r-th root of unity for some r ∈ N. Conjugating f by (x,y) 7→
(x,y+ γxd), we replace Q(x) with Q(x)+ γ(αd−1)xd . This allows us to eliminate the term xd

of Q unless αd = 1. So we can assume that f is of the form (x,y) 7→ (αx,y+ Q̃(xr)) where
αr = 1 and Q̃ ∈K [x]. Then f is conjugate to (x,y) 7→ (αx,y+ 1) by (x,y) 99K (x,y/Q̃(xr)).
Remark that this case does not happen in positive characteristic because an automorphism of
this form would be of finite order. Note that in this paragraph we did not use the fact that f is of
infinite order, so that Proposition A.2.6 is proved.

Suppose now we are in the second case. There is no extra fixed point if and only if β = 1
and deg(Q) = n. If char(K) > 0 and if β = 1, then f would be of finite order. Therefore we
can assume char(K) = 0. In that case, we can decrease the degree of Q by conjugating f by
a well chosen birational transformation of the form (x,y) 99K (x,y+ γxn+1) with γ ∈K ∗. By
induction we get (x,y) 7→ (x+1,y) at last. �

Once we have the above normal forms, explicit calculations can be done:
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Theorem A.2.7 ([BD15] Lemmas 2.7 and 2.8) Let f ∈ Cr2(K) be an elliptic element of infi-

nite order.

1. If f is of the form (x,y) 7→ (αx,βy) where α,β ∈K ∗ are such that the kernel of the group

homomorphism Z2→K ∗,(i, j) 7→ α iβ j is generated by (k,0) for some k ∈ Z, then the

centralizer of f in Cr2(K) is

Cent( f ) = {(x,y) 99K (η(x),yR(xk))|R ∈K (x),η ∈ PGL2(K),η(αx) = αη(x)}.

2. If char(K) = 0 and if f is of the form (x,y) 7→ (αx,y+ 1), then the centralizer of f in

Cr2(K) is

Cent( f )= {(x,y) 99K (η(x),y+R(x))|η ∈PGL2(K),η(αx)=αη(x),R∈K (x),R(αx)=R(x)}.

If α is not a root of unity then R must be constant and η(x) = βx for some β ∈K ∗.

3. If char(K) = p > 0 and if f is of the form (x,y) 7→ (αx,y+1) (where α must be of infinite

order), then the centralizer of f in Cr2(K) is

Cent( f )= {(x,y) 99K (R(y)x,y+t)|t ∈K ,R(y)= S(y)S(y−1) · · ·S(y− p+1),S∈K (y)}.

Remark A.2.8

{η ∈ PGL2(K)|η(αx) = αη(x)}=


PGL2(K) if α = 1

{x 7→ γx±1|γ ∈K ∗} if α =−1

{x 7→ γx|γ ∈K ∗} if α 6=±1

Proof First case. We treat first the case where f is of the form (x,y) 7→ (αx,βy). Let (x,y) 99K
( P1(x,y)

Q1(x,y)
, P2(x,y)

Q2(x,y)
) be an element of Cent( f ); here P1,P2,Q1,Q2 ∈K [x,y]. The commutation re-

lation gives us
P1(αx,βy)
Q1(αx,βy)

=
αP1(x,y)
Q1(x,y)

,
P2(αx,βy)
Q2(αx,βy)

=
βP2(x,y)
Q2(x,y)

which imply that P1,P2,Q1,Q2 are eigenvectors of the K -linear automorphism K [x,y] →
K [x,y],g(x,y) 7→ g(αx,βy). Therefore each one of the P1,P2,Q1,Q2 is a product of a monomial
in x,y with a polynomial in K [xk]. Then we must have P1(x,y)

Q1(x,y)
= xR1(xk) and P2(x,y)

Q2(x,y)
= yR2(xk)

for some R1,R2 ∈K (x). The first factor P1(x,y)
Q1(x,y)

only depends on x, so for f to be birational it
must be an element of PGL2(K). The conclusion in this case follows.
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Second case. We now treat the case where char(K) = 0 and where f is of the form (x,y) 7→
(αx,y+1). Let (x,y) 99K ( P1(x,y)

Q1(x,y)
, P2(x,y)

Q2(x,y)
) be an element of Cent( f ). We have

P1(αx,y+1)
Q1(αx,y+1)

=
αP1(x,y)
Q1(x,y)

P2(αx,y+1)
Q2(αx,y+1)

=
P2(x,y)
Q2(x,y)

+1. (A.1)

The first equation implies that P1,Q1 are eigenvectors of the K -linear automorphism K [x,y]→
K [x,y],g(x,y) 7→ g(αx,y+1). We view an element of K [x,y] as a polynomial in x with coeffi-
cients in K [y]. Since the only eigenvector of the K -linear automorphism K [y]→K [y],g(y) 7→
g(y+ 1) is 1 (this is not true if char(K) > 0), we deduce that P1,Q1 depend only on x. Thus,
P1(x,y)
Q1(x,y)

is an element η of PGL2(K).

We derive ψ = P2
Q2

and get

∂ψ

∂y
(αx,y+1) =

∂ψ

∂y
(x,y),

∂ψ

∂x
(αx,y+1) = α

−1 ∂ψ

∂x
(x,y).

As before, this means that ∂ψ

∂y ,
∂ψ

∂x only depend on x (not true if char(K) > 0). Hence, we can
write ψ as ay+B(x) with a∈K ∗ and B∈K (x). Then equation (A.1) implies B(αx) = B(x)+

1− a, which implies further x∂B
∂x (x) is invariant under x 7→ αx. If α is of infinite order, then

∂B
∂x (x) =

c
x for some constant c ∈K . This is only possible if c = 0. So B is constant and a = 1

in this case. If α is a primitive k-th root of unity, then (η(x),ay+B(x)) commutes with f k :
(x,y) 7→ (x,y+ k). This yields a = 1 and B(αx) = B(x).

Third case. We finally treat the case where char(K) = p > 0 and where f is of the form
(x,y) 7→ (αx,y + 1) with α of infinite order. Let g ∈ Cent( f ). Then g commutes with f p :
(x,y) 7→ (α px,y) which is in the form of case 1 (the roles of x,y are exchanged). Thus, we
know that g writes as (A(y)x,η(y)) where η ∈ PGL2(K) and A ∈K (x). Then f ◦ g = g ◦ f

implies that η is y 7→ y+R for some R ∈K and that A(y+1) = A(y). The last equation implies
A(y) = S(y)S(y−1) · · ·S(y− p+1) for some S ∈K (x). �

For later use, we determine when an element of the centralizers appeared in Theorem B.2.3
is elliptic. Though we will use some of the materials of Section A.3.1 in the proofs, we find it
more natural to state these facts here.

Lemma A.2.9 Let f : (x,y) 99K (η(x),yR(x)),η ∈ PGL2(K),R ∈K (x) be an elliptic element.

Then

1. either R ∈K ,
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2. or R(x) = rS(x)
S(η(x)) with r ∈K ∗ and S ∈K (x)\K .

Proof If η is the identity, then we see easily, by looking at the degree growth, that f is elliptic
if and only if R is constant.

From now on assume that η is not the identity. We claim that f is conjugate by an element of
Jonq0(K) to an automorphism of a Hirzebruch surface. By Corollary A.3.8, this does not hold
if and only if η is of finite order d and f d is a Jonquières involution (see Corollary A.3.9 for the
terminology). However if η is of finite order d then f d is of the form (x,y) 99K (η(x),yR̃(x))

with R̃(x) = R(x) · · ·R(ηd−1(x)), which is never a Jonquières involution. This proves the claim.

By Theorem A.3.6, the conjugation which turns f into an automorphism of a Hirzebruch
surface is a sequence of elementary transformations. After conjugation it preserves the two strict
transforms of the two sections {y = 0} and {y = ∞}. Therefore there exists g ∈ Jonq0(K) of the
form (x,y) 99K (x,yS(x)),S ∈K (x) such that g ◦ f ◦ g−1 is (x,y) 99K (η(x),ry) with r ∈K ∗.
Hence f is (x,y) 99K (η(x),y rS(x)

S(η(x)) . �

Remark A.2.10 In the above lemma S may not be unique. If η has finite order and T ∈K (x)

is such that T (x) = T (η(x)), then S(x)
S(η(x)) =

T (x)S(x)
T (η(x))S(η(x)) .

Lemma A.2.11 Let f : (x,y) 99K (η(x),y+R(x)),η ∈ PGL2(K),R ∈K (x) be an elliptic ele-

ment. Then

1. either η has finite order,

2. or for a coordinate x′ such that η is x′ 7→ x′+1 or x′ 7→ νx′ with ν ∈K ∗, R is a polynomial

in x′.

Proof It is clear that, if η has finite order then the degree of f n is bounded for all n ∈ Z.
Assume that η has infinite order, then for some coordinate x′, η writes as η ′(x′) = x′ 7→ νx′+u

with ν ,u∈K . In coordinates (x′,y), write the transformation f as (x,y) 99K (η ′(x′),y+R′(x′))

where R′(x′) = P(x′)
Q(x′) with P,Q ∈K [x′]. For n ∈ N∗, the iterate f n is

(x,y) 99K
(

η
′(x′),y+

P(x′)
Q(x′)

+ · · ·+ P(η ′n−1(x′))
Q(η ′n−1(x′))

)
.

If Q /∈ K , then the number of different factors of the polynomials Q(x′), · · · ,Q(η ′n−1(x′))

would go to infinity when n tends to infinity, which would imply that the degrees of the f n are
not bounded. Therefore for f to be elliptic, R′ must be a polynomial. �
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A.2.4 Jonquières twists with trivial action on the base

We follow [CD12b] in this section.

Lemma A.2.12 Let f ∈ Jonq be a Jonquières twist. Let Cent( f ) be the centralizer of f in

Cr2(K). Then Cent( f )⊂ Jonq.

Proof The rational fibration preserved by a Jonquières twist f is unique, thus is also preserved
by Cent( f ). �

Let us consider centralizers of Jonquières twists in Jonq0(K) = PGL2(K (x)) which is a

linear algebraic group over the function field K (x). Let f ∈ Jonq0(K) and M =

(
A B

C D

)
∈

GL2(K (x)) be a matrix representing f where A,B,C,D ∈ K [x]. We introduce the function
∆ := Tr2

det which is well defined in PGL and is invariant by conjugation. This invariant ∆ indicates
the degree growth:

Lemma A.2.13 ([CD12b] Theorem 3.3 [Xie15] Proposition 6.6) The rational function ∆( f )

is constant if and only if f is an elliptic element.

Proof Let t1, t2 be the two eigenvalues of the matrix M which are elements of the algebraic
closure of K (x). The invariant ∆( f ) equals to t1/t2+t2/t1+2. Since K is algebraically closed,
∆( f ) ∈K if and only if t1/t2 ∈K . If t1 = t2, then by conjugating M to a triangular matrix we
can write f in the form (x,y) 99K (x,y+a(x)) with a ∈K (x) and it follows that f is an elliptic
element.

Suppose now that t1 6= t2. Let ζ : C → P1 be the curve corresponding to the finite field
extension K (x) ↪→K (x)(t1), here ζ is the identity map on P1 if t1, t2 ∈K (x). The birational
transformation f induces a birational transformation fC on C×P1 by base change. The induced
map fC is of the form (x,(t1/t2)y) where t1/t2 is viewed as a function on C. The degree growth
of fC which is the same as f is linear if and only if t1/t2 is not a constant, i.e. if and only if ∆( f )

is not a constant. �

From now on we suppose that f is a Jonquières twist so that ∆( f ) /∈K . We still denote by
t1, t2 the two eigenvalues of M as in the above proof, we know that t1 6= t2.

We first study the centralizer Cent0( f ) of f in Jonq0(K) = PGL2(K (x)). Let L be the finite
extension of K (x) over which M is diagonalisable; it is K (x) itself or a quadratic extension
of K (x), depending on whether or not t1, t2 are in K (x). The centralizer CentL0( f ) of f in
PGL2(L) is isomorphic to the multiplicative group L∗. So Cent0( f ), being contained in CentL0( f )
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and containing all the iterates of f , must be a 1-dimensional torus over K (x). It is split if
L = K (x), i.e. if t1, t2 ∈K (x).

If L =K (x), then up to conjugation f can be written as (x,y) 99K (x,b(x)y) with b∈K (x)∗

and Cent0( f ) = {(x,y) 99K (x,γ(x)y)|γ ∈K (x)∗}.
If L is a quadratic extension of K (x) and if char(K) 6= 2, we can put f in a simpler form and

write Cent0( f ) explicitly as follows. We may assume that the matrix M =

(
A B

C D

)
has entry

C = 1, after conjugation by

(
C 0
0 1

)
. Once we have C = 1, a conjugation by

(
2 D−A

0 2

)

allows us to put M in the form

(
A B

1 A

)
with A,B ∈K [x]. Therefore Cent0( f ) is {Id,(x,y) 99K

(x, C(x)y+B(x)
y+C(x) )|C ∈K (x)} as the (K (x)-points of the) later algebraic group is easily seen to

commute with f . Note that B is not a square in K (x) because M is not diagonalisable over
K (x) and that the transformation f : (x,y) 99K (x, A(x)y+B(x)

y+A(x) ) fixes pointwise the hyperelliptic
curve defined by y2 = B(x).

Now we look at the whole centralizer of f . For η ∈ PGL2(K) and f ∈ Jonq0(K) repre-

sented by a matrix

(
A(x) B(x)

C(x) D(x)

)
, we denote by fη the element of Jonq0(K) represented by(

A(η(x)) B(η(x))

C(η(x)) D(η(x))

)
. Let f ∈ Jonq0(K) be a Jonquières twist and g : (x,y) 99K (η(x), a(x)y+b(x)

c(x)y+d(x))

be an element of Jonq. Writing down the commutation equation , we see that g commutes with
f if and only if f is conjugate to fη in PGL2(K (x)) by the transformation represented by(

a(x) b(x)

c(x) d(x)

)
. We have thus ∆( f )(x) = ∆( fη)(x) = ∆( f )(η(x)). Recall that ∆( f ) ∈K (x) is

not in K . As a consequence the group

{η ∈ PGL2(K),∆( f )(x) = ∆( f )(η(x))}

is a finite subgroup of PGL2(K). We then obtain:

Theorem A.2.14 ([CD12b]) Let f ∈ Jonq0(K) be a Jonquières twist preserving the rational

fibration fibre by fibre. Let Cent( f ) be the centralizer of f in Cr2(K). Then Cent( f ) ⊂ Jonq
and Cent0( f ) = Cent( f )∩ Jonq0(K) is a finite index normal subgroup of Cent( f ). The group

Cent0( f ) has a structure of a 1-dimensional torus over K (x). In particular Cent( f ) is virtually

abelian.
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Remark A.2.15 In [CD12b], the authors give explicit description of the quotient Cent( f )/Cent0( f )

when char(K) = 0.

Finite action on the base. If f ∈ Jonq is a Jonquières twist which has a finite action on the
base, then f k ∈ Jonq0(K) for some k ∈N. As Cent( f )⊂ Cent( f k), we can use Theorem A.2.14
to describe Cent( f ):

Corollary A.2.16 If f ∈ Jonq is a Jonquières twist which has a finite action on the base, then

Cent( f ) is virtually contained in a 1-dimensional torus over K (x). In particular Cent( f ) is

virtually abelian.

We are contented with this coarse description of Cent( f ) because this causes only a finite index
problem as regards the embeddings of Z2 to Cr2(K). We give an example to show how we
expect Cent( f ) to look like:

Example A.2.17 If f is (x,y) 99K (a(x),R(x)y) where R ∈K (x) and a ∈ PGL2(K) is of order
k < +∞. Then all maps of the form (x,y) 99K (x,S(x)S(a(x)) · · ·S(ak−1(x))y) with S ∈K (x)

commute with f .

A.3 Base-wandering Jonquières twists

We introduce some notations. For a Hirzebruch surface X , let us denote by π the projection
of X onto P1, i.e. the rational fibration. When X = P1×P1, π is the projection onto the first
factor. For x ∈ P1, we denote by Fx the fibre π−1(x). If f is a birational transformation of a
Hirzebruch surface X which preserves the rational fibration, we denote by f ∈ PGL2(K) the
induced action of f on the base P1 and we will consider f as an element of Jonq.

Assume now that f is a Jonquières twist such that f ∈ PGL2(K) if of infinite order, we will
call it a base-wandering Jonquières twist. We have an exact sequence:

{1}→ Cent0( f )→ Cent( f )→ Centb( f )→{1} (A.2)

where Cent0( f ) = Cent( f )∩ Jonq0(K) and Centb( f ) ⊂ Cent( f ) ⊂ PGL2(K). The action f on
the base is conjugate to x 7→ αx with α ∈ K ∗ of infinite order or to x 7→ x + 1. The later
case is only possible if char(K) = 0. Thus Centb( f ) is a subgroup of {x 7→ γx,γ ∈K ∗} or of
{x 7→ x+ γ,γ ∈K }. In both cases Centb( f ) is abelian. We first remark:

Lemma A.3.1 All elements of Cent0( f ) are elliptic.
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Part , Chapter A – Centralizers of elements of infinite order in plane Cremona groups

Proof By Theorem A.2.14, a Jonquières twist in Jonq0(K) can not have a base-wandering
Jonquières twist in its centralizer. �

The rest of the article will essentially be occupied by the proof of the following theorem:

Theorem A.3.2 Let f ∈ Jonq be a base-wandering Jonquières twist. The exact sequence

{1}→ Cent0( f )→ Cent( f )→ Centb( f )→{1}

satisfies

— Cent0( f ) = Cent( f )
⋂

Jonq0(K), if not trivial, is {(x,y) 7→ (x, ty), t ∈K ∗}, {(x,y) 7→
(x,y+ t), t ∈K }, 〈(x,y) 7→ (x,−y)〉 or 〈a Jonquières involution〉;

— Centb( f ) ⊂ PGL2(K) is isomorphic to the product of a finite cyclic group with Z. The

infinite cyclic subgroup generated by f has finite index in Centb( f ).

Proof (of Theorem B.1.1) The theorem is a consequence of Proposition A.3.15, Corollary
A.3.19 and Proposition A.3.31. �

Corollary A.3.3 The centralizer of a base-wandering Jonquières twist is virtually abelian.

Proof This results directly from the fact that Centb( f ) is virtually the cyclic group generated
by f . �

Remark A.3.4 Theorem B.1.1 is optimal in the sense that Centb( f ) can be Z (Remark A.3.5)
or a product of Z with a non trivial finite cyclic group (Example A.3.30) and Cent0( f ) can be
trivial, isomorphic to K , K ∗ or Z/2Z (Section A.3.2).

Remark A.3.5 A general base-wandering Jonquières twist can not be written as (η(x),yR(xk))

or (η(x),y+R(x)). So the centralizer of a general Jonquières twist f differs from the infinite
cyclic group 〈 f 〉 only by some finite groups. For example, for a generic choice of α,β ∈K ∗,
the centralizer of fα,β : (x,y) 99K (αx, βy+x

y+1 ) is
〈

fαβ

〉
, this is showed by J. Déserti in [Dés08].

A.3.1 Algebraically stable maps

If f is a birational transformation of a smooth algebraic surface X over K , we denote by
Ind( f ) the set of indeterminacy points of f . We say that f is algebraically stable if there is
no curve V on X such that the strict transform f k(V ) ⊂ Ind( f ) for some integer k ≥ 0. There
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always exists a birational morphism X̂ → X which lifts f to an algebraically stable birational
transformation of X̂ ([DF01] Theorem 0.1). The following theorem says that for f ∈ Jonq, we
can get a more precise algebraically stable model:

Theorem A.3.6 Let f be a birational transformation of a ruled surface X that preserves the

rational fibration. Then there is a rational ruled surface X̂ and a birational map ϕ : X 99K X̂

such that

— the only singular fibres of X̂ are of the form D0 +D1 where D0,D1 are (−1)-curves, i.e.

X̂ is a conic bundle;

— fX̂ = ϕ ◦ f ◦ϕ−1 is an algebraically stable birational transformation of X̂ and it pre-

serves the rational fibration of X̂ which is induced by that of X;

— fX̂ sends singular fibres isomorphically to singular fibres and all indeterminacy points

of fX̂ and its iterates are located on regular fibres.

— ϕ is a sequence of elementary transformations and blow-ups.

Let z ∈ X be an indeterminacy point of f . Let X u←− Y v−→ X be a minimal resolution of the
indeterminacy point z, i.e. u,v are birational maps which are regular around the fibre over π(z),
u−1 is a series of n blow-ups at z or at its infinitely near points and n is minimal among possible
integers.

Lemma A.3.7 The total transform by u−1 in Y of Fπ(z), the fibre containing z, is a chain of

(n+ 1) rational curves C0 +C1 + · · ·+Cn: C0 is the strict transform of Fπ(z), C2
0 = C2

n = −1,

C2
i =−2 for 0 < i < n and Ci ·Ci+1 = 1 for 0≤ i < n.

Proof Let us write u : Y → X as Y = Yn
un−→ Yn−1 · · ·

u2−→ Y1
u1−→ Y0 = X where each ui is a single

contraction of a (−1)-curve and Ci is (the strict transform) of the contracted (−1)-curve. By an
abuse of notation, we will use Ci to denote all strict transforms of the (−1)-curve contracted by
ui. The connectedness of the fibres and the preservation of the fibration imply that for each i,
the map f ◦ u1 ◦ · · · ◦ ui has at most one indeterminacy point on a fibre. To prove the lemma, it
suffices to show that the indeterminacy point of f ◦u1 ◦ · · · ◦ui which by construction lies in Ci

is not the intersection point of Ci with Ci−1.
Suppose by contradiction that Ci+1 is obtained by blowing up the intersection point of Ci

with Ci−1. Then for j > i, the auto-intersection of Ci on X j is less than or equal to −2. Let us
write v : Y → X as Y =Yn

vn−→Yn−1 · · ·
v2−→Y1

v1−→Y0 = X where each vi is a single contraction of a
(−1)-curve. Since Ci is contracted by v, there must exist an integer k such that vk+1 ◦ · · ·◦vn(Ci)

is the (−1)-curve on Yk contracted by vk. This is possible only if the C j, j > i are all contracted
by vk ◦ · · · ◦ vn. But by the minimality of the integer n, Cn can not be contracted by v. �
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Proof (of Theorem A.3.6) Our proof is inspired by the proof of Theorem 0.1 of [DF01]. Let
p1, · · · , pk ∈ X be the indeterminacy points of f . By Lemma A.3.7, for 1 ≤ i ≤ k the minimal
resolution of f at pi writes as

X = Xi0
ui1←− Xi1

ui2←− ·· ·
uini←−− Xini = Yini

vini−−→ ·· · vi2−→ Yi1
vi1−→ Yi0 = X

where ui1, · · · ,uini,vi1, · · · ,vini are single contractions of (−1)-curves and Xini has one singu-
lar fibre which is a chain of rational curves Ci0 + · · ·+Cini . Let us write the global minimal
resolution of indeterminacy of f by keeping in mind the rational fibration:

X = X0 X1 · · · Xn · · · X2n−1 X2n = X

P1 P1 · · · P1 · · · P1 P1

f0

π

f1

π

fn−1 fn

π

f2n−2 f2n−1

π π

f0 f1 fn−1 fn f2n−2 f2n−1

where n = n1 + · · ·+nk and

— f0, · · · , fn−1 are blow-ups which correspond to the inverses of u11, · · · ,u1n1, · · · ,uk1, · · · ,uknk ;
— fn, · · · , f2n−1 are blow-downs which correspond to v11, · · · ,v1n1, · · · ,vk1, · · · ,vknk ;
— Xn has k singular fibres which are chains of rational curves Ci0 + · · ·+Cini,1≤ i≤ k;
— the abusive notation π is self-explaining and we will also denote by Cil its strict trans-

forms (if it remains a curve) on the surfaces X j. On X0 =X2n, it is possible that Ci′0 =Cini

for 1≤ i, i′ ≤ k.
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Ci0 Ci0

Ci1

Ci0

Ci1

Ci(ni−1)

Cini

Cini

Ci(ni−1)

Cini

For any j ∈N, we let X j = X j mod 2n and f j = f j mod 2n. If f j blows up a point r j ∈ X j, then we
denote by Vj+1 the exceptional curve on X j+1. If f j contracts a curve Wj ⊂ X j then we denote
by s j+1 the point f j(Wj) ∈ X j+1. For each Vj (resp. Wj), there is an i such that Vj (resp. Wj) is
among Ci0, · · · ,Cini . Suppose that f is not algebraically stable on H. Then there exist integers
1≤M < N such that fM contracts WM and

fN−1 ◦ · · · ◦ fM(WM) = rN ∈ Ind( fN).

We can assume that n ≤ N ≤ 2n− 1 and the length (N−M) is minimal. Observe first that
the minimality of the length implies for all M ≤ j < N−1, the point t j+1 := f j ◦· · ·◦ fM(WM) =

f j ◦· · ·◦ fM+1(sM+1) is neither an indeterminacy point nor a point on a curve contracted by f j+1.
Secondly we assert that for all M≤ j <N−1, t j+1 is not on the singular fibres of X j+1. Indeed if
some t j+1 was on a singular fibre of X j+1, then the sequence of points t j+1, t j+2, · · · would meet
a contracted curve before meeting the first indeterminacy point rN (look at the picture), which
contradicts our first observation. The second observation further implies that for M ≤ j < N−1
such that j + 2n < N− 1, t j+1, t j+2n+1 are not on the same fibre of X j+1 = X j+2n+1 because
otherwise there would exist j < j′ < j+2n+1 such that j′ = M mod 2n and t j′ would be on
the singular fibre containing WM.

Since fN−1 maps isomorphically the fibre of XN−1 containing tN−1 (which is regular by the
above observation) to the fibre of XN containing rN , the fibre containing rN is just one rational
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curve. As fN is a blow-up, the fibre of XN+1 containing VN+1 is the union of two (−1)-curves,
let us say, Ck0 and Ck1 = VN+1. Then the fibre of XN containing rN is just Ck0. Similarly the
singular fibre of XM containing WM is Cmnm +Cm(nm−1) for some 1≤ m≤ k.

First case. Suppose that m = k and nk = 1. Let a ∈ N be the minimal integer such that
M+2an > N. Then for N < j ≤M+2an, the surface X j has a singular fibre Ck0 +Ck1 and the
maps fN , · · · , fM+2an−1 are all regular on Ck0 +Ck1. Now we blow-up tM+1, · · · , tN−1,rN . For
j1 = j2 mod 2n, we showed that t j1, t j2 are not on the same fibre of X j1 = X j2 . This means that
these blow-ups only give rise to singular fibres which are unions of two (−1)-curves. We denote
by X̂ j the modified surfaces, and f̂ j the induced maps. Then every X̂ j has singular fibres of the
form Ck0 +Ck1 and every f̂ j is regular around these singular fibres. Let f̂ = f̂2n−1 ◦ · · · ◦ f̂0.
The number of indeterminacy points of f̂ (it was k for f ) has decreased by one. Note that f̂

exchanges the two components Ck0 and Ck1. This fact will be used in the proof of Corollary
A.3.8.

Second case. Suppose that m = k and nk > 1 or simply m 6= k. We blow-up rN and contract
the strict transform of the initial fibre containing rN which is Ck0, obtaining a new surface
X̂N whose corresponding fibre is now the single rational curve Ck1. We perform elementary
transformations at tN−1, · · · , tM+1, i.e. we blow-up X j at t j and contract the strict transform of
the initial fibre, replacing X j with X̂ j. This process has no ambiguity: if j1 = j2 mod 2n, we
showed that t j1, t j2 are not on the same fibre of X j1 = X j2 , so the corresponding elementary
transformations do not interfere with each other. Let us denote by f̂M, · · · , f̂N the maps induced
by fM, · · · , fN .

We now analyse the effects of f̂M, · · · , f̂N . First look at fN , it lifts to a regular isomorphism
after blowing up rN . Thus f̂N is the blow-up at the point eN of X̂N to which Ck0 is contracted.
After this step, the map going from XN−1 to X̂N induced by fN−1 is as following: it contracts
the fibre containing tN−1 to eN and blows up tN−1. Then we make elementary transformations at
tN−1, · · · , tM+1 in turn. The maps f̂N−1, · · · , f̂M+1 are all regular on the modified fibres, thus they
are still single blow-ups or single blow-downs. The behaviour of f̂M differs from the previous
ones: it does not contract Cm(nm−1) any more, but contracts Cmnm .

The hypothesis m 6= k (or m = k, nk > 1) forbids Ck0 ⊂ XN+1 to go back into the fibre of
XM+2na =XM containing WM without being contracted. More precisely this implies the existence
of N′ > N such that

— XN+1, · · · ,XN′ all contain Ck0 and Ck1;
— fN+1, · · · , fN′−1 are regular on Ck0 and fN′ contracts Ck0;
— if a ∈ N is the minimal integer such that M+2na > N, then N′ < M+2na.
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On the surfaces XN+1, · · · ,XN′ , Ck0 is always a (−1)-curve, we contract all these Ck0 and obtain
new surfaces X̂N+1, · · · , X̂N′ . The second and the third property listed above mean that the new
induced maps f̂N , · · · , f̂N′ are all single blow-ups, single blow-downs or simply isomorphisms.

In summary we get a commutative diagram:

X̂0 X̂1 · · · X̂n · · · X̂2n−1 X̂2n = X̂0

X0 X1 · · · Xn · · · X2n−1 X2n = X0

f̂0 f̂1 f̂n−1 f̂n f̂2n−2 f̂2n−1

f0 f1 fn−1 fn f2n−2 f2n−1

where the vertical arrows are composition of elementary transformations and blow-ups. Let us
remark that:

— the first vertical arrow X̂0 99K X0 is a composition of elementary transformations.
— the blow-ups or the contractions of the f̂ j only concern the k singular fibres and the

exceptional curves are always among C10, · · · ,C1n1, · · · ,Ck0, · · · ,Cknk ;
— there is no more Ck0. We then do a renumbering: Ck1, · · · ,Cknk become Ck0, · · · ,Ck(nk−1).
Let f̂ = f̂2n−1 ◦ · · · ◦ f̂0. We repeat the above process. Either we are in the first case and k

decreases, or we are in the second case and the total number of C10, · · · ,C1n1, · · · ,Ck0, · · · ,Cknk

decreases. As a consequence, after a finite number of times, either we get an algebraically stable
map f̂ , or we will get rid of all the C10, · · · ,C1n1, · · · ,Ck0, · · · ,Cknk . In the later case f̂ is a regular
automorphism, thus automatically algebraically stable. �

Theorem A.3.6 also gives a geometric complement to the study of elements of finite order
of Jonq in [Bla11] Section 3. In particular the proof of Theorem A.3.6 implies the following
corollary (which is already known, see for example [Bla11]), one special case of which will be
used in the next section:

Corollary A.3.8 Let f ∈ Jonq be an elliptic element. If f is not conjugate to an automorphism

of a Hirzebruch surface, then it is a conjugate to an automorphism of a conic bundle and the

order of f is 2k for some k∈N∗. Moreover f k is in Jonq0(K) and exchanges the two components

of some singular fibres of the conic bundle.

Proof We see by Theorem A.2.4 that an elliptic element of infinite order is always conjugate
to an automorphism of Hirzebruch surface. Hence our hypothesis implies immediately that f is
of finite order. We can assume that f is an algebraically stable map on a conic bundle X which
satisfies the conditions of Theorem A.3.6. We claim that f is an automorphism of X . Suppose
by contradiction that p is an indeterminacy point of f . It must lie on a regular fibre F of X . The
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fact that f is of finite order and the algebraic stability of f imply that f−1 has an indeterminacy
point on F different from p. But then f can not be of finite order, contradiction.

Since by hypothesis X is not a Hirzebruch surface, it must have some singular fibres. By
the proof of Theorem A.3.6 (see the First case in the proof), for each singular fibre there exists
an iterate of f which exchanges the two components of that fibre. Since there are finitely many
singular fibres, we can find an integer k > 0 such that f k is in Jonq0(K) and exchanges the two
components of at least one singular fibre. If we consider f k as an element of PGL2(K (x)),
it is not diagonalizable over K (x). As we have seen in Section A.2.4, the map f k, being non
diagonalizable, fixes pointwise a hyperelliptic curve whose projection onto P1 is induced by the
rational fibration. The map f 2k does not exchange the components of the singular fibres, so it
is conjugate to an automorphism of a Hirzebruch surface and is diagonalizable over K (x). A
diagonalizable map does not fix any hyperelliptic curve like this unless the map is trivial. Hence
f 2k = Id. �

See [Bla11] Section 3, especially Proposition 3.3 and Lemma 3.9, for more information on
such elliptic elements of finite order; see also [DI09]. We will use a special case of the above
corollary:

Corollary A.3.9 Let f ∈ Jonq0(K) be an elliptic element which is not conjugate to an auto-

morphism of a Hirzebruch surface. Then f is of order 2 and is conjugate to an automorphism of

a conic bundle on which it fixes pointwise a hyperelliptic curve whose projection onto the base

P1 is a ramified double cover. In some affine chart f writes as (x,y) 99K (x, a(x)
y ) with a ∈K [x].

The hyperelliptic curve is given by the equation y2 = a(x).

Such involutions are well known and are called Jonquières involutions, see [BB00].

Remark A.3.10 An element of the form (x,y) 99K (η(x),yR(x)) or (x,y) 99K (η(x),y+R(x))

with η ∈ PGL2(K) and R ∈K (x) is never a Jonquières twist. Thus by Theorem B.2.3, a Jon-
quières twist never commutes with an elliptic element of infinite order.

We will need an abelian elliptic group version of Theorem A.3.6:

Corollary A.3.11 Let G ⊂ Jonq be a finitely generated abelian elliptic subgroup without Jon-

quières involutions. We can conjugate G to a group of automorphisms of a Hirzebruch surface.

The conjugation is a sequence of elementary transformations.

Proof Let f1, · · · , fd ∈G be a finite set of generators of G. We apply Theorem A.3.6 to f1, then
to f2, etc. Remark that by the proof of Theorem A.3.6, the elementary transformations of the
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conjugation are made at the indeterminacy points of the fi. However G is an abelian group, so
that if p is an indeterminacy point of fi and g is another element of G, then either g fixes p or p

is an indeterminacy point of g too. Therefore after applying Theorem A.3.6 to fi+1, the previous
ones f1, · · · , fi remain automorphisms. �

A.3.2 The group Cent0( f )

Let f be a base-wandering Jonquières twist. In [CD12b], it is proved by explicit calculations,
in the case where K = C, that Cent0( f ) is isomorphic to C∗, C∗oZ/2Z, C or a finite group
(this is not optimal). Their arguments do not work directly when char(K) > 0. With a more
precise description of elements of Jonq0(K), we simplify their arguments and improve their
results.

Let g ∈ Cent0( f ) be non trivial. Then either g is conjugate to an automorphism of a Hirze-
bruch surface or g is a Jonquières involution as in Corollary A.3.9. In the first case, by proposi-
tion A.2.6, we can write g as (x,y) 7→ (x,βy) or (x,y) 7→ (x,y+1).

Lemma A.3.12 Suppose that there exists a non trivial g ∈ Cent0( f ) that writes as (x,y) 7→
(x,βy) with β ∈K ∗. Either f is of the form (a(x),R(x)y−1) and Cent0( f ) is an order two group

generated by the involution (x,y) 7→ (x,−y), or f is of the form (a(x),R(x)y) and Cent0( f ) is

{(x,y) 7→ (x,γy),γ ∈K ∗}.

Proof The map g preserves {y = 0} and {y = ∞} and these two curves are the only g-invariant
sections. Thus f permutes these two sections and is necessarily of the form (x,y) 99K (a(x),R(x)y±1)

where R ∈K (x) and a ∈ PGL2(K) is of infinite order. If f is (a(x),R(x)y−1), then β = −1.
For the discussion which follows, it is not harmfull to replace f by f 2 so that we can assume f

is (a(x),R(x)y).
The only f -invariant sections are {y= 0} and {y=∞}. Indeed an invariant section s satisfies

s(an(x)) = R(x) · · ·R(an−1(x))s(x) ∀n ∈ N.

If s was not {y = 0} nor {y = ∞}, then the two sides of the equations are rational fractions and
by comparing the degrees (of numerators and denominators) we get a contradiction because R

is not constant. Thus, an element of Cent0( f ) permutes the two f -invariant sections and is of the
form (x,A(x)y) or (x, A(x)

y ) with A ∈K (x). In the first case the commutation relation implies
A(a(x)) = A(x) which further implies that A is a constant. In the second case the commutation
relation gives A(a(x))−1R(x)2A(x) = 1 which further implies that (a(x),R(x)2y) is conjugate by
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(x,A(x)y) to an elliptic element (a(x),y). This is not possible because the map f ′ : (x,y) 99K
(a(x),R(x)2y) is a Jonquières twist. Indeed the iterates f n, f ′n are respectively

(an(x),R(x) · · ·R(an−1(x))y) and (an(x),(R(x) · · ·R(an−1(x)))2y)

and they have the same degree growth.

Reciprocally all elements of the form (x,y) 7→ (x,βy) with β ∈ K ∗ commute with f :
(x,y) 99K (a(x),R(x)y) and we have already observed that (x,y) 7→ (x,−y) is the only non trivial
element of Jonq0(K) which commutes with (a(x),R(x)y−1). �

Lemma A.3.13 Suppose that there exists a non trivial g ∈ Cent0( f ) that writes as (x,y) 7→
(x,y+1). Then f is of the form (a(x),y+S(x)) with S ∈K (x) and Cent0( f ) is {(x,y+ γ),γ ∈
K }.

Proof The section {y = ∞} is the only g-invariant section. Thus f preserves this section and is
of the form (x,y) 99K (a(x),R(x)y+ S(x)) where R,S ∈K (x) and a ∈ PGL2(K) is of infinite
order. Writing down the relation f ◦ g = g ◦ f , we see that R = 1. Thus f is (a(x),y+ S(x))

where S belongs to K (x) but not to K [x] since f is a Jonquières twist. The only f -invariant
section is {y = ∞}. Indeed an invariant section s satisfies

s(an(x)) = s(x)+S(x)+ · · ·+S(an−1(x)) ∀n ∈ N.

If s was not {y = ∞}, then the two sides of the equations are rational fractions. The degree of the
right-hand side grows linearly in n while the degree of the left-hand side does not depend on n,
contradiction. Thus, an element of Cent0( f ) fixes {y = ∞} and is of the form (x,A(x)y+B(x))

with A,B ∈K (x). Writing down the commutation relation, we get

A(x)y+B(x)+S(x) = A(a(x))y+A(a(x))S(x)+B(a(x)).

The fact that a is of infinite order implies that A is a constant. Then the equation is reduced to

B(x)+(1−A)S(x)−B(a(x)) = 0.

If A 6= 1, then f : (x,y) 99K (a(x),y+ S(x)) would be conjugate by (x,y+ B(x)
1−A) to the elliptic

elment (a(x),y). Therefore A = 1 and B is a constant. Reciprocally we see that all elements of
the form (x,y) 7→ (x,y+β ) with β ∈K commute with f : (x,y) 99K (a(x),y+S(x)). �
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Lemma A.3.14 Assume that no non-trivial element of Cent0( f ) is conjugate to an automor-

phism of a Hirzebruch surface and that Cent0( f ) has a non-trivial element g. Then g is a

Jonquières involution and is the only non-trivial element of Cent0( f ).

Proof By Lemma A.3.1, g is an elliptic element. By Corollary A.3.9, g acts on a conic bundle
X and fixes pointwise a hyperelliptic curve C. The map f induces an action on C, equivariant
with respect to the ramified double cover. The action of f on C is infinite, this is possible only
if the action of f on the base is up to conjugation x 7→ αx and if C is a rational curve whose
projection on the base P1 is ramified over x = 0,x = ∞. Then the only singular fibres of X are
over x = 0,x = ∞. If f had an indeterminacy point on these two fibres, then it would be a fixed
point of g because g commutes with f . But the only fixed point of g on a singular fibre is the
intersection point of the two components, which can not be an indeterminacy point by Lemma
A.3.7. Therefore the Jonquières twist f must have an indeterminacy point over a point whose
orbit in the base is infinite. This implies that the indeterminacy points of all the iterates of f

form an infinite set. As g commutes with all the iterates of f , it fixes an infinite number of these
indeterminacy points. Thus, the hyperelliptic curve C associated to g is the Zariski closure of
these indeterminacy points and is uniquely determined by f . However C determines g too by
Corollary A.3.9 (see [Bla11] for more general results). Therefore g is uniquely determined by
f and is the only non trivial element of Cent0( f ). �

Putting together the three previous lemmas, we obtain the following improvement of [CD12b]:

Proposition A.3.15 Let f be a base-wandering Jonquières twist. If Cent0( f ) is not trivial, then

it is {(x,y) 7→ (x, ty), t ∈K ∗}, {(x,y) 7→ (x,y+t), t ∈K }, 〈(x,y) 7→ (x,−y)〉 or 〈a Jonquières involution〉.

A.3.3 Persistent indeterminacy points

general facts

Let f be a birational transformation of a surface X . An indeterminacy point x ∈ X of f

will be called persistent if 1) for every i > 0, f−i is regular at x; and 2) there are infinitely
many curves contracted onto x by the iterates f−n, n ∈ N. This notion of persistence and the
following idea appeared first in a non published version of [Can11], and it is also applied to
some particular examples in [Dés08].

Proposition A.3.16 Let f be an algebraically stable birational transformation of a surface X.

Suppose that there exists at least one persistent indeterminacy point with an infinite backward
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orbit. Let n denote the number of such indeterminacy points. Then the centralizer Cent( f ) of f

admits a morphism ϕ : Cent( f )→Sn to the symmetric group of order n satisfying the following

property: for any g ∈ Ker(ϕ), there exists l ∈ Z such that g◦ f l preserves fibre by fibre a pencil

of rational curves.

Proof The algebraic stability of f will be used throughout the proof, we will not recall it each
time. Denote by p1, · · · , pn the persistent indeterminacy points of f . Let g be a birational trans-
formation of X which commute with f . Fix an index 1 ≤ n0 ≤ n. Since { f−i(pn0), i > 0} is
infinite, there exists k0 > 0 such that g is regular at f−k(pn0) for all k ≥ k0. For infinitely many
j > 0, f− j contracts a curve onto p1, denote these curves by C j

n0 . There exists k1 > 0 such that
g does not contract Ck

n0
for all k ≥ k1. We deduce, from the above observations and the fact that

f and g commute, that for k ≥ k0 the point g( f−k(pn0)) is an indeterminacy point of some f m

with 0 < m≤ k0 + k1. Then there exists 0≤ m0 < m such that

— for 0≤ i≤ m0, f i is regular at g( f−k(pn0));
— f m0(g( f−k(pn0))) = g( f m0−k(pn0)) is an indeterminacy point of f .

By looking at g( f−k(pn0)) and Ck′
n0

for infinitely many k,k′, we see that the above indeterminacy
point does not depend on k and is persistent with an infinite backward orbit. So it is pσg(n0) for
some 1≤ σg(n0)≤ n. This gives us a well defined map σg : {1, · · · ,n}→ {1, · · · ,n}.

Now let g,h be two elements of Cent( f ). Then by considering a sufficiently large k for which
g is regular at f−k(pn0) and h is regular at g( f−k(pn0)), we see that σh ◦σg = σh◦g. By taking
h = g−1 we see that σg is bijective. We have then a group homomorphism ϕ from Cent( f ) to
the symmetric group Sn which sends g to σg.

Assume that n0 is a fixed point of σg, this holds in particular when g ∈ Ker(ϕ). We keep
the previous notations. Since g( f−k(pn0)) is an indeterminacy point of f m whose forward orbit
meets pn0 , for an appropriate choice of l ≤ k we have

g◦ f l( f−k(pn0)) = f−k(pn0)

for all k ≥ k0. This implies further

g◦ f l(Ck′
n0
) =Ck′

n0

for all sufficiently large k′. We conclude by Lemma A.3.17 below. �

The proof of the following lemma in [Can10] is written over C for rational self-maps. It is
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observed in [Xie15] that the same proof works in all characteristics for birational transforma-
tions.

Lemma A.3.17 A birational transformation of a smooth algebraic surface which preserves

infinitely many curves preserves each member of a pencil of curves.

persistent indeterminacy points for Jonquières twists

We examine the notion of persistence in the Jonquières group and give a complement to
Theorem A.3.6:

Proposition A.3.18 Let f be a Jonquières twist acting algebraically stably on a conic bundle

X as in the statement of Theorem A.3.6. Then an indeterminacy point p of f is persistent if and

only if the orbit of π(p) ∈ P1 under f is infinite. And in that case, every f−i, i ∈ N∗ contracts a

curve onto p.

Proof If π(p) has a finite orbit then p certainly can not be persistent. Let us assume that the orbit
of π(p) is infinite. Then f is conjugate to x 7→ αX with α ∈ K∗ of infinite order or to x 7→ x+1
(only when char(K) = 0). By the algebraic stability of f , f−i is regular at p for all i > 0 and
all the points f−i(p), i > 0 are on distinct fibres. Denote by x0,x1 the points π(p), f (π(p)). By
Theorem A.3.6, we know that the fibres Fx0,Fx1 are not singular. Thus f is regular on Fx0\{p}
and contracts it onto a point q ∈ Fx1; f−1 is regular on Fx1\{q} and contracts it onto p. Now
pick a point xn in the forward orbit of x0 by f and consider the fibre Fxn . The fibre Fxn cannot
be contracted onto q by f−(n−1) because of the algebraic stability of f . As a consequence it is
contracted by f−n onto p. �

Corollary A.3.19 Let f be a Jonquières twist acting algebraically stably on a conic bundle X

as in the statement of Theorem A.3.6. Suppose that the base action f ∈ PGL2(K) is of infinite

order and there is an indeterminacy point of f located on a fibre Fx ⊂ X such that f (x) 6= x.

1. If f is of the form x 7→ x+1 then Centb( f ) is isomorphic to Z;

2. if f is of the form x 7→ αx then Centb( f ) is isomorphic to the product of Z with a finite

cyclic group.

Note that the first case does not occur when char(K) 6= 0.

Proof Proposition A.3.18 shows that the birational transformation f satisfies the hypothesis of
Proposition A.3.16. Let n denote the number of persistent indeterminacy points of f with infinite

175



Part , Chapter A – Centralizers of elements of infinite order in plane Cremona groups

backward orbits. Let g ∈ Cent( f ). Proposition A.3.16 says that gn! ◦ f l preserves every member
of a pencil of rational curves for some l ∈Z. The proof of Proposition A.3.16 shows that certain
members of this pencil of rational curves are fibres of the initial rational fibration on X , so this
pencil of rational curves is the initial rational fibration. This means gn! ◦ f l

= Id ∈ PGL2(K).

When char(K) = 0 and f is x 7→ x + 1, its centralizer in PGL2(K) is isomorphic to the
additive group K and this group is torsion free. Thus, Centb( f ) is contained in an infinite
cyclic group in which < f > is of index ≤ n!. The conclusion follows in this case.

When f is x 7→ αx with α of infinite order, its centralizer in PGL2(K) is isomorphic to the
multiplicative group K ∗. The difference is that, in this case it is possible that g is of finite order
≤ n!. Thus, we may have an additional finite cyclic factor of Centb( f ). �

A.3.4 Local analysis around a fibre

Now we need to study the case where there is no persistent indeterminacy points. In this
section we will work in the following setting:

— Let f be a base-wandering Jonquières twist. We can suppose that f is x 7→ αx or x 7→
x+1.

— Up to taking an algebraically stable model as in Theorem A.3.6, we can suppose that f is
a birational transformation of a conic bundle X which satisfies the properties in Theorem
A.3.6.

— We assume that the only indeterminacy points of f are on the fibres F0,F∞.

Without loss of generality, let us suppose that f has an indeterminacy point p on the fibre F∞. By
algebraic stability f−1 has an indeterminacy point q 6= p on F∞. If x∈ P1 is not 0 nor ∞, then the
orbit of x under f is infinite and the fibre Fx is regular. As f has an indeterminacy point on F∞,
the fibre F∞ is also regular. Assume that F0 is singular, then it is the union of two (−1)-curves
and f exchanges the two components. Since the aim of this section is to prove that Centb( f ) is
finite by cyclic, it is not harmful to replace f with f 2 so that the two components of F0 are no
more exchanged and we can assume that F0 is regular. Thus, we can suppose that

— the surface X is a Hirzebruch surface.

If f is x 7→ αx, then Centb( f ) is contained in {(x 7→ γx),γ ∈ K ∗} and all elements of
Centb( f ) fix 0 and ∞. Similarly if f is x 7→ x+1 then all elements of Centb( f ) fix ∞. Thus F0

or F∞ is Cent( f )-invariant (under total transforms), we will study the (semi-)local behaviour of
the elements in Cent( f ) around such an invariant fibre.
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An infinite chain

We blow up X at p,q the indeterminacy points of f , f−1, obtaining a new surface X1. The
fibre of X1 over 0 is a chain of three rational curves C−1 +C0 +C1 where C1 (resp. C−1) is the
exceptional curve corresponding to p (resp. q) and C0 is the strict transform of F∞ ⊂ X . Now f

induces a birational transformation f1 of X1. As in Lemma A.3.7, we know that f1 (resp. f−1
1 )

has an indeterminacy point p2 (resp. q2) on C1 (resp. C−1) which is disjoint from C0. We then
blow up p2,q2 and repeat the process. We have:

— for every n ∈ N, a surface Xn on which f induces a birational transformation fn;
— the fibre of Xn over 0 is a chain of rational curves C−n, · · · ,C0, · · · ,Cn;
— fn (resp. f−n) has an indeterminacy point pn+1 (resp. qn+1) on Cn (resp. C−n) disjoint

from Cn−1 (resp. C−(n−1)).
Let g be a birational transformation of X which commutes with f . We already observed that

F∞ is an invariant fibre of g. If g is regular on F∞, then the commutativity implies that g preserves
the set {p,q}. Suppose that g is not regular on F∞. Then g (resp. g−1) has an indeterminacy point
p′ (resp. q′) on F∞. Replacing g by g−1 or f by f−1, we can suppose that p′ 6= q. Then for every
point x ∈ F∞ such that x 6= p, p′, we have that g(q) = g( f (x)) = f (g(x)) is a point, thus equals
q. This further implies q = q′. Then we apply the same argument to g, f−1, obtaining p = p′. In
summary, g is either regular on F∞ and preserves {p,q}, or the set of indeterminacy points of
g,g−1 on F∞ is exactly {p,q}.

We lift g to a birational transformation on Xn. By repeating the above arguments, we deduce
that for all n ∈ N the two indeterminacy points of fn, f−1

n on the fibre F∞ ⊂ Xn coincide with
that of gn,g−1

n if the later exist. This means that for a Ci given, and for sufficiently large n, the
rational curve Ci is a component of the fibre of Xn and gn maps it to another component C j

of the fibre. In other words g acts on the infinite chain of rational curves ∑n∈ZCn. The dual
graph of this infinite chain of rational curves is a chain of vertices indexed by Z. The action of
f on the dual graph is just a non trivial translation. The isomorphism group of the dual graph
is isomorphic to ZoZ/2Z. Those isomorphisms which commute with a non trivial translation
coincide with the subgroup of translations Z. The above considerations can be summarized as
follows:

Lemma A.3.20 There is a group homomorphism Φ : Cent( f )→ Z such that g(Cn) =CΦ(g)+n

for g ∈ Cent( f ). An element g ∈ Cent( f ) is in the kernel of Φ if and only if g(Cn) =Cn for every

n ∈ Z. In other words an element g of the kernel of Φ is regular on the fibre F∞ and fixes the

indeterminacy points of f , f−1 on this fibre.
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Lemma A.3.21 Let g be an element of Cent( f ). Let x ∈ P1 be a point not fixed by f . Then g

can not have any indeterminacy points on the fibre Fx over x.

Proof By our hypothesis f is regular on all fibres Fxn where {xn,n ∈ Z} denote the orbit of x

under f . If g had an indeterminacy point p on Fx, then f (p), f 2(p), · · · would give us an infinite
number of indeterminacy points of g. �

Corollary A.3.22 Suppose that f is conjugate to x 7→ x+ 1 (in particular char(K) = 0). Let

g∈Cent( f ) be in the kernel of Φ : Cent( f )→Z. Then g is an automorphism of X. Furthermore

g preserves the rational fibration fibre by fibre.

Proof Lemma A.3.20 says that g does not have any indeterminacy point on the fibre F∞. Lemma
A.3.21 says that g does not have any indeterminacy point elsewhere neither. Thus, g is an auto-
morphism. Since g commutes with f : x 7→ x+ 1, g is x 7→ x+ v for some v ∈K . Suppose by
contradiction that v 6= 0. Then g is an elliptic element of infinite order and f ∈ Cent(g). We can
apply Theorem B.2.3 to g, f and put them in normal form. As f is a Jonquières twist, the ratio-
nal fibration preserved simultaneously by f and g is unique and it must be the rational fibration
appeared in the normal form. Hence, Theorem B.2.3 forbids f ,g to be both non-trivial and of
the form x 7→ x+ sth. �

When f is of the form x 7→ αx, there are two special fibres F0,F∞ and the above easy argu-
ment does not work.

Formal considerations along a fibre

In the rest of this section we will assume that f is x 7→ αx. There are two invariant fibers F∞

and F0 in this case. We assume that f has an indeterminacy point q on F0.

The idea of what we do in the sequel is as follows. Let us look at the case where K = C.
The indeterminacy point q∈F0 of f−1 is a fixed point of f , at which the differential of f has two
eigenvalues 0 and α; the fibre directon is superattracting and in the transverse direction f is just
x 7→ αx. Therefore there is a local invariant manifold at q for f , which is a local holomorphic
section of the rational fibration. Likewise, there is a local invariant manifold at p ∈ F0, the
indeterminacy point of f . These two local holomorphic sections allow us to conjugate locally
holomorphically f to (αx,a(x)y) where a is a germ of holomorphic function. The structure of
Jonquières maps is nice enough to allow us to apply this geometric idea over any field in an
elementary way. We need just to work with formal series instead of polynomials.
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From now on we fix f : (x,y) 99K (αx, A(x)y+B(x)
C(x)y+D(x)) where α ∈K ∗ is of infinite order and

A,B,C,D ∈K [x]. Without loss of generality, we suppose that 1) the point (0,0) (resp. (0,∞))
is an indeterminacy point of f (resp. f−1); 2) one of the A,B,C,D is not a multiple of x. This
implies

B(0) =C(0) = D(0) = 0, A(0) 6= 0. (A.3)

We will consider A,B,C,D as elements of the ring of formal series K JxK. We will also view f

as an element of the formal Jonquières group PGL2(K ((x)))oK ∗ whose elements are formal
expressions of the form (µx, a(x)y+b(x)

c(x)y+d(x)) where µ ∈ K ∗ and a,b,c,d belong to K ((x)), the
fraction field of K JxK.

Normal form. We want to conjugate f to a formal expression of the form (αx,β (x)y),β ∈
K ((x)) by some formal expression (x, E(x)y+F(x)

G(x)y+H(x)) with E,F,G,H ∈K JxK. This amounts to say
that we are looking for E,F,G,H ∈K JxK such that EF−GH 6= 0 and(

E(αx) F(αx)

G(αx) H(αx)

)−1(
A(x) B(x)

C(x) D(x)

)(
E(x) F(x)

G(x) H(x)

)

is a diagonal matrix. By writing out the explicit expressions of the up-right entry and the down-
left entry of this matrix product, we obtain two equations to solve:

F(x)H(αx)A(x)+H(x)H(αx)B(x)−F(x)F(αx)C(x)−H(x)F(αx)D(x) = 0 (A.4)

−E(x)G(αx)A(x)−G(x)G(αx)B(x)+E(x)E(αx)C(x)+G(x)E(αx)D(x) = 0 (A.5)

We will use minuscules to denote the coefficients of the formal series, e.g. E(x) = ∑i∈N eixi.
Let us first look at the constant terms of equations (A.4), (A.5), they give

−e0g0a0−g2
0b0 + e2

0c0 + e0g0d0 = 0 = f0h0a0 +h2
0b0− f0 f0c0− f0h0d0.

Since b0 = c0 = d0 = 0 and a0 6= 0 (see Equation (A.3)), we must have e0g0 = f0h0 = 0. We can
choose f0 = g0 = 0 and e0 = h0 = 1, this guarantees in particular that our solution will satisfy
EH−FG 6= 0.

Remark that the equations (A.4) and (A.5) involve respectively only E,G and F,H, and they
have exactly the same form. So it suffices to show the existence of E,G which satisfy equation
(A.4). The constant term is done, let us look at the x term. This leads to a linear equation in
e1,g1 with coefficients involving a0,b0,c0,d0,e0,g0 and α . Therefore there exists at least one
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solution for e1,g1. Then we turn to the next term and get a linear equation in e2,g2, and so on.
Hence, we can find E,F,G,H which satisfy the desired properties. To sum up, we have:

Lemma A.3.23 There exists E,F,G,H ∈K JxK such that:

— E(0) = H(0) = 1 and F(0) = G(0) = 0, in particular

(
E F

G H

)
∈ PGL2(K ((x)));

— (x, E(x)y+F(x)
G(x)y+H(x)) conjugates f to (αx,β (x)y) for some β ∈K ((x));

Projective line over K ((x)). We call an element of P1(K ((x))) = K ((x))
⋃
{∞} a formal

section. We say a formal section θ(x) passes through the origin if θ(0) = 0. An element u =

(µx, a(x)y+b(x)
c(x)y+d(x)) of the formal Jonquières group PGL2(K ((x)))oK ∗ acts on P1(K ((x))) in the

following way:

θ(x) 7→ u ·θ(x) =

∞ if c(µ−1x)θ(µ−1x)+d(µ−1x) = 0
a(µ−1x)θ(µ−1x)+b(µ−1x)
c(µ−1x)θ(µ−1x)+d(µ−1x) otherwise

,

∞ 7→

∞ if c = 0
a(µ−1x)
c(µ−1x) if c 6= 0

.

Geometrically this is saying that a formal section of the rational fibration is sent to another by
a formal Jonquières transformation. Remark that this action on P1

K ((x)) is not an automorphism
of K ((x))-algebraic variety. In scheme theoretic language, we have a commutative diagram:

P1
K ((x)) P1

K ((x))

Spec(K ((x))) Spec(K ((x))).

θ 7→u·θ

µx← [x

Thus, we have a group homomorphism from PGL2(K ((x)))oK ∗ to the group of such twisted
automorphisms of P1

K ((x)).

Now let g ∈ Cent( f ) be an element in the kernel of Φ. Recall (see Lemma A.3.20) that g is

regular on the fibre F0 and fixes (0,0),(0,∞). We showed that f is conjugate by

(
E F

G H

)
to a

formal expression f̂ of the form (αx,β (x)y). We conjugate g by

(
E F

G H

)
too to get a formal

expression ĝ. Then ĝ commutes with f̂ .
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A.3. Base-wandering Jonquières twists

Recall that, by Lemma A.3.23, we get

(
1 0
0 1

)
when we evaluate the formal expression(

E F

G H

)
at x = 0. Together with the fact that g ∈ Ker(Φ), this implies that we get y 7→ δ0y for

some δ0 ∈K ∗ when we evaluate ĝ at x = 0.
Let us consider the actions of f̂ , ĝ on P1

K ((x)) as described above. Since f̂ is in diagonal
form, it fixes the points 0 and ∞ of P1

K ((x)).

Lemma A.3.24 If θ ∈ P1
K ((x)) satisfies θ(0) = 0 and f̂ ·θ(x) = θ(x), then θ = 0.

Proof The equation f̂ ·θ(x)= θ(x) writes as β (α−1x)θ(α−1x)= θ(x), i.e. θ(αx)−1β (x)θ(x)=

1. Suppose by contradiction that θ is not 0. Then we can write θ(x) as xrθ̃(x) where r > 0 and
θ̃(0) 6= 0. Hence we have θ̃(αx)−1β (x)θ̃(x) =αr. This implies that f̂ is conjugate by (x, θ̃(x)y)

to (αx,αry). Since θ̃(0) 6= 0 and

(
E(0) F(0)
G(0) H(0)

)
=

(
1 0
0 1

)
, this implies that the initial Jon-

quières twist f is regular on the fibre F0, contradiction. �

Since ĝ is y 7→ δ0y at x = 0, it sends the formal section 0 ∈ P1(K ((x))) to another former
section passing through the origin. The fact that f̂ and ĝ commute and the fact that 0 is the
only fixed formal section of f̂ which passes through the origin imply that ĝ fixes 0 ∈ P1

K ((x)).
Likewise ĝ fixes ∞ too. Therefore ĝ writes as (γx,δ (x)y) where γ ∈K ∗ and δ ∈K ((x)) satisfies
δ (0) = δ0 6= 0.

Normal forms for a pair. Let us assume for the moment that γ is not a root of unity; we
are going to prove that this is impossible. We want to, under this hypothesis, conjugate ĝ =

(γx,δ (x)y) to (γx,δ (0)y) by h = (x,ξ (x)y) for some ξ ∈K JxK. Remark that the conjugate of
f̂ by h will still be in diagonal form.

We write δ = ω

σ
where ω,σ ∈K JxK satisfies ω(0) 6= 0,σ(0) 6= 0 and ω(0)

σ(0) = δ (0). We will
write ξ as ∑i∈N ξixi, and likewise for σ ,ω .

After conjugation by h = (x,ξ (x)y), ĝ becomes

g̃ = h◦ ĝ◦h−1 = (γx,
ξ (γx)
ξ (x)

ω(x)
σ(x)

y).

Therefore the equation we want to solve is

ξ (γx)ω(x) =
ω0

σ0
ξ (x)σ(x). (A.6)
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Part , Chapter A – Centralizers of elements of infinite order in plane Cremona groups

The constant terms of the two sides are automatically equal, let us just choose ξ0 = 1. Compar-
ing the other terms, we obtain

ξ0ω1 + γξ1ω0 =
ω0

σ0
(ξ0σ1 +ξ1σ0)

ξ0ω2 + γξ1ω1 + γ
2
ξ2ω0 =

ω0

σ0
(ξ0σ2 +ξ1σ1 +ξ2σ0)

· · ·

which are equivalent to

(γ−1)ω0ξ1 =
ω0

σ0
ξ0σ1−ξ0ω1

(γ2−1)ω0ξ2 =
ω0

σ0
(ξ0σ2 +ξ1σ1)−ξ0ω2− γξ1ω1

· · · .

For the i-th term, we have a linear equation whose coefficient before ξi is (γ i− 1)ω0. Since
ω 6= 0 and we have supposed that γ is not a root of unity, The above equations always have
solutions. In summary, we have the following intermediate lemma (we will get from this lemma
a contradiction so its hypothesis is in fact absurd):

Lemma A.3.25 Suppose that g ∈ Ker(Φ) and the action of g on the base is of infinite order.

Then we can conjugate f and g, simultaneously by an element in PGL2(K ((x))) whose evalu-

ation at x = 0 is Id : y 7→ y, to

g̃ = (γx,δy), f̃ = (αx,β (x)y)

where α,γ,δ ∈K ∗, β ∈K ((x))∗ and α,γ are of infinite order.

Writing down the equation f̃ ◦ g̃ = g̃◦ f̃ , we get δβ (x) = δβ (γx). As δ 6= 0, we get β (x) =

β (γx). We write β = β num

β den with β num,β den ∈K JxK such that at least one of the β num
0 ,β den

0 is
not 0. The equation becomes

β
num(x)β den(γx) = β

den(x)β num(γx).

By comparing the coeffcients of two sides, we get

∀k ∈ N, ∑
i+ j=k

β
num
i β

den
j γ

j = ∑
i+ j=k

β
den
i β

num
j γ

j.
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A.3. Base-wandering Jonquières twists

Then by induction on k we get from these equations:

1. either β num = 0 (when β num
0 = 0), this is impossible;

2. or β den = 0 (when β den
0 = 0), this is again impossible;

3. or β num = κβ den for some κ ∈K ∗ (when β num
0 β den

0 6= 0). Then f̃ = (αx,κy), this contra-
dicts the fact that the original birational transformation f has an indeterminacy point on
the fibre F0 because to get f̃ we only did conjugations whose evaluation at x = 0 are the
identity y 7→ y.

Thus, we get

Proposition A.3.26 Suppose that g ∈ Ker(Φ). Then g is of finite order and g is an elliptic

element of Cr2(K).

Proof We have already showed that g can not be of infinite order. Then an iterate gk is in
Jonq0(K) and f ∈Cent(gk). By Theorem A.2.14, an element which commutes with a Jonquières
twist in Jonq0(K) can not have an infinite action on the base. As f is of infinite order, gk must
be elliptic. So g must be elliptic. �

Another fibre

The base action f ∈ PGL2(K) is x 7→ αx, it has two fixed points 0 and ∞. Recall that we
are always under the hypothesis that the indeterminacy points of f are on the fibres F0,F∞. We
have done analysis around the fibre F0 on which f has an indeterminacy point. We will denote
by Φ0 the homomorphism Φ we considered before. In case f has also an indeterminacy point
on F∞, we denote the corresponding homomorphism by Φ∞. We are going to reduce the proof
to a situation where the following lemma applies.

Lemma A.3.27 The image of Aut(X)
⋂

Ker(Φ0)⊂ Cent( f ) in Centb( f )⊂ PGL2(K) is a finite

cyclic group.

Proof We recall first that the automorphism group of a Hirzebruch surface is an algebraic
group (see [Mar71]). An element of Cent( f ) which is regular everywhere on H must be in
Ker(Φ0). Thus, Aut(X)

⋂
Ker(Φ0) = Aut(X)

⋂
Cent( f ) is an algebraic subgroup of Aut(H).

An automorphism of a Hirzebruch surface always preserves the rational fibration and there
is a morphism of algebraic groups from Aut(X) to PGL2(K) (see [Mar71]). The image of
Aut(X)

⋂
Ker(Φ0)⊂Cent( f ) in Centb( f )⊂ PGL2(K) is an algebraic subgroup Λ of PGL2(K).
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By Proposition A.3.26, the elements of Λ are all multiplication by roots of unity. If Λ was in-
finite then it would equal to its Zariski closure in PGL2(K) and would be isomorphic to the
multiplicative group K ∗. But the existence of a base-wandering Jonquières twist means that
K ∗ contains elements of infinite order, for example α . This contradicts the fact that Λ = K ∗

is of torsion. The conclusion follows. �

We first look at the case where we have two homomorphisms Φ0,Φ∞ to use:

Proposition A.3.28 If f has an indeterminacy point on F∞, then Ker(Φ0) = Ker(Φ∞) is a sub-

group of Aut(X). The image of Ker(Φ0) in Centb( f )⊂ PGL2(K) is a finite cyclic group.

Proof Let g be an element of Ker(Φ0). By Proposition A.3.26 g is an elliptic element of Cr2(K).
If Φ∞(g) were not trivial, then g would act by a non trivial translation on the corresponding
infinite chain of rational curves and could not be conjugate to any automorphism. This means g

must belong to Ker(Φ∞) and consequently g must be an automorphism of H. The second part
of the statement follows from Lemma A.3.27. �

When f is regular on F∞, we may need to do a little more, but we get more precise informa-
tion as well:

Proposition A.3.29 If f has no indeterminacy points on F∞, then Ker(Φ0) is a finite cyclic

group whose elements are automorphisms of P1×P1 of the form (x,y) 7→ (γx,y) with γ a root

of unity.

Proof Assume that f is regular on F∞. Let g ∈Ker(Φ0) be a non trivial element, it is regular on
F0. By Lemma A.3.21, an indeterminacy point of g can only be located on F∞.

Suppose that g has an indeterminacy point p on F∞. Then g−1 also has an indeterminacy
point q on F∞. If p 6= q, then g would act by translation on the corresponding infinite chain
of rational curves. This means that g would never be conjugate to an automorphism of some
surface and contradicts Proposition A.3.26 which asserts that g is elliptic. Thus, we have p = q.
The facts that f commutes with g and that f is regular on F∞ imply f (p) = p. We blow up the
Hirzebruch surface X at p to get a new surface X ′ and induced actions f ′,g′. The induced action
f ′ is still regular on the fibre F ′∞ and preserves both of the two irreducible components. If g′ has
an indeterminacy point on F ′∞, then as before it coincides with the indeterminacy point of g′−1

and must be fixed by f ′. Then we can keep blowing up indeterminacy points of maps induced
from g, or contracting g-invariant (−1)-curves in the fibre, without loosing the regularity of the
map induced by f . As g is elliptic, we will get at last a surface X̂ with induced actions f̂ , ĝ
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A.3. Base-wandering Jonquières twists

which are all regular on the fibre over ∞. We can suppose that X̂ is minimal among the surfaces
with this property. In particular ĝ is an automorphism of X̂ . Moreover, the proof of Theorem
A.3.6 shows that X̂ is a conic bundle and the only possible singular fibre is F̂∞. We claim that F̂∞

is in fact regular. Suppose by contradiction that F̂∞ is singular. Then it is a chain of two (−1)-
curves and ĝ exchanges the two components. However the conic bundle X̂ is obtained from
a Hirzebruch surface by a single blow-up, it has a unique section of negative self-intersection
which passes through only one of the two components of the singular fibre. As a consequence,
the automorphism ĝ can not exchange the two components, contradiction. Thus, replacing X by
X̂ , we can suppose from the beginning that g is an automorphism of the Hirzebruch surface X .

Suppose by contradiction that g preserves only finitely many sections of the rational fibra-
tion. Since f commutes with g, we can assume, after perhaps replacing f by some of its iterates,
that f and g preserve simultaneously a section of the rational fibration. Removing this section
and the fibre F0 from H, we get an open set isomorphic to A2 restricted to which f writes as
(x′,y′) 7→ (α−1x′,A(x′)y′+B(x′)) where A,B ∈K (x′). The rational function A must be a con-
stant because f acts as an automorphism on this affine open set. Likewise the rational function
B must be a polynomial. But then (deg( f n))n∈N would be a bounded sequence. This contradicts
the fact that f is a Jonquières twist.

Hence, if g ∈ Ker(Φ) is non-trivial then it preserves necessarily infinitely many sections.
This forces g to preserve each member of a pencil of rational curves on X whose general
members are sections (see Lemma A.3.17). This is only possible if X = P1×P1 and g acts
as (x,y) 7→ (γx,y) with γ ∈K ∗; here the projection of P1×P1 onto the first factor is the origi-
nal rational fibration we were looking at. This allows us to conclude by Lemma A.3.27. �

Example A.3.30 Let µ be a k-th root of unity, the pair f : (x,y) 7→ (αx, (1+xk)y+xk

(2+xk)y+1+xk ),g :
(x,y) 7→ (µx,y) satisfy the conditions in Proposition A.3.29.

Now let f be a base-wandering Jonquières twist which satisfies the hypothesis made at
the beginning of Section A.3.4; in particular f is regular outside F0

⋂
F∞ and f is x 7→ αx

or x 7→ x+ 1. The image Φ∞(Cent( f )) is an infinite cyclic subgroup of Z and is isomorphic
to Z, it is generated by Φ∞(g) for some g ∈ Cent( f ). Then for any h ∈ Cent( f ), there exists
k ∈ Z such that g−k ◦h ∈Ker(Φ∞). Thus, g−k ◦h belongs to the image of Ker(Φ∞) in Centb( f ).
By Corollary A.3.22, Proposition A.3.28 and Proposition A.3.29, the image of Ker(Φ∞) in
Centb( f ) is at worst finite cyclic. Note that Centb( f ) is always abelian. Therefore we obtain the
last piece of information to prove Theorem B.1.1:
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Proposition A.3.31 Let f be a base-wandering Jonquières twist which satisfies the hypothesis

made at the beginning of Section A.3.4. Let g be an element of Cent( f ) such that Φ0(g) gener-

ates the image of Φ. Then Centb( f ) is the product of a finite cyclic group with the infinite cyclic

group generated by g.

A.4 Proofs of the main results

Proof (of Theorem A.1.1) Centralizers of loxodromic elements are virtually cyclic by Theo-
rem A.2.1 of Blanc-Cantat. It is proved in [Giz80],[Can11] that centralizers of Halphen twists
are virtually abelian (see Theorem A.2.2). Centralizers of Jonquières twists whose actions on
the base are of finite order are contained in tori over the function field K (x), thus are abelian
([CD12b] see Theorem A.2.14). Our Theorem A.3.3 says that centralizers of base-wandering
Jonquières twists are virtually abelian. Centralizers of infinite order elliptic elements (due to
[BD15]) are described in Theorem B.2.3, from which we see directly that the only infinite order
elliptic elements which admit non virtually abelian centralizers are those given here. �

Proof (of Theorem A.1.2) The proof is a direct combination of Theorems A.2.1, A.2.2, B.2.3,
A.2.14 and B.1.1. �

Proof (of Remark A.1.4) In the first case Γ is an elliptic subgroup, so the degree function is
bounded.

In the second case, the two Halphen twists f and g are automorphisms of a rational surface
X preserving an elliptic fibration X → P1. The elliptic fibration is induced by the linear system
corresponding to mKX for some m ∈ N∗. For n ∈ N, the actions of f n and gn on Pic(X) are
respectively

D 7→ D−mn(D ·KX)∆i +

(
−m2

2
(D ·KX) · (n∆i)

2 +m(D · (n∆i))

)
KX , i = 1,2

where (·) denotes the intersection form and ∆i ∈ Pic(X) satisfies ∆i ·KX = 0 (cf. [Giz80],
[BD15]). Therefore the action of f i ◦g j on Pic(X) is

D 7→ D−mi(D ·KX)∆1−m j(D ·KX)∆2 +λi jKX where

λi j =−
m2

2
(D ·KX) ·

(
i2∆

2
1 + j2

∆
2
2
)
+mD · (i∆1 + j∆2)− i jm2(D ·KX)(∆1 ·∆2).
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Let Λ be an ample class on X . Then the degree of f i ◦ g j is up to a bounded term (cf. [BD15]
Section 5)

Λ · ( f i ◦g j)∗Λ = Λ
2− m2

2
(Λ ·KX)

2 (i2∆
2
1 + j2

∆
2
2
)
− i jm2(Λ ·KX)

2(∆1 ·∆2).

Note that ∆2
1 and ∆2

2 are negative.

Let us consider the third case. Firstly assume that Γ∩ Jonq0(K) is contained in a split torus
over K (x). Then up to conjugation we can find two generators f0 : (x,y) 99K (x, P(x)

Q(x)y),g0 :

(x,y) 99K (x, R(x)
S(x) y) of Γ∩ Jonq0(K) such that P,Q,R,S ∈K [x] do not have common factors.

If f0 is elliptic, then Q = 1 and P ∈K , so the degree of f i
0g j

0 is | j|(deg(R)+ deg(S))+ 1. If
f0,g0 are both Jonquières twists, then the degree of f i

0g j
0 is |i|(deg(P)+deg(Q))+ | j|(deg(R)+

deg(S))+ 1. Now assume that Γ∩ Jonq0(K) is contained in a non-split torus over K (x). The
torus becomes split over a quadratic extension L of K (x). The field L is the function field of a
double cover of P1, it has also a notion of degree. On K (x), the L-degree function is a multiple
of the K (x)-degree function. Therefore the arguments in the split case still work.

In the fourth case the description of the degree function follows directly from the explicit
expressions. �

Theorem A.4.1 Let G⊂Cr2(K) be a maximal abelian subgroup which has at least one element

of infinite order. Then up to conjugation one of the following possibilities holds:

1. G is {(x,y) 7→ (αx,βy)|α,β ∈K ∗}, {(x,y) 7→ (αx,y+v)|α ∈K ∗,v∈K } or {(x,y) 7→
(x+u,y+ v)|u,v ∈K };

2. G is the product of {(x,y) 7→ (x,βy)|β ∈K ∗} with an infinite torsion group G1. Each

element of G1 is of the form

(x,y) 99K
(

η(x),y
S(x)

S(η(x))

)
with η ∈ PGL2(K),S ∈K (x)

and the morphism from G1 to PGL2(K) embeds G1 as a subgroup of the group of roots of

unity of K or a subgroup of the additive group K . All elements of G are elliptic but G

is not conjugate to a group of automorphisms of any rational surface.

3. G has a finite index subgroup contained in Jonq0(K) = PGL2(K (x)).

4. A finite index subgroup G′ of G is a cyclic group generated by a base-wandering Jon-

quières twist.
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5. A finite index subgroup G′ of G is isomorphic to K ∗×Z (resp. K ×Z) where the first

factor is {(x,y) 7→ (x,βy)|β ∈K ∗} (resp. {(x,y) 7→ (x,y+ v)|v ∈K }) and the second

factor is generated by a base-wandering Jonquières twist, as in the fourth case of Theorem

A.1.2;

6. A finite index subgroup G′ of G is isomorphic to Zs with s≤ 8 and G′ preserves fibrewise

an elliptic fibration;

7. A finite index subgroup G′ of G is a cyclic group generated by a loxodromic element.

The existence of a type two maximal abelian group is less obvious than the others. We give here
two examples.

Example A.4.2 Let q ∈ N∗. Let (ξn)n be a sequence of elements of K ∗ such that ξn is a
primitive qn-th root of unity and ξ

q
n = ξn−1 . Let (Rn)n be a sequence of non-constant rational

fractions. For i ∈ N, put

fi+1 : (x,y) 99K (ξi+1x,ySi+1(x)) with Si+1(x) =
Ri(xqi

)

Ri(ξ1xqi
)

Ri−1(xqi−1
)

Ri−1(ξ2xqi−1
)
· · · R1(x)

R1(ξix)
.

We have f q
i+1 = fi for all i ∈N∗ so that the group G1 generated by all the fi is an infinite torsion

abelian group. Let Ti(x) = Ri(xqi
) · · ·R1(xq). The conjugation by (x,y) 99K (x,yTi(x)) sends the

group generated by f1, · · · , fi into the cyclic elliptic group {(x,y) 7→ (ξ
j

i x,y)| j = 0,1, · · · ,qi−
1}. However the degree of fi goes to infinity when i tends to infinity, which implies that G1 can
not be conjugate to an automorphism group. The product of G1 with {(x,y) 7→ (x,βy)|β ∈K ∗}
is a maximal abelian subgroup of Cr2(K); the maximality follows directly from Theorem B.2.3.

Example A.4.3 We can give an additive version of Example A.4.2. Suppose that char(K) =

p > 0. Let (tn)n be a sequence of elements of K linearly independant over Fp. Let R ∈K (x)

be a non-constant rational fraction. For i ∈ N, put

fi+1 : (x,y) 99K (x+ ti+1,ySi+1(x)) with Si+1(x) =
∏(a1,··· ,ai)∈Fi

p
R(x−∑

i
k=1 aktk)

∏(a1,··· ,ai)∈Fi
p
R(x+ ti+1−∑

i
k=1 aktk)

.

Let G1 be the group generated by all the fi. The product of G1 with {(x,y) 7→ (x,βy)|β ∈K ∗}
is a maximal abelian subgroup of Cr2(K).

Proof (of Theorem A.4.1) Let G be a maximal abelian subgroup of Cr2(K). Note that if f is a
non-trivial element of G, then G is the maximal abelian subgroup of Cent( f ).
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If G contains a loxodromic element f , then G is included in Cent( f ) and is virtually the
cyclic group generated by f by Theorem A.2.1; this corresponds to the last case of the above
statement. If G contains a Halphen twist, then by Theorem A.2.2 it is virtually a free abelian
group of rank ≤ 8 which preserves fibrewise an elliptic fibration; this corresponds to the sixth
case.

Assume that G contains a base-wandering Jonquières twist f . Theorem B.1.1 says that
Cent( f ) is virtually isomorphic to K ∗×Z, K ×Z or Z. Thus the same is true for G. This
correponds to the fourth and the fifth case.

Assume that G contains a non-base-wandering Jonquières twist f . Theorem A.2.14 says that
Cent( f ) is virtually isomorphic to an abelian subgroup of PGL2(K (x)), so the same is true for
G. This is the third case.

In the rest of the proof we assume that G contains only elliptic elements. Note that G is not
necessarily an elliptic subgroup because it may not be finitely generated.

Assume that char(K) = 0 and G contains an element f : (x,y) 7→ (αx,y+1) with α ∈K ∗.
By Theorem B.2.3 we have

Cent( f )= {(x,y) 99K (η(x),y+R(x))|η ∈PGL2(K),η(αx)=αη(x),R∈K (x),R(αx)=R(x).}

If α has infinite order, then G = Cent( f ) = {(x,y) 99K (γx,y+ v)|γ ∈ K ∗,v ∈ K } and we
are in the first case. Assume at first that G has an element g with an infinite action on the
base of the rational fibration (x,y) 7→ x. If the action of g on the base is conjugate to x 7→ βx

with β ∈K ∗, then up to conjugation in Jonq we can suppose that g is just our initial element
f : (x,y) 99K (αx,y+1) (see Proposition A.2.4), so that G is isomorphic to K ∗×K . If the the
action of g on the base is conjugate to x 7→ x+ 1, then by choosing an appropriate coordinate
x, the two elements f and g are respectively (x,y) 7→ (x+ 1,y+R(x)) and (x,y) 7→ (x,y+ 1)
where R is a polynomial by Lemma A.2.11. We can conjugate g and f , simultaneously by
(x,y) 99K (x,y+S(x)) for some S ∈K [x], to (x,y) 7→ (x+1,y) and (x,y) 7→ (x,y+1). Then we
have

G = Cent( f )
⋂

Cent(g) = {(x,y) 7→ (x+u,y+ v)|u,v ∈K }.

We are still under the hypothesis that char(K) = 0 and G contains an element f : (x,y) 7→
(αx,y+1) with α ∈K ∗. Assume now that no element of G has an infinite action on the base
of the rational fibration (x,y) 7→ x. Then the description of Cent( f ) implies that G is a subgroup
of

{(x,y) 7→ (δx,y+R(x))|δ ∈K ∗,R ∈K (x)}.
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Consider the projection π : G→ PGL2(K) which records the action on the base. Denote by G0

the kernel of π and by Gb the image of π . We identify Gb as a subgroup of the multiplicative
group of roots of unity of K . We want to prove that Gb is finite so that G is virtually contained
in Jonq0(K) = PGL2(K (x)). Assume that Gb is an infinite subgroup of the group of roots of
unity. We first claim that G0 is isomorphic to K . Let h : (x,y) 7→ (x,y+R(x)),R ∈K (x) be an
element of G0 and g : (x,y) 7→ (βx,y+S(x)),S ∈K (x) be an element of G. The commutation
relation f ◦g = g◦ f implies R(x) = R(βx). Here β can be any element of the infinite group Gb.
This implies that R is constant, which proves the claim. Let Hγ be a finite subgroup of Gb, it is a
cyclic group generated by x 7→ γx for some γ ∈K ∗. Let g : (x,y) 7→ (γx,y+R(x)) be an element
of G such that π(g) is x 7→ γx. By Lemma A.2.11 R is a polynomial. We can conjugate g by an
element of the form (x,y) 7→ (x,y+P(x)),P ∈K [x] to (x,y) 7→ (γx,y) and the polynomial P is
unique up to addition by a constant. In fact, the conjugation by (x,y) 7→ (x,y+P(x)) sends the
subgroup π−1(Hγ) of G into {(x,y) 7→ (δx,y+ t), t ∈K } because any element h of π−1(Hγ)

is equal to gn ◦ g0 for some n ∈ Z and g0 ∈ G0. The unicity of P implies that, if we take a
finite subgroup Hν which contains strictly Hγ , then the conjugation by (x,y) 7→ (x,y+P(x))

still sends the subgroup π−1(Hν) into {(x,y) 7→ (δx,y+t), t ∈K }. This further implies that the
conjugation by (x,y) 7→ (x,y+P(x)) sends the whole group G into {(x,y) 7→ (δx,y+t), t ∈K }.
Then by the maximality of G, it is isomorphic to K ∗×K and we are in the first case of the
statement. Note that we have made the hypothesis that Gb is torsion, so here K must be the
algebraic closure of a finite field.

Assume that G contains an element f : (x,y) 7→ (αx,βy) where α,β ∈K ∗ and β has infinite
order. If α also has infinite order, then Theorem B.2.3 implies immediately that G = Cent( f )

is isomorphic to K ∗×K ∗ and we are in the first case. Assume that α has finite order but
G contains an element f1 : (x,y) 99K (α1x,yR(x)) where R ∈K (x) and α1 ∈K ∗ has infinite
order. By Corollary A.3.11 the two elements f and f1 are simultaneously conjugate to (x,y) 7→
(αx,βy) and (x,y) 7→ (α1x,ry) with r ∈K ∗. Thus, Theorem B.2.3, when applied respectively
to f and f1, shows that G = Cent( f )

⋂
Cent( f1) is isomorphic to the diagonal group K ∗×K ∗.

Hence we are in the first case.

According to the classification of normal forms of elliptic elements of infinite order (see
Proposition A.2.4), the only remaining cases are the two following: 1) G contains an element
f : (x,y) 7→ (αx,βy) where α ∈ K ∗ has finite order and β ∈ K ∗ has infinite order but G

contains no elements (x,y) 99K (α1x,yR(x)) with α1 of infinite order; 2) char(K) = p > 0 and G

contains an element f : (x,y) 7→ (x+1,βy) with β ∈K ∗ of infinite order. In both cases Cent( f )

is a subgroup of the Jonquières group by Theorem B.2.3. Denote by π the projection of G into
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PGL2(K). If π(G) is finite then we are in the third case of Theorem A.4.1. So we assume that
π(G) is infinite. Then π(G) is isomorphic to an infinite subgroup of the group of roots of unity
or an infinite subgroup of K , and it is an infinite torsion abelian group. We want to show that
we are in the second case of Theorem A.4.1. By Lemma A.2.9, each element of G is of the form
(x,y) 99K (η(x),y rS(x)

S(η(x))) with η ∈ PGL2(K),r ∈K ∗,S ∈K (x). If (x,y) 99K (η(x),y rS(x)
S(η(x)))

is an element of G, then (x,y) 99K (η(x),y S(x)
S(η(x))) is also an element of G because it commutes

with every other element. However the later has the same order in G as η in PGL2(K). This
means that G has a subgroup isomorphic to π(G), so that G is isomorphic to the product of
this subgroup with the kernel of π . To finish the proof, it suffices to show that the kernel of
π is {(x,y) 7→ (x,βy)|β ∈K ∗}. This is because (x,y) 7→ (x,βy) are the only possible elliptic
elements by Lemma A.2.9. �
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APPENDIX B

UNIQUENESS OF BIRATIONAL

STRUCTURES ON INOUE SURFACES

B.1 Introduction

Inoue surfaces are compact non-Kähler complex surfaces discovered by Inoue in [Ino74].
They are of class VII in Enriques-Kodaira’s classification of compact complex surfaces, and are
the only compact complex sufaces with Betti numbers b1 = 1,b2 = 0 (cf. [Tel94]). There are
three types of Inoue surfaces: S0, S+ and S−. Their universal covers are isomorphic to H×C
where H is the upper half plane and the deck transformations can be written as restrictions of
complex affine transformations of C2. Therefore the Inoue surfaces are equipped with a natural
complex affine structure. Klingler proves in [Kli98] that the natural complex affine structure is
the unique complex projective structure carried by Inoue surfaces. In this article we prove the
following:

Theorem B.1.1 If an Inoue surface is equipped with a (Bir(X),X)-structure for some complex

projective surface X, then X is a rational surface and the (Bir(X),X)-structure is induced by

the natural (Aff2(C),C2)-structure.

Remark B.1.2 Roughly speaking, a birational structure is an atlas of local charts with birational
changes of coordinates. The precise definition and basic properties will be given in Section
B.2.2. It is a generalization of the classical (G,X)-structure; if we think of a geometric structure
as a way to patch coordinates, then it is the most general algebraic geometric structure (the
changes of coordinates are rational).

In a recent article [KS], Kwon and Sullivan introduced some generalized notions of geomet-
ric structures for which they allow a family of Lie groups (Gi)i acting on the same space X . The
group of birational transformations of a surface, though not a classical Lie group itself, is gen-
erated by Lie groups acting by holomorphic diffeomorphisms on different birational models of
X . So, the geometric structure of [KS] share interesting similarities with (Bir(X),X)-structures.
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Note that the group of birational transformations of a variety of dimension ≥ 3 may not be
generated by its connected algebraic subgroups (cf. [BY]). Kwon and Sullivan proved in [KS]
that every prime orientable three manifold admits such a generalized geometric structure. Their
result is somewhat analogous to Dloussky’s conjecture mentionned in Remark B.1.4 below.

Remark B.1.3 Compared to the four-pages-long proof in [Kli98] of the uniqueness of com-
plex projective structure, our proof is more involved because the group Bir(P2) of birational
transformations of P2 is much larger than PGL3(C). Also the fact that in our case the develop-
ing map is a priori not holomorphic but only meromorphic will be the cause of some technical
complications.

Remark B.1.4 Complex projective structures on compact complex surfaces are classified by
Klingler in [Kli98]. There exist compact non-Kähler complex surfaces which have (Bir(P2),P2)-
structures but no complex projective structures, for example some Hopf surfaces; and Dloussky
conjectured in [Dlo16] that every surface of class VII admits a (Bir(P2),P2)-structure.

Remark B.1.5 If Y is a complex projective surface, we say that a subgroup Γ of Bir(Y ) has
the Kleinian property if the following three conditions are satisfied: 1) the group Γ ⊂ Bir(Y )
acts by holomorphic diffeomorphisms on a Euclidean open set U ⊂ Y , i.e. an open set for the
Euclidean topology but not necessarily for the Zariski topology; 2) the action of Γ on U is free
and properly discontinuous; 3) the quotient U/Γ is compact. Once we have a birational Kleinian
group, the quotient surface is equipped naturally with a birational structure. Thus, we can view
Theorem B.1.1 as a result about Fatou components of (groups of) birational transformations. For
a systematic study of birational Kleinian groups we refer to the forthcoming article [Zhaoklein].

Plan and strategy. Section B.2 concerns two subjects of independent interest. The notion of
birational structure appeared already in the work of Dloussky [Dlo16] but several subtleties,
that do not appear in classical geometric structures, were not addressed in that paper. In Section
B.2.2 we give two different definitions of (Bir(Pn),Pn)-structure. For n = 2 they are the same
but for n≥ 3 whether they are the same is equivalent to an open question of Gromov. In Section
B.2.3 we study Ahlfors-Nevanlinna currents attached to entire curves (see the work of Brunella
and McQuillan in [McQ98], [Bru99]): for nice (uniform) families of entire curves, we show
how to construct families of Ahlfors-Nevalinna currents, with a fixed cohomology class; this
may be useful to people interested in holomorphic foliations or Kobayashi hyperbolicity.

After these preliminaries we prove Theorem B.1.1. The construction of Inoue surfaces of
type S0 (resp. S±) will be recalled in Section B.3 (resp. B.4). For simplicity, let us focus, here, on
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Inoue surfaces of type S0. Rather different tools are used, depending on the size of the image of
the holonomy representation. When the holonomy is injective, the two principal ingredients are
the classification of solvable subgroups of Bir(P2) due to Cantat ([Can11]), Déserti ([Dés15])
and Urech ([Ure]), and the classification of subgroups of Bir(P2) ismorphic to Z2, obtained in
[Zhaa]. With these results, we can reduce the structure group from Bir(P2) to PGL3(C), and
then apply Klingler’s previous work [Kli98]. When the holonomy representation is not injec-
tive, we can suppose that its image is cyclic. Then, the strategy is geometric: an Inoue surface is
foliated by compact real submanifolds of dimension three that are themselves foliated by entire
curves, i.e. Riemann surfaces isomorphic to C. Via the developing map, we obtain families of
Levi-flat hypersurfaces foliated by entire curves, in some projective surfaces. The proof is then
based on the following three tools that are described in Section B.2: 1) our deformation lemma
for Ahlfors-Nevanlinna currents; 2) the relation between these currents and the transverse in-
variant measures of Plante ([Pla75]) and Sullivan ([Sul76]); 3) properties of the pull-back action
of a birational transformation on currents (as in [DF01] and [Can01a]).

Acknowledgement. It is a pleasure to thank Serge Cantat for his constant support and numer-
ous discussions. I would also like to thank Jérémy Blanc, Bertrand Deroin and JunYi Xie for
interesting discussions, B. D. for the reference [KS] and J. B. for pointing out to me Question
B.2.19. My thanks also goes to the referee whose comments have been helpful to improve the
text.

B.2 Preliminaries

B.2.1 Groups of birational transformations

Let X be a smooth complex projective surface. We denote by Bir(X) the group of birational
transformations of X . An element f of Bir(X) has a pull back action f ∗ on H1,1(X ,R) (cf.
[DF01]). Note that in general ( f ∗)n 6= ( f n)∗. Fix an ample class H ∈ H1,1(X ,R), the H-degree

of f is the intersection number f ∗H ·H.
The plane Cremona group Bir(P2) is the group of birational transformations of the pro-

jective plane P2
C. It is isomorphic to the group of C-algebra automorphisms of C(X1,X2), the

function field of P2
C. Using a system of homogeneous coordinates [x0;x1;x2], a birational trans-

formation f ∈ Bir(P2) can be written as

[x0 : x1 : x2] 99K [ f0(x0,x1,x2) : f1(x0,x1,x2) : f2(x0,x1,x2)]
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Part , Chapter B – Uniqueness of birational structures on Inoue surfaces

where f0, f1, f2 are homogeneous polynomials of the same degree without common factor. This
degree does not depend on the system of homogeneous coordinates and is the degree of f with
respect to the class of a projective line. Birational transformations of degree 1 are homographies
and form Aut(P2)= PGL3(C), the group of automorphisms of the projective plane. See [Can18]
for more about the Cremona group.

Algebraically stable maps. If f is a birational transformation of a smooth projective surface
X , we denote by Ind( f ) the set of indeterminacy points of f . We say that f is algebraically

stable if there are no curves V on X such that f k(V ) ⊂ Ind( f ) for some integer k ≥ 0. There
always exists a birational morphism X̂ → X which lifts f to an algebraically stable birational
transformation of X̂ ([DF01] Theorem 0.1). An algebraically stable map f satisfies ( f ∗)n =

( f n)∗ (cf. [DF01]).

Four types of elements. Fix a Euclidean norm ‖·‖ on H1,1(X ,R). The two sequences (‖( f n)∗‖)n

and (( f n)∗H ·H)n have the same asymptotic growth. Elements of Bir(X) are classified into four
types (cf. [DF01]):

1. The sequence (‖( f n)∗‖)n∈N is bounded, f is birationally conjugate to an automorphism of
a smooth birational model of X and a positive iterate of f lies in the connected component
of identity of the automorphism group of that surface. We call f an elliptic element.

2. The sequence (‖( f n)∗‖)n∈N grows linearly, f preserves a unique pencil of rational curves
and f is not conjugate to an automorphism of any birational model of X . We call f a
Jonquières twist.

3. The sequence (‖( f n)∗‖)n∈N grows quadratically, f is conjugate to an automorphism of a
smooth birational model preserving a unique genus one fibration. We call f a Halphen

twist.

4. The sequence (‖( f n)∗‖)n∈N grows exponentially and f is called loxodromic. The limit
λ ( f ) = limn→+∞ (‖( f n)∗‖)

1
n exists and we call it the dynamical degree of f . If f is an

algebraically stable map on X , then there is a nef cohomology class v+f ∈ H1,1(X ,R),
unique up to multiplication by a constant, such that f ∗v+f = λ ( f )v+f . If moreover v+f has
zero self-intersection, then f is conjugate to an automorphism.

Loxodromic automorphisms. We refer the reader to [Can14] for details of the materials pre-
sented in this paragraph. Let X be a smooth projective surface and f be an automorphism of X

which is loxodromic. The dynamical degree λ ( f ) is a simple eigenvalue for the pullback action
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f ∗ on H1,1(X ,R) and it is the unique eigenvalue of modulus larger than 1. Let v+f ∈ H1,1(X ,R)

be a non-zero eigenvector associated with λ ( f ); we have f ∗v+f = λ ( f )v+f . By considering f−1,
we can also find a non-zero eigenvector v−f such that f ∗v−f = 1

λ ( f )v
−
f . The two cohomology

classes v+f ,v
−
f are nef and of self-intersection 0, they are uniquely determined up to scalar mul-

tiplication. They are irrational in the sense that the two lines Rv+f and Rv−f contain no non-zero
elements of H1,1(X ,R)∩H2(X ,Z). We will need the following theorem of Cantat which has
been generalized to higher dimension by Dinh and Sibony:

Theorem B.2.1 (Cantat [Can01a], [Mon12], [DS05], [DS10]) There is a unique closed posi-

tive current T+
f (resp. T−f ) whose cohomology class is v+f (resp. v−f ). It satisfies f ∗T+

f = λ ( f )T+
f

(resp. f ∗T−f = 1
λ ( f )T

−
f ).

The Jonquières group. Fix an affine chart of P2 with coordinates (x,y). The Jonquières group

Jonq is the subgroup of the Cremona group of all transformations of the form

(x,y) 7→
(

ax+b
cx+d

,
A(x)y+B(x)
C(x)y+D(x)

)
,

(
a b

c d

)
∈ PGL2(C),

(
A B

C D

)
∈ PGL2(C(x)).

In other words, the Jonquières group is the maximal group of birational transformations of P1×
P1 permuting the fibers of the projection onto the first factor; it is isomorphic to the semidirect
product PGL2(C)nPGL2(C(x)). A different choice of the affine chart yields a conjugation by
an element of PGL3(C). More generally a conjugation by an element of the Cremona group
yields a maximal group preserving a pencil of rational curves; conversely any two such groups
are conjugate in Bir(P2).

Elements of the Jonquières group are either elliptic or Jonquières twists. We will need the
following results:

Theorem B.2.2 ([Zhaa]) Let G be a subgroup of Jonq which is isomorphic to Z2. Then G has a

pair of generators ( f ,g) such that one of the following (mutually exclusive) situations happens:

1. f ,g are elliptic elements and G⊂ Aut(X) where X is a rational surface;

2. f is a Jonquières twist, and a finite index subgroup of G preserves each fiber of the f -

invariant fibration;

3. f is a Jonquières twist with action of infinite order on the base of the rational fibration

and g is an elliptic element whose action on the base is of finite order. In some affine

chart, we can write f ,g in one of the following forms:
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— g is (x,y) 7→ (αx,βy) and f is (x,y) 99K (η(x),yR(xk)) where α,β ∈C∗,αk = 1,R ∈
C(x),η ∈ PGL2(C),η(αx) = αη(x) and η is of infinite order;

— g is (x,y) 7→ (αx,y+1) and f is (x,y) 99K (η(x),y+R(x)) where α ∈C∗,R∈C(x),R(αx)=

R(x),η ∈ PGL2(C),η(αx) = αη(x) and η is of infinite order.

Theorem B.2.3 ([BD15] Lemmata 2.7 and 2.8) Let f ∈ Bir(P2) be an elliptic element of infi-

nite order.

1. If f is of the form (x,y) 7→ (x,νy) where ν ∈ C∗ has infinite order, then the centralizer of

f in Bir(P2) is

{(x,y) 99K (η(x),yR(x))|η ∈ PGL2(C),R ∈ C(x)}.

2. If f is of the form (x,y) 7→ (x,y+ v) with v ∈ C∗, then the centralizer of f in Bir(P2) is

{(x,y) 99K (η(x),y+R(x))|η ∈ PGL2(C),R ∈ C(x)}.

Tits alternative and solvable subgroups. Déserti and Urech refined for finitely generated
solvable subgroups, the strong Tits alternative proved by Cantat in [Can11]; we state the solv-
able version:

Theorem B.2.4 (Cantat, Déserti, Urech [Can11], [Dés15], [Ure]) Let G ⊂ Bir(X) be a solv-

able subgroup. Exactly one of the following cases holds up to conjugation.

1. G is a subgroup of automorphisms of a birational model Y and a finite index subgroup of

G is in Aut(Y )0 the connected component of identity of Aut(Y ); the elements of G are all

elliptic and G is called an elliptic subgroup.

2. G preserves a rational fibration and has at least one Jonquières twist.

3. G is a virtually abelian group whose elements are Halphen twists; there is a birational

model Y on which the action of G is by automorphisms and preserves an elliptic fibration.

4. X is a rational surface and G is contained in the group generated by {(αx,βy)|α,β ∈C∗}

and one loxodromic monomial transformation (xpyq,xrys) where

(
p q

r s

)
∈GL2(Z) is a

hyperbolic matrix.

5. X is an abelian surface and G is contained in the group generated by translations and

one loxodromic transformation.
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B.2.2 Geometric structures

Let us first recall the classical notion of (G,X)-structures in the sense of Ehresmann (cf.
[Ehr36], see also [Thu97]):

Definition B.2.5 Let X be a connected real analytic manifold and let G be a Lie group which

acts real analytically faithfully on X. Let V be a real analytic manifold. A (G,X)-structure on

V is a maximal atlas of local charts φi : Ui→ X such that

— the Ui are open sets of V and form a covering;

— the φi are diffeomorphisms onto their images;

— the changes of coordinates φi ◦ φ
−1
j : φ j(Ui∩U j)→ φi(Ui∩U j) are restrictions of ele-

ments of G.

A (G,X)-manifold is a manifold which is equipped with a (G,X)-structure.

The group of birational transformations of an algebraic variety is not a Lie group in the clas-
sical sense, see [BF13] for its topology. Its action on the variety is not a classical set-theoretic
group action either. We give here two non-equivalent definitions of birational structure. The first
one is more flexible and is the notion of birational structure that we use in this article.

Definition B.2.6 Let V be a complex manifold. Let X be a smooth complex projective variety.

A (Bir(X),X)-structure on V is a maximal atlas of local charts ϕi : Ui→ Xi such that

— the Ui are open sets of V and form a covering;

— the Xi are smooth projective varieties birational to X;

— the ϕi are biholomorphic onto their images;

— the changes of coordinates ϕi ◦ϕ
−1
j : ϕ j(Ui∩U j)→ ϕi(Ui∩U j) are holomorphic diffeo-

morphisms which extend to birational maps from X j to Xi.

Definition B.2.7 Let V be a complex manifold. Let X be a smooth complex projective variety.

A strict (Bir(X),X)-structure on V is a maximal atlas of local charts ϕi : Ui→ X such that

— the Ui are open sets of V and form a covering;

— the ϕi are biholomorphic onto their images;

— the changes of coordinates ϕi ◦ϕ
−1
j : ϕ j(Ui∩U j)→ ϕi(Ui∩U j) are holomorphic diffeo-

morphisms which extend to birational transformations of X.

Remark B.2.8 Let X ′ be a smooth birational model of X . It follows directly from the definition
that a (Bir(X),X)-structure on V is the same thing as a (Bir(X ′),X ′)-structure on V , and that a
strict (Bir(X),X)-structure induces a (Bir(X),X)-structure. But in general it is not true that a
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strict (Bir(X),X)-structure on V gives rise to a strict (Bir(X ′),X ′)-structure on V , see Example
B.2.15.

Holonomy and developing map. For a classical (G,X)-manifold V , there exist a group ho-
momorphism Hol : π1(V )→ G and a local diffeomorphism Dev from M̃, the universal cover of
V , to X such that

∀γ ∈ π1(V ),Dev◦γ = Hol(γ)◦Dev .

The map Dev is called the developing map and Hol is called the holonomy representation. A
(G,X)-structure is uniquely determined by its holonomy and its developing map, up to compo-
sition by an element of G.

The same proof as in the classical case shows:

Proposition B.2.9 Let X be a smooth complex projective variety. Let V be a (Bir(X),X)-

manifold. Denote by Ṽ the universal cover of V and π the quotient map. Fix a base point

v ∈ V and choose a point w ∈ Ṽ such that π(w) = v. There exist a smooth birational model Y

of X, a homomorphism Hol : π1(V,v)→ Bir(Y ) and a π1(V,v)-equivariant meromorphic map

Dev : Ṽ 99K Y such that

∀ f ∈ π1(V,v),Dev◦ f = Hol( f )◦Dev .

If (Y ′,Hol′,Dev′) is another such triple, then there exists a birational map σ from Y to Y ′

such that Hol′ = σ Holσ−1 and Dev′ = σ ◦Dev. We can choose (Y,Hol,Dev) so that Dev is

holomorphic at w.

Proof Let c : [0,1]→ Ṽ be a smooth path from w = c(0) to a point z = c(1). The image c([0,1])
can be covered by local charts of birational structure (U0,ϕ0 : U0→ X0), · · · ,(Uk,ϕk : Uk→ Xk)

which are pulled-back from local charts on V , such that Ui∩U j is connected and is non-empty
if j = i+1. We denote by gi the map ϕi−1 ◦ϕ

−1
i ∈ Bir(Xi,Xi−1) which is the unique map such

that gi ◦ϕi and ϕi−1 agree on Ui∩U j; the uniqueness is because of the fact that two birational
maps which coincide on a non empty Euclidean open set must be the same. We define Dev(z)
as

Dev(z) = g1g2 · · ·gkϕk(z).

To be rigorous, this expression does not associate a value to any point z: the gi are birational
so we get only a meromorphic expression. Let us see that Dev is a well-defined meromorphic
map from Ṽ to X0; it has milder properties than an arbitrary meromorphic map because locally
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analytically it behaves as a birational map. The unicity of the gi guarantees that, once c is fixed,
Dev does not depend on U1, · · · ,Uk, but only on the initial chart U0 at the base point w. Choose
another path c′ from w to z. Since Ṽ is simply connected, there exists a homotopy H : [0,1]×
[0,1]→ Ṽ between c and c′. We can cover c([0,1]× [0,1]) by local charts of birational structure.
The uniqueness of the transition maps then shows that Dev depends only on the homotopy class
of c. Around the point w, the map Dev coincides with a coordinate chart, thus is holomorphic.

Let f ∈ π1(V,v) be a deck transformation. Let z = f (w) in the above construction of Dev.
We can suppose that Uk = f (U0) and ϕk = ϕ0 ◦ f−1. Then Dev( f (w)) = g1g2 · · ·gkϕ0 ◦ f−1. Put
Hol( f ) = g1g2 · · ·gk. It belongs to Bir(X0). We have Dev◦ f = Hol( f )◦Dev in a neighbourhood
of w. Thus Dev◦ f = Hol( f )◦Dev by analytic continuation.

Let (Y ′,Hol′,Dev′) be another such triple. Since the set of points of Ṽ where a developing
map is not defined or is not locally biholomorphic is locally closed of codimension at least one,
there exists an open set U of Ṽ restricted to which both Dev and Dev′ are biholomorphic. Then
Dev |U and Dev′ |U are both local birational charts. They have to be compatible, i.e. Dev′ |U ◦
(Dev |U)−1 extends to a birational map σ from Y to Y ′. By analytic continuation we see that σ

satisfies Hol′ = σ Holσ−1 and Dev′ = σ ◦Dev. �

Remark B.2.10 A developing map is locally birational; this means that locally it has a bira-
tional expression when written in some complex analytic coordinates. Thus a developing map
has no ramification. In particular a ramified covering map is never a developing map.

If V is a (Bir(X),X)-manifold, then any finite unramified cover V ′ of V is equipped with an
induced (Bir(X),X)-structure. If (Y,Hol,Dev) is a holonomy-developing-map triple for V , then
the compositions π1(V ′)→ π1(V )

Hol−−→ Bir(Y ) and V ′→V Dev−−→Y form a pair of holonomy and
developing map for V ′.

Proposition B.2.11 Let V be a complex manifold with two (Bir(X),X)-structures. Let (X1,Hol1,Dev1)

and (X2,Hol2,Dev2) be pairs of holonomy and developing map associated with these two

(Bir(X),X)-structures. The two (Bir(X),X)-structures are the same if and only if there exists

σ ∈ Bir(X1,X2) such that Hol2 = σ Hol1 σ−1 and Dev2 = σ ◦Dev1.

Proof We need to prove the “if” part. Let z be a point of the universal cover Ṽ . Without loss
of generality, using the "only if" part (Proposition B.2.9), we can suppose that Dev1 and Dev2

are both locally biholomorphic at z. Thus on a neighbourhood of z, the restrictions of Dev1 and
Dev2 give local charts for their corresponding birational structures. The hypothesis implies that
these charts are compatible, i.e. contained in a same maximal atlas. The conclusion follows. �
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Remark B.2.12 Propositions B.2.9 and B.2.11 hold for strict (Bir(X),X)-structures too. Note
that for a strict (Bir(X),X)-structure, the target of the developing map is X itself.

The next proposition says that we could alternatively define a birational structure using
holonomy and developing map.

Proposition B.2.13 Let X be a smooth projective variety. Let V be a compact complex manifold

and Ṽ its universal cover. Let D : Ṽ 99K X be a meromorphic map that satisfies the following:

for every point w ∈ Ṽ , there is a Euclidean neighbourhood W of w and a holomorphic diffeo-

morphism ϕ from W to a Euclidean open set of a birational model Xw of X depending on w

such that D|W ◦ϕ−1 is the restriction of a birational map. Let H : π1(V )→ Bir(X) be a ho-

momorphism of groups such that for every γ ∈ π1(V ) we have H(γ)◦D = D◦ γ . Then V has a

(Bir(X),X)-structure for which (H,D) is a holonomy/developing pair. If Xw = X0 are the same

for all w then we have a strict (Bir(X0),X0)-structure.

Proof Let v be a point of V . Choose a point w ∈ Ṽ which projects onto v, and a sufficiently
small neighbourhood W of w which maps bijectively to a neighbourhood U of v. By hypothesis
U is biholomorphic to an open subset of a birational model Xw. The hypothesis on the local
birational property of D and the equivariance of H imply that different choices of w give the
same (Bir(X),X)-structure on U . Thus V is equipped with a (Bir(X),X)-structure. We leave the
reader to verify that (H,D) is indeed a corresponding pair of holonomy and developing map.�

Corollary B.2.14 Let f : X1 99K X2 be a birational map between two smooth projective vari-

eties X1,X2. Let (X1,Hol,Dev) be a holonomy/developing triple associated with a (Bir(X1),X1)-

structure on a compact complex manifold V . Then (X2, f Hol f−1, f ◦Dev) is a holonomy/developing

triple associated with the same (Bir(X1),X1)-structure.

Proof The pair ( f Hol f−1, f ◦Dev) satisfies the conditions of Proposition B.2.13, thus defines
a (Bir(X2),X2)-structure. This (Bir(X2),X2)-structure coincides with the original (Bir(X1),X1)-
structure by Proposition B.2.11. �

Strict (Bir(Pn),Pn)-structures. In general a (Bir(X),X)-structure does not induce a strict
(Bir(X),X)-structure. A smooth projective variety birational to X always admits a (Bir(X),X)-
structure, but not necessarily a strict (Bir(X),X)-structure as the following example shows:

Example B.2.15 Let X be a projective K3 surface. Let Z be the blow-up of X at some point.
Suppose by contradiction that Z admits a strict (Bir(X),X)-structure. Consider the developing
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map Dev : Z 99K X . Being locally birational, it induces an injection of the function field of X

into that of Z. This means that Dev is a rational dominant map. As a developing map Dev has
no ramification and a K3 surface is simply connected, the degree of Dev must be one, i.e. it
is birational. Then we infer that Dev is the blow-down of the exceptional curve. However by
Proposition B.2.9 we could choose Dev so that Dev is locally biholomorphic around a point on
the execptional curve, contradiction.

The reasoning in the previous example shows:

Lemma B.2.16 Let X be a simply connected smooth variety. For a (Bir(X),X)-structure on X,

any developing map is birational. Hence the natural (Bir(X),X)-structure on X is the unique

one. If X has a strict (Bir(Y ),Y )-structure for some Y birational to X then it is the unique strict

(Bir(Y ),Y )-structure on X.

As rational varieties have the most complicated birational transformation groups, it is natural
to ask

Question B.2.17 1. Does a (Bir(Pn),Pn)-structure always induce a strict (Bir(Pn),Pn)-

structure?

2. Does every smooth rational variety X of dimension n admit a strict (Bir(Pn),Pn)-structure?

Proposition B.2.18 Questions B.2.17.1 and B.2.17.2 are equivalent.

Proof 1) implies 2) because every smooth rational variety admits trivially a non-strict (Bir(Pn),Pn)-
structure. Suppose that 2) is true. Let V be a complex manifold with a (Bir(Pn),Pn)-structure.
Let (Ui,φi : Ui → Xi) be an atlas for the (Bir(Pn),Pn)-structure. By hypothesis each Xi has a
strict (Bir(Pn),Pn)-structure. Via φi this equips Ui with a strict (Bir(Pn),Pn)-structure. Cover
Ui by charts {Ui j} j of strict (Bir(Pn),Pn)-structure induced by the one on Xi; the Ui j are identi-
fied via φ with charts of (Bir(Pn),Pn)-structure on Xi. By Lemma B.2.16 the changes from Ui j

to Ui′ j′ are birational. Therefore the strict (Bir(Pn),Pn)-structures on Ui patch together to give a
strict (Bir(Pn),Pn)-structure on V for which the Ui j form an atlas. �

A smooth rational variety X of dimension n is called uniformly rational if any x ∈ X has
a Zariski neighbourhood which is isomorphic to a Zariski open set in the affine space An. Be-
ing rational X has to have such a point; the issue is whether it holds for all points, hence the
terminology “uniformly rational”. Gromov asked:
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Question B.2.19 (Gromov [Gro89] page 885, see also [BB14]) Is every smooth rational com-

plex variety uniformly rational?

It turns out that Gromov’s question is equivalent to Question B.2.17 of which the formula-
tion seems not quite algebraic at first glance:

Proposition B.2.20 A rational variety of dimension n is uniformly rational if and only if it

admits a strict (Bir(Pn),Pn)-structure.

Proof Suppose that X is a uniformly rational variety of dimension n. For any x ∈ X , let Ux be a
Zariski neighbourhood isomorphic to an open set of An. Then the open sets Ux give an atlas of
strict (Bir(Pn),Pn)-structure.

Now suppose that X admits a strict (Bir(Pn),Pn)-structure. Let x ∈ X . Take a developing
map Dev : X 99K Pn which is holomorphic at x (cf. Proposition B.2.9). By Lemma B.2.16 Dev
is birational. Thus Dev realizes an isomorphism from some Zariski neighbourhood of x to a
Zariski open set of An. �

Question B.2.19 is easy in dimension 1 or 2, and is still open in dimension≥ 3 (cf. [BB14]).
The one dimensional case is trivial because P1 is the only smooth rational curve. For complete-
ness we include a proof for the two dimensional case:

Proposition B.2.21 Let X be a smooth rational surface. Then X is uniformly rational and ad-

mits a unique strict (Bir(P2),P2)-structure.

Proof Once we prove that X is uniformly rational, we obtain the existence of strict (Bir(P2),P2)-
structure by Proposition B.2.20 and the uniqueness by Lemma B.2.16.

A Hirzebruch surface is a P1-bundle over P1. Cover the base and fiber P1 respectively by
two pieces of A1, we see that every Hirzebruch surface can be otbtained by patching four pieces
of A2. Every rational surface different from P2 can be obtained from a Hirzebruch surface by
blow-ups. The blow-up of A2 at one point is the union of two Zariski open sets isomorphic to
A2. Hence the uniform rationality. �

So it does no harm if we do not distinguish (Bir(P2),P2)-structure from strict (Bir(P2),P2)-
structure. More precisely we have:

Corollary B.2.22 Let V be a compact complex surface equipped with a (Bir(P2),P2)-structure.

Then for any rational surface X, there exists a unique strict (Bir(X),X)-structure on V such
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that, (Hol,Dev) is a holonomy/developing pair associated with the strict (Bir(X),X)-structure

if and only if (X ,Hol,Dev) is a holonomy/developing triple associated with the (Bir(P2),P2)-

structure.

Proof By Propositions B.2.18 and B.2.21 V has a strict (Bir(P2),P2)-structure. Let (Ui,φi :
Ui ↪→ P2) be an atlas. The strict (Bir(X),X)-structure on V is constructed as follows. Firstly
Aut(P2) is transitive so any point of P2 admits a Zariski neighbourhood which is isomorphic to
a Zariski open set of X . By considering the intersection of the Euclidean open set φi(Ui) with
these Zariski neighbourhoods, we can further subdivide the atlas (Ui) into an atlas (Ui j) such
that there are embeddings ϕi j : Ui j ↪→ X such that φi ◦ϕ

−1
i j extend to birational maps from X to

P2. The atlas (Ui j,ϕi j : Ui j→ X) defines the desired strict (Bir(X),X)-structure. �

Local structure of the developing map. Though the developing map Dev is in general not
holomorphic, it is by construction locally birational. Thus, at least locally, algebro-geometric
reasonings could be applied. In dimension two, the indeterminacy set of Dev is a discrete set
of points. We can speak about contracted curves, they are complex analytic subsets of pure
dimension 1. A contracted curve has locally a finite number of components. An irreducible
contracted curve is a minimal closed connected 1-dimensional analytic subset contracted by
Dev.

B.2.3 Entire curves and Ahlfors-Nevanlinna currents

In this section we give a treatment of families of Ahlfors-Nevanlinna currents which are,
we believe, of independent interest. Let X be a smooth projective surface. An entire curve on
X is a non-constant holomorphic map ξ : C→ X . An entire curve ξ is called transcendental

if its image is not contained in an algebraic curve of X . We can associate to a transcendental
entire curve ξ a (a priori non unique) closed positive current, called Ahlfors-Nevanlinna current.
We need to prove a variant of the construction for a family of entire curves. We recall first the
process for a single entire curve (see [McQ98], [Bru99] for Ahlfors-Nevanlinna currents and
[Dem97] for the functions we use below).

For a differential form η ∈A 2(X) and for r > 0 we put

Tξ ,r(η) =
∫ r

0

ds
s

∫
Ds

ξ
∗
η

where Ds ⊂ C is the disk of radius s. We fix a Kähler form ω ∈A 1,1(X). Consider the positive
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currents defined by

Φr(η) =
Tξ ,r(η)

Tξ ,r(ω)
, ∀η ∈A 2(X).

The family {Φr}r>0 is bounded, so we can find a sequence of radii (rn)n∈N such that rn→+∞

and Φrn converges weakly to a positive current Φ. For the limit Φ to be a closed current, we
need a smart choice of the sequence (rn). Let us denote by A(r) the area of ξ (Dr) and L(r) the
length of ξ (∂Dr) with respect to the Riemannian metric induced by ω . Then Tξ ,r(ω) may be
written as

Tξ ,r(ω) =
∫ r

0
A(s)

ds
s
.

We have

limsupr→∞

Tξ ,r(ω)

logr
= ∞

since ξ is transcendental (cf. [Dem97]). We define

Sξ ,r(ω) =
∫ r

0
L(s)

ds
s
.

For β ∈A 1(X), Stokes’ theorem and the compactness of X imply the inequality

|Tξ ,r(dβ )| ≤
∫ r

0

ds
s

∫
∂Ds

|ξ ∗β | ≤ constant ·Sξ ,r(ω),

where the constant on the right side depends on β but not on r. Therefore to obtain a closed
limit current Φ, we need a sequence of radii (rn)n such that

Sξ ,rn(ω)

Tξ ,rn(ω)
→ 0, when n→ ∞.

The existence of such a sequence of radii is guaranteed by the following lemma (see [Bru99]):

Lemma B.2.23 (Ahlfors [Ahl35]) Let R > 0, ε > 0 be two positive real numbers. Denote by

B(ξ ,ε) the set {r > R|Sξ ,r(ω)> εTξ ,r(ω)}. Then

∫
B(ξ ,ε)

dr
r logr

< ∞.

In particular liminfr→∞

Sξ ,r(ω)

Tξ ,r(ω) = 0.

Note that the measure of (R,∞) with respect to dr
r logr is infinite, so the above lemma implies
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that we can choose an appropriate sequence of radii simultaneously for a finite number of entire
curves:

Lemma B.2.24 Let ξ1, · · · ,ξk be k transcendental entire curves on X. There exists a sequence

of radii (rn)n∈N such that for each i ∈ {1, · · · ,k}, the sequence
( Tξi,rn(·)

Tξi,rn(ω)

)
n∈N

converges weakly

to a closed positive current.

A closed positive current Φ constructed by the above limit process is called an Ahlfors-

Nevanlinna current associated with the entire curve ξ , it depends on the choice of a sequence
of radii (rn)n.

A cohomology class is called nef if its intersections with all curves are non negative. We
refer the reader to [McQ98], [Bru99] for the following:

Lemma B.2.25 Let [Φ]∈H1,1(X ,R) be the cohomology class of an Ahlfors-Nevanlinna current

associated with a transcendental entire curve. Then [Φ] is nef. In particular [Φ]2 ≥ 0.

We will need to consider some families of entire curves. To treat the Ahlfors-Nevanlinna
currents simultaneously in family, we need some control on the variation of entire curves. The
following very restricted notion will be sufficient for our proof.

Definition B.2.26 A family of entire curves parametrized by a real manifold B is a differentiable

map B×C→ X ,(b,z) 7→ ξb(z) such that ξb is an entire curve for every b ∈ B. A family of entire

curves (ξb)b∈B is called uniform if the following condition is satisfied: ∀b0 ∈ B,∀δ > 0, there

exists a neighborhood U of b0 such that

∀b ∈U,∀z ∈ C,
∣∣|ξ ′b(z)|− |ξ ′b0

(z)|
∣∣< δ |ξ ′b0

(z)|

where the absolute values are measured with respect to a fixed Kähler metric on X. In other

words a family of entire curves is uniform if nearby pull-backed metrics are close in proportion.

There exist non-trivial uniform families of transcendental entire curves on complex projec-
tive surfaces, for example there exist families of Levi-flat hypersurfaces foliated by entire curves
(see Remark 1.6 of [Der05]). Our interest in this notion is explained by the following lemma:

Lemma B.2.27 Let (ξb)b∈B be a uniform family of transcendental entire curves on X. Let A be

a compact C∞-path connected subset of B. Then there exists a sequence of radii (rn)n∈N using

which an Ahlfors-Nevanlinna current associated with ξa can be constructed for all a ∈ A. After

fixing such a sequence (rn)n∈N, the Ahlfors-Nevanlinna currents associated with the ξa all have

the same cohomology class.
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Proof We prove first that there exists a common choice of the sequence of radii. Let us fix a
sufficiently small real number δ > 0. By the definition of uniform family and by compactness
of A, we can find a finite number of points a1, · · · ,ak in A and their neighbourhoods U1, · · · ,Uk

in B such that

— ∀i ∈ {1, · · · ,k},∀a ∈Ui,∀z ∈ C,
∣∣|ξ ′a(z)|− |ξ ′ai

(z)|
∣∣< δ |ξ ′ai

(z)|;
— A⊂ ∪Ui.

By lemma B.2.24, we can take a sequence of radii (rn)n∈N that works for all the ξai,1≤ i≤ k.
We denote by λ the Lebesgue measure on C. Let a ∈Ui. We have

Tξa,r(ω) =
∫ r

0
A(s)

ds
s
=
∫ r

0

∫
Dr

|ξ ′a(z)|2dλ (z)
ds
s

and

|Tξa,r(ω)−Tξai ,r
(ω)| ≤

∫ r

0

∫
Dr

||ξ ′a(z)|2−|ξ ′ai
(z)|2|dλ (z)

ds
s

≤ (2δ +δ
2)
∫ r

0

∫
Dr

|ξ ′ai
(z)|2dλ (z)

ds
s

= (2δ +δ
2)Tξai ,r

(ω)

Similarly we have

|Sξa,r(ω)−Sξai ,r
(ω)| ≤ δSξai ,r

(ω).

Consequently
Sξa,r(ω)

Tξa,r(ω)
≤ 1+δ

1−2δ −δ 2

Sξai ,r
(ω)

Tξai ,r
(ω)

.

In particular we have

lim
n→∞

Sξa,rn(ω)

Tξa,rn(ω)
= lim

n→∞

Sξai ,rn(ω)

Tξai ,rn(ω)
= 0

so that the sequence (rn)n can be used to construct Ahlfors-Nevanlinna currents for all a ∈ A.
Hence we can talk about the Ahlfors-Nevanlinna currents Φa associated with the ξa and this
fixed sequence (rn)n.

Let a,b be two points in A. We now prove that the Ahlfors-Nevanlinna currents Φa,Φb

are cohomologous. It is sufficient to treat the case where a = ai and b ∈ Ui. Take a C∞-path
c : [0,1]→ Ui such that c(0) = a,c(1) = b. We denote by F the induced map [0,1]×C→
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X ,F(s,z) = ξc(s)(z). Let η ∈ A2(X). Applying Stokes’ theorem, we have

Tξa,r(η)−Tξb,r(η) =
∫ r

0

∫
[0,1]×Ds

F∗(dη)
ds
s
−
∫ r

0

∫
[0,1]×∂Ds

F∗(η)
ds
s
. (B.1)

We denote by Θr the current of dimension 3 defined by Θr(β ) =
∫ r

0
∫
[0,1]×Ds

F∗(β )ds
s for β ∈

A3(X), and by Ξr the current of dimension 2 defined by Ξr(β ) =
∫ r

0
∫
[0,1]×∂Ds

F∗(β )ds
s . We have

Tξa,r(η)

Tξa,r(ω)
−

Tξb,r(η)

Tξb,r(ω)
=

Tξa,r(η)−Tξb,r(η)

Tξb,r(ω)
+

Tξb,r(ω)−Tξa,r(ω)

Tξa,r(ω)Tξb,r(ω)
Tξb,r(η)

which with Equation (B.1) implies

Tξa,r(η)

Tξa,r(ω)
−

Tξb,r(η)

Tξb,r(ω)
=

1
Tξb,r(ω)

(dΘr(η)−Ξr(η))+
Tξb,r(ω)−Tξa,r(ω)

Tξa,r(ω)

Tξb,r(η)

Tξb,r(ω)
. (B.2)

We want to show that along the sequence of radii (rn)n∈N, the right side of Equation (B.2)
converges weakly to an exact current. We first estimate Ξr. By compactness of X , we have

|Ξr(η)|=
∣∣∣∣∫ r

0

∫
[0,1]×∂Ds

F∗(η)
ds
s

∣∣∣∣≤M(η)
∫ r

0

∫
[0,1]×∂Ds

|F∗(ω)|ds
s

where M(η) is a constant that depends on η but not on r. By Fubini’s theorem, we deduce from
the above inequality that

|Ξr(η)| ≤M(η)
∫ r

0

∫ 1

0
L(c(u),s)du

ds
s

where L(c(u),s) is the length of ξc(u)(∂Ds) with respect to the Kähler metric defined by ω .
Using the fact that the path c lies in Ui, we have further

|Ξr(η)| ≤M(η)
∫ r

0

∫ 1

0
(1+δ )L(a,s)du

ds
s
= M(η)(1+δ )Sξa,r(ω).

This implies that the sequence of currents (Ξrn/Tξb,rn(ω))n∈N converges weakly to 0.

Now we estimate the last term of Equation (B.2). By Stokes’ formula, we have

Tξb,r(ω)−Tξa,r(ω) =
∫ r

0

∫
[0,1]×Ds

F∗(dω)
ds
s
−
∫ r

0

∫
[0,1]×∂Ds

F∗(ω)
ds
s
. (B.3)

Since the form ω is Kähler, we have dω = 0 and the first term of the right side of (B.3) vanishes.

209



Part , Chapter B – Uniqueness of birational structures on Inoue surfaces

The second term at the right side of (B.3) is dominated by Sξa,r(ω). It follows immediately that
the last term of (B.2) converges weakly to zero along the sequence of radii (rn)n.

Finally we estimate Θr. Note that, since the other terms in Equation (B.2) all converge
weakly along the sequence (rn)n, the sequence (dΘrn/Tξb,rn(ω))n converges weakly too. How-
ever this does not imply that (Θrn/Tξb,rn(ω))n converges weakly. Again using Fubini’s theorem
and compactness of X , we have

|Θr(β )| ≤ N(β )Tξb,r(ω)

where N(β ) is a constant which depends on |β | and on δ but not on r. Thus the Θrn/Tξb,rn(ω)

form a bounded family and there exists a subsequence (rn j) j of (rn)n such that Θrn j
/Tξb,rn j

(ω)

converges weakly to a current Θ. Hence, the weak limit of (dΘrn/Tξb,rn(ω))n is exact because

lim
n→∞

dΘrn(η)

Tξb,rn(ω)
= lim

j→∞
d

(
Θrn j

Tξb,rn j
(ω)

)
(η) = dΘ(η).

The conlusion follows. �

Note that to construct Ahlfors-Nevanlinna currents it is not necessary for ω to be Kähler: a
Hermitian metric would be sufficient. However the property dω = 0 is used in the last part of
the above proof.

B.2.4 Transverse invariant measures

All the materials in this section can be found in [Ghy99] and [FS08]. Let M be a compact
Hausdorff topological space. A structure of lamination by Riemann surfaces on M is an atlas
L of charts hi : Ui→ D×Bi where D is the unit disk in C, the Bi are topological spaces, the hi

are homeomorphisms and the Ui are open sets of M which cover M; the changes of coordinates
hi j = h j ◦ h−1

i are of the form ( fi j(z,b),gi j(b)) where the fi j are holomorphic in z and the gi j

are continuous. A connected component of Vc = {(z,b)|b = c} in a chart Ui is called a plaque.
A minimal connected subset of M which contains all plaques that it intersects is called a leaf. A
lamination by Riemann surfaces (M,L ) is transversally smooth if the Bi are real manifolds and
if the gi j are smooth maps. A transverse invariant measure µ on (M,L ) is a family of locally
finite positive measures µi on the topological spaces Bi such that if B ⊂ Bi is a measurable set
contained in the domain of definition of gi j, then µi(B) = µ j(gi j(B)).

From now on we make the hypothesis that (M,L ) is a lamination by Riemann surfaces
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contained in a Kähler surface X . This hypothesis is just for convenience of the presentation
and everything we will say makes sense without assuming that there is an ambient surface
X . Examples to keep in mind are Levi-flat hypersurfaces and saturated sets of holomorphic
foliations. We say that a continuous (1,0)-form β on X defines the lamination (M,L ) if β ∧
[Vc] = 0 for every plaque Vc, where [Vc] is the current of integration on the plaque Vc. A closed
positive current Θ of bidimension (1,1) on X is directed by (M,L ) if it is supported on M and
if Θ∧ β = 0 for all β defining (M,L ). Our purpose of introducing the above notions is the
following theorem:

Theorem B.2.28 (Sullivan [Sul76]) Let (M,L ) be a transversally smooth lamination by Rie-

mann surfaces contained in a Kähler surface X. A transverse invariant measure on (M,L ) is

the same thing as a closed positive current directed by (M,L ) via the following correspon-

dence: in a chart hi : Ui→ D×Bi, a closed positive directed current T may be written as

T =
∫

Bi

[Vb]dµ(b)

where µ is a transverse invariant measure and the [Vb] are integrations on plaques.

We will apply Sullivan’s theorem to Ahlfors-Nevanlinna currents associated with entire curves
tangent to the lamination, thanks to the following construction studied by Plante:

Theorem B.2.29 (Plante [Pla75], see also [Ghy99], [FS08]) Let (M,L ) be a lamination by

Riemann surfaces contained in a Kähler surface X. Let f : C→ X be a transcendental en-

tire curve contained in a leaf of the lamination and let Φ f be an Ahlfors-Nevanlinna current

associated with f . Then Φ f is directed by (M,L ).

B.3 Inoue surfaces of type S0.

B.3.1 Description

Let M ∈ SL3(Z) be a matrix with eigenvalues α,β , β̄ such that α > 1 and β 6= β̄ . Note that
α is irrational and |β | < 1. We choose a real eigenvector (a1,a2,a3) corresponding to α and a
complex eigenvector (b1,b2,b3) corresponding to β . Let GM be the subgroup of Aut(P1×P1)

211



Part , Chapter B – Uniqueness of birational structures on Inoue surfaces

generated by

g0 :(x,y) 7→ (αx,βy)

gi :(x,y) 7→ (x+ai,y+bi) for i = 1,2,3.

Denote by H the upper half plane, viewed as an open subset of P1 = C∪ {∞}. The action
of GM preserves H×C; it is free and properly discontinuous. The quotient SM = H×C/GM

is a compact non-Kähler surface without curves called an Inoue surface of type S0 ([Ino74]).
Note that we should have included the choices of (a1,a2,a3) and (b1,b2,b3) in the notation of
SM. By construction it has an (Aff2(C),C2)-structure where by Aff2(C) we denote the affine
transformation group of C2. In particular an Inoue surface of type S0 has a natural (Bir(P2),P2)-
structure.

Consider the following solvable Lie group which is a subgroup of Aff2(C):

Sol0 =


|λ |

−2 0 a

0 λ b

0 0 1

 ,λ ∈ C∗,a ∈ R,b ∈ C

 .

The group Sol0 is a semi-direct product (C×R)oC∗. It acts transitively on H×C; the stabilizer
of a point is isomorphic to S1. The group GM defining the Inoue surface SM is a lattice in Sol0;
conversely any torsion free lattice of Sol0 gives an Inoue surface of type S0. The three elements
g1,g2,g3 generate a free abelian group of rank three; denote it by AM. The group GM is a semi-
direct product AM oZ where the Z factor is generated by g0. We have g0gig−1

0 = gmi1
1 gmi2

2 gmi3
3

where the mi j are the entries of the matrix M. Note that a finite unramified cover of an Inoue
surface of type S0 is an Inoue surface of type S0.

The following lemma says that GM has few normal subgroups. In particular the commutator
[GM,GM] is a finite index subgroup of AM.

Lemma B.3.1 If K is a non-trivial normal subgroup of GM, then either K is of finite index in

AM or K is of finite index in GM.

Proof The conjugation action of g0 on AM is just the action of M ∈ SL3(Z) on Z3. For all
v ∈ Z3\{0}, the iterates Mnv generate a finite index subgroup of Z3. Thus, if K ∩A0 is non
trivial, then K ∩A0 is a free Z-module of rank 3 and is of finite index in AM. To conclude,
we need only remark that, by the semi-direct product structure, the intersection of a normal
subgroup of GM with AM cannot be trivial. �

212



B.3. Inoue surfaces of type S0.

Lemma B.3.2 Let σ : GM→ PGL2(C) be an injective morphism. Then for some affine coordi-

nate P1 = {x ∈ C}∪{∞}, the images σ(gi), i = 0, · · · ,3, viewed as homographies of P1, may

be written as

σ(gi) : x 7→ x+ui, i = 1,2,3

σ(g0) : x 7→ νx

for some ν ,ui ∈ C∗.

Proof As σ(gi), i = 1,2,3 commute with each other, we have two possibilities for them: we
can find an affine coordinate x such that they are either x 7→ x+ui with ui 6= 0 or x 7→ αix with
αi of infinite order.

Suppose by contradiction that the σ(gi)(x) = αix. Since AM is normal, σ(g0) preserves the
set of fixed points of σ(AM), which is {0,∞}. Hence σ(g0)(x) = γx±1. But then the action of
σ(g0) on σ(AM) has finite order, a contradiction.

Hence the σ(gi) are x 7→ x + ui. The invariance of the fixed point ∞ implies that σ(g0)

is x 7→ νx+ δ where ν satisfies that νui = mi1u1 +mi2u2 +mi3u3 and δ is arbitrary. Then the
change of coordinates x 7→ x− δ

ν
allows us to write the σ(gi) as in the statement of the lemma.�

Lemma B.3.3 The only (possibly singular) holomorphic foliations on SM are the two obvious

ones coming from the horizontal foliation and the vertical foliation of H×C.

Proof This is already observed by Brunella in [Bru97] without proof details. Here we give
a proof for completeness. See [Bru15] for the terminology we use concerning holomorphic
foliations. Suppose by contradiction that F is a non-necessarily saturated holomorphic foliation
on SM different from the two obvious ones. Since SM has no curves ([Ino74]), the singularities of
F are necessarily isolated. We compare F with one of the two obvious foliations: the tangency
locus is empty because otherwise it would be a curve on SM. Since the tangency locus contains
the singularities of F , we deduce that F is a regular holomorphic foliation, transverse to the
two obvious foliations.

We denote by T the tangent bundle of SM, by T ∗ its dual and by K the canonical bundle
of SM. We denote by F0 the normal bundle of one obvious foliation; the normal bundle of the
other obvious foliation is then −K−F0 (here we use notations of [Ino74]). Let F be the normal
bundle of F . The foliation F corresponds to a non-zero global section of T ∗⊗F . It is proved
in [Ino74] (see the first two sentences of sections 6 and 8) that the only line bundles F on SM

such that T ∗⊗F has non-zero sections are F = F0 or F = −F0−K. In other words, F and
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one of the obvious foliations share the same normal bundle. As F is everywhere transverse to
this foliation, the two sections of T ∗⊗F corresponding to the two foliations trivialize the sheaf
T ∗⊗F , i.e. T ∗ is isomorphic to (−F)⊕ (−F). However T ∗ = (−F0)⊕ (F0+K) and F is either
F0 or −F0−K. This leads to a contradiction as K is not trivial. �

The surface SM =H×C/AM is an infinite cyclic cover of SM. As a real manifold, SM admits
a fibration ρ : SM → R∗+ where R∗+ = {t

√
−1, t ∈ R∗+} is the vertical axis of the component H

of H×C. The fibers of ρ , denoted by Ft , are quotients of {x+ t
√
−1,x ∈ R}×C by AM; they

are real tori of dimension 3. The Ft are Levi-flat hypersurfaces in SM and they are foliated by
entire curves coming from the vertical complex lines in H×C.

Lemma B.3.4 Up to multiples, there is only one transverse invariant measure on the Levi flat

hypersurface Ft .

Proof Recall that (a1,a2,a3) is an eigenvector associated with the irrational eigenvalue α of
M ∈ SL3(Z). A transverse invariant measure on Ft is induced by a measure on R = {x +
t
√
−1,x ∈ R} which is invariant under the group of translations generated by x 7→ x+ ai, i =

1,2,3. This latter group is a dense subgroup of R so the transverse invariant measure must be a
multiple of the Lebesgue measure. �

Lemma B.3.5 The two obvious foliations on SM are not transversely Euclidean.

Proof The two dimensional Euclidean isometry group is the semi-direct product R2oSO2(R),
where R2 is the group of translations and SO2(R) is the group of rotations. Suppose by contra-
diction that one obvious foliation is transversely Euclidean. Then to this transverse Euclidean
structure are associated a holonomy representation ρ : GM → R2 oSO2(R) and a continuous
ρ-equivariant developing map D : T → R2, where the space of leaves T is H or C depending
on which of the two obvious foliations we are looking at. We prove first that ρ is injective by
contradiction. Suppose that the kernel K of ρ is not trivial, then it is a finite index subgroup
of AM by Lemma B.3.1. As AM is a group of translations on T which is isomorphic to Z3, the
closure of any AM-orbit contains at least one real line (for T = H a subgroup of AM isomor-
phic to Z2 would be sufficient as the ai are real). The same holds for K-orbits. Then by the
ρ-equivariance and the continuity of the developing map, D is constant on each of these real
lines. This contradicts the fact that the developing map is locally homeomorphic.

We know now that ρ is injective. As AM is abelian, we must have ρ(AM) ⊂ R2. The con-
jugation action of g0 on R3 = AM ⊗R and that of ρ(g0) on R2 are linear maps. We think of
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g0 and ρ(g0) as linear maps via their conjugation actions. The group morphism ρ induces a
linear map π : R3 → R2 which is equivariant under the actions of g0 and ρ(g0), i.e. we have
π ◦g0 = ρ(g0)◦π . This is not possible because ρ(g0) is a rotation while g0 corresponds to the
matrix M whose eigenvalues are α,β ,β with α > 1 and |β |< 1. �

B.3.2 Proof of Theorem B.1.1 for Inoue surfaces of type S0

Let SM be an Inoue surface of type S0. We fix a (Bir(X),X)-structure on SM where X is some
projective surface. We want to prove that X is rational and the structure is just the obvious affine
structure. Let (Y,Dev,Hol) be a corresponding holonomy/developing triple as in Proposition
B.2.9. We will denote by π the covering map from H×C to SM.

Lemma B.3.1 says that there are only three possibilities for the holonomy representation.
It is easy to rule out the first possibility: if the holonomy had finite image then the developing
map would induce a meromorphic locally birational map from a finite unramified cover of SM

to Y , contradicting the fact that SM has algebraic dimension zero. The second possibility is that
the kernel K of the holonomy is a finite index subgroup of AM. Then K oZ has finite index in
GM; in this case by considering the corresponding finite unramified cover of SM and the induced
birational structure, we can suppose that K = AM. We will prove in a first step that this case is
not possible either. Then we examine the last possibility where the holonomy representation is
injective.

The holonomy is not cyclic

The proof of the following proposition will occupy the rest of this section.

Proposition B.3.6 The image of the holonomy representation is not cyclic.

We want to prove it by contradiction. We can and will assume in the sequel that the kernel of Hol
is exactly AM. Thus the developing map Dev : H×C 99K Y factorizes through Dev : SM 99K Y .
We will call the latter map the developing map too.

Lemma B.3.7 The developing map Dev has only a finite number of irreducible contracted

curves.

Proof Consider the (real) fibration ρ : SM→ R∗+. The fibers Ft are compact and dev is locally
birational, so each fiber intersects only a finite number of irreducible contracted curves. Thus
it is sufficient to prove that every irreducible contracted curve intersects all the fibers. In other
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words, let C ⊂ SM be an irreducible contracted curve, then we want to prove that ρ(C) = R∗+.
Since ρ is proper and C is closed, the image ρ(C) is closed in R∗+. It is then sufficient to prove
that ρ(C) is open. For this purpose it is more convenient to look at the universal covering H×C.
Let C̃ ⊂ H×C be a component of the inverse image of C. Then the projection of C̃ onto H is
not a point because C cannot be contained in a leaf of the foliation. Thus the projection is open
since a holomorphic map is open. Therefore ρ(C), identified as the projection of C̃ onto the
vertical axis of H, is also open. �

Let C ⊂ SM be an irreducible contracted curve and q ∈ Y be the point onto which C is
contracted. Take a point c ∈ C which is not an indeterminacy point of Dev. Take a chart of
birational structure U ⊂ SM at c so that the restriction Dev|U is analytically equivalent to a
birational map. By Zariski’s decomposition of birational maps, we can blow up Y at q and
its infinitely near points to obtain a surface Y ′ such that the map U 99K Y ′ induced by Dev|U
does not contract C∩U . By analytic continuation, the map SM 99K Y ′ induced by Dev does not
contract C. As Dev has only finitely many irreducible contracted curves by Lemma B.3.7, by
repeating the above process we can find a rational surface Y ∗, obtained by blowing up Y a finite
number of times, such that the induced map SM 99K Y ∗ has no contracted curves. By replacing
Y with Y ∗ we will suppose from now on that Dev and Dev have no contracted curves.

However Dev may still have indeterminacy points. We denote by I ⊂ SM the indeterminacy
set of Dev, it is a discrete set. The map Dev : SM 99K Y is locally biholomorphic outside I. We
will call Dev(SM\I) the image of SM (it is also the image of Dev).

The deck transformation group of the covering SM → SM is isomorphic to the cyclic group
GM/AM. Denote by g its generator induced by g0 ∈GM. Denote by f the birational transforma-
tion Hol(g0) of Y . We have f ◦Dev = Dev ◦ g. By blowing up Y at some of the indeterminacy
points of f (and their infinitely near points), we can and will assume that f is algebraically sta-
ble (see [DF01]). The only effect of doing so is to add some extra points into the indeteminacy
set I of Dev.

Lemma B.3.8 The contracted curves of f n,n ∈ Z are disjoint from the image of Dev.

Proof Suppose by contradiction that a curve C ⊂ Y contracted by f n intersects the image of
Dev. Since Dev is locally biholomorphic where it is defined, the inverse image Dev−1

(C) is a
curve on SM. Using the relation f n ◦Dev = Dev ◦ gn, we see that gn(Dev−1

(C)) is a curve on
SM contracted by Dev. This is a contradiction as we are already in the case where there are no
contracted curves. �
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Lemma B.3.9 The birational transformation f = Hol(g0) is loxodromic.

Proof Suppose by contradiction that f is not loxodromic. We first claim that f preserves a
pencil of curves. By definition a Jonquières twist or a Halphen twist preserves a pencil of curves.
Thus we assume that f is elliptic. An elliptic element comes from a holomorphic vector field
on Y . An elliptic element of infinite order exists only if Y is a rational surface, a ruled surface,
an elliptic surface or birational to a surface of Kodaira dimension zero covered by an abelian
surface.

If Y is birational to a surface covered by an abelian surface, then f preserves a transversely
Euclidean foliation coming from a linear foliation on the abelian surface. This foliation can be
pulled-back by Dev to a foliation on SM invariant under g. This further induces a holomorphic
foliation on SM which by Lemma B.3.3 coincides with one of the two obvious foliations on SM.
However neither of these foliations is transversely Euclidean by Lemma B.3.5, contradiction.

If Y is rational, then f preserves a pencil of rational curves by Proposition 2.3 of [BD15]. If
Y is an elliptic surface of Kodaira dimension one, then f preserves the elliptic fibration of Y . If
Y is a non-rational ruled surface, then f preserves the rational fibration. The claim follows.

Now we know that f preserves a pencil of curves. This pencil gives rise to a possibly sin-
gular holomorphic foliation SM which by Lemma B.3.3 coincides with one of the two obvious
foliations on SM. By abuse of notation, we use the same letter F to denote this foliation on SM

and the one on SM. The fact that F is induced by a pencil of curves on Y implies that the images
of the leaves of F by Dev are contained in algebraic curves. The actions of AM on the spaces
of leaves of both of the two foliations are non-discrete, thus the leaves of the two foliations in
SM are not closed. Hence the image of a leaf of F by Dev cannot be contained in an algebraic
curve. �

In the sequel we fix a Kähler metric on Y and we endow SM\I with the Kähler metric pulled
back from Y by Dev. Before we consider Ahlfors-Nevanlinna currents, a few words need to be
said about the Kähler metric. In Section B.2.3, for constructing Ahlfors-Nevanlinna currents the
Kähler surface needs to be compact so that the difference between any Riemannian metric and
the Kähler metric is everywhere bounded by a constant. In our situation here, though SM\I is not
compact, we will be able to use freely all the results of Section B.2.3 because of the following
three observations: 1) the Kähler metric on SM\I is pulled back from the compact surface Y ;
2) in a small neighborhood U of a point e ∈ I, the map Dev|U\{e} factorizes through a compact
surface (Zariski’s factorization theorem for birational maps); 3) the entire curves with which we
will deal lie in a compact subset of SM. Roughly speaking, these three observations allow us to
think of the part of SM on which we will work as an open set of a compact Kähler surface.
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The set of points in SM that are mapped by Dev to indeterminacy points of f is discrete and
countable. The indeterminacy set I of Dev is also discrete and countable. Therefore we can find
two fibers Fa,Fb of ρ : SM→ R∗+ such that:

— Fa∪Fb is disjoint from I and Dev(Fa∪Fb) is disjoint from the indeteminacy points of f ;
— g(Fa) = Fb.

We will view the covering map H×C→ SM and the developing map Dev : H×C 99KY (where
it is defined) as families of entire curves. By choosing an appropriate path in H from a point of
vertical coordinate a to a point of vertical coordinate b, we can extract from the above family a
family of entire curves (ξt)t∈[a,b] on SM parametrized by the interval [a,b] such that

— ∀t ∈ [a,b], the image of ξt : C→ SM is disjoint from the indeterminacy set I of Dev;
— ξt parametrizes a leaf of Ft ; in particular ξa (resp. ξb) parametrizes a leaf of Fa (resp.

Fb).

We can push the family (ξt)t forward by Dev to obtain a family of entire curves (Dev◦ξt)t on
Y . As the covering map and the developing map (where it is defined) are locally biholomorphic,
the derivative ξ ′t (z) is non-zero for all t ∈ [a,b] and for all z ∈ C. We claim that the families
(ξt)t and (Dev ◦ ξt)t are uniform in the sense of Definition B.2.26. This is clear if Dev has
no indeterminacy points because in that case the entire curves Dev ◦ ξt factorize through the
compact sets Ft . Since Dev is locally birational, the same reasonning works after blowing up
the indeterminacy points contained in the Ft , t ∈ [a,b].

By Lemma B.2.27, we can construct a family of Ahlfors-Nevanlinna currents (Φt)t associ-
ated with the uniform family of entire curves (ξt)t , after fixing an appropriate sequence of radii
once and for all. We construct corresponding Ahlfors-Nevanlinna currents associated with the
Dev◦ξt : they are the push-forward Dev∗Φt . Lemma B.2.27 tells us that the cohomology classes
[Dev∗Φt ] ∈ H1,1(Y,R) are all the same. We also know that they are nef (see Lemma B.2.25).

As (the images of) the entire curves Dev ◦ ξa and Dev ◦ ξb are disjoint from the contracted
curves and the indeterminacy set of f by Lemma B.3.8, we can push forward the Ahlfors-
Nevanlinna current Dev∗Φa by f without any ambiguity. We want to compare the pushed for-
ward current f∗(Dev∗Φa) with Dev∗Φb. We have

f∗(Dev∗Φa) = Dev∗(g∗Φa).

Thus we just need to compare g∗Φa and Φb. By Plante’s Theorem B.2.29, the closed positive
currents Φa,Φb are respectively directed by the laminations Fa,Fb. As g sends Fa to Fb preserv-
ing their lamination structures, the push forward g∗Φa is a closed positive current directed by
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Fb. By Sullivan’s Theorem B.2.28, the two currents g∗Φa and Φb correspond to two transverse
invariant measures on Fb. However by Lemma B.3.4, there exists only one transverse invariant
measure on Fb up to multiples. Thus, we have

λg∗Φa = Φb for some λ ∈ R∗+.

It follows that
λ f∗(Dev∗Φa) = Dev∗Φb.

By the equality of cohomology classes [Dev∗Φa] = [Dev∗Φb], we get

λ f∗[Dev∗Φa] = [Dev∗Φa]. (B.4)

As (the images of) the entire curves Dev◦ξa and Dev◦ξb are disjoint from the contracted curves
and the indeterminacy set of f by Lemma B.3.8, we get also

f ∗[Dev∗Φa] = λ [Dev∗Φa]. (B.5)

Lemma B.3.10 The dynamical degree of f is equal to λ or λ−1.

Proof Denote the dynamical degree of f by λ ( f ). There exists a unique nef cohomology class
v+f such that f ∗v+f = λ ( f )v+f . By Proposition 1.11 of [DF01], we have the following equality
for intersection numbers:

( f ∗v+f , [Dev∗Φa]) = (v+f , f∗[Dev∗Φa]). (B.6)

If [Dev∗Φa] and v+f are proportional, then λ ( f ) = λ by Equation (B.5). Assume that they are
not proportional; this implies that their intersection is strictly positive because they are both nef.
Then Equations (B.4) and (B.6) force the equality between λ ( f ) and 1/λ . �

Replacing f with f−1 if necessary, we can and will assume that the dynamical degree of f

is λ .

Lemma B.3.11 We can assume that f acts by automorphism on Y , without loosing any other

property that we need.

Proof We first prove that all the irreducible curves contracted by the iterates f n are of strictly
negative self-intersection. Let E be an irreducible curve contracted by f n. By Lemma B.3.8,

219



Part , Chapter B – Uniqueness of birational structures on Inoue surfaces

the curve E is disjoint from Dev(Fa) which is the support of Dev∗Φa. Therefore the intersection
number [Dev∗Φa] ·E is zero. As [Dev∗Φa] is nef, we have [Dev∗Φa]

2≥ 0. It follows from Hodge
index theorem that E2 ≤ 0, with equality if and only if [Dev∗Φa]

2 = 0 and E is proportional to
[Dev∗Φa]. Since [Dev∗Φa] is an eigenvector associated with λ , the equality [Dev∗Φa]

2 = 0
would imply that the algebraically stable map f is an automorphism (see Section B.2.1). But
then [Dev∗Φa] would be irrational and could not be proportional to E.

We write the Zariski factorization of f as Y ← Ŷ → Y . Let E1, · · · ,Em be the irreducible
curves contracted by f . Denote by Ê1, · · · , Êm their strict transforms in Ŷ . Among the Êi, there
exists at least one (−1)-curve, let us say, Ê1. Since Ŷ is obtained from Y by blow-ups, we have
Ê2

1 ≤ E2
1 . We have showed that E2

1 < 0. It follows that E1 is already a (−1)-curve on Y . Now
we contract it to obtain a new surface Y1. We need to verify that all the hypothesis still hold on
Y1. The contraction may give rise to new curves contracted by f , but the new contracted curves
on Y1 come from the curves on Y contracted by f 2. So they are still disjoint from the image of
Dev and are of strictly negative self-intersection on Y1. Hence we can continue the process. This
process terminates because the Picard number drops down by one after each step. At last we get
a surface on which f contracts no curves, i.e. f acts by automorphism. �

Once we know that f is a loxodromic automorphism, Theorem B.2.1 implies that Dev∗Φa is
the unique closed positive current with cohomology class [Dev∗Φa]. However the cohomology
class of Dev∗Φb is also [Dev∗Φa]. This leads to a contradiction because Dev∗Φa and Dev∗Φb are
two different currents. Indeed their supports are respectively Dev(Fa),Dev(Fb) and Dev(Fa) 6=
Dev(Fb) because otherwise Dev would induce a map from SM to Y . The proof of Proposition
B.3.6 is finished.

Remark B.3.12 The very existence of immersed Levi-flat hypersurfaces as Dev(Fa) imposes
strong restrictions on the geometry of Y . For example there are no such immersed Levi-flat
hypersurfaces in P2 (see [Der05]). However there exist families of Levi-flat hypersurfaces on
other surfaces and we are not able to conclude directly by the existence of an "immersion" of
SM into Y . This is why the geometry of the cyclic covering SM→ SM plays a crucial role in our
proof.

Injective holonomy

Since we have proved that the image of the holonomy is not cyclic, its kernel must be finite
by Lemma B.3.1. Thus changing SM into a finite cover we can and will assume in the sequel

that Hol is injective. We will identify GM with its image Hol(GM) ∈ Bir(Y ).
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Lemma B.3.13 The group GM is an elliptic subgroup of Bir(Y ).

Proof We apply Theorem B.2.4 to the solvable group GM ⊂ Bir(Y ). Up to conjugating the
holonomy representation there are five possibilities in Theorem B.2.4 and we need to rule out
the last four ones.

In case 5) Y is an abelian surface, the group GM is generated by translations and a loxo-
dromic automorphism. The stable and the unstable foliations of the loxodromic automorphism
(see Example 1.1 of [CF03]), which are both linear foliations on Y , are preserved by GM. Thus
they can be pulled back to two holomorphic foliations on SM. Induced by linear foliations on
Y , these two pulled back foliations are transversely Euclidean. But they must coincide with the
obvious foliations on SM by Lemma B.3.3; this contradicts Lemma B.3.5.

In case 4) Y is rational and GM is in Bir(P2). In this case AM is contained in {(αx,βy)|α,β ∈

C∗} and g0 is a monomial map (xpyq,xrys) such that the matrix B =

(
p q

r s

)
∈ GL2(Z) is

hyperbolic, i.e. has one eigenvalue > 1 and one < 1. The conjugation action of g0 on AM is given

by (α,β ) 7→ (α pβ q,αrβ s). The exponential map semi-conjugates the action of B=

(
p q

r s

)
on

C2 to the action of g0 on C∗×C∗. We think of AM as a Z-module of rank 3 with an irreducible
action of g0. Its preimage AM in C2 by the exponential map is a Z-module of rank 5 invariant
under B. The kernel of the exponential map, generated by (0,2πi) and (2πi,0) is invariant
under B and the action is irreducible. Hence either AM is an indecomposable module of rank
5 or there is an indecomposable submodule of rank 3 which is isomorphic to AM. However
an indecomposable module, subgroup of C2, has to be of even rank because B is a hyperbolic
matrix. We obtain thus a contradiction. Hence case 4) is not possible.

Case 3) of Theorem B.2.4 is impossible because GM is not virtually abelian.

It suffices to show that case 2) of Theorem B.2.4 is not possible for GM. Suppose the con-
trary. The rational fibration preserved by GM can be pulled-back to a holomorphic foliation on
H×C. By the equivariance of D, this equips SM with a holomorphic foliation. This foliation
must coincide with one of the two obvious foliations on SM by Lemma B.3.3. Acting on H×C,
the elements g0, · · · ,g3 permute the leaves of the foliation. The action of GM on the spaces of
leaves of the two foliations on H×C, i.e. its actions on the C-factor and on the H-factor are both
non-discrete. This means that, on the Bir(Y ) side, the action of GM on the base of the rational
fibration is non discrete. As the automorphism group of a curve of general type is finite, the
base is either P1 or an elliptic curve. But the base cannot be an elliptic curve neither because
otherwise the fibration would be transversely Euclidean. Thus the base of the rational fibration
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is P1 and Y is a rational surface.

We have a morphism σ : GM → PGL2(C) that records the action of GM on the base of the
rational fibration. Since this base action is non-discrete, Lemma B.3.1 implies that σ is injective.
So g1,g2,g3 have infinite actions on the base. Suppose by contradiction that one of the gi, say
g1, is a Jonquières twist. Theorem B.2.2 case 3 says that for any h that commutes with g1, the
actions of h and g1 on the base generate a virtually cyclic group. But we said that the actions
of g1,g2 and g3 on the base generate a group isomorphic to Z3, contradiction. Hence g1,g2,g3

are all elliptic elements of Bir(Y ) and AM is an elliptic subgroup of Bir(Y ). Up to replacing AM

by a finite index free abelian subgroup, we can assume that AM is contained in Aut0(Z), the
connected component of the automorphism group of a rational surface Z. The group Aut0(Z) is
an algebraic group; we denote by AM the Zariski closure of AM in Aut0(Z). Since AM is infinite,
AM is an algebraic group of dimension ≥ 1.

We want to prove that no element of GM is a Jonquières twist. For this purpose we apply
an argument used by S. Cantat in the appendix of [DP12]. Any element of GM normalizes AM,
thus normalizes AM. We have two possibilities for the action of the abelian algebraic group AM

on the rational surface Z, either it has a Zariski open orbit, or its orbits form a pencil of curves.

Assume that the orbits of AM form a pencil of curves. This pencil of curves must differ from
the original rational fibration preserved by AM because the actions of g1,g2,g3 on the base of
the rational fibration are infinite. Every element of GM normalizes AM, it preserves this pencil
of curves. Recall that every element of GM preserves also the rational fibration, thus preserves
simultaneously two pencils of curves. This implies that g0 is an elliptic element (cf. [DF01]).
Therefore the group GM contains no Jonquières twists.

Now assume that AM has a Zariski open orbit O. We have three possibilities for O; it is a
principal homogeneous space isomorphic to C2, C×C∗ or C∗×C∗. Since an element of GM

normalizes AM, it acts on O by automorphism of principal homogeneous spaces. If O = C2 then
every element of GM would be affine, thus elliptic. If O = C×C∗ then an element of GM would
be of the form (ax+b,αy) with a,α ∈ C∗,b ∈ C, which is again elliptic. If O = C∗×C∗ then
every element of GM would be contained in the group generated by {(αx,βy)|α,β ∈ C∗} and

{(xpyq,xrys),

(
p q

r s

)
∈GL2(Z)}. In this case an element of GM is either elliptic or loxodromic,

but it cannot be loxodromic because we work already under the hypothesis that GM preserves a
rational fibration. Thus we have proved that every element of GM is elliptic. This implies that
GM is an elliptic subgroup by Theorem B.2.4. �

We proved that GM is an elliptic subgroup of Bir(Y ). Up to taking a finite index subgroup,
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GM is contained in Aut0(Z), the component of identity of the automorphism group of a pro-
jective surface Z birational to Y . The Aut0 of a projective variety is an algebraic group. By
Chevalley structure theorem it is an extension of an abelian variety by a linear algebraic group.
As Aut0(Z) contains the non-abelian infinite group GM, its linear part is not trivial. Hence Z

is ruled by Theorem 14.1 of [Uen75] (see also [Bru15] Chapter 6.3). If Z were a non-rational
ruled surface, then GM would preserve the ruling and the ruling would be pulled back by Dev
to one of the two obvious foliations on SM. Using the fact that GM acts non-discretely on the
space of leaves and the fact that the two obvious foliations are not transversely Euclidean, we
obtain a contradiction as in the proof of Lemma B.3.13.

Therefore Z is a rational surface. Since GM is solvable, it comes from a group of auto-
morphisms of a Hirzebruch surface. We can and will assume in the sequel that Z = Fn is a

Hirzebruch surface and that GM ⊂ Aut0(Z) (cf. Corollary B.2.14). Note that from now on we
take Z as the target space of the developing map.

Since Aut(Fn) preserves the rational fibration on Fn, we have a group homomorphism σ :
GM → PGL2(C) which encodes the action of GM on the base P1 of the rational fibration. As
GM is solvable, we can assume, maybe after replacing GM with a subgroup of index two, that
σ(GM)⊂ PGL2(C) fixes at least one point in P1. Let us decompose P1 as C∪{∞} where ∞ is
one of the fixed point of σ(GM). As in the proof of Lemma B.3.13, the rational fibration induces
a foliation on SM which must coincide with one of the two obvious foliations on SM; and we
deduce from this that σ(AM) is not discrete. By Lemma B.3.1, this implies that σ is injective
(up to taking a finite index subgroup). By Lemma B.3.2, we can write σ(g1),σ(g2),σ(g3) as
x 7→ x+ui for some ui 6= 0, and σ(g0) as x 7→ νx for some ν ∈ C∗ of infinite order.

Lemma B.3.14 The developing map Dev : H×C 99K Fn is everywhere defined and is locally

biholomorphic.

Proof First we claim that Dev contracts no curves. Suppose by contradiction that Dev contracts
a curve C ⊂ H×C. Let γ ∈ GM be a non-trivial element. From the relation Dev◦γ = γ ◦Dev
and the fact that γ acts by automorphism on Fn, we deduce that γ(C) ⊂ H×C is also a con-
tracted curve of Dev. Since locally there is only a finite number of contracted curves, the union⋃

γ∈GM
γ(C) is a GM-invariant set locally closed in H×C. Therefore the image of C in the

quotient SM is locally closed, i.e. it is a curve on SM. This contradicts the fact that SM has no
curves.

Suppose by contradiction that p ∈ H×C is an indeterminacy point of Dev. Take a local
chart of birational structure U at p. We factorize Dev |U : U 99K Fn as U

π1←−V
π2−→ Fn where π1
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is a composition of (inverses of) blow-ups at p and its infinitely near points, and π2 is an open
embedding because Dev contracts no curves. Note that here we have holomorphic foliations on
U and V , pulled back from the rational fibration on Fn. As the foliation on U is regular, the
exceptional curve of π1 is an invariant curve of the foliation on V . This implies that its image
by π2 into Fn must be contained in a fiber of the rational fibration. However on Fn there are no
(−1)-curves contained in the fibers of the rational fibration, this contradicts the fact that π2 is
an open embedding. �

The above lemma tells us that the birational structure on SM is in fact a (Aut(Fn),Fn)-
structure in the classical sense.

Lemma B.3.15 Any GM-invariant curve is disjoint from the image of Dev.

Proof Let C be a curve which intersects the image of Dev, then Dev−1(C) is a curve on H×C.
Note that elements of GM are regular on the intersection of C with the image of Dev. So if C

were GM-invariant, then π(Dev−1(C)) would be a curve on SM. �

First case: Assume that the Hirzebruch surface Fn is not P1× P1, i.e. n ≥ 1. The fiber
over ∞ ∈ P1 and the exceptional section of Fn are GM-invariant curves. Lemma B.3.15 implies
that the image of the developing map is contained in the complement of these two invariant
curves which is isomorphic to C2. The automorphisms g1,g2,g3 are of the form (x,y) 7→ (x+

ui,βiy+Ri(x)) where βi ∈ C∗ and Ri is a polynomial of degree ≤ n; the automorphism g0 is
(x,y) 7→ (νx,β0y+R0(x)) where β0 ∈ C∗ and R0 is a polynomial of degree ≤ n.

Assume first that β1,β2,β3 are not all equal to 1, for example β1 6= 1. In this case g1 has a
fixed point e on the fiber over ∞ which is not on the exceptional section of Fn. By commutativity,
the point e is fixed by AM; then by the fact that g0 normalizes AM, the whole group GM fixes
e. We can blow-up e and contract the strict transform of the initial fiber to get Fn−1. The group
GM remains a group of automorphisms of Fn−1. Moreover the image of the developing map is
not affected by this elementary transformation. Therefore the initial birational structure reduces
to a (Aut(Fn−1),Fn−1)-structure. We continue this process and reduce the birational structure
to a (Aut(F1),F1)-structure. The Hirzebruch surface F1 is the blow-up of P2 at one point; the
exceptional divisor is the exceptional section and is disjoint from the image of Dev. Therefore
we finally get a (PGL3(C),P2)-structure.

Assume that β1 = β2 = β3 = 1. We can conjugate g1 inside Bir(P2), by elements of the
form (x,y) 99K (x,y+δxd), to decrease the degree of R1 until g1 becomes (x,y) 7→ (x+u1,y);
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note that this only modifies the fiber at ∞ so that the conjugation does not affect Dev. Af-
ter these conjugations, g2,g3 become (x,y) 99K (x + ui,y + R̃i(x)), i = 2,3 and g0 becomes
(x,y) 99K (νx,β0y+ R̃0(x)) where the R̃i are polynomials for i = 0,2,3. The commutation rela-
tions between g1 and g2,g3 reads:

R̃i(x) = R̃i(x+u1), i = 2,3;

this implies immediately that R̃2 and R̃3 are constants. Therefore we have conjugated AM to a
subgroup of PGL3(C). Now the transformation g0 ◦g1 ◦g−1

0 is

(x,y) 99K (x+νu1,y+ R̃0(ν
−1x+u1)− R̃0(ν

−1x))

For g0 ◦ g1 ◦ g−1
0 to be in AM, the polynomial function R̃0(ν

−1x+ u1)− R̃0(ν
−1x) needs to be

a constant. This implies that the degree of R̃0 is at most 1, i.e. g0 is also in PGL3(C). We get
again a (PGL3(C),P2)-structure.

Second case: the Hirzebruch surface is P1×P1. Considering a finite unramified cover of SM,
we can assume that GM is included in the identity component of the automorphism group which
is PGL2(C)×PGL2(C). Replacing GM with a index two subgroup if necessary, we have two
injective homomorphisms σ1,σ2 from the solvable group GM to PGL2(C). The image σ1(GM)

(resp. σ2(GM)) fixes at least one point in the first (resp. second) factor P1. Removing the two
corresponding GM-invariant curves from P1×P1, we get a Zariski open set which is isomorphic
to C2 and in which the image of the developing map is contained. This means that the birational
structure is reduced to a complex affine structure.

Bruno Klingler proved in [Kli98] that the only (PGL3(C),P2)-structure on SM is the natural
one, this finishes the proof of Theorem B.1.1 for Inoue surfaces of type S0.

B.4 Inoue surfaces of type S±

B.4.1 Description

Let n ∈ N∗. Consider the group of upper-triangular matrices

Λn =


1 x z

n

0 1 y

0 0 1

 , x,y,z ∈ Z

 .
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The center of Λn is the infinite cyclic group Cn generated by

1 0 1
n

0 1 0
0 0 1

. The quotient Λn/Cn

is isomorphic to Z2. Let N ∈ SL2(Z) be a matrix with eigenvalues α, 1
α

such that α > 1. Let
ϕ be an automorphism of the group of real upper-triangular matrices which preserves Λn, acts
trivially on Cn and acts on Λn/Cn ∼= Z2 as N. We form a semi-direct product ΓN = ΛnoZ where
the Z factor acts on Λn as ϕ . The group ΓN acts on the group of real upper-triangular matrices
which is identified with R3 = R×C. Define an action of ΓN on H×C = R>0×R×C with Λn

acting trivially on R>0 and 1 ∈ Z acting on H as x 7→ αx. This action is holomorphic and the
quotient SN = H×C/ΓN is a compact non-Kähler surface called an Inoue surface of type S+

([Ino74]). Note that the Inoue surface depends on n,ϕ , and ϕ depends on N; we denote it by SN

because N is the most significant parameter.

The group ΓN can be identified with a lattice in one of the two following solvable Lie groups
which are subgroups of Aff2(C) (cf. [Kli98]):

Sol1 =


1 a b

0 d c

0 0 1

 ,a,b,c,d ∈ R,d > 0

 , Sol1
′
=


1 a b+ i log(d)

0 d c

0 0 1

 ,a,b,c,d ∈ R,d > 0

 .

Conversely any torsion free lattice of these two groups gives an Inoue surface of type S+. Note
that a finite unramified cover of an Inoue surface of type S+ is an Inoue surface of type S+.

Concretely ΓN has four generators g0,g1,g2,g3 which act on H×C as:

g0 : (x,y) 7→ (αx,y+ t)

gi : (x,y) 7→ (x+ai,y+bix+ ci) i = 1,2

g3 : (x,y) 7→ (x,y+
b1a2−b2a1

n
)

where t is a complex number, (a1,a2) (resp. (b1,b2)) is a real eigenvector of N corresponding to
the eigenvalue α (resp. α−1) and c1,c2 are some complex numbers (see [Ino74] for the explicit
expressions of c1,c2). The center Cn of Λn is also the center of ΓN , it is generated by g3. The
normal subgroup Λn is generated by g1,g2,g3. We have

g−1
1 g−1

2 g1g2 = gn
3

g0gig−1
0 = gni1

1 gni2
2 gmi

3 , i = 1,2
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where ni j are entries of the matrix N and m1,m2 are two integers depending on c1,c2.
The Inoue surface SN has an obvious (Aff2(C),C2)-structure. The surface SN =H×C/Λn

is an infinite cyclic covering space of SN . As a real manifold, SN admits a fibration ρ : SN→R∗+

where the R∗+= {t
√
−1, t ∈R∗+} is the vertical axis of H⊂H×C. The fibers, denoted by Et , are

quotients of {x+ t
√
−1,x ∈ R∗+}×C by Λn; they are compact real nilmanifolds of dimension

3. The Et are Levi-flat hypersurfaces in SN and they are foliated by entire curves coming from
the vertical complex lines in H×C.

The analogues of Lemmata B.3.1, B.3.2, B.3.3, B.3.4 and B.3.5 still hold (we omit the
details when the proof is exactly the same).

Lemma B.4.1 If K is a non-trivial normal subgroup of ΓN , then K has finite index in Cn, Λn or

ΓN .

Proof The conjugation action of g0 on Λn/Cn is just the action of N ∈ SL2(Z) on Z2; it has
no eigenvectors in Z2\{0}. Thus, if K contains an element of Λn which is not in Cn, then it
contains Λn. To conclude, we need only remark that, by the semi-direct product structure, the
intersection of a normal subgroup of ΓN with Λn cannot be trivial. �

Lemma B.4.2 Let σ : ΓN → PGL2(C) be a morphism whose kernel is Cn. Then for some affine

coordinate P1 = {x ∈ C}∪{∞}, the images σ(gi), i = 0, · · · ,2, viewed as homographies of P1,

may be written as

σ(gi) :x 7→ x+ui, i = 1,2

σ(g0) :x 7→ νx

for some ν ,ui ∈ C∗.

Lemma B.4.3 The only (possibly singular) holomorphic foliation on SN is the obvious one

coming from the vertical foliation of H×C.

Proof Let F be a foliation on SN . As in the proof of Lemma B.3.3, we infer that F is satu-
rated and non-singular. We denote by T the tangent bundle of SM, by T ∗ its dual and by K the
canonical bundle of SM. We denote by F0 the normal bundle of the obvious foliation (here we
use notations of [Ino74]) and by F the normal bundle of F . The foliation F corresponds to a
non-zero global section of T ∗⊗F . It is proved in [Ino74] that T ∗⊗F has non-zero sections if
and only if F = F0. In other words, F and the obvious foliation share the same normal bundle.
It is also proved in [Ino74] that the space of global sections of T ∗⊗F0 is one dimensional. Thus,
F must coincide with the obvious foliation. �
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Lemma B.4.4 Up to multiples, there is only one transverse invariant measure on Et .

Lemma B.4.5 The obvious foliation on SN is not transversely Euclidean.

Inoue surfaces of type S− are defined similarly: instead of choosing N in SL2(Z), we take a
matrix in GL2(Z) with determinant (−1). Every Inoue surface of type S− has a double unrami-
fied cover which is an Inoue surface of type S+. Thus, for our purpose it is sufficient to consider
only the Inoue surfaces of type S+.

B.4.2 Proof of Theorem B.1.1 for Inoue surfaces of type S+

Many details of the proof will be very similar to the case of Inoue surfaces of type S0; we
will make them brief.

Equip SN with a (Bir(X),X)-structure and let (Y,Hol,Dev) be a holonomy/developing triple.

Run again the previous proof

Lemma B.4.1 says that there are only four possibilities for the holonomy representation. It
is easy to rule out the first possibility: if the holonomy had finite image then the developing map
would induce a meromorphic locally birational map from a finite unramified cover of SN to Y ,
contradicting the fact that SN has algebraic dimension zero.

If the kernel K of the holonomy has finite index in Λn, then K oZ has finite index in ΓN ;
in this case by considering the corresponding finite unramified cover of SN and the induced
birational structure, we can suppose that K = Λn. The image of the holonomy is then cyclic.
This is not possible: Lemmata B.4.3, B.4.4 and B.4.5 ensure that the proof of Subsection B.3.2
works exactly in the same way for SN .

We now rule out the case where the kernel K of Hol has finite index in Cn; we will examine
the situation of injective holonomy in the next subsection. After taking a finite unramified cover
of SN , we can and will assume that K = Cn. Thus, we have an embedding of ΩN = ΓN/Cn ∼=
Z2 oZ into Bir(Y ). The situation is almost the same as in the case of Inoue surface of type S0;
there we had Z3 oZ, here we have Z2 oZ. We can almost copy the proof of Section B.3.2; we
give here a sketch.

Firstly we prove as in Lemma B.3.13 that ΩN is an elliptic subgroup of Bir(Y ). The only
difference in the proof is the fourth case of Theorem B.2.4. In case 4), ΩN is contained in
the group generated by {(αx,βy)|α,β ∈ C∗} and one monomial transformation (xpyq,xrys)
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where

(
p q

r s

)
∈ GL2(Z). In this case ΩN preserves two holomorphic foliations defined by

ι1xdy+ν1ydx and ι2xdy+ν2ydx where (ιi,νi) i = 1,2 are two eigenvectors of

(
p r

q s

)
. These

two ΓN-invariant foliations induce two foliations on SN ; this is impossible because there exists
only one holomorphic foliation on an Inoue surface of type S+ by Lemma B.4.3.

Once we know that ΩN is an elliptic subgroup, we prove as in Section B.3.2 that the
(Bir(X),X)-structure is reduced to a (Aut(Fn),Fn)-structure, and then to a (PGL3(C),P2)-
structure; the arguments here and there are exactly the same. However the only (PGL3(C),P2)-
structure on SN is the obvious one by [Kli98] and its holonomy is injective, a contradiction to
the hypothesis that the kernel of the holonomy is Cn. Thus, we have proved:

Lemma B.4.6 The kernel of the holonomy representation Hol is trivial.

Injective holonomy

After Lemma B.4.6 we know that the holonomy representation is injective. From now on
we consider ΓN as a subgroup of Bir(Y ). We apply Theorem B.2.4 to ΓN . Case 5) is not possible
because the stable and the unstable foliations of a loxodromic automorphism on an abelian sur-
face would induce two transversely Euclidean foliations on SN . Case 4) is not possible because
the derived length of C∗×C∗o〈a monomial map〉 is 2 and that of ΓN is 3 (here we can also use
the foliation argument). Case 3) is impossible because ΓN is not virtually abelian. The following
lemma says that case 2) is not possible either.

Lemma B.4.7 If the group ΓN preserves a rational fibration, then it contains no Jonquières

twists and Y is rational.

Proof The rational fibration preserved by ΓN induces a holomorphic foliation on SN which
coincides with the natural one. The action of g3, even on H×C, does not permute the leaves,
so its action on the base of the rational fibration must be trivial. As regards the action of ΓN\Cn

on the base, it is non-discrete by considering the action on the space of leaves. Together with
the fact that the foliation is not transversely Euclidean, this implies that the base of the rational
fibration is necessarily P1. Thus Y is a rational surface.

Using again the non-discreteness of the base action, we have an embedding σ : ΩN =

Γn/Cn→ PGL2(C). By Lemma B.4.2, we infer that σ(g0),σ(g1),σ(g2) are respectively x 7→
γx,x 7→ x+u1,x 7→ x+u2 where γ,u1,u2 ∈C∗ are such that γui = ni1u1+ni2u2 for i = 1,2. The
sequel of the proof is purely about the group of birational transformations.
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Every element of ΓN commutes with g3; for i = 0,1,2, the group generated by gi,g3 is
isomorphic to Z2. By Theorem B.2.2, g3 must be an elliptic element. Up to conjugation, g3

is (x,y) 7→ (x,y + v3) or (x,y) 7→ (x,νy). Let us first suppose that g3 is (x,y) 7→ (x,νy) for
some ν ∈ C∗ of infinite order. By Theorem B.2.3 g0,g1,g2 are respectively (γx,R0(x)y) and
(x+ui,Ri(x)y), i = 1,2 where R0,R1,R2 ∈ C(x). The relation g−1

1 g−1
2 g1g2 = gn

3 reads

R2(x)R1(x+u2)R2(x+u1)
−1R1(x)−1 = ν

n.

For i = 1,2 write Ri as Pi
Qi

with Pi,Qi ∈ C[x]. Then the above equation becomes

P2(x)P1(x+u2)Q2(x+u1)Q1(x)
P2(x+u1)P1(x)Q2(x)Q1(x+u2)

= ν
n.

On the left-hand side, the numerator and the denominator have the same degree and the same
dominant coefficient. This implies νn = 1, which is absurd because ν has infinite order. Thus,
g3 is not of the form (x,y) 7→ (x,νy).

Hence g3 is of the form (x,y) 7→ (x,y+v3). By Theorem B.2.3 g0,g1,g2 can be respectively
written as (γx,y+R0(x)) and (x+ui,y+Ri(x)), i = 1,2 where R0,R1,R2 ∈ C(x).

We will exploit the relation g−1
1 g−1

2 g1g2 = gn
3 to show that R1,R2 must be polynomials. Note

that g3 is elliptic and acts trivially on the base; roughly speaking g1,g2 almost commute. Before
we continue the proof we recall first some notions. An indeterminacy point x of f will be called
persistent if for every i > 0, f−i is regular at x and the backward orbit of x is infinite, and if
there are infinitely many curves contracted onto x by the iterates f−k,k ∈ N. A conic bundle is
a rational fibration where the only singular fibers are unions of two (−1)-curves. It is proved in
[Zhaa] that g1, being an element of Jonq, acts by algebraically stable transformation on a conic
bundle X ; moreover the only singular fiber of X lies over the ΓN-invariant fiber x = ∞.

Suppose by contradiction that R1 is not a polynomial; this implies that g1 is a Jonquières
twist. Some poles of R1 in C correspond to persisitent indeterminacy points of g1 on X (see
[Zhaa] for details). Let e ∈ X be a persistent indeterminacy point of g1. Since {g−i

1 (e), i > 0}
is infinite, g2 and g3 are regular at g−k

1 (e) for k large enough. For infinitely many j > 0, g− j
1

contracts a regular fiber of the conic bundle onto e, denote it by C j. For k large enough g2 and
g3 do not contract Ck. Keeping these two observations in mind, from the relation gk

1 ◦g2 ◦g− j
1 =

g2 ◦gnk
3 ◦gk− j

1 we deduce that g2 ◦g− j
1 (e) is an indeterminacy point of gk

1 for suitable j,k (recall
that g3 does not permute the fibers of the conic bundle). This means that, under the iteration
of g1, the forward orbit of g2 ◦ g− j

1 (e) will meet a persistent indeterminacy point e′ of g1. The
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correspondance e 7→ e′ does not depend on j,k. Thus, up to raplacing g2 by an iterate gm
2 , we

have e = e′. Then for some l ∈ Z, gl
1 ◦gm

2 (g
− j
1 (e)) will be an indeterminacy point of g j

1, i.e. we
have gl

1 ◦ gm
2 (g
− j
1 (e)) = g− j

1 (e). Similarly, we have gl
1 ◦ gm

2 (Ck) = Ck for k large enough. This
means that gl

1 ◦ gm
2 preserves the rational fibration fiber by fiber. In particular lu1 +mu2 = 0,

which is impossible because u1,u2 generate a non-discrete subgroup of C.

Now we know that R1,R2 are polynomials. Consequently g1,g2 are elliptic. Let us finish the
proof by showing that R0 is a polynomial too. The element g0gig−1

0 reads

(x,y) 99K (x+ γu1,y−R0(γ
−1x)+R1(γ

−1x)+R0(γ
−1x+u1)).

The relation g0gig−1
0 = gni1

1 gni2
2 gmi

3 implies that the rational fraction −R0(γ
−1x)+R1(γ

−1x)+

R0(γ
−1x+u1) is a polynomial. This is only possible if R0 is a polynomial. �

From the above discussions we know that ΓN is an elliptic subgroup of Bir(P2). The proofs
of Lemma B.3.14 and Lemma B.3.15 work exactly in the same way and we reduce the birational
structure on SN to a (Aut(Fk),Fk)-structure for k 6= 1 or to a (PGL3(C),P2)-structure as in
Section B.3.2. If it is reduced to a (PGL3(C),P2)-structure then the result of B. Klingler [Kli98]
finishes the proof. It cannot be reduced to a (Aut(P1×P1),P1×P1)-structure because a finite
unramified cover of SN would have two holomorphic foliations.

Assume that the birational structure is reduced to a (Aut(Fk),Fk)-structure for k ≥ 2. Then
ΓN preserves a rational fibration. Denote by σ the induced homomorphism from ΓN to PGL2(C).
Using the same reasoning we have done in the proof of the previous lemma, we can write
g0,g1,g2,g3 as:

g0 : (x,y) 7→ (γx,y+R0(x));

gi : (x,y) 7→ (x+ui,y+Ri(x)), i = 1,2;

g3 : (x,y) 7→ (x,y+ v3)

where u1,u2,v3,γ ∈ C∗ and R1,R2,R3 are polynomials. Moreover we have

γ

(
u1

u2

)
=

(
n11 n12

n21 n22

)(
u1

u2

)
. (B.7)
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where

(
n11 n12

n21 n22

)
is the matrix N. The relation g−1

1 g−1
2 g1g2 = gn

3 reads

R2(x)+R1(x+u2)−R2(x+u1)−R1(x) = nv3. (B.8)

For the left side of Equation (B.8) to be a constant, the degrees of R1,R2 must be the same.
Denote by l their degree. For i = 1,2, the element g0gig−1

0 may be written as

(x,y) 7→ (x+ γui,y−R0(γ
−1x)+R1(γ

−1x)+R0(γ
−1x+ui)). (B.9)

The relation g0gig−1
0 = gni1

1 gni2
2 gmi

3 implies that the polynomial−R0(γ
−1x)+R1(γ

−1x)+R0(γ
−1x+

ui) has degree l. This is possible only if the degree of R0 is less than or equal to (l + 1). For
i = 1,2,3 and 0≤ j ≤ l +1, we denote by ri j the coefficient of x j in Ri(x).

Suppose by contradiction that l > 1. By looking at the dominant coefficients in the equations
g−1

1 g−1
2 g1g2 = gn

3 and g0gig−1
0 = gni1

1 gni2
2 gmi

3 , i = 1,2, we obtain

r1llu2− r2llu1 = 0 (B.10)

γ
−lril + γ

−l(l +1)uir0(l+1) = ni1r1l +ni2r2l i = 1,2. (B.11)

In terms of matrices, Equation (B.11) reads

(N− γ
−l Id)

(
r1l

r2l

)
= γ
−l(l +1)uir0(l+1)

(
1
1

)

which by Equation (B.7) and Equation (B.10) is equivalent to

(γ− γ
−l)

(
u1

u2

)
=C

(
1
1

)
(B.12)

for some non-zero constant C. This is not possible because u1 6= u2. Therefore l ≤ 1 and g1,g2

are affine transformations. The relation g−1
1 g−1

2 g1g2 = gn
3 now reads

r11lu2− r21lu1 = nv3. (B.13)

Equation (B.13) implies that l 6= 0, i.e. l = 1. Then R0 is a polynomial of degree at most 2. If
R0 is of degree 2, then we can conjugate g0 : (x,y) 7→ (γx,y+R0(x)) by (x,y) 7→ (x,y+ δx2)

for an appropriate δ ∈ C∗ to decrease the degree of R0. Moreover the conjugation by (x,y) 7→

232



B.4. Inoue surfaces of type S±

(x,y+δx2) keeps g1,g2,g3 affine transformations. Thus we reduce the birational structure to a
complex affine structure. Using again [Kli98], we achieve the proof of Theorem B.1.1 for Inoue
surfaces of type S±.
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Titre : Groupes kleiniens birationnels)..............

Mot clés : transformations birationnelles des surfaces, groupe kleinien, uniformisation, groupe

de Kähler, feuilletages, espace de Teichmüller

Résumé : Dans ce mémoire de thèse je considère une généralisation des groupes kleiniens
en géométrie algébrique complexe. Le probléme peut aussi être vu comme l’uniformisation
des variétés projectives complexes sous une hypothèse algébrico-géométrique sur l’action du
groupe de revêtement. Soient Y une variété projective complexe lisse et U ⊂ Y un ouvert en
topologie usuelle. Soit Γ ⊂ Bir(Y ) un groupe infini de transformations birationnelles. Nous im-
posons les conditions suivantes sur Γ : 1) les points d’indétermination de Γ sont disjoints de
U et Γ préserve U , c.-à-d. tout élément de Γ induit un difféomorphisme holomorphe de U ; 2)
l’action de Γ sur U est libre, proprement discontinue et cocompacte. Nous appelons un groupe
kleinien birationnel a donnée de (Y,Γ,U,X). Dans ce mémoire je donne une classification des
groupes kleiniens birationnels en dimension deux. Il s’agit d’une intéraction entre les transfor-
mations birationnelles des surfaces, les groupes de Kähler, les feuilletages holomorphes sur
des surfaces complexes, et les espaces de Teichmüller.

Title: Birational Kleinian groups

Keywords: birational transformations of surfaces, Kleinian groups, uniformization, Kähler groups,

foliations, Teichmüller spaces

Abstract: In this thesis I study a generalisation of Kleinian groups in the setting of complex
algebraic geometry. The problem can also be seen as uniformization of projective varieties un-
der an algebro-geometric hypothesis on the group of deck transformations. Let Y be a smooth
complex projective variety and U ⊂ Y an open subset in the usual topology. Let Γ ⊂ Bir(Y ) be
an infinite group of birational transformations. We impose the following conditions on Γ: 1) the
indeterminacy points of Γ are disjoint from U and Γ preserves U , i.e. any element of Γ induces
a holomorphic diffeomorphism of U ; 2) the action of Γ on U is free, properly discontinuous and
cocompact. A birational Kleinian group is by definition the data of (Y,Γ,U,X). In this thesis I give
a classification of birational Kleinian groups in dimension two. It implements an interaction be-
tween birational transformations of surfaces, Kähler groups, holomorphic foliations on complex
surfaces, and Teichmüller spaces.
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