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INTRODUCTION: STATEMENT OF THE MAIN REsuLTs

The main purpose of this paper is to prove the following theorem which
has been conjectured by H. Bass and J.-P. Serre:

TuroreM 1. Ower a field of characteristic 0, a linear group cither has a
non-abelian free subgroup or possesses a solvable subgroup of finite index.

This is no longer true over a field of characteristic = 0, as is shown by the
example of the full linear group over an infinite algebraic extension of a
finite field. However, Theorem 2 shows that this example is in some sense

universal.

TuroreM 2. Let V be a vector space over a field k of characteristic different
from O and let G be a subgroup of GL(V'). Then, the following three properties

are equivalent.

(i) H contains no non-abelian free group.

(i) G has a solvable normal subgroup R such that G/R is locally finite
(i.e., every finite subset generates a finite subgroup).

(i) G possesses a subgroup G’ of finite index such that if V' denotes any
composition factor of the k{G')-module V and k' the endomorphism ring of V'
(i.e., the centralizer of G’ in Endy V"), then k' is a field and V' has a k'-basis
with respect to which the matrices representing the elements of G’ are scalar
multiples (by elements of k') of matrices whose entries are algebraic over the

prime field of k.

If the Zariski closure of the group in question in Theorem 1 is semisimple
and = {1}, the theorem states that this group always contains a non-abelian
free group. More precisely, we shall establish the
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TueoreM 3. Let ® be a nontrivial semisimple algebraic group defined over a
field k of characteristic O and let G be a (Zariski) k-dense subgroup of (k).
Then G has a countable free subset F such that every element of I' generates a
k-connected subgroup of O(k) and that every pair of elements of F generates a

E_dense suborout of Ok
R-aens group of R

sE S0

(A subset F of a group G is said to be free if the inclusion F —  extends
to an injective homomorphism of the free group generated by £ into G).

The corresponding result in characteristic not 0 is the

THEOREM 4. Let ©& be a nontrivial semisimple algebraic group defined over
a field k of characteristic different from 0, let G be a k-dense subgroup of &(k)
and let k, denote the algebraic closure of the prime field of k in k. Then, ® has
a normal k-subgroup &, which is characterized by any one of the following three
properties:
() ®, is the smallest normal subgroup of & such that every element of G
has a power n By ;

(i) O, is the largest connected subgroup of & which is the k-closure of a
finitely generated subgroup of ®;

(i) ®, s the smallest k-closed normal subgroup of & such that

G{(G  ®,{k)) contains no non-abelian free group.
Furthermore:

(iv) there exisis an algebraic semisimple group &, defined over k, and a
k-isomorphism (&/®,) — ®&, mapping the canonical image of G in {G/®,)k)
mto &, (k,);

(v) the quotient GI{G " ©y(k)) is locally finite;

(vi) if G, 5= {1}, the group G N &, (k) has a countable free subset F such
that every element of F generates a k-connected group and that every pair of
elements of I generates a k-dense subgroup of &, (k).

We now state a few immediate corollaries of Theorems 1 and 2.

CoroLLARY 1. .4 finitely generated linear group either contains a non-
abelian free group or has a solvable subgroup of finite index.

The following assertion, due to H. Zassenhaus [10], 1s a direct consequence

of the preceding corollary and of Lemma 2 of [10]:

CoroLLARY 2 (Zassenhaus). Lvery noetherian linear group has a poly-
cyclic subgroup of finite index.
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CoroLLaryY 3 (Platonov [6]). Let G be a linear group over a field of charac-
teristic 0. If there exists an integer n such that every finitely generated subgroup of
G is generated by n elements, the group G has a sotvable subgroup of finite index.

(In [6], this is proved for any characteristic.)

CoroLLARY 4. A finitely generated linear group without nontrivial identities
contains a non-abelian free group.

(For related results which can also be deduced from the above theorems;
cf. also Platonov [5]).

By a result of ]J. Milnor and J. Wolf (cf. [9, p. 421]), Corollary 1 also
implies

CoroLLARY 5. The growth of a finitely generated linear group is either
polynomial or exponential.

The Corollaries 2 and 5 have been pointed out to me by H. Bass and the
Corollaries 3and 4 (and again Corollary 2) by V. P. Platonov. I am also indebted
to H. Bass for several very useful discussions on the subject of this paper;
in fact, some essential ingredients of the proofs—such as the idea of special-
izing to locally compact fields for instance —are for a large part due to him.

GENERAL CONVENTIONS

In this paper, k always denotes a (commutative) field. If 7 is a vector
space over k and P its projective space, we denote by GL(V) the automor-
phism group of ¥, by PGL(V') or PGL(P) the quotient of GL(V) by its
center and by GL(V) and PGLV) = PGL(P) the corresponding
k-algebraic groups (for instance, GL(V) is defined by GL)) =
Aut,(V @ 1) for every k-algebra [). If p: 6 — § is a k-homomorphism of
algebraic groups, we also denote by p the homomorphism p(f) : G(!) — H(/)
for any field extension [ of k.

We shall often have to deal simultaneously with different topologies on a
same set. Except in Section 3, where another convention will be made (cf. 3.1),
the words “connected”, “closure”, ‘“‘dense” etc., used without further
specification, will always refer to the Zariski topology (or the topology it
induces on sets of rational points). However, we shall also sometimes be
more explicit and use such expressions as ‘‘k-connected”, “k-closure”, etc.,
even at places where the above general convention would dispense us of this
precision. To understand this convention properly, it should also be remem-
bered that if X is a variety defined over & and if [ 1s a field extension of £,
the restriction of the /-topology to the set X(k) coincides with the &-topology
on this set.
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1. A CrrTERION OF FREEDOM

ProposiTION L.1(*). Let Pbea set, I anindex set, G a group operating on P
on the left, (G,)ie; a family of subgroups generating G, (P;);e; a family of subsets
of P and p a point of P — J,e; P; . Assume that for all i, j € I with i # j and
all g G, — {1}, one has g(P; O {p}) C P;. Then G is the free product of the
subgroups G; (1 €1).

Indeed, let neN* and, for se{l,.,n}, let i€l and g, € G, — {l}.
Assume that i, %1, ; for s 1. Then one has, by induction on s,

(€81 g)p) € P; . Hence (g5 &:)(P) # P, and g8ny 41 # 1,
Q.E.D.

Remark 1.2. Conversely, let G; (i ) be any system of groups and let G
be their free product. For 7 € I, let P, be the set of all nonneutral elements of
G whose expression as shortest possible words in the clements of the G,’s
(j € 1) starts with an element of G; . Set P = G, p = 1, and let G operate on
itself by left translations. Then, the hypotheses of the above proposition are
fullfilled.

2. LiNnear Grouprs wiTii DENSE TORSION SETS

In this section, we slightly generalize a well-known theorem of Schur
[4, p. 252]. For a large part, our arguments reproduce those of Burnside and
Schur as they are found in [4], but for the convenience of the reader, we expose
them in full, adapting them somewhat to our purpose.

2.1. In this section, A denotes a finite-dimensional simple k-algebra, [its
center, A : A — [ the generic trace of 4, considered as an /-algebra, # == d?
the dimension of 4 over /, G a subgroup of the multiplicative group of all
invertible elements of 4 such that G generates A linearly over % and 7' the
set of all elements of finite order of G.

Lemya 220 Let(g;), < <nbe an l-basis of Aconsisting of elements of G. Then,
there exists an [-basts (€;);<; <, of A such that one has, for every subset U of G

N Ug'CY MU) ¢,
i1 i=1
and, in particular,

mn
GCY XNG) e, .
i1
(*) Addedin proof. R. Lyndon has pointed out to the author that a similar criterion
has been given by A. Macbeath [Proc. Cambridge Philos. Soc. 59 (1963), 555-558].
Cf. also R. Lyndon and J. Ullman [Michigan Math. ]. 15 (1968), 161-166], where
an observation similar to our Remark 1.2 is made.
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It sufhices to take for (e,),..; <, the dual basis of the basis (g,) with respect
to the bilinear form (x, y) > )\(xy) which 1s nondegenerate [3, §12, Proposi-
tion 9]. Indeed, if g € (), Ug;?, one has

=

3

2= Mgg) e C Y MU) e.

g=1 i=1

’I

LeMMA 2.3, Let ky be a finitely generated field and m € N. Then, there are
only finitely many roots of unity satisfying an equation of degree m over k.

Let /2 be the prime field of &,, ¢ a transcendence basis of 4, over 4,
my == [ky o A(t)], & a root of unity satisfying an equation of degree m over &,
and A’ the algebraic closure of % in £y (£). Then, one has

() - 1) < [ = h) = [H(2) = h(t)) < [ko(£) = A(OY) << m - [ky 2 A(H)] == mm .

But the number of roots of unity with bounded degree over a prime ficld is
known to be finite. This proves our assertion.

Lemma 2.4, Suppose that G is finitely generated. Then \(T) is finite.

Let /; be a field-extension of / which sphts the l-algebra 4, set 4; = 4 ), §
and let V' be a simple 4;-module. We identify 4 with its canonical image
A®1 in 4; and choose an [;-basis in V7 thus, the elements » of G are
represented by matrices, A(x) being the trace of the matrix representing x.
Let I, be the subfield of /; generated by all entries of the matrices representing
the elements of a finite generating set of G. Then, all elements of G are
represented by matrices with coefficients in /,. By 2.3, the characteristic
roots of an element of 7" must belong to a fixed finite set, and our assertion
follows readily.

PropositioN 2.5. Suppose G is finitely generated and T is k-dense in G.
Then, G is finite.

As an [-vector space, A carries an [-topology, not to be confounded with the
restriction to A of the I-topology of 4 ), I: the latter coincides with the
k-topology on A, whereas the former is coarser. Anyway, T is also dense in G
for the I-topology in question, and there is no loss of generality in assuming
that £ = [ By 2.4, MT) is finite. Since A is continuous, this implies that
AMG) = XT), and our assertion follows from Lemma 2.2.

LEMMA 2.6. Let 7 be a topology on A, making a topological ring out of it,
X a (Zariski) dense relatively open subset of G and H a set of subgroups of G.
Suppose that the subgroup of G generated by any element of A and any element
of G also belongs to S, and that, for all H € 3, the T -closure of M(H N X)

7 -compact, Then, the T -closure of every element of H# is T -compact.
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Let g,, e, (1 <<i<{m) be as in 22, set ¥ = ()i, Xg7%, and let
go€ Y. It suffices to show that if Hes# contains gy, gy ,..., g, , then
the 7 -closure of H is compact. Setting U = H N X, we have, by 2.2,
HNYCY,NU) e . Therefore, the J -closure of I N'Y is compact.
Then, our assertion follows from the fact that, H being k-compact and
H Y being relatively open in it, [ is the union of finitely many translates
of HN'Y.

Remark 2.7. The above lemma will be used only in the case where I
is the discrete topology. However, to assume 7 discrete would not simplify
the proof and the lemma may be useful in its given form. For instance, let 4
be locally compact Hausdorff for J and let D be the set of all elements of G
which generate a 7 -discrete infinite subgroup; then it follows from the lemma
that if D is nowhere (Zariski) dense in G, the .7 -closure of G is 7 ~compact
(set H{ = {G} and choose X CG — D; the 7 -closure of A(X) is J -compact
because the elements of A(X) are sums of n topological roots of unity).

ProrosiTION 2.8.  Suppose that T contains a relatively open dense subset
of G. Then G 1s locally finite (hence G = T). Suppose further that char k += 0,
let 17 be a simple A-module and let k, be the algebraic closure of the prime field
of kin k. Then, V has a k-basis with respect to which the elements of G are
represented by matrices with coefficients in k, .

The first assertion is an immediate consequence of the preceding lemma,
taking for .7 the discrete topology, for X an open dense subset of G contained
in 7, and for 2 the set of all finitely generated subgroups of G; the
7 -compactness (i.e., the finiteness) of A(H N X) for H € # is ensured by
2.4.

Let /, be the algebraic closure of the prime field of £ in / and let B (resp.
B;) be the subring of 4 generated by &, (resp. /,) and G. Since G = T, the
characteristic roots of all elements of G are roots of unity; therefore \(G) C [, .
By 2.2, it follows that GC Y, I, - ¢;,. For dimension reason, this implies
that B, = Y1, I, - ¢; . Since G generates 4 over k, we have

Bk =[A: kR 2[A:1 [k Z=[By:1] [l,:k] >=[By: k-

Therefore, B; = B and all the above inequalities are equalities. In particular,
[[:k] =], :k,] and [B: k] =[4: k], which means that 4 = B Q) k.

Now, suppose that char & 7= 0. Then, [, is an algebraic extension of a
finite field and B is a full matrix algebra over /, . Denoting by 77, a simple
B-module, we have

dim, V, =d-[l,: k] =d-[l: k] = dim,},

hence I" = I, S, k, which proves our second assertion.
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3. ATTRACTING AND REPULSING POINTS

3.1. Notations. In this section, %k is a locally compact field endowed
with an absolute value w, V' an (n -+ 1)-dimensional vector space
over k, and P the projective space of /. The unique extension of w to
any algebraic extension of the field & is also called w. The join of two
linear subspaces X, Y of P is denoted by X v V; if XN Y = ¢ and
X v Y = P, we denote by proj(X, Y) the mapping = : P — X — Y defined
by fn(p)} = (X v {p)) O Y.

The spaces J and P are endowed with their topology deduced in the usual
way from that of %: the topology of 17 is the product topology for some
identification 7" = k"1 and the topology of P is the quotient topolegy of
that of V7 — {0}. All through Section 3, the words “open”, ‘‘neighborhood”,
“compact” etc. refer to the topologies in question here; for the Zariski topology,
we use the expressions ‘“‘k-open”, “k-neighborhood”, etc. It is known that P
is compact and that its linear subspaces are closed.

If & == (%4 ,..., %) is an affine coordinate system in some k-affine space 4
(or, in particular, a linear coordinate system in a vector space), we denote by

d,: 4 x A— R the function defined by

dop, q) = sup (wfx,(p) — x{q)))-
1<<ism

If € = (& ..., €,) 1s a (linear) coordinate system in I, the equation £, = 0
defines a hyperplane H of P and x; = ¢;¢; can be viewed as a function on
P — H. Any such system x = (% ,..., x,,) will be called an affine coordinate
system in P, and we shall denote by D, its “domain of definition” P — H.

Let X be a set, ¥ a subset, 6: X x X— R, a function such that
3(p,q) =01iff p =q and o : Y — X a mapping. Then, we denote by || « ||

the “norm of « with respect to 8", that is, the number

up 20LP), 20)

D,qeY 8(1)7 q)
pFEd

(=0if card Y << 1).

LemMma 3.2. (i) Ifx, y are two coordinate systemsin P and if K C D, N D,
is a compact set, there exist strictly positive constants m, M € R* such that

m e dyi g < dy lgxx < M dy |gxx -

(i) If x, y are two affine coordinate systems in an affine space K over k,
there exist m, M € R¥ such that

m-dy, <d, < M-d,
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We shall prove both assertions simultaneously, setting D, = D, = K in
case (ii). It clearly suffices to show the existence of M such that the second
inequality holds. For 1 <{7 <{n, the function y, | pp, Can be written as
7%, , where p; and i; are linear combinations of 1 and the x’s (in case (ii),
iy, = 1). Therefore, we only have to prove that, if ¢, ¢ are two linear combi-
nations of 1 and the x,;’s and if 0 ¢ (K, then there exists a positive constant
M’ e R, such that

op) _ #D) ) _ gy . i
“ (x/:(p) #(q) ) <M’ dy(p, q) f; P qe K,

or, equivalently (since w o i is bounded away from 0 on K), that there exists
M” e R, such that

w(p(p) P(q) — $(p) 9(9)) = w(e(P)H(@) — #(2)) + Hp)p(P) — #(9)) =
< M"-dy(p, q)

But it is easily verified that there exist constants M and M in R, such that
y +

w(p(p) —@lg) < M”-d(p,q) and  w(f(p) —¢(9)) < M - dy(p, 9

Therefore, the existence of M” follows from the fact that in case (i) both
w o @ and w o ¢ are bounded on K, and that in case (ii) 4 is constant (hence

$(p) — #(g) = 0).
3.3. Admissible distance functions.

We shall say that a distance d: P X P— R, is admissible if it defines a
metric compatible with the topology of P and if, for every affine coordinate
system x in P and every compact subset K of D, , there exist m, M e R*
such that

modyigxx S dlgxg <M dy g

If k=R or C, any elliptic metric on P obviously has this property. To
show that such a distance d also exists when w is non-archimedian, let
us decompose P in compact disjoint open subsets K% (5 = 1,..., N) such
that each K is contained in the domain of definition of some affine coor-
dinate system x9, set d; = dy» and 4 = sup(l); (KD x KW)), and
defined: P x P— R, by

A(p, q) = di(p,q) if (p,g)e KW x KW
D=1 if (p,9)e K9 x KU with j .

It readily follows from 3.2 that 4 is admissible.
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In the sequel of Section 3, we choose once and for all an admissible distance d,
we call norm the norm relative to d and we set || ' = 1] |,

Remark 3.4. Let k' be a finite algebraic extension of &, V' == V), &’
and P’ the projective space of V. Let us identify P with its canonical image
in P'. The above definitions also apply to P’ and it is clear that the restriction
to P > P of an admissible distance P’ » P’ — R, is admissible. It is not
obvious that, conversely, every admissible distance on P » P can be extended
“admissibly” to P’ < P’. But whenever an assertion to be proved does not
depend on the special choice of d, we may assume, without loss of gencrality,
that 4 extends to an admissible distance on P 3 P,

Lemma 3.5 A projective transformation of P has finite norm.

This is an immediate consequence of the fact that, if g is such a transforma-
tion, the distance function (p, q) — d(gp, g¢) is admissible.

3.6. Attracting and repulsing subspaces.

To every projective transformation g & PGL(P), we shall associate two linear
subspaces A(g) and A'(g) of P defined as follows. Let g be a representative
of g in GL(V) and let f(¢) = [T,_, (t — X,) € k[f] be its characteristic polyno-
mial; set £2 = {A; | w(},) = sup{w(d)| | =] =< n}}, f1() = HAL_EQ (t—2A)
and fy(t) == T, 40 (t — X)), so that f(1) = fi(t) - fo(t). It is easily seen that
A, Kt e k[t]e. Finally, we define A(g) and A'(g) as the subspaces of P
which correspond to the kernels of f,(¢) and fo(g), respectively. It is well
known that J7 is the direct sum of these two kernels; therefore,
A(g)n A'(g) = @ and A(g) v A'(g) - P. We call 4(g) (resp. A(g™1)) the
attracting (resp. repulsing) subspace of g; if it is reduced to a point, we say
that g has an attracting (vesp. repulsing) point.

Lemma 3.7, Let V) be a vector space over k, x a (linear) coordinate system
tn V,, g a linear transformation of V| and r a strictly positive real number.

(1) If g is senmusimplel and if all its eigenvalues have an absolute value
strictly smaller than 1, there exists an integer N such that || g%, < r for all
2 > N. Given a compact set K C V and a neighborhood U of O there exists an
integer N' such that g°K C U for all z > N'.

(i) If there exists a set X generating V| linearly and such that
lim, ., g%p = O for all p e X, then all eigenvalues of g have an absolute value
strictly smaller than 1.

! In fact, the assertion is true for any g € GL(I7); but the proof is somewhat simpler
when g is assumed to be semisimple, and we shall not make use of the general case.
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For the proof of (i), there is no loss of generality in assuming that all
cigenvalues of g belong to & and, in view of 3.2 (ii), that the basis of the
coordinate system x consists of eigenvectors of g. Then, [g[; = sup w(}),
where X runs through all eigenvalues of g. The first assertion of (i) readily
follows from this fact, and the second one 1s an obvious consequence of the
first.

To establish (ii), it suffices to observe that, with respect to a basis of 17
contained in X, the matrix representing g°, and hence the nonleading coeffi-
cients of its characteristic polynomial, tend to O as = tends to oo, from which
follows that, for sufficiently large =z, all eigenvalues of g have an absolute
value -7 1.

Lemya 3.8, Let g€ PGL(P), let K C P be a compact set and let r =R*™.

(1) Suppose that g is semisimple®, that A(g) is a point and that
KnA'(g) = @. Then, there exists an integer N such that || g ||| < v for
all = > N; and for every neighborhood U of A(g), there exists an integer N'
such that g*K C U for all z > N’.

(i) Let K denote the interior of K in P. Assume that, for some m <N,
one has g"K C K and | g™ ||| < 1. Then, A(g) is a point contained in K.

(i) is an immediate consequence of 3.7 (i), viewing P — 4'(g) as a vector
space whose point 0 is 4(g).

We now prove (it). Upon replacing g by g™, we may assume that m =- 1.
For zeN, g#"lK Cg*K C K and diam K <|lg |x|F - diam K. Therefore,
N ,en &K is a point p of K, clearly invariant by g. Let g be the representative
of g in GL(}') whose eigenvalue corresponding to p is 1. We must show
that all other eigenvalues of g have an absolute value << 1. If the eigenvalue 1
of ¢ has the multiplicity 1, there exists a hyperplane H of P stable by g and
not containing p; then, if we consider P — H as a vector space with p = 0,
the transformation g, restricted to P — H, is a linear transformation whose
eigenvalues are precisely the eigenvalues of g different from 1, and our
assertion follows from 3.7 (ii). There remains to prove that the eigenvalue 1
of g cannot have a multiplicity greater than 1. Assume the contrary, and let
I’" be a 2-dimensional subspace of V' stable by 7 and such that g, is uni-
potent. Upon replacing I by V’, P by the projective line P’ image of
I — {0} in P and K by K N P’, we may assume that 17 is 2-dimensional
and that g is unipotent. But then, it is readily verified that the hypotheses of
(it) cannot be fulfilled.

Levma 3.9, Let g € PGL(P) be semisimple, let § € GL(V') be a represeniative
of g, let 02 be the set of eigenvalues of § whose absolute value is maximum, let

2 As in 3.7 (1), this hypothesis is superfluous; cf. footnote *.
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be a neighborhood of n(K) in P.

(i) There exists an infinite set N C N such that

lim (\-1y2)° = 1

Jor all A, pe 2.
(i)  The set {|| &* 1x || = & N} is bounded.
(i) If Nisasin (i), o*K C U for almost all z ¢ N,

In view of Remark 3.4, there is no loss of generality in assuming that all
eigenvalues of g belong to £.

The assertion (i) is an immediate consequence of the fact that if A, e Q,
one has w(Aip) = 1, from which follows that the closure in k of the group
generated by A~y is compact.

Let {¢)y.5ecn1 be a basis of 7 consisting of eigenvectors of g, set
fe; == Ae; , and suppose the ¢;s indexed in such a way that @ == {A, ..., A,,}
for some m. Thus, A(g) and A'(g) correspond, respectively, to the subspaces
W = key - -+ - ke, and W' = ke, oy + - 4 ke, of 1. For i¢{0,..., n},
let 11, denote the hyperplane of P corresponding to the hyperplane of 1/
generated by the e;’s with § £ 4.

We now assume that (i1} does not hold and shall derive a contradiction. By
hypothesis, there exist sequences (2,), (2,), (¢;) with e N, %, N and p,,
g; € K such that

%L‘E d(g%p;, g7q;) - d(p;, ‘]z)nl =700, (H

Upon passing to subsequences, we may assume that {p,) tends to a point p
in K. Since d(P x P) is bounded, (1) then implies that (g;) also tends to p.
We have (.o H; — A'(g); therefore, some H, (0 <X ¢ < m) does not contain
¢ and there is no loss of generality in assuming that p ¢ H, and that p;,
g; ¢ H, for all i € N. We now consider P — H, as a vector space, taking the
canonical image of ¢, for 0, and let x denote the coordinate system in P
corresponding, in the way described in 3.1, to the linear coordinate system
with basis (¢;) in V. The restriction g, of g to D, == P — H, is a linear
transformation with eigenvalues Ag?); (1 < i < n), and the basis of x consists
of eigenvectors of g, . Hence

! Zn . -1 Ty
g0 lla, = supfw(Ag™A)} << 1.

Since d is admissible, this contradicts (1) and (ii) is proved.
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We proceed to the proof of (iii). Upon changing the choice of ¢, we may
assume that A, — 1. Let N CN be as in (1). We have

iyl for 0 <1 <Cm,

lim A = | S
zeN {0 for m -1 =20 <lng
T
therefore,
lim g*
eN s

is the projection on W with kernel 1/, and

lmin\l; gp = 7w(p) forall peP — A'(g). 2)

2o

From (i) and (2), it follows that every point p € K has a neighborhood X,
such that g#X, C U for almost all 2 € N. Since K is compact, it is covered by
finitely many X, and (iii) follows.

Lemya 3.10. Let G C PGL(P) be a group leaving no proper nonempty
linear subspace of P invariant, and let Py, P, be two linear subspaces of P,
with P, # & and P, == P. Then, the set {ge G|gP € P,} is relatively
k-open in G and not empty.

The first assertion follows from the obvious (and well-known) fact that
the set {h € PGL(P) | hP; C P,} is k-closed in PGL(P). Let p € P, . The sub-
space of P spanned by Gp is stable under G and must therefore coincide
with P. Hence, there exists g € G such that gp ¢ P, and, a fortiori, gP, P, .

ProrositioN 3.11. Let G be a k-connected subgroup of PGL(P) leaving no
proper nonempty linear subspace of P invariant. Suppose that G possesses at
least one semisimple element g such that A(g~1) is a point. Then, the set

X = {xe G| Ax) and A(x1) are points}

is k-dense in G.

Let g be as in the statement of the proposition, let § and £ be as in 3.9
and let N CN be as in 3.9 (i). Upon replacing N by a suitable subset, we
may assume that gV is k-connected.

From 3.10 and the k-irreducibility of G, it follows that the set

eGlAQ)Ta A(gnixeGlx- A T A}
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18 k-open and dense in G. Let 7 be an element of it and set

= (b A(g) v (- AQg) A ),
B = A(g) v (Alg) k- Az ),

and

UssfaeG x-A(e ) Band - d(g W v - B

Because of the conditions set on %, one has B == P and B’ — P, and 1t
follows again from 3.10 that (' 15 k-open and densc in . Set
7 = proj(4'(g), A(g)) and =" == proj(h - A'(g), h - A(g)) (cf. 3.1), and let
ueU.Onehasu - A(g )T h-A'(g)and='(u - A(g ) T A'(¢ ). Similarly,
uth - A(g )T A'(g) and w(u Y- A(g ) L h - A (g Y. Let Y (resp. ¥7)
be a compact neighborhood of A(g=Y) (resp. u=h - A(g")) such that
u- YN h-A(g)=oandr(u- Y)N A (g) = & (resp. YV N A'(g) -= &
and #(Y' )N h-A'(¢g7") == @) and let Z (resp. Z') be a compact neighbor-
hood of #'(u - ¥) (resp. w(Y")) in P whose intersection with A'(¢ 1) (resp.
h-A'(g™1)) is empty. By 3.9 (il) and 3.5, there exists a strictly positive real
number r such that

Vhgth Ty < and gyt <l

for all z € N. If 4 is a representative of z in GL(}"), the representative /gh1
of hgh™ has the same eigenvalues as g. Therefore, it follows from 3.9 (iii)
that, for almost all z € N,

hety - Y CZ and g Y'CZ. (D

By 3.8 (i), one also has, for almost all e N,
g izi<r, g ZCY 2)
Vheh U < i el 2 Cu e Y (3)

where 1" (resp. V') denotes the interior of ¥ (resp. V') in P. Let N7 be the
set of all 5 € N such that (1), (2) and (3) hold simultaneously. For all ¥ < N,
one has
ghgth - Y C Y, g=*hg*h™u |y 1 < 1,
whg=2h g7 - ¥ C Y’, N thgihg= L) < 1

hence, by 3.8 (ii),
g*hgth\ue X.

Since the set N — N’ is finite, gV is k-closed in gV, Therefore, the k-closure
X of X in G contains g—2hg*h~1u for all z € N. This being true for all e U
and U being k-dense in G, X also contains g *hg*h G == G (for z € N),

Q.E.D.
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ProrvosiTION 3.12. Let Y be a finite set of semisimple® elements of PGL(P).
Suppose that for all x €'Y, A(x) and A(x) are one-point sets and that, for
x,ve Y withx #y, one has

Ax) v AxHYCP— A'(y) — A'(y7).

Then, there exists M e N such that, for all meN greater than M, the set
Yoo fam v e Yis free in PGL(P).

Let pe P— Upey (A(x) U A'(x) U A(x"Y) U A'(x V) and let (U, , U, )er
be a svstem of subsets of P — {p} with the following properties:

U, (resp. U,') is a compact neighborhood of A(x) (resp. A(x~1));
for x, v € Y with x 5% v, one has

LU Uy CP— A(3) = ().

(Such a system obviously exists.) Then, it follows from 3.8 (i) that there
exists .1/ = N such that, for all m € N with m 2= M, the hypotheses of Propo-
sition 1.] are satisfied if one sets [ ==Y, G = PGL(P), G, = {x™* | 5 € Z}
and P, = U, U U,/. Since the groups G, are infinite cyclic, 1.1 implies our
assertion and the proposition is proved.

4. PROOF OF THE THEOREMS

Lenva 4.1, Let k be a finitely generated field and let t € k* be an element
of infinite order. Then, there exists a locally compact field k' endowed with an
absolute value « and a homomorphism o : k — k' such that w(o{t)) + 1.

Indeed, let &, be the algebraic closure of the prime field of % in £, set
ky ==k, if char & = 0 and &, == %,(f) otherwise, and let w, be an absolute
value on k, such that w{t} -+ | if 7 € k; (such an absolute value is well known
to exist; cf., e.g., [8, p. 77, Theorem 8]). Now, let T be a transcendence basis
of k over &, such that te T if t ¢ &y, and let £, be the completion of &, with
respect to w, . Since the transcendence degree of &, over &, is infinite, there
exists an injective mapping o, : T —> &, such that o,(7) is algebraically free
over &k, and that wy(oy(t)) 75 1 if & T. Let us also denote by o, the field
homomorphism ky(7") — £, which extends o, and is the identity on k.
Finally, since % is a finite algebraic extension of k,(7T'), there exists a finite
algebraic extension £ of £, and a field homomorphism o : & — & extending
a,. If w denotes the unique extension of w, to &', the requirement of the
lemma is fulfilled.

3 Asn 3.7 and 3.8, the hypothesis that the elements of Y are semisimple is in fact
superfiuous.
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Levma 4.2, Let V be a k-vector space and let H be a finitely generated
subgroup of GL(V'). Then, there exists m e N* such that, for every he Il the
group generated by W™ is k-connected.

Let us choose a k-basis in }". Upon replacing £ by the field gencrated by
the cocfhicients of the matrices representing the elements of a finite generating
set of 71, and }7 by the vector space over this field generated by the given
basis of }, we may assume that & is finitely generated. Set 4 — dim F, let
m’ € N* be such that every root of unity satistying an equation of degree d!
over £ 1s an m’~th root of unity (cf. 2.3), let p denote the characteristic exponent
of & and set m = m' - p%. We shall show that, for ge GL(I"), the group
¢"7 generated by g is k-connected. If p + 1, the clement g’ g#" is semi-
simple and g"% == g"' %2 If p = | and if g = g,g, - g,g, With g, semisimple
and g, unipotent, onc knows that the k-closure of g"%
of the k-closurcs of g% = ¢"'% and g"*
both cases, it sufhices, therefore, to prove that if s e GL(}) is sernisimple,
then the group s"'Z is k-connected. Let T be a k-torus of GL(I') containing
s and let y be any character of T vanishing on the connected component of 1

in G is the product
, and that the latter is connected. In

in the group s%; then, x(s) is a root of unity which is a monomial (with positive
or negative exponents) in the characteristic roots of s. But these cha-
racteristic roots generate an cxtension of degree at most d of £ Hence,
x(s™) == x(s)*" = 1 and s" belongs to the connected component of 1 in s%.
This implies that "%
assertion is proved.

1s the connected component in question, and our

ProrosrrioN 4.3. Let ® be a nontrivial semisimple algebraic group defined
over a field k, let G be a finitely generated dense subgroup of ®(k) and let &’
be a dense subgroup of G. Then, there exists a dense subset .S of G’ and an open
dense subset W of ® X & with the following properties:

(i) for s€ S, the group s” is connected;
(i) #fscSand ze€Z — {0}, then s € .S}
(i) if F is a finite subset of S such that (s,s')e M for all 5, 5" ¢ I with
s = 5, then, there exists M € N such that the set F* —= {s* | s € F} is free in G’
for every integer z > M.

We first notice that if S and X C G X 6 satisfy the conditions (i1), (iii)
and if m 1s as in 4.2 (for G = H), then S = {s™ | s € S} and U satisfy (i),
(i), (ii1). Therefore, it suffices to prove the existence of S and LI satisfying
(ii) and (iii).

Upon extending £ if necessary, we may assume that & possesses a k-rational
nontrivial absolutely irreducible linear representation. Let p : & — GL())
be such a representation. If S Cp(G’) and U, Cp(®) X p(®B) bave the
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properties (ii), (iil) with respect to the groups p(®) and p(G’), and 1if we set
U = U, —{(g,0) | £ep(®)}, then S == p71(Sy) and U - (p > p) 1(2U") have
these properties with respect to % and G'. Therefore, there is no loss of
generality in assuming that p is an immersion and in identifying  with p(©).

The same argument as in the proof of lemma 4.2 also allows us to assume
— at Jeast provisionally—that the ficld % is finitely generated (notice that this
restriction of the field of definition does not change the Zariski topology on
G, as was recalled in the “general conventions™). By 2.5, applied to the sub-
group G of the simple k-algebra End |7 (which is lincarly gencrated by G
because we assumed p to be absolutely irreducible), the group G possesses
only finitely many clements of finite order, hence possesses at least one semi-
simple element g of infinite order. Upon extending %, we may assume that
all eigenvalues of ¢ belong to k. At least one of them, call it A, is not a root of
unity. Applying 4.1, we may then extend % to a locally compact ficld (thus £
ceases to be finitely generated) endowed with an absolute valuc o such that
w(A) # 1. Let d be the number of cigenvalues of g with maximum absolute
value. Since detg = |, we have d £ dim }". Upon extending again # and
replacing p be a suitable composttion factor of its d-th tensor power, we may
assume that d = | (the new extension of £ might be necessary to preserve the
absolute 1rreducibility of p). Let G' operate on the projective space 2 of V.,
The relation d = | means that g has an attracting point in P (ct. 3.6). By
3.11, it follows that the sct § of all elements of G" which have an attracting
point and a repulsing point in P is dense in G'; furthermore, it obviously
has the property (ii).

Let us now define the open set U C & x & as follows: if % denotes an
algebraic closure of &£ and I* the dual of V7, on which we let (% operate by
the contragradient of the representation p, a point (v, v) € O(k) 2 G(k)
belongs to U(k) if and only if

() x and y are semisimple and have the same number of distinct
cigenvalues as the generic element of (35

(2) if v (resp. v*) is an cigenvector of & (resp. y) in F "% & (resp.
I™% (2} k) corresponding to a simple eigenvalue, then w*(z) == 0.

That these properties define an open set in & X & is casily seen. To show
that 2l is not empty, let v, y e G(k) have property (1) and let ke ..., ko,
(resp. kv *,..., kv, *) be all eigenspaces of xin V() & (resp. of y in I 55 &)
corresponding to simple cigenvalues of & (resp. y). Because of the
absolute irreducibility of the representation p, the functions ¢;; @ §(k) — &
(i, je{l,..., r}) defined by ¢;(u) = v, *(uz,) arc not identically zero. Now,
if u e G(k) is such that all g, () are different from 0, one has (uau=1, y) € 1,
hence 2 -~ @, Since .S and U have the property (iii) by virtue of 3.12, the
proof is complete.

481,20 2-5
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4.4. In this subsection, all algebraic groups are defined over some alge-
braically closed field k, and an algebraic group and its group of &-rational
points are denoted by the same symbol.

PROPOSITION.  Let G be a semisimple algebraic group, T a maximal torus of G
and S a subtorus whose centralizer in G is T. Then, the union of all closed
connected proper subgroups of G containing S is nowhere dense in G.

Let .47 (resp. Z) stand for “normalizer (resp. centralizer) in G, Let .\
be the union of all proper connected subgroups of G containing 77 there are
only finitely many such subgroups {cf. {1, 3.4]); therefore X is nowhere dense
m G. Set Y, — {nSn! | ne A(T)} and let -9 be the set of all proper subtori
of T generated by a subset of .% containing S; since A (1)/T is finite, so is
the set %, and hence also the set .. For 8" ¢ ., let Y- denote the closure
of the union of all conjugates of S in G. It is known that every regular
function on T invariant by the Wevl group extends to a regular function on G
mvariant by inner automorphisms; since there obviously exists a nonzero

a7

G

regular function on 7 invariant by the Wevl group and vanishing on 57, it
follows that Y is nowhere dense in G, and the same holds for the set
Voo Ugesr Vo

We shall show that every closed connected proper subgroup /{ of G con-
taining 5 1s contained in X' U Y5 this will prove the proposition. We may of
course assume that H is maximal among the connected proper subgroups
of G. If I 1s parabolic, the centralizer of S in /I must contain a maximal
torus of G since Z(S) =- T, this means that 7C H, hence HC X\, If /] is
not parabolic, it is reductive [2, 3.3] and even semisimple because, if its
connected center ' were not trivial, one would have H == Z(C) (by the
maximality assumption) which is impossible since .Z(C') is properly con-
tained in a parabolic subgroup [1, 4.15]. Let, therefore, IT be semisimple.
Then, 77 = HN T 1s a maximal torus of I{. Since N = A4(T)NH
normalizes 77, it also normalizes Z(7") - T. The torus S" € . generated by
all 7S 1 with 7€ N is a subtorus of 77 normalized by N'. It is casy to see
that this implies that 5" is a maximal torus of some normal subgroup of /1.
Since, furthermore, Z(S) N H 7", one must have S’ == T". But the
union of the conjugates of 7" in I{ is dense in I{; therefore, HC Y5, C Y
which completes the proof.

Remark. 1t can be shown that the above proposition remains valid if one
replaces the condition T' == Z(S) by the weaker hypothesis that .S is not
contained is any proper normal subgroup of G.

4.5. Proof of the Theorems 3 and 4.

Let  be a semisimple group defined over & and let G be a dense subgroup
of ®(k). Let &, be the smallest connected normal subgroup of ¢ containing
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a power (with exponent =~ 0) of every element of G. We shall show -this
is clearly sufficient—that the assertions (ii) to (vi) of Theorem 4 hold regard-
less of the characteristic of &, and that

(vir) 1if char k = 0, one has &, = ®.

Proof of (iv), (v) and (vi1). Upon replacing & by ®/®, and G by its
canonical image in (6/®,)(k), we may assume that &, = {I}, which also
means that G is a torsion group. Let (p, : ® — GL(F)) (7 == 1,...,m) be a
system of k-irreducible k-rational linear representations of G such that the
direct sum p of the p,’s is an immersion of & in GL([ ], V/;) (the existence
of such a system of representations immediately follows from the representa-
tion theory as it is exposed for instance in [7]). If char & = 0, p,(G) possesses
an abelian subgroup of finite index, by Schur’s theorem [4, p. 258]; since
it is dense in the semisimple group p,(G), this means that p,(®) - {1} for

If char k =% 0, each space I'; has a basis B, with respect to which all elements
of p,(G) are represented by matrices with coeflicients in the algebraic closure
k, of the prime field of % in k& (cf. 2.8). The union of all B,’s is a basis of
117, 1 and if we denote by I, the k,-vector space it generates, we have
(with obvious identifications) p(G) C GL(V,)(k,). The closure ®, of p(G)
in HL(17,), which is an algebraic group defined over k&, , and the representa-
tion p, considered as a k-isomorphism of (% onto §,, , satisfy the requirements
of (iv). Finally, (v) is an obvious consequence of (iv).

Proof of (11). For dimension reason, there exists a largest connected sub-
group , of & which is the closure of a finitely generated subgroup of G.
Since G is dense in ®, &, is normal in . Let G, be a finitely gencrated
subgroup of G, dense in 6, . For any g € G, there exists m ¢ N* such that
g" generates a connected group, which implies that g” € &, . Therefore,
%, C ®,. On the other hand, the image G, of G, in (6/6,)(k) is finitely
generated, hence finite by (v). Since G, is dense in (5, , which is connected,
G, is connected. Therefore, G, = {1} and &, C ®, , which establishes (ii).

Proof of (vi). We may of course assume that & = &, and, by (ii), that
G is finitely generated. We first show that
(vi") every subgroup G’ of G which is dense in G(k) has a free subset
{x, '} consisting of two semisimple regular elements such that the groups
&%, a"% are connected and that the free group they generate is dense in (k).
Indeed, let S, Ul be as in 4.3, let U, , U, be the two projections of U in &
and let se€.S MU, N2, be semisimple and regular. Further, let s he a
regular semisimple element of S such that (s, s') € U, (s, 5) € 1 and that no
proper connected closed subgroup of G contains both s and s ; such an s’
exists because all conditions we are imposing on it are satisfied in open dense
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subsets of G (for the last condition, this follows from 4.4). Since % and s'%
are connected, the group generated by s and s” is connected and hence dense
in (k). Let m e N* be such that {s7, s} is free (cf. 4.3 (iii)) and sct & - g™
and & 5" Since 2% (resp. a'%) is of finite index in the connected group s*
(resp. s'7) the groups &% and s (resp. &% and %) have the same closure;
this implies that x, &7 are regular and that the group they generate is dense
in (%), which proves (vi').

Upon replacing G by a dense, finitely generated free subgroup - -we just
showed that such a subgroup exists—we may assume that G itself is free and
finttely generated. Let G be the commutator subgroup of G (which is dense
in (%) and is a free group with countably many gencrators), let {x, v"! C G’
be as in (vi') and let . be the set of all free subsets .\ of G7 containing
{a, A"} and such that every element of \ is regular, semisimple, and gencrates
a connected group and that every pair of elements of X generates a densc
subgroup of H(k). Let I be a maximal element of # | which exists by Zorn’s
lemma. We shall show that ' is infinite. Suppose that it is not, let L be the
group it generates, let ve G' ~ F be such that # U { v} is free and let m e N
be such that, for every element 2 of the group generated bv F U {yt, o7%
is connected (4.2). Theset (yL)” - {(yu)” - u =L} is dense in B(k); therefore,
by 4.4, there exists u e L such that (yu)” is regular, semisimple and gencrates
with cach element of I a dense subgroup of (k). The set F'U { vu! is free,
hence also IO {(3u)™}. Since (yu)” ¢ I, this contradicts the maximality

assumption on I, and proves (v1).

Proof of (in).  Clearly, G{(G n 6y(k)) contains no nontrivial {ree group.
So that we only have to show that if § is a k-closed normal subgroup of 6
and if G/(G N H(k)) has no non-abelian free subgroup, then &, C§H.
We may of course assume that § 1s connected and, upon passing to the
quotient by ;N 9, that ®; N H == {I}. Then, the canonical mapping
G > G(G N H(k)) is injective on G N B,(k), and 1t follows from (vi) that
(UMESNS

4.6.  Proof of Theorem 1. Let G CGL(I") be a linear group over &, of
characteristic 0, ¢ the closure of G in (1), ®° the connected component
of 1 in ®, and N the radical of GB°. If B - . R, G N GOk) is a solvable sub-
group of finite index in G. Otherwise, /R is a nontrivial semisimple group,
the canonical image of G N ®Yk) in (BY/M)(X) contains a non-abelian free
group (by Theorem 3) and so does also G. The theorem is proved.

4.7.  Proof of Theorem 2. The implication (ii) =- (1) is obvious.

To show that (ii1) implies (1), we may assume that G == G'. Let R denote
the normal subgroup of G which consists of all elements inducing in each
composition factor 1”7 of the A[G]-module 7 a scalar multiplication by an
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element of the corresponding endomorphism ring £ Then, R is solvable
and the hypotheses of (iii) imply that G/R is locally finite. The assertion (i)
follows.

There remains to prove that (1) implies (i) and (1ii). Let us, therefore,
assume that G contains no non-abelian free group, let 6 denote the closure
of G in ®Y(I7) and let N be the radical of the connected component of 1
in . Then, G NN = R is a solvable normal subgroup in G and it follows
from ‘Theorem 4 that GR, which is the canonical image of G in /R, is
locally finite. This establishes (ii).

To prove (i), we may, upon replacing G by a subgroup of finite index,
assumec that G is k-connected. We shall then show that (iii) holds for G* .= G.
To this effect, it clearly sufhces to consider the case, where 17 == 7" (z.e., V' is
a simpie £{G}-module) and where % is the center of the ring £" of Z[G]-endo-
morphisms of 7 (just replace & by this center; the connectedness of G is
clearly unaffected). Under these conditions, £ is a central division algebra,
from which follows that, if % denotes an algebraic closure of %, the k[G]-
module 7k is a direct sum of isomorphic simple modules. Therefore,
the closure 6 of G in HL(V) is a reductive group and its connected center is
cither {1} or the (algebraic) group of scalar multiplications. Let G, and 6,
denote the commutator groups of G and &, respectively; (5, is also the
closure of Gy in GL(V). From what we have just seen, it follows that, as a
subgroup of GL(V), 6, is a k-irreducible linear (algebraic) group; therefore,
I71s also simple as a k[G,;]-module. Since §; is semisimple and G, contains
no non-abelian free group, it follows from Theorem 4 that G, is a torsion
group and from 2.8 that }7 possesses a basis B with respect to which the
elements of G are represented by matrices with coefficients in the algebraic
closure k, of the prime field of & in k. Clearly, k' = Endg V7 has a k-basis
consisting also of endomorphisms represented by matrices with coeflicients
in k,. Since &, 15 an algebraic extension of a finite ficld, there is no non-
commutative division algebra over it, and we must have &' == k.

We now endow the group POL(V) with the natural k, -structure associated
with the basis B, and call & the canonical image of & in PGLYV). The
group B is semisimple and the canonical images PG and PG, of G and
G, in BG(k) are dense. Since PG contains no non-abelian free group, it
follows from Theorem 4 that there exists an algebraic group ‘B, defined
over k, and a k-isomorphism ¢ : PG, — PG such that PG C o(PG(%,)).
The inverse image of PG, under o is dense in BB, (k,) and is mapped by
o into POL(17)(k,). This shows that the homomorphism B, — PGHL(F)
obtained by composing ¢ and the canonical inclusion P® — BGL(V) is
defined over &, . But then, PG C o('BG, (k) C PGBL(V)(k,), which means
that the matrices representing the elements of G arc scalar multiples of
matrices with coeflicients in &, | Q.E.D.
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Remark 4.8. It would of course be possible to prove the Theorems | and

2 more directly, without passing through the Theorems 3 and 4. Notice, in
particular, that the density assertions of these theorems (and hence the

Pr

oposition 4.4) have not been used in 5.7 and 5.8.
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