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INTRODUCTION: STATE~IENT or THE \~AIN RESULTS 

The main purpose of this paper is to prove the following theorem which 
has been conjectured by H. Bass and J.-I’. Serre: 

THEOREM 1. Over a field of characteristic 0, a liaear group either has a 
non-abelian free subgroup or possesses a solvable subgroup of jinite index. 

This is no longer true over a field of characteristic -7:: 0, as is shown by the 
example of the full linear group over an infinite algebraic extension of a 
finite field. However, Theorem 2 shows that this example is in some sense 
universal. 

rrHEOREkI 2. Let V be a vector space ozler aJTeld k of characteristic d#erent 
from 0 and let G be a subgroup of GL(V). Then, the following three properties 
are equivalent. 

(i) H contains no non-abelian free group. 

(ii) G has a solvable normal subgroup R such that G,‘R is locally .fnite 
(i.e., every jinite subset generates a$nite subgroup). 

(iii) G possesses a subgroup G’ of finite index such that if V’ denotes any 
composition factor of the k[G’]-module V and k’ the endomorphism ring of V’ 
(i.e., the centralizer of G’ in End,L V’), then k’ is a jield and V’ has a k’-basis 
with respect to which the matrices representing the elements of G’ are scalar 
multiples (by elements of k’) f o matrices whose entries are algebraic over the 
prime field of k. 

If the Zariski closure of the group in question in Theorem 1 is semisimple 
and =#= {l}, the theorem states that this group always contains a non-abelian 
free group. More precisely, we shall establish the 
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THEOREM 3. Let Q be a nontrivial semisimple algebraic group defined over a 
jield k of characteristic 0 and let G be a (Zariski) k-dense subgroup of K(k). 
Then G has a countable free subset F such that every element qf F generates a 
k-connected subgroup of %(J ) 2 and that ecevy paiF of elements ofFgenerates a 

k-dense subgroup of 6(k). 

(&k subset F of a group G is said to he,fkee if the inclusion F--k G extends 
to an injective homomorphism of the free group generated by F into G). 

The corresponding result in characteristic not 0 is the 

‘I‘HEOREYI 4. Let 6 be a nont~~v~aJ se~~l~s~~nple algebraic group defined over 
a j?eld I2 of characteristic &rerent from 0, let G be a k-dense subgroup of 6(k) 
and Jet k, denote the algebraic closure of the prime field of k in k. Then, 6 has 
a normal k-subgroup (CI which is characterized by any one of the foEJowing three 
properties: 

(i) &, is tlze s?naJJest normal subgroup of 6 such that every element of G 
has a power in 6, ; 

(ii) 6, is the largest connected subgroup of 6 which is the k-closure of a 
JiniteJy generated subgroup of 6; 

(iii) 6, is tke sndest k-cJosed normal sub~~you~ of (5 such that 
GI(G n 6,(k)) contains no ?lon-abelia?~ free poup. 

Furthermore: 

(iv) tlzeve exists an algebraic semisimple group CSi, de$ned ovey k, and a 
k-isomorphism (S/O,) -+ 8, mapping the canonical image of G in (6&)(k) 
into Q,(k,); 

(v) the quotient G/(G n Q,(k)) is Zocah’y Jinite; 

(vi) if 8, # (I}, the gwup G n 6>,(k) h as a countable free subset F suclt 
that every element of F generates a k-connected group and that every pair of 
elements ?f.FLrenerates a J+dense subgroup of 65,(k). 

%-e now state a few immediate corollaries of Theorems 1 and 2, 

COROLLARY 1. A finitely generated linear group either contains a non- 
uhelian free group or has a solvable subgroup of finite index. 

The following assertion, due to H. Zassenhaus [lo], is a direct consequence 
of the preceding corollary and of Lemma 2 of [lo]: 

COROLLARY 2 (Zassenhaus). Every noetherian linear group has a poly- 
cyclic subgroup of finite index. 
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COROLLARE. 3 (Platonov [6]). Let G be a linear group over a field of charac- 
teristic 0. If there exists an integer n such that eseyy finitely generated subgroup of 
G isgenerated by n elements, the group G has a solvable subgroup of finite index. 

(In [6], this is proved for any characteristic.) 

COROLLARY 4. A finitely generated linear group without nontrivial identities 
contains a non-abelian free group. 

(For related results which can also be deduced from the above theorems; 
cf. also Platonov [5]). 

By a result of J. Nilnor and J. Woolf (cf. [9, p. 4211) Corollary 1 also 
implies 

COROLLARY 5. The growth of a finitely generated linear group is either 
polynomial OY exponential. 

The Corollaries 2 and 5 have been pointed out to me by H. Bass and the 
Corollaries 3 and 4 (and again Corollary 2) by 1’. I’. Platonov. I am also indebted 
to H. Bass for several very useful discussions on the subject of this paper; 
in fact, some essential ingredients of the proofs-such as the idea of special- 
izing to locally compact fields for instance-are for a large part due to him. 

In this paper, k always denotes a (commutative) field. If L’ is a vector 
space over k and P its projective space, we denote by GL(V) the automor- 
phism group of I’, by PGL(V) or PGL(P) the quotient of GL(I,‘) by its 
center and by W?(V) and !QC!je( V) = $MX?(P) the corresponding 
k-algebraic groups (for instance, fGQ(V) is defined by CM!(Y)(Z) =: 
Aut,(V’ 0 1) for every k-algebra 1). If p : (5 --f 5 is a K-homomorphism of 
algebraic groups, we also denote by p the homomorphism p(Z) : G(1) - s(l) 
for any field extension 1 of IL 

We shall often have to deal simultaneously with different topologies on a 
same set. Except in Section 3, where another conl;ention will be made (cf. 3.1), 
the words “connected”, “closure”, “dense” etc., used without further 
specification, will always refer to the Zariski topology (or the topology it 
induces on sets of rational points). However, we shall also sometimes be 
more explicit and use such expressions as “K-connected”, “k-closure”, etc., 
even at places where the above general convention would dispense us of this 
precision. To understand this convention properly, it should also bc remem- 
bered that if X is a variety defined over k and if I is a field extension of f:, 
the restriction of the Z-topology to the set X(h) coincides with the k-topology 
on this set. 
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1. A CRITERION OF FREEDOM 

PROPOSITION 1.1(*). Let P be a set, I an index set, G a group operating on P 
on the left, (G&, a family f bg o su YOU s p g enerating G, (P&, a family of subsets 
OfPandpapointofP-&Pi.A ssume that fey all i, j E I with i #: J’ and 
all g E G, - {l}, one has g(P, u {p}) C Pi , Then G is the free product of the 
subgroups Gi (i E I). 

Indeed, let n E N* and, for s E {I ,..., n}, let i, ~1 and E,~ E G,$ - {I}. 
Assume that i, # i,?-, for s f 1. Then one has, by induction on s, 

kg-, . gl)(p) E P?, . Hence (g,g,-, ‘. gl)(p) + P, and g,g,-, . . g, f 1, 
QED. 

Remark 1.2. Conversely, let Gi (i E I) be any system of groups and let G 
be their free product. For i E I, let Pi be the set of all nonneutral elements of 
G whose expression as shortest possible words in the elements of the Gj’s 
(j E 1) starts with an element of Gi . Set P = G, p = 1, and let G operate on 
itself by left translations. Then, the hypotheses of the above proposition are 
fullfilled. 

2. LINEAR GROCPS WITH DEKSE TORSION SETS 

In this section, we slightly generalize a well-known theorem of Schur 
[4, p. 2521. For a large part, our arguments reproduce those of Burnside and 
Schur as they are found in [4], but for the convenience of the reader, we expose 
them in full, adapting them somewhat to our purpose. 

2.1. In this section, A denotes a finite-dimensional simple k-algebra, 1 its 
center, h : ~1 -j 1 the generic tract of A, considered as an l-algebra, n :-= d2 
the dimension of A over 1, G a subgroup of the multiplicative group of all 
invertible elements of n such that G generates A linearly over k and T the 
set of all elements of finite order of G. 

LEimL4 2.2. Let(gi)lGiGn be an l-basis of A consisting of elements of G. Then, 
there exists an l-basis (ei)l<iGn of A such that one has, for ezery subset CJ of G 

f) (;:9T1Cf A(I;).ei 
i -1 2=1 

and, in particular, 

GCi X(G).e,. 
z-1 

(*) Added in proof. Ii. Lyndon has pointed out to the author that a similar criterion 
has been given by A. Macbeath [Proc. Cambridge Philos. SOC. 59 (1963), 555-5581. 
Cf. also R. Lyndon and J. Ullman [Michigan Math. J. 15 (1968), 161-1661, where 
an observation similar to our Remark 1.2 is made. 
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It suffices to take for (ez)rzacGn the dual basis of the basis (g,) with respect 
to the bilinear form (x, y) t+ ;\(~y) which IS nondegenerate [3, $12, Roposi- 
tion 91. Indeed, ifg E fly=, Ug;‘, one has 

LEMRIA 2.3. Let k, be a finitely genesatedfield and m E N. Then, there are 
only finitely many roots of unity satisfying an equation of degree m over k, . 

Let h be the prime field of k, , t a transcendence basis of k, over h, 
nz, =- [k, : k(t)], 6 a root of unity satisfying an equation of degree ~7 over k, 
and h’ the algebraic closure of h in k,([). Then, one has 

[h(t) : h] < [h’ : h] = [h’(t) : h(t)] < [k,(t) : h(t)] < m [k, : h(t)] : nzn~ 

But the number of roots of unity with bounded degree over a prime field is 
known to be finite. This proves our assertion. 

LEMMA 2.4. Suppose that G is $nitely generated. Then A( 1’) is jnite. 

Let I, be a field-extension of 1 which splits the l-algebra rl, set “1, --: ;I @& /r 
and let V be a simple A,-module. We identify A with its canonical image 
A @ 1 in /i, and choose an I,-basis in 17; thus, the elements x of G are 
represented by matrices, A(X) being the trace of the matrix representing X. 
Let 1, be the subfield of lr generated by all entries of the matrices representing 
the elements of a finite generating set of G. Then, all elements of G are 
represented by matrices with coefficients in 1, . By 2.3, the characteristic 
roots of an element of T must belong to a fixed finite set, and our assertion 
follows readily. 

PROPOSITION 2.5. Suppose G is finitely generated and T is k-dense in G. 
Then, G is finite. 

As an I-vector space, A carries an Z-topology, not to be confounded with the 
restriction to A of the I-topology of A Or 1: the latter coincides with the 
&topology on A, whereas the former is coarser. Anyway, T is also dense in G 
for the Z-topology in question, and there is no loss of generality in assuming 
that k = 1. By 2.4, X(T) is finite. Since h is continuous, this implies that 
X(G) == h(T), and our assertion follows from Lemma 2.2. 

LEMMA 2.6. Let 7 be a topology on A, making a topological ring out of it, 
X a (Zariski) dense relatively open subset of G and % a set of subgroups of G. 
Suppose that the subgroup of G generated by any element of 2 and any element 
of G also belongs to A?, and that, for all HE 2, the Y-closure of h(H n X) 
is F-compact. Then, tlze Jr-closure of every element of .X is Jr-compact. 
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Let St 3 e, (1 -< i < n) be as in 2.2, set Y = n:Li Xg;‘, and let 
g, E I’. It suffices to show that if HE 3 contains g, , g, ,..., g, , then 
the y-closure of H is compact. Setting U = H n X, we have, by 2.2, 
H n I’ C C,“=, h(U) * e, . Therefore, the r-closure of H n Y is compact. 
Then, our assertion follows from the fact that, H being k-compact and 
if n I- being relatively open in it, I-I is the union of finitely many translates 
of H n I-. 

Remark 2.7. The above lemma will be used only in the case where r 
is the discrete topology. However, to assume 9 discrete would not simplify 
the proof and the lemma may be useful in its given form. For instance, let &4 
be locally compact Hausdorff for r and let D be the set of all elements of G 
which generate a r-discrete infinite subgroup; then it follows from the lemma 
that if D is nowhere (Zariski) dense in G, the y-closure of G is r-compact 
(set II = [G} and choose XC G - D; the r-closure of h(X) is y-compact 
because the elements of h(X) are sums of n topological roots of unity), 

PROPOSITIOK 2.8. Suppose that T contains a relatively open dense subset 
of G. Then G is locally finite (hence G = T). Suppose further that char k ;I= 0, 
let I7 be a simple A-module and let k, be the algebraic closure of the prime jield 
of fz in k. Tlzen, V has a k-basis with respect to which the elements of G are 
represented by matrices with coe&ien.ts in k, . 

The first assertion is an immediate consequence of the preceding lemma, 
taking for .3 the discrete topology, for X an open dense subset of G contained 
in T, and for X the set of all finitely generated subgroups of G; the 
9--compactness (i.e., the finiteness) of h(H n S) for HE &? is ensured by 
2.4. 

Let I, be the algebraic closure of the prime field of k in 1 and let B (resp. 
B,) be the subring of A generated by k, (resp. 1,) and G. Since G -= T, the 
characteristic roots of all elements of G are roots of unity; therefore A(G) C 1, . 
By 2.2, it follows that G C xy=, 2, . e, . For dimension reason, this implies 
that 13, = x7=, 1, . e, . Since G generates z4 over k, we have 

[B : k,] 2 [A : fz] > [A : I] . [I : k] > [B, : f,] . [I, : kn] > [B, : k,]. 

Therefore, B, = B and all the above inequalities are equalities. In particular, 
[l : k] = [la : k,] and [B : k,] = [-4 : k], which means that A = B olc, k. 

Non-, suppose that char k f 0. Then, 1, is an algebraic extension of a 
finite field and B is a full matrix algebra over I, . Denoting by VTa a simple 
B-module, we have 

dirnJcnV, = d . [I, : A,] = d . [I : k] = dim,P; 

hence C’ = r/, $Jka k, which proves our second assertion, 
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3. ATTRACTING AND REPULSING POIKTS 

3.1. iVotations. In this section, k is a locally compact field endowed 
with an absolute value w, V an (B + 1)-dimensional vector space 
over lz, and P the projective space of V. The unique extension of w to 
any algebraic extension of the field h is also called W. The join of two 
linear subspaces X, Y of P is denoted by X v Y-;; if X n Y = o and 
X v I’ = P, we denote by proj(X, Y) the mapping rr : P - S- I; defined 
by {n(p)) = (X v {p}) n Y. 

The spaces I’ and P are endowed with their topology deduced in the usual 
way from that of h: the topology of V is the product topology for some 
identification V % lin+l and the topology of P is the quotient topology of 
that of I,’ - (0). All through Section 3, the words “open”, i’neighborhood”, 
“compact” etc. refer to the topologies in question here; for the Zariski topology, 
we use the expressions “k-open”, “k-neighborhood”, etc. It is known that P 
is compact and that its linear subspaces are closed. 

If x ;= (x1 ,..., 3~~~‘) is an affine coordinate system in some k-affine space A 
(or, in particular, a linear coordinate system in a vector space), we denote by 
d, : A x 24 + R the function defined by 

If 5 = (5, ,‘“, 6,) is a (linear) coordinate system in P, the equation to = 0 
defines a hyperplane H of P and xi = [;‘ti can be viewed as a function on 
P - H. Any such system x = (x1 ,... , x,) will be called an afine coordinate 
system in P, and we shall denote by D, its “domain of definition” P - H. 

Let X be a set, Y a subset, 6 : X >: X- R, a function such that 
S(p, q) = 0 iff p = q and a: : Y---f X a mapping. Then, we denote by j/ 01 iI6 
the “norm of 01 with respect to S”, that is, the number 

(= 0 if card Y < 1). 

LEMMA 3.2. (i) If x, y are tzo coordinate systems in P and ;fK C D, n D, 
is a compact set, there exist strictly positive constants m, ME Rz such that 

m . 4iKXK < 4, LW < M .d, IK~K . 

(ii) If x, y are two a&e coordinate systems in an a&e space K over k, 
there exist m, ME Rz such that 

m . d, S, d, -,< M . d, 
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SVe shall prove both assertions simultaneously, setting D, = D, == K in 
case (ii). It clearly suffices to show the existence of M such that the second 
inequality holds. For 1 < i ,< n, the function yi lDznDy can be written as 
#;‘F~ , where yi and z,!~~ are linear combinations of 1 and the xi’s (in case (ii), 
tii = 1). Therefore, we only have to prove that, if 9, rl, are two linear combi- 
nations of 1 and the x$‘s and if 0 6 G(K), then th ere exists a positive constant 
lL2’ E R, such that 

i 
P(P) w & -@j - 41,(q) 1 < M’ . dZ(P> 4) for p, q E K, 

or, equivalently (since w 0 # is bounded away from 0 on R), that there exists 
Al” t R, such that 

4dP) #J(4) - 4(P) 47)) = 4f(PMd - YxP>) + 4(P)(dP) - d.4)) d 
< M” . d,(p, q). 

But it is easily verified that there exist constants AZ” and AZ”” in R, such that 

4P(P) - PM) < M” . UPS 4) and 44”(P) - c44N G iwM .4liP, 4). 

Therefore, the existence of M” follows from the fact that in case (i) both 
w o 9 and u o $ are bounded on K, and that in case (ii) 1,4 is constant (hence 

!fYP) - #(4) = 0). 

3.3. Admissible distance functions. 

We shall say that a distance d : P x P + R, is admissible if it defines a 
metric compatible with the topology of P and if, for every affine coordinate 
system x in P and every compact subset K of D, , there exist m, ME R$ 
such that 

If k = R or C, any elliptic metric on P obviously has this property. To 
show that such a distance d also exists when w is non-archimedian, let 
us decompose P in compact disjoint open subsets K(j) (j = l,..., N) such 
that each K(j) is contained in the domain of definition of some affine coor- 
dinate system x(j), set dj = dzC3, and d = sup((Jj d,(Ko) x K(j))), and 
defined: P x P+R+by 

if (p, q) E K(j) x K(j) 
if (p, q) E K’j’ 

x K(f) with i f j‘. 

It readily follows from 3.2 that d is admissible. 
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In the sequel of Section 3, we choose once and for all an admissible distance d, 
zce call norm the norm relative to d and we set 11 Ij 1; I’d. 

Kemarlz 3.4. Let k’ be a finite algebraic extension of iz, V’ ~2 F7 @I: lz’ 
and P’ the projective space of I”. Let us identify P with its canonical image 
in P’. The above definitions also apply to P’ and it is clear that the restriction 
to P >: P of an admissible distance P’ ’ P’ -+ R+ is admissible. It is not 
obvious that, conversely, every admissible distance on P >: P can be extended 
“admissibly” to P’ x 1”. But whenever an assertion to be proved does not 
depend on the special choice of d, wc may assume, without loss of generality, 
that n extends to an admissible distance on P’ :< P’. 

LEMhIA 3.5. .-I projective tmnsformation of P has finite norm. 

This is an immediate consequence of the fact that, ifg is such a transforma- 
tion, the distance function (9, 4) i+ d(gp, gy) is admissible. 

3.6. Attracting and repulsing subspaces. 

To every projective transformationg C- PG:L(P), we shall associate two linear 
subspaces A(g) and A’(g) of P d e ne fi d as follows. Let g be a representative 
of g in G1,( F.) and letf(t) == ny=, (t - A,) E lz[t] be its characteristic polyno- 
mial; set R = {Ai i o(XJ y sup{w(h,)i 1 -1 j <:I nj}, fi(t) = nALER (t - A;) 

ad f,,(t) :-- lYIn,tn (t - 41, so that f(t) = fi(t) f2(t). It is easily seen that 
fi(t), f2(t) E h[t]. Finally, we define .-J(g) and A’(g) as the subspaces of P 
which correspond to the kernels of f,(g) and ja(g), respectively. It is well 
known that T; is the direct sum of these two kernels; therefore, 
A(g) n A’(g) = ;: and A(g) v A’(g) 1’. JYe call -3(g) (resp. A@‘)) the 
attracting (resp. repulsing) subspace of g; if it is reduced to a point, we say 
that g has an attracting (resp. repulsing) point. 

LEMMA 3.7. Let ITI be a vector space over k, .I^ a (linear) coordinate system 
in LY 1 , g a linear transformation of liI and Y a strictly positive real number. 

(i) If g is semisimple and ;f all its eigenvalues have an absolute value 
strictly smaller than 1, there exists an integer -v such that !]g” Iid < r for all 
z > N. Given a compact set KC VI and a neighborhood U of 0 tieye esists an 
integer AvN’ such that gZK C U for all z > N'. 

(ii) If there exists a set X genevatirzg bTI linearly and such that 
limzim gzp = 0 for all p E X, then all eigenvalues of g have an absolute value 
strictly smaller than 1. 

’ In fact, the assertim is true for any g C- GL( L-); but the proof is somewhat simpler 
when 6 is assumed to be scmisimple, and we shall not make use of the general case. 



For the proof of (i), there is no loss of generality in assuming that all 
eigcnvalues of g belong to k and, in view of 3.2 (ii), that the basis of the 
coordinate system x consists of eigenvectors of g. Then, ‘/g l‘d, = sup w(X), 
whcrc X runs through all eigenvalues of g. The first assertion of (i) readilv 
follows from this fact, and the second one is an obvious consequence of the 
first. 

To establish (ii), it suffices to observe that, with respect to a basis of IV1 
contained in X, the matrix representing g”, and hence the nonleading coeffi- 
cients of its characteristic polynomial, tend to 0 as B tends to r?, from which 
follows that, for sufficiently large z, all eigcnvalues of ,y’ have an absolute 
value : 1 . 

I.EAIMA 3.8. Let g E PGL(P), let K C P be a comp:wt set and let Y IF R: . 

(i) Suppose that g is semisimple”, that d(g) is a point and that 
K n --I’(g) =-: 2. Then, there exists un integer N such that 11 g” JK Ii < I’ ,for 
all 2 > AT; and for every neighborhood U of -4(g), there exists an integer -V’ 
such that g2K C U for all x > N’. 

(ii) Let k? d en0 e t ae interior of K in P. Assume that, for some m E N, t I 
one has g”‘h’ C A7 and ,j g”” jK 11 < 1. Then, A(g) is a point contained in I?. 

(i) is an immediate consequence of 3.7 (i), viewing P - -4’(g) as a vector 
space whose point 0 is A(g). 

We now prove (ii). Upon replacing g by gnl, we may assume that m =: 1. 
For z E N, gZ+lK C y”K C I? and diam g”K < /I g IK 11’ diam K. Therefore, ‘ 
n ztN g’k’ is a point p of I?, clearly invariant by g. Let g be the representative 
of g in GL( L’) whose eigenvalue corresponding to p is 1. We must show 
that all other eigenvalues of g have an absolute value < I. If the eigenvalue 1 
of s has the multiplicity 1, there exists a hyperplane N of P stable by g and 
not containing p; then, if we consider P - N as a vector space with p := 0, 
the transformation g, restricted to P - H, is a linear transformation whose 
eigenvalues are precisely the eigenvalues of # different from 1, and our 
assertion follows from 3.7 (ii). There remains to prove that the eigenvalue 1 
of g cannot have a multiplicity greater than 1. Assume the contrary, and let 
V’ be a 2-dimensional subspace of V stable by S and such that s iv, is uni- 
potent. Upon replacing V by V’, P by the projective line P’ image of 
I,” - (0) in P and K by K n P’, we may assume that V is 2-dimensional 
and that g is unipotent. But then, it is readily verified that the hypotheses of 
(ii) cannot be fulfilled. 

LEMAIA 3.9. Let g E PGL(P) be semisimple, let g E GL( V) be a representative 
of g, let .Q be the set of eigenvalues of g whose absolute value is maximum, let 

z :Is in 3.7 (i), this hypothesis is superfluous; cf. footnote I. 
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K be a compact subset aj P - A’(g), t se 37 ;= proj(L4’(g), --l(g)), and let 0 
be a neighborhood of n(K) in P. 

(i) There exists an i@ite set A: C N such that 

fey all A, p E 9. 

(ii) The set (11 gz jK ‘1 ; z E NJ is bounded. 

(iii) Ij ,2‘ is as in (i), Q”K C L7fw alwzost all z E ?J. 

In view of Remark 3.4, there is no loss of generality in assuming that all 
eigenvalues of g belong to k. 

The assertion (i) is an immediate consequence of the fact that if A, p E $2, 
one has w(A lp) = 1, from which follows that the closure in k of the group 
generated by A-$ is compact. 

Let (e,),, -jcn , 1 bc a basis of I’ consisting of cigcnvectors of <y; set 
gei z~ h,e, , and suppose the ei’s indexed in such a way that Q --:I (A, ,..., A,,,) 
for some VZ. Thus, A(g) and A4’(g) correspond, respectively, to the subspaces 
TV = ke,, +- ... -j- ke,,, and II” he,,,, !1 +- ... .I.- ke,, of II’. For it {O ,..., n}, 
let Hi denote the hyperplanc of P corresponding to the hyperplane of I,? 
generated by the pj’s with j ,L i. 

1\‘e now assume that (ii) does not hold and shall derive a contradiction. By 
hypothesis, there exist seyucnccs (z,), (pi), ((li) with i t N, zyyi E N and pi , 
q, E K such that 

Upon passing to subsequences, we may assume that (pl) tends to a point p 
in K. Since d(P x P) is bounded, (1) then implies that (qi) also tends to p, 
We have fir;, Hi m: A’(g); therefore, some H, (0 1, i . . nz) does not contain 
p and there is no loss of generality in assuming that p $ E&, and that pi , 
qj 6 fI#, for all i E N. We now consider P ~- I$<, as a vector space, taking the 

canonical image of e, for 0, and let s denote the coordinate system in P 
corresponding, in the way described in 3.1, to the linear coordinate system 
with basis (e,) in I’. The restriction go of g to D, = P - fIO is a linear 
transformation with eigenvalues Air& (1 2:: i ‘.:r E), and the basis of x consists 
of eigenvectors of g, . Hence 

Since d is admissible, this contradicts (I) and (ii) is proved. 
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iYe proceed to the proof of (iii). Upon changing the choice of c, we may 
assume that A0 1 1. Let i\’ C N be as in (i). i\‘e have 

is the projection on kV with kernel w’, and 

From (ii) and (2), it follows that every point p E K has a neighborhood X;, 
such that g”XD C U for almost all z E N. Since K is compact, it is covered by 
finitely many S, and (iii) follows. 

LEIWIA 3.10. Let G C PGL(P) be a group leaving no proper nonernpty 
lirtear subspace of P invariant, and let PI , P2 be two linear subspaces of P, 
with PI + JZ~ and P, f P. Then, the set (g E G ~ gPI @ P2) is relatively 
k-open i?r G and not empty. 

The first assertion follows from the obvious (and well-known) fact that 
the set {h E PGL(P) I hP, C P2j is k-closed in PGL(P). Let p E PI . The sub- 
space of P spanned by Gp is stable under G and must therefore coincide 
with P. Hence, there exists g E G such that gp $ P2 and, a fortiori, gPr q P2 . 

I’ROPOSI1‘ION 3. i 1. I,et G be a k-connected subgroup of PGL(P) leaving no 
psoper nonempty linear subspace of P invariant. Suppose that G possesses at 
least one semisimple element g such that -4(gp’) is a point. Then, the set 

X =: (x E G 1 A(x) and A(K’) aye points] 

is k-dense in G. 

Let g be as in the statement of the proposition, let g and Q be as in 3.9 
and let AT C N be as in 3.9 (i). Upon replacing AT by a suitable subset, we 
may assume that gN is k-connected. 

From 3.10 and the h-irreducibility of G, it follows that the set 

{x E G j A(g) q x A’(g-l)} n {x E G 1 x . A(g) Q A’(g-‘)J 



is k-opeu and dense in G. Let /I be an element of it and set 

and 

Because of the conditions set on h, one has B + I’ and U’ I’. and it 
follows again from 3.10 that I’ is k-open and dense in G. Set 
7~ =z proj(<4’(g), A(g)) and 7~’ ~: proj(li .-i’(g), h A(g)) (cf. 3. t,), and let 
u 15 L7. One has u -J(gr) Q 11 .-l’(g) and 7r’(zl . -?(g’)) Q A’(g ‘j. Similarly, 
X’ll =I(g--1) Q: A’(g) and 7r(u l/z iI(g I)) Q /2 .-J’(g--‘). Let 1. (req. I”) 
be a compact neighborhood of :I(g-t) (resp. u~rh .4(g r)) such that 
If l- n h . d’(g) ==- L; and n’(zl U) n --l’(g-1) -= ,/ (resp. I-’ n Ad’(iy) -: 
and x(1“) n h =l’(gr) ;:) and let % (resp. Z’) be a compact ncighbor- 
hood of +(u . l-) (resp. +Y’)) in P -t vv rose intersection with .I’(,g r) (resp. 
h A’(g-l)) is empty. By 3.9 (“) tt and 3.5, there exists a strictly p0sitii.c real 
number Y such that 

11 hgzhrlu jy ,i < Y and ]g” ;y’i, C. l 

for ail x E N. If II is a representative of h in GL( C’), the representativc //g/z-’ 
of Izgkl has the same eigenvalues as g. Therefore, it follows from 3.9 (iii) 
that, for almost all z t AT, 

hg”h- %f . I- c 2 and g’ * Y’CZ’. (1) 

By 3.8 (i), one also has, for almost all x E N, 

,‘g-’ iz 1; < Y-l, ‘C z -zc I- (9 
ii hg--h-’ izf /i I.: I--l * ~1 ~~-’ :~. I, /lgezllel . Z’ C u . I.‘, i.1) 

where ? (resp. 1”) denotes the interior of 1. (resp. 1”) in I’. Jxt -1.’ bc the 
set of all u’ E 1%’ such that (l), (2) and (3) hold simultaneously. For all 2 i: Y’, 
one has 

g-Qgzh--lu 1’ C $-, jl g-;hgh-lu jy !, < 1, 
u-l&"h-lXr" . 1“ C p/, ‘i zL-lhg’h-‘g~ ly, )I << I; 

hence, by 3.8 (ii), 

Since the set N - N’ is finite, g”’ is h-closed in gl”. Therefore, the k-closure 
X of X in G contains gezhgzh-lu for all x E N. This being true for ail u E L’ 
and C being k-dense in G, _%? also contains gpzhgzh-lG == G (for u” E -Y), 

c2.E.U. 
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PROPWITIOY 3.12. Let I’ be a finite set of semisimple” elements of PGL(P). 
Suppose that for all x E Y, ,4(x) and A(x-I) are one-point sets and that, for 
s, T c I7 7dh N f y, one has 

A(x) u A(.+) c P - A’(y) - A’(y-I). 

Then, there exists ilf E N such that, for all m E N greater than 11f, the set 
1'~ ip I .t E I’] is free in PGL(P). 

Let p E P - UTEY (=1(x) u A’(x) u d(r-l) u A’(s-l)) and let (0;. , C’X’)lEg 
be a s!.stem of subsets of P - (~1 with the following properties: 

I ‘,, (resp. CT,‘) is a compact neighborhood of -4(x) (rcsp. A(sm l)); 
for X, p t Ii with x 75 _v, one has 

CT2 u lirz’ c P - -4’(y) - A’(p). 

(Such a s!-stem obviously exists.) Then, it follows from 3.8 (i) that there 
exists .I/ 5 N such that, for all m t N with 111 Gz M, the hypotheses of Propo- 
sition I.1 arc satisfied if one sets I := I’, G = PGL(P), G, =m= [x7”” 1 3 ~2,) 
and P,, == 1 ‘J u .?,,‘. Since the groups G, are infinite cyclic, 1 .I implies our 
assertion and the proposition is proved. 

4. PROOF OF TIE THEOREMS 

LENar.~ 4. I. Let k be a finitely generated field and let t E k* be an element 
of itqSnite order. Then, there exists a locally compact field k’ endowed ,with an 
absolute value w and a homomorphism o : k --f k’ such that w(u(t)) /; I. 

Indeed, let k,, be the algebraic closure of the prime field of k in k, set 
K,, 2-m k,, if char k = 0 and IQ, -: k,(t) otherwise, and let w,, be an absolute 
value on Jc,, such that w,,(t) += 1 if I E k, ( such an absolute value is well known 
to exist; cf., e.g., [S, p. 77, Theorems]). 1 row, let T be a transcendence basis 
of k VVCI- k,, such that t E T if t $ k, , and let & be the completion of k, with 
respect to w,, . Since the transcendence degree of A, over k, is infinite, there 
exists an injective mapping u,, : T + & such that a,(T) is algebraically free 
over k,, and that w,(a,(t)) f 1 if t E T. Let us also denote by o0 the field 
homomorphism k,(T) ---f A, which ex n -te d s u,, and is the identity on kO . 
Finally. since k is a finite algebraic extension of k,,(T), there exists a finite 
algebraic extension k’ of &, and a field homomorphism 0 : k + k’ extending 
CJ,, . If w denotes the unique extension of w,, to k’, the requirement of the 
lemma is fulfilled. 

3 XS in 3.7 and 3.8, the hypothesis that the elements of Y are semisimple is in fact 
suprrfuous. 
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LEMRIA 4.2. Let If be a k-vector space and let II be a finite@ Cgfnevatcd 
subgroup of GL( 17). Then, there exists m c N” such that, -for every h c II, the 

group generated by h’l’ is k-connected. 

Let us choose a k-basis in I-. Upon replacing 12 by the field generated by 
the coefficients of the matrices representing the elements of a finite generating 
set of II, and I7 by the vector space over this field generated by the given 
basis of 1, we may assume that k is finitely generated. Set d ~~~ dim I’, let 
nl’ t N’+ be such that every root of unity satisfying an equation of degree d! 
over k is an nz’-th root of unity (cf. 2.3), letp denote the characteristic exponent 
of k and set wr = nl’ . pii. \Ye shall show that, for g E GL(I), the group 

L’ “X generated by g”’ is k-connected. If p f 1, the clement ,g’ g!“l is semi- 
simple and gniz _. g”‘i’z, If p -: 1 and if ,F : g,g,, g,,g, with xs semisimplc 
and g,, unipotent, one knows that the k-closure of gnlZ in G is the product 
of the k-closures of R:’ -~- &!“’ and gz”, and that the latter is connected. In 
both casts, it suffices, therefore, to prove that if s E GL(I’) is semisimple, 
then the group s ““’ is k-connected. Let T be a k-torus of GL( F) containing 
s and let x bc any character of T vanishing on the connected component of 1 
in the group s ‘; then, x(s) is a root of unity which is a monomial (with positive 
or negative exponents) in the characteristic roots of s. Rut these cha- 
racteristic roots generate an extension of degree at most d of k. Hence, 
x(p’) L- x(,y)“” :- 1 and $1” belongs to the connected component of I in s’. 
This implies that s ““’ is the connected component in question, and our 
assertion is proved. 

PROPOSITION 4.3. Let 6 be a nontrivial semisimple algebraic group defined 
over a field k, let G be a finitely generated dense subgroup of 6(k) and let C’ 
be a dense subgroup of G. Then, tlleve exists a dense subset S of G’ aud an open 
dense subset II of CC x C! zcith the following properties: 

(i) for s t S, the group sz is connected; 

(ii) ;J s t S and z E 2 - {O}, then si E S; 

(iii) if F is a J’inite subset of S such that (s, s’) E II for all s, s’ E F with 
s f= s’, then, there exists M E N such that the set F” : (s” / s E F} is free in G’ 
for ezery integer z 2: Ail. 

Q’e first notice that if S and UC 6 x 05 satisfy the conditions (ii), (iii) 
and if m is as in 4.2 (for G = N), then S’” = {s”’ 1 s E S> and II satisfy (i), 
(ii), (iii). Therefore, it suffices to prove the existence of S and LI satisfying 
(ii) and (iii). 

Upon extending k if necessary, we may assume that 6 possesses a k-rational 
nontrivial absolutely irreducible linear representation. Let p : Q ---f 6?(V) 
be such a representation. If 5’; Cp(G’) and II, C,(6) x p(6) have the 



properties (ii), (iii) with respect to the groups p(6) and p(G’), and if we set 
II,’ == II, - ((g, g) j g E p(6)), th en S : pm’($) and II (p _\ p) ‘(II,‘) have 
these properties m?-ith respect to (C, and G’. Thcrcforc, there is no loss of 

generality in assuming that p is an immersion and in identifying (6 \vithp((,i). 
l’he same argument as in the proof of lemma 4.2 also allows us to assume 

- at least provisionallyPthat the field k is finitely generated (notice that this 
restriction of the field of definition does not change the Zariski topology on 
G, as was recalled in the “general conventions”). By 2.5, applied to thv sub- 
group G of the simple k-algebra End I’ (which is linearl!- gencratcd by G 
because WC‘ assumed p to be absolutelv irreducible), the group G’ possesses 
only- finitel\; many elements of finite order, hence possesses at least one scmi- 
simple element R of infinite order. Upon extending k, we may assume that 
all eigenvalucs ofg belong to k. at least one of them, call it A, is not a I-oot of 
unity. =ippl\-ing 4.1, xvc ma!. then extend /z to a locally compact field (thus /z 
ceases to be finitely generated) endowed with an absolute \-alw 01 such that 
o(X) ,i I. Let d be the number of cigcnvalues of R with maximum absolute 
value. Since dct g = I, we have d ,i dim I,-. I~pon extending again li and 
replacing p be a suitable composition factor of its d-th tensor pwer, \ve ma) 
assume that d : 1 (the ncxv extension of k might be IICCCSS~I-v to preser\‘e the 
absolute irreducibility of p). Let G’ operate on the projcctivc space P of F. 
‘I’hc relation tl -mm I mcans that g has an attracting point in 1’ (cf. 3.6). Ry 
3. I I, it follows that the set S of all elements of G’ which ha\-c an attracting 
point and a repulsing point in I’ is dcnsc in G’; furthermore, it obviouslv 
has the property (ii). 

Let us now define the open set II C 05 x 6 as follows: if k denotes an 
algebraic closure of h and I -* the dual of I’, on which \ve let 05 operate by 
the contragradient of the representation p, a point (Y, y) c 05(/z) ’ (Z,(k) 
belongs to II(h) if and only if 

(1) .I’ and 3’ are semisimplc and have the same number of distinct 
cigenvalues as the generic element of (6; 

(2) if zl (resp. %‘ *) is an cigenvector of .2 (rcsp. y) in I- 5; k (rasp. 
i-1 I_: /s) corresponding to a simple cigeni-alue, then I* ~/I 0. 

‘I‘llat these properties define an open set in 05 i< (6 is easily seen. ‘I’o show 
that \I is not empt\-, let .x, y c CC,(k) have property (1) and Ict /k, ,..., ku,. 
(lxq’. /x1+ )...) /77;, “) be all eigenspaccs of .x in IV 3 k (resp. ofq’ in I Y-6 :“j iz) 
corrt5ponding to simple eigenvalucs of s (resp. 3’). Hecnc~se of the 

absolute irrcducibilit)- of the representation p, the functions pri : (6(/z) + /2 
(;,;E{l,..., rf) defined b : J P;~~(u) =: zli*(w,) arc not identically zero. Tow, 
if u t C(k) is such that all q,,(u) are different from 0, one has (USURPS, JJ) E 1[, 
htmcc II ~,,L ~~1. Since S and I[ ) iave the propert!- (iii) by virtue of 3.12, the 
proof is complete. 
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4.4. In this subsection, all algebraic groups are defined over some alge- 
braically closed field h, and an algebraic group and its group of k-rational 
points are denoted by the same symbol. 

I’KOI’OSITION. Let G he u semisimple algebraic pwup, ?‘a maximul torus of C; 
and S N suhtorus whose centralizer in G is T. Then, the union of all closed 
connected proper suh,,youps of G contuiniq S is nowhere dense in G. 

Let I f (resp. 2) stand for “normalizer (resp. centralizer) in G”. I,ct AV 
he the union of all proper connected subgroups of G containing 7’; there are 
onI\- tinitelv manv such subgroups (cf. [I, 3.41); therefore .y is nowhere dense 
in C. Set ,?I {,,S,- 1 n E .A ‘(T)) and let .v’ be the set of all proper subtori 
of 7’ generated by a subset of .ir; containing S; since . +‘( 7’) ‘T is finite, so is 
the set .Y,i and hence also the set .Y’. For S’ F -Y’, let I,, denote the closure 
of the union of all conjugates of S’ in G. It is known that every regular 
function on 7’ invariant by the \l-eyl group extends to a regular function on G 
invariant by inner automorphisms; since there obviousl\- exists a nonzero 
regular function on T invariant by the \!‘eyl group and vanishing on S’, it 
follows that 1,s is nowhere dense in G, and the same holds for the set 

1. U.,,d, j-s, 
\\.e shall show that ever!. closed connected proper subgroup If of G con- 

taining S is contained in S u 1’; this will prow the proposition. We may of 
course assume that H is maximal among the connected proper subgroups 
of G. If il is parabolic, the central&t of S in II must contain a maximal 
to]-us of (;; since y(S) T, this means that 1’C II, hence IIC .y. If If is 
not pal-abolic, it is reductive [2, 3.31 and even semisimple because, if its 
connected center (‘ a’ere not trivial, one would have 1-f B(C) (by the 
maximalit\, assumption) which is impossible since e9’(C’) is properly con- 
tained in a parabolic subgroup [I, 4.151. Let, therefore, f1 be semisimple. 
Then, 7” II A 1’ is a maximal torus of II. Since .V’ ~~ J+ ‘(T’) n ii 
normalizes 7”, it also normalizes z!F (7”) T. The torus S’ t .Y generated I>!- 
all ?lSN 1 \\-ith n E \:’ is a subtorus of 7” normalized by .V’. It is cay to SW 
that this implies that S’ is a maximal torus of some normal subgroup of Ii. 
Since, flil-thermore, ZF(S’) n /I ?“, one must have S’ =: 7”. nut the 
union of the conjugates of T’ in II is dense in II; therefore, NC k-k, C I-, 
which completes the proof. 

Keniorfi. It can be shown that the above proposition remains valid if one 
replaces the condition I’ 9(S) by the weak hypothesis that 5’ is not 
contained is any proper normal subgroup of G. 

4.5. Proof of the Theorems 3 and 4. 

Let (6 be a semisimple group defined over fz and let G be a dense subgroup 
of C>(fzj. Let (C1 be the smallest connected normal subgroup of 6 containing 
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a power (wrth exponent 7: 0) of every element of G. \Ye shall show --~ this 
is clearly sufficient-that the assertions (ii) to (vi) of Theorem 4 hold regard- 
less of the characteristic of k, and that 

(vii) if char k = 0, one has 6t = 6. 

Proof of (iv), (v) and (vii). Upon replacing 05 bv (6/C& and G by its 
canonical image in (B/CT,,)(k), we may assume that -(fir =~ { I), which also 
means that G is a torsion group. Let (pI : 6 + C!L’(fT,)) (i = I ,..., ~1) be a 
system of k-irreducible k-rational linear representations of G such that the 
direct sum p of the pi’s is an immersion of 6 in Ciil)(u:L, I’i) (the esistence 
of such a system of representations immediately follows from the represcnta- 
tion theory as it is exposed for instance in [7]). If char k = 0, p,(G) possesses 
an abelian subgroup of finite index, by Schur’s theorem [4, p. 2581; since 
it is dense in the semisimple group pi(G), this means that p,(CZ,) : [ I) for 
all i, hence 6 :-- (I) and (vii) is proved (as well as (iv) and (v) in this case). 

If char k :;’ 0, each space Vi has a basis B, with respect to which all elements 
of pi(G) arc rcprcsented b!- matrices with coefficients in the algebt-sic closure 
k,, of the prime field of k in k (cf. 2.8). Th e union of all Bi’s is a basis of 
u:” r I vi and if we denote by 1-,, the k,-vector space it generates, we have 
(with obvious identifications) p(G) C 69( V,,)(k,). The closure (fi,, of p(G) 
in (6Y( I,,), which is an algebraic group defined over li,, , and the rcprescnta- 
tion p, considered as a k-isomorphism of 05 onto (6, , satisfy the requirements 
of (iv). Finally, (v) is an obvious consequence of (iv). 

Proof of (ii). For dimension reason, there exists a largest connected sub- 
group 6, of 6 which is the closure of a finitely generated subgroup of G. 
Since G is dense in 6, 6, is normal in 6. Let G, be a finitely generated 
subgroup of G, dense in Qjz . For any R E G, there exists nz E N” such that 
,y”’ generates a connected group, which implies that R”’ t Ojz . ‘I’heroforc, 
(‘7, c (G2 . On the other hand, the image G,’ of G, in (S/CCr)(k) is finitely 
generated, hence finite by (v). Since G, is dense in (!& , which is connected, 
G,’ is connected. Therefore, G,’ =m {l> and Kiz C (fir , which establishes (ii). 

Proof of (vi). We may of course assume that 6 := 05, and, by (ii). that 
G is finitely generated. We first show that 

(vi’) every subgroup G’ of G which is dense in G(k) has a fret subset 
{x, x’) consisting of two semisimple regular elements such that the groups 
.x’, ,x” are connected and that the free group they generate is dense in (6(/z). 

Indeed, let S, II be as in 4.3, let U, , 11, be the two projections of 11 in (6 
and let s E S n II, n II, be semisimple and regular. Further, let s’ be a 
regular semisimple element of S such that (s, s’) E II, (s’, S) E II and that no 
proper connected closed subgroup of G contains both s and s’ ; such an S’ 
exists because all conditions vve are imposing on it are satisfied in open dense 
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subsets of G (for the last condition, this folio\\-s from 4.4). Since 5% and ,ylL 
arc connected, the group gcncrated h\- s and s’ is connected and hence dense 
in (F,(h). 1,c.t 111 FI N* be such that (Y’, ,s’“~] is free (cf. 4.3 (iii)) and set .x p 

and .\ ’ (resp, s,L;;;tS~cc .? (rcsp. ,Y’“) is of fi mte index in the connected group sz 
a roups .x’ and S’ (resp. s” arid S”) have the same closure; 

tliis implies that .v, x’ arc regular and that the group the!. generate is dense 
in (C(h), \\hich prows (vi’), 

1~pon replacing G 17~ a dense, finitely gcneratcd fret sul,group bvc just 
showccl that such a subgroup exists-m \i’c ma!- assume that G itself is free and 
finitcl! gcnci-ated. 1,ct G’ be the commutator subgroup of G (which is dense 
in (,i(/r) and is a free group with countably many generators), let /,\, s’; C G’ 
lx as in (! i’) and let ;F lx the set of all free sulxets A\7 of G’ containing 
{A, .A’) and such that every element of .\- is regular, semisimple, and generates 
a conncctcd group and that ever>- pair of elements of X- generates a dcnsc 
su1xpup of R(k). Let I: I x a maximal clement of +, which exists 13~ %orn’s 
lemma. \\.c shall show that F is infinite. Suppose that it is not, let L lx the 
group it generates, Ict 2’ c G’ F he such that I; u [pi is free and let 11, :- N 
Ix such that, for ever\- element 
is connected (4.2). The‘set (->~1,)“’ 

u” of the groiip generated 1,~ F L [JI:, ~~1” 
(( p)” II i I,; is dense in (6(k); thercforc, 

1,~ 4.4, there csists II E I, such that (JVL)“’ is regular, semisimple and generates 
Tvith each elcmcnt of F a dense subgroup of (5(k). The set F U I-vuI is free, 
hence also I: U ((yu)“‘]. Since (,2.u)“’ &I:, this contradicts the maximalitI- 
assumpticin on F, and prows (vi). 

P/w~~~ of (iii). C’lcarly, C/(G n (F,,(k)) contains no nontt-ivial free group. 
So that WC only have to show that if $> is a /r-closed normal subgroup of (i, 
and if G,‘(G n .5(k)) has no non-abelian free subgroup, then (C,, C 5. 
\Ye may of course assume that $7 is connected and, upon passing to the 
quotient 1)~ (6, n !+, that (fir r\ sj = [ I). Then, the canonical mapping 
G -~+ G! (G I? !$(k)) is injcctive on C n (fir(k), and it follows from (vi) that 
CC,, (I;. 

4.6. Proof of Theorem I. Let G C GL( I .) he a linear group owr k, of 
characteristic 0, (ci the closure of G in (F,P( I’), (fi’j the connected component 
of 1 in oi, and ‘31 the radical of (5”. If W’ ‘91, G n W(k) is a solvable sub- 
group of finite index in G. Otherwise, W;!I2 is a nontrivial semisimple group, 
the canonical image of G n W(k) in ((fi”/‘X)(k) contains a non-ahelian free 
group (I>! ‘I‘hcorem 3) and so does also G. The theorem is proved. 

4.7. Proof of 7‘heorem 2. The implication (ii) -:- (i) is obvious. 
‘IO show that (iii) implies (i), wc ma>- assume that G = G’. Let fi denote 

the normal subgroup of G which consists of all elements inducing in each 
composition factor I” of the k[G]- module I _ a scalar multiplication by an 



element of the corresponding endomorphism ring li’. Then, R is solvable 
and the hypotheses of (iii) imply that G/R is locally finite. The assertion (i) 
follons. 

‘I’hcrc remains to prove that (i) implies (ii) and (iii). Let us, therefore, 
assume that G contains no non-abelian free group, let ($5 denote the closure 
of G i:l i6’( I-) and let ‘31 be the radical of the connected component of 1 
in (6. ‘Then, G n 91 := R is a solvable normal subgroup in G and it follows 
from ‘l’hcorcm 4 that G/R, which is the canonical image of G in W!11, is 
locally fink. This establishes (ii). 

‘I’0 prove (iii), we may, upon replacing G by a subgroup of finite index, 
assllnx that G is /z-connected. \Ve shall then show that (iii) holds for G’ G. 
l’o this effect, it clearly suffices to consider the case, where I7 I” (i.e., I’is 
a simpic k[G]-module) and where lz is the center of the ring k’ of h[G]-endo- 
morphisms of I7 (just replace /z by this center; the connectedness of G is 
clearly unafkcted). LVnder these conditions, k’ is a central division algebra, 
from \\-hich folla\vs that, if k denotes an algebraic closure of k, the ,‘z[G]- 
module I7 ‘T ) iz is a direct sum of isomorphic simple modules. Therefore, 
the closure 6 of G in (cTi’( F) IS a reductive group and its connected center is 
either [I ) or the (algebraic) group of scalar multiplications. Let G, and 6, 

denote the commutator groups of G and Cli, rcspectivcly; o?1 is also the 
closure of G, in (ciY( V). From what w-c have just seen, it follows that, as a 
subgroup of C50( I-), CC1 is a k-irreducible linear (algebraic) group; therefore, 
IV is also simple as a k[G,]-module. Since O& is semisimple and GI contains 
no non-abelian free group, it follows from Theorem 4 that G, is a torsion 
group and from 2.8 that I’ possesses a basis B with respect to which the 
e!ements of G, are represented by matrices with coefficients in the algebraic 
closure Iz,, of the prime field of ii in /z. Clearly, k’ = End,-l’ has a h-basis 
consisting also of endomorphisms represented by matrices with coefficients 
in k,, Since k,, is an algebraic extension of a finite field, there is no non- 
commutatiw division algebra over it, and we must have k’ --= /z. 

\I’e now endow the group ‘$36Q( V) with the natural &-structure associated 
with the basis B, and call ‘$36 the canonical image of A in $K6c,O(V). The 
group ‘$36 is scmisimple and the canonical images PG and PG, of G and 
G, in $Cci(/z) are dense. Since PG contains no non-abelian free group, it 
follows from Theorem 4 that there exists an algebraic group VCri, defined 
over k,, and a h-isomorphism o : p6,, - ‘$I6 such that PG C u(‘Q~,~(K~,)). 
The inverse image of PG, under 0 is dense in ~OjJko) and is mapped by 
o into +I.;CC,ti( T;)(k,). This shows that the homomorphism $K,io - ‘$NT,Q( V) 
obtained bv composing 0 and the canonical inclusion $36 + $Wf?( V) is 
defined &r Ii,, . But then, PG C ~(‘J3’V()i,,(k~~)) C $ISC,( V)(k,), which means 
that the matrices representing the elements of G arc scalar multiples of 
matrices with coefficients in k,, , QED. 
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Remark 4.8, It would of course be possible to prove the Theorems 1 and 
2 more directly, without passing through the Theorems 3 and 4. Sotice, in 
particular, that the density assertions of these theorems (and hcncc the 
Proposition 4.4) have not been used in 5.7 and 5.8. 
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