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Let X be a real algebraic surface. The comparison between the volume of D(R) and D(C) for ample divisors D brings

us to define the concordance α(X), which is a number between 0 and 1. This number equals 1 when the Picard number

ρ(XR) is 1, and for some surfaces with a “quite simple” nef cone, e.g. Del Pezzo surfaces. For abelian surfaces, α(X) is

1/2 or 1, depending on the existence or not of positive entropy automorphisms on X. In the general case, the existence

of such an automorphism gives an upper bound for α(X), namely the ratio of entropies htop(f |X(R))/htop(f |X(C)).

Moreover α(X) is equal to this ratio when the Picard number is 2. An interesting consequence of the inequality is the

non-density of Aut(XR) in Diff(X(R)) as soon as α(X) > 0. Finally we show, thanks to this upper bound, that there

exist K3 surfaces with arbitrary small concordance, considering a deformation of a singular surface of tridegree (2, 2, 2)

in P
1 × P

1 ×P
1.

1 Introduction

Let X be a real projective variety with a fixed Riemannian metric. The goal of this paper is to compare volumes

of real subvarieties Y (R) and of their complexifications Y (C). As will be seen, this is closely related to the

question of comparing real and complex dynamics of automorphisms of XR.

1.1 Projective space

Consider the projective space X = Pd
R, equipped with the Fubini-Study metric. Let Y be a real subvariety of

Pd
R of dimension k. By Wirtinger’s formula (see [15, p. 31]), the volume of Y (C) satisfies

volC(Y ) = deg(Y ) volC(Pk). (1)
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2 A. Moncet

For the volume of Y (R), the Cauchy-Crofton formula enables us to show that

volR(Y ) ≤ deg(Y ) volR(Pk) (2)

and to characterize the case of equality (see Appendix A). This gives the following:

Proposition 1.1. Let Y be a real k-dimensional algebraic subvariety of the projective space Pd
R. With respect

to the Fubini-Study metric, we have

volR(Y )

volR(Pk)
≤ volC(Y )

volC(Pk)
. (3)

Furthermore, equality is achieved if and only if Y is the union of deg(Y ) real projective subspaces.

As a consequence, if Vk(δ) denotes the set of real subvarieties of Pd
R of dimension k and degree δ, then for

any Y0 ∈ Vk(δ) we have

max
Y ∈Vk(δ)

volR(Y ) = δ volR(Pk) =
volR(Pk)

volC(Pk)
volC(Y0). (4)

1.2 General case

Now X is an arbitrary d-dimensional real algebraic variety. We assume that it is projective, smooth, irreducible

and that the real locus X(R) is not empty. Let Y be a k-dimensional real algebraic subvariety of X . Denote the

volume of Y (R) by volR(Y ), and that of Y (C) by volC(Y ), both with respect to a fixed Riemannian metric on

X(C).

Notation. Let V(Y ) be the family of real algebraic subvarieties Z such that Y (C) and Z(C) have the same

homology class in H2k(X(C);Z). Then for K = R or C we set

mvolK(Y ) = max
Z∈V(Y )

volK(Z). (5)

When the Riemannian metric comes from the Fubini-Study metric on some projective space Pn in which X

is embedded, we get Inequality (3). Since two Riemannian metrics are comparable (by compactness of X(C)),

we obtain:

Proposition 1.2. Let X be a real algebraic variety, equipped with an arbitrary Riemannian metric. For any

k ∈ N∗, there exists a constant Ck > 0, depending on the choice of the metric, such that

mvolR(Y ) ≤ Ck mvolC(Y ) (6)

for all k-dimensional subvarieties Y of X .
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Now we would like to know for which non-negative exponents α we can write inequalities such as

mvolR(Y ) ≥ Ck mvolC(Y )α, with Ck independent of Y . We restrict ourselves to codimension 1 subvarieties,

i.e. effective divisors. The notion of homology class in H2d−2(X(C);Z) is dual to that of (first) Chern class in

H2(X(C);Z), which is preferred in what follows.

Definition 1.3. Let A(X) be the set of non-negative exponents α for which there exist C > 0 and q ∈ N∗ such

that

mvolR(D) ≥ CmvolC(D)α (7)

for all real ample divisors D whose Chern classes are q-divisible. The upper bound of A(X) is the concordance

of X , and is denoted by α(X). We say the concordance is achieved when α(X) is contained in A(X).

The set A(X), and thus the concordance α(X), only depend on X , and not on the choice of a particular

metric. All metrics will be Kähler metrics, so that the number volC(D) only depends on the Chern class of D;

thus we write volC(D) instead of mvolC(D).

As will be seen in Section 2.3, the concordance α(X) can only take values between 0 and 1, and the set

A(X) is an interval of the form [0, α(X)] or [0, α(X)), whether the concordance is achieved or not.

1.3 Examples

Equation (4) implies that the concordance of the projective space is 1. More generally we prove in Section 2.4

that α(X) = 1 as soon as the closed convex cone Nef(XR) of real nef R-divisors is generated by finitely many

divisors Dj with mvolR(Dj) > 0. This is the case when the real Picard number ρ(XR) is 1. As a special case,

the concordance of a curve is always 1. Thus non trivial cases (those with α(X) < 1) can only occur when both

the dimension and the Picard number are at least 2.

In this paper we focus on the case of surfaces, which already include many interesting examples. Amongst

them, tori are the simplest surfaces for which the concordance is not always 1 (cf §4):

Theorem 1.4. Let X be a real abelian surface. The real Picard number ρ(XR) is equal to 1, 2 or 3, and we

have the following values for concordance:

(1) If ρ(XR) = 1, then α(X) = 1.

(2) If ρ(XR) = 2, then α(X) = 1 or 1/2, depending on the existence or not of real elliptic fibrations on X .

(3) If ρ(XR) = 3, then α(X) = 1/2.

In all cases the concordance is achieved.

In Section 5.3 we show that there exist surfaces with arbitrary small concordance. More precisely we prove

the following result:
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Theorem 1.5. There is a family (Xt)t∈(0,1] of real K3 surfaces embedded in (P1)3 such that

lim
t→0

α(Xt) = 0. (8)

1.4 Dynamics of automorphisms

Let X be a real algebraic surface. We denote by Aut(XR) the group of (real) automorphisms on X , that is

biholomorphic maps f : X(C) → X(C) that commute with the antiholomorphic involution σ. For K = R or C,

the induced self-map on X(K) is denoted by fK.

The dynamics of automorphisms on complex surfaces has been broadly studied in the last decades (one

may refer to the references given in the surveys [10] and [3]). Let us remember a few facts:

(1) The entropy htop(fC) is entirely expressed in terms of the action on the cohomology, according to [17]

and [34]. Namely it is equal to the logarithm of the spectral radius (called the spectral logradius in what

follows) of the induced map f∗ on H2(X(C);R).

(2) Automorphisms which have positive entropy, also called hyperbolic type automorphisms, can only occur on

tori, K3 surfaces, Enriques surfaces and (non minimal) rational surfaces, or on blow-ups of such surfaces

at periodic orbits [8]. Moreover, examples are known on each of these types of surfaces.

(3) For hyperbolic type automorphisms we have htop(fC) ≥ log(λ10) [25], λ10 ≃ 1, 17628081 being the Lehmer

number. Moreover this bound is achieved on some rational surfaces [4] [25] and on some K3 surfaces

(C. McMullen gives a non projective example in [26], and announces that there also exists a projective

example).

On the other hand the dynamics onX(R) is not as well understood, for we do not dispose of equivalent tools

to study it. For instance the entropy htop(fR) cannot be deduced from the action on cohomology; it is bounded

from below by the spectral radius of f∗
R on H1(X(R);R) [22], and from above by htop(fC), but may vary within

this interval. In particular we see that, for hyperbolic type automorphisms, the ratio htop(fR)/ htop(fC) is a

number between 0 and 1 (for tori it always equals 1/2, cf Proposition 4.4). As proved by Bedford and Kim in

[5]∗, it may happen that this ratio is equal to 1, for some rational† surfaces.

Question 1.6. Is there an example of a real hyperbolic type automorphism on a K3 or Enriques surface X for

which htop(fR) = htop(fC) ?

Question 1.7. Is there an example of a real hyperbolic type automorphism on a surface X for which

htop(fR) = 0 ?

∗In [5] the authors prove the maximality of entropy using only homology of real algebraic curves. In this text, I rather use their
volumes, which provide a finer measure than their homology classes.
†Throughout the text, rational means rational over C.



Real versus Complex Volumes on Real Algebraic Surfaces 5

In Section 3 we use a theorem due to Yomdin [34] in order to highlight a link between concordance and this

ratio of entropies (which is used to prove Theorems 1.4 and 1.5).

Theorem 1.8. Let X be a real algebraic surface. Assume that there exists a real hyperbolic automorphism f

on X . Then

α(X) ≤ htop(fR)

htop(fC)
. (9)

Moreover this inequality becomes an equality when ρ(XR) = 2.

Corollary 1.9. Let f be a real automorphism of a real algebraic surface X . If htop(fR) > 0, then

htop(fR) ≥ λ10 α(X), (10)

where λ10 denotes the Lehmer number, that is the largest root of the polynomial x10 + x9 − x7 − x6 − x5 −

x4 − x3 + x+ 1.

When α(X) > 0, these results enables us to show non-density and discreteness results for Aut(XR) in the

group of diffeomorphisms of X(R), as well as in some of its subgroups (§6).

2 First Properties of Concordance

2.1 Conventions and notations

In what follows, X denotes the ambient real algebraic variety, and d its dimension. Moreover, X is always

supposed to be projective, smooth, irreducible and with non empty real locus. The set X(R) is then a real

analytic d-dimensional manifold, with a finite number of connected components. By contrast, we make no

particular asumption for subvarieties Y of X . The antiholomorphic involution which defines the real structure

on X is denoted by σX , or simply by σ when no confusion is possible.

The cohomology groups Hk(X(C);Z) are implicitly taken modulo torsion, so that we can consider them as

lattices in Hk(X(C);R).

The complex Néron-Severi group of X , denoted by N1(XC;Z), is the subgroup of H2(X(C);Z) whose

elements are Chern classes of divisors on X(C). We denote by [D] the (first) Chern class of a divisor D. By the

Lefschetz theorem on (1, 1)-classes (see [15, p. 163]), we have

N1(XC;Z) = H1,1(X(C);R) ∩ H2(X(C);Z). (11)

The real Néron-Severi group of X , denoted by N1(XR;Z), is the subgroup of N1(XC;Z) whose elements

are classes of real divisors. Recall that

[σ(D)] = −σ∗[D] (12)
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for any complex divisor D (see [31, §I.4]), where σ∗ denotes the involution on H2(X(C);Z) induced by the

complex conjugation σ. Hence

N1(XR;Z) = {θ ∈ N1(XC;Z) |σ∗θ = −θ}, (13)

Both N1(XC;Z) and N1(XR;Z) are free abelian groups of finite rank. Their respective ranks are the complex

and real Picard numbers of X , denoted by ρ(XC) and ρ(XR). For K = R or C, we denote by N1(XK;R) the

subspace of H1,1(X(C);R) spanned by N1(XK;Z); it has dimension ρ(XK).

When X is a surface, the intersection form gives rise to a non-degenerate quadratic form on H2(X(C);R),

with integral values on H2(X(C);Z). By the Hodge index theorem, its signature on the subspace N1(XK;R)

is (1, ρ(XK) − 1). Consequently, the positive cone for the intersection form has two connected components, one

of which contains classes of ample divisors. This component is an open convex cone in N1(XK;R), denoted by

Pos(XK). Other convex cones in N1(XK;R) have their own interest and are used throughout this text, like the

ample cone Amp(XK), the nef cone Nef(XK) which is its closure, the cone of curves NE(XK) (for surfaces it is

the same as the pseudo-effective cone) which is the dual of the last one. For all these notions, we refer to [20].

2.2 Positivity of volumes

From now on, we fix a Kähler metric on the complex manifold X(C). Its Kähler form is denoted by κ.

2.2.1 Complex volumes

Let D be an effective divisor on X . The volume of D(C) only depends on the Chern class [D]. More precisely,

volC(D) =
1

(d− 1)!
[κd−1] · [D] > 0. (14)

Proposition 2.1. There exists a positive constant K such that

volC(D) ≥ K (15)

for all effective divisors D 6= 0.

Proof . As all Riemannian metrics are equivalent, it is enough to show the inequality when the metric is the

Fubini-Study metric on Pn ⊃ X . In this case the volume of D(C) is proportional to the degree of D as a

subvariety of Pn, which is a positive integer. Thus we get the lower bound with K = volC(Pd−1) > 0.

2.2.2 Real volumes

Let D be a real effective divisor on X . Although the volume of D(C) is always positive, it may happen that

volR(D) = 0 for some divisors D. For instance on X = Pd
R, for any even degree δ, the divisor Dδ given by the
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equation
∑d

j=0 Z
δ
j = 0 has an empty real locus, hence volR(Dδ) = 0. Yet this divisor is numerically (and even

linearly) equivalent to D′
δ given by

∑d
j=1 Z

δ
j = Zδ

0 , and we have volR(D′
δ) > 0.

Thus what is important is not the positivity of volR(D), but that of mvolR(D). Remember that mvolR(D) =

max{volR(D′) |D′ ∈ V(D)}, where V(D) is the set of real effective divisors (numerically) equivalent to D. Since

V(D1 +D2) ⊃ V(D1) + V(D2), (16)

the fonction mvolR is superadditive on the set of real effective divisors. In particular, for all k ∈ N∗,

mvolR(kD) ≥ kmvolR(D). (17)

Proposition 2.2. Let D be a real effective divisor such that the linear system |D| contains a pencil, i.e.

h0(X,OX(D)) ≥ 2. Then mvolR(D) > 0.

Proof . Let (Dλ)λ∈P1(C) be a real pencil in |D| (in this context, real means that Dλ = σ(Dλ)). By Bertini’s

theorem [15, p.137], there is a finite set S ⊂ P1(C) such that for all λ /∈ S, the subvariety Dλ(C) is smooth

away from the base locus B of the pencil (Dλ)λ∈P1(C). Let P ∈ X(R)\
(

B ∪⋃λ∈S Dλ

)

. Then there exists λ in

P1(R)\S such that the point P is on (the support of) the divisor Dλ. As Dλ is smooth at P , the real locus

Dλ(R) contains an arc around P , and thus mvolR(D) ≥ volR(Dλ) > 0.

This proposition applies, for instance, when D is very ample. By contrast, it may happen that mvolR(D) = 0

for some effective divisors which are not ample, as shown in the two following examples. It is for this reason

that we restrict ourselves to ample divisors in the definition of concordance.

Example 2.3. Let X be the variety obtained by blowing-up Pd
R at two (distinct) complex conjugate points,

and let E be the exceptional fiber of the blow-up. Then for any k ∈ N∗, we have V(kE) = {kE}, and so

mvolR(kE) = 0, for E(R) is empty. Nevertheless, observe that [E] is not in the closure of the cone Pos(XR),

since its self-intersection is negative.

Example 2.4. Let C be a real smooth quartic in P2
R such that C(R) is empty (for instance the one given by

Z4
0 + Z4

1 + Z4
2 = 0). Take 8 pairs of complex conjugate points (Pi, P i) on C, in such a way that the linear class

of
∑

i(Pi + P i) −OP2(4)|C is not a torsion point of Pic0(C). Let π : X → P2 be the blow-up morphism above

these 16 points (defined over R), and let C′ be the strict transform of C in X . For all divisors D in V(kC′),

the curve π∗D has degree 4k and passes through the 16 blown-up points with multiplicity at least k. Then the

choice of the points Pi implies that π∗D = kC, hence D = kC′. So we see that mvolR(kC′) = 0 for all k ∈ N∗.

Here C′ is a nef divisor that is not ample, as an irreducible divisor with self-intersection 0 (see [20, §1.4]).
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2.3 The interval A(X)

Remember that (Definition 1.3) A(X) is the set of exponents α ≥ 0 for which there exist C > 0 and q ∈ N∗

such that, for all real ample divisors D with [D] q-divisible, we have mvolR(D) ≥ C volC(D)α. This set depends

only on X , and not on the choice of the metric.

Lemma 2.5. Assume that α ∈ A(X). Then β ∈ A(X) for all 0 ≤ β < α.

Proof . By Proposition 2.1, there exists K > 0 such that mvolC(D) ≥ K for all real effective divisors D. When

[D] is q-divisible, we then have

mvolR(D) ≥ C volC(D)α ≥ CKα−β volC(D)β , (18)

and so β is in A(X) too.

As a consequence, A(X) is an interval of the form [0, α(X)] or [0, α(X)). By definition, α(X) is the

concordance of X .

Lemma 2.6. Let X be a real algebraic variety (with X(R) 6= ∅). The concordance α(X) is in the interval

[0, 1].

Proof . Let α ∈ A(X). By Proposition 1.2, there exists a positive C′ > 0 such that mvolR(D) ≤ C′ volC(D) for

all real ample divisors D. When [D] is also q-divisible, we get, for all k ∈ N∗,

C volC(kD)α ≤ mvolR(kD) ≤ C′ volC(kD). (19)

If α > 1, this contradicts limk→+∞ volC(kD) = +∞.

2.4 Examples of varieties with concordance 1

We have seen in the introduction that α(Pd
R) = 1. More generally, the concordance is 1 when the structure of

the nef cone is “simple”.

Proposition 2.7. Let X be a real algebraic variety. Assume that the cone Nef(XR) is polyhedral, with extremal

rays spanned by classes [Dj ] such that mvolR(Dj) > 0. Then the concordance α(X) is 1, and it is achieved.

Proof . Define C = minj (mvolR(Dj)/ volC(Dj)) > 0. The classes [Dj ] span a finite index subgroup of

N1(XR;Z). Denote by q this index. Since Amp(XR) ⊂ Nef(XR), every real ample divisor D with [D] q-divisible

is equivalent to a divisor of the form
∑

j kjDj , where the kj ’s are non negative integers. Hence

mvolR(D) ≥
∑

j

kj mvolR(Dj) ≥ C
∑

j

kj volC(Dj) = C volC(D). (20)
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We can then conclude that 1 is contained in A(X).

Corollary 2.8. All real algebraic varieties X with ρ(XR) = 1 have concordance 1, and this one is achieved.

Corollary 2.9. Let X be a real Del Pezzo surface. The concordance of X is 1, and it is achieved.

Proof of Corollary 2.9. By definition, a surface is Del Pezzo when its anti-canonical divisor −KX is ample. The

cone of curves NE(XR) is then rational polyhedral, by the cone theorem (see [20, 1.5.33, 1.5.34]). Thus its dual

cone Nef(XR) is also rational polyhedral.

Lemma 2.10. Let D be a nef divisor on a Del Pezzo surface X , which is not numerically trivial. Then the

linear system |D| contains a pencil.

Proof . It’s a simple application of the Riemann-Roch formula:

h0(X,OX(D)) − h1(X,OX(D)) + h2(X,OX(D)) = χ(OX) +
1

2
(−KX ·D +D2). (21)

As −KX is ample and D is nef, then −KX ·D > 0 and D2 ≥ 0. By Serre duality, we get h2(X,OX(D)) =

h0(X,OX(KX −D)) = 0, becauseD · (KX −D) < 0 with D nef. We conclude that h0(X,OX(D)) > χ(OX) = 1

(the last equality follows from the rationality of X).

Consequently we see, by Proposition 2.2, that the extremal rays of Nef(XR) are spanned by classes [Dj ]

with mvolR(Dj) > 0, and thus we can apply Proposition 2.7 to get the desired result.

3 Concordance and Entropy of Automorphisms

From now on, X is a real algebraic surface equipped with a Kähler metric, whose Kähler form is denoted by κ.

For any differentiable dynamical system g : M →M on a compact Riemannian manifold, let htop(g) denote

the topological entropy, and χtop(g) the topological Liapunov exponent, that is

χtop(g) = lim
n→+∞

1

n
log ‖Dgn‖∞.‡ (22)

This last one does not depend on the choice of the Riemannian metric.

When f ∈ Aut(XR) is a real automorphism of X , we’re going to look at both differentiable dynamical

systems fC : X(C) → X(C) and fR : X(R) → X(R).

We denote by f∗ the inverse of the map f∗ induced by f on H2(X(C);Z), so that the operation f → f∗

is covariant. The linear map f∗ is an isometry for the intersection form and preserves the Hodge structure: we

say it is a Hodge isometry. Furthermore it is also compatible with the direct image of divisors D, which means

‡The notation ‖Dg‖∞ stands for maxx∈M ‖Dg(x)‖, where the norm is taken with respect to the Riemannian metric.
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that f∗[D] = [f∗D]. Hence f∗ preserves the subgroups N1(XK;Z), for K = R or C. We still denote by f∗ the

restriction of f∗ to all the subgroups or subspaces (when extended by R or C) that are preserved.

The spectral radius of f∗ (a priori on H2(X(C);R)) is denoted by λ(f). By the theorem of Gromov and

Yomdin recalled in the introduction, we have

htop(fC) = log(λ(f)). (23)

This spectral radius is actually achieved on the subspace N1(XR;R) (cf Remark 3.2).

3.1 Complex volume of the iterates of a divisor

Theorem 3.1. Let f be an automorphism of a complex algebraic surface X . For all ample divisors D, we have

lim
n→+∞

1

n
log (volC(fn

∗ D)) = htop(fC) = log(λ(f)). (24)

Proof . Wirtinger’s equality gives (cf (14))

volC(fn
∗D) = fn

∗ [D] · [κ]. (25)

If λ(f) = 1, the sequence (‖fn
∗ [D]‖)n∈N has at most a polynomial growth (actually it is at most quadratic

[14]), as well as (volC(fn
∗D))n∈N. Hence

lim
n→+∞

1

n
log (volC(fn

∗D)) = 0 = log(λ(f)). (26)

If λ(f) > 1, since [D] is in the ample cone, the sequence
(

fn
∗

[D]
λ(f)n

)

n∈N
converges to the class θ of a positive

closed current, by [9]. In particular

lim
n→+∞

volC(fn
∗D)

λ(f)n
= θ · [κ] > 0, (27)

and then limn→+∞
1
n log (volC(fn

∗D)) = log(λ(f)).

Remark 3.2. If moreover the surface X , the automorphism f and the divisor D are defined over R, then the

class θ is in N1(XR;R) (as a limit of classes that are in this closed subspace), and satisfies f∗θ = λ(f)θ. Thus

λ(f) is an eigenvalue of f∗ restricted to N1(XR;R).

Remark 3.3. For varieties which have arbitrary dimension d, the formula

lim
n→+∞

1

n
log (volC(fn

∗D)) = log(λ(f)) (28)
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still holds. But this is not necessarily equal to the entropy, which is the spectral logradius§ on the whole

cohomology, a priori distinct from the spectral logradius log(λ(f)) on H2(X(C);R).

3.2 An upper bound for real volume of the iterates of a divisor

Theorem 3.4. Let f be a real automorphism of a real algebraic surface X . For all ample real divisors D, we

have

lim sup
n→+∞

1

n
log (mvolR(fn

∗D)) ≤ htop(fR). (29)

The proof of this result relies on Theorem 1.4 in [34], which gives a lower bound for entropy in terms of

volume growth. It is here stated in the particular case of dimension 1 submanifolds.

Theorem 3.5 (Yomdin). Let M be a compact Riemannian manifold, g : M →M be a differentiable map and

γ : [0, 1] →M be an arc, each of class Cr, with r ≥ 1. Then

lim sup
n→+∞

1

n
log (length(gn ◦ γ)) ≤ htop(g) +

2

r
χtop(g). (30)

In particular when the regularity is C∞, then

lim sup
n→+∞

1

n
log (length(gn ◦ γ)) ≤ htop(g). (31)

Looking carefully at the proof in [34], one sees that this result can be improved to the case when we consider

a family of Cr-arcs (γj)j whose derivatives are uniformly bounded to the order r, i.e. there is a positive number

K such that ‖γ(k)
j (t)‖ ≤ K for all j, t ∈ [0, 1] and k ≤ r. Under these asumptions we have

lim sup
n→+∞

1

n
log

(

max
j

{length(gn ◦ γj)}
)

≤ htop(g) +
2

r
χtop(g). (32)

We also use the following lemma, which can be found in [16, 3.3].

Lemma 3.6 (Gromov). Let Y be the intersection of an algebraic affine curve in Rd with [−1, 1]d. For any

r ∈ N∗, there exist at most m0 Cr-arcs γj : [0, 1] → Y , where m0 is an integer depending only on d, r and

deg(Y ), such that

(1) Y =
⋃

j γj([0, 1]);

(2) ‖γ(k)
j (t)‖ ≤ 1 for all j, t ∈ [0, 1] and k ≤ r;

§Recall that spectral logradius stands for the logarithm of the spectral radius.
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(3) all γj ’s are analytic diffeomorphisms from (0, 1) to their images;

(4) the images of the γj ’s can only meet on their boundaries.

Proof of Theorem 3.4. Inequality (29) does not depend on the choice of a particular metric on X , so we can

consider an embedding X ⊂ Pd
R and take the metric induced by Fubini-Study onX . The projective space Pd(R)

is covered by the (d+ 1) cubes Qk, k ∈ {0, · · · , d}, given in homogeneous coordinates by |Zk| = maxj |Zj |. Each

of these Qk is located in the affine chart Uk = {Zk 6= 0} ≃ Rd, and in this chart it is identified with [−1, 1]d.

The degree of D as a subvariety of Pd only depends on the Chern class [D]. Therefore we can apply Lemma

3.6 to any divisor D′ ∈ V(D), intersected with one of the Qk’s: any real locus of D′ ∈ V(D) is covered by at most

m1 C
r-arcs γD′,j , the integer m1 = (d+ 1)m0 being independent of D′, such that ‖γ(k)

D′,j‖∞ ≤ K for all k ≤ r,

where r is a fixed positive integer and K a positive constant (which comes from the comparison of Euclidean

and Fubini-Study metrics on [−1, 1]d). Now we apply (32) to obtain

lim sup
n→+∞

1

n
log (mvolR(fn

∗D)) ≤ lim sup
n→+∞

1

n
log

(

m1 max
D′,j

{length(fn
R ◦ γD′,j)}

)

≤ htop(fR) +
2

r
χtop(fR). (33)

Since the regularity of both X(R) and fR is C∞, we may take the limit as r goes to +∞ and get the desired

inequality.

Remark 3.7. Yomdin’s theorem (and its version in family), as well as Gromov’s lemma, still hold when we

consider arbitrary dimensional submanifolds. Therefore the proof of Theorem 3.4 can be adapted to the case X

is a variety with higher dimension.

3.3 An upper bound for concordance

Theorem 3.8. Let X be a real algebraic surface, and let f be a real hyperbolic type¶ automorphism of X .

Then

α(X) ≤ htop(fR)

htop(fC)
. (34)

Proof . Let α be an exponent in the interval A(X). This means there are q ∈ N∗ and C > 0 such that

mvolR(D) ≥ C volC(D)α for all real ample divisors D with [D] q-divisible. For such a divisor, fn
∗ [D] is also

q-divisible for all n ∈ N, and by Theorems 3.1 and 3.4 we get

htop(fR) ≥ lim sup
n→+∞

1

n
log mvolR(fn

∗D) ≥ lim sup
n→+∞

1

n
(logC + α log volC(fn

∗ D)) = α htop(fC). (35)

¶Recall that hyperbolic type just means that htop(fC) > 0.
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Then we take the limit as α→ α(X) and we obtain (34).

3.4 A lower bound for real volume of the iterates of a divisor

Definition 3.9. Let M be a differentiable surface. A family Γ of curves on M is said to be very ample if for all

P ∈M and for all directions D ⊂ TxM , there is a curve γ ∈ Γ on which P is a regular point and whose tangent

direction at P is D.

Example 3.10. Let X be a real algebraic surface and D be a very ample real divisor on X . Then the family

V(D), as a family of curves on X(R), is a very ample family in the sense of Definition 3.9.

Theorem 3.11. Let M be a compact Riemannian surface, g : M → M be a diffeomorphism of class C1+ε (with

ε > 0) with positive entropy, and Γ be a very ample family of curves on M . Then for all λ < exp(htop(g)), there

exist a curve γ ∈ Γ and a constant C > 0 such that

length(gn(γ)) ≥ Cλn (36)

for all n ∈ N.

In other words, we have the following inequality:

sup
γ∈Γ

{

lim inf
n→+∞

1

n
log (length(gn(γ)))

}

≥ htop(g). (37)

This has to be compared with a similar result due to Newhouse [27], who considers manifolds of arbitrary

dimension and non invertible maps, but gets the inequality (37) with a limit superior instead of a limit inferior

(asumptions on the family Γ are also lightly different). On the other hand, the lower bound (37) is optimal when

M and g are C∞, by Yomdin’s Theorem 3.5.

Corollary 3.12. Let f be a real automorphism of a real algebraic surface X . For all λ < exp(htop(fR)) and all

very ample real divisors D on X , there exists C > 0 such that

mvolR(fn
∗D) ≥ Cλn (38)

for all n ∈ N.

The proof of Theorem 3.11 relies on a result due to Katok [18, S.5.9 p. 698], which asserts that the entropy

of surface diffeomorphisms is well approximated by horseshoes. For definition and properties of horseshoes, we

refer to [18, §6.5].

Theorem 3.13 (Katok). Let M be a compact surface, and g : M →M be a diffeomorphism of class C1+ε (with

ε > 0) with positive entropy. For any η > 0, there exists a horseshoe Λ for some positive iterate gk of g such
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that

htop(g) ≤ 1

k
htop(gk

|Λ) + η. (39)

Proof of Theorem 3.11. Fix real numbers λ and η such that 1 < λ < exp(htop(g)) and 0 < η ≤ htop(g) − log(λ).

Let Λ be a horseshoe for G = gk satisfying (39). Let ∆ ⊃ Λ be a “rectangle” corresponding to this horesehoe,

in such a way that Λ =
⋂

j∈ZG
j(∆). The set G(∆) ∩ ∆ has q connected components ∆1, · · · ,∆q which are

“subrectangles” crossing entirely ∆ downwards (see Figure 1). The restriction G|Λ is topologically conjugate to

the full-shift on q symbols, by the conjugacy map

{1, · · · , q}Z −→ Λ

(ωj)j∈Z 7−→ ⋂

j∈ZG
j(∆ωj

).

In particular htop(G|Λ) = log(q). We denote by L the distance between the upper and lower side of ∆.
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∆1 ∆2

G(∆)

∆

L

γ

G(γ)

Figure 1. An example of horseshoe, here with q = 2.

Lemma 3.14. Let γ ⊂ ∆ be an arc crossing the rectangle ∆ downwards. Then length(Gn(γ)) ≥ qnL for all

n ∈ N.

Proof . It is enough to remark that the arc Gn(γ) contains qn subarcs crossing ∆ downwards (see Figure 1 for

n = 1). This can be seen by induction on n.

Now fix a point P ∈ Λ, P =
⋂

j∈ZG
j(∆ωj

). Let γ ∈ Γ be a curve that goes through P transversally to the

stable variety W s(P ) (the horizontal one). For any sequence (εj)j∈N ∈ {1, · · · , q}N, we set (see Figure 2)

Rε1,··· ,εn
=

n
⋂

j=0

G−j(∆εj
). (40)
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γ

W s(P )P

R21

R1

R2

R11

R22

R12

Figure 2. The rectangles Rε1
and Rε1,ε2

for the horseshoe of Figure 1.

The sequence (Rε1,··· ,εn
)n∈N is a decreasing sequence of nested rectangles that converge to the curve

⋂

j∈NG−j(∆εj
). If (εn)n∈N = (ω−n)n∈N this curve is the stable variety W s(P ) (intersected with ∆).

Since γ is transverse to it, there exist an integer n0 and a subarc γ′ ⊂ γ such that γ′ crosses the

rectangle Rω0,··· ,ω−n0
downwards. (On Figure 2, we may choose γ′ ⊂ R22.) Hence the arc Gn0(γ′) ⊂ Gn0(γ)

satisfies the asumptions of Lemma 3.14, and thus length(Gn0+n(γ)) ≥ qnL for all n ∈ N. So if we set C′ =

min

{

L
qn0

,
(

length(Gn(γ))
qn

)

0≤n≤n0−1

}

, then

length(gnk(γ)) ≥ C′qn = C′ exp(n htop(gk
|Λ)) ≥ C′ exp(nk(htop(g) − η)) ≥ C′λnk. (41)

Since length(gn(γ)) ≤ ‖Dg−1‖ length(gn+1(γ)), we get Inequality (36) by Euclidean division by k, where we have

set C = C′(λ‖Dg−1‖∞)−k > 0.

3.5 An exact formula for concordance when ρ(XR) = 2

Theorem 3.15. Let X be a real algebraic surface with ρ(XR) = 2. Assume that there exists a real hyperbolic

type automorphism f on X . Then

α(X) =
htop(fR)

htop(fC)
. (42)

Remark 3.16. The asumptions of the theorem imply that the surface X is either a torus, a K3 surface, or an

Enriques surface. Indeed, as seen in Section 1.4, its minimal model is either one of these three types of surfaces,

or a rational surface. But if X is not minimal or if X is rational, then the class of the canonical divisor KX

would be non trivial in N1(XR;R). Since this class is preserved by f∗, this map would have 1 as an eigenvalue.

This is impossible, because N1(XR;R) has dimension 2 and the spectral radius of f∗ must be > 1.

Proof of Theorem 3.15. By Theorem 3.8, it is enough to prove that any non-negative exponent α <
htop(fR)
htop(fC)

belongs to A(X). This is obvious when htop(fR) = 0, so we suppose that fR has positive entropy, and we fix

such an exponent α.
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Lemma 3.17. Let D be a very ample real divisor on X . There exists C > 0 such that

mvolR(fn
∗D) ≥ C volC(fn

∗D)α (43)

for all n ∈ Z.

Proof . Since λ(f)α = exp(α htop(fC)) < exp(htop(fR)), there exists, by Corollary 3.12, a positive number CR

such that mvolR(fn
∗D) ≥ CRλ(f)nα for all n ∈ N. On the other hand there is a positive number CC such that

volC(fn
∗D) ≤ CCλ(f)n for all n ∈ N (cf (27)). It follows that mvolR(fn

∗D) ≥ C+ volC(fn
∗D)α for all n ∈ N,

where we have set C+ = CR/C
α
C.

Applying the same argument to f−1, there exists a positive number C− such that

mvolR(f−n
∗ D) ≥ C− volC(f−n

∗ D)α for all n ∈ N. Hence we obtain (43), with C = min(C+, C−).

Lemma 3.18. There are finitely many real ample divisors D1, · · · , Dr on X such that any real ample divisor

D on X is equivalent to one of the form
∑s

k=1 f
n
∗Djk

, with n ∈ Z and jk ∈ {1, · · · , r}.

Proof . On the 2-dimensional space N1(XR;R), the isometry f∗ has exactly two eigenlines D+ and D−,

respectively associated with eigenvalues λ(f) and λ(f)−1. These lines are necessarily the isotropic directions

of the intersection form. We choose eigenvectors θ+ ∈ D+ and θ− ∈ D− in the closure of Pos(XR), so that this

cone is bordered by half-lines R+θ+ and R+θ−. The cone Amp(XR) being preserved by f∗, it coincides with

Pos(XR). The integer points in this cone correspond to classes of real ample divisors. Let θ1 be such a point that

we choose to be primitive, and let θ2 = f∗θ1 (observe that θ2 is also primitive). Denote by D the closed convex

cone of N1(XR;R) bordered by half-lines R+θ1 and R+θ2. By construction D\{0} is a fundamental domain for

the action of f∗ on Amp(XR) (see Figure 3).
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f∗

D
fn∗

Amp(XR)R+θ− R+θ+

θ1 θ2

Figure 3. The fundamental domain D\{0}.

Denote by θ3, θ4, · · · , θr the entire points inside the parallelogram whose vertices are 0, θ1, θ1 + θ2 and

θ2. Any point in D can be expressed uniquely as k1θ1 + k2θ2 + θj or k1θ1 + k2θ2, with (k1, k2) ∈ N2 and

j ∈ {3, · · · , r}. For all real ample divisors D, there is n ∈ Z such that f−n
∗ [D] ∈ D, so we are done by setting

D1, · · · , Dr real ample divisors whose classes are θ1, · · · , θr.
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We go back to the proof of Theorem 3.15. Let q be a positive integer such that the divisors D′
1 =

qD1, · · · , D′
r = qDr are all very ample. By Lemma 3.17, there exists a positive number C such that, for all

j ∈ {1, · · · , r} and n ∈ Z, we have mvolR(fn
∗D

′
j) ≥ C volC(fn

∗D
′
j)

α. Let D be a real ample divisor whose Chern

class is q-divisible. There are n ∈ Z and j1, · · · , js ∈ {1, · · · , r} such that [D] =
∑s

k=1 f
n
∗ [D′

jk
]. Then

mvolR(D) ≥
∑

k

mvolR(fn
∗D

′
jk

) (44)

≥ C
∑

k

volC(fn
∗D

′
jk

)α (45)

≥ C

(

∑

k

volC(fn
∗D

′
jk

)

)α

(46)

= C volC(D)α. (47)

From (45) to (46), we have used the following special case of Minkowski inequality:

(

s
∑

k=1

|xk|
)α

≤
s
∑

k=1

|xk|α ∀α ∈ (0, 1]. (48)

Hence we see that α belongs to A(X), and Theorem 3.15 is proved.

Remark 3.19. We do not know if concordance is achieved in Theorem 3.15.

4 Abelian Surfaces

4.1 Preliminaries

A real abelian variety X is a real algebraic variety whose underlying complex manifold X(C) is a complex torus

Cg/Λ. We shall say real elliptic curve when g = 1, and real abelian surface when g = 2. As we still assume

that X(R) 6= ∅, we are brought to the case where the anti-holomorphic involution σX comes from the complex

conjugation on Cg, and the lattice Λ has the form

Λ = Zg ⊕ τZg, (49)

where τ ∈ Mg(C) is such that Im(τ) ∈ GLg(R) and 2Re(τ) =







Ir 0

0 0






, the integer r being characterized by

the fact that X(R) has 2g−r connected components (cf [31, §IV]).

A (real) homomorphism between two real abelian varieties is a holomorphic map f : X = Cg/Λ → X ′ =

Cg′

/Λ′ which is compatible with the real structures (i.e. σX′ ◦ f = f ◦ σX) and which respects the abelian

group structures (this is equivalent to f(0) = 0). Such a map lifts to a unique C-linear map F : Cg → Cg′

such that F (Λ) ⊂ Λ′, whose matrix has integer coefficients (for F (Zg) ⊂ Λ′ ∩ Rg′

= Zg′

). We also talk about
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endomorphisms, isomorphisms and automorphisms of real abelian varieties. Observe that in this context,

automorphisms are asked to preserve the origin.

A (real) isogeny between two real abelian varieties of same dimension is a homomorphism of real abelian

varieties that is surjective, which means its matrix has maximal rank. Two real abelian varieties are said to be

isogenous when there exists an isogeny from one to the other (this is an equivalence relation, cf [6, 1.2.6]).

Remark 4.1. The real Picard number does not change by isogeny. Indeed, any isogeny f : X → X ′ gives rise to

a homomorphism f∗ : N1(X ′
R;Z) → N1(XR;Z) which is injective, hence ρ(X ′

R) ≤ ρ(XR); the other inequality

follows by symmetry of the isogeny relation.

Lemma 4.2. Any real abelian surface X is isogenous to C2/Λ, where Λ has the form

Λ = Z2 ⊕ iSZ2, (50)

the matrix S =







y1 y3

y3 y2






being symmetric positive definite. We then have

ρ(XR) = 4 − dimQ(Qy1 + Qy2 + Qy3). (51)

Proof . The existence of a real polarization on X = Cg/Λ (see [31, §IV.3]) implies that the lattice Λ can be

set on the form DZ2 ⊕ τZ2, the matrix D being diagonal with integer coefficients, and the matrix τ being

symmetric, with S = Im(τ) positive definite and 2Re(τ) an integer matrix. Hence the dilation by 2 in C2 gives

rise to a real isogeny from C2/Λ to C2/(Z2 ⊕ iSZ2). Equality (51) comes from [6, §1, 3.4] and [31, §IV (3.4)].

Remark 4.3. As a consequence of (51), we see that the real Picard number ρ(XR) is 1, 2 or 3. By contrast

the complex Picard number ρ(XC) can also achieve the extra value 4, when X is isogenous to the square of an

elliptic curve with complex multiplication (cf [6, §2 7.1]).

Now observe the following fact, that is very specific to tori.

Proposition 4.4. Let f be an automorphism of a real abelian surface X . Then

htop(fC) = 2 htop(fR). (52)

Accordingly, α(X) ≤ 1/2 as soon as X admits real hyperbolic type automorphisms.

Proof . We lift the automorphism f to a C-linear map F : C2 → C2 whose matrix is in SL2(Z) (replacing f by

f2 if neccesary). If F has spectral radius 1, then it is obvious that htop(fR) = htop(fC) = 0. Otherwise, F has

two distinct eigenvalues λ and λ−1, with |λ| > 1. As a R-linear map of C2, F has eigenvalues (λ, λ, λ−1, λ−1)
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(with multiplicities), thus htop(fC) = 2 log |λ| (see for instance [7, 2.6.4]). Restricted to R2, F has eigenvalues

(λ, λ−1), hence htop(fR) = log(|λ|).

The last part is a consequence of Theorem 3.8.

The aim of what follows is to prove the following theorem, that describes exhaustively the concordance for

real abelian surfaces.

Theorem 4.5. Let X be a real abelian surface. We have the following alternative:

(1) ρ(XR) = 1 and α(X) = 1;

(2) ρ(XR) = 2 and

(i) if the intersection form represents 0 on N1(XR;Z), then α(X) = 1,

(ii) otherwise, α(X) = 1/2;

(3) ρ(XR) = 3 and α(X) = 1/2.

The concordance is achieved in all cases. It equals 1/2 if and only if X admits real hyperbolic type

automorphisms.

We already dealt with the case ρ(XR) = 1 (cf Corollary 2.8), so we focus on the last two cases.

4.2 Invariance of concordance under isogeny

Proposition 4.6. Let X and X ′ be two isogenous real abelian varieties. Then A(X) = A(X ′), and consequently

α(X) = α(X ′).

Proof . Since the isogeny relation is symmetric, it is enough to show the inclusion A(X) ⊂ A(X ′). Let

f : X ′ → X be an isogeny. For K = R or C, denote by fK the induced map from X ′(K) to X(K). We take

an arbitrary Kähler metric on X , and then we take its pullback on X ′, so that f is locally an isometry for the

respective metrics.

Fix any α ∈ A(X). There exist C > 0 and q ∈ N∗ such that any real ample divisor D on X , whose

Chern class is q-divisible, satisfies mvolR(D) ≥ C volC(D)α. Since f∗ : N1(XR;Z) → N1(X ′
R;Z) is an injective

homomorphism, its image has finite index n. Let D′ be a real ample divisor on X ′ whose class is nq-divisible.

Then there is a real ample divisor D on X with [D′] = [f∗D], and furthermore [D] is q-divisible.

Any point on the curve D(R) has exactly deg(fR) preimages, hence volR(f∗D) = deg(fR) volR(D) by the

choice of the metrics. Since f∗ realizes a bijective map between V(D) and V(D′), we deduce, taking the upper

bound on V(D), that mvolR(D′) = deg(fR)mvolR(D).

By the same argument, we also have volC(D′) = deg(fC) volC(D). So if we set C′ = C deg(fR)/deg(fC)α,

we obtain mvolR(D′) ≥ C′ volC(D′)α. This shows that the exponent α is contained in A(X ′).
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4.3 Picard number 2

4.3.1 Hyperbolic rank 2 lattices

By definition, a lattice is a free abelian group L of finite rank, equipped with a non-degenerate symmetric bilinear

form ϕ taking integral values. We say the lattice is hyperbolic when the signature of the induced quadratic form

on L⊗ R is (1, rank(L) − 1). The determinant of the matrix of ϕ in a base of L is the same for all bases. Its

absolute value is a positive integer, called the discriminant of the lattice.

Let (L,ϕ) be a rank 2 hyperbolic lattice. Then L⊗ R has exactly two isotropic lines. The discriminant δ

is a perfect square if and only if the quadratic form associated to ϕ represents 0, which means that there exists

an non zero isotropic point in L, or to say it otherwise both isotropic lines in L⊗ R are rational.

Suppose that δ is no perfect square. The study of Pell-Fermat equation then implies the existence of a

hyperbolic isometry of L, i.e. an isometry whose spectral radius is greater than 1. Such an isometry span a finite

index subgroup of the isometries of L. To be more precise, the group SO(L,ϕ) of direct isometries of L (those

with determinant 1) is an abelian group isomorphic to Z × Z/2Z, and any infinite order element in SO(L,ϕ) is

hyperbolic.

Conversely if δ is a perfect square, there is no hyperbolic isometry, and the isometry group is finite. More

precisely SO(L,ϕ) = {id,− id} ≃ Z/2Z.

Example 4.7. Let X be a real algebraic surface with ρ(XR) = 2. Then the group N1(XR;Z), equipped with

the intersection form, is a rank 2 hyperbolic lattice.

4.3.2 Surfaces with real elliptic fibrations

Let X and Y be two complex algebraic varieties. An elliptic fibration on X is a holomorphic map π : X → Y

which is proper and surjective, and such that the generic fiber is an elliptic curve. When the varieties X , Y and

the morphism π are defined over R, we call the elliptic fibration real.

Proposition 4.8. Let X be a real abelian surface with ρ(XR) = 2. The following are equivalent:

(1) the intersection form on N1(XR;Z) represents 0;

(2) there exists a real elliptic fibration on X ;

(3) X is isogenous to the product of two elliptic curves E1 and E2.

In this case, the concordance of X equals 1, and it is achieved.

Remark 4.9. The elliptic curves E1 and E2 can’t be isogenous, for otherwise the Picard number would be 3.

Proof . (1) ⇒ (2): Let θ a non zero primitive point in N1(XR;Z) such that θ2 = 0. After changing θ into −θ

if necessary, there exists a real effective and irreducible divisor D whose class is θ (here we use the fact that

Nef(XR) is the closure of Pos(XR), cf [20, 1.5.17]). By the genus formula, the arithmetic genus of D is 1. Since

an abelian surface does not have any rational curve, D must be a real elliptic curve. We may suppose that D
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goes through 0 (if not, we translate it and obtain an equivalent divisor), and thus it is a real subtorus. Now the

canonical projection π : X → X/D is a real elliptic fibration.

(2) ⇒ (3) follows from the Poincaré reducibility theorem (see [12, §VI 8.1]).

(3) ⇒ (1): Let f : X → E1 × E2 be an isogeny. The effective divisor D given by f∗(E1 × {0}) has self-

intersection 0, so the intersection form represents 0.

As the nef cone of E1 × E2 is spanned by [E1 × {0}] and [{0} × E2], then the interval A(E1 × E2) is equal

to [0, 1], by Proposition 2.7. By invariance under isogeny, we also have A(X) = [0, 1].

4.3.3 Surfaces with no real elliptic fibration

Theorem 4.10. Let X be a real abelian surface with ρ(XR) = 2. Assume that the intersection form on

N1(XR;Z) does not represent 0. Then

(1) there exists a real hyperbolic type automorphism on X ;

(2) the concordance of X equals 1/2 and it is achieved.

We will use the following result (see for instance [1, exposé VIII]):

Theorem 4.11 (Torelli theorem for tori). Let X be a real abelian surface, and let φ be a Hodge isometry

of H2(X(C);Z) which preserves the ample cone and has determinant +1. Then there exists a complex

automorphism f of X(C), unique up to a sign, such that f∗ = φ. If moreover φ commutes with the involution

σ∗
X , then f or f2 is a real automorphism.

Remark 4.12. To prove the last part, it is enough to remark that σX ◦ f ◦ σX = ±f−1, by the uniqueness

part.

Lemma 4.13. Let L be an free abelian group of finite rank, L′ be a finite index subgroup of L and φ′ be an

automorphism of L′. Then some positive iterate φ′k extends to an automorphism φ on L.

Proof . Denote by q the exponent of the group L/L′, so that qL ⊂ L′. As φ′ projects to an automorphism of

L′/qL′ that has finite order k, then φ′k(qL) ⊂ qL. Let µq : L→ qL be the isomorphism defined by θ 7→ qθ. Then

the automorphism φ = µ−1
q ◦ φ′k |qL ◦ µq satisfies the desired property.

Proof of Theorem 4.10. Since the intersection form does not represent 0, there exists a hyperbolic isometry φ1

of L1 = N1(XR;Z) (cf §4.3.1). Replacing φ1 by φ2
1 if necessary, we may suppose that φ1 preserves the cone

Amp(XR) and that det(φ1) = 1. Denote by L2 the orthogonal of L1 in L = H2(X(C);Z), and by L′ the direct

sum L1 ⊕ L2. The subgroup L′ has finite index in L, so by Lemma 4.13, φk
1 ⊕ idL2

extends to an automorphism

φ on H2(X(C);Z), for some k ∈ N∗. It is clear by construction that φ satisfies the asumptions of Theorem 4.11.
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Thus there exists a real automorphism f on X such that f∗ = φ2. Its entropy is positive, as a multiple of the

spectral logradius of φ1.

The equality α(X) = 1/2 follows from Theorem 3.15 and Proposition 4.4. In order to show the concordance

is achieved, we replace α by 1/2 = htop(fR)/ htop(fC) inside the proof of Theorem 3.15 by using the following

lemma, which improves the inequality of Corollary 3.12.

Lemma 4.14. Let f be a real automorphism of a real abelian surface X . Assume that λ = exp(htop(fR)) > 1.

Then for all very ample real divisors D on X , there exists C > 0 such that

mvolR(fn
∗D) ≥ Cλn (53)

for all n ∈ N.

Proof . The automorphism f lifts to a linear self-map F of R2. Replacing f with f2 if necessary, F has

eigenvalues λ and λ−1. We choose a scalar product on R2 such that the eigenlines D+ and D−, respectively

associated to λ and λ−1, are orthogonal. Then we take on X(R) the Riemannian metric induced by this scalar

product.

If necessary, we change D (by translation) into an equivalent divisor containing the origin as a smooth

point. Then the curve D(R) contains a smooth simple arc γ through 0. Let γ̃ be the lift of γ to R2 containing

the origin, and let p : R2 → R2 be the projection on D+ with direction D−. Then

mvol(fn
∗D) ≥ length(fn(γ)) = length(Fn(γ̃)) ≥ length(p ◦ Fn(γ̃)) = λn length(p(γ̃)). (54)

Observe that length(p(γ̃)) > 0. Indeed if it was zero, γ̃ would be contained in D−, hence the curve D(R), being

analytic, would contain the projection of D− on the torus R2/Z2. This could not be, because the last one is

Zariski-dense, the line D− being irrational. Thus we get the result with C = length(p(γ̃)).

4.4 Picard number 3

Lemma 4.15. Let X be a real abelian surface with ρ(XR) = 3. There exists a real elliptic curve E such that

X is isogenous to E × E.

Proof . Changing X by isogeny if necessary,X has the form C2/Λ, where Λ is like in Lemma 4.2. As ρ(XR) = 3,

then Qy1 + Qy2 + Qy3 has dimension 1, so there exists m ∈ N∗ such that my2 and my3 are in Zy1 (y1 6= 0, for

y1y2 − y2
3 = det(S) > 0). Then the dilation by m in C2 gives rise to an isogeny from X to E × E, where E is

the elliptic curve C/(Z⊕ iy1Z).

So we see it is enough to restrict ourselves to the case X = E × E = C2/Λ, where E = C/(Z⊕ τZ) is a

real elliptic curve, with y = Im(τ) > 0 and 2Re(τ) ∈ Z, and Λ is the lattice Z2 ⊕ τZ2. Furthermore, since the
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concordance is invariant under isogeny, we can even suppose that Re(τ) = 1/2, so that the curve E(R) has only

one connected component, which is identified with R/Z.

Observe that the group GL2(Z) acts on X and gives many examples of real hyperbolic type automorphisms.

A consequence from this fact and Proposition 4.4 is that we already have the inequality

α(X) ≤ 1/2. (55)

In order to compute volumes, we choose the standard euclidean metric on the torus X = C2/Λ, whose

Kähler form is given by κ = i
2 (dz1 ∧ dz1 + dz2 ∧ dz2). For this metric, we have volR(E) = 1 and volC(E) = y.

In the remaining part of this section, we follow [11].

Definition 4.16. A rational line on X is the projection of a line of C2 given by an equation az1 = bz2 with

(a, b) ∈ Z2. The number a/b ∈ Q ∪ {∞} is the slope of this rational line.

Example 4.17. The curves H , V , and ∆, which respectively are the horizontal, the vertical and the diagonal

of E × E, are rational lines with respective slopes 0, ∞ and 1. Their classes form a base of N1(XR;Z) (one can

use [6, §1, 3.4] and [31, §IV (3.4)] to make this computation).

Lemma 4.18. Let D be a rational line on X . Then

volR(D) = C volC(D)1/2, (56)

with C = y−1/2 = volR(E)/ volC(E)1/2.

Proof . Let a/b be the slope of D, with a and b coprime integers. We compute the length of D(R) by the

Pythagorean theorem:

volR(D) =
√

a2 + b2. (57)

On the other hand, it is clear, from the form of κ, that

volC(D) = volC(E)(D ·H +D · V ). (58)

We easily check that D ·H = a2 and D · V = b2, hence

volC(D) = y(a2 + b2). (59)

The group SL2(Z) acts by automorphisms on X , thus by isometries on N1(XR;R). This action preserves

the ample cone Amp(XR), which here is the same as Pos(XR) (see [20, §1.5.B]).
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If we identify the disk D = P(Amp(XR)) with the Poincaré half-plane H, by the unique isometry matching

the class of a rational line in ∂D with the inverse of its slope in ∂H = R ∪ {∞}, then the induced action of

PSL2(Z) on D corresponds to the standard action by homographies on H. As a consequence we see that the

triangle T ⊂ D, whose vertices are P[H ], P[V ] and P[∆], contains some fundamental domain for the action of

PSL2(Z) on D (see Figure 4).
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Figure 4. A fundamental domain for the action of PSL2(Z) on H. This domain is contained in the triangle
corresponding to T, whose vertices are ∞, 0 and 1.

Let D be a real ample divisor on X . There exists some f ∈ SL2(Z) such that P(f−1
∗ [D]) ∈ T. So there

are non-negative numbers k1, k2 and k3 such that f−1
∗ [D] = k1[H ] + k2[V ] + k3[∆]. The numbers k1, k2 and

k3 are actually integers, for ([H ], [V ], [∆]) is a base of N1(XR;Z). Hence the divisor D is equivalent to

k1D1 + k2D2 + k3D3, where D1 = f(H), D2 = f(V ) and D3 = f(∆) are rational lines. Then

mvolR(D) ≥
∑

j

kj volR(Dj) (60)

= C
∑

j

kj volC(Dj)
1/2 (by Lemma 4.18) (61)

≥ C





∑

j

kj
2 volC(Dj)





1/2

(by Minkowski inequality (48)) (62)

≥ C





∑

j

kj volC(Dj)





1/2

(63)

= C volC(D)1/2. (64)

We deduce that 1/2 ∈ A(X). Thus the concordance is 1/2 and it is achieved. This ends the proof of Theorem

4.5.

5 K3 Surfaces

5.1 Preliminaries

A real K3 surface is here a real algebraic surface X such that H1(X(C);Z) = 0 and the canonical divisor KX is

trivial.
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5.1.1 Exceptional curves

On a K3 surface, a complex irreducible curve C with negative self-intersection must have self-intersection −2,

by the genus formula. By contrast, when C is a real curve that is irreducible over R and has negative self-

intersection, we can also have C2 = −4. Indeed the curve C can have the form E + σ(E), where E is a complex

(−2)-curve with E · σ(E) = 0.

By extension we call a real effective divisor exceptional if it has self-intersection −2 or it has the form

E + σ(E), where E is a complex curve with E2 = −2 and E · σ(E) = 0 (this implies (E + σ(E))2 = −4). We

denote by ∆ ⊂ N1(XR;Z) the set of classes of exceptional curves. By description of the Kähler cone (cf [2, §VIII

(3.9)]),

Amp(XR) = {θ ∈ Pos(XR) | θ · d > 0 ∀d ∈ ∆}. (65)

This cone coincides with one of the chambers of Pos(XR)\⋃d∈∆ d
⊥. As a special case, we see that the lack of

exceptional curves is equivalent to the equality Amp(XR) = Pos(XR).

5.1.2 Torelli theorem

Let us recall the following result, that describes automorphisms of K3 surfaces (see [2, §VIII (11.1) & (11.4)],

[31, §VIII (1.7)]).

Theorem 5.1 (real Torelli theorem). Let X be a realK3 surface, and let φ be a Hodge isometry of H2(X(C);Z)

which preserves the ample cone. Then there exists a unique complex automorphism f of X(C) such that f∗ = φ.

If moreover φ commutes with the involution σ∗
X , then f is a real automorphism.

Remark 5.2. The kernel of the representation Aut(XR) → O(N1(XR;Z)) is finite, where O(N1(XR;Z)) denotes

the group of isometries of N1(XR;Z). Indeed, the space H2(X(C);R) decomposes into the orthogonal

direct sum V1 ⊕ V2 ⊕ V3, where V1 = N1(XR;R), V2 stands for the orthogonal of V1 in H1,1(X(C);R), and

V3 = (H0,2 ⊕ H2,0)(X(C);R). The intersection form is negative definite on V2 and positive definite on V3. If

f ∈ Aut(XR) is in the kernel of the representation, then the induced map f∗ on H2(X(C);R) preserves the

intersection form, so it is contained in the compact set {idV1
} ⊕ O(V2) ⊕ O(V3). Since the matrix of f∗ must

also have integer coefficients in a base of H2(X(C);Z), there are finitely many possibilities for f∗, and thus for

f by uniqueness in the Torelli theorem.

5.2 Picard number 2

When ρ(XR) = 2, the nef cone Nef(XR) has exactly two extremal rays. We say this cone is rational if both rays

are rational, i.e. if they contain an element of N1(XR;Z)\{0}.

Theorem 5.3. Let X be a real K3 surface with ρ(XR) = 2.

(1) If the intersection form on N1(XR;Z) represents 0, or if there are exceptional curves on X , then the group

Aut(XR) is finite, the cone Nef(XR) is rational and α(X) = 1, the concordance being achieved.
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(2) Otherwise X admits a real hyperbolic type automorphism f . Such an automorphism span a finite index

subgroup of Aut(XR), and α(X) =
htop(fR)
htop(fC) .

Remark 5.4. The intersection form on N1(XR;Z) represents 0 if and only if there exists some real elliptic

fibration (see [29, Corollary 3 in §3]).

Proof . First case: the intersection form represents 0. The group O(N1(XR;Z)) is finite (cf §4.3.1), and so is the

kernel of Aut(XR) → O(N1(XR;Z)), hence Aut(XR) must be finite. The extremal rays of Nef(XR) are either

isotropic half-lines, or orthogonal to the class of an exceptional curve: they are rational in both cases.

Second case: the intersection form does not represent 0 and there are exceptional curves. We show that

X has many exceptional curves. To be more precise, let d ∈ ∆ be the class of such a curve, and let φ′ be a

hyperbolic isometry of N1(XR;Z). Replacing φ′ by a positive iterate if necessary, the isometry φ′ ⊕ idN1(XR;Z)⊥

extends to an isometry φ on N1(XC;Z) (cf Lemma 4.13). Note that we can’t apply the Torelli theorem here,

for φ does not preserve the ample cone (even if we suppose that it preserves Pos(XR)). Nevertheless, we show

the following:

Lemma 5.5. For all n ∈ Z, ±φn(d) is the class of an exceptional curve.

Proof . If d2 = −2, then φn(d)2 = −2. The Riemann-Roch formula shows that h0(X,OX(φn(d))) +

h0(X,OX(−φn(d))) ≥ 2, hence φn(d) or −φn(d) is the class of an effective divisor.

Otherwise, d = e− σ∗e‖ with e2 = −2 and e · σ∗e = 0, where e is the class of a complex effective divisor.

From the same argument, it comes that φn(e) or −φn(e) is also the class of a complex effective divisor. Thus

±φn(d) = ±(φn(e) − σ∗φn(e)) is the class of a real effective divisor.

Observe that when n goes to ±∞, the lines Rφn(d) converge to the two isotropic lines. Consequently, there

are exceptional curves whose classes are arbitrarily close to both isotropic directions. The cone Amp(XR) is one

of the chambers of Pos(XR)\⋃d∈∆ d
⊥, so both its extremal rays must be orthogonal to classes of exceptional

curves, hence they are rational. Since the subgroup of O(N1(XR;Z)) whose elements fix or exchange these

extremal rays is finite, the group Aut(XR) is also finite by Remark 5.2.

In the first two cases, let R+[D] be an extremal ray of the cone Nef(XR). By Riemann-Roch,

h0(X,OX(D)) ≥ 2, thus mvolR(D) > 0 by Proposition 2.2. The assertion about α(X) follows, using Proposition

2.7.

Third case: the intersection form does not represent 0 and there is no exceptional curve. Let φ′ be a

hyperbolic isometry of N1(XR;Z) that preserves the cone Amp(XR) = Pos(XR). By the same argument as in

the proof of Theorem 4.10, some iterate φ′k extends to a Hodge isometry φ of H2(X(C);Z) that commutes with

σ∗. Then by the Torelli theorem, there exists on X a real automorphism f such that f∗ = φ. The entropy of fC

‖The minus sign before σ∗e comes from (12).
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is positive as a multiple of the spectral logradius of φ′. Now the representation Aut(XR) → O(N1(XR;Z)) has

finite kernel, and the subgroup generated by f∗ has finite index in O(N1(XR;Z)) (cf §4.3.1). It follows that f

span a finite index subgroup of Aut(XR). The concordance formula is a consequence of Theorem 3.15.

Example 5.6 ([33]). Let Y be the 3-dimensional flag variety

Y = {(P,L) ∈ P2(C) × P2(C)
∗ |P ∈ L}. (66)

Let X be a smooth hypersurface of Y such that the projections π1 : X(C) → P2(C) and π2 : X(C) → P2(C)
∗

are ramified 2-coverings. Then X is a K3 surface, called a Wehler surface. Furthermore, generic Wehler surfaces

have a rank 2 Néron-Severi group, spanned by generic fibers of the two coverings. The automorphism group is

then isomorphic to a free product Z/2Z ∗ Z/2Z, the generators being the involutions s1 and s2 of the coverings

π1 and π2. Furthermore, the automorphism f = s1 ◦ s2 has hyperbolic type.

If moreover the surface X is defined over R, then N1(XR;Z) = N1(XC;Z), and the automorphism f is real.

So, by Theorem 3.15,

α(X) =
htop(fR)

htop(fC)
=

htop(fR)

log(7 + 4
√

3)
. (67)

5.3 Deformation of K3 surfaces in P1 × P1 × P1

The following example was first described by McMullen in [24]. Fix a non zero real number t. Let Xt be the

hypersurface of P1(C)3 defined in its affine part C3 by

(z2
1 + 1)(z2

2 + 1)(z2
3 + 1) + tz1z2z3 = 2. (68)

It is a smooth surface of tridegree (2, 2, 2), hence a K3 surface [23], here defined over R. We have three double

(ramified) coverings πt
j : Xt → P1 × P1 (with j ∈ {1, 2, 3}), that consist in forgetting the j-th coordinate. These

three coverings give rise to three involutions st
j on Xt, that span a subgroup of Aut(XR) which is a free product

Z/2Z ∗ Z/2Z ∗ Z/2Z [32]. Let f t be the automorphism of Xt obtained by composing these three involutions.

Its entropy can be computed by the action on the subgroup of N1(XR;Z) spanned by the fibers of the three

coverings. We obtain htop(f t
C) = log(9 + 4

√
5) (see for instance [10]).

For parameter t = 0, the complex surface X0(C) is not smooth, for there are 12 singular points (∞,±i,±i),

(±i,∞,±i) and (±i,±i,∞). However these points are not real, so the surface Xt(R) remains smooth at

t = 0. Restricted to X0(R), the birational map f0 is an order 2 diffeomorphism, given by the formula

f0(x1, x2, x3) = (−x1,−x2,−x3). Consequently htop(f0
R) = 0.

Let X be the submanifold of P1(R)3 × R defined by X = {(x, t) |x ∈ Xt(R)}. The projection p : X → R

is a locally trivial bundle whose fibers are the real surfaces Xt(R). Thus there is an open neighborhood
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Iε = (−ε, ε) around 0, and an injective local diffeomorphism ψ : X0(R) × Iε → X , such that p ◦ ψ is the natural

projection on the second coordinate. For all t ∈ Iε, the map ψ induces a diffeomorphism from X0(R) to

Xt(R), which enables us to conjugate f t
R : Xt(R) → Xt(R) to a diffeomorphism gt on X0(R). This family

of diffeomorphisms on X0(R) is a continuous family for the C∞-topology. As the map g0 = f0
R has entropy 0,

it follows that limt→0 htop(gt) = 0, by continuity of the topological entropy on Diff∞(X0(R)) (see [34] or [28]

for the upper semicontinuity, and [18, Corollary S.5.13] for the lower semicontinuity). Since the entropy does

not change by conjugacy, we also have limt→0 htop(f t
R) = 0. On the other hand we obtain, by Theorem 3.8, that

α(Xt) ≤ htop(f t
R)/ htop(f t

C) = htop(f t
R)/ log(9 + 4

√
5) for t 6= 0, and so we get

lim
t→0, t6=0

α(Xt) = 0. (69)

To sum up, we have found a family (Xt, f t)t∈Iε\{0} of real K3 surfaces Xt embedded in (P1)3, equipped

with a real hyperbolic type automorphism f t, such that

(1) htop(f t
C) is a positive constant;

(2) as t goes to 0, Xt(R) degenerates in a smooth surface, and f t
R in a 0-entropy diffeomorphism;

(3) limt→0 α(Xt) = 0.

So we just proved the following:

Theorem 5.7. For any η > 0, there exists a real K3 surface in (P1)3 such that α(X) < η.

6 Non-Density of Automorphisms in Diff(X(R))

Let X be a real algebraic surface. For any r ∈ N ∪ {∞}, we denote by Diffr(X(R)) the group of Cr-

diffeomorphisms of the surface X(R), together with its Cr-topology (when r = 0, Diff0(X(R)) = Homeo(X(R))

stands for homeomorphisms). The group Aut(XR) identifies with a subgroup of Diffr(X(R)). We would like to

know how this subgroup sits into the whole group of diffeomorphisms.

When Aut(XR) doesn’t have any positive entropy element, it obviously can’t be dense in Diff∞(X(R)).

Indeed, there always exist positive entropy diffeomorphisms on X(R), and these diffeomorphisms can’t be

approached by any automorphism, by continuity of the entropy. The following result reverses this idea.

Proposition 6.1. Let X be a real algebraic surface such that α(X) > 0. Then the image of the group Aut(XR)

in Diff∞(X(R)) is not dense.

Proof . Let g be a diffeomorphism of X(R) such that 0 < htop(g) < α(X) log(λ10). Since the entropy varies

continuously on Diff∞(X(R)), there exists a neighborhood U of g in Diff∞(X(R)) such that the entropy of any

diffeomorphism in U remains in the open interval (0, α(X) log(λ10)). By Corollary 1.9, this neighborhood can’t

contain any automorphism of X .
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In [19], Kollár and Mangolte established the non-density of Aut(XR) in Homeo(X(R)) as soon as X(R) has

the topology of a connected orientable surface with genus ≥ 2. By contrast, they proved, for surfaces birational

to P2
R, the density in Diff∞(X(R)) of the group of birational transformations with imaginary indeterminacy

points.

When the Kodaira dimension is 0, X(R) is naturally equipped with a canonical volume form µX , which

comes from an everywhere non zero holomorphic 2-form on some finite cover of X . Since each automorphism

preserves µX , the non-density is obvious, as pointed out in [19]. Nevertheless we can prove, using exactly the

same argument, the non-density in diffeomorphisms which preserve the volume.

Proposition 6.1 bis. Let X be a real algebraic surface of Kodaira dimension 0 such that α(X) > 0. Then

the image of the group Aut(XR) in Diff∞
µX

(X(R)) is not dense, where Diff∞
µX

(X(R)) denotes the subgroup of

Diff∞(X(R)) whose elements preserve the canonical volume form µX .

Actually we can be more precise when the automorphism group Aut(XC) is a discrete group (for the

uniform convergence topology), i.e. when the connected component Aut(XC)0 of the identity is reduced to a

single point. For instance, this is the case for K3 and Enriques surfaces, but not for tori (for which Aut(XC)0

consists in all translations).

Theorem 6.2. Let X be a real algebraic surface. Assume that α(X) > 0 and Aut(XC)0 = {idX}. Then the

image of the group Aut(XR) in Diff1(X(R)) is a discrete subgroup.

Proof . Fix α > 0 such that α ∈ A(X). There are positive numbers q and C such that any real ample divisor

D whose class is q-divisible satisfies

mvolR(D) ≥ C volC(D)α. (70)

Let D0 be such a divisor, and let M > 1 be such that CMα > mvolR(D0) (in particular, volC(D0) < M).

Lemma 6.3. The set Γ = {f ∈ Aut(XR) | volC(f∗D0) ≤M} is finite.

Proof of Lemma 6.3. Denote by Θ ⊂ N1(XR;Z) the set of classes of ample divisorsD that satisfy volC(D) ≤M .

This set is finite, because such classes are in the compact set {θ ∈ Nef(XR) | θ · [κ] ≤M}, where κ denotes the

Kähler form on X .

By [21, 2.2] or [13, 4.8], the subgroup {f ∈ Aut(XR) | f∗[D0] = [D0]} has finitely many connected

components, so in our case it is finite. It follows that the set Γ = {f ∈ Aut(XR) | f∗[D0] ∈ Θ} is finite.

As Γ is finite and CMα

mvolR(D0)
> 1 = ‖D idX(R) ‖∞, we can find a neighborhood U of idX(R) in Diff1(X(R))

such that

(1) U ∩ Γ = {idX(R)};

(2) for all g ∈ U , ‖Dg‖∞ < CMα

mvolR(D0) .
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Let f be a real automorphism of X such that the restricted map fR : X(R) → X(R) is in U . Since the length

of a curve is at most multiplied by ‖DfR‖∞ when we take its image by fR, we obtain

mvolR(f∗D0) ≤ ‖DfR‖∞ mvolR(D0) < CMα. (71)

On the other hand, mvolR(f∗D0) ≥ C volC(f∗D0)
α, so we get volC(f∗D0) < M , hence f ∈ Γ. Then by hypothesis

on U , we get fR = idX(R). This implies that Aut(XR) is a discrete subgroup of Diff1(X(R)).

A Cauchy-Crofton Formula and Consequences

What is described here can be found in the manuscript [11], except for Lemma A.3, the proof of which is

incomplete in [11].

There is a classical way, in integral geometry (see [30]), to compute the volume of a k-dimensional

submanifold N of Pd(R), just by taking the mean of the number of intersections between N and k-codimensional

projective subspaces. In order to make it work, we choose both a metric on Pd(R), and a probability measure

on the Grassmannian G(d− k, d) (that is the real algebraic variety of (d− k)-dimensional projective subspaces

of Pd(R)), which are invariant under the action of the orthogonal group O(d+ 1). Namely we set the Fubini-

Study metric on Pd(R), and the probability µd−k,d on G(d− k, d) induced by the Haar measure on O(d+ 1)

(the Grassmannian is homogeneous with respect to this group). Now we can state the formula.

Theorem A.1 (Cauchy-Crofton formula). Let N be a k-dimensional submanifold of Pd(R). With respect to

the Fubini-Study metric,

vol(N) = vol(Pk(R))

∫

Π∈G(d−k,d)

♯(N ∩ Π)dµd−k,d(Π). (72)

It is enough to check the formula when N is a k-simplex, and then to approach an arbitrary submanifold

by such simplices. A similar formula in the euclidean context can be found in [30, p. 245 (14.70)].

Corollary A.2. Let Y be a real k-dimensional algebraic subvariety of Pd
R. With respect to the Fubini-Study

metric,

volR(Y ) ≤ deg(Y ) volR(Pk), (73)

with equality if and only if Y is a union of deg(Y ) real projective subspaces.

Proof of Corollary A.2. Observe that ♯(Y (R) ∩ Π) ≤ deg(Y ) for all Π ∈ G(d− k, d). Thus we get Inequality

(73) using the Cauchy-Crofton formula.

The equality is obviously achieved when Y is the union of deg(Y ) projective subspaces. Now we prove this

condition is necessary.
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Lemma A.3. Let Y be a geometrically irreducible real k-dimensional algebraic subvariety of Pd
R. If deg(Y ) > 1,

then there exists a real projective k-codimensional subspace Π such that the number of real points of Y ∩ Π,

counted with mulitplicities, is no more than deg(Y ) − 2.

Proof . Observe that the asumptions imply 0 < k < n. By Bertini’s theorem (see [20, 3.3.1]), there exists a

real projective subspace L of dimension d− k + 1 ≥ 2, such that the curve C = Y ∩ L is irreducible over C and

deg(C) = deg(Y ).

First we suppose that there is no hyperplane of L containing the curve C. We choose two distinct complex

conjugate points P and P on the curve C(C), and a real hyperplane Π of L such that Π(C) contains these

two points. As C is irreducible and not contained in Π, the intersection C ∩ Π = Y ∩ Π is a finite number of

points, including the complex points P and P . The number of complex points of this intersection, counted with

multiplicities, is exactly deg(Y ), and at least two complex points are not real. The result follows.

Otherwise let L′  L be the minimal projective subspace that contains the curve C. As deg(C) > 1, then

dim(L′) ≥ 2. By first step, we can choose a hyperplane Π′ ⊂ L′ such that ♯(C ∩ Π′)(R) ≤ δ − 2. Then we take

any hyperplane Π of L containing Π′ and not L′, and we are done.

Let us go back to the proof of the case of equality. Let Y be a real k-dimensional subvariety of Pd

that is not the union of real projective subspaces. We may assume that Y is irreducible over R. If it

is not geometrically irreducible, then Y = Z ∪ σ(Z), with Z a complex subvariety that is not real, hence

volR(Y ) = 0 < deg(Y ) volR(Pk). Otherwise we can deduce from Lemma A.3 that there exists a real hyperplane

Π such that ♯(Y ∩ Π)(R) ≤ deg(Y ) − 2 (with mutliplicities). This inequality remains satisfied on a neighborhood

of Π in the Grassmannian G(d− k, d). Such a neighborhood has a positive probability for µd−k,k, so the Cauchy-

Crofton formula implies volR(Y ) < deg(Y ) volR(Pk).
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