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ABSTRACT. Let f : X 99K X be a birational transformation of a projective manifold X
whose Kodaira dimension κ(X) is non-negative. We show that, if there exist a meromor-
phic fibration π : X 99K B and a pseudo-automorphism fB : B 99K B which preserves
an ample line bundle L ∈ Pic(B) and such that fB ◦π = π ◦ f , then fB has finite order.
As a corollary we show that, for projective irreducible symplectic manifolds of typeK3[n]

or generalized Kummer, the first dynamical degree characterizes the birational transforma-
tions admitting a Zariski-dense orbit.

1. INTRODUCTION

Let f : X 99K X be a birational transformation of a complex projective manifold. A
natural question when studying the dynamical properties of f is the existence of an equi-
variant meromorphic fibration, i.e. of a dominant meromorphic map with connected fibres
π : X 99K B onto a projective manifold and of a birational transformation fB : B 99K B
such that the following diagram commutes:

M M

B B

f

π π

fB

.

The transformation f is called imprimitive (see [HKZ15]) if there exists a non-trivial f -
equivariant fibration (i.e. such that 0 < dimB < dimX), and primitive otherwise; im-
primitive birational transformations should intuitively be simpler to study than primitive
ones, as their dynamics decomposes into smaller dimensional dynamical systems: the base
and the fibres. The goal of the present paper is to study the action on the base induced by
an imprimitive transformation. Our main result is the following:

Theorem A. Let X be a complex projective manifold and let f : X 99K X be a birational
transformation. Suppose that there exist a meromorphic fibration π : X 99K B onto a
projective manifoldB and a pseudo-automorphism fB : B 99K B such that fB ◦π = π◦f .
Assume that

(1) the Kodaira dimension κ(X) of X is non-negative;
(2) fB preserves an ample line bundle L.

Then fB has finite order.

Remark 1.1. The second assumption of Theorem A is automatically verified if ±KB is
ample; remark however that, if KB is ample, then in particular B is of general type, so
that the group of birational transformations is finite, which implies the conclusion of the
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Theorem. The condition that −KB is ample is verified if X is irreducible symplectic and
π is a holomorphic fibration.

The following corollary has the advantage of requiring only numerical hypothesis on
the action of fB , instead of having to compute its action on the Picard group.

Corollary B. Let X be a projective manifold and let f : X 99K X be a birational trans-
formation. Suppose that there exist a meromorphic fibration π : X 99K B onto a projective
manifold B and a pseudo-automorphism fB : B 99K B such that fB ◦ π = π ◦ f . Assume
that

(1) the Kodaira dimension κ(X) is non-negative;
(2) Pic0(B) = 0;
(3) the induced linear maps (fNB )∗ : H∗(B,C) → H∗(B,C) have bounded norm as

N → +∞.
Then fB has finite order.

Remark 1.2. Remark that the second and third assumptions of Corollary B are auto-
matically satisfied if Pic0(X) = 0 and the induced linear maps (fN )∗ : H∗(X,C) →
H∗(X,C) have bounded norm.

Proof. Since the induced linear maps (fNB )∗ : H∗(B,C) → H∗(B,C) have bounded
norm as N → +∞, by [?] , up to replacing B by a birational model and fB by an iterate,
we may assume that fB is an automorphism and that fB ∈ Aut0(B). In particular, fB has
trivial action on H∗(B,C) and thus, since line bundles on B are uniquely determined by
their numerical class, on Pic(B). Therefore fB is an automorphism which preserves an
ample line bundle, hence by Theorem A it has finite order. �

1.1. The case of irreducible symplectic manifolds. Theorem A is particularly interest-
ing in the case whereX is an irreducible symplectic manifold. A compact Kähler manifold
is said to be irreducible symplectic (or hyperkähler) if it is simply connected and the vec-
tor space of holomorphic 2-forms is spanned by a nowhere degenerate form. Irreducible
symplectic manifolds form, together with Calabi-Yau manifolds and complex tori, one of
the three fundamental classes of compact Kähler manifolds with trivial Chern class.

We will say that X is of type K3[n] (resp. generalized Kummer) if it is deformation
equivalent to the Hilbert scheme of n points on a K3 surface (resp. to a generalized Kum-
mer variety); all known irreducible symplectic manifolds are of type K3[n], generalized
Kummer or deformation equivalent to one of two sporadic examples by O’Grady. See
[GHJ03] for a complete introduction to irreducible symplectic manifolds.

If f : M 99KM is a meromorphic transformation of a compact Kähler manifold M , for
p = 0, 1, . . . ,dim(M) the p-th dynamical degree of f is

λp(f) := lim sup
N→+∞

||(fN )∗p||
1
n ≥ 1,

where (fN )∗p : Hp,p(M) → Hp,p(M) is the linear map induced by fN and || · || is any
norm on the vector space End(Hp,p(M)). Note that in the case of an automorphism,
(fN )∗ = (f∗)N so that λp(f) is just the spectral radius (i.e. the maximal modulus of
eigenvalues) of f∗p onHp,p(M); since f∗p preserves a closed salient cone, we actually have
that λp(f) is a real eigenvalue of f∗p .

Theorem 1.3 (Hu, Keum and Zhang, [HKZ15]). Let X be a 2n-dimensional projective
irreducible symplectic manifold of type K3[n] or of type generalized Kummer and let
f ∈ Bir(X) be a birational transformation with infinite order; the first dynamical degree
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λ1(f) is equal to 1 if and only if there exist a rational Lagrangian fibration π : X 99K Pn
and g ∈ Aut(Pn) = PGLn+1(C) such that π ◦ f = g ◦ π.

This allows to prove the following corollary:

Corollary C. Let f be a birational transformation of a projective irreducible symplectic
manifold X of type K3[n] or generalized Kummer; then f admits a Zariski-dense orbit if
and only if the first dynamical degree λ1(f) is > 1.

Proof. Assume first that λ1(f) > 1; then by [LB, Main Theorem] the very general orbits
of f are Zariski-dense.

Assume conversely that λ1(f) = 1; by Theorem 1.3 there exists a Lagrangian fibration
π : X 99K Pn such that the induced transformation g : Pn → Pn is biregular, and partic-
ular preserves the ample line bundle OPn(1). Note that, by [Huy99, Proposition 9.1], the
induced linear automorphism f∗ : H2(X,Z) → H2(X,Z) has also infinite order. Thus
one can apply Theorem A to deduce that g has finite order. In particular all the orbits of f
are contained in a finite union of fibres of π, hence they are not Zariski-dense. �

2. ELEMENTS OF p-ADIC INTEGRATION

In this section we give an introduction to p-adic integration; see [CLNS14], [Pop11,
Chapter 3] and [Igu00].

2.1. p-adic and local fields. We remind that, for a prime number p, the p-adic norm on Q
is defined as ∣∣∣pn · a

b

∣∣∣ = p−n p - a, p - b.

We denote Qp the metric completion of (Q, | · |p); every element of Qp can be uniquely
written as a Laurent series

a =

+∞∑
n=n0

anp
n ai ∈ {0, 1, . . . , p− 1}.

Denote by Zp the closed unit ball in Qp; it is an integrally closed local subring of Qp with
maximal ideal pZp and residue field Fp; its field of fractions is Qp, and it is a compact,
closed and open subset of Qp.

A p-adic field is a finite extensionK of Qp for some prime p; onK there exists a unique
absolute value | · |K extending | · |p. We denote by OK the closed unit ball in K.

A local field is a field K with a valuation | · | : K → R≥0 such that K with the induced
topology is locally compact.

Theorem 2.1. A local field of characteristic 0 is isomorphic either to R or C endowed
with the usual absolute values (archimedean case) or to a finite extension of Qp for some
prime number p endowed with the unique extension of | · |p (non-archimedean case).

2.2. Measure on K. On a locally compact topological group G there exists a measure µ,
unique up to scalar multiplication, called the Haar measure of G such that:

• any continuous function f : G→ C with compact support is µ-integrable;
• µ is G-invariant to the left.

Other important properties of the Haar measure are as follows: every Borel subset of G is
measurable; µ(A) > 0 for every nonempty open subset of G.

We consider G = (Qp,+), and take on it the Haar measure µ normalized so that

µ(Zp) = 1.
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Example 2.2. It is easy to show that for every m ≥ 0 one has µ(pmZp) = p−m.

More generally, on a p-adic field K we consider the Haar measure µ such that

µ(OK) = 1.

2.3. Integration onK-analytic manifolds. LetK be a p-adic field with norm |·|. For any
open subset U ⊂ Kn, a function f : U → K is said to beK-analytic if locally around each
point it is given by a convergent power series. Similarly, we call f = (f1, . . . , fm) : U →
Km a K-analytic map if all the fi are analytic.

As in the real and complex context, we define a K-analytic manifold of dimension n
as a Hausdorff topological space locally modelled on open subsets of Kn and with K-
analytic change of charts.

Example 2.3. (1) Every open subset U ⊂ Kn is a K-analytic manifold of dimension
n; in particular, the set OnK ⊂ Kn is a K-analytic manifold.

(2) The projective space PnK over K is a K-analytic manifold.
(3) Every smooth algebraic variety over K is a K-analytic manifold; in order to

see this one needs a K-analytic version of the implicit function theorem (see
[CLNS14, §1.6.4]).

Differential forms are defined in the usual way via charts: on a chart with coordinates
x1, . . . , xn, a differential form of degree k can be written as

α =
∑
|I|=k

fI(x1, . . . , xn)dxi1 ∧ . . . ∧ dxik

with fI : U → K functions on U ; if the fI are K-analytic we say that the form is analytic.
Now take a maximal degree analytic differential form ω; let φ : U → Kn be a local chart,
defining local coordinates x1, . . . , xn. In these coordinates we can write

φ∗ω = f(x1, . . . , xn)dx1 ∧ . . . ∧ dxn.
Then one can define a Borel measure |ω| on U as follows: for any open subset A ⊂ U , we
set

|ω|(A) =

∫
φ(A)

|f(x)|K dµ,

where µ is the usual normalized Haar measure on φ(U) ⊂ Kn.
Similarly, let ω be a maximal degree pluri-form, i.e. a section of the analytic sheaf (ΩnX)⊗m

for some m > 0; let φ : U → Kn be a local chart, defining local coordinates x1, . . . , xn.
In these coordinates we can write

φ∗ω = f(x1, . . . , xn)(dx1 ∧ . . . ∧ dxn)⊗m.

Then one can define a Borel measure m
√
|ω| on U as follows: for any open subset A ⊂ U ,

we set
m
√
|ω|(A) =

∫
φ(A)

m

√
|f(x)|Kdµ,

where µ is the usual normalized Haar measure on φ(U) ⊂ Kn.
Now let ω be a global section of ΩnX (resp. (ΩnX)⊗m). To define a Borel measure

|ω| (resp. m
√
|ω|) on the whole manifold X , one uses partitions of unity exactly as in

the real case. The only thing to check is that |ω| (resp. m
√
|ω|) transforms precisely like

differential forms when changing coordinates, which is a consequence of the following
K-analytic version of the change of variables formula.
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Theorem 2.4 (Change of variables formula). Let U be an open subset of Kn and let
φ : U → Kn be an injective K-analytic map whose Jacobian Jφ is invertible on U . Then
for every measurable positive (resp. integrable) function f : φ(U)→ R∫

φ(U)

f(y)dµ(y) =

∫
U

f(φ(x)) |det Jφ(x)|K dµ(x).

3. PROOF OF THEOREM A

In this section we give the proof of Theorem A. The strategy of the proof goes as
follows:

(1) A multiple mL of L induces an embedding B ↪→ PN ; since fB preserves L, it is
the restriction of a linear automorphism g ∈ PGLN+1(C).

(2) Find an f -invariant volume form ω on X (for X irreducible symplectic, ω =
(σ ∧ σ̄)n, where 2n = dimX and σ is a symplectic form).

(3) The push-forward of µ by π defines a fB-invariant measure vol on B not charging
positive codimensional subvarieties; using this it is not hard to put g ∈ PGLN+1(C)
in diagonal form with only complex numbers of modulus 1 on the diagonal.

(4) Define the field of coefficients k: roughly speaking, a finitely generated (but not
necessarily finite) extension of Q over which X , B, f , the volume form and all
the relevant maps are defined.

(5) Apply a key lemma: if one of the coefficients α of g weren’t a root of unity, there
would exist an embedding k ↪→ K into a local field K such that |ρ(α)| 6= 1. Then
the same measure-theoretic argument as in point (3) leads to a contradiction.
A similar idea appears in the proof of Tits alternative for linear groups, see [Tit72].

3.1. Invariant volume form onX . Remark that, given a holomorphic n-form Ω (n being
the dimension of X), the pull-back f∗Ω is defined outside the indeterminacy locus of f ;
the latter being of codimension≥ 2, by Hartogs principle we can extend f∗Ω to an n-form
on the whole X . This action determines a linear automorphism

f∗ : H0(X,KX)→ H0(X,KX).

Similarly, for all m ≥ 0 one can define linear automorphisms

f∗m : H0(X,mKX)→ H0(X,mKX).

Since X has non-negative Kodaira dimension, there exists m > 0 such that mKX has a
section. The complex vector space H0(X,mKX) has finite dimension, thus there exists
an eigenvector Ω ∈ H0(X,mKX) \ {0}:

f∗Ω = ξΩ.

The section Ω can be written in local holomorphic coordinates x1, . . . , xn as

Ω = f(x)(dx1 ∧ . . . ∧ dxn)⊗m

for some (local) holomorphic function f . Thus locally

Ω ∧ Ω = |f(x)|2 (dx1 ∧ . . . ∧ dxn)⊗m ∧ (dx̄1 ∧ . . . ∧ dx̄n)⊗m.

It can be checked that the local form

ω =
(−1)n(n−1)/2

in
m

√
|f(x)|2dx1 ∧ . . . ∧ dxn ∧ dx̄1 ∧ . . . ∧ dx̄n
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is a volume form; since it is canonically associated to Ω, such local expressions glue to-
gether to define a volume form on X

ω =
(−1)n(n−1)/2

in
m
√

Ω ∧ Ω.

Since the measure µ of integration by ω doesn’t charge positive codimensional analytic
subvarieties and since f is birational, f preserves the (finite) total measure:∫

X

f∗(ω) =

∫
X

ω;

this implies that |ξ| = 1, and in particular that the volume form ω is f -invariant.
The push-forward by π induces a measure vol on B: for all Borel set A ⊂ B, we set

vol(A) :=

∫
π−1(A)

ω.

The measure vol is fB-invariant.

3.2. A first reduction of g. In a given system of homogeneous coordinates on PN , an
automorphism g ∈ Aut(PN ) = PGLN+1(C) is represented by a matrix M acting linearly
on such coordinates; M is well-defined up to scalar multiplication. We will say that g is
semi-simple ifM is; in this case there exist homogeneous coordinates Y0, . . . , Yn such that
the action of g on these coordinates can be written

g([Y0 : . . . : YN ]) =


1

α1

. . .
αN

Y = [Y0 : α1Y1 : . . . : αNYN ].

By an abuse of terminology, we will call the αi the eigenvalues of g; they are not well-
defined, but the property that they are all of modulus 1 is.

Lemma 3.1. The automorphism g is semi-simple and its eigenvalues have all modulus 1.

Proof. Let us prove first that g is semi-simple. If this were not the case, the Jordan form of
g (which is well-defined up to scalar multiplication) would have a non-trivial Jordan block,
say of dimension k ≥ 2. It turns out that the computations are clearer if we consider the
lower triangular Jordan form. In some good homogeneous coordinates Y0, . . . Yn of PN ,
after rescaling the coefficients of g we can write

g(Y ) =



1 0
1 1

. . . . . . 0
0 1 1

αk 0

0
. . .

F αN


Y .

Take the affine chart {Y0 6= 0} ∼= CN with the induced affine coordinates yi = Yi/Y0. In
these coordinates we can write

g(y1, . . . , yN ) = (y1 + 1, y2 + y1, . . .)

and thus
gN (y1, . . . , yN ) = (y1 +N, . . .).
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Let
A = {(y1, . . . , yN ) ∈ CN | 0 ≤ Re(y1) < 1};

then we have
CN =

∐
N∈Z

gN (A);

therefore
B ∩ CN =

∐
N∈Z

B ∩ gN (A) =
∐
N∈Z

fNB (A ∩B)

and

vol(B) = vol(B ∩ CN ) =
∑
N∈Z

vol(fNB (A ∩B)) =
∑
N∈Z

vol(A ∩B) = 0 or +∞,

which is a contradiction with the finiteness of vol. This shows that g is diagonalizable.
Next we show that, up to rescaling, in good homogeneous coordinates one can write

g(Y ) =


1

α1

. . .
αN

Y = [Y0 : α1Y1 : . . . : αNYN ]

with |αi| = 1. Suppose by contradiction that |α1| 6= 1 (for example |α1| > 1), and define

A = {(y1, . . . , yN ) ∈ CN | 1 ≤ |y1| < |α1|} ⊂ CN .

The same argument as above leads to a contradiction. �

3.3. The field of coefficients. A key idea of the proof will be to define the "smallest"
extension k of Q over which X , B and all the relevant applications are defined, and to
embed k in a local field in such a way as to obtain a contradiction.

Let us fix a cover of X by affine charts U1, . . . , Um trivializing the canonical bundle.
Each of these Ui is isomorphic to the zero locus of some polynomials pi,1, . . . , pi,ni in an
affine space CNi ; fix some rational functions gi,j : CNi 99K CNj giving the changes of co-
ordinates from Ui to Uj . Denote φi,j : Ui∩Uj → C∗ the change of charts for the canonical
bundle; such functions are algebraic, therefore they are given by some rational functions
hi,j on CNi (or, equivalently, CNj ). Let f : CNi 99K CNj (resp. Ωi : CNi 99K C,) be
some rational functions defining f (resp. Ω). Finally, fix homogeneous coordinates on
PN diagonalizing g (see paragraph 3.2), and let q1, . . . , qM be homogeneous polynomials
defining B ⊂ PN ; fix as well some rational maps πi : CNi 99K CN+1 defining πUi upon
passing to quotient.
We define the field of coefficients k = kΩ as the extension of Q generated by all the co-
efficients appearing in the pi,k, fi,j , gi,j , hi,j ,Ωi, πi and by α1, . . . , αn; this is a finitely
generated (but not necessarily finite) extension of Q over which X is defined.

Let ρ : k ↪→ K be an embedding of k into a local fieldK; since R is naturally embedded
in C, we may and will assume thatK is either C or a p-adic field. We can now apply a base
change in the sense of algebraic geometry to recover a smooth projective scheme over K
and all the relevant functions.

Here are the details of the construction: the polynomials pρi,k = ρ(pi,k) define affine
varieties Xρ

i of KNi ; the rational functions gρi,j allow to glue the Xρ
i -s into a complex

algebraic variety Xρ. This variety is actually smooth since smoothness is a local condition
which is algebraic in the coefficients of the pi,k. Furthermore, by applying ρ to all the
relevant rational functions, we can recover a birational transformation fρ : Xρ 99K Xρ
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and a canonical section Ωρ ∈ H0(Xρ,KXρ). Remark that we can suppose that Xρ

is projective: indeed, X ⊂ PN (C) is the zero locus of some homogeneous polyno-
mials P1, . . . , Pk ∈ C[Y0, . . . , YN ], and, up to adding the affine open subsets Xi =
X ∩ {Yi 6= 0} to the above constructions, it is easy to see that Xρ ⊂ PN (K) is the
zero locus of P ρ1 , . . . , P

ρ
k . Furthermore, applying ρ to the equations of π defines a mero-

morphic fibration πρ : Xρ 99K PnK , and, denoting gρ : PnK → PnK the automorphism
given by gρ[Y0 : . . . : Yn] = [Y0 : αρ1Y1 : . . . : αρnYn], we have πρ ◦ fρ = gρ ◦ πρ:

Xρ

πρ

��

fρ
// Xρ

πρ

��

PnK
gρ
// PnK

We will denote by µρ the measure on Xρ associated to Ωρ: this has been denoted by
m
√
|Ωρ| in section 2.3 in the non-archimedean case, while if K = C it is defined as the

measure of integration of

ωρ =
(−1)n(n−1)/2

in
m
√

Ωρ ∧ Ωρ.

In both cases, µρ doesn’t charge positive codimensional analytic subvarieties.

Remark 3.2. At this stage we can already prove that the αi are algebraic numbers all of
whose conjugates over Q have modulus 1. Indeed suppose that this is not the case, say for
α1; by a standard argument in Galois theory (see for example [Lan02]), one can find an
embedding ρ : k ↪→ C such that |ρ(α1)| 6= 1. Now, gρ preserves the measure volρ induced
on Pn by ωρ

volρ(A) :=

∫
(πρ)−1(A)

ωρ,

and Lemma 3.1 leads to a contradiction.
If we somehow knew that the αi are algebraic integers, we could conclude by a lemma

of Kronecker’s (see [Kro57]) that they are roots of unity. However, this is in general not
true for algebraic numbers: for example,

α =
3 + 4i

5

has only ᾱ as a conjugate over Q, and they both have modulus 1, but they are not roots of
unity. In order to exclude this case we will have to use the p-adic argument.

3.4. Key lemma and conclusion. In his original proof of the Tits alternative for linear
groups [Tit72], Tits proved and used (much like we do in this context) the following simple
but crucial lemma:

Lemma 3.3 (Key lemma). Let k be a finitely generated extension of Q and let α ∈ k be
an element which is not a root of unity. Then there exist a local field K (with norm | · |) and
an embedding ρ : k ↪→ K such that |ρ(α)| > 1.

We can now show that the number ξ such that f∗Ω = ξΩ is actually a root of unity; this
follows from the classical result that f induces a linear map on cohomology preserving the
integral structure (see for example [NU73]) and from the fact that all the conjugates of ξ
over Q also have modulus 1 (the method for the proof being the same as the one explained
in Remark 3.2), but to the best of my knowledge the present proof using Lemma 3.3 is
original.
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Lemma 3.4. Some iterate fN of f preserves Ω.

Proof. We need to show that |ξ| is a root of unity. Suppose by contradiction that this is
not the case, and define the field of coefficients k = kΩ; since f∗Ω = ξΩ, we have ξ ∈ k.
Applying Lemma 3.3, one finds an embedding ρ : k ↪→ K into a local field K such that
|ρ(ξ)| 6= 1.
The measure µρ on Xρ doesn’t charge positive codimensional analytic subvarieties and
fρ : Xρ 99K Xρ is a birational map, therefore the (finite) total measure is preserved by fρ:

(fρ)∗µρ(Xρ) = µρ(Xρ).

On the other hand (fρ)∗µρ is the measure associated to (fρ)∗Ωρ = ξρΩρ, hence (fρ)∗µρ =
|ξρ| · µρ and |ξρ| 6= 1, a contradiction. �

Proof of Theorem A. Suppose by contradiction that one of the eigenvalues, say α1, is not
a root of unity.

We replace f by an iterate fN preserving Ω, and define the field of coefficients k. Now,
since f∗Ω = Ω, we have (fρ)∗(Ωρ) = Ωρ, and in particular fρB preserves the measure
volρ on Bρ induced by the push-forward of µρ:

volρ(A) := µρ
(
(πρ)−1(A)

)
.

The measure volρ is non-trivial, finite, and doesn’t charge positive codimensional analytic
subvarieties of Bρ, thus we can conclude just as in the proof of Lemma 3.1.

Namely, identify {Y0 6= 0} ⊂ PNK with KN and denote A := {(y1 : . . . : yN ) ∈
KN | 1 ≤ |y1| < |α1|} ⊂ KN if |ρ(α1)| > 1 (respectively A := {(y1 : . . . : yN ) ∈
KN | |αρ1| ≤ |y1| < 1} ⊂ KN if |ρ(α1)| < 1); then, since volρ doesn’t charge positive
codimension analytic subsets, we have

µρ(Xρ) = volρ(Bρ) = volρ(Bρ ∩Kn) =∑
N∈Z

volρ((gρ)N (A ∩Bρ)) =
∑
N∈Z

volρ(A ∩Bρ) = 0 or +∞,

a contradiction. �
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