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Abstract. Extending well-known results on surfaces, we give bounds on the
cohomological action of automorphisms of compact Kähler threefolds. More
precisely, if the action is virtually unipotent we prove that the norm of (fn)∗

grows at most as cn4; in the general case, we give a description of the spectrum
of f∗, and bounds on the possible conjugates over Q of the dynamical degrees
λ1(f), λ2(f). Examples on complex tori show the optimality of the results.

An automorphism f : X → X of a compact Kähler manifold induces by pull-back
of forms a linear automorphism

f∗ : H∗(X,Z)→ H∗(X,Z)

which preserves the cohomology graduation, the Hodge decomposition and complex
conjugation.

Question 1. What else can one say on f∗? More precisely, can one give constraints
on f∗ which depend only on the dimension of X (and not on the dimension of
H∗(X))?

This is an interesting question in its own right since the cohomology of a man-
ifold is a powerful tool to describe its geometry; furthermore, the cohomological
action of an automorphism is relevant when studying its dynamics: one can deduce
its topological entropy from its spectrum (see Theorem 1.3.3), and in the surface
case knowing f∗ allows to establish the existence of f -equivariant fibrations (see
Theorem 2.2.1). It turns out that the restriction of f∗ to the even cohomology
encodes most of the interesting informations (see Section 1.3), therefore we focus
on this part of the action; furthermore, in dimension 3 the action on H0(X) and
on H6(X) is trivial, and the action on H4(X) can be deduced from the action on
H2(X) (see Proposition 1.1.1.(3)), so we only describe the latter.

The situation of automorphisms (and, more generally, of birational transforma-
tions) of curves and surfaces is well understood (see Section 2). We address here
the three-dimensional case.

The first result describes the situation where f∗ does not have any eigenvalue of
modulus > 1, i.e. the dynamical degrees λi(f) are equal to 1 (see Definition 1.3.1).
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2 COHOMOLOGY ACTION THREEFOLDS

Theorem A. Let X be a compact Kähler threefold and let f : X → X be an auto-
morphism such that λ1(f) = 1 and whose action on H∗(X) has infinite order. Then
the induced linear automorphism f∗2 : H2(X,C) → H2(X,C) is virtually unipotent
and has a unique Jordan block of maximal dimension m = 3 or 5. In particular,
the norm of (fn)∗ grows either as cn2 or as cn4 as n goes to infinity.

For the proof of slightly more general results, see Theorem 3.0.1 and Proposition
3.1.1.

Next we give a description of the spectrum of f∗ in terms of the dynamical
degrees:

Theorem B. Let X be a compact Kähler threefold and let f : X → X be an
automorphism having dynamical degrees λ1 = λ1(f) and λ2 = λ2(f) (see Definition
1.3.1). Let λ be an eigenvalue of f∗2 : H2(X,C) → H2(X,C); then there exists a
positive integer N such that

|λ|(−2)N ∈
{

1, λ1, λ
−1
2 , λ−1

1 λ2

}
.

If furthermore λ2 /∈ {λ2
1,
√
λ1}, then λ1 and λ−1

2 are the only eigenvalues of f∗2
having modulus λ1 or λ−1

2 .

For a proof see Proposition 4.3.1 and 4.4.1.
Finally, we describe the (moduli of) Galois conjugates of λ1(f) over Q:

Theorem C. Let X be a compact Kähler threefold and let f : X → X be an
automorphism having dynamical degrees λ1 = λ1(f) and λ2 = λ2(f). Then λ1 is
an algebraic integer, all of whose conjugates over Q have modulus belonging to the
following set: {

λ1, λ
−1
2 , λ−1

1 λ2,

√
λ−1

1 ,
√
λ2,

√
λ1λ

−1
2

}
.

See Proposition 4.6.7 and 4.7.2 for a proof and for a more detailed description
of all possible subcases.

In Section 1 we introduce the problem and the tools which will be used in the
proofs, namely the generalized Hodge index theorem, an application of Poincaré’s
duality and some elements of the theory of algebraic groups; in Section 2 we present
the known results in dimension two. In the rest of the paper we treat the case of
dimension three: in Section 3 we give a proof of Theorem A and describe examples
on complex tori which show the optimality of the result; similarly, in Section 5
and Section 6 we prove Theorem B and C respectively, and describe further ex-
amples on tori which show the optimality of the claims; finally, in Section 7 we
address the problem to determine whether f∗ can be neither (virtually) unipotent
nor semisimple (see Proposition 5.0.1).

Acknowledgements. I wish to express my deepest gratitude to my advisor
Serge Cantat for proposing me this problem and a strategy of proof, and for all the
help and suggestions he provided me at every stage of this work.

1. Introduction and main tools

Throughout this Section, we denote by f : X → X an automorphism of a com-
pact Kähler manifold X of complex dimension d and by

f∗ : H∗(X,R)→ H∗(X,R)
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the induced linear automorphism on cohomology. We still denote by f∗ : H∗(X,C)→
H∗(X,C) the complexification of f∗, and by f∗k (resp. f∗p,q) the restriction of f∗ to
Hk(X,R) (resp. to Hp,q(X)).

1.1. First constraints. The induced linear automorphism f∗ preserves some ad-
ditional structure on the cohomology space H∗(X,R):

Proposition 1.1.1. (1) f∗(Hi(X,R)) = Hi(X,R) for all i = 0, . . . , 2d and
f∗(Hp,q(X)) = Hp,q(X) for p, q = 0, . . . d;

(2) f∗(u ∧ v) = f∗(u) ∧ f∗(v) for all u, v ∈ H∗(X,R);
(3) the Poincaré’s duality Hi(X,R) ∼= H2d−i(X,R)∨ induces an identification

f∗i = ((f∗2d−i)
−1)∨;

(4) f∗ is defined over Z; in other words, the coefficients of f∗ with respect to
an integral basis of H∗(X,R) are integers;

(5) f∗ preserves the convex salient cones Kp ⊂ Hp,p(M,R) generated by the
classes of positive currents (see [7]).

Remark that properties (1)− (4) are algebraic, while property (5) is not.

1.2. The unipotent and semi-simple parts. Let V be a finite dimensional real
vector space and let g : V → V be a linear endomorphism. It is well-known that
there exists a unique decomposition

g = gu ◦ gs = gs ◦ gu,
where gu is unipotent (i.e. (gu − idV )dimV = 0) and gs is semisimple (i.e. diago-
nalizable over C). This is a special case of the following more general statement:

Theorem 1.2.1 (Jordan decomposition). Let V be a finite dimensional and let G ⊂
GL(V ) be a commutative algebraic group. Then, denoting by Gu ⊂ G (respectively
by Gs ⊂ G) the subset of unipotent (respectively semisimple) elements of G, Gu and
Gs are closed subgroups of G and the product morphism induces an isomorphism of
real algebraic groups

G ∼= Gu ×Gs.

Let us go back to the context of automorphisms of compact Kähler manifold.
Let f : X → X be an automorphism of a compact Kähler manifold, V = H∗(X,R),
f∗ : V → V and

G =
⋃
n∈Z

(fn)∗
Zar

⊂ GL(V );

here A
Zar

denotes the Zariski-closure of a set A ⊂ GL(V ) ∼= R(dimV )2 , i.e. the
smallest Zariski-closed subset of GL(V ) containing A. Then, since 〈g〉 is commu-
tative, so is G, and by Theorem 1.2.1 we have an isomorphism of real algebraic
groups

G ∼= Gu ×Gs;
this means in particular that, writing the Jordan decomposition f∗ = f∗u ◦ f∗s , we
have f∗u , f∗s ∈ G, i.e. if f∗ satisfies some algebraic constraint, then so do f∗u and f∗s .
We have therefore:

Lemma 1.2.2. (1) f∗u(Hi(X,R)) = Hi(X,R) for all i = 0, . . . , 2d and
f∗u(Hp,q(X)) = Hp,q(X) for p, q = 0, . . . d;

(2) f∗u(v ∧ w) = f∗u(v) ∧ f∗u(w) for all v, w ∈ H∗(X,R);
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(3) the Poincaré’s duality Hi(X,R) ∼= H2d−i(X,R)∨ induces an identification

(f∗u)i = ((f∗u)−1
2d−i)

∨;

(4) f∗u is defined over Z; in other words, the coefficients of f∗ with respect to
an integral basis of H∗(X,R) are integers.

The same properties are still true if one replaces f∗u by f∗s .

Remark however that, since preserving a cone is not an algebraic property, f∗u
and f∗s may not preserve the positive cones Kp.

1.3. Dynamical degrees. In this paragraph only, we allow f : M 99K M to be a
dominant meromorphic self-map of a compact Kähler manifold M .

Definition 1.3.1. The p-th dynamical degree of f is defined as

λp(f) = lim sup
n→+∞

‖(fn)∗p,p‖
1
n ,

where ‖ · ‖ is any matrix norm on the space L(Hp,p(X,R)) of linear maps of
Hp,p(X,R) into itself.

In the meromorphic case the pull-backs f∗p,p are defined in the sense of currents
(see [7]).
One can prove that

(1.1) λp(f) = lim
n→+∞

(∫
M

(fn)∗ωp ∧ ωd−p
) 1

n

for any Kähler form ω; see [10], [5] for details.
In the case of holomorphic maps, we have (fn)∗ = (f∗)n, so that λp(f) is the

spectral radius (i.e. the maximal modulus of eigenvalues) of the linear map f∗p,p;
since f∗ also preserves the positive cone Kp ⊂ Hp,p(M,R), a theorem of Birkhoff
[2] implies that λp(f) is a positive real eigenvalue of f∗p . In particular, λp(f) is an
algebraic integer. However it should be noted that in the meromorphic setting we
have in general (fn)∗ 6= (f∗)n.

At least in the projective case, the p-th dynamical degree measures the exponen-
tial growth of the volume of f−n(V ) for subvarieties V ⊂M of codimension p, see
[15].

Remark 1.3.2. By definition λ0(f) = 1; λd(f) coincides with the topological degree
of f : it is equal to the number of points in a generic fibre of f .

The topological entropy of a continuous map of a topological space is a non-
negative number, possibly infinite, which gives a measure of the chaos created by
the map and its iterates; for a precise definition see [16]. The computation of the
topological entropy of a map is usually complicated, and requires ad hoc arguments;
however, in the case of dominant self-maps of compact Kähler manifolds one can
apply the following result due to Yomdin [22] and Gromov [14]:

Theorem 1.3.3 (Yomdin-Gromov). Let f : M → M be a dominant self-map of a
compact Kähler manifold of dimension d; then the topological entropy of f is given
by

htop(f) = max
p=0,...,d

log λp(f).
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1.3.1. Concavity properties.

Theorem 1.3.4 (Teissier-Khovanskii, see [14]). Let X be a compact Kähler mani-
fold of dimension d, and Ω := (ω1, . . . , ωk) be k-tuple of Kähler forms on X. For
any multi-index I = (i1, . . . , ik) let ΩI = ωi11 ∧ . . . ∧ ω

ik
k .

Fix i3, . . . , ik so that i :=
∑
h≥3 ih ≤ d, and let Ip = (p, d − i − p, i3, . . . , ik); then

the function

p 7→ log

(∫
X

ΩIp
)

is concave on the set {0, 1, . . . , d− i}.

One can use Theorem 1.3.4 to prove the following log-concavity result:

Proposition 1.3.5. Let f : X → X be a dominant meromorphic self-map of a
compact Kähler manifold X of dimension d. Then the function

p 7→ log λp(f)

is concave on the set {0, 1, . . . , d}. In particular, if λ1(f) = 1 then λp(f) = 1 for
all p = 0, . . . , d.

This implies that the exponential growth of the norm of (fn)∗ comes from an
eigenvalue of one of the f∗p,p:

Proposition 1.3.6. Let f : X 99K X be a meromorphic self-map of a compact
Kähler manifold X, and let

rp,q(f) = lim
n→+∞

‖(fn)∗p,q‖
1
n ;

here we use the convention that the norm of the identity on the null vector space is
equal to 1.
Then

(1) if p+ q = 2k is even, then

rp,q(f) ≤ λk(f);

(2) if p+ q = 2k + 1 is odd, then

rp,q(f) ≤
√
λk(f)λk+1(f).

In particular
lim
n+∞

‖(fn)∗‖ 1
n = max

p
λp(f)

.

Proof. Let us consider the linear map

φ : Hp,q(X,C)→ Hp+q,p+q(X ×X,C)

u 7→ π∗1u ∧ π∗2 ū,

where π1, π2 : X ×X → X are the two natural projections.
Remark that if u 6= 0, then φ(u) 6= 0, and that

φ ◦ f = (f, f) ◦ φ,

where (f, f) denotes the diagonal morphism. This is evident if f is holomorphic; if
not, one can consider a resolution of indeterminacies of f , which induces a resolution
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of indeterminacies of (f, f). The claim then follows from the definition of the pull-
back of currents.
This implies that there exists a constant C > 0 such that

‖(fn)∗p,q‖2 ≤ C‖(fn, fn)∗p+q,p+q‖.

In particular
rp,q(f)2 ≤ λp+q(f, f).

Now let ω ∈ H1,1(X,R) be a Kähler form on X; then π∗1ω + π∗2ω =: ω̃ ∈
H1,1(X ×X,R) is a Kähler form on X ×X.
Using the alternative definition 1.1 for dynamical degrees and denoting by ‖α‖ =∫
X
α ∧ ωd−p the ω-norm of a real (p, p)-form α, we get

rp,q(f)2 ≤ λp+q(f, f) = lim
n→+∞

∥∥((f, f)n)
∗
ω̃p+q

∥∥ 1
n

= lim
n→+∞

∥∥((f, f)n)
∗

(π∗1ω + π∗2ω)p+q
∥∥ 1

n

= lim
n→+∞

∥∥∥∥∥((f, f)n)
∗
p+q∑
h=0

(
p+ q

h

)
(π∗1ω)h ∧ (π∗2ω)p+q−h

∥∥∥∥∥
1
n

= lim
n→+∞

∥∥∥∥∥
p+q∑
h=0

(
p+ q

h

)
π∗1(fn)∗ωh ∧ π∗2(fn)∗ωp+q−h

∥∥∥∥∥
1
n

≤ max{λh(f)λp+q−h(f)}.

If p+ q = 2k is even, then by Proposition 1.3.5 we have

λh(f)λp+q−h(f) ≤ λk(f)2,

which shows the first claim.
If p+ q = 2k + 1 is odd, by Proposition 1.3.5 we have

λh(f)λp+q−h(f) ≤ λk(f)λk+1(f),

which shows the second claim. �

Corollary 1.3.7. Let f : X → X be a dominant holomorphic endomorphism of a
compact Kähler manifold X. Then the following are equivalent:

(1) λ1(f) = 1;
(2) f∗ is virtually unipotent;
(3) rp,q(f) = 1 for all p, q .

Proof. The implications (2) ⇒ (3) and (3) ⇒ (1) are evident; let us show that
(1)⇒ (2).

Since by Proposition 1.3.5 λ0(f) = λ1(f) = . . . = λd(f) = 1, Proposition 1.3.6
implies that rp,q(f) ≤ 1 for all p, q. Therefore the spectral radius of the linear
automorphisms

f∗k : Hk(X,Z)→ Hk(X,Z)

is equal to 1. It follows from a lemma of Kronecker that the roots of the character-
istic polynomial of f∗k are roots of unity; therefore, some iterate of f∗ has 1 as its
only eigenvalue, i.e. it is unipotent. This concludes the proof. �
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1.3.2. Polynomial growth. Suppose now that f : X → X is a dominant holomorphic
endomorphism. The dynamical degrees measure the exponential growth of the norm
of (fn)∗; in the case where λp(f) = 1, i.e. all the eigenvalues of f∗p,p have modulus
1, then an easy linear algebra argument implies that

‖(fn)∗p,p‖ ∼ cnµp(f),

where µp(f) + 1 is the maximal size of Jordan blocks of f∗p,p. Then one can define
an analogous value measuring the polynomial growth of (fn)∗.

Definition 1.3.8. Suppose that λp(f) = 1; the p-th polynomial dynamical degree
is defined as

µp(f) = lim
n→+∞

log ‖(fn)∗p,p‖
log n

.

The following question is still open even for birational maps of Pk(C), k ≥ 3.

Question 2. Let f : X 99K X be a meromorphic self-map of a compact Kähler
manifold such that λ1(f); is it true that ‖(fn)∗‖ grows polynomially?

The inequalities of Tessier-Khovanskii allow to prove an equivalent of Proposition
1.3.5 and Proposition 1.3.6:

Proposition 1.3.9. Let f : X → X be a holomorphic self-map of a compact Kähler
manifold such that λp(f) = 1; then

(1) the function
p 7→ µp(f)

is concave on the set {0, . . . , d};
(2)

lim
n→+∞

log ‖(fn)∗‖
log n

= max
p

µp(f).

1.4. Generalized Hodge index theorem. The classical Hodge index theorem
asserts that if S is a compact Kähler surface, then the intersection product on
H1,1(X,R) is hyperbolic, i.e. it has signature (1, h1,1(S)−1); this is a consequence of
the Hodge-Riemann bilinear relations, which can be generalized in higher dimension
in order to obtain an analogue of the classical result. We will focus on the second
cohomology group, but analogue results exist for cohomology of any order (see [9]).

Let (X,ω) be a compact Kähler manifold of dimension d ≥ 2; we define a
quadratic form q on H2(X,R) by

q(α, β) :=

∫
X

(α1,1 ∧ β1,1 − α2,0 ∧ β0,2 − α0,2 ∧ β2,0) ∧ ωd−2 α, β ∈ H2(X,R),

where αi,j (resp. βi,j) denotes the (i, j)-part of α (resp. of β).
Remark that the decomposition

H2(X,R) = H1,1(X,R)⊕ (H2,0(X)⊕H0,2(X))R

is q-orthogonal.

Theorem 1.4.1 (Generalized Hodge index theorem). Let (X,ω) be a compact
Kähler manifold of dimension d ≥ 2 and let q be defined as above. Then the
restriction of q to H1,1(X,R) has signature (1, h1,1(X) − 1); its restriction to
(H2,0(X)⊕H0,2(X))R is negative definite.
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An immediate consequence, which we will use constantly in the rest of the paper,
is the following:

Corollary 1.4.2. If V ⊂ H2(X,R) is a q-isotropic space, then dimV < 2. In
particular, if u, v ∈ H1,1(X,R) ∪ (H2,0(X) ⊕ H0,2(X))R are linearly independent
classes, then the classes

u ∧ u, u ∧ v, v ∧ v ∈ H4(X,R)

cannot all be null. If furthermore u ∈ (H2,0(X)⊕H0,2(X))R, then u ∧ u 6= 0.
Analogously, if u, v ∈ H1,1(X) ∪ (H2,0(X) ⊕ H0,2(X)) are linearly independent
classes, then the classes

u ∧ ū, u ∧ v̄, v ∧ v̄ ∈ H4(X,C)

cannot all be null. If furthermore u ∈ H2,0(X)⊕H0,2(X), then u ∧ ū 6= 0.

2. The case of surfaces

Remark first that the case of automorphisms of curves is dynamically not very
interesting: indeed, if the genus of the curve is g ≥ 2, then the group of automor-
phism is finite; the only non-trivial dynamics arise from automorphisms of P1 and
from automorphisms of elliptic curves (which, up to iteration, are translations),
and both are well-understood.

Let us focus then on the surface case: let S be a compact Kähler surface and let
f : S → S be an automorphism. By the Hodge index theorem (Theorem 1.4.1), the
generalized intersection form q makes H2(X,R) into a hyperbolic space; further-
more, q is preserved by f , so that we may consider g = f∗2 : H2(X,R)→ H2(X,R)
an element of O(H2(X,R), q).

2.1. Automorphisms of hyperbolic spaces. Let (V, q) be a hyperbolic vector
space of dimension n and let ‖ · ‖ be a norm on the space L(V ) of linear endomor-
phisms of V .

Definition 2.1.1. Let g ∈ O(V, q). We say that g is

• loxodromic (or hyperbolic) if it admits an eigenvalue of modulus strictly
greater than 1;

• parabolic if all its eigenvalues have modulus 1 and ‖gn‖ is not bounded as
n→ +∞;

• elliptic if all its eigenvalues have modulus 1 and ‖gn‖ is bounded as n →
+∞.

In each of the cases above, simple linear algebra arguments allow to further
describe the situation. For the following result see for example [13].

Theorem 2.1.2. Let g ∈ O+(V, q), and suppose that g preserves a lattice Γ ⊂ V .

• If g is loxodromic, then it is semisimple and it has exactly one eigenvalue λ
with modulus > 1 and exactly one eigenvalue λ−1 with modulus < 1; these
eigenvalues are real and simple, so that in particular ‖gn‖ ∼ cλn. The
eigenvalue λ is an algebraic integer whose conjugates over Q are λ−1 and
complex numbers of modulus 1, i.e. λ is a quadratic or Salem number.
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• If g is parabolic, then all the eigenvalues of g are roots of unity, and some
iterate of g has Jordan form

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 Id−3

 .

In particular ‖gn‖ ∼ cn2.
• If g is elliptic, then it has finite order.

An automorphism f : S → S of a compact Kähler surface S is called loxodromic,
parabolic or elliptic if g = f∗2 is loxodromic, parabolic or elliptic respectively. Re-
mark that g preserves the integral latticeH2(X,Z)/(torsion), so that Theorem 2.1.2
can be applied to g.

Remark that, if f is homotopic to the identity, then its action on cohomology
is trivial. Conversely, if f acts trivially on cohomology, then some of its iterates is
homotopic to the identity. More precisely:

Theorem 2.1.3 (Fujiki, Liebermann [11, 19]). Let M be a compact Kähler mani-
fold. If [κ] is a Kähler class onM , the connected component of the identity Aut(X)0

has finite index in the group of automorphisms of M fixing [κ].

This implies that a surface automorphism is elliptic if and only if one of its
iterates is homotopic to the identity.

2.2. Equivariant fibrations. In the case of surfaces, it turns out that the coho-
mological action of an automorphism has consequences on the following property
of decomposability of its dynamics. Let f : M →M be an automorphism of a com-
pact Kähler manifold M ; we say that a fibration π : M → B (i.e. a surjective map
with connected fibres) is f -equivariant if there exists an automorphism g : B → B
such that π ◦ f = g ◦ π, i.e. the following diagram commutes:

M M

B B

f

π π

g

.

The following theorem was stated and proved in the present form by Cantat [4],
and follows from a result of Gizatullin (see [12], or [13] for a survey); see also [8]
for the birational case.

Theorem 2.2.1. Let S be a compact Kähler surface and let f be an automorphism
of S.

(1) If f is parabolic, there exists an f -equivariant elliptic fibration π : S → C;
f doesn’t admit other equivariant fibrations.

(2) Conversely, if a non-elliptic automorphism of a surface f : S → S admits
an equivariant fibration π : S → C onto a curve, then f is parabolic. In
particular, the fibration π is elliptic, and it is the only equivariant fibration.

In other words, a non-elliptic automorphism of a surface admits an equivariant
fibration if and only if its topological entropy is zero.

In higher dimension, one can ask the following question:



10 COHOMOLOGY ACTION THREEFOLDS

Question 3. Let f : X → X be an automorphism of a compact Kähler manifoldM .
Suppose that f∗2 is virtually unipotent of infinite order. Does f admit an equivariant
fibration?

Apart from the case of surfaces, the only situation where the answer is known
(and affirmative) is that of irreducible holomorphic symplectic (or hyperkähler)
manifolds of deformation type K3[n] or generalized Kummer (see [17]); the proof
uses the hyperkähler version of the abundance conjecture, which was proven in this
context by Bayer and Macrí [1].

3. Automorphisms of threefolds: the unipotent case

Throughout this section let X be a compact Kähler threefold and let

g : H∗(X,R)→ H∗(X,R)

be a unipotent linear automorphism preserving the cohomology graduation, the
Hodge decomposition, the wedge-product and Poincaré’s duality. In other words,

(1) g(Hi(X,R)) = Hi(X,R) for all i = 0, . . . , 6 and gC(Hp,q(X)) = Hp,q(X)
for all p, q = 0, . . . 3;

(2) g(u ∧ v) = g(u) ∧ g(v) for all u, v ∈ H∗(X,R);
(3) denoting by gi : Hi(X,R) → Hi(X,R) the restriction of g, the Poincaré’s

duality Hi(X,R) ∼= H6−i(X,R)∨ induces an identification

gi = (g−1
6−i)

∨.

If f : X → X is an automorphism such that λ1(f) = 1, then the linear auto-
morphism f∗ : H∗(X,R) is virtually unipotent, and therefore an iterate g = (fN )∗

satisfies the assumptions above.
More generally, if f : X → X is any automorphism and

f∗ = gugs = gsgu

is the Jordan decomposition of f∗, then by Lemma 1.2.2 the unipotent part g = gu
satisfies the assumptions above.

Theorem A is thus a special case of the following:

Theorem 3.0.1. Let X be a compact Kähler threefold and let g : H∗(X,R) →
H∗(X,R) be a unipotent linear automorphism preserving the cohomology gradua-
tion, the Hodge decomposition, the wedge-product and the Poincaré duality. Then

(1) the maximal Jordan block of g2 (for the eigenvalue 1) has dimension ≤ 5;
(2) if furthermore g2 preserves the cone C = {v ∈ H2(X,R) ; q(v) ≥ 0}, then

its maximal Jordan block has odd dimension.
In particular the norm of gn2 grows as cnk with k ≤ 4; and if furthermore g2

preserves the positive cone, then k is even.

Remark 3.0.2. Let f ∈ Aut(X) be an automorphism such that λ1(f) = 1, so that,
up to iterating f , g = f∗ satisfies the assumptions of Theorem 3.0.1. In this case,
by Proposition 1.3.9, the growth of ‖gn‖ is the same as the maximal growths of the
‖gnp,p‖, i.e. the growth of ‖gn2 ‖. Furthermore, g preserves the cone C, therefore the
maximal Jordan block has odd dimension.

Proof. Let u1, . . . , uk ∈ H2(X,R) be a basis of a maximal Jordan block satisfying

g(u1) = u1, g(uh) = uh + uh−1 for h = 2, . . . , k.
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Since the subspaces H1,1(X,R) and (H2,0(X)⊕H0,2(X))R are g2-invariant, we may
and will suppose that ui ∈ H1,1(X,R) ∪ (H2,0(X)⊕H0,2(X))R for i = 1, . . . , k.

We show that the norm of gn4 grows at least as cn2k−6. Let us consider the
elements uk ∧ uk, uk−1 ∧ uk−1 ∈ H4(X,R).
An easy linear algebra computation shows that the n-th iteration of a Jordan block
is 

1 1 0 . . . 0
0 1 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 1
0 . . . 0 1


n

=


P0(n) P1(n) P2(n) . . . Pk−1(n)

0 P0(n) P1(n) . . . Pk−2(n)
...

. . . . . . . . .
...

0 . . . 0 P0(n) P1(n)
0 . . . 0 P0(n)

 ,

where Ph(n) is a polynomial of degree h in n whose leading term is nh/h!.
Therefore, letting Ph = Ph(n),

gn(uk ∧ uk) = gn(uk) ∧ gn(uk) =

= (Pk−1u1 + Pk−2u2 + Pk−3u3 + . . .) ∧ (Pk−1u1 + Pk−2u2 + Pk−3u3 + . . .) =

= P 2
k−1(u1∧u1) + 2Pk−1Pk−2(u1∧u2) + (2Pk−1Pk−3u1∧u3 +P 2

k−2u2∧u2) + . . .

If u1 ∧ u1 6= 0 or u1 ∧ u2 6= 0, then the norm of gn4 would grow at least as n2k−3;
we can thus assume that u1 ∧ u1 = u1 ∧ u2 = 0. Thus, by Corollary 1.4.2 we have
u2 ∧ u2 6= 0.
Similarly, if we had

(3.1) 2
u1 ∧ u3

(k − 1)!(k − 3)!
+

u2 ∧ u2

((k − 2)!)
2 6= 0,

then the norm of gn4 would grow at least as cn2k−4. We may then assume that
equation 3.1 is not satisfied.
Now,

gn(uk−1 ∧ uk−1) = gn(uk−1) ∧ gn(uk−1) =

= (Pk−2u1 + Pk−3u2 + Pk−4u3 + . . .) ∧ (Pk−2u1 + Pk−3u2 + Pk−4u3 + . . .) =

= 2Pk−2Pk−4(u1 ∧ u3) + P 2
k−3(u2 ∧ u2) + . . .

By the same argument, if

(3.2) 2
u1 ∧ u3

(k − 2)!(k − 4)!
+

u2 ∧ u2

((k − 3)!)
2 6= 0,

then the norm of gn4 would grow at least as cn2k−6. Since u2 ∧ u2 6= 0 and the two
linear relations 3.1 and 3.2 are independent, at least one between Equation 3.1 and
Equation 3.2 is satisfied.
This shows that the norm of gn4 grows at least as cn2k−6.

Now, by Poincaré duality (see Proposition 1.1.1.(3)), the norm of gn4 = (g−n2 )∨

grows exactly as the norm of gn2 . In particular

k − 1 ≥ 2k − 6 ⇒ k ≤ 5,

which concludes the proof. �
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3.1. Bound on the dimension of non-maximal Jordan blocks.

Proposition 3.1.1. Let X be a compact Kähler threefold and let g : H∗(X,R) →
H∗(X,R) be a unipotent linear automorphism preserving the cohomology gradua-
tion, the Hodge decomposition, the wedge-product and the Poincaré duality. Then
there exists a unique Jordan block of g2 of maximal dimension k ≤ 5 (for the
eigenvalue 1); more precisely, all other Jordan blocks have dimension ≤ k+1

2 .

Proof. Let v1, . . . , vk ∈ H2(X,R) form a basis for a maximal Jordan block of g2, and
let w1, . . . , wl ∈ H2(X,R) form a Jordan basis for another Jordan block satisfying

g(v1) = v1, g(vh) = vh + vh−1 for h = 2, . . . , k,

g(w1) = w1, g(wh) = wh + wh−1 for h = 2, . . . , l.

Since the subspaces H1,1(X,R) and (H2,0(X)⊕H0,2(X))R are g2-invariant, we may
and will suppose that vi, wj ∈ H1,1(X,R) ∪ (H2,0(X)⊕H0,2(X))R for i = 1, . . . , k
and j = 1, . . . , l.
We will suppose that l > 1 (otherwise the claim is evident), and consider the action
of g4 on the classes vk ∧ vk, vk ∧ wl, wl ∧ wl ∈ H4(X,R).
By Corollary 1.4.2, the classes v1 ∧ v1, v1 ∧ w1, w1 ∧ w1 ∈ H4(X,R) cannot be all
null; since gnvk ∼ cnk−1v1 and gnwl ∼ c′nh−1w1, this implies that ‖gn4 ‖ grows at
least as c′′n2(h−1). Since by Poincaré duality ‖gn2 ‖ and ‖gn4 ‖ have the same growth,
we get

2(h− 1) ≤ k − 1 ⇒ h ≤ k + 1

2
,

which concludes the proof. �

3.2. Unipotent examples on complex tori. Examples on complex tori of di-
mension 3 show the optimality of Theorem 3.0.1 and Proposition 3.1.1. Let E =
C/Λ be an elliptic curve, where Λ is a lattice of C, and let

X := E × E × E = C3
�Λ3.

Every matrix M ∈ SL3(Z) acts linearly on C3 preserving the lattice Λ × Λ × Λ,
and therefore induces an automorphism f : X → X. One can easily show that, if
dx, dy, dz are holomorphic linear coordinates on the three factors respectively, then
the matrix of f∗1,0 with respect to the basis dx, dy, dz of H1,0(X) is exactly the
transposed MT . Since the wedge product of forms induces an isomorphism

H1,1(X) ∼= H1,0(X)⊗H0,1(X),

the matrix of f∗1,1 with respect to the basis dx ∧ dx̄, dx ∧ dȳ, . . . , dz ∧ dz̄ is

M1,1 = M t ⊗M t := (mj,iml,k)i,j,k,l=1,2.

Example 3.2.1. Let

M =

1 0 0
1 1 0
0 1 1

 .
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Then

M1,1 =



1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 1 1 0 1 1 0
0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1


M1,1 is unipotent and its Jordan blocks have dimension 1, 3 and 5.

Example 3.2.2. Let

M =

1 0 0
1 1 0
0 0 1

 .

Then

M1,1 =



1 1 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 1 1 0 1 1 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.

M1,1 is unipotent and its Jordan blocks have dimension 2, 2, 2 and 3.

4. Automorphisms of threefolds: the semi-simple case, proof of
Theorem B

Throughout this section let X be a compact Kähler threefold and let

g : H∗(X,R)→ H∗(X,R)

be a semi-simple linear automorphism preserving the cohomology graduation, the
Hodge decomposition, the wedge-product and Poincaré’s duality. In other words,

(1) g(Hi(X,R)) = Hi(X,R) for all i = 0, . . . , 6 and gC(Hp,q(X)) = Hp,q(X)
for all p, q = 0, . . . 3;

(2) g(u ∧ v) = g(u) ∧ g(v) for all u, v ∈ H∗(X,R);
(3) denoting by gi : Hi(X,R) → Hi(X,R) the restriction of g, the Poincaré’s

duality Hi(X,R) ∼= H6−i(X,R)∨ induces an identification

gi = (g−1
6−i)

∨.

If f : X → X is an automorphism and

f∗ = gugs = gsgu

is the Jordan decomposition of f∗, then by Lemma 1.2.2 the semisimple part g = gs
satisfies the assumptions above.

Let λ1 = λ1(g) and λ2 = λ2(g) be the dynamical degrees of g, i.e. the spectral
radii of g2 and g4 respectively, and let Λ be the spectrum of g2, i.e. the set of complex
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eigenvalues of g2 with multiplicities; we will say that two elements λ, λ′ ∈ Λ are
distinct if either λ 6= λ′ or λ = λ′ is an eigenvalue with multiplicity ≥ 2.

Remark 4.0.1. Let λ ∈ Λ; since the subset S = H1,1(X) ∪ (H2,0(X)⊕H0,2(X)) ⊂
H2(X,C) is g2-invariant, λ is the eigenvalue of an eigenvector v ∈ S. From now
on, every time we talk about eigenvectors of g2 we pick them in S.

The main ingredient of the proofs in the rest of this section is the following
lemma.

Lemma 4.0.2. Let λ, λ′ ∈ Λ be distinct elements; then{
1

|λ|2
,

1

λλ̄′
,

1

|λ′|2

}
∩ Λ 6= ∅.

Proof. By Remark 4.0.1, we may pick eigenvectors v, v′ ∈ S for the eigenvalues
λ, λ′ respectively. By Corollary 1.4.2, the wedge products

v ∧ v̄, v ∧ v̄′, v′ ∧ v̄′ ∈ H4(X,C)

cannot all be null. A non-null wedge product gives rise to an eigenvector for g4; in
particular, denoting by Λ4 the spectrum of g4, we have{

|λ|2, λλ̄′, |λ′|2
}
∩ Λ4 6= ∅.

Now, by assumption (3) g4 can be identified with (g−1
2 )∨, and in particular

Λ = Λ−1
4 = {λ−1 , λ ∈ Λ4}.

This concludes the proof. �

4.1. Structure of the algebraic group generated by g2. For the content of
this Section we refer to [3, §8]. Let g be as above and let

G = 〈g2〉
Zar
≤ GL(H2(X,R))

be the Zariski-closure of the group generated by g; it is a real algebraic group by
[3, Proposition I.1.3]. Since the properties of preserving the Hodge decomposition
is algebraic, G satisfies it; furthermore, since 〈g〉 is diagonalizable over C and com-
mutative, so is G.
The Zariski-connected component of the identity G0 of G is thus a real algebraic
torus; we define Gd ≤ G0 as the subgroup generated by real one-parameter sub-
groups of G0, and Ga ≤ G0 as the intersection of the kernels of real characters of
G0. Then we have the following classical result:

Proposition 4.1.1. Let G be as above; then
(1) Gd ∼= (R∗)r is the maximal split subtorus;
(2) Ga ∼= (S1)s is the maximal anisotropic subtorus;
(3) the product morphism Gd×Ga → G0 is an isogeny (i.e. it is surjective and

with finite kernel).

The number r ≥ 0 is the (real) split-rank of G; we will denote it by r(g) and call
it the rank of g; informally, r(g) (respectively s(g)) is the number of multiplicative
parameters which are necessary to describe the moduli (respectively, the arguments)
of the complex eigenvalues of g2.
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4.2. Weights of g. Let λ ∈ Λ be a complex eigenvalue of g2; then the group
homomorphism

〈g〉 → R∗

gn 7→ |λ|n

is algebraic, and therefore can be extended to a non-trivial real character of G.
Upon restriction to G0 and pull-back to Gd × Ga ∼= (R∗)r × (S1)s, this yields a
non-trivial morphism of real algebraic groups

ρλ : (R∗)r × (S1)s → R∗.

Since all morphisms of real algebraic groups S1 → R∗ are trivial, we have

ρλ(x1 . . . , xr, θ1, . . . , θs) = x
m1(λ)
1 · · ·xmr(λ)

r , mi ∈ Z.

For the sake of simplicity, we will adopt an additive notation, so that the character
ρλ is identified with the vector wλ = (m1(λ), . . . ,mr(λ)) ∈ Rr.

Definition 4.2.1. The weight of the eigenvalue λ ∈ Λ of g2 is the vector wλ =
(m1(λ), . . . ,mr(λ)) ∈ Rr. We denote by W the set of all weights of eigenvalues of
g2 with multiplicities; as for the elements of Λ, we say that two elements w,w′ of
W are distinct if either w 6= w′ or w = w′ has multiplicity > 1.

Remark 4.2.2. Remark that wλ = wλ̄. Therefore, if λ is a non-real eigenvalue of
g2, the weight wλ will be counted twice, once for λ and once for λ̄.

We say that a weight w0 ∈ W is maximal for a linear functional α ∈ (Rr)∨ if
|α(w0)| = maxw∈W |α(w)|. The maximal weights are exactly those belonging to
the boundary of the convex hull of W .

Lemma 4.2.3. There exist a basis w1, . . . , wr of Rr and a basis α1, . . . , αr of (Rr)∨
such that

(1) the wi belong to W ;
(2) wi is αi-maximal for all i;
(3) if i > j, then αi(wj) = 0.

Proof. Remark first that, since G is defined as the Zariski-closure of 〈g〉, the ele-
ments of W span the vector space Rr.

We construct the adapted basis inductively. Since W is finite, there exists a
maximal weight, say w1, for a functional α1.
Now, suppose that w1, . . . , wk ∈ W ⊂ Rr and α1, . . . , αk ∈ (Rr)∨ are linearly
independent and satisfy properties (1)− (3). Pick any

αk+1 ∈ {α ∈ (Rr)∨ |α(w1) = . . . = α(wk) = 0} \ {0} ⊂ (Rr)∨,

and let wk+1 ∈ W be αk+1-maximal. By the condition on αk+1, wk+1 does not
belong to the span of w1, . . . , wk. This completes the proof by induction. �

In the language of weights, Lemma 4.0.2 becomes the following:

Lemma 4.2.4. Let w,w′ ∈W be distinct elements; then

{−2w,−w − w′,−2w′} ∩W 6= ∅.

If furthermore w = wλ is the weight of an eigenvalue λ of f∗2,0 or f∗0,2, then −2w ∈
W .
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Remark 4.2.5. If λ ∈ Λ is maximal, then |λ|−2 /∈ Λ (and in particular its weight
wλ ∈ W is simple); therefore, if w,w′ are maximal weights, by Lemma 4.2.4,
−w − w′ ∈W .

As a preliminary result, we bound the rank of g:

Lemma 4.2.6. The rank of g satisfies r(g) ≤ 2.

Proof. Let us fix bases w1, . . . , wr and α1, . . . , αr of Rr and (Rr)∨ respectively as
in Lemma 4.2.3, and suppose by contradiction that r ≥ 3.
Since w1, w2 and w3 are maximal, we have −2w1,−2w2,−2w3 /∈ W , and therefore
by Lemma 4.2.4

−w1 − w2,−w2 − w3,−w3 − w1 ∈W.
Again by maximality, we have

2(w1 + w2), 2(w2 + w3), 2(w3 + w1) /∈W,
so that, by Lemma 4.2.4 applied to −w2 − w3,−w3 − w1 ∈ W , we must have
w1 + w2 + 2w3 ∈W . However this contradicts the α3-maximality of w3. �

We will show later that the rank of g is < 2 if and only if its dynamical degrees
λ1(g) and λ2(g) satisfy a resonance condition:

λ1(g)m = λ2(g)n, (m,n) 6= (0, 0);

see Corollary 4.3.2.

4.3. The case r(g) = 2. Recall that we denote by λ1 = λ1(g) and λ2 = λ2(g) the
dynamical degrees of g, by Λ the spectrum of g2 (with multiplicities) and by W the
set of weights of eigenvalues λ ∈ Λ (with multiplicities).
Throughout this section, we assume that the rank of g (i.e. the split-rank of G =

〈g〉
Zar

, see Section 4.1) is equal to 2; in other words, the elements of W span a real
vector space of dimension 2.

Proposition 4.3.1. Let w1 (respectively w2) be the weight of W associated to the
eigenvalue λ1 ∈ Λ (respectively λ−1

2 ∈ Λ).
(1) λ−1

1 λ2 is an element of Λ, whose weight is w3 := −w1 − w2;
(2) w1, w2 and w3 are maximal weights of W , and in particular they have mul-

tiplicity 1 in W ;
(3) for any weight w ∈ W \ {w1, w2, w3} and for any eigenvalue λ ∈ Λ whose

weight is w, |λ|−2 ∈ Λ and in particular −2w ∈W ;
(4) there exist n1, n2, n3 ≥ 0 such that, up to multiplicities,

W \ {0} =
⋃

i=1,2,3

{
wi

(−2)n
; n = 0, . . . , ni

}
.

Proof. Let us fix an adapted basis w1, w2 of R2 as in Lemma 4.2.3, and let w3 :=
−w1 − w2. We show first properties (2) − (4) for these w1, w2, w3, and then that,
after maybe permuting indices, w1, w2 and w3 are the weights of λ1, λ

−1
2 , λ−1

1 λ2 ∈ Λ
respectively.

The maximality of w1, w2 is part of Lemma 4.2.3; since α2(w1) = 0, w3 is also
α2-maximal. Property (2) then follows from Remark 4.2.5.

Now let λ ∈ Λ be an eigenvalue of g2 whose weight w is different than w1, w2, w3;
we want to show that |λ|−2 ∈ Λ.
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Figure 1. An example of the structure ofW ⊂ R2 (without taking
multiplicities into account) in the case r(g) = 2; here, with the
notation of Proposition 4.3.1, n1 = 2, n2 = 1, n3 = 3.

Suppose first that w = 0 (i.e. |λ| = 1), and let λ′ ∈ Λ be an eigenvalue whose weight
is w1; recall that by maximality −2w1 /∈ W and w1 is a simple weight. If 1 /∈ Λ,
then by Lemma 4.0.2 we would have λλ′ ∈ Λ, which contradicts the simplicity of
w1.
Now suppose that α2(w) 6= 0; since α2(w2) and α2(w3) have different sign, we have
either |α2(−w − w2)| > |α2(w2)| or |α2(−w − w3)| > |α2(w3)| = |α2(w2)|, so that
by maximality −w − w2 and −w − w3 cannot be both weights of W . Since, again
by maximality, −2w2,−2w3 /∈W , by Lemma 4.0.2 |λ|−2 ∈ Λ.
Finally suppose that w 6= 0 and α2(w) = 0, so that w ∈ Rw1. We repeat the
inductive construction of an adapted basis as in the proof of Lemma 4.2.3 starting
with w′1 := w2, which is maximal for α′1 := α2; pick any non-trivial α′2 ∈ w⊥2 ⊂
(R2)∨ and w′2 ∈ W maximal for α′2. If we had again α′2(w) = 0, then w ∈ Rw1 ∩
Rw2 = {0}, a contradiction; thus we can conclude as above.
This shows property (3).

Property (4) follows from property (3) by induction.
Now let us show that, after permuting indices, w1 and w2 are the weights of λ1

and λ−1
2 respectively. Since λ2(g) = λ1(g−1), it is enough to show that the weight

of λ1 is one of the wi.
Suppose by contradiction that the weight w of λ1 is not one of the wi; then by
property (4) there exist k > 0 and i ∈ {1, 2, 3} such that

w =
wi

(−2)k
.

Since λ1 is the spectral radius of g2, we have λ4
1 /∈ Λ, so that k = 1; up to permuting

the indices, we may suppose that i = 1, so that

2w = −w1 = w2 + w3.

Denoting by λ, λ′ ∈ Λ the eigenvalues associated to w2 and w3, this means that

|λλ′| = λ2
1;
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since λ1 is the spectral radius of g2, this implies that |λ| = |λ′| = λ1, contradicting
the assumption that r(g) = 2.
This shows that we may assume that w1 and w2 are the weights of the eigenvalues
λ1, λ

−1
2 ∈ Λ. Since w3 = −w1−w2 has multiplicity 1 inW , it is associated to a real

simple eigenvalue, which is λ−1
1 λ2 by Lemma 4.0.2. This concludes the proof. �

Proposition 4.3.1 shows in particular that, if r(g) = 2, then λ1 and λ2 do not
have any resonance:

λ1(g)m = λ2(g)n, m, n ∈ Z ⇔ m = n = 0.

Conversely, if r = 1, since all the weights of g2 can be interpreted as integers, λ1

and λ2 satisfy a non-trivial equation λ1(g)m = λ2(g)n. Thus we have the following:

Corollary 4.3.2. The rank of g is equal to 2 if and only if the dynamical degrees
of g do not have any resonance.

4.4. The case r(g) = 1. Recall that we denote by λ1 = λ1(g) and λ2 = λ2(g) the
dynamical degrees of g, by Λ the spectrum of g2 (with multiplicities) and by W the
set of weights of eigenvalues λ ∈ Λ (with multiplicities).
Throughout all this section, we assume that the rank of g (i.e. the split-rank of
G = 〈g〉

Zar
, see Section 4.1) is equal to 1; in other words, the elements of W span a

real vector space of dimension 1. In this case the weights are equipped with a natural
order: wλ > wλ′ if and only if |λ| > |λ′|; for w ∈W we set |w| := max{w,−w}.

Proposition 4.4.1. Suppose that r = 1 and let w1 (respectively w2) be the weight
of W associated to the eigenvalue λ1 ∈ Λ (respectively λ−1

2 ∈ Λ). Then
(1) w3 = −w1 − w2 is a weight of W ;
(2) for any weight w ∈ W \ {0, w1, w2, w3} and for any eigenvector v with

eigenvalue λ ∈ Λ whose weight is w, we have v ∧ v̄ 6= 0, and in particular
|λ|−2 ∈ Λ and −2w ∈W ;

(3) there exist n1, n2 ≥ 0 such that, up to multiplicities,

W \ {0} =
⋃

i=1,2,3

{
wi

(−2)n
; n = 0, . . . , ni

}
;

(4) if furthermore w2 /∈ {−2w1,−w1/2}, then w1 and w2 have multiplicity 1 in
W .

Remark 4.4.2. Let g = f∗s , where f : X → X is an automorphism and f∗s denotes the
semisimple part of the induced linear automorphism f∗ ∈ GL(H∗(X,R)). Then the
assumption w2 /∈ {−2w1,−w1/2} means exactly that the log-concavity inequalities√

λ1(f) ≤ λ2(f) ≤ λ1(f)2

are strict (see Proposition 1.3.5). If this is the case, then by Proposition 4.3.1 and
4.4.1 λ1 and λ−1

2 are the only eigenvalues of f∗2 having such modulus.

Proof. After possibly replacing g by g−1, we may suppose that w1 = |w1| ≥ |w2| =
−w2, so that w1 is maximal; let v1, v2 ∈ H2(X,R) denote eigenvectors for the
eigenvalues λ1, λ

−1
2 ∈ Λ.

Remark that, if v ∈ H2(X,C) is an eigenvector whose eigenvalue λ ∈ Λ has weight
w ∈]0, w1[, then by Lemma 4.0.2 applied to v and v1 and by maximality of w1 we
have v ∧ v̄ 6= 0.
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Figure 2. Example of weights of W ⊂ R (without taking multi-
plicities into account) in the case r(g) = 1; here, with the notation
of Proposition 4.4.1, n1 = 2, n2 = 1, n3 = 1.

Let us prove first that λ−1
1 λ2 ∈ Λ. If w1 = −2w2, then λ−1

1 λ2 = λ−1
2 and the

claim is evident; therefore we may suppose that w1 6= −2w2. We observe first that,
since λ−1

2 is the minimal modulus of eigenvalues of g2, w2 is the minimal weight for
the natural order introduced above. Now, if we had λ−1

1 λ2 /∈ Λ, then by Lemma
4.0.2 we would have λ2

2 ∈ Λ and in particular −2w2 ∈ W ; by the above remark,
this implies that 4w2 ∈W , contradicting the minimality of w2. This shows (1).

Now let us show that for all λ ∈ Λ whose weight is w ∈ W \ {0, w1, w2, w3}
and for all eigenvector v ∈ H2(X,C) with eigenvalue λ we have v ∧ v̄ 6= 0. The
case w > 0 (i.e. |λ| ≥ 1) has been treated above; let then w < 0, and suppose by
contradiction that v∧ v̄ = 0. Then by Lemma 4.0.2 we get −w−w2 ∈W , and since
−w−w2 > 0 and −w−w2 6= w1, w3, we also have 2w+ 2w2 ∈W ; this contradicts
the minimality of w2 for the natural order, and concludes the proof of (2).

Property (3) follows from (2) by induction.
Now assume that w1 6= −2w2 and suppose by contradiction that w2 has multi-

plicity > 1 in W . Then by Lemma 4.2.4 −2w2 ∈ W , and since −2w2 > 0 we also
have 4w2 ∈ W . This contradicts the minimality of λ2 for the natural order and
proves (4). �

4.5. Automorphisms of threefolds: the semisimple case, proof of Theo-
rem C. Let X be a compact Kähler threefold and let g ∈ GL(H∗(X,R)) be a
semisimple linear automorphism preserving the Hodge decomposition, the wedge
product and Poincaré’s duality, and such that g and g−1 are defined over Z.
We denote as usual by λ1 and λ2 the dynamical degrees of g (i.e. the spectral radii
of g2 and g4 respectively), by Λ the spectrum of g2 (with multiplicities) and by W
the set of weights of g2 (with multiplicities).
Recall that we pick all eigenvectors of g2 inside the union of subspaces H1,1(X) ∪
(H2,0(X)⊕H0,2(X)) (see Remark 4.0.1).

Let P (T ) be the minimal polynomial of g2; since g2 is defined over Z, we have
P (T ) ∈ Z[T ]. Since g is semisimple, we can write

P (T ) = P1(T ) · · ·Pn(T ),

where the Pi ∈ Z[T ] are distinct and irreducible over Q. Let P1 be the factor having
λ1(g) as a root, and denote by Λi ⊂ Λ (respectively Wi ⊂W ) the set of roots of Pi
(respectively the set of weights of roots of Pi).

For i = 1, . . . , n let

Vi = kerPi(g2) ⊂ V := H2(X,C).

Since g is semisimple, we have

V =

n⊕
i=1

Vi.
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For a polynomial Q ∈ k[T ] define

Q∨(T ) = T degQ ·Q(T−1).

Poincaré’s duality allows to identify H4(X,C) with H2(X,C)∨ = V ∨; under this
identification, we have g4 = (g−1

2 )∨, so that the minimal polynomial of g4 is

P∨(T ) = P∨1 (T ) · · ·P∨n (T ).

Since g4 is semisimple, we have

V ∨ = H4(X,C) =

n⊕
i=1

V ∨i .

Finally, let us define the bilinear map

θ : H2(X,C)×H2(X,C)→ H4(X,C)

(u, v) 7→ u ∧ v.

Remark 4.5.1. The Vi and the V ∨i are g-invariant subspaces defined over Q; fur-
thermore, if the roots of some Pi are simple eigenvalues of g2 (or, equivalently, if Pi
is a simple factor of the characteristic polynomial of g2), then Vi is minimal for such
property: {0} is the only proper subspace of Vi which is g2-invariant and defined
over Q. The same holds for the action of g4 on V ∨i .

The goal of this section is to describe which are the possible (moduli of) roots
of a given Pi, most importantly for the factor having λ1 as a root.

In what follows, we say for short that λ, λ′ ∈ Λ are conjugate if they are conjugate
over Q.

Remark 4.5.2. Since Pi(0) = ±1, we have∏
λ∈Λi

λ = ±1,
∑
w∈Wi

w = 0.

Definition 4.5.3. Let λ ∈ Λ; we say that a weight w ∈W is conjugate to λ if one
of the conjugates of λ has weight w.

The main technical tool for the proofs in this section is the following basic result
in Galois theory (see for example [18]).

Lemma 4.5.4. Let α, β ∈ Q be two algebraic numbers. If α and β are conjugate,
then there exists ρ ∈ Gal(Q/Q) = {ρ ∈ Aut(Q) | ρ|Q = idQ} such that ρ(α) = β.

Remark that, since elements of Gal(Q/Q) act as the identity on Q, the polyno-
mials Pi are fixed; in particular Gal(Q/Q) acts by permutations on each Λi and on
each Wi.

4.6. The case r(g) = 2. Let us treat first the case where the rank of g (i.e. the
split-rank of G = 〈g〉

Zar
, see Section 4.1) is equal to 2.

We denote as usual by w1, w2, w3 ∈W the weights of the eigenvalues of g2

α1 := λ1, α2 := λ−1
2 , α3 := λ−1

1 λ2,

and fix non-null eigenvectors v1, v2, v3 ∈ H2(X,R) for these eigenvalues.
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4.6.1. Algebraic properties of the eigenvalues.

Lemma 4.6.1. Let r = 2 and λ ∈ Λ. If one of the conjugates of λ has modulus 1,
then λ is a root of unity.

Proof. By a lemma of Kronecker, if all the conjugates of an algebraic integer λ have
modulus 1, then λ is a root of unity. Therefore, we only need to show that, if a
conjugate of λ has modulus 1, then λ has also modulus 1. Suppose by contradiction
that this is not the case, and let µ be a conjugate of λ such that |µ| = 1.
Let ρ ∈ Gal(Q,Q) be such that ρ(µ) = λ; since µ · µ̄ = 1, we have

λ · ρ(µ̄) = 1,

so that ρ(µ̄) = λ−1. In terms of weights, this means that wλ and wλ−1 = −wλ are
both non-trivial weights of W . This contradicts Proposition 4.3.1 and concludes
the proof. �

Proposition 4.6.2. Let r = 2. Then for all 1 ≤ k ≤ n there exist ni = ni(k),
i = 1, 2, 3, such that, without taking multiplicities into account,

Wk ⊂
{

w1

(−2)n1
,

w1

(−2)n1+1
,

w2

(−2)n2
,

w2

(−2)n2+1
,

w3

(−2)n3
,

w3

(−2)n3+1

}
.

Proof. Let λ ∈ Λi, and let w = wλ be its weight. We will prove that if a weight w′
collinear to w is conjugate to λ, then

w′ ∈
{
−w

2
, w,−2w

}
.

The claim then follows easily.
Suppose by contradiction that w′ = wλ′ /∈ {−w/2, w,−2w}; remark first that

by Lemma 4.6.1 w and w′ are both non-trivial. By Proposition 4.3.1, after maybe
swapping λ and λ′, we have

w′ = (−2)kw, k ≥ 2,

which means that
λλ̄ = (λ′λ̄′)(−2)k .

Now, let ρ ∈ Gal(Q/Q) be an automorphism such that ρ(λ) is a conjugate of λ
whose weight can be written as wa/(−2)na , a ∈ {1, 2, 3}, with na maximal. Let
α, β, γ, δ denote the images of λ, λ̄, λ′, λ̄ under ρ, and let

wα =
wa

(−2)na
, wβ =

wb
(−2)nb

, wγ =
wc

(−2)nc
, wδ =

wd
(−2)nd

denote their weights; here a, b, c, d ∈ {1, 2, 3}, na, nb, nc, nd ≥ 0 and na is maximal.
Since

αβ = (γδ)(−2)k ,

in terms of weights we get
wa

(−2)na
+

wb
(−2)nb

= (−2)k
wc

(−2)nc
+ (−2)k

wd
(−2)nd

,

so that
wa + (−2)na−nbwb = (−2)k+na−ncwc + (−2)k−na−ndwd.

Let Γ = Zw1 ⊕ Zw2 ⊂ R2 be the lattice generated by w1, w2. Since k ≥ 2 we
have

wa + (−2)na−nbwb ≡ 0 mod 4Γ,

which is impossible. This leads to a contradiction and concludes the proof. �
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Corollary 4.6.3. Let r = 2 and λ ∈ Λ. If λ is not a root of unity, then its degree
over Q is a multiple of 3.

Proof. Fix λ ∈ Λ which is not a root of unity, and let Pi be the unique factor of P
having λ as a root; according to Proposition 4.6.2, there exist n1, n2, n3 ≥ 0 such
that the weights of conjugates of λ are elements of the set{

w1

(−2)n1
,

w1

(−2)n1+1
,

w2

(−2)n2
,

w2

(−2)n2+1
,

w3

(−2)n3
,

w3

(−2)n3+1

}
.

Since by Remark 4.5.2 we have ∑
w∈Wi

w = 0,

we get(
k1

(−2)n1
+

h1

(−2)n1+1

)
w1+

(
k2

(−2)n2
+

h2

(−2)n2+1

)
w2+

(
k3

(−2)n3
+

h3

(−2)n3+1

)
w3 = 0,

where the ki and the hi are the multiplicities of the weights in Wi. Since the only
linear dependency among the wi is w1 +w2 +w3 = 0, this implies that there exists
a constant c ∈ Z[1/2] such that

ki
(−2)ni

+
hi

(−2)ni+1
= c, i = 1, 2, 3.

The equation −2ki + hi = c(−2)ni+1 implies that

ki + hi ≡ c mod 3,

so that in particular
∑
i(ki + hi) ≡ 0 modulo 3. �

4.6.2. Algebraic properties of λ1. Now let us focus on the factor P1 having λ1 as a
root.

Lemma 4.6.4. Let r = 2, and let P1 be the factor of P having λ1 as a root. If
either v2, v3 ∈ V1 or v2, v3 /∈ V1, then

θ(V1 × V1) = V ∨1 .

If either v2 ∈ V1, v3 ∈ Vi or v2 ∈ Vi, v3 ∈ V1 for some i 6= 1, then

θ(V1 × V1) = V ∨1 ⊕ V ∨i .

Proof. Without loss of generality, in the second case we may assume that i = 2.
Let us first prove the ⊆ inclusions. Denote by θ1 the restriction of θ to V1 × V1;

let

π1 : V ∨ =

n⊕
i=1

V ∨i →
n⊕
i=2

V ∨i

be the projection onto the last n− 1 factors and

π1,2 : V ∨ =

l⊕
i=1

V ∨i →
l⊕
i=3

V ∨i

be the projection onto the last n− 2 factors.
For π ∈ {π1, π1,2}, the subspace

ker(π ◦ θ1) := {u ∈ V1 ; π ◦ θ(u, v) = 0 for all v ∈ V1} ⊂ V1
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is g2-invariant and defined over Q. By minimality of V1 (see Remark 4.5.1), we
then have either ker(π ◦ θ1) = 0 or ker(π ◦ θ1) = V1. Therefore, in order to show
the inclusions, we only need to prove that v1 ∈ ker(π ◦ θ1) (π = π1 in the first case
and π = π1,2 in the second case); since g2 is semisimple, it is enough to check that
π ◦ θ(v1, v) = 0 for all eigenvectors v ∈ V1.

Let β be the eigenvalue associated to an eigenvector v ∈ V1, and let w = wβ be
its weight. We distinguish the following subcases:

• if w /∈ {w2, w3,−w1/2}, then −w1 − w /∈ W , so that v1 ∧ v = 0 and in
particular π ◦ θ(v1, v) = 0;
• if w = −w1/2 and v1 ∧ v 6= 0, then v1 ∧ v is an eigenvector with eigenvalue
βλ1 = β̄−1. Since β is conjugated to λ1, so is β̄, and thus v ∧ v1 ∈ V ∨1 and
π ◦ θ(v1, v) = 0;
• if w = w2, by simplicity of the weight w2 we have β = α2; in particular
v2 ∈ V1. Then v1 ∧ v = v1 ∧ v2 is an eigenvector for g4 with eigenvalue
α1α2 = α−1

3 . If also v3 ∈ V1, then v1 ∧ v ∈ V ∨1 ; if v3 /∈ V1, say v3 ∈ V2,
then v1 ∧ v ∈ V ∨2 . In both cases, choosing the right π ∈ {π1, π1,2} we get
π ◦ θ(v1, v) = 0;
• the case w = w3 is analogous to the case w = w2.

This concludes the proof of the ⊆ inclusions.
Let us now prove the other inclusions ⊇.

Suppose first that either v2, v3 ∈ V1 or v2, v3 /∈ V1, so that θ(V1 × V1) ⊆ V ∨1 . Since
θ(V1 × V1) is g-invariant and defined over Q, by minimality of V ∨1 we only need to
show that θ(V1 × V1) 6= {0}. Since dimV1 ≥ 2, this follows from Lemma 4.0.2.
Now suppose that v2 ∈ V1, v3 ∈ V2, so that θ(V1×V1) ⊂ V ∨1 ⊕V ∨2 . Then v1∧v2 ∈ V ∨
is an eigenvector with eigenvalue α−1

3 , so that v1 ∧ v2 ∈ V ∨2 . Since θ(V1 × V1) is
g-invariant and defined over Q, by minimality of V ∨1 and V ∨2 we have either

θ(V1 × V1) = V ∨2

or
θ(V1 × V1) = V ∨1 ⊕ V ∨2 .

The first case contradicts Lemma 4.6.5 below, so equality must hold and the proof
is complete. �

Lemma 4.6.5. Let r = 2, and let P1 be the factor of P having λ1 as a factor.
Suppose that

θ(V1 × V1) ⊆ V ∨j
for some 1 ≤ j ≤ n. Then j = 1.

Proof. Assume by contradiction that j 6= 1, say j = 2. By the ⊆ inclusions in
Lemma 4.6.4 (whose proof is independent on the result we want to prove here), we
may then assume that v2 ∈ V1, v3 ∈ V2.

Let us prove first that −w1/2,−w2/2 /∈ W1. Indeed, suppose for example that
−w1/2 ∈ W1, and let v ∈ V1 be an eigenvector whose eigenvalue λ has weight
−w1/2. Then by Lemma 4.0.2 we have v ∧ v̄ 6= 0, so that |λ|2 = λ−1

1 is an
eigenvalue of the restriction of g4 to θ(V1 × V1) = V ∨2 . This contradicts the fact
that λ−1

1 is an eigenvalue of g4 restricted to V ∨1 , and proves that −w1/2 /∈W1; the
proof for −w2/2 is analogous.

Now let us prove that w3/(−2)n /∈W1 for n ≥ 2. Suppose by contradiction that
v ∈ V1 is an eigenvector whose eigenvalue λ has weight −w3/(−2)n, n ≥ 2. Then
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by Lemma 4.0.2 v∧ v̄ 6= 0 is a non-trivial eigenvector with eigenvalue µ = |λ|2; since
θ(V1 × V1) = V ∨2 , µ is conjugated to µ′ = α−1

3 , and these two algebraic integers
satisfy an algebraic equation

µ(−2)N = µ′ N ≥ 1.

Using Lemma 4.5.4 it is not hard to see that for this to happen we need to have
µ = µ′ = 1, a contradiction. This proves that w3/(−2)n /∈W1 for n ≥ 2.

Now, by Proposition 4.6.2 this implies that, up to multiplicities,

W1 ⊂
{
w1, w2,−

w3

2

}
.

This however contradicts the equation∑
w∈W1

w = 0.

The claim is then proven. �

Remark 4.6.6. Lemma 4.6.4 and 4.6.5 still hold if one permutes α1, α2 and α3; the
proofs are completely analogous.

Proposition 4.6.7. Let r(g) = 2; then the conjugates of λ1(g) have all modulus
belonging to the following set:{

λ1, λ
−1
2 , λ−1

1 λ2,

√
λ−1

1 ,
√
λ2,

√
λ1λ

−1
2

}
.

More accurately, up to permuting the eigenvalues α1 = λ1, α2 = λ−1
2 , α3 = λ−1

1 λ2 ∈
Λ, one of the following is true:

(1) α1, α2 and α3 are all cubic algebraic integers without real conjugates;
(2) α1 is a cubic algebraic integer without real conjugates; α2 and α3 are con-

jugate to one another, and their other conjugates are pairs of conjugate
complex numbers with modulus α−1/2

1 , α
−1/2
3 , α

−1/2
3 (k, k+1 and k+1 pairs

respectively, k ≥ 0);
(3) α1, α2 and α3 are conjugate, and their other conjugates are pairs of conju-

gate complex numbers with modulus α−1/2
1 , α

−1/2
3 , α

−1/2
3 (k pairs for each

module, k ≥ 0).

Proof. Thanks to Lemma 4.6.4 and Remark 4.6.6, up to permutation of indices
only three situations are possible:

(1) α1, α2 and α3 are not mutually conjugate. In this case, denoting by Pi the
factor of P having αi as a factor, Lemma 4.6.4 implies that

θ(Vi × Vi) = V ∨i .

ThenWi = {wi,−wi/2}; indeed, suppose by contradiction that w = wj/(−2)n ∈
Wi for some j 6= i, and let v ∈ Vi be an eigenvector whose eigenvalue has
weight w. Then by Lemma 4.0.2, either n = 0 or v ∧ v̄ 6= 0, so that
−2w ∈ Wi. By a recursive argument, this proves that wj ∈ Wi, which
contradicts the assumption that αj and αi are not conjugate. Therefore,
by Proposition 4.6.2,

Wi ⊆
{
wi,−

wi
2

}
.
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Since
∑
w∈Wi

w = 0, the multiplicity of−wi/2 must be 2, which implies that
the conjugates of αi are two conjugate complex numbers. This concludes
the proof of case (1).

(2) α2 and α3 are conjugate, while α1 is not. The above proof shows that α1 is
cubic without real conjugates. Let P1 (respectively P2) be the factor of P
having α1 (respectively α2 and α3) as a root; by Lemma 4.6.4 and Remark
4.6.6 we have

θ(V2 × V2) = V ∨1 ⊕ V ∨2 .
Suppose by contradiction that w = w1/(−2)n ∈W2 for some n ≥ 2, and let
v ∈ V2 be an eigenvector whose eigenvalue λ has weight w. Then by Lemma
4.0.2 v ∧ v 6= 0, so that |λ|−2 ∈ Λ1 ∪ Λ2; since α1 is a non-trivial power
of |λ|−2, these two numbers cannot be conjugate, therefore |λ|−2 ∈ Λ2.
Inductively, this shows that β = α

−1/2
1 ∈ Λ1 is conjugate to α2 and α3. We

can write
β2 = α2α3;

taking ρ ∈ Gal(Q/Q) such that ρ(β) = α1 leads to a contradiction. There-
fore w1/(−2)n /∈W2 for n ≥ 2 and n = 0.
By Proposition 4.6.2 this implies that, up to multiplicities,

W2 ⊂
{
w2, w3,−

w1

2
,−w2

2
,−w3

2

}
.

The equation ∑
w∈W2

w = 0

implies that the multiplicities of −w1/2,−w2/2,−w3/2 are h, h + 2, h + 2

respectively for some h ≥ 0. Since α2 cannot be conjugate to α−1/2
2 , h = 2k

is even, which concludes the proof of case (2).
(3) α1, α2 and α3 are conjugate. Then, by Proposition 4.6.2, up to multiplici-

ties,
W2 ⊂

{
w1, w2, w3,−

w1

2
,−w2

2
,−w3

2

}
.

The equation ∑
w∈W2

w = 0

implies that the multiplicities of −w1/2,−w2/2,−w3/2 are alle equal to h
for some h ≥ 0. Since α1 cannot be conjugate to α−1/2

1 , h = 2k is even,
which concludes the proof of case (3).

�

4.7. The case r(g) = 1. Let us now suppose that the rank of g (i.e. the split-rank
of G = 〈g〉

Zar
, see Section 4.1) is equal to 2. Recall that in this case the weights

are equipped with a natural order: wλ > wλ′ if and only if |λ| > |λ′|; for w ∈ W
we set |w| := max{w,−w}.

Denote as usual by w1, w2 ∈ W the weights of the eigenvalues λ1, λ
−1
2 ∈ Λ

respectively.

Lemma 4.7.1. Suppose that r = 1 and let λ 6= λ1 be a real conjugate of λ1; then
λ = λ−1

1 . In this case λ1 = λ2.
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Proof. Since r = 1, there exist integers m,n, not both equal to 0, such that

λm = λn1 .

Suppose that |m| ≥ |n| (the case |n| ≥ |m| is proven in the same way) and let
ρ ∈ Gal(Q/Q) be such that ρ(λ1) = µ, where µ is a conjugate of λ1 whose weight has
maximal modulus. Denoting by w and w′ the weights of µ and ρ(λ1) respectively,
the above equation implies that

mw = nw′;

by maximality of |w| we get |m| = |n|, so that λ = λ−1
1 as claimed.

In order to prove that in this case λ1 = λ2, it suffices to apply Proposition 4.4.1:
if this were not the case, since λ−1

1 ∈ Λ, then either λ−1
1 = λ−1

1 λ2, a contradiction,
or λ2

1 ∈ Λ, contradicting the maximality of λ1. �

Proposition 4.7.2. Suppose that r = 1. Then
• either λ1 and λ2 are both cubic without real conjugates;
• or λ2 = λ1 = λ, λ and λ−1 are conjugate, and all of their other conjugates
are pairs of conjugate complex numbers of modulus

√
λ, 1 or

√
λ−1 (k, k′

and k pairs respectively, k, k′ ≥ 0).

Proof. Denote by P1 the factor of P having λ1 as a root.
Case 1: λ2 /∈ {

√
λ1, λ1, λ

2
1}. We show first that

θ(V1 × V1) = V ∨1 .

Since λ1 is a simple eigenvalue of g2, V1 is minimal among the g-invariant subspaces
defined over Q (see Remark 4.5.1); therefore, as in the proof of Lemma 4.6.4, we
only need to show that

v1 ∧ v ∈ V ∨1
for all eigenvectors v ∈ V1. Let v ∈ V1 be an eigenvector with eigenvalue λ and let
w = wλ, and let as usual w3 := −w1 − w2.

• If w /∈ {w1,−w1/2, w2, w3}, then v1 ∧ v = 0. Indeed, if this were not the
case, then −w1 −w ∈W , and the assumption and Proposition 4.4.1 imply
that

w > min
{
−w1

2
,
w2

4
, w3

}
= −w1

2
.

Therefore
−w1 − w < −w1

2
,

which implies that −w1 − w = w2, i.e. w = w3, contradicting the assump-
tion.

• If w = −w1/2, i.e. λλ̄ = λ−2
1 , then v1 ∧ v̄ is an eigenvector with eigenvalue

λ̄−1; since λ and λ̄ are conjugate, this implies that v1 ∧ v ∈ V ∨1 .
• If w = w2 or w = w3, then λ = λ−1

2 or λ = λ−1
1 λ2 is a real conjugate

of λ1; but then by Lemma 4.7.1 we have λ = λ−1
1 , which contradicts the

assumptions on λ2. Thus this case cannot occur.
• Finally, if w = w1 then λ = λ1 and since −2w1 /∈W we have v1 ∧ v = 0.

We have showed that θ(V1 × V1) = V ∨1 .
Now let us show that λ1 is cubic without real conjugates. Since∑

w∈W1

w = 0



COHOMOLOGY ACTION THREEFOLDS 27

and since w1 has multiplicity 1 in W , we only need to show that the conjugates of
λ1 have weight −w1/2. Let λ be a conjugate of λ1 with weight w and let v be an
eigenvector for λ.

• If we had w = w2, then by simplicity of such weight we have λ = λ−1
2 ,

contradicting Lemma 4.7.1 since λ2 6= λ1.
• If we had w = 0, a conjugate λ of λ1 would satisfy

λλ̄ = 1.

Applying ρ ∈ Gal(Q/Q) such that ρ(λ) = λ1, we would have that λ−1
1 is a

conjugate of λ1, so that λ1 = λ2, a contradiction.
• If w = w3, since λ−1

1 λ2 6= λ1, λ
−1
1 Lemma 4.7.1 implies that λ /∈ R. Lemma

4.0.2 applied to v and v1 implies that v∧ v̄ 6= 0: indeed otherwise we would
have v1 ∧ v̄1 6= 0 (contradicting the minimality of λ−1

2 > λ−2
1 ) or v1 ∧ v̄ 6= 0

(contradicting the simplicity of the weight w2).
Therefore, since θ(V1, V1) = V ∨1 , we have

|λ|−2 = λ2
1λ
−2
2 ∈ Λ1

and by Lemma 4.7.1 either λ2
1λ
−2
2 = λ1, i.e. λ1 = λ2

2, a contradiction or
|λ|−2 = λ−1

1 ∈ Λ and λ1 = λ2, again a contradiction.
• Finally, if w /∈ {0, w1,−w1/2, w2, w3}, then by Proposition 4.4.1 v ∧ v̄ 6= 0

would be an eigenvector with (real) eigenvalue |λ|2. Since θ(V1×V1) = V ∨1 ,
this implies that |λ|−2 ∈ Λ1; by Lemma 4.7.1 we would have |λ|2 = λ±1

1 , a
contradiction.

This shows that λ1 is cubic without real conjugates; the proof for λ2 is completely
analogous.

Case 2: λ2 ∈ {
√
λ1, λ

2
1}. Up to replacing g by g−1, we may assume that λ2 =√

λ1; let us show that λ1 and λ2 are both cubic without real conjugates.
Remark that by Proposition 4.4.1, up to multiplicities

W \ {0} =

{
w1

(−2)n
, n = 0, . . . , N

}
.

Let us show first that λ1 is cubic without real conjugates. Since∑
w∈W1

w = 0

and since w1 has multiplicity 1 inW , we only need to show thatW1 ⊂ {w1,−w1/2}.
Let w ∈W1 be the weight of an eigenvalue λ ∈ Λ1.

• If w = 0, we show as in Case 1 that λ1 = λ2, a contradiction.
• If w = w1/(−2)n and n ≥ 2, then we argue as in the proof of Proposition

4.6.2 to obtain a contradiction: indeed in this case

(λλ̄)k = λ1, 2|k.

Applying ρ ∈ Gal(Q/Q) such that ρ(λ1) has weight w1/(−2)n with n max-
imal and letting w′ and w′′ be the weights of ρ(λ) and ρ(λ̄) respectively,
we would have

k(w′ + w′′) =
w1

(−2)n
,

a contradiction modulo Zw1/(−2)n.
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Therefore W1 ⊂ {w1,−w1/2} and thus λ1 is cubic without real conjugates.
Now let us prove that λ2 is also cubic without real conjugates; this is equivalent

to λ−1
2 being cubic without real conjugates. Let P2 be the factor of P having λ−1

2

as a root. Since λ2 =
√
λ1, λ2 has degree 3 or 6 over Q; the same proof as above

and the simplicity of the weight w1 show that

W2 ⊂
{
w2,−

w2

2

}
.

Since ∑
w∈W2

w = 0,

if λ2 had degree 6 then the multiplicity of the weight w2 in W2 would be equal to
2, contradicting the fact that λ−1

2 is a real eigenvalue with weight w2. Therefore λ2

is cubic, and by Lemma 4.7.1 it doesn’t have any real conjugate.

Case 3: λ1 = λ2. Suppose that λ1 is not a cubic algebraic integer without real
conjugates. Denote by P1 the factor of P having λ1 as a root; since∑

w∈W1

w = 0,

and since the weight w1 ∈ W has multiplicity 1, λ1 is not cubic without real
conjugates if and only if some conjugate λ of λ1 has weight w /∈ {w1,−w1/2}.
Let us prove first that in this case λ1 and λ−1

1 are conjugate. We distinguish the
following sub-cases:

• w = −w1. Then, since λ−1
1 is the only eigenvalue with weight −w1, λ1 and

λ−1
1 are conjugate.

• 0 < |w| < w1/2. Since the rank r is equal to 1, λ and λ1 satisfy an equation

(λλ̄)m = λn1 ,

and since |w| < w1/2 we have |n| < |m|. By Lemma 4.5.4 there exists
ρ ∈ Gal(Q/Q) such that ρ(λ) = λ1; let λ′ = ρ(λ̄), λ′′ = ρ(λ1), and let
w′, w′′ be their weights respectively. Then the above equation implies that

(4.1) mw1 +mw′ = nw′′ ⇔ w1 = −w′ + n

m
w′′.

This implies that either w′ = w2 or w′′ = w2; indeed, if this were not the
case, by Proposition 4.4.1 we would have

|w′|, |w′′| ≤ max

{
|w1|

2
,
|w2|

2
, |w1 + w2|

}
=
|w1|

2
;

this would contradict equation 4.1 because |n/m| < 1.
We have shown that w2 is a conjugate weight of λ1; since λ−1

1 is the only
eigenvalue with weight w2, this means that λ1 and λ−1

1 are conjugate as
claimed.

• w = 0. Then we show as in Case 1 that λ1 is conjugate to λ−1
2 = λ−1

1 .
• w = w1/2. We may assume that we don’t fall in one of the cases above, i.e.

that
W1 ⊂

{
w1,

w1

2
,−w1

2

}
.

We show that θ(V1 × V1) = V ∨1 ; in order to do that it suffices to show that
v1 ∧ v ∈ V ∨1 for every eigenvector v ∈ V1 (see the proof of Lemma 4.6.4). If
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the eigenvalue µ of the eigenvector v has weight w1 or w1/2, then v1∧v = 0;
if the weight is −w1/2, then v1 ∧ v is an eigenvector with eigenvalue µ̄−1,
hence v1 ∧ v ∈ V ∨1 . Therefore θ(V1 × V1) = V ∨1 as claimed.
Now let v ∈ V1 be an eigenvector with eigenvalue of weight w1/2; by Propo-
sition 4.4.1, v ∧ v̄ 6= 0, so that −w1 ∈W1. This shows that we fall in one of
the above cases, and in particular λ1 and λ−1

1 are conjugate.
We have shown that λ1 and λ−1

1 are conjugate. By Lemma 4.7.1 there are no
other real conjugates, therefore in order to complete the proof we only need to show
that

±w1

2n
/∈W1 for n ≥ 2.

This can be proven exactly as in Case 2. �

4.8. Examples on tori. In this section we provide examples of automorphisms of
compact complex tori of dimension 3 which show that (almost) all of the sub-cases
of Proposition 4.6.7 and 4.7.2 can actually occur. For more examples see [21, 20].

Lemma 4.8.1. Let P ∈ Z[T ] be a monic polynomial of degree 2n all of whose roots
are distinct and non-real and such that P (0) = 1. Then there exists a compact
complex torus X of dimension n and an automorphism

f : X → X

such that the characteristic polynomial of the linear automorphism f∗1 : H1(X,C)→
H1(X,C) is equal to P .

Proof. Let
P (T ) = T 2n + a2n−1T

2n−1 + . . .+ a1T + 1 ∈ Z[T ]

be any polynomial.
We will prove first that there exists a linear diffeomorphism f of the real torus
M = R2n/Z2n such that the induced linear automorphism f∗1 ∈ GL(H1(M,R)) has
characteristic polynomial P . Indeed, the companion matrix

A = A(P ) =



0 0 0 . . . 0 −1
1 0 0 . . . 0 −a1

0 1 0 . . . 0 −a2

...
. . . . . . . . .

...
...

... 0 1 0 −a2n−2

0 · · · 0 0 1 −a2n−1


has characteristic polynomial P ; since A ∈ SL2n(Z), the induced linear automor-
phism f of R2n preserves the lattice Z2n and so does its inverse. Hence, A induces
a linear automorphism, which we denote again by f :

f : R
2n
�Z2n → R2n

�Z2n.

Let dxi be a coordinate on the i-th factor of M = R2n/Z2n = (R/Z)2n. In the
basis dx1, . . . , dx2n of H1(X,R), the matrix of f∗1 is exactly the transposed AT ; in
particular, the characteristic polynomial of f∗1 is equal to P .

In order to conclude the proof, we will show that, if the roots of P are all distinct
and non-real, then M can be endowed with a complex structure J such that f is
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holomorphic with respect with the structure J . Let

β1, β̄1, . . . , βn, β̄n ∈ C \ R
be the roots of P , and let

Vi = ker(f − βiI)(f − β̄iI) ⊂ R2n,

where we have identified f with the linear automorphism of R2n induced by the
matrix A.
The Vi are planes such that

R2n =

n⊕
i=1

Vi.

The restriction of f to Vi is diagonalizable with eigenvalues βi and β̄i; therefore there
exists a unique complex structure Ji on Vi such that, with respect to a holomorphic
coordinate zi on Vi ∼= C, the action of f is the multiplication by βi:

f |Vi
(zi) = βizi.

The complex structures Ji induce a complex structure on R2n; by canonically iden-
tifying R2n with the tangent space at any point of M , we get an almost-complex
structure onM . It is not hard to see that J is integrable, and that f is holomorphic
with respect to J . This concludes the proof. �

Let us apply Lemma 4.8.1 to the three-dimensional case: fix a monic polynomial
P ∈ Z[T ] of degree 6 such that P (0) = 1, and suppose that its roots

β1, β2, β3, β4 = β̄1, β5 = β̄2, β6 = β̄3

are all distinct and non-real.
By Lemma 4.8.1, there exists a 3-dimensional complex torus X = C3/Λ and an au-
tomorphism f : X → X such that the induced linear automorphism f∗1 : H1(X,C)→
H1(X,C) has characteristic polynomial P . Remark that the proof of the Lemma
shows something more precise: the restriction of f∗1 to H1,0(X) (respectively to
H0,1(X)) is diagonalizable with eigenvalues β1, β2, β3 (respectively β̄1, β̄2, β̄3).

Since for a complex torus the wedge-product of forms induces isomorphisms

H2,0(X) ∼=
∧2H1,0(X), H1,1(X) ∼= H1,0(X)⊗H0,1(X), H0,2(X) ∼=

∧2H0,1(X),

the eigenvalues of f∗2 ∈ GL(H2(X,R)) are exactly the 15 numbers βiβj , 1 ≤ i <
j ≤ 6. If |β1| ≥ |β2| ≥ |β3|, then

α1 := λ1 = |β1|2, α2 := λ−1
2 = |β3|2, α3 := λ−1

1 λ2 = |β2|2.
Let

Q(T ) =
∏

1≤i<j≤6

(T − βiβj).

Then Q is the characteristic polynomial of f∗2 , and in particular Q ∈ Z[T ]. Let

KP := Q(βi)1≤i≤6 ⊃ KQ := Q(βiβj)1≤i<j≤6.

We are interested in the irreducible factors of Q over Z; assuming that all the roots
of Q are distinct, the irreducible factors of Q are in 1 : 1 correspondence with the
orbits of the action of Gal(KQ/Q) on the set of roots RQ = {βiβj}. Since each
element of Gal(KQ/Q) can be extended to an element of Gal(KP /Q), we consider
instead the orbits under the action of

G := Gal(KP /Q);
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G acts by permuting the roots of P , and thus it can be seen as a subgroup of S6.
Under this identification, the action of G on RQ is given by the natural action of
(subgroups of) S6 on the set

S := {{i, j} ⊂ {1, 2, 3, 4, 5, 6}}.
Therefore, as long as we know how Gal(KP /Q) permutes the roots of P , we can
deduce the number and the degrees of the irreducible factors of Q. This is a classical
problem in Galois theory (see [6]), and programs like Magma allow to easily compute
this action.

Example 4.8.2. Let P (T ) = T 6 − T 5 + T 3 − T 2 + 1; then G = S6 acts transitively
on S. This means that Q is irreducible, and thus α1, α2, α3 are conjugate; their
other conjugates are six pairs of complex conjugates, two of modulus 1/

√
α1, two

of modulus 1/
√
α2 and two of modulus 1/

√
α3.

This realizes subcase 1 of Proposition 4.6.7 with k = 2.

Example 4.8.3. Let P (T ) = T 6 − 3T 5 + 4T 4 − 2T 3 + T 2 − T + 1; then G =
〈(1 3 4)(2 6 5), (1 4 3), (1 6)(2 3)(4 5)〉. The action of G on S has two orbits, of car-
dinality 9 and 6 respectively; one can check that the roots of Q are all distinct, so
that α1 and α2 are not both cubic, and that α1 6= α−1

2 , so that by Proposition 4.7.2
we have r = 2. By Proposition 4.6.7, the only possibility is that α1, α2 and α3 are
conjugate of degree 9; their other conjugates are three pairs of complex conjugates,
of modulus 1/

√
α1, 1/

√
α2 and 1/

√
α3 respectively.

This realizes subcase 1 of Proposition 4.6.7 with k = 1.

Example 4.8.4. Let P (T ) = T 6 + T 5 + 2T 4 − T 3 + 2T 2 − 3T + 1; then G =
〈(1 2 3)(4 5 6 ), (1 4 5)(2 3 6), (2 4)(3 5), (1 5 6 3)〉. The action of G on S has two orbits,
of cardinality 12 and 3 respectively. One can check that α1, α2 and α3 are not
all conjugate, so that we are in case 2 of Proposition 4.6.7: after permuting the
indices, α1 is cubic without real conjugates; α2 and α3 are conjugate and their
other conjugates are 5 pairs of complex conjugates, one of modulus 1/

√
α1, two of

modulus 1/
√
α2 and two of modulus 1/

√
α2. Remark that, after possibly replacing

f by f−1 (which replaces P by P∨), we may assume that λ1 is not cubic without
real conjugates.
This realizes subcase 2 of Proposition 4.6.7 with k = 1.

Example 4.8.5. Let P (T ) = T 6 + T 5 + 4T 4 + T 3 + 2T 2 − 2T + 1; then G =
〈(1 2 5)(3 6 4), (1 3)(2 4)(5 6)〉. The action of G on S has three orbits of cardinality
3 and one of cardinality 6. Then λ1 and λ2 are both cubic without real conjugates:

• if r = 1, since it is easy to prove that λ1 6= λ2, this follows from Proposition
4.7.2 ;

• if r = 2, it can be proven easily that α1, α2 and α3 are not all conjugate,
and that all the other eigenvalues of f∗2 are non-real. Therefore, the αi are
all contained in (distinct) orbits of cardinality 3, meaning that they are
cubic without real conjugates.

However it is unclear whether r = 1 or r = 2; if one could prove that r = 2, this
would realize subcase 3 of Proposition 4.6.7.

Example 4.8.6. Let P (T ) = T 6 +T 4−2T 3 +T 2−T + 1 and let β1, β̄1, β2, β̄2, β3, β̄3

be the roots of P , with |β1| ≥ |β2| ≥ |β3|; then one finds out that

|β1| = |β2|−2 = |β3|−2.
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In particular λ1 = λ2
2, so that r = 1. By Proposition 4.7.2, λ1 and λ2 are both

cubic without real conjugates.
This realizes subcase 1 of Proposition 4.7.2.

Remark 4.8.7. In order to realize subcase 2 of Proposition 4.7.2 it would suffice to
exhibit an irreducible polynomial P ∈ Z[T ] such that P (0) = 1 and exactly two
roots of P have modulus equal to 1.

5. Automorphisms of threefolds: the mixed case

In this last section, we deal with the case of an automorphism f : X → X of a
compact Kähler threefold X such that the action in cohomology f∗2 : H2(X,R) →
H2(X,R) is neither (virtually) unipotent nor semisimple. As we saw in Section 2,
this situation is not possible in the surface case; in the threefold case, we manage to
give some constraints but not to completely exclude this situation. However, due
to restriction on the dimension, no examples can be produced on complex tori, and
to the best of my knowledge no examples are known at all.

Conjecture 4. Let f : X → X be an automorphism of a compact Kähler threefold.
Then f∗2 : H2(X,R)→ H2(X,R) is either semisimple or virtually unipotent.

Proposition 5.0.1. Let X be a compact Kähler threefold and let f : X → X be an
automorphism such that λ1(f) > 1 and f∗2 is not semisimple. Then

(1) λ2(f) ∈ {
√
λ1(f), λ1(f)2}; in particular, r(f) = 1 and λ1 = λ1(f) and

λ2 = λ2(f) are both cubic without real conjugates;
(2) if λ2 = λ2

1, then the eigenvalue λ1 has a unique non-trivial Jordan block
whose dimension is m ≤ 3; the other eigenvalues having non-trivial Jor-
dan blocks have modulus 1/

√
λ1, and their non-trivial Jordan blocks have

dimension at most m− 1;
(3) analogously, if λ2 =

√
λ1, then the eigenvalue λ−1

2 has a unique non-trivial
Jordan block whose dimension is m ≤ 3; the other eigenvalues having non-
trivial Jordan blocks have modulus

√
λ2, and their non-trivial Jordan blocks

have dimension at most m− 1.

In what follows denote by g = f∗ : H∗(X,R) → H∗(X,R) the linear automor-
phism induced by f , and by gi the restriction of g to Hi(X,R). We will denote by
λi = λi(f) the dynamical degrees and we will assume that

λ2 ≥ λ1 > 1;

the case λ1 ≥ λ2 follows from the previous one by replacing f by f−1.

Lemma 5.0.2. If λ2 6= λ2
1, then λ1 has no non-trivial Jordan block for g2. If

λ2 = λ2
1, then g2 has at most one non-trivial Jordan block for the eigenvalue λ1,

whose dimension is at most 3. In either case, g2 does not have non-trivial Jordan
blocks for other eigenvalues of modulus λ1.

Proof. Suppose first that λ2 6= λ2
1; then, by Theorem B, w1 is a simple weight of

(the semisimple part of) g. Therefore in particular λ1 has no non-trivial Jordan
block.

Now suppose that λ2 = λ2
1. We prove first that the Jordan blocks for the

eigenvalue λ1 have dimension at most 3. Suppose by contradiction that there exists



COHOMOLOGY ACTION THREEFOLDS 33

a Jordan block of dimension at least 4; then, as in the proof of Theorem 3.0.1, we
may pick u1, u2, u3, u4 ∈ H1,1(X,R) ∪ (H2,0(X)⊕H0,2(X))R such that

g(u1) = λ1u1, g(ui) = ui+1 + λ1ui i = 1, 2, 3.

Considering
gn(u4 ∧ u4), gn(u3 ∧ u3) ∈ H4(X,R),

and applying Lemma 4.0.2 as in the proof of Theorem 3.0.1, we obtain a class
v ∈ H4(X,R) such that

‖gn4 v‖ ∼ cnkλ2n
1 = cnkλn2 for some k ≥ 1.

This means that the eigenvalue λ2 has a non-trivial Jordan block for g4, and since
g4 = (g−1

2 )∨, the eigenvalue λ−1
2 has a non-trivial Jordan block for g2. This however

would imply that λ1 = λ2
2 = λ4

1, a contradiction.
This proves that Jordan blocks of g2 for the eigenvalue λ1 have dimension at most
3.

Now let us prove that there exists a unique non-trivial Jordan block of g2 for
the eigenvalue λ1. Suppose by contradiction that we can find linearly independent
elements u1, u2, v1, v2 ∈ H1,1(X,R) ∪ (H2,0(X)⊕H0,2(X))R such that

g(u1) = λ1u1, g(u2) = u1 + λ1u2, g(v1) = λ1v1, g(v2) = v1 + λ1v2.

Then, considering

gn(u2 ∧ u2), gn(u2 ∧ v2), gn(v2 ∧ v2)

and applying Lemma 4.0.2 to the classes u1 and v1, we get as before a class v ∈
H4(X,R) such that

‖gn4 v‖ ∼ cnkλ2n
1 = cnkλn2 for some k ≥ 1,

which yields a contradiction. This concludes the proof. �

Proof of Proposition 5.0.1. Let λ ∈ Λ be an eigenvalue of g2 with weight w such
that g2 has a non-trivial Jordan block for λ of dimension k > 1. As in the proof
of Theorem 3.0.1, we can take a Jordan basis u1, . . . , uk ∈ H1,1(X) ∪ (H2,0(X) ⊕
H0,2(X)) such that

g(u1) = λu1, g(ui+1) = ui + λui+1 i = 1, . . . , k − 1.

Suppose that λ2 ≥ λ1, so that by Lemma 5.0.2 applied to f−1 the eigenvalue λ2 has
no non-trivial Jordan block. Let as usual w1, w2, w3 the weights of the eigenvalues
α1 = λ1, α2 = λ−1

2 , α3 = λ−1
1 λ2 ∈ Λ.

We distinguish the following cases:

• w /∈ {0, w1, w2, w3}: by Propositions 4.3.1.(3) and 4.4.1.(2) we have u1 ∧
ū1 6= 0. In particular,

gn(uk ∧ ūk) ∼ cn2k−2|λ|2n(u1 ∧ ū1),

which means that g4 has a Jordan block of dimension ≥ 2k − 1 for the
eigenvalue |λ|2. Since g4 = (g−1

2 )∨, g2 has a Jordan block of dimension
≥ 2k − 1 > k for the eigenvalue |λ|−2 ∈ Λ;
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• w = 0; take λ ∈ Λ with weight 0 such that the dimension k of its maximal
Jordan block is maximal, and let v ∈ H1,1(X,R) ∪ (H2,0(X) ⊕H0,2(X))R
be an eigenvector for the eigenvalue λ2.
Since v∧v = 0, by Lemma 4.0.2 we have either u1∧v 6= 0 or u1∧ ū1 6= 0. In
the first case, considering gn(uk ∧ v) we obtain a non-trivial Jordan block
for an eigenvalue λ′ of weight −w2; this implies that w1 = −w2, and by
Proposition 4.4.1 the weight w1 is simple, contradicting the existence of
a non-trivial Jordan block. In the second case, considering gn(uk ∧ ūk)
we obtain a Jordan block of dimension ≥ 2k − 1 > k for the eigenvalue
|λ|−2 = 1; since 1 has weight 0, this contradicts maximality. Therefore,
this case cannot occur;

• w = w1: in this case, by Lemma 5.0.2 we have λ2 = λ2
1, λ = λ1 and k ≤ 3;

• w = w2: by Lemma 5.0.2 applied to f−1 this case cannot occur;
• w = w3: let v ∈ H1,1(X,R) ∪ (H2,0(X) ⊕ H0,2(X))R be an eigenvector

for the eigenvalue λ−1
2 . Since v ∧ v = 0, by Lemma 4.0.2 we have either

v ∧ ū1 6= 0 or u1 ∧ ū1 6= 0.
In the first case we obtain a non-trivial Jordan block for an eigenvalue of
weight w1; by Lemma 5.0.2 we have then λ2 = λ2

1, thus w3 = w1 and, again
by Lemma 5.0.2, λ = λ1.
In the second case, we get a non-trivial Jordan block for the eigenvalue
|λ|−2.

The above computation show that, if g2 has a non-trivial Jordan block of dimension
k for the eigenvalue λ ∈ Λ, then either λ = λ1, in which case λ2 = λ2

1, or |λ| 6= 1
and there is a Jordan block of dimension > k for the eigenvalue |λ|−2.
By Proposition 4.3.1 and 4.4.1, one proves inductively that g2 admits a non-trivial
Jordan block for the eigenvalue λ1. By Lemma 5.0.2, such block has dimension at
most 3; the claim follows from the fact that, as we proved above, the dimension of
a non-trivial Jordan block of λ 6= λ1 is strictly smaller than that of a non-trivial
Jordan block of |λ|−2. �
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