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ABSTRACT. Let f : X 99K X be a bimeromorphic transformation of a complex irre-
ducible symplectic manifold X . Some important dynamical properties of f are encoded
by the induced linear automorphism f⇤ of H2(X,Z). Our main result is that a bimero-
morphic transformation such that f⇤ has at least one eigenvalue with modulus > 1 doesn’t
admit any invariant fibration (in particular its generic orbit is Zariski-dense).

1. INTRODUCTION

A complex manifold is said irreducible symplectic if it is simply connected and the
vector space of holomorphic 2-forms is spanned by a nowhere degenerate form. Irre-
ducible symplectic manifolds form, together with Calabi-Yau manifolds and complex tori,
one of the three fundamental classes of Kähler manifolds with trivial canonical bundle.
We are going to denote by X an irreducible symplectic manifold and by f : X 99K X a
bimeromorphic transformation of X .
On the second cohomology of X we can define a quadratic form, the Beauville-Bogomolov
form, whose restriction to H1,1

(X,R) is hyperbolic (i.e. has signature (1, h1,1
(X) � 1))

and which is preserved by the linear pull-back action f⇤ induced by f on cohomology;
the setting is therefore similar to that of a compact complex surface, where the intersection
form makes the second cohomology group into a hyperbolic lattice. In the surface case, the
action of an automorphism f : S ! S on cohomology translates into dynamical properties
of f (see Paragraphs 3.3 and 3.4 for details), and we can hope to have similar results in the
irreducible symplectic case.

If g : M 99K M is a meromorphic transformation of a compact Kähler manifold M , for
p = 0, 1, . . . , dim(M) the p-th dynamical degree of g is

�
p

(g) := lim sup

n!+1
||(gn)⇤

p

|| 1
n ,

where (gn)⇤
p

: Hp,p

(M) ! Hp,p

(M) is the linear morphism induced by gn and || · || is
any norm on the space End(Hp,p

(M)). Note that in the case of an automorphism, �
p

(f)
is just the maximal modulus of eigenvalues of f⇤

p

.
Let g : M 99K M be a bimeromorphic transformation of a compact Kähler manifold. A

meromorphic fibration ⇡ : M 99K B onto a compact Kähler manifold B such that dimB 6=
0, dimX is called g-invariant if there exists a bimeromorphic transformation h : B 99K B
such that ⇡ � g = h � ⇡.
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M

⇡

✏✏

g

// M

⇡

✏✏

B
h // B

The transformation g is said to be primitive (see [22]) if it admits no invariant fibration.
In the surface case, an automorphism whose action on cohomology has infinite order

admits an invariant fibration onto a curve if and only if all the dynamical degrees are equal
to 1 (Theorem 3.8). Our main result establish an analogue of the "only if" direction.

Main Theorem. Let X be an irreducible symplectic manifold, f : X 99K X a bimeromor-
phic transformation with at least one dynamical degree > 1. Then

(1) f is primitive;
(2) f admits at most dim(X) + b2(X)� 2 periodic hypersurfaces;
(3) the generic orbit of f is Zariski-dense.

Here a hypersurface H ⇢ X is said to be f -periodic if its strict transform (fn

)

⇤H by
some iterate of f is equal to H .

Remark 1.1. Point (2) follows from point (1) and [5, Theorem B]; point (3) follows from
point (1) and [1, Theorem 4.1], but is proven here as a lemma (Lemma 4.6).

In order to prove the Main Theorem, we establish a result on the dynamics of birational
transformations of projective manifolds that has its own interest.

Proposition. Let X,B be projective manifolds, f : X 99K X, g : B 99K B birational
transformations and ⇡ : X ! B a non-trivial fibration such that ⇡ � f = g � ⇡. If the
generic orbit of g is Zariski-dense and the generic fibre of ⇡ is of general type, then

(1) ⇡ is isotrivial over an open dense subset U ⇢ B;
(2) there exists an étale cover U 0 ! U such that the induced fibration X 0

= U 0 ⇥
U

⇡�1
(U) is trivial: X 0 ⇠

=

U 0 ⇥ F for a fibre F ;
(3) the images by the natural morphism X 0 ! ⇡�1

(U) of the varieties U 0 ⇥ {pt} are
f -periodic; in particular the generic orbit of f is not Zariski-dense.

Remark 1.2. Point (1) is equivalent to point (2) by [28, Proposition 2.6.10].

In Section 2 we recall the definition and main results about dynamical degrees, in the
absolute and relative context; Section 3 is consecrated to irreducible symplectic manifolds,
with a focus on the invariance of the Beauville-Bogomolov form under the action of a bira-
tional transformation; in Section 4 and 5 we prove the Main Theorem and the Proposition
above; Section 6 presents a different approach to the proof of the Main Theorem, which
allows to prove a slightly weaker version of it.

1.1. Acknowledgements. I would like to thank Serge Cantat for proposing the topic and
strategy of this paper, and for his precious help in all the stages of its redaction; I am also
grateful to Mathieu Romagny for the fruitful conversations about Hilbert schemes.

2. DYNAMICAL DEGREES

Throughout this section M will be a compact Kähler manifold of dimension d.
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2.1. Definition and entropy. Let f : X 99K Y be a dominant meromorphic map between
compact Kähler manifolds; the map f is then holomorphic outside its indeterminacy locus
I ⇢ X , which has codimension at least 2. The closure � of its graph over X \ I is an
irreducible analytic subset of dimension d in X ⇥Y . Let ⇡

X

,⇡
Y

denote the restrictions to
� of the projections from X ⇥ Y to X and to Y respectively; then ⇡

X

induces a biholo-
morphism ⇡�1

X

(X \ I) ⇠
=

X \ I and we can identify f with ⇡
Y

� ⇡�1
X

.
Let ↵ be a smooth (p, q)-form on Y ; we define the pull-back of ↵ by f as the (p, q)-current
(see [8] for the basic theory of currents) on X

f⇤↵ := (⇡
X

)⇤(⇡
⇤
Y

↵).

It is not difficult to see that if ↵ is closed (resp. positive), then so is f⇤↵, so that f induces
a linear morphism between the Hodge cohomology groups. This definition of pull-back
coincides with the usual one when f is holomorphic.

Remember that the p-th dynamical degree of a dominant meromorphic map f : M 99K
M are defined as

�
p

(f) = lim sup

n!+1
||(fn

)

⇤
p

|| 1
n .

Thanks to the above definition of pull-back, one can prove that

�
p

(f) = lim

n!+1

✓Z

M

(fn

)

⇤!p ^ !d�p

◆ 1
n

for any Kähler form !. See [12], [7] for details.
The p-th dynamical degree measures the exponential growth of the volume of fn

(V )

for subvarieties V ⇢ M of dimension p [20].

Remark 2.1. By definition �0(f) = 1; �
d

(f) coincides with the topological degree of f :
it is equal to the number of points in a generic fibre of f .

Remark 2.2. Let f be an automorphism. Then we have (fn

)

⇤
= (f⇤

)

n, so that �
p

(f)
is the maximal modulus of eigenvalues of the linear automorphism f⇤

p

: Hp,p

(M,R) !
Hp,p

(M,R); since f⇤ also preserves the positive cone K
p

⇢ Hp,p

(M,R), a theorem of
Birkhoff [2] implies that �

p

(f) is a positive real eigenvalue of f⇤
p

.
It should be noted however that in the bimeromorphic setting we have in general (fn

)

⇤ 6=
(f⇤

)

n.

Remark 2.3. If f is bimeromorphic we have

�
p

(f) = �
d�p

(f�1
).

Indeed, for f biregular we have
Z

M

(fn

)

⇤!p ^ !d�p

=

Z

M

(f�n

)

⇤
(fn

)

⇤!p ^ (f�n

)

⇤!d�p

=

Z

M

!p ^ (f�n

)

⇤!d�p,

which proves the equality by taking the limit.
If f is only bimeromorphic, for all n we can find two dense open subsets U

n

, V
n

⇢ M
such that fn induces an isomorphism U

n

⇠
=

V
n

; by the definition of pull-back the measures
(fn

)

⇤!p^!d�p and !p^ (f�n

)

⇤!d�p have no mass on any proper closed analytic subset,
so thatZ

M

(fn

)

⇤!p^!d�p

=

Z

Un

(fn

)

⇤!p^!d�p

=

Z

Vn

!p^(f�n

)

⇤!d�p

=

Z

M

!p^(f�n

)

⇤!d�p,

which proves the equality in the bimeromorphic case as well.
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The main interest in the definition of dynamical degrees lies in the following theorem
by Yomdin and Gromov [16].

Theorem 2.4. If f : M ! M is an automorphism, then the topological entropy of f is
given by

h
top

(f) = max

p=0,...,d
log �

p

(f).

The topological entropy is a positive real number which measures the disorder created
by iterations of f .
It is also possible to give a definition of topological entropy in the bimeromorphic context
(see [13]), but in this situation we only have

h
top

(f)  max

p=0,...,d
log �

p

(f).

2.2. Relative setting. Dinh, Nguyên and Truong have studied the behaviour of dynamical
degrees in the relative setting ([10] and [11]). Throughout this paragraph we denote by
f : M 99K M a meromorphic transformation of a compact Kähler manifold M of dimen-
sion d, by ⇡ : M 99K B a meromorphic fibration onto a compact Kähler manifold B of
dimension k and by g : B 99K B a meromorphic transformation such that

g � ⇡ = ⇡ � f.
The p-th relative dynamical degree of f is defined as

�
p

(f |⇡) = lim sup

n!+1

✓Z

M

(fn

)

⇤!p

M

^ ⇡⇤!k

B

^ !d�p�k

M

◆ 1
n

,

where !
M

and !
B

are arbitrary Kähler forms on M and B respectively. In particular
�
p

(f |⇡) = 0 for p > d� k.
Roughly speaking, �

p

(f |⇡) gives the exponential growth of (fn

)

⇤ acting on the sub-
space of classes in Hp+k,p+k

(M,R) that can be supported on a generic fibre of ⇡; if M is
projective, it also represents the growth of the volume of fn

(V ) for p-dimensional subva-
rieties V ⇢ ⇡�1

(b) of a generic fibre of ⇡.

Remark 2.5. Dynamical degrees and relative dynamical degrees are bimeromorphic invari-
ants [10]. In other words, if there exist bimeromorphic maps � : M 99K M 0,  : B 99K B0

and a meromorphic fibration ⇡0
: M 0 99K B0 such that ⇡0 � � =  � ⇡, then

�
p

(f) = �
p

(� � f � ��1
), �

q

(f |⇡) = �
q

(� � f � ��1|⇡0
).

Remark 2.6. If F = g�1
(b) is a regular, f -invariant, non-multiple fibre, then �

p

(f |⇡) =
�
p

(f|F ) for all p (see [10]).

The following theorem is due to Dinh, Nguyên and Truong [10].

Theorem 2.7. Let M be a compact Kähler manifold, f : M 99K M a meromorphic trans-
formation, ⇡ : M 99K B a meromorphic fibration and g : B 99K B a meromorphic trans-
formation such that ⇡ � f = g � ⇡. Then for all p = 0, . . . dim(M)

�
p

(f) = max

q+r=p

�
q

(f |⇡)�
r

(g).
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2.3. Log-concavity. Dynamical degrees and their relative counterparts enjoy a log-concavity
property (see [23],[29], [16], [7] for the original result, [10] for the relative setting).

Proposition 2.8. If f : M 99K M is a meromorphic dominant map, the sequence p 7!
log �

p

(f) is concave on the set {0, 1, . . . , d}; in other words

�
p

(f)2 � �
p�1(f)�p+1(f) for p = 1, . . . , d� 1.

Analogously, if ⇡ : M 99K B is an f -invariant meromorphic fibration, then the sequence
p 7! log �

p

(f |⇡) is concave on the set {0, 1, . . . , dim(M)� dim(B)}.

As a consequence we have �
p

� 1 for all p = 0, . . . , d; furthermore, there exist 0 
p  p+ q  d such that

(2.1) 1 = �0(f) < · · · < �
p

(f) = �
p+1(f) = · · · = �

p+q

(f) > · · · > �
d

(f).

3. IRREDUCIBLE SYMPLECTIC MANIFOLDS

We give here the basic notions and properties of irreducible symplectic manifolds (see
[17], [25] for details).

Remark 3.1. Because of the non-degeneracy of �, one can easily prove that an irreducible
symplectic manifold has even complex dimension.

Throughout this section X denotes an irreducible symplectic manifold of dimension 2n
and � a non-degenerate holomorphic two-form on X .

Here is a list of the known examples of such manifolds that are not deformation equiv-
alent.

(1) Let S be a K3 surface, i.e. a simply connected Kähler surface with trivial canoni-
cal bundle. Then the Hilbert scheme S[n]

= Hilbn(S), parametrizing 0-dimensional
subschemes of S of length n, is a 2n-dimensional irreducible symplectic manifold.

(2) Let T be a complex torus of dimension 2, let � : Hilbn(T ) ! Sym

n

(T ) be the
natural morphism and let s : Sym

n

(T ) ! T be the sum morphism. Then the
kernel K

n�1(T ) of the composition s �� is an irreducible symplectic manifold of
dimension 2n� 2, which is called a generalized Kummer variety.

(3) O’Grady has found two sporadic examples of irreducible symplectic manifolds of
dimension 6 and 10.

An irreducible symplectic manifold is said of type K3

[n] (respectively of type gen-
eralized Kummer) if it is deformation equivalent to Hilbn(S) for some K3 surface S
(respectively to K

n�1(T ) for some two-dimensional complex torus T ).

3.1. The Beauville-Bogomolov form. We can define a natural quadratic form on the sec-
ond cohomology H2

(X,R) which enjoys similar properties to the intersection form on
compact surfaces; for details and proofs see [17].

Definition 3.2. Let � be a holomorphic two-form such that
R
(��̄)n = 1. The Beauville-

Bogomolov quadratic form q
BB

on H2
(X,R) is defined by

q
BB

(↵) =
n

2

Z

X

↵2
(��̄)n�1

+ (1� n)

✓Z

X

↵�n�̄n�1

◆✓Z

X

↵�n�1�̄n

◆
.

The Beauville-Bogomolov form satisfies two important properties: first the Beauville-
Fujiki relation, saying that there exists a constant c > 0 such that

q
BB

(↵)n = c

Z

X

↵2n for all ↵ 2 H2
(X,R).



6 FEDERICO LO BIANCO

In particular, some multiple of q
BB

is defined over Z.
Second, the next Proposition describes completely the signature of the form.

Proposition 3.3. The Beauville-Bogomolov form has signature (3, b2(X)�3) on H2
(X,R).

More precisely, the decomposition H2
(X,R) = H1,1

(X,R) � �
H2,0

(X)�H0,2
(X)

�
R

is orthogonal with respect to q
BB

, and q
BB

has signature (1, h1,1
(X)�1) on H1,1

(X,R)
and is positive definite on

�
H2,0

(X)�H0,2
(X)

�
R.

Remark 3.4. For a divisor D 2 Div(X), we define q
BB

(D) := q
BB

(c1(OX

(D))).
If D is effective and without fixed components, then q

BB

(D) � 0. Indeed, let D0 be an
effective divisor linearly equivalent to D and with no components in common with D. We
have

q
BB

(D) =

n

2

Z

D\D

0
(��̄)n�1,

where each irreducible component of the intersection D\D0 is counted with its multiplic-
ity. The integral on the right hand side is non-negative because � is a holomorphic form.
If furthermore D is ample, then by Beauville-Fujiki relation q

BB

(D) > 0.

3.2. Bimeromorphic maps between irreducible symplectic manifolds. A bimeromor-
phic map f : M 99K M 0 between compact complex manifolds is an isomorphism in codi-
mension 1 if there exist dense open subsets U ⇢ M and U 0 ⇢ M 0 such that

(1) codim(X \ U) � 2, codim(X 0 \ U 0
) � 2;

(2) f induces an isomorphism U ⇠
=

U 0.
A pseudo-automorphism of a complex manifold X is a bimeromorphic transformation
which is an isomorphism in codimension 1.

Proposition 3.5 (Proposition 21.6 and 25.14 in [17]). Let f : X 99K X 0 be a bimero-
morphic map between irreducible symplectic manifolds. Then f is an isomorphism in
codimension 1 and induces a linear isomorphism f⇤

: H2
(X 0,Z) ⇠�! H2

(X,Z) which
preserves the Beauville-Bogomolov form.
In particular, the group of birational transformation of an irreducible symplectic manifold
X coincides with its group of pseudo-automorphisms and acts by isometries on H2

(X,Z).
3.3. Isometries of hyperbolic spaces. Proposition 3.3 establishes a parallel between the
dynamics of automorphisms of compact Kähler surfaces and that of bimeromorphic trans-
formations of irreducible symplectic manifolds: in both cases the map on the manifold
induces an isomorphism at the level of the integral cohomology group H2

(X,Z) preserv-
ing a non-degenerate quadratic form (the intersection form in the surface case and the
Beauville-Bogomolov form in the irreducible symplectic one). By Hodge’s index theo-
rem, the intersection form on the Picard group of a surface S has signature (1, ⇢(S) � 1),
which leads to a classification of automorphisms of surfaces as loxodromic, parabolic or
elliptic depending on their action on the hyperbolic lattice NSZ(S) (see [6]).
Analogously if X is an irreducible symplectic manifold, the restriction of the Beauville-
Bogomolov form to H1,1

(X,R) has signature (1, h1,1
(X) � 1). Since H1,1

(X,R) is
invariant by the action of a bimeromorphic transformation f : X 99K X , and since the two
lines C� and C�̄ are also invariant (the action of f⇤ being given by multiplication by a
complex number of modulus 1), we can also classify bimeromorphic transformations of
irreducible symplectic manifolds depending on their action on H2

(X,Z) as follows.

Definition 3.6. Let f : X 99K X a bimeromorphic transformation of an irreducible sym-
plectic manifold (respectively, an automorphism of a compact Kähler surface) and denote
by f⇤

1 the linear automorphism of H1,1
(X,R) induced by f . We say that f is
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• loxodromic if f⇤
1 admits an eigenvalue of modulus strictly greater than 1 (or,

equivalently, if �1(f) > 1);
• parabolic if all the eigenvalues of f⇤

1 have modulus 1 and ||(fn

)

⇤
1|| is not bounded

as n ! +1;
• elliptic if ||(fn

)

⇤
1|| is bounded as n ! +1.

In each of the cases above, simple linear algebra arguments allow to further describe the
situation.
Denote by C�0 ⇢ H1,1

(X,R) (respectively C0 ⇢ H1,1
(X,R)) the positive (resp. null)

cone for the Beauville-Bogomolov (repsectively, intersection) form q:

C�0 = {↵ 2 H1,1
(X,R)|q(↵) � 0},

C0 = {↵ 2 H1,1
(X,R)|q(↵) = 0}.

C0 is called the isotropic cone for the Beauville-Bogomolov form.
For a proof of the following result, see [27] (for irreducible symplectic manifolds) and

[6] (for surfaces).

Theorem 3.7. Let f : X 99K X a bimeromorphic transformation of an irreducible sym-
plectic manifold (respectively, an automorphism of a compact Kähler surface).

• If f is loxodromic, then f⇤
1 has exactly one eigenvalue with modulus > 1 and

exactly one eigenvalue with modulus < 1; these eigenvalues are real, simple and
they are the inverse of each another; their eigenspaces are contained in C0, they
are the only f⇤

1 -invariant lines in C�0 and they are not defined over Z.
• If f is parabolic, then all eigenvalues of f⇤

1 are roots of unity; the Jordan form
of f⇤ has exactly one non-trivial Jordan block, which is of dimension 3 (in other
words ||(fn

)

⇤
1|| has quadratic growth); for every ↵ 2 H1,1

(X,R), (fn

)

⇤
1↵/n

2

converges to a class contained in C0, which (for every ↵ outside a proper subspace
of H1,1

(X,R)) spans the only f⇤
1 -invariant line of C�0.

• If f is elliptic, then some iterate of f⇤
1 is equal to the identity.

3.4. The parabolic case. In the case of surfaces, an automorphism being of parabolic
type has a clear geometric interpretation (see [14], [15], or [9] for the birational case).

Theorem 3.8. Let S be a compact Kähler surface; an automorphism f : S ! S is of para-
bolic type if and only if there exists an f -invariant fibration ⇡ : S ! C onto a nonsingular
compact curve C.

We could expect the situation to be similar in the irreducible symplectic context; indeed,
Hu, Keum and Zhang have proved a partial analogue to Theorem 3.8, see [22]:

Theorem 3.9. Let X be a 2n-dimensional projective irreducible symplectic manifold of
type K3

[n] or of type generalized Kummer and let f 2 Bir(X) be a bimeromorphic trans-
formation which is not elliptic; f is parabolic if and only if it admits a rational Lagrangian
invariant fibration ⇡ : X 99K Pn such that the induced transformation on Pn is biregular,
i.e. there exists g 2 Aut(Pn

) such that ⇡ � f = g � ⇡.

The hard direction is to exhibit an invariant fibration for a parabolic transformation.
The Main Theorem generalizes the converse, proving that the dynamics of a loxodromic
transformation is too complicated to expect an invariant fibration.
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4. PROOF OF THE MAIN RESULTS

Throughout this section, f : X 99K X denotes a loxodromic bimeromorphic transfor-
mation of an irreducible symplectic manifold X , ⇡ : X 99K B a meromorphic invariant
fibration onto a Kähler manifold B such that 0 < dimB < dimX and g : B 99K B the
induced transformation of the base.

X

⇡

✏✏

f

// X

⇡

✏✏

B
g

// B
The results in this Section are largely inspired by [1].

4.1. Meromorphic fibrations on irreducible symplectic manifolds. We collect here
some useful facts about the fibration ⇡.

Remark 4.1. If B is Kähler, then it is projective. Indeed, if B wasn’t projective, by Ko-
daira’s projectivity criterion and Hodge decomposition

H2
(B,C) = H2,0

(B)�H1,1
(B)�H0,2

(B),

we would have H2,0
(B) 6= {0}, meaning that B carries a non-trivial holomorphic 2-form

�
B

. Since the indeterminacy locus of ⇡ has codimension at least 2, the pull-back ⇡⇤�
B

can
be extended to a global non-trivial 2-form on X which is not a multiple of �, contradicting
the hypothesis on X .

Here we use the same conventions as in [1]: let ⌘ : ˜X ! X be a resolution of the
indeterminacy locus of ⇡ (see [31]), and let ⌫ : ˜X ! B be the induced holomorphic
fibration, whose generic fibre is bimeromorphic to that of ⇡.

˜X

⌘

✏✏

⌫

��

X
⇡ // B

The pull-back ⇡⇤D of an effective divisor D 2 Div(B) is defined as

⇡⇤D = ⌘⇤⌫
⇤D,

where ⌘⇤ is the pushforward as cycles. The pull-back induces linear morphisms Pic(B) !
Pic(X) and NS(B) ! NS(X), and is compatible with the pull-back of smooth forms
defined in Section 2.

Now let H 2 Pic(B) be an ample class, and let L = ⇡⇤H . The pull-back of the
complete linear system |H| is a linear system U ⇢ |L|, whose associated meromorphic
fibration is exactly ⇡. In particular, L has no fixed component, and by Remark 3.4 we have
q
BB

(L) � 0.
Let NS(B) ⇢ H1,1

(B,R) denote the Neron-Severi group with real coefficients of B.
The following Lemma is essentially proven in [1].

Lemma 4.2. The restriction of the Beauville-Bogomolov form to the pull-back ⇡⇤NS(B)

is not identically zero if and only if the generic fibre of ⇡ is of general type. If this is the
case, then X is projective.

Proof. Remark first that, since the generic fibre of ⌫ is bimeromorphic to the generic fibre
of ⇡ and the Kodaira dimension is a bimeromorphic invariant, the generic fibre of ⇡ is of
general type if and only if the generic fibre of ⌫ is.
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As a second remark, by [26] if there exists a big line bundle on a compact Kähler manifold
X , then X is projective.

Suppose that the generic fibre of ⇡ is of general type. Let H be an ample divisor on B
and let L = ⇡⇤H . By [1][Theorem 2.3] we have (X,L) = dim(B) + (F ), where F is
the generic fibre of ⌫; we conclude that L is big (and in particular X is projective). We can
thus write L = A + E for an ample divisor A and an effective divisor E on X . Now, if q
denotes the Beauville-Bogomolov form, we have

q(L) = q(L,A) + q(L,E) � q(L,A) = q(A,A) + q(A,E) � q(A,A) > 0,

where the first and second inequalities are consequences of L and A being without fixed
components and the last one follows directly from Remark 3.4 . This proves the "if"
direction.

Now assume that the restriction of q
BB

to ⇡⇤NS(B) is not identically zero. Since
ample classes generate NSR(B), there exists an ample line bundle H 2 Pic(B) such
that, denoting L = ⇡⇤H , q(L) 6= 0; furthermore, L is without fixed components, so
that q(L) > 0 by Remark 3.4. It follows by[3][Theorem 4.3.i] that L is big (thus X
is projective), and so is ⌘⇤L since ⌘ is a birational morphism. Therefore, the restriction
⌘⇤L|

F

to a generic fibre of ⌫ is also big (see [24][Corollary 2.2.11]). Now we have

⌘⇤L = ⌫⇤H +

X
a
i

E
i

for some a
i

� 0,

where the sum runs over all the irreducible components of the exceptional divisor of ⌘.
The adjunction formula leads to

K
F

= K
X̃

|
F

+ detN⇤
F/X̃

= K
X̃

|
F

=

X
e
i

E
i

|
F

for some e
i

> 0,

since the conormal bundle N⇤
F/X̃

is trivial.
This implies that, for some m > 0, the divisor mK

F

� ⌘⇤L|
F

is effective because ⌫⇤H|
F

is trivial. Thus
(F ) � (F, ⌘⇤L|

F

) = dim(F ),

meaning that F is of general type. This proves the "only if" direction. ⇤
Corollary 4.3. If the generic fibre of ⌫ is not of general type, then ⇡⇤NS(B) ⇢ H1,1

(X,R)
is a line contained in the isotropic cone C0.

Proof. By Lemma 4.2, ⇡⇤NS(B) is contained in the isotropic cone. The pull-back L of an
ample line bundle on B is effective and non-trivial, so that its numerical class is also non-
trivial; thus ⇡⇤NS(B) cannot be trivial. To conclude it suffices to remark that ⇡⇤NS(B)

is a linear subspace of H1,1
(X,R), and the only non-trivial subspaces contained in the

isotropic cone are lines. ⇤
4.2. Density of orbits. The following theorem was proven in [1].

Theorem 4.4. Let X be a compact Kähler manifold and let f : X 99K X be a dominant
meromorphic endomorphism. Then there exists a dominant meromorphic map ⇡ : X 99K
B onto a compact Kähler manifold B such that

(1) ⇡ � f = ⇡;
(2) the general fibre X

b

of ⇡ is the Zariski closure of the orbit by f of a generic point
of X

b

.

Lemma 4.5. Let � : X 99K Y ,  : Y 99K Z be meromorphic maps between compact
complex manifolds. If � is an isomorphism in codimension 1, then for all D 2 Div(Z)

( � �)⇤D = �⇤ ⇤D.
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Proof. Let U ⇢ X , V ⇢ Y two open sets such that � induces an isomorphism U ⇠
=

V
and such that codim(X \ U) � 2, codim(Y \ V ) � 2. It is easy to see that, for every
effective divisor D

Y

2 Div(Y ), we have an equality �⇤D
Y

= �|⇤
U

(D
Y

\ V ); therefore
the equality is true for every divisor in Div(Y ).
Up to shrinking V to some other open subset whose complement has codimension at least
2, we can suppose that  is regular on V ; therefore the composition  � � is regular on U ,
and since the complement of U has codimension � 2 in X , for all D 2 Div(Z) we have

( � �)⇤D = ( � �)|⇤
U

D = �|⇤
U

( |⇤
V

D) = �|⇤
U

( ⇤D \ V ) = �⇤ ⇤D,

where the third equality follows again from the fact that the complement of V has codi-
mension at least 2 in Y . This proves the claim. ⇤

Let us prove point (3) of the Main Theorem.

Lemma 4.6. Let f : X 99K X be a bimeromorphic loxodromic transformation of an irre-
ducible symplectic manifold. Then the generic orbit of f is Zariski-dense.

Proof. If the claim were false, then by Theorem 4.4 we could construct a commutative
diagram

X

⇡

✏✏

f

// X

⇡

✏✏

B
id // B

where ⇡ is a meromorphic map whose general fibre X
b

coincides with the Zariski-closure
of the f -orbit of a generic point of X

b

. Remark 4.1 applies in the case where the fibres are
not connected; therefore the base B is projective.
Now, remark that f⇤ acts as the identity on the space ⇡⇤NS(B) ⇢ NS(X), which is
defined on Q: indeed, for v 2 NS(B), we have

f⇤⇡⇤v = (⇡ � f)⇤v = (id
B

� ⇡)⇤v = ⇡⇤v,

where the first equality follows from Lemma 4.5; by Theorem 3.7, the Beauville-Bogomolov
form is negative definite on ⇡⇤NS(B).
Now, let H 2 Pic(B) be an ample line bundle and let L = ⇡⇤H . We have seen in 4.1
(again the hypothesis on fibres being connected was irrelevant) that L is a numerically
non-trivial line bundle such that q

BB

(L) � 0, contradiction. This proves the claim.
⇤

4.3. The key lemma. The following key lemma, together with the Proposition in Section
1, implies the Main Theorem.

Lemma 4.7 (Key lemma). Let X be an irreducible symplectic manifold, f : X 99K X a
loxodromic bimeromorphic transformation and ⇡ : X 99K B a meromorphic f -invariant
fibration onto a compact Kähler manifold. Then X is projective and the generic fibre of ⇡
is of general type.

Proof. Let g : B 99K B be a bimeromorphic transformation such that g � ⇡ = ⇡ � f .
Let us define

V := Span {(h � ⇡)⇤NSR(B)|h : B 99K B birational transformation} ⇢ NSR(X).

The linear subspace V is clearly defined over Q. Since the pull-back by ⇡ of an ample
class is numerically non-trivial, we also have V 6= {0}.
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Furthermore, V is f⇤-invariant: if v = (h � ⇡)⇤w for some w 2 NS(B) and for some
birational transformation h : B 99K B, then

f⇤v = f⇤
(h � ⇡)⇤w = (h � ⇡ � f)⇤w = (h � g � ⇡)⇤w = (

˜h � ⇡)⇤w,

where ˜h = h � g : B 99K B is a birational transformation and the second equality follows
from Lemma 4.5.

Now suppose that the generic fibre of ⇡ is not of general type; we are first going to
show that V is contained in the isotropic cone C0 = {v 2 H1,1

(X,R)|q
BB

(v) = 0}. The
generic fibre of the meromorphic fibration h �⇡ is bimeromorphic to that of ⇡. By Lemma
4.2 we know that (h � ⇡)⇤NSR(B) is contained in the isotropic cone for all birational
transformations h : B 99K B. We just need to show that for all birational transformations
of B onto itself h

i

, h
j

and for all w
i

, w
j

2 NSR(B) we have

q
BB

((h
i

� ⇡)⇤w
i

, (h
j

� ⇡)⇤w
j

) = 0.

Let h = h
j

� h�1
i

, and let ⇢ : ˜B ! B be a resolution of the indeterminacy locus of h;
denote by ˜h : ˜B ! B the induced holomorphic transformation, and let ⇡̃ = ⇢�1 � h

i

�
⇡ : X 99K ˜B; ⇡̃ is a meromorphic fibration onto the birational model ˜B, whose generic
fibre is bimeromorphic to that of g. Finally, let ⌘ : ˜X ! X be a resolution of singularities
of ⇡̃ and let ⌫ : ˜X ! B be the induced holomorphic map.

˜X

⌘

✏✏

⌫

��
˜B

⇢

✏✏

h̃

��

X
hi�⇡ //

⇡̃

??

B
h // B

Now it is clear that ⌘ : ˜X ! X is a resolution of singularities of both h
i

� ⇡ and
h
j

� ⇡ = h � h
i

� ⇡. Therefore

(h
i

� ⇡)⇤w
i

= ⌘⇤⌫
⇤⇢⇤w

i

= ⇡̃⇤⇢⇤w
i

2 ⇡̃⇤NS( ˜B)

and

(h
j

� ⇡)⇤w
j

= ⌘⇤⌫
⇤
˜h⇤w

j

= ⇡̃⇤
˜h⇤w

j

2 ⇡̃⇤NS( ˜B).

Since the fibres of ⇡̃ are not of general type, it suffices to apply Lemma 4.2 to the fibration
⇡̃ : X 99K ˜B to conclude that q

BB

((h
i

� ⇡)⇤w
i

, (h
j

� ⇡)⇤w
j

) = 0. This proves that V is
contained in the isotropic cone.

Now the only non trivial vector subspaces of NSR(X) contained in the isotropic cone
are lines; by Theorem 3.7, V is then an f⇤-invariant line contained in the isotropic cone
and not defined over Q. But this contradicts the definition of V . We have thus proved that
the generic fibre of ⇡ is of general type.

In order to prove that X is projective it suffices to apply the last part of Lemma 4.2.
⇤

By [31, Corollary 14.3]) we know that the group of birational transformations of a
variety of general type is finite. Therefore, we expect the dynamics of f on the fibres to be
simple.
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4.4. Relative Iitaka fibration. Before giving the proof of the Main Theorem, we are
going to recall the basic results about the relative Iitaka fibration. We will follow the
approach of [30] with some elements from [31]. See also [19], [18].

Let X be a smooth projective variety, and suppose that some multiple of K
X

has some
non trivial section. Recall that, for m > 0 divisible enough, the rational map

�|mKX | : X 99K PH0
(X,mK

X

)

_

p 7! {s 2 PH0
(X,mK

X

)|s(p) = 0}
has connected fibres. Moreover the rational map �|mKX | eventually stabilize to a rational
fibration that we call canonical fibration of X .

Remark 4.8. If f : X 99K X is a bimeromorphic transformation of X , the pull-back of
forms induces a linear automorphism f⇤

: H0
(X,mK

X

) ! H0
(X,mK

X

). For example,
for m = 1 a section � 2 H0

(X,K
X

) is a holomorphic d-form (d = dimX); f is defined
on an open set U ⇢ X such that X \ U has codimension at least 2. Therefore by Hartogs
theorem the pull-back f |⇤

U

� can be extended to X . It is easy to see that the construction is
invertible and induces a linear automorphism of PH0

(X,mK
X

)

_ which commutes with
the Iitaka fibration:

X
f

//

�|mKX |
✏✏

X

�|mKX |
✏✏

PH0
(X,mK

X

)

_ f̃

// PH0
(X,mK

X

)

_

The above construction can be generalized to the relative setting: let ⇡ : X ! B be a
regular fibration onto a smooth projective variety B, and let K

X/B

= K
X

⌦ ⇡⇤K�1
B

be
the relative canonical bundle.
For some fixed positive integer m > 0 (divisible enough), let S = ⇡⇤(mK

X/B

)

_. S is
a coherent sheaf over B; therefore one can construct (generalizing the construction of the
projective bundle associated to a vector bundle, see [31] for details) the algebraic projective
fibre space

⌘ : Proj(S) ! B

associated to S , which is a projective scheme (a priori neither reduced nor irreducible) Y
over B. Its generic geometric fibre Y

b

over a generic point b 2 B is canonically isomorphic
to PH0

(X
b

,mK
Xb)

_. The Iitaka morphisms �
b

: X
b

99K PH0
(X

b

,mK
Xb)

_ induce a
rational map � : X 99K Y over B.
The relative canonical fibration of X with respect to ⇡ is

� : X 99K Y

x 2 X
b

7! ⇥{s 2 H0
(X

b

;mK
Xb)|s(x) = 0}⇤ 2 Y

b

.

It can be shown that, for m divisible enough:
• � stabilizes to a certain rational fibration;
• the image by � of the generic fibre X

b

= ⇡�1
(b) of ⇡ is contained inside the fibre

⌘�1
(b) of the natural projection ⌘ : Y ! B;

• the restriction of � to a generic fibre X
b

is birationally equivalent to the canonical
fibration of X

b

.

Remark 4.9. The construction in Remark 4.8 can also be generalized to the relative setting:
let f : X 99K X and g : B 99K B be birational transformations such that ⇡ � f = g � ⇡.
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For a generic b 2 B define
˜f |
Yb : PH0

(X
b

,mK
Xb)

_ 99K PH0
(X

g(b),mK
Xg(b)

)

_

[s⇤] 7! �
[s] 2 PH0

(X
g(b),mK

Xg(b)
)|s⇤(f⇤s) = 0

 
.

These are well defined linear automorphisms because, for a fibre X
b

of ⇡ not contained in
the indeterminacy locus of f , the restriction f : X

b

99K X
g(b) is a birational map, and thus

induces a linear isomorphism

f⇤
: H0

(X
g(b),mK

Xg(b)
) ! H0

(X
b

,mK
Xb).

Furthermore the ˜f
Xb can be glued to a birational transformation ˜f : Y 99K Y such that

⌘ � ˜f = g � ⌘.

Now suppose the generic fibre of ⇡ is of general type. Since the restriction of � to
a generic fibre of g is birational onto its image and the images of fibres are disjoint, �
itself must be birational onto its image; denote by Z the closure of the image of � and let
f
Z

= � � f � ��1
: Z 99K Z be the birational transformation induced by f .

By the above Remark, f
Z

is the restriction of the birational transformation ˜f : Y 99K Y .
In particular f

Z

induces an isomorphism between generic fibres of ⌘|
Z

.

X

⇡

✏✏

�

//

f

⌃⌃

Z

fZ

⌃⌃
� � //

~~

Y

f̃

⌃⌃

⌘

ww
Bg

&&

4.5. Proof of the Main Theorem.

Lemma 4.10. Let X,B be projective manifolds, f : X 99K X and g : B 99K B birational
transformations and ⇡ : X ! B a fibration such that ⇡ � f = g � ⇡.

X

⇡

✏✏

f

// X

⇡

✏✏

B
g

// B
Assume that the generic fibre of ⇡ is of general type and that the generic orbit of g is
Zariski-dense. Then all the fibres over a non-empty Zariski open subset of B are isomor-
phic.

Proof. Denote as before
� : X 99K Y

the relative Iitaka fibration. We are going to identify X with its birational model �(X).
Let F = ⇡�1

(b0) be the fibre of ⇡ over a point b0 whose orbit is Zariski-dense in B, and
let

I := Isom
B

(X,F ⇥B)

be the B-scheme of isomorphisms over B between X and F ⇥B; the fibre I
b

parametrizes
the isomorphisms X

b

⇠
=

F . We can realize I as an open subset of the Hilbert scheme
Hilb

B

(X ⇥
B

(B ⇥ F )) by identifying a morphism X
b

! F with its graph in X
b

⇥ F .
Therefore,

I =

a

P2Q[�]

IP ,
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where the fibre IP
b

is the (a priori non irreducible and non reduced) quasi-projective scheme
of (graphs of) isomorphisms X

b

⇠�! F having fixed Hilbert polynomial P (�); such poly-
nomials are calculated with respect to the restriction to the fibre X

b

⇥ F of a fixed line
bundle L on X ⇥

B

(B ⇥ F ) relatively very ample over B. We shall fix

L = H
Y

|
X

⇥
B

H
F

,

where H
Y

is a very ample line bundle on Y and H
F

is a very ample line bundle on F .
Now, the pull-back of forms by f induces a linear isomorphism

˜f
b

: PH0
(X

b

,mK
Xb)

_ ⇠�! PH0
(X

g(b),mK
Xg(b)

)

_

between fibres of ⌘ : Y ⇠�! B, which restricts to an isomorphism X
b

! X
g(b); under the

canonical identification of fibres of ⌘ with PN , H
Y

|
Yb

⇠
=

OPN (d) (meaning that the section
H

Y

|
Yb has degree d) for some d > 0 independent of the fibre. Under the identification, the

action of ˜f
b

is linear, so that ˜f⇤
b

(H
Y

|
Yg(b)

) also has degree d on PN . In particular we have

˜f⇤
b

(H
Y

|
Xg(b)

) = H
Y

|
Xb .

Now take any isomorphism X
b0

⇠�! F , which we can identify with its graph � ⇢ X
b0 ⇥F ;

the image of � by the isomorphism ˜f
b0 ⇥ id

F

: X
b0 ⇥F

⇠�! X
g(b0) ⇥F is the graph �

0 of
an isomorphism X

g(b0)
⇠�! F . Furthermore, since ( ˜f

b0 ⇥ id
F

)

⇤
(L|

Xg(b0)⇥F

) = L|
Xb0⇥F

,
�

0 has the same Hilbert polynomial as �. Iterating this reasoning we find that for some
P 2 Q[�] the image of the natural morphism  : IP ! B is Zariski-dense.
By Chevalley’s theorem ([21, Theorem 3.16]) we also know that  (IP ) is constructible;
since every constructible Zariski-dense subset of an irreducible scheme contains a dense
open set [21, Proof of Theorem 3.16], we have X

b

⇠
=

F for all b in an open dense subset
of B. This concludes the proof. ⇤

Proof of the Proposition in Section 1. By Lemma 4.10, all the fibres over a dense open
subset U ⇢ B are isomorphic, which shows (1). By [28, Proposition 2.6.10], there exists
an étale cover ✏ : U 0 ! U such that the induced fibration X 0

U

0 := X ⇥
U

U 0 is trivial:

X 0
U

0 ⇠= U 0 ⇥ F.

This shows (2).
Now suppose that the generic fibre F is of general type. This implies that the group

G := Aut(F ) is finite; therefore, for any x 2 F , we can define the subvariety

W x

:= U 0 ⇥G · x ⇢ X 0
U

0 .

We are going to show that the image of W x by the cover ✏
X

: X 0
U

0 ! X
U

is f -invariant.
Remark that the fibration ⇡

U

: X
U

! U is locally trivial in the euclidean topology.
Let {U

i

}
i2I

be a covering of U by euclidean open subsets such that the restriction of the
fibration to each X

Ui is trivial: there exist biholomorphisms X
Ui

⇠
=

U
i

⇥ F . Then the
subvarieties

V x

i

:= U
i

⇥G · x ⇢ X
Ui

patch together to algebraic subvarieties V x of X
U

which are exactly the images of the W x.
Now we will prove that the varieties V x are f -invariant. Let p 2 X

U

be a point where f
is defined and such that g is defined on ⇡(p), and let i 2 I be such that p 2 X

Ui ; up to
shrinking U

i

, we can suppose that g(U
i

) ⇢ U
j

. By an identification X
Ui

⇠
=

U
i

⇥F,X
Uj

⇠
=

U
j

⇥ F , we can write f(x, y) = (g(x), h(x, y)); here, for all x in on open dense subset
of U

i

, the continuous map b 7! h(x, •) 2 Bir(F ) is well defined. Since Bir(F ) is a finite
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(hence discrete) group, h doesn’t depend on x, which shows that all the varieties V x are
f -invariant.

Now remark that the varieties ✏
X

(U 0 ⇥ G · {x}) are the disjoint union of varieties of
type ✏

X

(U 0 ⇥ {y}); since the first are f -invariant, the latter must be f -periodic, which
concludes the proof.

⇤
Proof of the Main Theorem, point (1). Let X be an irreducible symplectic manifold, f : X 99K
X a birational loxodromic transformation, and suppose by contradiction that f is imprimi-
tive: there exist thus a meromorphic fibration ⇡ : X 99K B and a bimeromorphic transfor-
mation g : B 99K B such that ⇡ � f = g � ⇡.
By Lemma 4.7, X is projective and the generic fibre of ⇡ is of general type. However,
we also know by Lemma 4.6 that the generic orbit of f is Zariski-dense; therefore, by
the Proposition in Section 1, the generic fibre of ⇡ cannot be of general type, a contradic-
tion. ⇤

5. INVARIANT SUBVARIETIES

Let X be a compact complex manifold. If f : X ! X is an automorphism, we say that
a subvariety W ⇢ X is invariant if f(W ) = W , or, equivalently, if f�1

(W ) = W . We
say that W ⇢ X is periodic if it is invariant for some positive iterate fn of f .
Now let f : X 99K X be a pseudo-automorphism of X (i.e. a bimeromorphic transfor-
mation which is an isomorphism in codimension 1). We say that a hypersurface W ⇢ X
is invariant if the strict transform f⇤W of W is equal to W (as a set); since f and f�1

don’t contract any hypersurface, this is equivalent to f(W ) = W (here f(W ) denotes the
analytic closure of f |

U

(W \ U), where U ⇢ X is the maximal open set where f is well
defined). We say that a hypersurface is periodic if it is invariant for some positive iterate
of f .

The following Theorem is a special case of [5][Theorem B].

Theorem 5.1. Let f : X 99K X be a pseudo-automorphism of a compact complex mani-
fold X . If f admits at least dim(X)+b2(X)�1 invariant hypersurfaces, then it preserves
a non-constant meromorphic function.

Proof of the Main Theorem, point (2). Let f : X 99K X be a loxodromic bimeromorphic
transformation of an irreducible symplectic manifold X (which is a pseudo-automorphism
by 3.5).
Suppose that f admits more than dim(X) + b2(X)� 2 periodic hypersurfaces; then some
iterate of f satisfies the hypothesis of Theorem 5.1. Therefore fn preserves a non-constant
meromorphic function ⇡ : X ! P1, and, up to considering the Stein factorization of ⇡, we
can assume that ⇡ is an fn-invariant fibration onto a curve. This contradicts point (1) of
the Main Theorem. ⇤

The following example shows that we cannot hope to obtain an analogue of point (2) of
the Main Theorem for higher codimensional subvarieties.

Example 5.2. Let f : S ! S be a loxodromic automorphism of a K3 surface S, and let
X = Hilbn(S). Then X is an irreducible symplectic manifold and f induces a loxodromic
automorphism f

n

of X . By point (2) of the Main Theorem, f
n

admits only a finite number
of invariant hypersurfaces. However f admits infinitely many periodic points ([4],[6]); if
x is a periodic point in S, then (the image in X of) {x}p ⇥ Sn�p is a periodic subvariety
of codimension 2p.
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Thus we have showed the following Proposition.

Proposition 5.3. For all integers 0 < p  n, there exist a 2n-dimensional projective
irreducible symplectic manifold X and a loxodromic automorphism f : X ! X admitting
infinitely many periodic subvarieties of codimension 2p.

6. APPENDIX: AN ALTERNATIVE APPROACH TO THE MAIN THEOREM

In this section we describe a different approach to the proof of the Main Theorem which
doesn’t require the Proposition in Section 1. The result we obtain is actually slightly
weaker than the Main Theorem; however this approach allows to prove point (2) and (3),
as well as point (1) for automorphisms.

We have already seen in Proposition 3.7 that the first dynamical degree of a bimeromor-
phic transformation f : X 99K X is either 1 or an algebraic integer � whose conjugates
over Q are ��1 and some complex numbers of modulus 1 (so that � is a quadratic or a
Salem number). In the case of automorphisms, the following Proposition from Verbitsky
[32] allows to completely describe all the other dynamical degrees as well.

Proposition 6.1. Let X be an irreducible symplectic manifold of dimension 2n and let
SH2(X,C) ⇢ H⇤

(X,C) be the subalgebra generated by H2
(X,C). Then we have an

isomorphism
SH2

(X,C) = Sym

⇤ H2
(X,C)/h↵n+1|q

BB

(↵) = 0i
.

The following Corollary is due to Oguiso [27].

Corollary 6.2. Let f : X ! X be an automorphism of an irreducible symplectic manifold
of dimension 2n. Then for p = 0, 1, . . . , n

�
p

(f) = �2n�p

(f) = �1(f)
p.

Proof. By Proposition 6.1 the cup-product induces an injection

Sym

p H2
(X,C) ,! H2p

(X,C)
for p = 1, . . . , n.
Let v1 2 H2

(X,C) be an eigenvector for the eigenvalue � = �1(f). Then v
p

:= vp1 2
H2p

(X,C) is a non-zero class for p = 1, . . . , n and f⇤v
p

= (f⇤v1)
p

= �pv
p

. This implies
that �

p

(f) � �1(f)
p, and we must have equality by log-concavity (Proposition 2.8). This

proves the result for p = 0, 1, . . . , n.
Now by Remark 2.3 we have �2n�p

(f) = �
p

(f�1
). Applying what we have just proved

to f�1 we obtain

�2n�1(f) = �1(f
�1

) = �
n

(f�1
)

1/n
= �

n

(f�1
)

1/n
= �1(f)

and thus, for p = 0, . . . , n,

�2n�p

(f) = �
p

(f�1
) = �1(f

�1
)

p

= �1(f)
p,

which concludes the proof. ⇤

Lemma 6.3. Let X be a smooth projective variety, f : X 99K X a birational transforma-
tion of X , ⇡ : X 99K B a rational f -invariant fibration onto a smooth projective variety B.
If the generic fibre of ⇡ is of general type, then all the relative dynamical degrees �

p

(f |⇡)
are equal to 1 (for p = 0, . . . , dim(X)� dim(B)).
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Proof. Since the Kodaira dimension and the relative dynamical degrees are bimeromor-
phic invariants (Remark 2.5), up to considering a resolution of the indeterminacy locus of
⇡, we can suppose that ⇡ is regular.
Let � : X

⇡

✏✏

// Y := Proj(⇡⇤K
⌦m

X/Y

)

⌘

ww
B

be the Iitaka fibration. Since � is birational onto its image, denoting Z ⇢ Y the closure of
�(X), the claim is equivalent to �

p

(f
Z

|⌘
Z

) = 1, where ⌘
Z

denotes the restriction of ⌘ to
Z and f

Z

= � � f � ��1
: Z 99K Z.

The construction of Remark 4.9 provides a birational transformation ˜f : Y 99K Y extend-
ing f

Z

.

X

⇡

✏✏

�

//

f

⌃⌃

Z

fZ

⌃⌃
� � //

~~

Y

f̃

⌃⌃

⌘

ww
Bg

&&

Now we will prove that if �
p

(

˜f |⌘) = 1 then �
p

(f
Z

|⌘
Z

) = 1. Let H
Y

2 Pic(Y ) and
H

B

2 Pic(B) be ample classes; therefore H
Y

|
Z

is an ample class on Z. The map

H2n,2n
(Y,R) ! R

↵ 7!
Z

Y

↵ ^ c1(HY

)

dim(Y )�dim(X)
= ↵ ·Hdim(Y )�dim(X)

Y

is linear and strictly positive (except on 0) on the closed positive cone K2n ⇢ H2n,2n
(Y,R).

Since ↵ 7! ↵ · [Z] is linear too, we can define

M = max

↵2K2n\{0}

↵ · [Z]

↵ ·Hdim(Y )�dim(X)
Y

� 0.

Now

�
p

(f
Z

|⌘
Z

) = lim

n!+1

⇣
(

˜fn

)

⇤Hp

Y

· ⌘⇤Hdim(B)
B

·H2n�p�dim(B)
Y

· [Z]

⌘ 1
n 

lim

n!+1

⇣
M(

˜fn

)

⇤Hp

Y

· ⌘⇤Hdim(B)
B

·Hdim(Y )�p�dim(B)
Y

⌘ 1
n
=

lim

n!+1

⇣
(

˜fn

)

⇤Hp

Y

· ⌘⇤Hdim(B)
B

·Hdim(Y )�p�dim(B)
Y

⌘ 1
n
= �

p

(

˜f |⌘) = 1,

and since all relative dynamical degrees are � 1 (Proposition 2.8) we have �
p

(f
Z

|⌘
Z

) = 1.
Now all is left to prove is that �

p

(

˜f |⌘) = 1. There exists k > 0 such that ⌘⇤Hdim(B)
B

⌘
num

k[F ], where [F ] is the numerical class of a fibre F of ⌘. We have

�
p

(

˜f |⌘) = lim

n!+1

⇣
(

˜fn

)

⇤Hp

Y

· ⌘⇤Hdim(B)
B

·Hdim(Y )�p�dim(B)
Y

⌘ 1
n
=

lim

n!+1

⇣
(

˜fn

)

⇤Hp

Y

· k[F ] ·Hdim(Y )�p�dim(B)
Y

⌘ 1
n
=

lim

n!+1

⇣⇣
(

˜fn

)

⇤H
Y

⌘
|p
F

·H
Y

|dim(Y )�p�dim(B)
F

⌘ 1
n
.
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For each fibre we have a canonical identification F ⇠
=

PN , and by this identification
H

Y

|
F

⇠
=

OPN (d), meaning that the hyperplane section H
Y

|
F

is defined by an equation of
degree d. Under the identification, the action of ˜f from one fibre to another is linear, so
that

⇣
(

˜fn

)

⇤H
Y

⌘
|
F

is also defined by an equation of degree d on PN . This means that

�
p

(

˜f |⌘) = lim

n!+1
(ddim(F )

)

1
n
= 1

as we wanted to show. This concludes the proof.
⇤

The following Proposition is a weaker version of point (1) of the Main Theorem.

Proposition 6.4. Let f : X 99K X be a loxodromic transformation of an irreducible sym-
plectic manifold X of dimension 2n, and let

1 = �0(f) < · · · < �
p0(f) = · · · = �

p0+k

(f) > · · · > �2n(f) = 1

be its dynamical degrees.
If ⇡ : B 99K B is an f -invariant meromorphic fibration, then dim(B) � 2n � k. In
particular, if f is an automorphism (or, more generally, if all the consecutive dynamical
degrees of f are distinct), then it is primitive.

Proof. Let g : B 99K B be a birational transformation such that g � ⇡ = ⇡ � f .

X

⇡

✏✏

f

// X

⇡

✏✏

B
g

// B
We know by Lemma 4.7 that the generic fibre of ⇡ is of general type; by Lemma 6.3 this
implies that all the relative dynamical degrees �

p

(f |⇡) are equal to 1. By Theorem 2.7 we
then have

�
p

(f) = max

p�dim(F )qp

�
q

(g),

where dim(F ) = dim(X)� dim(B) is the dimension of a generic fibre.
Let q 2 {0, 1, . . . , dim(B)} be such that �

q

(g) is maximal. Then

�
q

(f) = �
q+1(f) = · · · = �

q+dim(F )(f) = �
q

(g),

meaning that k � dim(F ) = 2n� dim(B). This concludes the proof.
⇤

Remark 6.5. Since in the Theorem we have k  2n� 1, the base of an invariant fibration
cannot be a curve. Therefore Proposition 6.4 implies point (2) of the Main Theorem.
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