Neal Koblitz

p-adic Numbers,
p-adic Analysis,
and Zeta-Functions

Second Edition

Springer-Verlag
New York Berlin Heideberg Tokyo



Graduate Texts in Mathematics 58

Editorial Board
F. W. Gehring P. R. Halmos (Managing Editor)
C. C. Moore



Artist’s conception of the 3-adic unit disk.

Drawing by A.T. Fomenko of Moscow State
University, Moscow, U.S.S.R.



Neal Koblitz

p-adic Numbers,
p-adic Analysis, and
Zeta- Functions

Second Edition

r

Springer-Verlag
New York Berlin Heidelberg Tokyo




Neal Koblitz

Department of Méthematics GN-50

University of WasHington
Seattle, WA 98195
USA

Editorial Board

P. R. Halmos
Managing Editor
Department of Mathematics
Indiana University
Bloomington, Indiana 47405
Usa

F. W. Gehring
Department of Mathematics
University of Michigan

Ann Arbor, Michigan 48109
USA

C. C. Moore

Department of Mathematics
University of California

at Berkeley
Berkeley, California 94720
USA

AMS Subject Classifications: 10-01, 12-01, 12B30

Library of Congress Cataloging in Publication Data
Koblitz, Neal, 1948-
P-adic numbers, p-adic analysis and zeta-functions.
(Graduate texts in mathematics; 58)
Bibliography: p.
Includes index.
1. p-adic numbers. 2. p-adic analysis. 3. Functions,
Zeta. 1. Title. II Series.
QA241.K674 1984 51274 84-5503

All rights reserved. No part of this book may be translated or reproduced in any form without
written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, USA.

© 1977, 1984 by Springer-Verlag New York, Inc.

Printed in the United States of America.
Typeset by Composition House Ltd., Salisbury, England.
Printed and bound by R. R. Donnelley & Sons, Harrisonburg, Virginia.

987654321

ISBN 0-387-96017-1 Springer-Verlag New York Berlin Heidelberg Tokyo
ISBN 3-540-96017-1 Springer-Verlag Berlin Heidelberg New York Tokyo



To Professor Mark Kac






Preface to the second edition

The most important revisions in this edition are: (1) enlargement of the
treatment of p-adic functions in Chapter I'V to include the Iwasawa logarithm
and the p-adic gamma-function, (2) rearrangement and addition of some
exercises, (3) inclusion of an extensive appendix of answers and hints to the
exercises, the absence of which from the first edition was apparently a source
of considerable frustration for many readers, and (4) numerous corrections
and clarifications, most of which were proposed by readers who took the
trouble to write me. Some clarifications in Chapters IV and V were also
suggested by V. V. Shokurov, the translator of the Russian edition. I am
grateful to all of these readers for their assistance. I would especially like to
thank Richard Bauer, who provided me with a systematic list of misprints
and unclarities.

I would also like to express my gratitude to the staff of Springer-Verlag
for both the high quality of their production and the cooperative spirit with

which they have worked with me on this book and on other projects over the
past several years.

Seattle, Washington N. I K.

vii






Preface to the first edition

These lecture notes are intended as an introduction to p-adic analysis on the
elementary level. For this reason they presuppose as little background as possi-
ble. Besides about three semesters of calculus, I presume some slight exposure to
more abstract mathematics, to the extent that the student won’t have an adverse
reaction to matrices with entries in a field other than the real numbers, field
extensions of the rational numbers, or the notion of a continuous map of topolog-
ical spaces.

The purpose of this book is twofold: to develop some basic ideas of p-adic
analysis, and to present two striking applications which, it is hoped, can be as
effective pedagogically as they were historically in stimulating interest in the
field. The first of these applications is presented in Chapter II, since it only
requires the most elementary properties of Q,,; this is Mazur’s construction by
means of p-adic integration of the Kubota— Leopoldt p-adic zeta-function, which
‘*p-adically interpolates’’ the values of the Riemann zeta-function at the negative
odd integers. My treatment is based on Mazur’s Bourbaki notes (unpublished).
The book then returns to the foundations of the subject, proving extension of the
p-adic absolute value to algebraic extensions of @, constructing the p-adic
analogue of the complex numbers, and developing the theory of p-adic power
series. The treatment highlights analogies and contrasts with the familiar con-
cepts and examples from calculus. The second main application, in Chapter V, is
Dwork's proof of the rationality of the zeta-function of a system of equations
over a finite field, one of the parts of the celebrated Weil Conjectures. Here the
presentation follows Serre’s exposition in Séminaire Bourbaki.

These notes have no pretension to being a thorough introduction to p-adic
analysis. Such topics as the Hasse— Minkowski Theorem (which is in Chapter 1
of Borevich and Shafarevich’s Number Theory) and Tate’s thesis (which is also
available in textbook form, see Lang’s Algebraic Number Theory) are omitted.

X



Preface

Moreover, there is no attempt to present results in their most general form. For
example, p-adic L-functions corresponding to Dirichlet characters are only dis-
cussed parenthetically in Chapter II. The aim is to present a selection of material
that can be digested by undergraduates or beginning graduate students in a
one-term course.

The exercises are for the most part not hard, and are important in order to
convert a passive understanding to a real grasp of the material. The abundance of
exercises will enable many students to study the subject on their own, with
minimal guidance, testing themselves and solidifying their understanding by
working the problems.

p-adic analysis can be of interest to students for several reasons. First of all, in
many areas of mathematical research—such as number theory and representation
theory—p -adic techniques occupy an important place. More naively, for a stu-
dent who has just learned calculus, the *‘brave new world”’ of non- Archimedean
analysis provides an amusing perspective on the world of classical analysis.
p-adic analysis, with a foot in classical analysis and a foot in algebra and number
theory, provides a valuable point of view for a student interested in any of those
areas.

I would like to thank Professors Mark Kac and Yu. I. Manin for their help
and encouragement over the years, and for providing, through their teaching and
writing, models of pedagogical insight which their students can try to emulate.

Logical dependence of chapters

Cambridge, Massachusetts N. L K.



Contents

Chapter 1
p-adic numbers

1.

Basic concepts

2. Metrics on the rational numbers
Exercises
3. Review of building up the complex numbers
4. The field of p-adic numbers
5. Arithmetic in Q,
Exercises
Chapter 11

p-adic interpolation of the Riemann zeta-function

1.
2.

3.

A formula for {(2k)

p-adic interpolation of the function f(s) = a*
Exercises

p-adic distributions

Exercises

Bernoulli distributions

Measures and integration

Exercises

The p-adic {-function as a Mellin-Mazur transform
A brief survey (no proofs)

Exercises

Chapter Iil
Building up 2

1.

Finite fields
Exercises

21

22
26
28
30
33
34
36
41
42
47
51

52

52
57

Xi



Contents

2. Extension of norms
Exercises
3. The algebraic closure of Q,
4. Q
Exercises
Chapter IV

p-adic power series

1.

Elementary functions
Exercises

2. The logarithm, gamma and Artin~Hasse exponential functions
Exercises

3. Newton polygons for polynomials

4. Newton polygons for power series
Exercises

Chapter V

Rationality of the zeta-function of a set of equations
over a finite field

Hypersurfaces and their zeta-functions
Exercises

2. Characters and their lifting

3. A linear map on the vector space of power series

4. p-adic analytic expression for the zeta-function
Exercises

5. The end of the proof

Bibliography

Answers and Hints for the Exercises

Index

xi1

57
65
66
71
73

76

76
83
87
95
97
98
107

109

109
114
116
118
122
124
125

129

133
147



CHAPTER 1

p-adic numbers

1. Basic concepts

If X is a nonempty set, a distance, or metric, on X is a function d from pairs
of elements (x, y) of X to the nonnegative real numbers such that

(1) d(x, y) = 0if and only if x = y.
(2) d(x’ )’) = d(}’, x)-
(3) d(x,y) < d(x,z) + d(z, y) for all ze X.

A set X together with a metric d is called a metric space. The same set X can
give rise to many different metric spaces (X, d), as we’ll soon see.

The sets X we’ll be dealing with will mostly be fields. Recall that a field F
is a set together with two operations + and - such that F is a commutative
group under +, F — {0} is a commutative group under -, and the distributive
law holds. The examples of a field to have in mind at this point are the field
Q of rational numbers and the field R of real numbers.

The metrics d we’ll be dealing with will come from norms on the field F,
which means a map denoted | | from F to the nonnegative real numbers
such that

(D) |lx] = 0if and only if x = 0.
Q@ |x-yl = fx]-|»].
G lx+y| < x|+l

When we say that a metric 4 “comes from” (or “is induced by”’) a norm
| II, we mean that d is defined by: d(x, y) = |x — y|. It is an easy exercise
to check that such a d satisfies the definition of a metric whenever | | is a
norm.

A basic example of a norm on the rational number field Q is the absolute
value |x|. The induced metric d(x, y) =|x — y| is the usual concept of
distance on the number line.



1 p-adic numbers

My reason for starting with the abstract definition of distance is that the
point of departure for our whole subject of study will be a new type of
distance, which will satisfy Properties (1)~(3) in the definition of a metric
but will differ fundamentally from the familiar intuitive notions. My reason
for recalling the abstract definition of a field is that we’ll soon need to be
working not only with @ but with various ‘“extension fields** which contain Q.

2. Metrics on the rational numbers

We know one metric on @Q, that induced by the ordinary absolute value. Are
there any others ? The following is basic to everything that follows.

Definition. Let pe{2,3,5,7, 11,13, ...} be any prime number. For any
nonzero integer g, let ord, a be the highest power of p which divides a, i.e.,
the greatest m such that ¢ = 0 (mod p™). (The notation a = b (mod ¢)
means: ¢ divides a — b.) For example,

ord; 35 = 1, ords 250 = 3, ord, 96 = 5, ord, 97 = 0.

(If a = 0, we agree to write ord, 0 = .) Note that ord, behaves a little
like a logarithm would: ord,(a,a,) = ord, a; + ord, a,.

Now for any rational number x = a/b, define ord, x to be ord, a —
ord, b. Note that this expression depends only on x, and not on a and b,
i.e., if we write x = ac/bc, we get the same value for ord, x = ord, ac —
ord, bc.

Further define a map | |, on Q as follows:

if x # 0;

_1
IXI,, — pord,x’
0, if x =0.
Propesition. | |, is @ norm on Q.

PRrOOF. Properties (1) and (2) are easy to check as an exercise. We now verify
3).

Ifx=0o0ry=0,orif x + y = 0, Property (3) is trivial, so assume x, y,
and x + y are all nonzero. Let x = a/b and y = c¢/d be written in lowest
terms. Then we have: x + y = (ad + bc)/bd, and ordy,(x + y) =
ordy(ad + bc) — ord, b — ord, d. Now the highest power of p dividing the
sum of two numbers is at least the minimum of the highest power dividing
the first and the highest power dividing the second. Hence

ord,(x + y) = min(ord, ad, ord, bc) — ord, b — ord, d

min(ord, a + ord, d, ord, b + ord, ¢) — ord, b — ord, d
= min(ord, a — ord, b, ord, ¢ —~ ord, d)

= min(ord, x, ord, y).

Therefore, |x + y|, = p~°M%**+¥ < max(p~°%*, p~°'%Y) = max(|x|,, |y|,),
and this is < |x|, + || a

2



2 Metrics on the rational numbers

We actually proved a stronger inequality than Property (3), and it is this
stronger inequality which leads to the basic definition of p-adic analysis.

Definition. A norm is called non-Archimedean if |x + y|| < max(||x|, |»[)
always holds. A metric is called non-Archimedean if d(x,y) <
max(d(x, z), d(z, y)); in particular, a metric is non-Archimedean if it is
induced by a non-Archimedean norm, since in that case d(x,y) =
Ix =yl = I(x = 2) + (z = )| < max(|x - z|, |z — yl) = max(d(x, 2),
d(z, y)).

Thus, | |, is a non-Archimedean norm on Q.

A norm (or metric) which is not non-Archimedean is called Archimedean.
The ordinary absolute value is an Archimedean norm on Q.

In any metric space X we have the notion of a Cauchy sequence
{ay, a5, a,, ...} of elements of X. This means that for any « there exists an
N such that d(a,, a,) < ¢ whenever bothm > Nandn > N.

We say two metrics d; and d, on a set X are equivalent if a sequence is
Cauchy with respect to d, if and only if it is Cauchy with respect to d,. We
say two norms are equivalent if they induce equivalent metrics.

In the definition of | |, instead of (1/p)°r%* we could have written p°r%*
with any p € (0, 1) in place of 1/p. We would have obtained an equivalent
non-Archimedean norm (see Exercises 5 and 6). The reason why p = 1/p is
usually the most convenient choice is related to the formula in Exercise 18
below.

We also have a family of Archimedean norms which are equivalent to
the usual absolute value | |, namely | |* when 0 < « < 1 (see Exercise 8).

We sometimes let | |, denote the usual absolute value. This is only a
notational convention, and is not meant to imply any direct relationship
between | | and | |;.

By the “trivial” norm we mean the norm | | such that |0} = 0 and
x| = 1for x # 0.

Theorem 1 (Ostrowski). Every nontrivial norm || | on Q is equivalent to | |,
Sfor some prime p or for p = co.

PROOF. Case (i). Suppose there exists a positive integer n such that ||n] > 1.
Let n, be the least such n. Since |no]] > 1, there exists a positive real number
o such that ||n,|| = no*. Now write any positive integer n to the base n,, i.e.,
in the form

n=ay+ ayng + amng® + - + amn,®, where0 < g, < ny and q, # 0.
Then

7] < llao]l + llawnoll + llazno®| + - - - + llamno’|
= |laof + llar]-ne* + |aaf|-no® + -+ + Jla,|-mo*.



I p-adic numbers

Since all of the g, are <n,, by our choice of n, we have |la,| < 1, and hence
"n" <1+ no“ + n02“ + . 4 nosa
= nos“(l + ny™% + no‘z" + .- 4 n(—)—sa)

e [}f (tmoy

because n > n,°. The expression in brackets is a finite constant, which we
call C. Thus,

IA

o]l < Cn* forallm=1,2,3,....

Now take any n and any large N, and put n¥ in place of n in the above
inequality; then take Nth roots. You get

In] < VCne

Letting N — oo for n fixed gives [n] < n®.

We can get the inequality the other way as follows. If # is written to the
base n, as before, we have ny** > n > n®. Since |n§*!| = |n + n§** — n| <
In| + [|n3** — nlj, we have

Inll = |ms*2]| — |n5*? = n]
> ngs-#l)a _ (n%+1 - n)a’
since [[my*t] = ||no)l***, and we can use the first inequality (i.e., |n| < n%)

on the term that is being subtracted. Thus,

il

n$+YE — 3t — n)*  (since n = ng%)

1\«
— pis+a -_— ——
s [1 (1 ’lo) ]

>C'n*

I\

for some constant C’ which may depend on 7, and « but not on n. As before,
we now use this inequality for n¥, take Nth roots, and let N — oo, finally
getting: ||n| > n°.

Thus, |n| = n°. It easily follows from Property (2) of norms that |x| =
|x|* for all x € Q. In view of Exercise 8 below, which says that such a normis
equivalent to the absolute value | |, this concludes the proof of the theorem
in Case (i).

Case (ii). Suppose that |[n| < 1 for all positive integers n. Let n, be the
least n such that ||n] < 1; n, exists because we have assumed that | | is
nontrivial,

n, must be a prime, because if n, = n;-n, with n, and n, both <n,, then
|| = |nz| = 1,andso ||ne]| = |n| - |ns] = 1. Solet p denote the prime n,.

We claim that ||g| = 1 if ¢ is a prime not equal to p. Suppose not; then
llgl < 1, and for some large N we have ||¢"| = |q]|¥ < }. Also, for some
large M we have ||p¥|| < 4. Since p¥ and ¢ are relatively prime—have no

4



2 Maetrics on the rational numbers

common divisor other than 1—we can find (see Ecercise 10) integers n and m
such that: mp™ 4+ ng" = 1. But then

1= |1 = |mp* + ng"| < |mp™| + |ng"| = |m] |p*] + In| lg"|,

by Properties (2) and (3) in the definition of a norm. But |m|, ||n| < I, so
that

L<fp¥] +lg"| <2 +3=1,

a contradiction. Hence |g| = 1.

We're now virtually done, since any positive integer a can be factored into
prime divisors: a = p,"p,°2---p. Then |a| = |py[°-|pafs-- - | ool
But the only | p;|| which is not equal to 1 will be | p| if one of the p’s is p. Its

corresponding b; will be ord, a. Hence, if we let p = |p| < 1, we have
laf = pose.

It is easy to see using Property (2) of a norm that the same formula holds with
any nonzero rational number x in place of a. In view of Exercise 5 below,
which says that such a norm is equivalent to | |,, this concludes the proof
of Ostrowski’s theorem. O

Our intuition about distance is based, of course, on the Archimedean
metric | |,. Some properties of the non-Archimedean metrics | |, seem very
strange at first, and take a while to get used to. Here are two examples.

For any metric, Property (3): d(x, y) < d(x, z) + d(z, y) is known as
the “triangle inequality,” because in the case of the field C of complex
numbers (with metric d(a + bi, ¢ + di) =V/(a — ¢)? + (b — d)?) it says
that in the complex plane the sum of two sides of a triangle is greater than
the third side. (See the diagram.)

d(x, z)
d@, y)

d(x, y) y

Let’s see what happens with a non-Archimedean norm on a field F. For
simplicity suppose z = 0. Then the non-Archimedean triangle inequality says:
lx — y|| < max(|x|, |»]). Suppose first that the “‘sides” x and y have
different “length,” say |x| < |»|. The third side x — y has length

I =y < ]
But

Iyl = 1x = G = ») < max(|x], |x - y]).

Since | y] is not < | x|, we must have || y| < |x — y|,andso |y = [x — y|.

5



I p-adic numbers

Thus, if our two sides x and y are not equal in length, the longer of the two
must have the same length as the third side. Every “triangle” is isosceles!

This really shouldn’t be too surprising if we think what this says in the
case of | |, on Q. It says that, if two rational numbers are divisible by
different powers of p, then their difference is divisible precisely by the lower
power of p (which is what it means to be the same ‘“‘size” as the bigger of
the two).

This basic property of a non-Archimedean field—that |x + y|| <
max(| x|, || ¥]), with equality holding if x| # | y|—will be referred to as
the ““isosceles triangle principle”” from now on.

As a second example, we define the (open) disc of radius r (r is a positive
real number) with center a (a is an element in the field F) to be

Diag,r") ={xeF||x —a| <r}

Suppose || || is a non-Archimedean norm. Let b be any element in D(a, r~).
Then

D(a, r~) = D(b, r"),
i.e., every point in the disc is a center! Why is this? Well

xeD(a, r) = |x — aj

A

r
l(x — a) + (a = b)]
max(|x — al, |a — b])
<r
= xe D(b, r),
and the reverse implication is proved in the exact same way.
If we define the closed disc of radius r with center a to be

D@, r)y={xeF||x—al| <r},

= |x — &

A

for non-Archimedean | | we similarly find that every point in D(a, r) is a
center.

EXERCISES

1. For any norm | | on a field F, prove that addition, multiplication, and

finding the additive and multiplicative inverses are continuous. This means
that: (1) for any x,ye F and any & > 0, there exists 6 > 0 such that
|x — x|f <& and [y’ — y| < & imply [(x* + ») — (x + ¥)| < & (2) the
same statement with |(x" + ) — (x + »)| replaced by |x’y" — xy|; (3) for
any nonzero x € Fand any ¢ > 0, there exists 8 > 0 such that [x’ — x| < &
implies |(1/x) — (1/x)| < &; (4) for any x € F and any ¢ > 0, there exists
8 > O such that |[x" — x| < & implies [(—x) — (—x)|| < e.

2. Prove that if | | is any norm on a field F, then | —1] = |1 = 1. Prove that
if | | is non-Archimedean, then for any integer n: ||r| < 1. (Here “n”
means the result of adding 1 + 1 + 1 + --- + 1 together n times in the
field F.)



10.

11.

12.
13.
14,

15.

Exercises

. Prove that, conversely, if | [ is 2 norm such that ||r| < 1 for every integer n,

then | | is non-Archimedean.

. Prove that a norm | | on a field F is non-Archimedean if and only if

{xeFllx| < 1} n{xeFllx — 1] < 1} = &.

. Let| |, and | {2 be two norms on a field F. Prove that | [, ~ { [z if and

only if there exists a positive real number « such that: ||x|l; = |x[,* for
all xe F.

. Prove that, if 0 < p < 1, then the function on x € Q defined as p°*%* if

x # 0and 0if x = 0, is a non-Archimedean norm. Note that by the previous
problem it is equivalentto | |,. What happensif p = 1? What aboutifp > 1?

. Prove that | |,, is not equivalent to | |,, if p; and p, are different primes.

. For x € Q define ||x]| = |x|* for a fixed positive number «, where | | is the

usual absolute value. Show that | || is a norm if and only if @ < 1, and that
in that case it is equivalent to the norm | |.

. Prove that two equivalent norms on a field F are either both non-Archimedean

or both Archimedean.

Prove that, if N and M are relatively prime integers, then there exist integers
n and m such that nN + mM = 1.

Evaluate:
(i) ord; 54 (ii) ord; 128 (iii) ords 57
(iv) ord,(—700/197) (v) ord,(128/7) (vi) ords(7/9)
(vii) ords(—0.0625) (viii) ords(10°) (ix) ords(—13.23)
(x) ord,(~13.23) (xi) ords(—13.23) (xii) ord;;(—13.23)

(xiii) ord,a(—26/169) (xiv) ord;es(—1/309) (xv) ords(9))
Prove that ord (™) =1+ p + p? + +-- + p¥-1.
If0 < a < p -1, prove that: ordg((ap")!) =a(l + p + p2 + -+ + p¥ ).

Prove that, if n = ao + a1p + azp® + --- + a,p* is written to the base p,
sothat 0 < a; < p — 1, and if we set S, = 3 a; (the sum of the digits to the
base p), then we have the formula:

ord,(n!) = z : 5;"-

Evaluate |a — b),, i.e., the p-adic distance between a and b, when:
Da=1,b=26p=S5 (ii)a=1,b=26,p=c
(ii)a=1,b=26,p=3 (ivva=1/9b=-1/16,p=5
Ma=1,b=24,p=3 (via=1,b=1/244,p =13
(vi)a=1,b=1/243,p =3 (viii) a=1,b=183,p = 13
(ix)a=1,b=183,p =7 X)a=1,b=183,p=2
xi)a=1,b=183,p = i) a=9,b=0,p=3

(xiii) @ = O)/3%,b=0,p=3  (xiv)a=2%2"b=0,p=2
(xv) a = 22/, b = 0,p = 2.
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16. Say in words what it means for a rational number x to satisfy x|, < 1.

17. For x € @, prove that lim,., ,|x!/i!|, = O if and only if: ord, x > 1 when
p# 2 ordax = 2whenp =2,

18. Let x be a nonzero rational number. Prove that the product over all primes
including © of |x|, equals 1. (Notice that this ‘‘infinite product” actually
only includes a finite number of terms that are not equal to 1.) Symbolically,

ITs x|, = L.

19. Prove that for any p (# o), any sequence of integers has a subsequence which
is Cauchy with respect to | |,.

20. Prove that if x e Q and |x|, < 1 for every prime p, then x € Z.

3. Review of building up the complex
numbers

We now have a new concept of distance between two rational numbers: two
rational numbers are considered to be close if their difference is divisible by
a large power of a fixed prime p. In order to work with this so-called * p-adic
metric” we must enlarge the rational number field Q in a way analogous
to how the real numbers R and then the complex numbers C were constructed
in the classical Archimedean metric | |. So let’s review how this was done.

Let’s go back even farther, logically and historically, than Q. Let’s go back
to the natural numbers N = {1, 2, 3, .. .}. Every step in going from N to C
can be analyzed in terms of a desire to do two things:

(1) Solve polynomial equations.

(2) Find limits of Cauchy sequences, i.e., ““complete” the number system to
one ‘“without holes,” in which every Cauchy sequence has a limit in
the new number system.

First of all, the integers Z (including 0, —1, —2, ...) can be introduced as
solutions of equations of the form

a+x=24, a,beN.

Next, rational numbers can be introduced as solutions of equations of the
form
ax = b, a, bel.

So far we haven’t used any concept of distance.

One of the possible ways to give a careful definition of the real numbers is
to consider the set S of Cauchy sequences of rational numbers. Call two
Cauchy sequences s; = {g,} € Sand s, = {b;} € S equivalent, and write s; ~ s,
if |a, — b;| — 0 as j — co. This is obviously an equivalence relation, that is,
we have: (1) any s is equivalent to itself; (2) if s, ~ s,, then s, ~ 5,; and
(3) if s; ~ 55 and s, ~ 55, then 5; ~ 5;. We then define R to be the set of
equivalence classes of Cauchy sequences of rational numbers. It is not hard



3 Review of building up the complex numbers

to define addition, multiplication, and finding additive and multiplicative
inverses of equivalence classes of Cauchy sequences, and to show that R is a
field. Even though this definition seems rather abstract and cumbersome at
first glance, it turns out that it gives no more nor less than the old-fashioned
real number line, which is so easy to visualize.

Something similar will happen when we work with | |, instead of | |:
starting with an abstract definition of the p-adic completion of @, we’ll get a
very down-to-earth number system, which we’ll call Q,.

Getting back to our historical survey, we've gotten as far as R. Next,
returning to the first method—solving equations—mathematicians decided
that it would be a good idea to have numbers that could solve equations like
x2 + 1 = 0. (This is taking things in logical order; historically speaking,
the definition of the complex numbers came before the rigorous definition
of the real numbers in terms of Cauchy sequences.) Then an amazing thing

happened! As soon as i = v/ —1 was introduced and the field of complex
numbers of the form a + bi, a, b € R, was defined, it turned out that:

(1) All polynomial equations with coefficients in C have solutions in C—this
is the famous Fundamental Theorem of Algebra (the concise terminology
is to say that C is algebraically closed); and

(2) Cis already *complete” with respect to the (unique) norm which extends
the norm | | on R (this norm is given by |a + bi| = Va® + b?), i.e., any
Cauchy sequence {a, + b,i} has a limit of the form a + bi (since {a;} and
{b;} will each be Cauchy sequences in R, you just let @ and b be their
limits).

So the process stops with C, which is only a “quadratic extension” of R
(i.e., obtained by adjoining a solution of the quadratic equation x2 + 1 = 0).
C is an algebraically closed field which is complete with respect to the Archime-
dean metric.

But alas! Such is not to be the case with | |,. After getting Q,, the comple-
tion of Q with respect to | |,, we must then form an infinite sequence of
field extensions obtained by adjoining solutions to higher degree (not just
quadratic) equations. Even worse, the resulting algebraically closed field,
which we denote Q,, is not complete. So we take this already gigantic field
and “fill in the holes” to get a still larger field Q.

What happens then? Do we now have to enlarge Q to be able to solve
polynomial equations with coefficients in Q? Does this process continue on
and on, in a frightening spiral of ever more far-fetched abstractions? Well,
fortunately, with Q the guardian angel of p-adic analysis intervenes, and it
turns out that Q is already algebraically closed, as well as complete, and our
search for the non-Archimedean analogue of C is ended.

But this Q, which will be the convenient number system in which to study
the p-adic analogy of calculus and analysis, is much less thoroughly
understood than C. As I. M. Gel'fand has remarked, some of the simplest

9



1 p-adic numbers

questions, e.g., characterizing Q,-linear field automorphisms of Q, remain
unanswered.
So let’s begin our journey to Q.

4. The field of p-adic numbers

For the rest of this chapter, we fix a prime number p # co.

Let S be the set of sequences {a,} of rational numbers such that, given
e > 0, there exists an N such that |@ — a;|, < ¢ if both i, i’ > N. We call
two such Cauchy sequences {a;} and {b} equivalent if |a, — b;|, >0 as
i — 0. We define the set @, to be the set of equivalence classes of Cauchy
sequences.

For any x € Q, let {x} denote the ““constant” Cauchy sequence all of whose
terms equal x. It is obvious that {x} ~ {x} if and only if x = x’. The equiva-
lence class of {0} is denoted simply 0.

We define the norm | |, of an equivalence class a to be lim,. |a],,
where {a,} is any representative of a. The limit exists because

(1) If a = 0, then by definition lim,_, ,, |&], = 0.
(2) If a # 0, then for some ¢ and for every N there exists an iy > N with
Iamlp > e

If we choose N large enough so that |a; — a,|, < e when i, i’ > N, we have:
|a, — ay, |, < e foralli > N.

Since |ay,|, > ¢, it follows by the “isosceles triangle principle” that |a|, =
|ai,|,- Thus, for all i > N, |a|, has the constant value |a,,|,. This constant
value is then lim,_, o, |&|,.

One important difference with the process of completing @ to get R should
be noted. In going from Q to R the possible values of | | = | |, were
enlarged to include all nonnegative real numbers. But in going from Q to Q,
the possible values of | |, remain the same, namely {p"},., U {0}.

Given two equivalence classes @ and b of Cauchy sequences, we choose
any representatives {a,} € a and {b,} € b, and define a-b to be the equivalence
class represented by the Cauchy sequence {a;b;}. If we had chosen another
{a,} € a and {b,'} € b, we would have

]a,'b,' - aibilp = lail(bil - b) + b(a’ — al)lp
< max(la/'(b’ — b))l |bla’ — a)l,);

as i — oo, the first expression approaches |a|,- lim |b’ — b;|, = 0, and the
second expression approaches |b|,-lim|a,’ — &, = 0. Hence {a,'b;'} ~ {a,b}.

We similarly define the sum of two equivalence classes of Cauchy se-
quences by choosing a Cauchy sequence in each class, defining addition
term-by-term, and showing that the equivalence class of the sum only
depends on the equivalence classes of the two summands. Additive inverses
are also defined in the obvious way.

10



4 The field of p-adic numbers

For multiplicative inverses we have to be a little careful because of the
possibility of zero terms in a Cauchy sequence. However, it is easy to see that
every Cauchy sequence is equivalent to one with no zero terms (for example,
if @, = 0, replace g, by a, = p'). Then take the sequence {l/a;}. This sequence
will be Cauchy unless |a;|, — 0, i.e., unless {a;} ~ {0}. Moreover, if {a} ~ {a}
and no g, or @/ is zero, then {l/a;} ~ {1/a,’} is easily proved.

It is now easy to prove that the set Q, of equivalence classes of Cauchy
sequences is a field with addition, multiplication, and inverses defined as
above. For example, distributivity: Let {a;}, {b]}, {c} be representatives of
a, b, ce Q,; then a(b + c¢) is the equivalence class of

{a(b; + c)} = {ab; + aic},

and ab + ac is also the equivalence class of this sequence.

Q can be identified with the subfield of Q, consisting of equivalence classes
containing a constant Cauchy sequence.

Finally, it is easy to prove that Q, is complete: if {a;},., ... is a sequence
of equivalence classes which is Cauchy in Q,, and if we take representative
Cauchy sequences of rational numbers {a;};_, ,, .. for each a;, where for
each j we have |a; — a;;], < p~/ whenever i, i’ > N, then it is easily shown
that the equivalence class of {a;y };-1,2,... is the limit of the a;. We leave the
details to the reader.

1t’s probably a good idea to go through one such tedious construction in
any course or seminar, so as not to totally forget the axiomatic foundations
on which everything rests. In this particular case, the abstract approach also
gives us the chance to compare the p-adic construction with the construction
of the reals, and see that the procedure is logically the same. However, after
the following theorem, it would be wise to forget as rapidly as possible
about “equivalence classes of Cauchy sequences,” and to start thinking in
more concrete terms.

Theorem 2. Every equivalence class a in Q, for which |a|, < 1 has exactly one
representative Cauchy sequence of the form {a;} for which:

MOo<ag<pfori=1273,....
Q) a=a,, (modp)fori=1273,....

Proor. We first prove uniqueness. If {a,’} is a different sequence satisfying (1)
and (2), and if @, # a,, then a,, # a;,’ (mod p*), because both are between
0 and p'o. But then, for all i > i,, we have 4, = a,, # a,,' = a (mod po),
i.e., a, # a (mod p'). Thus

a — ai, > 1 to
P P

for all i > iy, and {a;} ~ {a,'}.
So suppose we have a Cauchy sequence {b;}. We want to find an equivalent
sequence {a,} satisfying (1) and (2). To do this we use a simple lemma.

11



I p-adic numbers

Lemma. If x € Q and |x|, < 1, then for any i there exists an integer « € Z such
that |a — x|, < p~'. The integer « can be chosen in the set {0, 1,2, 3, ...,
pt -1}

PROOF OF LEMMA. Let x = a/b be written in lowest terms. Since |x], < 1,
it follows that p does not divide b, and hence b and p' are relatively prime. So
we can find integers m and n such that: mb + np' = 1. Let « = am. The idea
is that mb differs from 1 by a p-adically small amount, so that m is a good
approximation to 1/b, and so am is a good approximation to x = a/b. More
precisely, we have:

le — x|, = |am — (a/b)|, = |a/b]|, |mb — 1|,
=< [mb - llp = Inpllp = |n|p/pi < 1/p.

Finally, we can add a multiple of p' to the integer « to get an integer between
0 and p' for which |« — x|, < p~* still holds. The lemma is proved. O

Returning to the proof of the theorem, we look at our sequence {b,;}, and,
foreveryj = 1,2, 3, ..., let N(j) be a natural number such that |b, — b,|, <
p~’ whenever i, i’ > N(j). (We may take the sequence N(j) to be strictly
increasing with j; in particular, N(j) = j.) Notice that |5, < 1 if i > N(1),
because for all i’ > N(1)

|bi|p max(lbi'lm lbi - b!’lp)
max(|el,, 1/p),
and |b;|, > |a], < 1 as i’ — oo,

We now use the lemma to find a sequence of integers a;, where 0 < a; < p;,

such that

IA A

la, — buepl, < 1/p.
I claim that {a,} is the required sequence. It remains to show that a,;,, = q,
(mod p?) and that {b;} ~ {a,}.
The first assertion follows because

lajs1 — ajlp = |a500 — bygeny + bugen — bygy — (a; — byl
max(|a;+1 — by +vles [Ong 1) — bules 18 — byly)
max(1/p’**, 1/p’, 1/p’)

1/p’.

The second assertion follows because, given any j, for i > N(j) we have

IA A

lay — bil, = |a; — a; + a; — by, — (b — ba)l,
< max(|a; — aps |05 — byei|ps b — bael»)
< max(1/p’, 1/p’, 1/p")
= 1/p’.
Hence |a, — b,|, — 0 as i — oo. The theorem is proved. ]
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4 The field of p-adic numbers

What if our p-adic number a does not satisfy |a|, < 1? Then we can
multiply a by a power p™ of p (namely, by the power of p which equals |a],),
o get a p-adic number @’ = ap™ which does satisfy |@'|, < 1. Then a’ is
represented by a sequence {a,'} as in the theorem, and a = a’p~™ is repre-
sented by the sequence {a;} in which g, = q/'p~™.

It is now convenient to write all the g,” in the sequence for a’ to the base p,
ie.,

a,' = bo + b1P + b2p2 + e+ bi_lp‘-l,

where the b’s are all ““digits,” i.e., integers in {0, 1, ..., p — 1}. Our condition
a’ = a{,, (mod p') precisely means that

ai.1=bo+ byp + bop® + --- + b_1p'" + byp!,

where the digits b, through b,_, are all the same as for a,’. Thus, a’ can be
thought of intuitively as a number, written to the base p, which extends
infinitely far to the right, i.e., we add a new digit each time we pass from a,’
t0 ai41.

Our original a can then be thought of as a base p decimal number which
has only finitely many digits “to the right of the decimal point” (i.e., corres-
ponding to negative powers of p, but actually written starting from the left)
but has infinitely many digits for positive powers of p:

b b b -
a=p_:+ﬁ_1:_l+'”+m71+bm+bm+lp+bm+2p2+""

Here for the time being the expression on the right is only shorthand for the
sequence {a,}, where @, = bop~™ + - - - + b;_,p' =1~ ™, thatis, a convenient way
of thinking of the sequence {;} all at once. We’ll soon see that this equality
is in a precise sense “real” equality. This equality is called the ““p-adic
expansion” of a.

We let Z, = {ac Q, | |a|, = 1}. This is the set of all numbers in Q,
whose p-adic expansion involves no negative powers of p. An element of Z,
is called a ‘“‘p-adic integer.” (From now on, to avoid confusion, when we
mean an old-fashioned integer in Z, we’ll say “rational integer.”) The sum,
difference, and product of two elements of Z,, is in Z,, so Z,, is what’s called a
“subring” of the field Q,.

If a, b € Q,, we write a = b (mod p") if |a — b|, < p~", or equivalently,
(a — b)/p" € Z,, i.e., if the first nonzero digit in the p-adic expansion of ¢ — b
occurs no sooner than the p"-place. If a and b are not only in Q, but are
actually in Z (i.e., are rational integers), then this definition agrees with the
earlier definition of @ = b (mod c).

WedefineZ,* as{xeZ,| 1/xe Z,}, orequivalentlyas{x € Z, | x # 0 (mod p)},
or equivalently as {xeZ, | |x|, = 1}. A p-adic integer in Z,*—i.e., whose
first digit is nonzero—is sometimes called a * p-adic unit.”

13



I p-adic numbers

Now let {5} _,, be any sequence of p-adic integers. Consider the sum

lﬂ + b-m+1

SN = pm pm—l

4o+ by + bip + byp? + - + byp.

This sequence of partial sums is clearly Cauchy: if M > N, then |Sy — Sy,
< 1/p¥. It therefore converges to an element in Q,. As in the case of infinite
series of real numbers, we define 3% _,, b;p' to be this limit in Q,.

More generally, if {¢;} is any sequence of p-adic numbers such that |¢,|, — 0
as i — oo, the sequence of partial sums Sy = ¢; +'¢; + - - - + ¢y converges to
a limit, which we denote >/2,¢. This is because: [S) — Sy|, =
lener + €ysa + - + Cylp < max({ey1lps [Cxsalps -+ 5 [Cu|p) which — 0 as
N — oo. Thus, p-adic infinite series are easier to check for convergence than
infinite series of real numbers. A series converges in Q, if and only if its terms
approach zero. There is nothing like the harmonicseries 1 + 4+ + + + } + -
of real numbers, which diverges even though its terms approach 0. Recall
that the reason for this is that | |, of a sumis bounded by the maximum (not the
sum) of the | |, of the summands when p # oo, i.e,, when | |, is non-
Archimedean.

Returning now to p-adic expansions, we see that the infinite series on the
right in the definition of the p-adic expansion

%ﬂ+%+"'+%+bm+bm+1p+bm+2p2+"’
(here 5,€{0,1,2, ..., p — 1}) converges to a, and so the equality can be
taken in the sense of the sum of an infinite series.

Note that the uniqueness assertion in Theorem 2 is something we don’t
have in the Archimedean case. Namely, terminating decimals can also be
represented by decimals with repeating 9s: 1 = 0.9999 - - -. But if two p-adic
expansions converge to the same number in Q,, then they are the same, i.e.,
all of their digits are the same.

One final remark. Instead of {0, 1,2, ..., p — 1} we could have chosen
any other set S = {ag, oy, s, ..., @, _,} of p-adic integers having the property
that «;, = i (mod p) for i =0, 1,2, ..., p — 1, and could then have defined
our p-adic expansion to be of the form 3% _,, b,p', where now the “digits” b,
are in the set S rather than in the set {0, 1, ..., p — 1}. For most purposes,
the set {0, 1, ..., p — 1} is the most convenient. But there is another set S,
the so-called ““ Teichmiiller representatives” (see Exercise 13 below), which
is in some ways an even more natural choice.

5. Arithmetic in Q,

The mechanics of adding, subtracting, multiplying, and dividing p-adic
numbers is very much like the corresponding operations on decimals which
we learn to do in about the third grade. The only difference is that the

14



5 Arithmetic in Q,

“carrying,” “borrowing,” “long multiplication,” etc. go from left to right
rather than right to left. Here are a few examples in Q,:

346x7+2xT%+--- 2x T 1 4+0x7°4+3xT 4.

X4+5xT+1x72+.-. — 4 x T '4+6xT°+S5xMT+...

5+44xT7T+4xT72+--- SxT7T14+0xT7°+4x7 +---
I x7+4x T2+
Ix7?+---

S+5x7+4x7?2+---

S+1x7+6xT72+---
345 x T+ 1 x4+ [T +2xT+4xT+---
l+6x7+1xT7%4+--.
IxT+2x P+
IxT+5xT2+---
4 x7P4---
4 x T2 ...

As another example, let’s try to extract V6 in Qs i.e., we want to find
ay, 4y, 4, ..., 0 < a; < 4, such that

(ap+a, xS5+a, x5%+--)2=1+1x35.

Comparing coefficients of 1 = 5° on both sides gives a,2 = 1 (mod 5), and
hence a, = 1 or 4. Let’s take g, = 1. Then comparing coefficients of 5 on
both sides gives 2a, x 5 = 1 x 5 (mod 5%), so that 2a, = 1 (mod 5), and
hence a; = 3. At the next step we have:

14+1 x5=(01+3x54+a,%x5)2=1+4+1x25+2a, x 5% (mod 5°.
Hence 24, = 0 (mod 5), and a, = 0. Proceeding in this way, we get a series
a=14+3x54+0x52+4x55+ag,x5%+a; x5+

where each g, after q, is uniquely determined.
But remember that we had two choices for a,, namely 1 and 4. What if we
had chosen 4 instead of 1? We would have gotten

—a=44+1x54+4x52+0x35°
+@d—-a)x5+@d—a) x % +-.-.

The fact that we had two choices for a,, and then, once we chose a,, only a
single possibility for a;, a,, as, ..., merely reflects the fact that a nonzero
element in a field like @ or R or @, always has exactly two square roots in the
field if it has any.

Do all numbers in Q; have square roots? We saw that 6 does, what about
7? If we had

@+a x5+---2=2+1x35,
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1 p-adic numbers

it would follow that g,2 = 2 (mod 5). But this is impossible, as we see by
checking the possible values ¢, = 0, 1, 2, 3, 4. For a more systematic look
at square roots in Q,, see Exercises 6-12.

This method of solving the equation x2 — 6 = 0 in Q;—by solving the
congruence d,> — 6 = 0 (mod 5) and then solving for the remaining a; in a
step-by-step fashion—is actually quite general, as shown by the following
important “lemma.”

Theorem 3 (Hensel’s lemma). Let F(x) = ¢, + ¢,x + - -+ + ¢, x™ be a poly-
nomial whose coefficients are p-adic integers. Let F'(x) = ¢; + 2¢cox +
3c3x% + - - + ne,x™~ ! be the derivative of F(x). Let a, be a p-adic integer
such that F(a,) = 0 (mod p) and F'(a,) # 0(mod p). Then there exists a
unique p-adic integer a such that

F(@ =0 and a = g, (mod p).

(Note: In the special case treated above, we had F(x) = x? — 6, F'(x) =
2x, a5 = 1)

PRrROOF OF HENSEL’s LEMMA. I claim that there exists a unique sequence
of rational integers a4y, a,, a,, ... such that foralln > 1:

(1) F(a,) = 0 (mod p"*1).
(2) an = 4y, (mOd P")
(3)0<aq, <pr*i

We prove that such a, exist and are unique by induction on n.

If n = 1, first let 4, be the unique integer in {0, I, ..., p — 1} which is
congruent to a, mod p. Any a, satisfying (2) and (3) must be of the form
dy, + byp,where0 < b, < p — 1. Now, lookingat F(d, + b,p), we expand the
polynomial, remembering that we only need congruence to 0 mod p?, so
that any terms divisible by p? may be ignored:

F(a,) = F(@, + byp) = Z ¢(d + bip)
= Z (c:dy' + ic,dy™'b,p + terms divisible by p?)

= Z cdyt + (Z iciﬁé‘l)blp (mod p?)
F(d,) + F'(@,)b,p.

(Note the similarity to the first order Taylor series approximation in calculus:
F(x + h) = F(x) + F'(x)h + higher order terms.) Since F(a,) = 0 (mod p)
by assumption, we can write F(d,) = op (mod p?) for some «€{0, 1, ..., p — 1}.
So in order to get F(a,) = 0(mod p?) we must get op + F'(d@,)b,p =0
(mod p?), i.e., « + F'(G,)b, = 0 (mod p). But, since F'(a,) Z 0 (mod p) by
assumption, this equation can always be solved for the unknown b,. Namely,
using the lemma in the proof of Theorem 2, we choose b, € {0, 1, ...,p — 1}
so that b, = —«/F'(d,) (mod p). Clearly this b,€{0,1,...,p — 1} is
uniquely determined by this condition.
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5 Arithmetic in Q,

Now, to proceed with the induction, suppose we already have a,, as, . . .,
a,_,. We want to find a,. By (2) and (3), we need a, = a,_, + b,p" with
b,e{0,1,...,p — 1}. We expand F(a,_, + b,p") as we did before in the
case n = 1, only this time we ignore terms divisible by p**!. This gives us:

F(a,) = F(a,-, + b,p") = F(a,-1) + F'(a,-1)b,p" (mod p"*1).

Since F(a,_,) = 0(mod p") by the induction assumption, we can write
F(a,_,) = «'p* (mod p"*1), and our desired condition F(a,) = 0 (mod p**?)
now becomes

o'pt + F'(a,_)b,p" = 0(mod p**?), ie., o + F'(a,_1)b, = 0(mod p).

Now, since a,_, = a, (mod p), it easily follows that F'(a,_,) = F'(a,) 2 0
(mod p), and we can find the required b,€{0, 1, ..., p — 1} proceeding
exactly as in the case of by, i.e., solving b, = —«'/F'(a,_,) (mod p). This
completes the induction step, and hence the proof of the claim.

The theorem follows immediately from the claim. We merely let a =
dy + byp + byp® + - - - .Since forall n we have F(a) = F(a,) = 0 (mod p**1),
it follows that the p-adic number F(a) must be 0. Conversely, any a = d, +
b,p + byp? + - - - gives a sequence of a, as in the claim, and the uniqueness
of that sequence implies the uniqueness of the a. Hensel’s lemma is proved. [

Hensel’s lemma is often called the p-adic Newton’s lemma because the
approximation technique used to prove it is essentially the same as Newton’s

78

Ve |

\ / |
’\

Figure I.1. Newton’s method in the real case
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method for finding a real root of a polynomial equation with real coefficients.
In Newton’s method in the real case, (see Figure 1.1), if f'(a,_,) # 0, we take
- f (an— 1) R
f ’(an—l)
The correction term —f(a,_,)/f'(a,-,) is a lot like the formula for the
““correction term” in the proof of Hensel’s lemma:
_ a'pn _ F(an-l)
Fan.1) ~  F'(an-y)
In one respect the p-adic Newton’s method (Hensel’s lemma) is much
better than Newton’s method in the real case. In the p-adic case, it’s guaranteed
to converge to a root of the polynomial. In the real case, Newton’s method
usually converges, but not always. For example, if you take f(x) = x® — x
and make the unfortunate choice a, = 1/V'5, you get:

1V5 — [1/5V5 — 1/V5)/(3/5 — 1)
1/4/5[1 — (1/5 - DG/5 - 1)] = —1/V'5;
a; = 1/V5; a; = —1/V5, etc.

(See Figure 1.2.) Such perverse silliness is impossible in Q,.

an = Q-

bup" =

(mod p**1).

a,

Figure I.2. Failure of Newton’s method in the real case
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Exercises

EXERCISES
1. If ae @, has p-adic expansion @_mp ™ + G_pm1p ™ 1+ -+ ap +
a;p + ---, what is the p-adic expansion of —qa?
2. Find the p-adic expansion of:

11,

12.

DGE+4xT+2xTP+1I x4+ )3+0xT+0xT2+6xT7+--1)
in Q- to 4 digits

G) 1/3+2x5+3x5+1x5+---)in Qs to 4 digits

i) 9 x 112 = 3 x 11714+ 2+ 1 x 11" +3 x 112+ ---) in Q@ to 4

digits
(iv) 2/3in Q, (v) —1/6in Q, (vi) 1/10in Q,,
(vii) —9/16in Qs (viii) 1/1000 in Qs (ix) 6!in Q,
(x) 1/3'in Q4 (xi) 1/4!in Q, (xii) 1/5'in Qs

. Prove that the p-adic expansion of g € Q, terminates (i.e., a; = 0 for all {

greater than some N) if and only if a is a positive rational number whose
denominator is a power of p.

. Prove that the p-adic expansion of @ € @, has repeating digits from some point

on (i.e., a;+, = a, for some r and for all / greater than some N) if and only
if ae Q.

. What is the cardinality of Z,? Prove your answer.

. Prove the following generalization of Hensel’'s lemma: Let F(x) be a poly-

nomial with coefficients in Z,. If g, € Z, satisfies F'(ao)= 0 (mod p*) but
F'(ap) £ 0 (mod p¥+*?Y), and if F(ae) = 0 (mod p?¥*1), then there is a unique
a€Z, such that F(a) = 0 and a = a, (mod p"+1).

. Use your proof in Exercise 6 to find a square root of —7 in Q; to 5 digits.

. Which of the following 11-adic numbers have square roots in @;;?

(i) 5 (i) 7 @iy =7
(iv) 5+ 3 x 11 +9 x 112+ 1 x 118
(V)3 x 11724+ 6x 1171 +3+4+0x11+7x112
(vi) 3 x 1171+ 64+ 3 x 11 +0x 112+ 7 x 113

(vii) 1 x 117 (viii) 7 — 6 x 112
(ix) 5 x 1172 + P on x 11™

. Compute +./—1in Qs and +./~3 in @, to 4 digits.
10.

For which p = 2,3,5,7,11,13,17, 19 does — 1 have a square root in Q,?

Let p be any prime besides 2. Suppose « € Q, and |a|, = 1. Describe a test
for whether « has a square root in Q,. What about if |«]|, # 1? Prove that
there exist four numbers «y, aq, a3, oy, € @, such that for all nonzero « € Q,
exactly one of the numbers «,«, as0, asc, ¢4 has a square root. (In the case
when p is replaced by © and Q, by R, there are rwo numbers, for example
+ 1 will do, such that for every nonzero « € R exactly one of the numbers
-« and —1-« has a square root in R.)

The same as Exercise 11 when p = 2, except that now there will be eight
numbers «,, . .., ag € Q. such that for all nonzero « € @, exactly one of the
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I p-adic numbers

14.

15.

16.

17.

18.

19.

20.

21.

20

numbers «a, ..., agoe has a square root in Q,. Find such ey, ..., ¢s (the
choice of them is not unique, of course).

. Find all 4 fourth roots of 1 in @; to four digits. Prove that Q, always contains

psolutions a, ay, ..., ap—; totheequation x* — x = 0, wherea, = i (mod p).
These p numbers are called the *“ Teichmiiller representatives™ of {0, 1, 2, .. .,
p — 1} and are sometimes used as a set of p-adic digits instead of
0,1,2,...,p— 1.

Prove the following ‘‘Eisenstein irreducibility criterion™ for a polynomial
f(x) = ap + a;x + - -+ + a,x™ with coefficients @, € Z,: If a, = 0 (mod p) for
i=01,2,...,n—1,if a, # 0(mod p), and if ao # 0 (mod p?), then f(x)
is irreducible over Q,, i.e., it cannot be written as a product of two lower
degree polynomials with coefficients in Q,.

If p > 2, use Exercise 14 to show that 1 has no pth root other than 1 in Q,.

Prove that the infinite sum 1 + p + p? + p® + ... converges to 1/(1 — p)in
Q,. What about 1 —p + p?2 — p® + p* — p°> +--- 7 What about 1 +
p=Dp+P+(-Dp°+p*+(p—-Dp°+--:2

Show that (a) every element x € Z,, has a unique expansion of the form x = a, +
a(—p)+a(—-pP+---+a(—p)+ -,withae{0,1,...,p — 1}, and (b) this
expansion terminates if and only if x € Z.

Suppose that » is a (positive or negative) integer not divisible by p, and let
a = 1 (mod p). Show that « has an nth root in @,. Give a counter-example
if n = p. Show that « has a pth root if « = | (mod p?) and p # 2.

Let « € Z,. Prove that «®™ = o*™"* (mod p™) for M = 1,2, 3,4, ... . Prove
that the sequence {«*™} approaches a limit in Qp, and that this limit is the
Teichmiller representative congruent to « mod p.

Prove that Z, is sequentially compact, i.e., every sequence of p-adic integers
has a convergent subsequence.

Define matrices with entries in Q,, their sums, products, and determinants
exactly as in the case of the reals. Let M = {r x r matrices with entries in Z,},
let M* = {Ae M | A has an inverse in M} (it’s not hard to see that this is
equivalent to: det A€Z,*), and let pM = {Ae M | A = pB with Be M}.
If Ae M* and Be pM, prove that there exists a unique X € M* such that:
X2 — AX + B=0.



CHAPTER II

p-adic interpolation of the Riemann
zeta-function

This chapter is logically independent of the following chapters, and is pre-
sented at this point in the middle of our ascent to Q as a plateau in the level
of abstraction—namely, everything in this chapter still takes place in the
fields Q, @,, and R.

The Riemann {-function is defined as a function of real numbers greater
than 1 by

{OF- Zl nls

It is easy to see (by comparison with the integral f:’ (dx/x) = 1/(s — 1) for
fixed s > 1) that this sum converges when s > 1.

Let p be any prime number. The purpose of this chapter is to show that
the numbers {(2k) for k = 1,2, 3, ... have a “p-adic continuity property.”
More precisely, consider the set of numbers

fK) = (1 = p=3) S ), where o = (~ 1y B L),

as 2k runs through all positive even integers in the same congruence class
mod(p — 1). It turns out that f(2k) is always a rational number. Moreover,
if two such values of 2k are close p-adically (i.e., their difference is divisible
by a high power of p), then we shall see that the corresponding f(2k) are also
p-adically close. (We must also assume that 2k is not divisible by p — 1.)
This means that the function fcan be extended in a unique way from integers
to p-adic integers so that the resulting function is a continuous function of a
p-adic variable with values in Q,. (“ Continuous function” means, as in the
real case, that whenever a sequence of p-adic integers {x,} approaches x
p-adically, {f(x,)} approaches f(x) p-adically.)
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Il p-adic interpolation of the Riemann zeta-function

This is what is meant by p-adic ““interpolation.”” The process is analogous
to the classical procedure for, say, defining the function f(x) = a* (where a
is a fixed positive real number): first define f(x) for fractional x; then prove
that nearby fractional values of x give nearby values of a*; and, finally,
define a* for x irrational to be the limit of «*» for any sequence of rational
numbers x, which approach x.

Notice that a function f on the set S of, for example, positive even integers
can be extended in at most one way to a continuous function on Z, (assume
p 5 2). This is because S is ““dense” in Z,—any x € Z, can be written as a
limit of positive even integers x,. If f is to be continuous, we must have
f(x) = lim, ., f(x,). In the real case, while the rational numbers are dense
in R, the set S is not. It makes no sense to talk of ‘“‘the” continuous real-
valued function which interpolates a function on the positive even integers;
there are always infinitely many such functions. (However, there might be a
unique real-valued continuous interpolating function which has additional
convenient properties: for example, the gamma-function I'(x + 1) inter-
polates k! when x = k is a nonnegative integer, it satisfies ['(x + 1) = xI'(x)
for all real x, and its logarithm is a convex function for x > 0; the gamma-
function is uniquely characterized by these properties.)

1. A formula for {(2k)

The kth Bernoulli number B, is defined as k! times the kth coefficient in the
Taylor series for

t 1
e — 1 1+ 420+ 230+ 34V + -+ 1 f(n + DT+ - -
= O Bu¥lk!.
k=0

The first few B, are:
Bo=1, B, =-1/2, By=1/6, By=0,
B, = —1/30, B, =0, By =1/42, ....
We now derive the formula:

22k—1 B
I 2k =(—=1 k.2k = (_lc
{2k)y = (= D'n o\
Recall the definition of the ‘““hyperbolic sine,” abbreviated sinh (and
pronounced “‘sinch”):

) fork=1,2,3....

x __ e X

. e
sinh x =
2
It is equal to its Taylor series
x5 x2k +1

. x3
smhx—x+§-!+§+-~-+@(—+—l)—!+-~-,
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1 A formula for {(2k)

obtained by averaging the series for ¢* and —e~*. Note that this Taylor
series is the same as that for sin x, except without the alternation of sign.

Proposition. For all real numbers x, the infinite product

[T (1+%)
converges and equals sinh(wx).

Proor. Convergence of the infinite product is immediate from the logarithm

test:
Z log(1+ )

We start by deriving the infinite product for sin x.

2§—<oo for all x.
i=n

Lemma. Let n = 2k + 1 be a positive odd integer. Then we can write
sin(nx) = P, (sin x)
cos(nx) = cos x @, _, (sin x)
where P, (respectively Q, _,) is a polynomial of degree at most n (respectively
n — 1) with integer coefficients.

PrOOF OF LEMMA. We use induction on k. The lemma is trivial for k = 0
(i.e,, n = 1). Suppose it holds for & — 1. Then
sin{(2k + 1)x] = sin[(2k — D)x + 2x]
= sin(2k — 1)x cos 2x + cos(2k — 1)x sin 2x
Py, (sin x)(1 — 2sin? x)
+ cos xQ _ 2 (sin x)2 sin x cos x,

which is of the required form Py ., (sin x). The proof that cos(2k + 1)x =
cos x Qg (sin x) is completely similar, and will be left to the reader. O

We now return to the proof of the proposition. Notice that, if we set
x = 0 in sin nx = P, (sin x), we find that P, has constant term zero. Next,
we take the derivative with respect to x of both sides of sin nx = P, (sin x):

ncos nx = P,'(sin x) cos x.

Setting x = 0 here gives: n = P,'(0), i.e., the first coefficient of P, is n. Thus,
we may write:

sinnx & . _ . -
P Pyu(sinx) =1+ a,sinx + a;sin? x +
+ ag. sin*x  (n= 2k + 1),
where the g, are rational numbers. Note that for x = +(=/n), ..., +(kn/n),

the left-hand side vanishes. But the 2k values y = +sin(=/n), +sin(2n/n), ...,
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II p-adic interpolation of the Riemann zeta-function

+ sin(kw/n) are distinct numbers at which the polynomial P,,(y) vanishes.
Since P,, has degree 2k and constant term 1, we must have:

P - (1= ) (- =) - ) ( - =)
' (1 B sinl)c}w/n)(l - :ﬁZk—W/E)

k 2
= - 2 ).
ro1 sin? ro/n

. k 12
sinnx 5 . sin? x

- = Py(sin x) = | | - —)
nsin x 2x(sin x) 1 ( sin? ra/n

Thus

Replacing x by =x/n gives:

sin 7x k sin¥(mx/n)
nsin(mx/n) E (1 B sinz(v-rr/n)) ’
Now take the limit of both sides as n = 2k + 1 -— oo. The left-hand side
approaches (sin 7x)/mx. For r small relative to n the rth term in the product
approaches 1 — ((mx/n)/(wrin))? = 1 — (x%*/r?). It then follows that the
product converges to [[2, (1 — (x?/r?). (The rigorous justification is
straightforward, and will be left as an exercise below.)
We conclude:

ﬁ 1 x2\ _ sin(mx) _ i w2 x? + mixt  o5x8 + w8x8
Aol n?) ax 3! 5! 7! 9! ’
using the Taylor series for sine. But
sinh(mx) 72x?  wixt  wSxf m8x®
e s TH T TN TR

If we multiply out the infinite product for sin(x)/(wx), we get a minus sign
precisely in those terms having an odd number of x?/n? terms, i.e., precisely
for the terms in the Taylor series for sin(=x)/(=x) having a minus sign. Thus,
changing the sign in the infinite product has the effect of changing all of the
—’s to +'s on the right, and we have the desired product expansion of the
proposition. (For a *‘better” way of thinking of this last step, see Exercise 3
below.) 7

We are now ready to prove:

Theorem 4.

k, 2k 22k-1 BZk
1) = (-1 e (- 32)
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1 A formula for {(2k)

ProoF. First take the logarithm of both sides of

. 2 x2
sinh(7x) = #x nl =|1 (1 + ;5)
(for x > 0). On the left we get

log sinh(wx) = log[(e™ — e~"%)/2] = log[(e™/2(1 — e~ 2"¥)]
= log(l — ¢2™) + #x — log 2.

On the right we get (for 0 < x < 1)

||[\/]s

© © 2k
logw + log x + Z log(l + x%/n?) = log7 + log x + Z 1)"“k o)
n=1 k=
by the Taylor series for log(l + x). Since this double series is absolutely
convergent for 0 < x < 1, we can interchange the order of summation and

obtain the equality:

- 2nx < x2k i 1
log(1 — e~? )+7rX—log2=logn+logx+k=Zl [(—1)"“T Z W]

n=1

i 2k
= logm + log x + > (~1)** - 1(2k),
k=1

We now take the derivative of both sides with respect to x. On the right
we may differentiate term-by-term, since the resulting series is uniformly
convergent in 0 < x < 1 — & for any ¢ > 0. Thus,

2me 2%
] — e 274

fm=1y D (=1 i1y (2k).
X K=1

Multiplying through by x and then substituting x/2 for x gives:

X mx (= DF+12Kk)
g G 3 S

k=1

The left-hand side gives: (7x)/2 + >3- Bi(wx)*/k!. Comparing coefficients
of even powers of x gives: #% B, /(2k)! = ((—1)¥*+1/22%-1){(2k), which gives
us the theorem. |

As examples, we have
7T2 'TT4 m
{(2) = < W= 30 {(o) = 945

The arrangement of the formula for {(2k) in the statement of Theorem 4
was deliberate. We think of the (— B,,/2k) as the ““interesting” part, and the
(— 1)km?22k-1/(2k — 1)! as a nuisance factor. It is the interesting part that
we end up interpolating p-adically. Some justification for taking (— B,,/2k)
rather than the whole mess will be given later (§7). For now, let’s remark that
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II p-adic interpolation of the Riemann zeta-function

at least the #?* factor has to be discarded when we interpolate the values
p-adically, since transcendental real numbers cannot be considered p-adically
in any reasonable way. (What could *p-adic ordinal” mean for them?)

2. p-adic interpolation of the
function f(s) = a°

This section will eventually play a role in the subsequent logical development.

It is included at this time as a ““dry run” in order to motivate certain features

of the later p-adic interpolation which may otherwise seem somewhat

idiosyncratic.

As mentioned before, if a is a fixed positive real number, the function
f(s) = a*is defined as a continuous function of a real variable by first defining
it on the set of rational numbers s, and then “interpolating™ or *‘extending
by continuity” to real numbers, each of which can be written as the limit of
a sequence of rational numbers.

Now suppose that @ = n is a fixed positive integer. Consider n as an
element in Q,. For every nonnegative integer s, the integer »* belongs to Z,,.
Now the nonnegative integers are dense in Z, in the same way as Q is dense
in R. In other words, every p-adic integer is the limit of a sequence of non-
negative integers (for example, the partial sums in its p-adic expansion). So
we might try to extend f(s) = n* by continuity from nonnegative integers s to
all p-adic integers s.

To do this, we must ask if n* and »* are close whenever the two non-
negative integers s and s’ are close, for example, when s = s + p" for some
large N. A couple of examples show that this is not always the case:

M n=p,s=0:|n-—n|, =1 —p*|, = ] no matter what N is.

(2) 1 < n < p: by Fermat’s Little Theorem (see §I11.1, especially the first
paragraph of the proof of Theorem 9), we have n = n? (mod p), and so
n=n=n*=n'=...=n" (modp);hencen’ — n***" = n¥(1 — n*")
= n’(1 — n) (mod p); thus |n* — n*'|, = 1 no matter what N is.

But the situation is not as bad as these examples make it seem. Let’s
choose n so that n = 1 (mod p), say n = | + mp. Let |s' — 5|, < 1/p¥, so
that s’ = s + s"p" for some 5" € Z. Then we have (say s' > s)

Ins - ns']p = ]nslp“ - ns,_slv = |1 - ns,_slp = ll -+ mp)s”pNIp'

But expanding

#oON( "y N
(1 + mpy =1+ (pmp + TLEE =D e -
shows that each term in 1 — (1 + mp)*"?" has at least p¥**, Thus,
s o 1
In® — n¥[, < [p¥*H], = FiEas

In other words, if 5" — sis divisible by p", then n* — n¥ is divisible by p¥+1.
Thus, if n = 1 (mod p), it makes sense to define f(s) = n® for any p-adic
integer s to be the p-adic integer which is the limit of #% as s, runs through any
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2 p-adic interpolation of the function f(s) = a?*

sequence of nonnegative integers which approach s (for example, the partial
sums of the p-adic expansion of s). Then f(s) is a continuous function
from Z, to Z,,.

We can do a little better—allowing any » not divisible by p—if we’re
willing to insist that s and s’ be congruent modulo (p — 1), as well as modulo
a high power of p. That is, we fix some s5,€{0,1,2,3,...,p — 2}, and,
instead of considering n® for all nonnegative integers s, we consider »* for all
nonnegative integers s congruent to our fixed s, modulo (p — 1). Letting
s =5, + (p — )s;, we are looking at n%*®-15 for 5, any nonnegative
integer. We can do this because then

ns - nso(np - 1)31’

and for every n not divisible by p we have n*~! = 1 (mod p). Thus, we are in
the situation of the last paragraph with n*~! in place of n and s, in place of
s (and a constant factor n*c thrown in).

Another way of expressing this function is as follows. Let S;, be the set of
nonnegative integers congruent to s, mod (p — 1). S;, is a dense subset of Z,,
(Exercise 7 below). The function f: S,, — Z, defined by f(s) = n* can be
extended by continuity to a function f: Z, — Z,. Notice that the function f
depends on s, as well as on n.

If n = 0 (mod p), we are out of luck. This is because n* — 0 p-adically for
ary increasing sequence of nonnegative integers. And if s € Z,, is not itself a
nonnegative integer, any sequence of nonnegative integers which approach s
p-adically must include arbitrarily large integers. It follows that the zero
function is the only possible candidate for »°, and that’s absurd.

One final remark: the above discussion applies word-for-word to the
function 1/n® (Exercise 8 below).

Now let’s look at the Riemann zeta-function

U(s) = ilnl (s > ).

The naive way to try to interpolate {(s) p-adically would be to interpolate
each term individually and then add the result. This won’t work, because
even the terms which can be interpolated—those for which ptn—form an
infinite sum which diverges in Z,. However, let’s forget that for a moment
and look at the terms one-by-one.

The first thing we’ll want to do is get rid of the terms 1/n® with n divisible
by p. We do this as follows:

=21, &1 &1, &1
W= 2 5+ 2 5= 2 5+ 2 oo

1 1
€O = =), 2.7
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II p-adic interpolation of the Riemann zeta-function

It is this last sum

- 1 1
* — — — —
SO I TN (RO
which we will be dealing with later. This process is known as “taking out
the p-Euler factor.” The reason is that {(s) has a famous expansion (see
Exercise 1 below)

1
{(s) = T

( ) pxli;{sq I - (l/q)
The factor 1/[1 —~ (1/¢%)] corresponding to the prime q is called the “g-Euler
factor.” Thus, multiplying {(s) by [1 — (1/p®)] amounts to removing the
p-Euler factor:

1
*(5) = - .
vo= 1L =

The second thing we’ll want to do when interpolating {(s) is fix s, €
{0, 1,2, ..., p — 2} and only let s vary over nonnegative integers s€ S, =
{s|s = s (modp — D).

It will turn out that the numbers (— B,,/2k) arrived at in §1, when multi-
plied by (1 — p?*~*), can be interpolated for 2k € S,,, (25,€{0,2,4,...,p — 3}).
Note that we are not multiplying by [I — (1/p?*)], as you might expect, but
rather by the Euler term with 2k replaced by | — 2k: 1 — (1/p*~2) =
1 — p? -1, The reason why this replacement 2k <> 1 — 2k is natural will be
discussed in §7. (We’ll see that the ““‘interesting factor™ — B,,/2k in {(2k)
actually equals {(1 — 2k); {(x) and {(1 — x) are connected by a *‘functional
equation.”)

More precisely, we will show that, if 2k, 2k’ € S, (where 2k, €{2,4, ...,
p — 3}; there’s a slight complication when k; = 0), and if & = £’ (mod p"),
then (see §6)

(I = p* )= Bu/2k) = (1 — p* ~1)(— Byie/2k) (mod p¥*1).
These congruences were first discovered by Kummer a century ago, but their

interpretation in terms of p-adic interpolation of the Riemann {-function was
only discovered in 1964 by Kubota and Leopoldt.

EXERCISES

1. Prove that

is) = H il——ﬁlq_s) fors > 1.

primesq

2. Prove that

¥ (1 — sin%(zx/n)/ sin(=r/n))

1:11 (1 = x*/r?)

—1 asn=2k+1— 00,
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Exercises

. Use the relationship ¢'* = cos x + isin x for e to a complex power to show

that sinh x = —isin ix. Give another argument for how the infinite product
for sinh x follows from the infinite product for sin x.

. Prove that B, = 0 if k is an odd number greater than 1.

. Use the formula for {(2k), along with Stirling's asymptotic formula n! ~

V2an nre (where ~ means that the ratio of the two sides —1 as n - ) to
find an asymptotic estimate for the usual Archimedean absolute value of Byy.

Use the discussion of »* in §2 to compute the following through the p*-place:
(i) 11%/6°% jn Q4 (ii) V'1/10 in Q; (iii) (—6)2++7+3 724734 i Q..

. Prove that for any fixed s, € {0, 1, ..., p — 2), the set of npnnegative integers

congruent to s, modulo (p — 1) is dense in Z,, i.e., any number in Z, can be
approximated by such numbers.

. What happens to the discussion in §2 if we take n € Z, instead of taking n to

be a positive integer ? What happens if we replace the function f(s) = »* by
f(s) = 1/n*? Note that this is the same as replacing ‘“ nonnegative integer”’ by
“nonpositive integer’’ when defining the dense subset of Z, from which we
extend f.

. Let x be the function on the positive integers defined by:

1, ifn =1(mod4);

x(n) = { —1, ifn =3 (mod4);
0, if2|n.
Define L,(s) g 35-s (/) = 1= (1/3) + (1) = (1/7) + --- . Prove

that L,(s) converges absolutely if s > 1 and conditionally if s > 0. Find
L,(1). Find an Euler product for L,(s) and for L,*(s) =5 Sa=1,pim Oc@)/nd). (It

turns out that there is a formula similar to Theorem 4 for L,(2k + 1) (i.e., for
positive odd rather than even integers) with B, replaced by

B ' . N N S

xon 3= 1! times the coefficient of ¢" in prr S T (—e, " e“)')
Note: Exercise 9 is a special case of the following situation. Let N be a
positive integer. Let (Z/NZ)* be the multiplicative group of integers prime
to N modulo N. Let y: (Z/NZ)* — C* be a group homomorphism from
(Z/NZ)* to the multiplicative group of nonzero complex numbers. (It is easy
to see that the image of x can only contain roots of 1 in C.) Suppose that x is
“primitive,” which means that there is no M dividing N, 1 < M < N, such
that the value of y on elements of (Z/NZ)* only depends on their value
modulo M. Consider y as a function on all positive integers n by letting
x(n) equal y(n modulo N) if n is prime to N and x(n) = 0 if n and N have a
common factor greater than 1. y is called a ‘““character of conductor N.”

Now define

L(s) = ’21 Xr(:)'
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II p-adic interpolation of the Riemann zeta-function

It can then be shown that a formula similar to Theorem 4 holds with B,
replaced by

x(a)te‘"

b . .
By.n =, n! times the coefficient of 7" in Z
The formula gives L, of even integers if y(—1) = 1 and L, of odd integers if
x(—1) = —1. (See Iwasawa, Lectures on p-adic L-functions.)
In addition, we have the formula

)~
Ly =S¥ TX Z X(a)logsmw, ify(=1) = 1;
n=1 N . N1
"'}:l(zx 2, X@)-a, ifx(-1) =~1,

where the bar over y denotes the complex conjugate character: y(a) = x(_a),
and where

T(X) = Z X(a)ezmam
(this is known as a “ Gauss sum”"). (For a proof, see Borevich and Shafarevich,
Number Theory, p. 332-336.)

10. Use the formula for L,(1) in the above note to check the value for L,(1) in
Exercise 9 and to prove that:

11 1 1 1 1 1 1 1

@i-3+35t7 5t Wt tweT o west
w
-0
7SS S SN B U U S UNUNS UDN I N
1 3 5 7 9 1 13 15 17 19 21 23
_log(1 + v2)
- oty

3. p-adic distributions

The metric space Q, has a “basis of open sets” consisting of all sets of the
form a + p"Z, = {xe€ Q, | |x — a|, < (1/p")} for a€ Q, and NeZ. This
means that any open subset of @, is a union of open subsets of this type.
We shall sometimes abbreviate @ + p"Z, as a + (p"), and in this chapter
we shall call a set of this type an ““interval™ (in other contexts we often call
such a set a “‘disc”’). Notice that all intervals are closed as well as open,
since the complement of a + (p") is the union over all a' € Q, such that
a’ ¢a + (p¥) of the open sets a’ + (p¥).

Recall that Z, is sequentially compact: every sequence of p-adic integers
has a convergent subsequence (see Exercise 19 of §1.5). The same is easily
seen to be true for any interval or finite union of intervals. In a metric space X,
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3 p-adic distributions

the property of sequential compactness of a set § < X is equivalent to the
following property, called ‘‘compactness’: every time S is contained in a
union of sets, it is contained in a union of finitely many of those open sets
(““every open covering has a finite subcovering ™). (See Simmons, /ntroduction
to Topology and Modern Analysis, §24, for this equivalence; this book is also
a good standard reference for other concepts from general topology.) It then
follows (see Exercise 1 below) that an open subset of @, is compact if and
only if it is a finite union of intervals. It is this type of open set, which we call
a “‘compact-open,” that repeatedly occurs in this section.

Definition. Let X and Y be two topological spaces. A map f: X — Y is
called locally constant if every point x € X has a neighborhood U such
that f(U) is a single element of Y.

It is trivial to see that a locally constant function is continuous.

The concept of a locally constant function is not very useful in classical
situations, because there usually aren’t any, except for constants. This is the
case whenever X is connected, for example R or C.

But for us X will be a compact-open subset of Q, (usually Z, or Z,* =
{x€Z,| |x|, = 1}). Then X has many nontrivial locally constant functions.
In fact, /1 X — Q, is locally constant precisely when f'is a finite linear com-
bination of characteristic functions of compact-open sets (see Exercise 4
below).

Locally constant functions play the same role for p-adic X that step-
functions play when X = R in defining integrals by means of Riemann
sums.

Now let X be a compact-open subset of Q,, such as Z, or Z,,*.

Definition. A p-adic distribution ¢ on X is a Q,-linear vector space homo-
morphism from the Q,-vector space of locally constant functions on X to
Q,. If f: X - @, is locally constant, instead of writing u(f) for the value
of u at f, we usually write ffp.

Equivalent definition (see Exercise 4 below). A p-adic distribution p on X is
an additive map from the set of compact-opens in X to Q,; this means that
if U = Xis the disjoint union of compact-open sets Uy, U,, ..., U,, then

w(U) = p(Uy) + w(Uz) + - -+ + w(U,).

By ‘““equivalent definition,” we mean that any p in the second sense
“extends” uniquely to a g in the first sense, and any p in the first sense
“restricts” to a u in the second sense. More precisely, if we have a distribution
w in the sense of the first definition, we get a distribution (also denoted p) in
the sense of the second definition by letting

wU) = f (characteristic function of U)y,
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II p-adic interpolation of the Riemann zeta-function

for every compact-open U. If we have a distribution p in the sense of the
second definition, we get a distribution in the sense of the first definition by
first letting

f(characteristic function of U)u = w(U),

and then defining J‘fp. for locally constant f by writing fas a linear combina-
tion of characteristic functions.

Proposition. Every map p from the set of intervals contained in X to Q, for
which
p-1

wa + (p") = D wla + bp¥ + (p*Y)

=0

whenever a + (p¥) © X, extends uniquely to a p-adic distribution on X.

ProofF. Every compact-open U < X can be written as a finite disjoint union
of intervals: U = J/, (see Exercise 1). We then define w(U) = > u(l).
(This is the only possible value of u(U) if x is to be additive.) To check that
w(U) does not depend on the partitioning of U into intervals, we first note
that any two partitions U = | [, and U = {J I," of U into a disjoint union of
intervals have a common subpartition (“finer” than both) which is of the
form I, =1, I,;, where, if I, = a + (p¥), then the I,’s run through all
intervals a’ + (p"') for some fixed N' > N and for variable &' which are
=g (mod p"). Then, by repeated application of the equality in the statement
of the proposition, we have:

W)= pa+ (P = 3wt + V) = 3 )

Hence >, uw(L) = 3, ; p(£,). Thus, 2, u(1) = >, u(l"), because both sides equal
the sum over the common subpartition. It is now clear that u is additive.
Namely, if U is a disjoint union of U,, we write each U, as a disjoint union of
intervals I,,, so that U = U,,; 1,;, and

wU) = > () = Z 2 u(ly) = > w(U). O

7
We now give some simple examples of p-adic distributions.
(1) The Haar distribution py,,,. Define
. !
Preer(@ + (ph)) dot ;I—V

This extends to a distribution on Z, by the proposition, since

p-1
b

p—1
1 1
2 tuaa(@ + 0T+ (PVN) = D g =
v=0o P P

= P‘Haar(a + (PN))

=0
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This is the unique distribution (up to a constant multiple) which is ““transla-
tion invariant,” meaning that for all 2 € Z, we have pyga(a + U) = pigaa(U),
wherea + U = {x€Z,|x — ae U}.

(2) The Dirac distribution p, concentrated at « € Z,, (« is fixed). Define

1, ifaclU;
P«a(U)dff{o -

It is trivial to check that y, is additive. Note that J.f,u.a = f(e) for locally
constant f.

(3) The Mazur distribution pya,q- First, without loss of generality, when
we write a + (p¥) we may assume that ¢ is a rational integer between 0 and
p¥ — 1. Assuming this, we define

otherwise.

a 1
F’Mazur(a + (pN)) det F’ - 'i

We postpone the verification that py,,,.. has the additivity property in the
proposition, since this will come as a special case of a more general result in
the next section.

Notice one important difference between the distributions py,,, and
tmazer @nd classical measures. In these two p-adic examples, as the interval
being measured ‘“‘shrinks” (i.e., as N — o0), its measure in terms of u
increases as a number in Q,, namely:

1
|/"“Haar(a + (pN))Ip = Iw = pN’
JZM )
and, if p t a (and if N > 1 in the case p = 2), then
o= |4 2o
|F'Mazur(a + (P ))|p = pN 2|, p

We’ll deal with this peculiarity later.

EXERCISES

1. Give a direct proof that Z,, is compact (i.e., that any open covering of Z, has a
finite subcovering). Then prove that an open set in Z, is compact if and only if
it can be written as a finite disjoint union of intervals. Note that any interval
can be written as a disjoint union of p ““equally long” subintervals: a + (p") =
UEz3a + bp™ + (p**1). Prove that any partition of an interval into a disjoint
union of subintervals can be obtained by applying this process a finite number
of times.

2. Give an example of a noncompact open subset of Z,.

3. Let U be an open subset of a topological space X. Show that the characteristic
function f: X — Z defined by

FOx) = {1, if xe U;

0, otherwise,
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II p-adic interpolation of the Riemann zeta-function

is locally constant if X = Z, and U is a compact-open but is not locally
constant for any open set U if X = R (unless U is R itself or the empty set).

4. Let X be a compact-open subset of ©@,. Show that f: X — Q, is locally constant
if and only if it is a finite linear combination with coefficients in Q, of charac-
teristic functions of compact-opens in X. Then prove that the two definitions
of a distribution on X are equivalent.

5. If a e Q,, |al, = 1, show that ppaa{al) = puaaU) for all compact-open U,
where « U denotes {ax|x € U}.

6. Let /:Z, - Q, be the locally constant function defined by: f(x) = the first
digit in the p-adic expansion of x. Find jf;z when: (1) o = the Dirac distribu-
tion Has (2) # = MHaar; (3) H = Mmazur.

7. Let w be the function of intervals a + (p¥) which is defined as follows ([ ] =
greatest integer function):

pTN+L21f the first [V/2] digits in a corresponding to odd
pla + (p¥)) = powers of p vanish;
0, otherwise.

Prove that i extends to a distribution on Z,,.

8. Discuss how one could go about making up examples of p-adic distributions
on Z, with various growth rates(i.e., rates of growth of maxo <. <p¥ @ + (P™)}s
as N increases).

4. Bernoulli distributions

We first define the Bernoulli polynomials B,(x). Consider the function in
two variables ¢ and x

text ® £k 2 (xt)
1= (250 (2 57)

K=

In this product, we collect the terms with t*, obtaining for each k a poly-
nomial in x, and we define B,(x) to be k! times this polynomial:

The first few Bernoulli polynomials are:

By(x) = 1, Bi(x) = x — %, By(x) = x* — x + ¢,
By(x) = x® — 3x% + 1x,....

Throughout this section, when we write a + (p") we will assume that
0 < a < p¥ — 1. Fix a nonnegative integer k. We define a map py, on
intervals a + (p") by

a
pasa + () = P VB ().
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4 Bernoulli distributions

Proposition. u; , extends to a distribution on Z, (called the “kth Bernoulli
distribution™).

ProoF. By the proposition in §3, we must show that
p—-1
peila + (p) = Z msxla + bpY + (pV*1)).
b=0
The right-hand side equals
N a+ bp¥
pN D=1 bzo Bk(_p“W)’

so, multiplying by p~¥*-1 and setting « = a/p"*!, we must show that
p~1 b
Bi(pa) = p*~t > Bk(a + -)-
b=0 p

The right-hand side is, by the definition of B,(x), equal to k! times the coeffi-
cient of t* in

Pl fpla+bint k—1lgpat P=1 k—lgoat ot
pret te _pFTlte P — pt te” etz 1 ,
¢ t _ P
o € — 1 e -1 & e —1ce 1

by summing the geometric progression >223 €. This expression equals

ke (pa)tip il H
P(tipe 7S By(pa) (tjf) ,
j=0 '

er — 1 -

again by the definition of B,(x). Hence, k! times the coefficient of ¢* is simply

P)(5)" = B,

as desired. O]

The first few B,(x) give us the following distributions:

peol@ + (pM) = p™V, ie, ppo = puaar;

a a 1 .
.“'3,1(‘1 + (p") = Bl(?) = p_N 5 L€., Mg,1 = MMazurs

2
psoa + (pY) = PN(;W - piN + é)’
and so on.

It can be shown that the Bernoulli polynomials are the only polynomials
(up to a constant multiple) that can be used to define distributions in this way.
We shall not need this fact, and so will not prove it. But it should be noticed
that the Bernoulli polynomials B,(x) have appeared in an important and
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II p-adic interpolation of the Riemann zeta-function

unique role in p-adic integration. This will turn out to be related to the
appearance of the Bernoulli numbers B, (which are the constant terms in
the B,(x); see Exercise 1 below) in the formula for {(2k).

5. Measures and integration

Definition. A p-adic distribution 1 on X is a measure if its values on compact-
open U < X are bounded by some constant BE R, i.e.,

|p(U)|, = B for all compact-open U < X.

The Dirac distribution u, for fixed « € Z, is a measure, but none of the
Bernoulli distributions are measures. There is a standard method, called
“regularization,” for turning Bernoulli distributions into measures. We first
introduce some notation. If « € Z,, we let {a}y be the rational integer between
0 and p¥ — 1 which is = « (mod p"). If n is a distribution and « € Q,, we let
ap denote the distribution whose value on any compact-open is « times the
value of p: (euU) = « (u(U)). Finally, if U < Q, is a compact-open set
and e € Q,, « # 0, weletalU = {x € Q, | x/ac U}. Itistrivial to check that the
sum of two distributions (or measures) is a distribution (resp. measure), any
scalar multiple op of a distribution (or measure) p is a distribution (resp.
measure), and, if « € Z,* and if x is a distribution (or measure) on Z,, then
the function p’ defined by p'(U) = u(eU) is a distribution (resp. measure)
onZ,.

Now let « be any rational integer not equal to 1 and not divisible by p.
Let pg ;. ,—or, more briefly, p, ,—be the “regularized’” Bernoulli distribution
on Z, defined by

te. V) = ppa(U) — ¥ pp i(al).
We will soon show that p, ., is a measure. In any case, it’s clearly a distribu-
tion by the remarks in the last paragraph.
We easily compute an explicit formula when & = 0 or |. For k = 0,

Hp.o = Muaar, and it is easy to see that pu, ,(U) = 0 for all U (see Exercise 5 of
§3). If k = 1, we have

pala + (") = I-ji . % - 1(@ _ ;)

U8t Y5 [5)

(where [ ] means the greatest integer function)

_1]ea (1/e) - 1
SERE=
Proposition. |u; (U)|, < 1 for all compact-open U < Z,,.

ProoF. Notice that{a~! — 1)/2 € Z,,since 1/a € Z,and 1/2 € Z,unless p = 2.
If p = 2, then «=* — 1 = 0 (mod 2), and we’re still OK. Since [«a/p"] € Z,
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5 Measures and integration

it follows by the above formula that p, .(a + (p¥)) € Z,. Then, since every
compact-open U is a finite disjoint union of intervals J,, we may conclude that
lt1,(U)], < max |y (H)], < 1. O

Thus, g, , is a measure—the first interesting example of a p-adic measure
that we’ve come across. In fact, we’ll soon see that u, , plays a fundamental
role in p-adic integration, almost as fundamental as the role played by “dx”
in real integration.

We next prove a key congruence that relates u, , to u; ,. The proof of
this congruence at first looks unpleasantly computational, but it becomes
more transparent if we think of an analogous situation in real calculus.

Suppose that in taking integrals such as ff(\VE)dx we want to make the
change of variables x > x*, i.e., to evaluate ff(x)d(x"). The simple rule is:
d(x*)/dx = kx*~'. Actually, d(x*) can be thought of as a ‘““measure” y, on
the real number line, which is defined by letting u,([a, b]) = b* — a*; then
u1 1s the usual concept of length. The relation d(x*)/dx = kx*~! actually
means

: P’k([a’ b]) _ k-1
m (@ B)

Thus, in the Riemann sums > f(x;)u, () in the limit as the I’s all become
smaller we may replace p,(1;) by kx*~*u,(l;) and get J'f(x)kx“‘1 dx.

The actual proof that lim,_, , w.([a, b])/u1([a, b]) = ka*~* uses the binomial
expansion for (@ + #)* (where h = b — a)—actually, only the first two terms
a* + kha*~? really matter. Similarly, in the p-adic case, when we show that
e oIy ~ ka*~*p, (1) if Iis a small interval containing a, we also use the
binomial expansion. Thus, Theorem 5 should be thought of as analogous to
the theorem that (d/dx)(x*) = kx*~1 from real calculus. (Forget about the d,
on both sides of the congruence in Theorem 5; all it means is that, when we
divide both sides by d,, we must replace p~ by p" ~ °*%%, where ord, dj is just
a constant which doesn’t matter for large N.)

Theorem 5. Let d, be the least common denominator of the coefficients of B, (x).
Thus: d, = 2,d, = 6, dy = 2, etc. Then

dipir, (@ + (pY)) = dika "y o(@ + (p)) (mod pY).

ProOOF. By Exercise 1 below, the polynomial B,(x) starts out

k
Box"+kB1x’°‘1-+-~--=x"—§x"‘1+---.

Now

p

The polynomial d,B,(x) has integral coefficients and degree k. Hence we

e + (1) = o= (B( 5) - ()
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Il p-adic interpolation of the Riemann zeta-function

need only consider the leading two terms d.x* — d(k/2)x*~! of d,Bi(x),
since our x has denominator p”, so that the denominators in the l[ower terms
of d, B,(x) will be canceled by p¥*~1 with at least p¥ left over. We also note
that

«a = {ea}y (mod pV),
and

fedly _ o _ [;‘)—‘,f] ([ ] = greatest integer function).

Hence

a* aty \*
el + (9 = dop= (55— o (222)

k{ a1 b\ k-1
- §<pzv(k—1> - “_k({:N}h) )) (mod p%)
a* _ o fea aa | \*

_ dk(?] — akphe 1)(? _ [F’])

k _ B . faa aa\k-1

e = (2 [2]))
K Kk

= dk(;—N — a"k(apz - ka"‘la’“”[%])

_ I%(akfl _ a—k(ak—lak—l))) (mode)

_f1lica ljee — 1
— k-1{1]%4
= dka (a[pN] +t )

= dika* ', fa + (PV)). O

Corollary. . , is ameasure for allk = 1,2,3, .. . andanyacZ,a ¢ pZ, o # 1.
Proor. We must show that u, (¢ + (p¥)) is bounded. But by Theorem 5,

leal@ + (P, < max( ’f;} ke oo + (p”))lp)

S lpnala + (p”))lp)~

< max( 7

But |p; {a + (p¥))|, < 1, and d, is fixed. O
What is the purpose of going to all this fuss to modify (“regularize”)

Bernoulli distributions to get measures ? The answer is that for an unbounded
distribution pu, ffy is defined by definition as long as f is locally constant,
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5 Measures and integration

but you run into problems if you try to use limits of Riemann sums to extend
integration to continuous functions f.

For example, let u = pyqar, and take the simple function f: Z, — Z, given
by f(x) = x. Let’s form the Riemann sums. Given a function f, for any N we
divide up Z, into 23! (a + (p")), we let x, v be an arbitrary point in the
ath mterval, and we define the Nth Riemann sum of f corresponding to

{xa,n} as
pN-1

S, S ZD SGxa @ + (pY)).

In our example, this sum equals

pgs

For example, if we simply choose x, y = a, we obtain

pN-1

; N@V =DM _p¥ -1
N — N — .

p aZO “= p 2 B 2

z|'—‘

This sum has a limit in Q, as N — oo, namely —1/2. But if, instead of x, y =
aca + (p¥), we change one of the x, y to a + ayp” € a + (p¥) for each N,
where a, is some fixed p-adic integer, we then obtain

pN -1 N1
p‘”(z a+aop">=p >— t o,
e=0

whose limit is @, — 4. Thus, the Riemann sums do not have a limit which is
independent of the choice of points in the intervals.

A “measure” p is not much good, and has no right to be called a measure,
if you can’t integrate continuous functions with respect to it. (This is a slight
exaggeration—see Exercises 8-10 below.) Now we show that bounded
distributions earn their name of “measure”.

Recall that X is a compact-open subset of Q,, such as Z, or Z,*. (For
simplicity, let X < Z,.)

Theorem 6. Let . be a p-adic measure on X, and let - X — Q,, be a continuous
Sunction. Then the Riemann sums

SN.(XQ‘N) d?f Z f(xa N)i‘(a + (PN))

O0sa<pN
a+(pM)cX

(where the sum is taken over all a for which a + (p¥) < X, and x, y is
chosen in a + (p")) converge to a limit in Q, as N — oo which does not
depend on the choice of {x, y}.

ProOOF. Suppose that p(U) < B for all compact-open U < X. We first
estimate for M > N

ISN.(xa,N) - SM.(xa,M)lp'
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II p-adic interpolation of the Riemann zeta-function

By writing X as a finite union of intervals, we can choose N large enough so
that every a + (p") is either = X or disjoint from X. We rewrite Sy, s, ,) s
follows, using the additivity of w:

> fxala + (p™)

a0+s(1?“;)pcMX
{where a denotes the least nonnegative residue of a mod p¥). We further
assume that N is large enough so that |f(x) — f(¥)|, < £ whenever x = y
(mod p"). (Note that continuity implies wniform continuity, since X is
compact; this is an easy exercise, or else see Simmons’ book.) Then

ISN.(xa.N) - SM.(xa.,M)|P =

D (f(ran) = f(Xa)ila + (p™)

Osa<pM
a+(pMycXx

max(| f(xa,n) — f(xo,m)l5-[la + (p*))]5)

< ¢B,

IA

since x; v = X, (mod p¥). Since ¢ is arbitrary and B is fixed, the Riemann
sums have a limit.
It follows similarly that this limit is independent of {x, y}. Namely,

ISN.{xa.N) - SN.(x'a,N)Iy =

> xaw) = f(xa )@ + (pY)

0<a<pN
a+(pN)e X

< maxg(] fxa, ) ~ fxa )5 (@ + (p")5)
< eB. OJ

Definition. If /: X — (0, is a continuous function and g is a measure on X, we
define ffy to be the limit of the Riemann sums, the existence of which was
just proved. (Note that, if fis locally constant, this definition agrees with
the earlier meaning of ff;L.)

The following simple but important facts follow immediately from this
definition.

Proposition. If /- X — Q, is a continuous function such that | f(x)|, < A for all
x € X, and if W(U) < B for all compact-open U < X, then

[

Corollary. If f, g: X — Q, are two continuous functions such that | f(x) — g(x)|,
< eforall xe X, and if W(U) < B for all compact-open U < X, then

Hfu—fgﬂ

< A-B.
P

< eB.

P
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Exercises

EXERCISES

1.

Show that Bi(x) = Sf.o (F)Bx*', and, in particular, B,(0) = B,. Further
show that

1 ifk=0 d
ifk =0, and that  ~— Bu(x) = kB 1(x).

1
fo Bi(x) dx = 0 otherwise, dx

. Prove that no distribution u (except for the identically zero distribution) has

the property that

max |u(@ + (p¥)], >0 as N— oo,
0sa<pN

. What is pup k(Z,)? usi(pZ)? peul(Zp*)?

. Prove that a p-adic distribution x is a measure if and only if for some a € Z,

the distribution a-u takes values in Z,. Prove that the set of measures on X
is a Qp-vector space.

5. Express pi,o(Z,) and i o(Z,*) in terms of « and k. Find 7, fp1,q if f(x) =
2i-o ax'.
6. Let p be an odd prime. Foranya = 0, 1, ..., p* — 1, let S, denote the sum of

10.

the p-adic digits in a. Show that u(a + (p™) = (— 1)S gives a measure on Z,,
and that | fu = 0 for any odd function f (i.e., for which f(—x) = —f(x)).

. Letp > 2, f(x) = 1/x,and « = 1 + p. Prove that [z * f 1. = —1 (mod p).

. A distribution p on X is called “boundedly increasing” if maXp<q<p¥

Ip¥u(a + (pY))|, — 0 as N — o, i.e., u “‘increases strictly slower than pyaar.”
Prove that Theorem 6 holds for u if we assume that /: X — Q,, satisfies the
Lipschitz condition: there exists an A € R such that for all x, ye X

f(X) = fD)], < Alx — y,.

(This concept was introduced by Manin and applied by him to p-adic inter-
polation of certain Hecke series.)

. Let u be the distribution defined in Exercise 7 of §3. Check that u is boundedly

increasing. Let f: Z, — Z,, be the function f(x) = x. Evaluate | fiz, which we
know is well defined by the previous problem.

Let r be a positive real number. A function f: Z, - Q, is called (by Mazur)
“of type r”’ if there exists 4 € R such that for all x, x" € Z, we have

f(x) = f(XD)], < Alx — x|,

Note that any such function is continuous. If r > 1, then fis Lipschitz (see
Exercise 8). Now let u be a p-adic distribution on Z, such that for some
positive s€ R

p~™ max |wa+@")N,—>0 asN-—->oo.
05a<p~

Prove the analogue of Theorem 6 for such a n and functions of type r when-
ever r = s.
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II p-adic interpolation of the Riemann zeta-function

6. The p-adic {-function as a Mellin-Mazur
transform
If X is a compact-open subset of Z,, any measure x on Z,, can be restricted to

X. This means we define a measure u* on X by setting u*(U) = p(U) when-
ever U is a compact-open in X. In terms of integrating functions, we have

J-fy* = ff- (characteristic function of X)u.

We shall use the notation foy for this restricted integral ffp*.
We said that what we want to interpolate is — B,/k. We have the simple
relationship

fl'/"'B.k = #B.k(zp) = B

(see Exercise 3 of §5). Hence we want to interpolate the numbers
—(1/k) [ 1 .

For different k are the distributions uj, related to each other in any
straightforward way? Not quite, but the regularized measure p, . is related
to u, , by Theorem 5. More precisely, we have the following corollary of
Theorems 5 and 6:

Proposition. Let 1 7, — 7, be the function f(x) = x*~! (k a fixed positive
integer). Let X be a compact-open subset of Z,. Then

J 1.“'k.a = kf fl‘l.a-
X X

ProoF. By Theorem 3, we have

/“'k,a(a + (PN)) = kakqlil-l_a(a + (pN)) (mod pN—ordpdk).

Now, assuming that N is large enough so that X is a union of intervals of the
form a + (p%), we have

[ e 3 dda+ )

0sa<pN
a+(pN)eX

i3

ka*~lps o(a + (p")) (mod p" ~ords)

0sa<pV
a+(pNycXx

ko > fl@pdda + (pY).

0<a<p¥
a+(pNycXx

Taking the limit as N — x gives {x Ly , = k {x fuy , O

If we replace f by x*~! in our notation, treating x as a ‘‘variable of inte-
gration,” we may write this proposition as

f llbLk,a = kf xk_llll.a"
X X
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6 The p-adic ¢-function as a Mellin-Mazur transform

The right-hand side looks much better than the left hand side from the
standpoint of p-adic interpolation, since instead of k appearing mysteriously
in the subscript of y, it appears in the exponent. And we know from §2 what
the story is for interpolating the integrand x*~* for any fixed x (see also
Exercise 8 of §2). Namely, we’re in business as long as x # 0 (mod p). To
make all of our x’s in the domain of integration have this property, we must
take X' = Z,*.

Thus, we claim that the expression Jz," x*~1u, , can be interpolated. To
do this, we combine the results of §2 with the corollary at the end of §5. That
corollary tells us that if | f(x) — x*7*|, < e for xeZ,*, then

k-1
. Jrre — J. L X TP
Z, Zp

(recall that |u; (U)|, < 1 for all compact-open U). Choose for f the function
x*¥=1 where k' = k(mod p — 1) and k' = k (mod p¥) (writing this as one
congruence: k' = k (mod (p — 1)pM). By §2, we have:

<e

, 1
[x" - x"‘llp < pN—+T foerZ,,".
Thus,

1
= pN+1'

k-1 k-1
.[ N X H1,a —f " X Hi1,a
z, zp

We conclude that, for any fixed s,€{0, 1,2, ..., p — 2}, by letting k run
through S, = {positive integers congruent to s, (mod p — 1)}, we can
extend the function of k given by fz,‘ x*~1u, o to a continuous function of
p-adic integers s:

P

+s(p-1)-1
x xso P‘l,a-
Zp

But we have strayed a little from our original numbers —(l/k)f lpp,,. We
just saw that we can interpolate

1
f % xk—lf‘l,a = k x lf"k,a-
Zp Zp

Let’s relate these two numbers:

1 I )
k fl," Yo = k Hie,o{Zp ™)

= Ilc (1 — «™¥)(1 — p*~)B, (see Exercise 5 of §5)

= @ = 0 = )= [ )

The term 1 — p*~! made its appearance because we had to restrict our
integration from Z, to Z,*. This is the phenomenon predicted at the end of
§2: because we can not interpolate #° when p|n, we must remove a “p-Euler
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II p-adic interpolation of the Riemann zeta-function

factor” from the {-function before it can be interpolated. So we will inter-
polate the numbers (1 — p*~)(— B, /k):

B, 1
pk—l k) — xk-1
( )( k) a k- 1]2»‘ e

One slight embarrassment, which we warned of in §2, is that the Euler term
is 1 — p*~1 and not 1 — p~* as you might think it should be from the
beuristic discussion in §2. It’s as though, instead of {(k), we were really
interpolating ““Z(1 — k)” (we haven’t yet defined what this means for
positive k). So we define our p-adic {-function to have the value (1 — p*~1)-
(— B,/k) at the integer 1 — k, not at k itself.

Definition. If k is a positive integer, let
L(L = k) & (1 = p*=)(— By/k),

so that, by the preceding paragraph,

1
L —k) = aT——lfzp' X7y g

Note that the expression on the right does not depend on ¢, ie.,if € Z,
ptBB # Lithen(B=* — )71 [ . x* 7ty = (™" = D7 [, x¥71py g, since
both equal (1 — p*~)(— B,/k). This equality—this independence of a—can
also be proved directly (see Exercise 1). We shall use this independence of «
later, when we define {,(s) for p-adic s.

But we first derive some classical number theoretic facts about Bernoulli
numbers. These facts were considered to be elegant but mysterious oddities
until their connection with the Kubota-Leopoldt {, and Mazur’s measure
#1.4 revealed them as natural outcomes of basic ““calculus-type” considera-
tions (namely, the corollary at the end of §5, which says, roughly speaking,
that when two functions are close together on an interval, so are their
integrals).

Theorem 7. (Kummer for (1) and (2), Clausen and von Staudt for (3)).
(1) If p — 14k, then |B,Jk|, < 1.
(2) Ifp — Ytk and if k = k' (mod(p — 1)p%), then
(1= P~ 26 = (1 = p¥ =) 2% (mod p¥*).
(3) If p — 1|k and k is even (or k = 1, p = 2), then
pB,. = —1 (mod p).

PROOF. We assume p > 2, and leave the proof of (3) when p = 2 as an exer-
cise (Exercise 6 below).
We need a fact which will be proved at the beginning of the next chapter
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6 The p-adic {-function as a Mellin-Mazur transform

(at the end of §II1.1): There exists an « € {2, 3, ..., p — 1} such that «® "1 is
the lowest positive power of « which is congruent to 1 modulo p. Put another
way, the multiplicative group of nonzero residue classes of Z mopulo p is
cyclic of order p — 1, i.e., there’s a generator « €{2, 3, ..., p — 1} such that
the least positive residues of e, o2, «®, ..., a? "t exhaust {1, 2,3, ...,p — 1}.

In the proof of parts (1) and (2), we choose our ‘“measure regularizer” «
to be such a generatorin{2, 3, ..., p — 1}. This means that, since p — 14(—k),
we have a ™% £ 1 (mod p), so that («™* — 1)~ e Z,*.

To prove (1), we write (assuming k& > 1; if k=1 and p > 2, then
By, = |~1/2], = 1):

|Bukly = 1 = D10 = p0l[ |

k-1
f x X B,
Zp

<1,

4

by the proposition at the end of §5 (with 4 = B = 1), since |u, (U)|, < 1
for all compact-open sets U < Z,* and |x*"!|, < 1 forall xe Z,*.
To prove (2), we rewrite the desired congruence as

Fkl___l J‘l," xk—ll"'l,a ;-k'l—__l JZ,,' xkl_ll"'l,a (mod PN+1)-
Notice that, if for a, b, ¢, d € Z, we have a = ¢ (mod p") and b = d (mod p"),
then we also have ab = ¢b = cd (mod p*). Thus, since @ = («™% — 1)1,
b= [y« ¥ e c=(@* =17, and d = jlp, x¥ 1y, , are in Z,, it
suffices to prove that (¢ —1)7' = («™® — 1)"* (mod p¥**) and
J‘Zyx Xty o, = jsz xX¥ =1y, . (mod p¥*1). The first reduces to of = o
(mod pV*1), and the second reduces (using the corollary at the end of §5,
with B =1 and ¢ = p~"!) to showing that x*~! = x* -1 (mod p"*1!) for
all x e Z,*. But this all follows from the discussion in §2.

Finally, we prove the Clausen-von Staudt congruence. For this let « =
1 + p. Recall that we are proving it for p > 2. We have

R A
—_— 1 sz .

First take the first of the three terms on the right. If we let d = ord, k, then
e’ — 1 =(1+p)*—1=—kp(modp*?),

pB, = —kp(—Bi/k) =

o=k

so that
- _~kp
Next, since k must be >2, we have (1 — p*~1)~! = 1 (mod p). Thus,

pB = f x*"1u, o (mod p).
Zp™
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II p-adic interpolation of the Riemann zeta-function

Again using the corollary at the end of §5, this time with f(x) = x*~1 and
g(x) = l/x, we obtain

pB. = L . X'y o (mod p).
But by Exercise 7 of §5, this latter integral is congruent to —1 (mod p). [J

We now return to p-adic interpolation.

Definition. Fix s,€{0,1,2, ...,p — 2}. For seZ,(s # 0 if 5, = 0), we
define

1
— xS +(p-1Ds—1
gp»so(s) def o~ G+ =Ds) | |, « ° K10
P

It should by now be clear that this definition makes sense, namely,
o~ SotP-1is) — a—so(ap—l)—s and xSot®-Ds-1  for any x € Zp x

are defined for p-adic s by taking any sequence {k;} of positive integers
which approach s p-adically. Another way to define {, ,(s) is as follows:
—limy, (1 = po* P V"N B L o k(5o + (P — k).

We now see that if & is a positive integer congruent to s; (mod p — 1), i.e.,
k = sy + (p — Dky, then we have: { (1 — k) = {, (ko). We think of the
{».5, as p-adic “branches” of {,, one for each congruence class mod p — 1.
(But note that the odd congruence classes—s, = 1,3, ..., p — 2—give us
the zero function, since for such s, always B, . -1k, = 0; so we are only
interested in even s,.)

In the definition of {, ,, we excluded the case s = O when s, = 0. This is
because in that case o~ *®~19 = ] and the denominator vanishes. If we
write {,(1 — k) = £, (ko), where k = 5, + (p — 1)k,, then this excluded
case corresponds to {,(1). Thus, the p-adic zeta-function, like the Archimedean
Riemann zeta-function, has a “pole” at 1.

Theorem 8. For fixed p and fixed s,, {, () is a continuous function of s which
does not depend on the choice of «€Z, pta, « % 1, which appears in its
definition.

ProOF. 1t is clear that §2 and the corollary at the end of §5 imply that the
integral is a continuous function of s. The factor 1/(a~®e*®-D9 _ 1) s g
continuous function as long as we don’t allow s = 0 when s, = 0, because
a~te*®- D9 j5 a continuous function by §2. So {, , (s) is also continuous.

It remains to show that {, ;(s) does not depend on «. Let e Z, piB,
B # 1. The two functions

i

+{(p-1)s-1
w-Got-D® _ ] X0 i«

Z,"
and
1

B Gor =D _

+(p-1s-1
T 2 xS0t (? s H1p
P
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7 A brief survey (no proofs)

agree whenever s, + (p — 1)s = k is an integer greater than 0, i.e., whenever
s is a nonnegative integer (s > 0if 5, = 0), since in that case both functions
equal (1 — p*~*)(— B,/k). But the nonnegative integers are dense in Z,, s0O
that any two continuous functions which agree there are equal. Therefore,
taking 8 instead of « does not effect the function. O

Theorem 8 gives us our p-adic interpolation of the “‘interesting factor”
— B;/2k in {(2k). But a few things remain to be explained: (1) the terminology
“Mazur-Mellin transform” in the title of this section; and (2) the mysterious
switch from k£ to 1 — k. In addition, something should be said about (3)
deeper analogues with classical {-functions and L-functions, and (4) a
connection with modular forms. Since these four topics will take us beyond
the scope of what we intend to prove in this book, they are gathered together
in a section which surveys some basic relevant facts without attempting any
proofs. References for proofs and further discussion of (1)—(4) are: (1) Manin,
“Periods of cusp forms, and p-adic Hecke series,” §8; (2) Iwasawa, Lectures
on p-adic L-functions, §1 and appendix; (3) Iwasawa, Lectures on p-adic
L-functions, especially §5, and Borevich and Shafarevich, Number Theory,
p- 332-336; (4) Serre, “‘Formes modulaires et fonctions zéta p-adiques,”
in Springer Lectures Notes in Mathematics 350.

7. A brief survey (no proofs)
(1) For s > 1, {(s) can be expressedi as an integral

1 o, dx
r_@fo YUEST

where I'(s) is the gamma-function, which satisfies I'(s + 1) = sI'(s), I'(1) = 1,
so that, in particular, I'(k) = (k — 1)! for positive integers k. (See Exercise 4
below for the case s = k.) The integral is what is known as a Mellin transform.
For a function f(x) defined on the positive reals, the function

g(s) = f: X -1(x) d,

whenever it exists, is called the Mellin transform of f(x) (or of f(x) dx).
Thus, I'(s){(s) is the Mellin transform of dx/(e* — 1), which exists for s > 1
(see Exercise 4 below).

In §6, we showed that the function which p-adically interpolates (1 — p*~1)
(— B, /k) is essentially (except for the 1/(a™* — 1) factor and the s, business)

-1
x xs .u’l,a’
Zp

where pu, o is the regularized Mazur measure. Thus, the p-adic {-function
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II p-adic interpolation of the Riemann zeta-function

can be thought of, in analogy to the classical case, as the “p-adic Mazur-
Mellin transform” of the regularized Mazur measure pu, ,.
(2) If we consider

f—

5

S

Us) = Z

for s complex, with real part > 1, this sum still converges and defines a
“complex analytic” function of s. By the technique of ‘‘analytic continua-
tion,” {(s) can be extended onto the entire complex plane except for the point
s = 1 (where its behavior is like the function 1/(s — 1)). A very basic pro-
perty of {(s) is that it satisfies a ““functional equation” which relates its
value at s to its value at | — 5. Namely,

(1 - sy = 2L AI) COS((’;T/)?F(” Us)

Let’s let s = 2k be a positive even integer. Then

2coswk (2k — 1)

!
{1~ 2k) = o " s [(2k)
2(—= 142k — 1) (—1)km2k226-1 By,
= (271_)2}.: (2/( . 1)' ( _ﬁ) by Theorem 4

2k
On the other hand, if s is an odd integer greater than 1, the right-hand side
of the functional equation vanishes because cos(s/2) = 0 (we need s > 1 in
order for {(s) to be finite). Hence {(1 — s) vanishes, and so there too
{(1 — k) = — B,/k, but all this says is that 0 = 0.

Table of {(1 — k) = — B, /k

1 —k i1 - k)

~1 —1y12

-3 1/120

-5 —1/252

-7 1/240

-9 ~1/132
-11 691/32760
—13 /12

—15 3617/8160
—-17 —43867/14364
~19 174611/6600
—21 —77683/276
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7 A brief survey (no proofs)

So what we were ‘““‘really” interpolating was the Riemann {-function at

negative odd integers. We can now summarize the relationship between {, and
{ in the following simple way, using the definition of {,:

Ll —k)=00—-p (1 —k) fork=2,3,4,....
If we’re a little sloppy (forgetting that everything will diverge), we can
write: {(1 — k) = TTprimesq 1/(1 — g*71),

Hrl-k= J] Yd-=g=(01-p1 - k),
primesq, q#p

so the appearance of the (1 — p*~!) factor makes heuristic sense from this
devil-may-care point of view.

In the same tack, we can derive the formula {(1 — k) = —B,/k in a com-
pletely straightforward way:

=0z 2 = 2w

n=1
Since (d/dt)<~te™|,., = n*~1, we may write
— S d ko1 nt
-0 =3 ()7

YR

YR
x
i
L
-
[ |~
mﬂ-
!
—
v
v
o

ISR

|
e
& a
=
1
L
P
-
| {—
m«
\—/

(3) Connections between {, and [ go deeper. An important example
requires us to consider the generalization of { to functions of the form

n

LZ(S) = i X(’:)’

s > 0,

where y is a ““character” (see Exercises 9-10 of §2). As long as y is not the
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II p-adic interpolation of the Riemann zeta-function

“trivial " character (equal to 1 for all n), this function L,(s) converges when
5= 1: 3%, (x(n)/n), and can be computed explicitly. The result is:

z(l) — (X) Z -(a) log(l . e—zu!alN)

a=1

where N is the conductor of y and (x) = S¥-{ x(a)e?™*'¥ (ihis formula
eastly reduces to those given in Exercises 9-10 of §2).

In a manner very similar to the construction of {,, it is possible to inter-
polate L (1 — k) by *“p-adic L-functions” L, ,. Amazingly, it turns out that
L, (1) equals the following expression:

_(1 _ l(p_p_)) T(X) Z 7(a) log,(1 — e~2ntaiN),

in which “log,” is the " p-adic logarithm,” which is a p-adic function of a
p-adic variable (see §IV.1 and §1V.2), and all of the roots of unity that
occur - namely, e2™@ " and the values of y —are considered as elements of
an algebraic extension of @, (see §I11.2-3). Here (1 — (x(p)/p)) shouid be
thought of as the p-Euler factor (for the {-function, y = 1, and the Euler
factor in (1), if {(1) were finite, would be (1 — (1/p)); see also Exercise 9 of
§2 concerning Euler products for L,). The rest of the expression for L, (1)
is the same as L (1), except that the classical log is replaced by its p-adic
analogue log,,.

(4) Very important in the study of elliptic curves and of modular forms
(see Chapter VII of Serre, A Course in Arithmetic) are the Eisenstein series
Es, k = 2, which are functions defined on all complex numbers z with
positive imaginary part by:

1 B <
E2k(z) 2 27: + Z Oy - l(n)ezmnz

where
on(h) = Z dm.
din

The series should be thought of as a *“ Fourier series”—i.e., a series in powers
of e?**—with constant term equal to ${(1 — 2k).

It turns out that Eisenstein series can be p-adically interpolated. One hint
of this is that we can interpolate each nth coefficient as long as ptn. Namely,
that coefficient o,,_,(n) is a finite sum of functions d%*~, all of which can
be interpolated, by §2, since p{d. Then interpolating {(I — 2k) can be thought
of as *‘ getting the constant coefficient t0o.” Vague as this all may seem, it is
actually possible to derive the results in this chapter using the theory of p-adic
modular forms. For details, see Serre’s paper mentioned before, and papers
by N. Katz on p-adic Eisenstein measures and p-adic interpolation of Eisen-
stein series (see Bibliography).

50



Exercises

EXERCISES

1. Using the relationship between p; 4, fk.a and g «, give a direct proof (without

mentioning Bernoulli numbers) that

1
k-1
a”" —_ lfl,;xx H1.a

does not depend on «.

2. Check the Kummer congruences from the table of {(1 — k) when p = 5,

k=2 k" =22, N=1. Check in the table that the congruences fail when
p — 1|k. Use the Kummer congruences and the first few values of B, to compute
the following through the p2-place:

(l) Blog in Qs (ll) Bzge in @7 (lll) 3592 in Q7.

3. Use Theorem 7 and Exercise 20 of §1.2 to prove the following version of the

theorem of Clausen and von Staudt: (B, + 3 ;)€ Z, for any even k (or k = 1), where
the summation is taken over all p for which p — 1|k.

4. Show that [ x°*~'dx/(¢* — 1) exists when s > 1. By writing 1/(e* — 1) =
e */(1 — e %) = > -,e~ "% prove that:

[ © xk—l

’ ———dx = (k — DIYK) fork =23,4,...
o e —1

(justify your computations).

5. Prove that

@ k-1
f X dx=(k— DI = 22-9k) fork =2,3,4,....
o € + 1

Show that the function
1 ® x-1
) — 279 )e e+ 1

dx,

which you just showed equals {(s) for s = k = 2,3,4, ..., exists and is
continuous as a function of s fors > 0, s # 1.

6. Prove the Clausen-von Staudt theorem when p = 2.
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CHAPTER III

Building up ©

1. Finite fields

In what follows, we’'ll have to assume familiarity with a few basic notions
concerning algebraic extensions of fields. It would take us too far afield to
review all the proofs; for a complete and readable treatment, see Lang’s
Algebra or Herstein’s Topics in Algebra. We shall need the following concepts
and facts:

(M

2

©)

“

52

The abstract definition of a field F; a field extension K of Fis any field K
containing F; a field extension K is called algebraic if every « € K satisfies
a polynomial equation with coefficients in F: qq + ayo + age® + -+ +

a0 = 0, where a, € F. For example, the set of all numbers a + & V2
with g, b € Q is an algebraic extension of Q.

If F is any field, its characteristic char(F) is defined as the least n such
that when you add 1 to itself » times you get 0. If 1 + 1 +--- + |
always # 0, we say char(F) = 0. (It might sound more sensible to say
char(F) = oo, but the convention is to say that such fields have charac-
teristic 0.) @, @,, R, and C are fields of characteristic 0, while the set
of residue classes modulo a prime p is a field of characteristic p. (We'll
see more examples of fields of characteristic p in a little while.)

The definition of a vector space V over a field F; what it means to have
a basis for V over F; what it means for V to be finite-dimensional ; if V
is finite-dimensional, its dimension is the number of elements in a basis.
A field extension K of F is an F-vector space; if it is finite-dimensional,
it must be an algebraic extension, and its dimension is called the degree
[K:F]. If « € K has the property that every element of K can be written
as a rational expression in «, we write K = F(a) and say that K is the
extension obtained by “‘adjoining™ « to F. If K’ is a finite extension of
K, then it is easy to see that K’ is a finite extension of F, and [K'. F] =
[K':X] [K:F).



1 Finite fields

(5) Any element « in a field extension K of F which is algebraic over F

(6)

@)

®)

®)

satisfies a unigue monic irreducible polynomial (*monic” means it has
leading coefficient 1, ““irreducible” means it cannot be factored into a
product of polynomials of lower degree with coefficients in F):

o + a,_ "+ o+ gy + ag = 0, a,eF,

n is called the degree of «. The field extension F(«) has degree n over F
(in fact, {1, «,a?%, ..., " 1} is one possible basis for F(«) as a vector
space over F).

If Fis a field of characteristic O (for example, Q or @,) or a finite field
(we’ll study finite fields in detail very soon), then it can be proved that
any finite extension K of F is of the form K = F(a) for some « € K.
o is called a “primitive element.” (Actually, this holds if F is any
“perfect” field, where “perfect” means that either char (F) = 0, or
else, if char (F) = p, every element in F has a pth root in F.) Knowing a
primitive element « of a field extension K makes it easier to study X,
since it means that everything in K is a polynomial in « of degree <n,
ie, K= {3} ad' | a € F}.

Given an irreducible polynomial f of degree n with coefficients in F, we
can construct a field extension K = F of degree n in which f has a root
« € K. Roots of all possible polynomials with coefficients in F can be
successively adjoined in this way to obtain an “algebraic closure”
(written F*®¢< or F) of the field F; by definition, this means a smallest
possible algebraically closed field containing F (recall: a field K is called
algebraically closed if every polynomial with coefficients in K has a
root in K). Any algebraic extension of F is contained in an algebraic
closure of F (i.e., can be extended to an algebraic closure of F). Any
two algebraic closures of F are isomorphic, so we usually say “the
algebraic closure,” meaning ‘‘any algebraic closure.” The algebraic
closure of a field F is usually the union of an infinite number of finite
algebraic extensions of F; for example, the algebraic closure of Q
consists of all complex numbers which satisfy a polynomial equation
with rational coefficients. However, the algebraic closure of the real
numbers Ris C = R(\/—_l), which is a finite algebraic extension of R of
degree 2; but this is the exception rather than the rule.

If K = F(a), if K’ is another extension field of F, and if o: K— K’
gives an isomorphism of K with a subfield of K’ (where o is an “F-
homomorphism,” i.e., it preserves the field operations, and o(a) = a
for all a € F), then the image o) of « in K’ satisfies the same monic
irreducible polynomial over F as « does. Conversely, if K = F(«), if
K’ is another extension field of F, and if «’ € K’ satisfies the same monic
irreducible polynomial over F as o« does, then there exists a unique
isomorphism o of K with the subfield F(e') of K’ such that o(a) = a for
all g € F and such that o(e) = «.

In F = F*¢°'_ a]] the roots of the monic irreducible equation over F
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III Building up Q

satisfied by an element « € F are called the conjugates of «. There is a
one-to-one correspondence between isomorphisms of F(«) with a sub-
field of F and conjugates «' of « (see the preceding paragraph (8)). If
char (F) = 0 or if F is finite (or if F is perfect), then an irreducible
polynomial can not have multiple roots, i.e., all the conjugates of «
are distinct. In that case: (number of conjugates) = [F(«): F].

(10) If K = F(«), then K is called “Galois” if all of the conjugates of « are
in K. In that case all conjugates of any x = >7-¢ g, € K are in K, since
such a conjugate is of the form >724 a,e’!, where « is a conjugate of «.
Examples of Galois extensions of @ are: Q(V'2) (since « = V2 has
one conjugate o' = —4/2, which is the other root of x2 — 2 = 0; here
—V2eQW2); Q); QW d) for any de Q; Q(L,), where £, = e2™m
is a primitive mthroot of 1 in C (since the conjugates of Z,, are other primi-
tive mth roots, and these are of the form {,' for i having no common
factor with m). An example of a non-Galois extension of Q is Q(¥'2),
since the conjugates of V2 are the 4 roots of x* — 2 = 0, namely
+v2 and +iV2, and we have iV'2 ¢ Q(¥2) (since Q(V'2) is contained
in the real numbers).

(11) If X is a Galois extension of F, then the isomorphisms in paragraph (8)
all have image X itself, i.e., they are F-isomorphisms from K to K, or
¢ F-automorphisms of K.” The set of these automorphisms is a group,
called the ““Galois group of K over F.” If ¢ is such an automorphism,
then the set of x € K such that o(x) = x is called the “fixed field of ¢”
(it’s easy to see that it’s a subfield of K containing F). For example,
if K = Q(V2 + V/3), which is a Galois field extension of Q of degree 4,
and if o takes V2 + V'3 to V2 — V'3, then the fixed field of ¢ turns
out to be Q(v/2). It is not hard to prove that, if K is a Galois extension
of Fand K’ # K is a field between K and F: F < K’ < K, then there is
a nontrivial automorphism of K which leaves K’ fixed. In turns out there
is a one-to-one correspondence between subgroups S of the Galois group
of K over F and such intermediate fields F < K’ < K, where

S« Ky ={xeK|ox =xforalloeS}.
But we shall only need simple cases of the facts in this paragraph, not
the full power of Galois theory.

We now proceed to the study of finite fields. The simplest example of a
finite field is the ““integers modulo a prime p.” This means: take the set of
equivalence classes of integers for the equivalence relation: x ~ y means
x = y(mod p). There are p such equivalence classes: the class of 0, 1, 2, 3,
..., — 2,p — 1. Itis easy to define addition and multiplication and check
that this set, which we call F,, forms a field (in particular, every non-zero
equivalence class has an inverse; this amounts to saying that if p does not
divide x, then there exists a y such that xy = 1 (mod p)). F, is sometimes
written Z/pZ (meaning ““the integers divided out by p times the integers™).

We could have equally well started out with the p-adic integers Z,, and
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1 Finite fields

defined x ~ y (x, y € Z,) to mean x = y (mod p) (i.e., x and y have the same
first digit in their p-adic expansions). That is, F, can also be written Z,/pZ,
(““the p-adic integers divided out by p times the p-adic integers™). Z,/pZ, is
called the “residue field” of Z,. The reason why we have to study general
finite fields before going further is as follows: the residue fields we get when,
instead of Q, and Z,, we deal with algebraic extensions of @, are not quite as
simple as [F,. They turn out to be algebraic extensions of F,. So we need to get
a picture of what general finite fields look like.

Let Fbe a finite field. Since not all the numbers0, 1,1 + 1,1 + 1 + 1, ...
can be distinct, F must have characteristic #0. Let n = char(F). Note that
n must be a prime, since if we could write n = ngn,, with n, and n, both <n,
we would have ny, # 0, so multiplying by #,~! would give: n, = n,"'n = 0,
a contradiction. So let p denote the prime number char(F).

Clearly, any field F of characteristic p contains the field of p elements as a
subfield (namely, by taking the subfield of F formed by all numbers of the
form 1 + --- + 1). This subfield is called the ““prime field” of F.

Note that in any field F of characteristic p, the map x> x® preserves
addition and multiplication:

xy = (xp)” = x*y*;
S (7
x+y=>x+yy = Z (i )x’y”“ = x7 + y°,
{=0

because for | < i < p — | the integer (3) = p!/(i! (p — i)!) is divisible by p,
and hence equal to 0 in F.

Theorem 9. Let F be a finite field containing q elements, and let ' = [F:F,]
(i.e., the dimension of F as a vector space over its prime field F.). Let K be an
algebraic closure of F, containing F. Then q = p’; F is the only field of q
elements contained in K; and F is the set of all elements of K satisfying the
equation x* — x = 0. Conversely, for any power q = p’ of p, the roots of the
equation x* — x = 0 in K are a field of q elements.

ProoF. Since F is an f-dimensional vector space over F,, the number of
elements is equal to the number of choices of the f components (i.e., “co-
ordinates” in terms of a basis of f elements) from F,, which is p/. Next, any
field F of g elements has g — 1 nonzero elements, so that the nonzero elements
of F under multiplication form a group of order ¢ — 1. In this group the
powers of an element x form a subgroup of order equal to the least power of
x which equals one (called the ““order” of x). But it is easy to prove that any
subgroup of a finite group has order dividing the order of the group. Thus, x
has order dividing ¢ — 1, and so x?=* = 1 for all nonzero x in F. Then
x? — x = 0 for all x (including 0) in F. Since this holds for any field of ¢
elements in K, and a polynomial of degree g has at most ¢ distinct roots in a
field, it follows that any field of g elements in K must be the roots of x? — x,
and there is only one such set of ¢ roots.
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Conversely, given any g = p’, the set of elements of K such that x? = xis
closed under addition and multiplication (the argument is the same as in the
paragraph right before the statement of this theorem), and so is a subfield of
K. This polynomial has distinct roots, because, if it had a double root, by
Exercise 10 below, that root would also be a root of the formal derivative
polynomial gx?~! — 1 = —1 (because g = 0 in K); but the polynomial —1
has no roots. O]

Remark. Because any two algebraic closures of [, are isomorphic, it
follows that any two fields of ¢ = p/ elements are isomorphic.

We let [, denote the unique (up to isomorphism) field of ¢ = p’ elements.
If Fis a field, F* denotes the multiplicative group of non-zero elements
of F.

Proposition. F,* is a cyclic group of order g — 1.

Proor. If we let o(x) denote the order of x (the least power of x which
equals 1), we know that o(x) is a divisor of ¢ — 1 for all xe F,*. Butif 4 is
any divisor of g — 1, the equation x¢ = 1 has at most & solutions, because the
degree d polynomial x* — 1 has at most d roots in a field. If d = o(x), then
all d distinct elements x, x2, ..., x4, x% = 1 satisfy this equation, and so
they must be the only ones that do. How many of these d elements have
order exactly d? It is easy to see that the answer is: the number of integers
in {1,2,...,d — 1,d} which are relatively prime to d (have no common
divisor with d other than 1). This number is denoted ¢(d). Thus, at most ¢(d)
elements of F,* have order 4. We claim that exactly ¢(d) have order d for all
divisors d of ¢ — 1, and in particular for d = ¢ — 1. This follows from the
following lemma.

Lemma. 3 ,(d) = n.

PROOF OF THE LEMMA. Let Z/nZ denote the additive group {0, 1, ..., n — 1} of
integers modulo n. Z/nZ contains a subgroup S, for each divisor d of n defined
as follows: S, is the set of all multiples of n/d. Clearly, every subgroup of
Z/nZ is obtained in this way.

S, has d elements, of which ¢(d) generate the full subgroup (i.e., the set of
all multiples of mn/d exhausts the set of all multiples of n/d in Z/nZ if and only
if m and d are relatively prime). But each integer 0,1, ..., n — 1 generates
one of the subgroups S;. Hence

{0, 1, ...,n — 1} = |_] {elements generating S,}.
din
Since this is a disjoint union, we have: n = > ,.¢(d), and the lemma is proved.

The proposition follows immediately, because if there were fewer than
o(d) elements of order d for some d|n ,we would have: n = 3, {elements of
order d} < 3 ,,.9(d) = n. Hence, in particular, there are ¢(g — 1) elements
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2 Extension of norms

of order ¢ — 1. Since p(q — 1) = 1 (for example, 1 has no common factor
with g — 1), there exists an element a of order exactly ¢ — 1. Then F,* =
{a,a? ...,a" 1} |

EXERCISES

1. Let Fbe a field of ¢ = p’ elements. Show that F contains one (and only one)
field of ¢’ = p’" elements if and only if £ divides f.

2. For p=2,3,5,7,11,and 13, find an element ae{l,2, ..., p — 1} which
generates [, *, i.e., such that F,* = {a, a2, ..., a?'}. In each case, determine
how many choices there are for such an element a.

3. Let F be the set of numbers of the form a + bj, where a, be Fs = {0, 1, 2},
addition is defined component-wise, and multiplication is defined by
(a + b)c + di) = (ac + 2bd) + (ad + bc)j. Show that F = [Fg; show that
1 + jis a generator of Fy * ; and find all possible choices of a generator of [Fg *.

4. Write F, and [, explicitly in the same way as was done for [y in the previous
problem. Explain why any element except 1 in F,* or Fg* is a generator.

5. Let ¢ = p/, and let g be an element generating F,*. Let P(X) be the monic
irreducible polynomial which a satisfies over F,. Prove that deg P = f.

6. Let g = p’. Prove that there are precisely f automorphisms of F, over F,, namely the
automorphisms o, i = 0, 1, ..., f — 1, given by: o/(x) = x*' for x e F,.

7. Letx e F,*, and let P(X) = X? — X — «. Show that, if a is a root of P(X),
thensoisa + 1, a + 2, etc. Show that the field obtained by adjoining a to F,
has degree p over F,, i.e., it is isomorphic to F,r.

8. Prove that F, contains a square root of —1 if and only if ¢ # 3 (mod 4).

9. Let{ be algebraic of degree n over Q,, i.e., ¢ satisfies a polynomial equation of
degree n with coefficients in Q,, but none of degree less than n. Prove that
there exists an integer N such that ¢ does not satisfy any congruence

187+ @y 4 -+ @y + ao = 0 (mod pY),
in which the g, are rational integers not all of which are divisible by p.

10. If F is any field, and f(X) = X™ + @, X" '+ --- + a; X + a, has co-

efficients in F and factors in F, i.e., f(X) = [[F=1 (X — «) with ¢, € F, show

that any root «; which occurs more than once is also a root of n X"t +
an_l(" - 1)Xn—2 + a,,_z(n—Z)X"‘a + -+ ay.

2. Extension of norms

If X is a metric space, we say X is compact if every sequence has a convergent
subsequence (see beginning of §I1.3). For example, Z, is a compact metric
space (see Exercise 19 of §1.5). We say that X is Jocally compact if every point
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x € X has a neighborhood (i.e.,, a subset of X containing some disc
{y I d(x,y) < €}) which is compact. The real numbers R are not compact,
but are a locally compact metric space with the usual Archimedian absolute
value metric. @, with the p-adic metric 1s another example of a locally
compact metric space, for the simple reason that for any x the neighborhood
x+ Z, ={y ||y — x|, < 1} is compact (in fact, it is isomorphic to Z, as a
metric space). More generally, if X is an additive group such that d(x, y) =
d(x — y,0) for all x, y (for example, if X is a vector space and the metric is
induced from a norm on X, as defined below), then X is locally compact
whenever 0 has a compact neighborhood U. Namely, for any x, the transla-
tion of Uby x: x + U = {y |y — x € U}, is a compact neighborhood of x.
In Q,, U = Z, is such a compact neighborhood of 0. It is not hard to see
(Exercise 6 below) that any such locally compact group is complete.

Let F be a field with a non-Archimedean norm | |. For the duration of
this section we assume that F is locally compact.

Let V be a finite dimensional vector space over F. By a norm on V we
mean the analogous thing to a norm on a field, namely, a map || |, from V
to the nonnegative real numbers satisfying: (1) |x||y = 0 if and only if
x = 0;(2) llax]ly = |la]] | x|y for all x€ V and a € F (here {|a] is the norm in
F);and (3) |x + y|v < lix|ly + ||y |v. For example, if K is a finite extension
field of F, then any norm on K as a field whose restriction to Fis || | is also
a norm on K as a vector space. However, a word of caution: the converse is
false, since Property (2) for a vector space norm is weaker than the corres-
ponding property for a field norm (see Exercises 3-4 below).

As in the case of fields, we say that two norms || ||, and | |, on V are
equivalent if a sequence of vectors is Cauchy with respect to || | if and only
if it is Cauchy with respect to || !l,. This is true if and only if there exist posi-
tive constants ¢, and ¢, such that for all xe V: |x]; < ¢, ||x], and |x|, <
¢l x| 2 (see Exercise 1 below).

Theorem 10. If V is a finite dimensional vector space over a locally compact
Sield F, then all norms on V are equivalent.

PrOOF. Let {v,, ..., v,} be a basis for V. Define the sup-norm || {,., (pro-
nounced “soup norm”) on V by

fayw, + - + a0 sup det lns]!anVL (lla.l)-

This | Il is a norm (see Exercise 2 below). Now let | ||, be any other norm
on V. First of all, for any x = a,v, + -+ - + a,v, we have

Ixlly < lau] fodiv + -+ + Jaa]l [oalv
< n (max |a) max o)y,
so that we get | |lv < ¢ | Jeup If we choose ¢; = nmax; << (Juuflv). It
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2 Extension of norms

remains to find a constant ¢, such that the reverse inequality holds; then it
will follow that any norm on V is equivalent to the sup-norm.
Let

U= {xe Vl ”x"sup = 1}

We claim that there is some positive ¢ such that |x[, > & for x € U. If this
weren’t the case, we would have a sequence {x;} in U such that ||x]|, — 0.
By the compactness of U with respect to | [|s.p, (Exercises 2, 8 below), there
exists a subsequence {x;} which converges in the sup-norm to some x e U.
But for every j

Ixly < Ix = x,llv + lx,0v < €1 % — x50 + 1%,

by our first inequality relating the two norms. Both of these terms approach
0 as j — oo, since x;, converges to xin || ||sup, and | x;]|y — 0. Hence | x|, = 0,
so that x = 0 ¢ U, a contradiction.

Using this claim, we can easily prove the second inequality, and hence the
theorem. The idea is: the claim says that on the sup-norm unit sphere U
the other norm | ||, remains greater than or equal to some positive number e,
and hence | |sup < ¢2 || |v on U, where ¢, = 1/e (on U the left side of this
inequality is 1, by definition); but everything in ¥ can be obtained by multi-
plying U by scalars (elements in F), so the same inequality holds on ail of V.,

More precisely, let x = a,v, + --- + a,v, be any element in V, and
choose j so that ||g;]| = max|a;| = ||x{sup. Then clearly (x/a;)} € U, and so

Ix/a;]ly > & = 1/,
so that

[¥lswe = llas] < €2 [ %]v. O

Corollary. Let V = K be a field. Then there is at most one norm || |z of Kas a
field which extends | || on F (i.e., such that ||a|x = |all for a€ F).

PROOF OF COROLLARY. By Theorem 10, any two such norms | |, and || ||; on
K must be equivalent. Hence | |, < ¢;| [.. Let x € K be such that ||x|; #
%2, say, | x|y < ||x]|z. But then for a sufficiently large N we have ¢, |[x¥[, <
|x¥ |2, a contradiction. O

This still leaves the question of whether there exists any norm on K
extending | || on F.

We now recall a basic concept in field extensions, that of the “norm” of
an element. This use of the word “norm” should not be confused with the
use so far in the sense of metrics. “Norm”™ in the new sense will always
be in quotation marks and denoted by N.

Let K = F(e) be a finite extension of a field F generated by an element «
which satisfies a monic irreducible equation

O=x"+ax""1+.-.-4+a,_,x+ a, a,eF.
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Then the following three definitions of the *‘norm of « from K to F,” abbre-
viated Ny, («), are equivalent:

(1) If K is considered as an n-dimensional vector space over F, then multipli-
cation by « is an F-linear map from K to K having some matrix 4,. We
let Ny, r(e) = det(4,).

(2) Ngrl(a) dot VT 1)*a,.

(3) Ngjp(e®) = [Tf=104, where the o, are the conjugates of « = «, over F.

The equivalence (2) <> (3) comes from: x" + ax*™ ' + ... + a, =],

(x = «,). The equivalence (1) <= (2) is easy to see if we use {I, «, &2, ..., a7}
as a basis for K over F. Namely, the matrix of multiplication by « is then
clearly (using: ¢" = —agy&" ™! — -+ - ~ a,_ja — a,):
0 0 —a,
1 0 0 =dn_
1 0
O “‘02
1 —-01

which has determinant (— 1)"a,, as follows immediately by expanding using
the first row.

If Be K = F(a), we can define N, (8) as either (1) the determinant of the
matrix of multiplication by 8 in X, or, equivalently, (2) (N, #(8))* ¥4, The
two are equivalent because, if we choose bases for F(8) as a vector space
over F and for K as a vector space over F(8), then as a basis for K over F we
can take all products of an element in the first basis with an element in the
second basis; using this basis for K over F, we see that the matrix of multipli-
cation by B in K takes the following ““block form™

A, 0
0 A,

As

where A is the matrix of multiplication by 8 in F(B). The determinant of this
matrix is the [K:F(B8)]-th power ([K:F(8)] is the number of blocks) of det A,
i.e., the [K:F(B)]-th power of Ny, #(8). Thus, the two definitions of Ny, z(8)
are in fact equivalent.

Since N () is defined for any o« € K as the determinant of the matrix
of multiplication by « in K, it follows that N, is a multiplicative map from
K to F, ie., Ng{aB) = Ny p(0)Ng,p(B). (Namely, multiplication by «f8 is
given by the product of the matrix for « and the matrix for 8, and the determi-
nant of a product of matrices is the product of the determinants.)

We can now figure out how the extension of | |, to an algebraic number
o € Q3% must be defined if it exists. Suppose « has degree n, i.e., its monic
irreducible polynomial over Q, has degree n. Let K be a finite Galois extension
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of Q, containing « (see paragraph (10) at the beginning of this chapter), for
example, K can be the field obtained by adjoining « and all of its conjugates
to Q, (it’s easy to check that this field is finite and Galois over Q,). Suppose
we find an extension || | of | |, to K. By the corollary to Theorem 10, || |
is the unique field norm on K extending | |,. Now let &’ be any conjugate of o,
and let ¢ be an automorphism of K taking « to o’ (see paragraphs (8), (9), and
(11) in §II1.1). Clearly the map || |':K — R defined by |x|’ = [o(x)| is a
field norm on K which extends | |,. Hence | ||" = || |, and so Ja| = || =
lo(@)| = |«'|. We conclude that the norm of o equals the norm of each of its
conjugates. But then the norm of Ng_«yq,(2), Which is in Q,, equals

|Nop(a)/o,,(°‘)|p = || NQ,(a)/Q,(“)"
= [T «l
conjugates a’ of a
=Tl
= Jef|"
Thus,
lee| = INQp(a)/Q,("‘)|zla/"-
So, concretely speaking, to find the p-adic norm of «, look at the monic
irreducible polynomial satisfied by «. If it has degree n and constant term
a,, then the p-adic norm of « is the nth root of |a,|,. (Of course, we have not
yet proved that this rule really has all of the required properties of a norm;
this will be Theorem 11 below.)
Note that we can equivalently define || to be

| NK/Q,,(O‘)|117/[K:Q’],
where K is any field containing «. This is because

NK/Qp(a) = (NQp(a)IQp(a))[K:Qn(")],

and
- 0.1 = 1K:Q]
n = [Qya):Q,] = X:Q,(0)]
We now prove that this rule || | really is a norm. We shall write | |,
instead of | | to denote the extension of | |, to K; this should not cause

confusion. The reader should be warned that Theorem 11 is not an easy
fact to prove. The proof given here, which was told to me by D. Kazhdan,
is much more efficient than other proofs I've seen. But it should be read and
re-read carefully until the reader is thoroughly convinced by the argument.

Theorem 11. Let K be a finite extension of Q. Then there exists a field norm
on K which extends the norm | |, on Q,,.

ProOF. Let n = [K:Q,]. We first define | |, on K, and then prove that it’s
really a field norm on K extending | [, on Q,. For any « € K we define

Jecl, det INK/Q,,(“)];M9
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where the right-hand side is the old norm in @Q,. It is easy to check that:
(1) ||, agrees with the old |«|, whenever « € Q,; (2) |a|, is multiplicative;
and (3) |e|, = 0 <>« = 0. The hard part is the property: |« + B, <
max(la]p’ IBIP)

Suppose that |f], is the larger of |«|,. |B],. Setting y = a/f, we have
[7], < 1. We want to show that |ou + fi|, < max(|«|,,|Bl,) = |Bl,, or
equivalently (after dividing through by |f],): |1 + |, < 1. Thus, Theorem
11 follows from the following lemma.

Lemma. With | |, defined as above on K, one has |1 + 7|, < 1 for any ye K
with |y|, < L.

PrOOF OF THE LEMMA. We noted before that we can define [y(, and |1 +
using the field Q(y) = Q(1 + y) in place of K:

1 [Qp(,):Qp]. ~ _ " o{(7):
|"I'|p = ,N@p(}') Qp(‘)')lp : a0 P]‘ Il + /lp - |N@p(;')/@p(1 + l)|]17 (@) Qp]"

So without loss of generality we may suppose that K = Q,(7), in other words,
that y is a “primitive element ™ of K. Then {1,7,v%,...,7" "'} is a vector space
basis for K over Q,, where n = [K: Q,].

For any element o« = > 724 a;,7" e K, let |«| denote the sup-norm in this
basis, i.e., [la| = max;|a;|,. Similarly, if 4 = {a;;} is any n x n matrix with
entries in Q,, let 4] denote the sup-norm || 4[| = max, ; la

'

U’p

Any Q- linear map from K to K, when written in terms of the basis
{1,7,9%...,y" '}, givesann x nmatrix with entries in Q,. Now let 4 denote

the matrix of the @ -linear map from K to K which is multiplication by ;.
(This is the type of matrix used before in our discussion of the three equivalent
definitions of the norm of an element.) Then the matrix 4° is the matrix cor-
responding to multiplication by 3/, and 1 + A is the matrix corresponding to
multiplication by 1 + y. (More generally, the matrix P(A4) corresponds to
multiplication by the element P(y) for any polynomial Pe Q,[X].)

We claim that the sequence of real numbers {||A||};=o 1 . .. is bounded.
Suppose the contrary. Then we can find a sequence i;,j = 1,2,. such that
| A% > j. Let b; = HA’JH which is the maximum | |p of any of the n? entries
A Let f; be an entry of A" with maximum | |,; thus, |f;], = 4" = b;.
Define the matrix B; = A"/f;, i.e.,, divide all entries of A% by §;. Then clearly
[B;| = 1. Since the sup-norm unit ball 1s compact (Exercises 2 and 8 below),
we can find a subsequence {B;,},-; , . which converges to some matrix B.
Since det B; = (det A7)/}, we have

|det B;l, < |det A[,/j" = [Nkq, ()" 1,0" = 17152/ < U™

By the definition of convergence in the sup-norm, each entry of B is the limit
as k — o of the corresponding entry of B, ; hence det B = lim det B;, = 0.

Because det B = 0, there exists a nonzero element /e K, cons1dered as a
vector written with respect to the basis {1, y, y%, ..., 7" '}, such that B/ = 0.
We now show that this implies that B is identically zero, contradicting
|B| = 1 and hence proving the claim that {{|4'||} is bounded.
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Since {y1};~0.1....n-1 is a basis for the Q,-vector space K, it suffices to
show that By'l = 0 for any i. But since multiplication by y' is given by the
matrix A°, we have By'l = (BA)l = A'Bl = 0, where the relation BA' = 4'B
comes from the fact that B is a limit of matrices of the form B; = 4"/B;,
i.e., scalar multiples of powers of A, and any such matrix B; commutes with
A'. This proves our claim that {4} is bounded by some constant C.

Note that foranyn x nmatrix 4 = {a,;} we have: |det 4|, < (max|a,|)"
= | 4]"; this is clear if we expand the determinant and use the additive and
multiplicative properties of a non-Archimedean norm.

Now let N be very large, and consider: (1 + A =1+ M4 +--- +

(Y)AY"1 + A¥. We have
(7))

Hence |1 + y|, < V'C. Letting N — oo gives |1 + y|, < 1 as required. (Note
the similarity with the proof of Ostrowski’s theorem in §I.2.) O

1+ y]," = |det(l + A" < (1 + A)Y] < ( max

< (max ][A‘H) < C

[VE

Let R be a (commutative) ring, i.e., a set R with two operations + and -
which satisfy all the rules of a field except for the existence of multiplicative
inverses. In other words, it’s an additive group under + ; has associativity,
identity, and commutativity under -; and has distributivity. R is called an
integral domain if xy = 0 always implies x =0 or y = 0. Z and Z, are
examples of integral domains.

A proper subset I of R is called an ideal if it is an additive subgroup of R
and for all x € Rand @ € I we have: xa € I. In the ring Z, the set of all multiples
of a fixed integer is an ideal. In Z,, for any r < 1 the set {x € Z,| |x|, < r}1is
an ideal. If, say, r = p~", this is the set of all p-adic integers whose first
n + 1 digits are zero in the p-adic expansion.

If I, and 7, are ideals of R, then the set

{xe R|xcanbewrittenas x = x;x;" + - -+ + XX, With x; € I, x,' € I}
is easily checked to be an ideal, which is written I, I, and is called the product
of the two ideals. An ideal [/ is called prime if: x,x, €l implies x, €I or
Xg € 1

It is easy to verify (see Exercise 5 below) that Z, has precisely one prime
ideal, namely
{xeZ,| x|, < 1},

p dof

and that all ideals of Z, are of the form
{xez,||x[, <p~"

P det

If s an ideal in a ring R, it is easy to see that the set of additive cosets
x + I form a ring, called R/I. (Another way of describing this ring: the set of
equivalence classes of elements of R with respect to the equivalence relation
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x ~ yif x — ye L) For example, if R = Z (or if R = Z,), the ring R/pR is
the field F, of p elements, as we’ve seen.

An ideal M in R is called maximal if there is no ideal strictly between M
and R. It is an easy exercise to check that:

(1) An ideal P is prime if and only if R/P is an integral domain.
(2) An ideal M is maximal if and only if R/M is a field.

Now let X be a finite extension field of @,. (Or, more generally, let X be
an algebraic extension of a field F which is the field of fractions of an integral
domain R, e.g., F = Q is the field of fractions of R = Z, F = @, is the field
of fractions of R = Z,, and so on.) Let 4 be the set of all x € K which satisfy
an equation of the form x"™ + g x"~!' 4+ -+ + a,_1x + a, = 0 with the
a,€Z,. (Every xe K of course satisfies an equation of this form with
coefficients in @, but usually not all the g, are in Z,,.) 4 is called the “integral
closure of Z, in K.”

It is not hard to show that if x € 4, then its monic irreducible polynomial
has the above form. Moreover, the integral closure is always a ring. (For the
general proof, see Lang’s Algebra, p. 237-240; in the case we’ll be working
with-—the integral closure of Z, in K-—we prove that it’s a ring in the proposi-
tion that follows.)

Propesition. Let K be a finite extension of Q, of degree n, and let

A:{XEKHXIPS 13,
M={xeK||x|, < I}

Then A is a ring, which is the integral closure of Z, in K. M is its unique
maximal ideal, and A/M is a finite extension of F, of degree at most n.

ProoF. It is easy to check that A4 is a ring and M is an ideal in A4, using the
additive and multiplicative properties of a non-Archimedean norm. Now let
o € K have degree m over Q,, and suppose that « is integral over Z,: «™ +
a4+ -+ a, =0,a€Z, If ||, > 1, we would have:

lef,™ = [o™], = ja ™"t + - + a,], < max [qo"7Y,
1<i<m
< max |a" 7, = Jefy 7Y
l<i<m

o=« over @, also have |e|, = [7;|e,[3'™ = |e], < 1. Since all the
coeflicients in the monic irreducible polynomial of « are sums or differences
of products of «, (the so-called *“symmetric polynomials™ in the o), it follows
that these coefficients also have | |, < 1. Since they lie in Q,, they hence
must lie in Z,,.

We now prove that M contains every ideal of A. Suppose a € 4, « ¢ M.
Then |af, = 1, so that |1/«|, = 1, and 1/a € 4. Hence any ideal containing «
must contain (1/«)-« = 1, which is impossible.

a contradiction. Conversely, suppose laf, < 1. Then all the conjugates of
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Note that M N Z, = pZ, from the definition of M.

Consider the field 4/M. Recall that its elements are cosets a + M.
Notice that if @ and b happen to be in Z,, then a + M is the same coset as
b+ Mifandonlyifa — be M N Z, = pZ,. Thus, there’s a natural inclusion
of Z,/pZ, into A/M given by coset a + pZ,+> coset a + M for a € Z,. Since
Z,/pZ, is the field F, of p elements, this means that 4/M is an extension field
of F,.

We now claim that A/M has finite degree over [, in fact, that [4/M: F,] <
[K:Q,). If n=[K:Q,], we show that any n + | elements a,,a,, ...,
a,,1 € A/M must be linearly dependent over F,. For i = 1,2, ...,n 4+ 1,
let ; be any element in 4 which maps to @, under the map 4 — A/M (i.e.,
a, is any element in the coset @, in other words: @, = a; + M). Since
[K: Q,] = n, it follows that a,, a,, ..., a,,, are linearly dependent over Q,:

albl +agb2+"'+a"+1b"+1 =0, biEQp.

Multiplying through by a suitable power of p, we may assume that all the
b, € Z, but at least one b, is not in pZ,. Then the image of this expression in
A/M is

5151 + ‘7252 +--- + an+15n+l = 0,

where b, is the image of b, in Z,/pZ, (i.e., b; is the first digit in the p-adic
expansion of b,). Since at least one b, is not in pZ,, it follows that at least one
b, is not 0, so that @, @, .. ., a,. are linearly dependent, as claimed. ]

The field 4/M is called the residue field of K. It’s a field extension of F, of
some finite degree f. A itself is called the “valuation ring” of | |, in K.

EXERCISES

1. Prove that two vector space norms || {, and | |, on a finite dimensional vector
space V are equivalent if and only if there exist ¢; > 0 and ¢, > 0 such that
forallxe V:

fxl2 < effxfy and {xfi < eofx]s.

2. Let F be a field with a norm | |. Let ¥ be a finite dimensional vector space
over Fwith a basis {v, ..., v,}. Prove that |a;v; + -+ + @u0,sup 5, MaXi<isn
(la(|) is a norm on V. Prove that if Fis locally compact, then so is V.

3. Let ¥V = Q,(Vp), v; = 1, v; = Vp. Show that the sup-norm is not a field
norm on Q,(Vp).

4, If V = K is a field, can the sup-norm ever be a field norm (for any basis
{v1, ..., v,}) when n = dim K > 1?7 Discuss what type of finite extensions
K of Q, can never have the sup-norm being a field norm.

5. Prove that Z, has precisely one prime ideal, namely pZ,, and that all ideals in
Z, are of the form p*Z,, ne{1, 2,3, ...}.

6. Prove that, if a vector space with a norm | |y is locally compact, then it is
complete.
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7. Prove that a vector space with a norm | ||y is locally compact if and only if
{x | |x|y = 1} is compact.

8. Prove that, if a vector space with a norm || ||y is locally compact, then
{x | x|y = 1} is compact.

3. The algebraic closure of Q,

Putting together the two theorems in §2, we conclude that | |, has a unique
extension (which we also denote | |,) to any finite field extension of Q,.
Since the algebraic closure @, of Q, is the union of such extensions, | |,
extends uniquely to @,. Concretely speaking, if « € Q, has monic irreducible
polynomial x® + a,x*"! + - - - +a,, then |«|, = |a,|3™

Let K be an extension of @, of degree n. For « € K we define

1
ord, « dof —log, |°‘|p = —log, [NKIQP(O‘)va = “a log, |NK/Q,,(°‘)|p-

This agrees with the earlier definition of ord, when « € Q,, and clearly has
the property that ord, of = ord, « + ord, 8. The image of K under the
ord, map is contained in (1/n)Z = {x € @ | nx € Z}. Since this image is an
additive subgroup of (1/n)Z, it must be of the form (1/e)Z for some positive
integer e dividing n. This integer e is called the “index of ramification’ of K
over Q,. If e = 1, we say that K is an unramified extension of Q,. Now let
m € K be any element such that ord, = = (1/e). Then clearly any x € K can
be written uniquely in the form

=™y, where |u|, = 1 and m e Z (in fact, m = e- ord, x).

It can be proved (Exercise 12 below) that n = e-f, where n = [K: Q,],
e is the index of ramification, and f is the degree of the residue field A/M
over [,. In any case, we’ve already seen that / < nand e < n. In the case of
an unramified extension K, i.e., when e = 1, we may choose p itself for =
in the preceding paragraph, since ord, p = 1 = (l/e). At the other extreme,
if e = n, the extension K is called torally ramified.

Proposition. If K is totally ramified and = € K has the property ord, = = (1/e),
then = satisfies an ‘‘ Eisenstein equation” (see Exercise 14 of §l.5)
X+ dp_ x4+ gy =0, a,eZ,
where a; = 0 (mod p) for all i, and a, # 0 (mod p?). Conversely, if « is a
root of such an Eisenstein equation over Q,, then Q () is totally ramified
over Q, of degree e.

ProoF. Since the g, are symmetric polynomials in the conjugates of =, all of
which have | |, = p~*, it follows that |a,|, < 1. As for a,, we have |a,|, =
|7[,° = 1/p.

Conversely, we saw in Exercise 14 §1.5 that an Eisenstein polynomial is
irreducible, so that adjoining a root « gives us an extension of degree e.
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3 The algebraic closure of @,

Since ord, a, = 1, it follows that ord, « = (1/e) ord, a, = (1/e), and hence
Q,(«) is totally ramified over Q,. ]

A more precise description of the types of roots of polynomials that can
be used to get a totally ramified extension of degree e can be given if e is not
divisible by p (this case is called “tame” ramification; p|e is called ““wild”
ramification). Namely, such tamely totally ramified extensions are obtained
by adjoining solutions of the equation x* — pu = 0, where u € Z,,, i.e., such
extensions are always obtained by extracting an eth root of p times a p-adic
unit (see Exercises 13 and 14 below).

Now let K be any finite extension of @,. The next proposition tells us that
if K is unramified, i.e., e = 1, then K must be of a very special type, namely, a
field obtained by adjoining a root of 1; while if K is ramified, it can be
obtained by first adjoining a suitable root of 1 to obtain its “maximal un-
ramified subfield”” and then adjoining to this subfield a root of an Eisenstein
polynomial. Warning: the proof of the following proposition is slightly
tedious, and the reader who is impatient to get to the meatier material in the
next chapter may want to skip it (and also skip over some of the harder
exercises in §111.4) on a first reading.

Proposition. There is exactly one unramified extension K;™™*™ of Q,, of degree f,
and it can be obtained by adjoining a primitive (p’ — \)throotof 1. If Kisan
extension of Q, of degree n, index of ramification e, and residue field degree f
(so that n = ef, as proved in Exercise 12 below), then K = K}°™*®(sy),
where = satisfies an Eisenstein polynomial with coefficients in Kj°re=,

PRroOF. Let & be a generator of the multiplicative group F,s (see the proposition
attheend of §1), and let P(x) = x’ + a,x’~* + --- + &,, 4, € F,, be its monic
irreducible polynomial over [, (see Exercise 5 of §1). For each j, let a, € Z,, be
any element which reduces to @, mod p, and let P(x) = x" + ax’"' + .- +
a,. Clearly, P(x) is irreducible over Q,, since otherwise it could be written as a
product of two polynomials with coefficients in Z,, and each could be
reduced mod p to get P(x) as a product. Let « € Q&' be a root of P(x). Let
K=0Qua),Ad=1{xeK||x|, <1}, M={xeK||x|, < 1}. Then[K: Q,] =
f, while the coset « + M satisfies the degree f irreducible polynomial P(x)
over F,. Hence [A/M: F,] = f, and K is an unramified extension of degree f.
(We have not yet proved that it is the only one.)

Now let K be as in the second part of the proposition. Let 4 =
{xeK]|x|, £ 1} be the valuation ring of | |, in K, and let M =
{x e K| |x|, < 1} be the maximal ideal of A4, so that A/M = F,r. Let e F,
be a generator of the multiplicative group F,7. Let ay € A be any element
that reduces to & mod M. Finally, let = € K be any element with ord, = = 1/e;
thus, M = =A4.

We claim that there exists « = «, mod = such that «”~! — 1 = 0. The
proof is a Hensel's lemma type argument. Namely, we write o = «; + a7
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(mod #?), so that mod =2 we need 0 = (¢p + oym)” "1 — 1 =0of "1 — | +
(P = Doymad’ "2 = ' "1 — 1 — aymad’ "2 (mod 7). But o8 ~! = 1 (mod =),
so that, if we set a; = (o« ~! — 1)/(wed’ ~2) (mod =), then we get the desired
congruence mod =, Continuing in this way, just as in Hensel’s lemma, we
find a solution @ = «y + a;m + agn? + - - - to the equation «”’ ~! = 1.

Note that o, o2, ..., «” "' are all distinct, because their reductions
mod M—a, a2, ..., &” ~'—are distinct. In other words, « is a primitive
(¢ — Dth root of 1. Also note that [Q,(«):Q,] = f, since f is the residue
field degree of the extension. (We will soon prove that [Q,(«):Q,] = 1))

The above discussion applies, in particular, to the field K constructed in
the first paragraph of the proof. Hence K > Q,(«), where « is a primitive
(p’ — Dth root of 1. Since f = [K:Q,] = [Qy(«):Q,] = f, it follows that
K = Q,(«). Thus, the unramified extension of degree f is unique. Call it
K}lnram.

We now return to our field K of degree n = e¢f over Q. Let E(x) be the
monic irreducible polynomial of = over K = Kjm™®™ Let {m} be the
conjugates of = over Kj*2™ so that E(x) = [](x — =,). Let d be the degree
and c¢ the constant term of E(x). Then ord, ¢ = d ord, = = dje. But since
ef = n = [K:Q,] = [K:Kjrrem][K}rrem: ] = [K:Kyrrem].f, it follows that
d < e. Since ce K¥"™™ ord, ¢ is an integer. We conclude that ¢ = ¢, and
ord, ¢ = 1. Thus, E(x) is an Eisenstein polynomial, and K = KY**™(x). []

Corollary. If K is a finite extension of O, of degree n, index of ramification e,
and residue field degree f, and if = chosen so that ord, = = l/e, then every
« € K can be written in one and only one way as

where im = e ord, « and each a, satisfies a” = a, (i.e., the a’s are Teich-
miiller digits).

The proof of the corollary is easy, and will be left to the reader.

If m is any positive integer not divisible by p, we can find a power p’ of p
which is congruent to 1 mod m (namely, let f be the order of p in the multipli-
cative group (Z/mZ)* of residue classes mod m of integers prime to m). Then,
if p/ — 1 = mm', and if we adjoin to @, a primitive (p’ — 1)th root e of 1,
it follows that «™ is a primitive mth root of I. Hence, we may conclude that
finite unramified extensions of Q, are precisely the extensions obtained by
adjoining roots of 1 of order not divisible by p.

The union of all the finite unramified extensions of Q, is written Q"™
and is called the **maximal unramified extension of @,.” The ring of integers
zinrem of pnram (also called the ““valuation ring”), which is

— |
zZpee = e @y | xg, < 1),
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3 The algebraic closure of Q,

has a (unique) maximal ideal Munrem = pzinram — [x ¢ Qporem | x|, < |} =
{x e Qprrem | |x}, < 1/p}. The residue field Zpnrem/pZivram jg easily seen to
be the algebraic closure F, of F,. Every ¥ e F, has a unique * Teichmiiller
representative” x € Z;*™*™ which is a root of 1 and has image ¥ in Zy™="/
pZy"re™. For this reason, Z;™™ is often called the *“lifting to characteristic
zero of F,” (also called the “ Witt vectors of F,”).

Qgeram which is a much smaller field than Q&< can be used instead of
@35l in many situations.

The “opposite” of unramified extensions is totally ramified extensions.
We can get a totally ramified extension, for example, by adjoining a primitive
p'th root of 1—this will give us a totally ramified extension of degree
n=e=p Yp—1) (see Exercise 7 below). However, unlike in the un-
ramified case, not by a long shot can all totally ramified extensions be ob-
tained by adjoining roots of 1. For example, adjoining a root of x™ — p
clearly gives a totally ramified extension K of degree m ; butif K were contained
in the field obtained by adjoining a primitive p'th root of 1, we would have
m|p"~Y(p — 1), which is impossible if, say, m > p and p{m. About all we
can say about the set of all totally ramified extensions of Q, is contained
in the proposition at the beginning of this section and in Exercise 14
below.

We repeat: An extension K of Q, of degree n, index of ramification e, and
residue field degree f is obtained by adjoining a primitive (p/ — 1)th root
of 1 and then adjoining to the resulting field K¥"™™ a root of an Eisenstein
polynomial with coefficients in Kjeram,

We conclude this section with a couple of useful propositions.

Proposition (Krasner’s Lemma). Ler a, b€ Q, (=Q%2*®), and assume that b
is chosen closer to a than all conjugates a; of a (a; # a), i.e.,

b — al, < |a — al,.
Then Q(a) < Q,(b).
Proor. Let K = Q,(b), and suppose a ¢ K. Then, since a has conjugates
over K equal in number to [K(a): K], which is > 1, it follows that there is at
least one a, ¢ K, a; # a, and there is an isomorphism o of Q,(a) to Q.(a)
which keeps K fixed and takes a to a,. We already know, because of the
uniqueness of the extension of norms, that |ox|, = |x|, for all x € K(a). In
particular, |b — a;|, = |ob — oa|, = |b — a|,, and hence
la, — a|, < max(la, — b|,, |b — al,) = |b — a|, < |a, — a]p,

a contradiction. O

Note that Krasner’s Lemma can be proved in exactly the same way in a
more general situation: If a, b € @,, K is a finite extension of Q,, and for all
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conjugates a, of a over K (a, # a) we have |b — a|, < |a, — al,, then K(a) <
K(b).

Now let K be any field with a norm | ||. If f, ge K[X], ie,, f = 2 a X!
and g = Y b, X" are two polynomials with coefficients in K, we define the
distance ||/ — g| from fto g as

I/ - gll g max; |a, — b,].

Proposition. Let K be a finite extension of Q,. Let f(X) e K[X] have degree n
X)) = a X"+ a, X"+ + @, X + a

Suppose the roots of fin Q,, are distinct. Then for every ¢ > O there exists a &
such that, if g = 2P o b, X' € K[X] has degree n, and if |f — gl, < 8, then
Jfor every root «, of f(X) there is precisely one root By of g(X) such that
Iai - Bi}p < e

PrOOF. For each root 8 of g(X) we have

1B, Iﬂm—g@h=t20n—@Wh

IA

mflx(lax - bt]p llglp’)

IA

|/ — gl max(l, B1,") < 8Cy",

where C, is a suitable constant (see Exercise 3 below).

Let C;, = min; ¢ <, <nlay — o5, Since the «’s are distinct, we have C, % 0.
Then the relation |8 — «|, < C, is only possible for at most one «, (since if it
held for another «, # «, we'd have |o; — o;, < max(je, — Bl,, 1B — o],) <
C,). Since

C."8 > [f(B)l,
= la, [ [(B — )], (sincef(X) = a,[ [(X — )
= 1an]pn IB - a,‘,,,

it's clear that for & sufficiently small such an «, with |f — «], < C, must
exist. Moreover, for that o, we have:
C,"6

lanlp]__l lB - a]]P

F#1

IB - at’p <

C,"

h Ianin‘ g—l’

which can be made < e by a suitable choice of é. d
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So far we’ve been dealing only with algebraic extensions of Q,. But, as
mentioned before, this is not yet enough to give us the p-adic analogy of the
complex numbers.

Theorem 12. Q, is not complete.

Proor. We must give an example of a Cauchy sentence {a;} in 8, such that
there cannot exist a number a € @, which is the limit of the a;.

Let b, be a primitive (p? — 1)th root of 1 in @,, i.e., 6/* ! = I, but
b # 1if m < p? — 1. Note that b?*" -1 = 1if i’ > i, because 2|2 implies
p? — 1] p* — 1. (In fact, instead of 2! we could replace the exponent of p
by any increasing sequence whose ith term divides its (; + 1)th, e.g., 3!, i!,
etc.) Thus, if i > 7, b, is a power of b,.. Let

i
a = Z b;p™s,
7=0

where 0 = N, < N; < N, < --. 18 an increasing sequence of nonnegative
integers that will be chosen later. Note that the b,,j = 0, 1, ..., i, are the
digits in the p-adic expansion of g in the unramified extension Q,(b,), since
the b; are Teichmiiller representatives. Clearly {a;} is Cauchy.

We now choose the ¥, j > 0, by induction. Suppose we have defined ¥,
for j < i, so that we have our g, = D}_ob,p%. Let K = Q,(b). In §3 we
proved that K is a Galois unramified extension of degree 2'. First note that
Q,(a;) = K, because otherwise there would be an automorphism o of K which
leaves a; fixed (see paragraph (11) in §1). But o(a) has p-adic expansion
>t_o a(b,)p¥s, and o(b,) # b, so that o(a) # a; because they have different
p-adic expansions.

Next, by exercise 9 of §III.1, there exists N,,; > N, such that g, does not
satisfy any congruence

0" + a0t + -+ ey + ¢ = 0 (mod pier)

for n < 2! and «; € Z, not all divisible by p.
This gives us our sequence {a}.
Suppose that a € Q, were a limit of {a,}. Then a satisfies an equation

anan + an_lan—l + -+ o a + oy = 0,

where we may assume that all of the o, € Z, and not all are divisible by p.
Choose i so that 2¢ > n. Since a = a; (mod p¥i+1), we have

" + ap_qal ™l + -+ a + 2 = 0 (mod pPier),

a contradiction. This proves the theorem. O
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Note that we have actually proved that Qirra™ not only Q, = Qal&cl i
not complete.

So we now want to “fill in the holes,” and define a new field Q to be the
completion of @,. Strictly speaking, this means looking at equivalence classes
of Cauchy sequences of elements in @, and proceeding in exactly the same
way as how Q, was constructed from Q (or how R was constructed from Q,
or how a completion can be constructed for any metric space). Intuitively
speaking, we’re creating a new field Q by throwing in all numbers which are
convergent infinite sums of numbers in Q,, for example, of the type considered
in the proof of Theorem 12.

Just as in going from Q to Q,, in going from Q, to Q we can extend the
norm | |, on @, to a norm on Q be defining |x|, = lim,_ »|x,|,, where {x;}
is a Cauchy sequence of elements in @, that is in the equivalence class of x
(see §1.4). As in going from Q to Q,, it is easy to see that if x 3 O this limit
Ix|, is actually equal to |x;|, for i sufficiently large.

We also extend ord, to €:

ord, x = —log,|x|,.

{xeQ||x], < 1} be its maximal ideal, and let 4™ = {xeQ||x|, =1} =
A — M be the set of invertible elements of A. Suppose that xe 47, ie.,
Ix|, = 1. Since @, is dense in Q, we can find an algebraic x’ such that
x —x'eM, ie, |x — x|, < 1. Since then |[x'|, = 1, it follows that x' is
integral over Z,, i.e., it satisfies a monic polynomial with coefficients in Z,.
Reducing that polynomial modulo p, we find thatthecoset x + M = x' + M
is algebraic over F ,, 1.e., lies in some F,,. Now let w(x) be the (p/ — Dthroot
of 1 which is the Teichmiiller representative of x + M e F,,, and set {x) =
x/o(x). Then (x> el + M. In other words, any xe 4™ is the product of a
root of unity w(x) and an element {x) which is in the open unit disc about 1.
(I x € Z,, has first digit a,, this simply says that x is the product of the Teich-
miiller representative of a, and an element of 1 4 pZ,.) Finally, an arbitrary
nonzero x € Q can be written as a fractional power of p times an element
x; €Q of absolute value 1. Namely, if ord, x = r = a/b (see Exercise 1
below), then let p* denote any root of X° — p? = 0. Then x = p'x; =
p'w(x,){x,;> for some x,; of norm 1. In other words, any nonzero element of Q
is a product of a fractional power of p, a root of unity, and an element in the open
unit disc about 1.

The next theorem tells us that we are done: Q will serve as the p-adic
analogue of the complex numbers.

Let A ={xeQ||x|, <1} be the “valuation ring” of Q, let M =

Theorem 13. Q is algebraically closed.

Proor. Let: f(X) = X"+ a,_ X" '+ - + g X + ay, a,€ Q. We must
show that /(X) has a rootin Q. Foreach/ =0,1, ..., n — I, let {a,}, be a
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sequence of elements of @, which converge to a;. Let g(X) = X" +
Gy X"V 4+t a ;X + ay;. Letr betherootsof g(X) (i = 1,2, ...,
n). We claim that we can find i; (1 < i; < n)forj=1,2,3, ... such that
the sequence {r, ;} is Cauchy. Namely, suppose we have r, ; and we want to
findr,,, ;+1.Letd;, = |g; — g;41], = max(|a;; — a,,..],) (Whichapproaches
0 as j — o). Let 4, = max(l, |r,,,|,"). Clearly there is a uniform constant 4
such that 4; < A for all j (see Exercise 3 below). Then we have

H 7 = rseils = 1854a(ry, )l
= lgj+1("t,.i) - gi(ri;.j)[p
S SfA-

Hence at least one of the |r;, ; — r, ;. 1|, on the leftis <V §,4. Letr,,, ;. be
any such r, ;.. Clearly this sequence of r, ; is Cauchy.

Now let r = lim;. ,, ;€ Q. Then f(r) = lim,. f(r;,,;) = lim;_ ., g,(7.,.,)
= 0. O

Summarizing Chapters I and III, we can say that we have constructed Q,
which is the smallest field which contains Q and is both algebraically closed
and complete with respect to | |,. (Strictly speaking, this can be seen as
follows: let Q' be any such field; since Q' is complete, it must contain a field
isomorphic to the p-adic completion of Q, which we can call Q,; then, since
€’ contains @, and is algebraically closed, it must contain a field isomorphic
to the algebraic closure of Q,, which we can call Q,; and, since Q' contains
@, and is complete, it must contain a field isomorphic to the completion of
@,, which we call Q. Thus any field with these properties must contain a
field isomorphic to Q. The point is that both completion and algebraic
closure are unique processes up to isomorphism.)

Actually, Q should be denoted (2, so as to remind us that everything we’re
doing depends on the prime number p we fixed at the start, But for brevity of
notation we shall omit the subscript p.

The field Q is a beautiful, gigantic realm, in which p-adic analysis lives.

EXERCISES

1. Prove that the possible values of | |, on @, is the set of all rational powers
of p (in the positive real numbers). What about on Q? Recall that we let the
ord, function extend to Q by defining ord, x = —log, |x|, (i.e., the power
1/p is raised to get |x|,). What is the set of all possible values of ord, on Q?
Now prove that @, and Q are rot locally compact. This is one striking
difference with C, which is locally compact under the Archimedean metric
(the usual definition of distance on the complex plane).
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14.
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What happens if you define an “ellipse” in Q to be the set of points the sum
of whose distance from two fixed points a, b€ Q is a fixed real number »?
Show that this “ellipse” is either two disjoint circles, the intersection of two
circles, or the empty set, depending on a, b, and r. What do you get if you
define a “hyperbola™ as {xc Q| [x — al, — |x = bl, = r}?

L Letg(X) = X® 4+ by 2 X™TN + o+ b X + bo. Let Co = [gl, o maxi|bi,

Show that there exists a constant C, depending only on C, such that any
root B of g(X) satisfies |8}, < Ci.

. Let « be a root of a monic irreducible polynomial f(X)e K[ X], where K is a finite

extension of @, Prove that there exists an ¢ > 0 such that any polynomial g(X)
having the same degree as f and satisfying | f — g{, < ¢ has a root f such that
K(2) = K{(f). Show that this is not necessarily the case if f1s not irreducible.

. Prove that any finite extension K of Q, contains a finite extension F of the

rational numbers @ such that [F: Q) = [K: Q,] and F is dense in K, i.e.,
for any element x € K and any ¢ > O there exists y € Fsuch that [x — y|, < &

. Let p be a prime such that — 1 does not have a square root in Q, (see Exercise

8 of §III.1). Use Krasner’s Lemma to find an & such that Q,(vVZa) =
Q,(V —1) whenever la — 1], < &. For what & does |a — pl, < & imply
Q,(Va) = Qu(V p)? (Treat the case p = 2 separately.)

. Let a be a primitive p"th root of 1 in @,, i.e., a®" " # 1. Find |a — 1 [,. Also show

that [a — 1], = 1 if a is a primitive mth root of 1 and m is not a power of p.

. Let K be a finite extension of Q,. Let m be a positive integer, and let (K*)™

denote the set of all mth powers of elements of X *. Suppose that (1) {m|, = 1,
and (2) X contains no mth roots of 1 other than 1 itself. (For example, if
K = Q,, these two conditions both hold if and only if m is relatively prime
to both p and p — 1, as you can prove as an exercise.) Prove that the index
of (K*)™ as a multiplicative subgroup in K* (i.e., the number of distinct
cosets) is equal to m.

. If in the previous exercise we remove the assumption that K contains no nontrivial

m-th roots of 1, show that the index of (K *)" in K™ equals mw, where w is the number
of m-th roots of 1 contained in K.

If K is a totally ramified extension of Q,, show that every mthroot of 1 in X
is in @, if p does not divide .

Determine the cardinality of the sets Q,, @,, and Q.

Prove that ¢f = n, where n = [K: Q,], ¢ is the index of ramification, and f
is the residue field degree.

Let K be a totally ramified extension of Q, of degree e. Show that there exists
B e K such that {° — «|, < 1/p for some o € Z, with ord, « = 1.

Suppose K is tamely totally ramified. Using a Hensel’s lemma type argument,
show that 8 can be further adjusted so that 8¢ € Q,, i.e., B satisfies X¢ — o =
0, where « € Z, and ord, « = 1. Note that X = Q,(8) (explain why).

For any n, show that there are only finitely many extensions of @, of degree
less than or equal to n.



16.

17.

Exercises

The complex numbers C are much more numerous than the rational numbers,
or even the algebraic numbers, because the latter sets are only countably
infinite, while C has the cardinality of the continuum. Q is also much, much
bigger than Q&' °! although not in precisely that way (see Exercise 11 above).
Prove that there does not exist a countably infinite set of elements of Q such
that Q is an algebraic extension of the field obtained by adjoining all those
elements to @, (i.e., the field of all rational expressions involving those
elements and elements of @,). One says that Q has ‘“uncountably infinite
transcendence degree over Q,.” (Warning : this exercise and the next are hard!)

Does Q have countably infinite transcendence degree over the p-adic comple-
tion of Qprram?
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CHAPTER 1V

p-adic power series

1. Elementary functions

Recall that in a metric space whose metric comes from a non-Archimedean
norm || |, a sequence is Cauchy if and only if the difference between adjacent
terms approaches zero; and if the metric space is complete, an infinite sum
converges if and only if its general term approaches zero. So if we consider
expressions of the form

o0

f(X) = Z a, X", a, € Q,

n=0
we can give a value >, a,x" to f(x) whenever an x is substituted for X for
which }a,x"|, — 0.
Just as in the Archimedean case (power series over R or C), we define the
“radius of convergence”
_ 1
"= fim supla,| ™

where the terminology “1/r = lim sup|a,|}™” means that 1/r is the least real
number such that for any C > 1/r there are only finitely many |a,|}™ greater
than C. Equivalently, 1/r is the greatest “point of accumulation,” i.e., the
greatest real number which can occur as the limit of a subsequence of
{|a.l3"}. If, for example, lim, . ,|a,|3™ exists, then 1/r is simply this limit.

We justify the use of the term “radius of convergence’ by showing that
the series converges if [x|, < rand divergesif |x|, > r. First,if |x|, < r, then,
letting |x|, = (1 — &)r, we have: |a,x"|, = (r|a.|[3)"(1 — ). Since there are
only finitely many » for which |a,|}™ > 1/(r — }er), we have

. n ; u BT _1;8_ "o
ll_’r?o]anx ]P < ’}l_onl((l — -ke)r - nh~n‘l I~ %e =9
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1 Elementary functions

Similarly, we easily see thatif |x|, > r, thena,x"doesnot approachOasn — <.

What if |x|, = r? In the Archimedean case the story on the boundary of
the interval or disc of convergence can be a little complicated. For example,
log(l + x) = 22., (= 1)**1x"/n has radius of convergence 1. When |x| = 1,
it diverges for x = — 1 and converges (“‘ conditionally,” not ““absolutely ) for
other values of x (i.e., for x = 1 in the case of the reals and on the unit circle
minus the point x = —1 in the case of the complexes).

But in the non-Archimedean case there’s a single answer for all points
|x|, = r. This is because a series converges if and only if its terms approach
zero, i.e., if and only if |a,|,|x|2 — 0, and this depends only on the norm |x|,
and not on the particular value of x with a given norm—there’s no such thing
as ‘“‘conditional” convergence (3 + a, converging or diverging depending on
the choices of +s).

If we take the same example 3., (—1)"*1X"/n, we find that |a,|, =
pore ", and lim, . .. |a,|}™ = 1. The series converges for |x], < | and diverges
for |x|, > 1. If |x|, = 1, then [a,x"|, = p>%" > |, and the series diverges
for all such x.

Now let’s introduce some notation. If R is a ring, we let R[[X']] be the ring
of formal power series in X with coefficients in R, i.e., expressions D =@, X",
a, € R, which add and multiply together in the usual way. For us, R will
usually be Z, Q, Z,, @,, or Q. We often abbreviate other sets using this
notation, for example,

1 + XR[[X]] & /€ R[[X]]| constant term a, of fis 1}.
We define the “‘closed disc of radius r € R about a point a € Q" to be
Do(r) i {xe Q| |x — al, < r},
and we define the ““open disc of radius r about a@” to be
Dy(r-) Z {xeQ||x - a|, <r}.

We let D(r) z, Do(r) and D(r~) = Do(r~). (Note: whenever we refer to the

closed disc D(r) in €, we understand r to be a possible value of | |,, i.e., a
rational power of p; we always write D(r~) if there are no x e £ with
[x[ = r.)

(A word of caution. The terms “closed ™ and “open” are used only out of
analogy with the Archimedean case. From a topological point of view the
terminology is bad. Namely, the set C, = {xe Q| |x — a|, = ¢} is open in
the topological sense, because every point x € C, has a disc about it, for
example D (c ™), all points of which belong to C.. But then any union of C.’s
is open. Both D,(r)and D,(r ), as well as their complements, are such unions:
for example, D (r~) = \U.<q C.. Hence both D, (r) and D, (r ) are simul-
taneously open and closed sets. The term for this peculiar state of affairs in Q
is ““totally disconnected topological space.”)

Just to get used to the notation, we prove a trivial lemma.
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IV p-adic power series

Lemma 1. Fvery f(X) € 7,[[X]] converges in D(17).
PrOOF. Let f(X) = 370 a,X", a,€Z,, and let xe D(17). Thus, |{x|, < 1.
Also |a,|, < 1 for all n. Hence |a,x"|, < |x|," = 0 as n — . I

Another easy lemma is

Lemma 2. Every f(X) = > _ca, X" € Q[[X]] which converges in an (open or
closed) disc D = D(r) or D(r~) is continuous on D.

ProOOF. Suppose |x" — x|, < 8, where 8§ < |x|, will be chosen later. Then
[x'|, = |x|,- (We are assuming x # O; the case x = 0 is very easy to check
separately.) We have

w©
) =S =] D (X" = ax'™)
n=0 4
< max,la,x" — a, x|,
= max{|a,],|(x — x)x""1 + x* 72 4+ ---
+ xx"7E 4 X
But [x"71 4 x" 72" + -+ 4 xx"72 + XM7Y, < max, g ga[xtTXTY, =

|x|%~1. Hence
|/(x) = S < maxy((x — X[plan],x[577)

8
< m max,(|a,|,|x|,")-
Since |a,},|x|," is bounded as n— co, this |f(x) — f(x)|, is <e for suit-
able &, O

Now let’s return to our series > ;(— 1)1 X*/n, which, as we’ve seen, has
disc of convergence D(17). That is, this series gives a function on D(1~)
taking values in €. Let's call this function log,(1 + X), where the subscript p
reminds us of the prime which gave us the norm on Q used to get Q, and
also remind us not to confuse this function with the classical log(l + X)
function—which has a different domain (a subset of R or C) and range
(R or C). Unfortunately, the notation log, for the “p-adic logarithm™ is
identical to classical notation for *“log to the base p.”” From now on, we shall
assume that log, means p-adic logarithm

logs(1 + X):D(17) > Q,  logy(1 + x) = > (—1)**'x"/n,
n=1
unless explicitly stated otherwise.

The dangers of confusing Archimedean and p-adic functions will be
illustrated below, and also in Exercises 8-10 at the end of §l.
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1 Elementary functions

Anyone who has studied differential equations (and many who haven't)
realize that exp(x) = e* = > 7., x"/n! is about the most important function
there is in classical mathematics. So let’s look at the series >2., X"/n!
p-adically. The classical exponential series converges everywhere, thanks to
the n! in the denominator. But while big denominators are good things to
have classically, they are not so good p-adically. Namely, it’s not hard to
compute (see Exercise 14 §1.2)

N == S
ord,(n!) o1

| 1/n ! 'p — p(n—Sn)/(p— n

(S, = sum of digits in n to base p);

Our formula for the radius of convergence r = 1/(lim sup|a,|}™) gives us
ord, r = lim inf(’lt ord, a,,) ,

(where the “lim inf” of a sequence is its smallest point of accumulation). In
the case a, = 1/n!, this gives

o n— S\,
ord, r = lim mf(—m),
but lim,.o(—(@n — S)/(r(p — 1)) = —1/(p — 1). Hence 2., x*/n! ‘con-
verges if |x|, < p~Y®-Y and diverges if |x|, > p~¥*~ Y, What if |x|, =
p~Y®=Y je., ord, x = 1/(p — 1)? In that case

n-S, n Sa

p=1 p=1 p-1

If, say, we choose n = p™ to be a power of p, so that S, = 1, we have:
ord,(a,»x®™) = /(p — 1), |a,»x*"|, = p~¥*®~ Y and hence a,x" = 0 as n-—»
. Thus, > , X"/n! has disc of convergence D(p~!*~V-) (the ~ denoting
the open disc, as usual). Let’s denote exp,(X) = 27-0 X"/n! € Q[[X]].

Note that D(p~1®-Y-) = D(17), so that exp, converges in a smaller
disc than log,!

While it is important to avoid confusion between log and exp and log,
and exp,, we can carry over some basic properties of log and exp to the p-adic
case. For example, let’s try to get the basic property of log that log of a
product equals the sum of the logs. Note that if x € D(17) and y € D(17), then
also (1 + x)(I +y) =1+ (x+y + xy)el + D(I7). Thus, we have:

ord,(a,x") = —

logo (L + (1 + 1] = > (= IF'(x + y + xp)n.

n=1

Meanwhile, we have the following relation in the ring of power series over @
in rwo indeterminates (written Q[[X, Y]]):

D(=DPXn 4 S (=YY = D ()X + Y + XY)n.
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IV p-adic power series

This holds because over R or C we have log(l + x)(I + y) = log(l + x) +
fog(l + y), so that the difference between the two sides of the above equality—
call it F(X, Y)—must vanish for all real values of X and Y in the interval
(=1, ). So the coefficient of X™¥™ in F(X, Y) must vanish for all m and n.

The argument for why F(X, Y) vanishes as a formal power series is
typical of a line of reasoning we shall often need. Suppose that an expression
involving some power series in X and Y—e.g., log(l + X), log(l + Y), and
log(l + X + Y + XY)—vanishes whenever real values in some interval are
substituted for the variables. Then when we gather together all X™ Y "-terms in
this expression, its coefficient must always be zero. Since this is a general fact
unrelated to p-adic numbers, we won’t digress to prove it carefully here.
But if you have any doubts about whether you could prove this fact, turn to
Exercise 2! below for further explanations and hints on how to prove it.

Returning to the p-adic situation, we note that if a series converges in €,
its terms can be rearranged in any order, and the resulting series converges
to the same limit. (This is easy to:check—it’s related to there being no such
thing as ‘“conditional” convergence.) Thus, log,[(1 + x}(1 + y)] = 32,
(D" Yx + y + xy)*/n can be written as >, _,ca.x"y™ But the
“formal identity”” in Q[[X, Y]] tells us that the rational numbers ¢, , will be
Ounlessn = 0 or m = 0, in which case: ¢o ., = Cp0 = (—=1)**/n(cs,0 = O).
In other words, we may conclude that

log [(1 + (L + ] = > (=D i+ 3 (=171

= log,(1 + x) + log,(1 + y).

As a corollary of this formula, take the case when I + xisap™throotof 1.
Then |x|, < | (see Exercise 7 of §I11.4), so that: p™log,(l + x) = log,
(1 + x)" = log, ! = 0. Hence log,(I + x) = 0.

In exactly the same way we can prove the familiar rule for exp in the p-adic
situation: if x, y € D(p~Y»~ D7) thenx + ye D(p~Y®?~Y7), and exp,(x + »)
= eXp, X- exXp, V.

Moreover, we also find a result analogous to the Archimedean case as far
as log, and exp, being inverse functions of one another. More precisely,
suppose x € D(p~Y®-V=) Thenexp, x = | + >, x*/n!, and ord, (x"/n!) >
np—1)—m—=S8)(p—1)=S,/(p —1)> 0. Thus, exp, x — € D(17).
Suppose we take

log,(1 + exp, x — 1)

> (=DM Hexp, x — DYn
n=1

721(— 1)"“( i x"‘/m!)"/n.

m=1

But this series can be rearranged to get a series of the form >;°_, ¢,x". And
reasoning as before, we have the following formal identity over Q[[X, Y]}:

2,0 (2, e fr = x
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1 Elementary functions

coming from the fact that log(exp x) = x over Ror C. Hence¢; = 1, ¢, =0
forn > 1, and

log,(1 + exp,x — 1) = x for xe D(p~t»~-1-),

To go the other way—i.e., exp,(log, (1 + x))—we have to be a little
careful, because even if x is in the region of convergence D(1-) of log,(1 + X),
it is not necessarily the case that log,(1 + x) is in the region of convergence
D(p~1®-1-) of exp, X. This is the case if x € D(p~¥®~1~), since then for
nx1:

n 1 n j—

(ord, x"/n) “5T1 >p_—-_l —ord,n — —— = —— —ord, n,
which has its minima at n = 1 and n = p, where it’s zero. Thus, ord, log,
(I + x) = min, ord, x"/n > 1/(p — 1). Then everything goes through as
before, and we have:

expy(log,(1 + x)) = 1 + x for xe D(p~t/r-b-),

All of the facts we have proved about log, and exp, can be stated succinctly
in the following way.

Propesition. The functions log, and exp, give mutually inverse isomorphisms
between the multiplicative group of the open disc of radius p~" '~V about |
and the additive group of the open disc of radius p~'*-V about 0.
(This means precisely the following: log, gives a one-to-one correspondence
between the two sets, under which the image of the product of two numbers
is the sum of the images, and exp, is the inverse map.)

This tsomorphism is analogous to the real case, where log and exp give
mutually inverse isomorphisms between the multiplicative group of positive
real numbers and the additive group of all real numbers.

In particular, this proposition says that log, is injective on Dy(p~1/®~b~),
i.e., no two numbers in D,(p~"~V~) have the same log,. It’s easy to see
that D,(p~1®-1-)is the biggest disc on which this is true: namely, a primitive
pthroot L of I has [{ — 1|, = p~Y®~ D (see Exercise 7 of §I11.4), and also
log, { = 0 = log, I.

We can similarly define the functions

sing: D(p~1P D7) > Q,  sin, X = D (=1 X*YQn + 1Y
n=0
cos,: D(p M "7) > Q,  cos, X = > (= 1)"X2(2n)!.
n=0
Another function which is important in classical mathematics is the
binomial expansion By(x) = (I + x)* = > qa(a — 1)---(@a— n+ t)/n! x".

For any @ € R or C, this series converges in R or C if |x| < | and diverges
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IV p-adic power series

if }x| > 1 (unless a i1s a nonnegative integer): its behavior at [x|=11s a
little complicated. and depends on the value of a.
Now for any a € Q let’s define

Ba.p(X) det i

n=0

a@a—1---(a—n+ ”X"

n!

3

and proceed to investigate its convergence. First of all, suppose |a|, > 1. Then
la — i|, = |al,, and the ath term has | |, equal to |ar|,*/|n!|,. Thus, for
la], > 1, the series B, ,(X) has region of convergence D((p~ Y ~V)/|a|,").

Now suppose |a|, < 1. The picture becomes more complicated, and
depends on a. We won’t derive a complete answer. In any case, for any such a
we have la — i|, < l,andso |a(a — 1) (a — n + D)/nlx"|, < |x"/n!|,, so
that at least B, ,(X) converges on D(p~1/®-1b-),

We'll soon need a more accurate result about the convergence of B, ,(X)
in the case when g € Z,. We claim that then B, ,(X) € Z,[[X]] (and, in particu-
lar, it converges on D(17) by Lemma 1). Thus, we want to show that

ala — 1)---(@a — n + 1)/nt € Z,. Let ay be a positive integer greater than n
such that ord,(a —ay) > N (N will be chosen later). Then
aglag — 1)---(ag — n+ /nl = ()eZ = Z,. It now suffices to show
that for suitable N the difference between aq(ay — 1)---(ag — n + 1)/n! and
al@— 1) ---(a—n+ 1)/l has | |, < 1. But this follows because the

polynomial X(X — 1)---(X — n + 1) is continuous. Thus,
B.(X)€Z,l[X)|ifaeZ,.

As an important example of the case a € Z,, suppose that a = 1/m,
me Z, ptm. Let x € D(17). Then it follows by the same argument as used to
prove log,(1 + x)(1 + y) = log,(1 + x) + log,(l + y) that we have

[Bllm,p(x)]m =1+ x.
Thus, B,,..,(x) is an mth root of 1 + x in . (If p|m, this still holds, but now
we can only substitute values of x in D(|m|,p~Y*~V=)} So, whenever a is an
ordinary rational number we can adopt the shorthand: B, ,(X) = (I + X)%

But be careful! What about the following “paradox”? Consider 4/3 =
(1 + 7/9*2;in Z; we have ord, 7/9 = 1, and so for x = 7/9and n = 1:

12172 = 1y (12~ n + l)x"
n!

< 7 |nlfy < 1.
7

Hence
P> 10+ = =[5 -1 =} =1
What’s wrong??

Well, we were sloppy when we wrote 4/3 = (1 + 7/9)'/2, In both R and
Q- the number 16/9 has two square roots +4/3. In R, the series for (1 + 7/9)'/2
converges to 4/3, i.e., the positive value is favored. But in Q,, the square
root congruent to | mod 7, t.e., —4/3 = | — 7/3, is favored. Thus, the exact
same series of rational numbers

S 1212 = 1) (12 = n + 1) (T\»
> (5

5 n! 9
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Exercises

converges to a rational number both 7-adically and in the Archimedean
absolute value; but the rational numbers it converges to are different! This is
a counterexample to the following false *“theorem.”

Non-theorem 1. Let . | a, be a sum of rational numbers which converges to a

rational number in | |, and also converges to a rational number in | | . Then
the rational value of the infinite sum is the same in both metrics.

For more “paradoxes,” see Exercises 8-10.

EXERCISES

1. Find the exact disc of convergence (specifying whether open or closed) of the
following series. In (v) and (vi), log, means the old-fashioned log to base p,
and in (vii) { is a primitive pth root of 1. [ ] means the greatest integer
function,

i 2 nt X" (i) SprX"  (v) 3pheemxn  (vii) S (¢ — 1) X"/n!
(11) zpn[loganﬂ (lV) S anp" (Vl) S p[logp n]Xn/n

. Prove that, if > a, and b, converge to a and b, respectively (where a,, b,, a,
b e Q), then 2 c,, where ¢, = >7-o aib, -4, converges to ab.

. Prove that 1 + XZ,[[X]] is a group with respect to multiplication. Let D be
an open or a closed disc in Q of some radius about 0. Prove that {fe 1 +
XQ[[X]] | fconverges on D} is closed under multiplication, but is not a group.
Prove that for fixed A, the set of f(X) = 1 + >, a; X' such thatord, a; — Al
is greater than O for alli = 1, 2, ... and approaches o as i -~ o0, is a multipli-
cative group. Next, let f;e 1 + XZ,[[X]],j=1,2,3, ... . Let f(X) = [,
f,(X?). Check that f(X)e 1 + XZ,[[X]]. Suppose that all of the f; converge
in the closed unit disc D(1). Does f(X) converge in D(1) (proof or counter-
example) ? If all of the nonconstant coefficients of all of the f; are divisible by
p, does that change your answer (proof or counterexample) ?

. Let {a,} = Q be a sequence with {qa,|, bounded. Prove that

@

n‘p
n!
,Zoa"x(x + Dx+2)---(x+n
converges for all x € Q not in Z,. What can you say if x € Z,,?

. Let i be a square root of —1 in @, (actually, i lies in Q, itself unless p = 3
mod 4). Prove that: exp,(ix) = cos, x + isin, x for x € D(p~ 1P ~b7),

. Show that 27! = 1 (mod p?) if and only if p divides Y22} (—1)/j (of course,
meaning that p divides the numerator of this fraction).
. Show that the 2-adic ordinal of the rational number
2 4 2%2 + 23/3 + 244 + 2%/5 + -+ 4+ 2%n
approaches infinity as n increases. Get a good estimate for this 2-adic ordinal
in terms of n. Can you think of an entirely elementary proof (i.e., without

using p-adic analysis) of this fact, which is actually completely elementary
in its statement ?

83



IV p-adic power series

10.

1.

14.

84

. Find the fallacy in the following too-good-to-be-true proof of the irrationality

of 7. Suppose m = a/b. Let p # 2 be a prime not dividing a. Then
0 = sin(pbm) = sinpa) = > (- D(pa)?*+*1/2n + 1! = pa (mod p?),

L
n=0

which is absurd.

. Find the fallacy in the following proof of the transcendence of e. Suppose ¢

were algebraic. Then ¢ — 1 would also be algebraic. Choose a prime p # 2
which does not divide either the numerator or denominator of any coefficient
of the monic irreducible polynomials satisfied by ¢ and by ¢ — 1 over Q.
You can show as an exercise that this implies that |e|, = je — 1], = 1. We
have: 1 = le — 1], = |[(e — 1), = [e» — 1 — DPSHPW(—e)'|,. Since the
binomial coefficients in the summation are all divisible by p, and since
|—el, = 1,it follows that 1 = |e? — 1], = [S7=,p"/n'l,, which is impossible
since each summand has | |, < 1.

(a) Show that the binomial series for (1 — p/(p + 1))~ " (where n is a positive
rational integer) and for (I + (p° + 2mp)/m?)V'? (where m is a rational
integer with m > (V2 + 1)p, ptm) converge to the same rational number as
real and as p-adic infinite sums.

(byLetp = 7, n = (p — 1)/2. Show that (I + p/n®)*'? gives a counter-example
to Non-theorem 1.

Suppose that « € Q is such that 1 + xis the square of a nonzero rational number a/b
(written in lowest terms, with ¢ and b positive). Let S be the sct of all primes p for
which the binomial series for (1 + x)! ? converges in | |,. Thus, pe S implies that
(I + 2)""? converges to either ¢/b or —a/b in | |,. We also include the “infinite
prime” in S if the binomial series converges in | |, =] |, i.e, if ae(—1, 1). Prove
that:

(a)For panodd prime, p € Sifand onlyifp|a + borpla — b,inwhichcase (1 + a)' 2
converges to —a/b when pla + b and to a/b when pla — b.

(b) 2 €S if and only if both g and b are odd, in which case (I + «)!"? converges to
a/b when a = b (mod 4) and to —a/b when u = — b (mod 4).

(cyoceSifand only if 0 < a/b < V@, in which case (I + x)' 2 converges to a/b.
(d) There is no « for which § is the empty set, and S consists of one element if « = §,
18 3 2 and for no other o.

(¢) There is no « other than 8, 12, 3, 2 for which (1 + «)! % converges to the same value
in] |, forall pe S. (This is one example of a very general theory of E. Bombieri.)

. Prove that for any nonnegative integer &, the p-adic number >7_, n*p™isin Q.

. Prove that in Q;:

«© 3271 N 3271

> (="

= n42n = 4"

Show that the disc of convergence of a power series f(X) = Y a, X" is
contained in the disc of convergence of its derivative power series f(X) =
> na, X" 1. Give an example where the regions of convergence are not the
same.



Exercises

15. (a) Find an example of an infinite sum of nonzero rational numbers which con-

16.

17

.

18.

19.

20.

21.

verges in | |, for every p and which converges in the reals (i.e., in | |« = | |).
(b) Can such a sum ever converge to a rational number inany | |,or | |»?

Suppose that, instead of dealing with power series, we decided to mimic the
familiar definition of differentiable functions and say that a function f: Q — Q
is *“differentiable” at ae Q if (f(x) — f(a))/(x — a) approaches a limit in
as |x — al, — 0. First of all, prove that, if f(X) = 3r-=0a, X" is a power
series, then it is differentiable at every point in its disc of convergence, and it
can be differentiated term-by-term, i.e., its derivative at a point a in the disc of
convergence is equal to > 2= na.a” . In other words, the derivative function
is the formal derivative power series.

Using the definition of “‘differentiable” in the previous problem, give an
example of a function f: Q — Q which is everywhere differentiable, has
derivative identically zero, but is not locally constant (see discussion of
locally constant functions at the beginning of §11.3). This example can be
made to vanish along with all of its derivatives at x = 0, but not be constant
in any neighborhood of 0. Thus, it is in the spirit of the wonderful function
e~ 1*? from real calculus, which does not equal its (identically zero) Taylor
series at the origin.

The Mean Value Theorem of ordinary calculus, applied to /1 R — R,
f(x) = x» — x, on the interval {xe R | |x| < 1}, says that, since f(1) =
S(—=1) = 0, we must have

f(@) =0 forsome «acR, | <.

(In fact, « = +(1/p)*/?~ 1) works.) Does this hold with R replaced by Q and
| | replaced by | {,?

Let /: @, — @, be defined by x = > a,p"+> Y g(a,)p", where Y a,p” is the
p-adic expansion of x and ¢:{0, 1, ..., p — 1} — Q, is any function. Prove
that f'is continuous. If g(@) = a® and p # 2, prove that f'is not differentiable.

Prove that for any Nand forany;=1,2, ..., N,
A+ X" — tepz(x] + x*"77*'7[X]

Suppose that a/b is a rational number with |a/b|, < 1, and you want to find
the first M coefficients (M is a large number) of the power series (1 + X)a/
to a certain p-adic accuracy. Discuss how to write a simple algorithm (e.g.,
a computer program) to do this. (Only do arithmetic in Z/p"Z, not in Q,
since the former is generally much easier to do by computer.)

If R is any ring, define the ring R[[ X, ..., X;]] (abbreviated R{[X]]) of
formal power series in n variables as the set of all sequences {r;,.....,,} indexed
by n-tuples iy, ..., i, of nonnegative integers (such a sequence is thought of as
2 Fiy i, X't oo X' and sometimes abbreviated Y r; X*), with addition and
multiplication defined in the usual way. Thus, {r . .} + {s,...0;,} =
{tiy,in) Where & oo = ry o, F Sy and {re b Sy ) =
{ti, o ip), Where £ .y = D P, oo 28k, k, With the summation taken over
all pairs of a-tuples j,, ...,/j» and k), ..., k, for which j, + k, =i,
j2 + k2 = iz, ...,j" + kn = in.
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By the minimal total degree deg f of a nonzero power series f we mean the
least « such that some r,,,.., with i, + iy + - + i, = d is nonzero. We
can define a topology, the ** X-adic topology,” on R[[X]] by fixing some
positive real number p < | and defining the ** X-adic norm™ by

[fix = plest (|0}« is defined to be 0).

(1) Show that | | makes R[[ X]] into a non-Archimedean metric space (see
the first definition in §1.1; by “*non-Archimedean,” we mean, of course, that
the third condition can be replaced by: d(x, y) < max(d(x, ), d(z, y))). Say
in words what it means for [f|x to be <.

(2) Show that R[[X]] is complete with respect to | |x.

(3) Show that an infinite product of series f, € R[[X']] converges if and
only if |f; — 1[x — 0 (where | is the constant power series {r,, ...} for
which ry = 1 and all other r;_; = 0). We will use this in §2 to see that the
horrible power series defined at the end of that section makes sense.

(4) If fe R[[X]], define f; to be the same as f but with all coefficients
Pig,ovi, With 4y + -+ + 7, > d replaced by 0. Thus, f; is a polynomial in n
variables. Let gy, ..., g. € R[[X]]. Note that f,(g.(X), g2(X), ..., g.(X)) is
well-defined for every d, since it’s just a finite sum of products of power series.
Prove that {f(g,(X), ..., &£XN}4=0.1.2.... is a Cauchy sequence in R[[X]] if
lgilx < 1forj=1,..., n In that case call its limit fo g.

(5) Now let R be the field R of real numbers, and suppose that /, f,, g1, .. .,
gn are as in (4), with |g,|x < 1. Further suppose that for some ¢ > O the
series fand all of the series g, are absolutely convergent whenever we substi-
tute X, = x,intheinterval [—¢, e]< R. Prove that the series f o g is absolutely
convergent whenever we substitute X, = x, in the (perhaps smaller) interval
[—¢’, €] for some & > 0.

(6) Under the conditions in (5), prove that if fo g(x,, ..., x,) has value 0
for every choice of xy, ..., x, €[ —¢’, €], then /> g is the zero power series
in R{[X]].

(7) As an example, let n = 3, write X, Y, Z instead of X, X;, X, and let

8

(X, Y, Z) = 3 (=) XYi + Vi — 2D,

=1
g(X, ¥, Z) = X,
g X, V. 2Z) =Y,
gX, Y, Z)= X+ Y+ XV.

As another example, let # = 2,

f(X.Y)

(S ) - v,

i=1

g(X, V) = > XY,
i=

1

gAX. Y) = X.

Explain how your result in (6) can be used to prove the basic facts about the
elementary p-adic power series. (Construct the fand g, for one or two more
cases.)
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2. The logarithm, gamma and Artin—Hasse exponential
functions

In this section we look at some further examples of p-adic analytic functions
(more precisely, “locally” analytic functions) which have proven useful in
studying various questions in number theory. The first is Iwasawa’s extension
of the logarithm.

Recall that the Taylor series log, x = 3 <, (—1)""!(x — 1)"/n converges
in the open unit disc around 1. The following proposition says that there is a
unique function extending log, x to all nonzero x and having certain con-
venient properties.

Proposition. There exists a unique function log,: Q* — Q (where Q™ =
Q — {0}) such that:

(1) log, x agrees with the earlier definition for |x — 1|, < 1, ie,
log,x = > (=1} x — D)"n for|x — 1], < 1;
n=1

(2) log, (xy) = log, x + log, y for all x, ye Q™ ;

(3) log,p = 0.
Proor. Recall from §II1.4 that any nonzero x € Q can be written in the form
x = prw(x,){x, >, where p" is some fixed root of the equation x* — p* = 0,
with r = a/b = ord, x, w(x,) is a root of unity, and |{x,;> — 1|, < 1. There
is thus only one possible way to define log, x consistently with (1)-(3).
Namely, (2) and (3) imply that log,(p") = log,(e(x,)) = 0, and hence we
must have

log, x = > (=1 1(Cx,> — 1.

We thus know that there is at most one definition of log, x which has
the desired properties, namely, the definition log, x = log,{(x;>. It remains
to show that the three desired properties are actually satisfied. Properties
(1) and (3) are obvious from the definition.

In the course of our definition of log, x, we made a rather arbitrary choice
of a bth root of p®. But if we had chosen another bth root of p? for our p’, this
would have altered x, by a bth root of unity and hence would have altered
w(x,) and {x,) by certain roots of unity. Notice that the new (x> would
have to differ from the old {x;> by a pth power root of unity, because { =
{x'1>/{xy) 1s in the open unit disc about 1 (see Exercise 7 in §I11.4). In any
case, the definition log, x = log,{x, > would not be affected by this replace-
ment of x, by x}, because log, { = 0, as remarked in §1. Thus, our definition
really does not depend on the choice of p'.

We now prove property (2). Let x = p'w(x){x,», y = p'w(y)<{y>,
z=xy = p " w(z,)<z,>. Now p"** is not necessarily the same fractional
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power of p as p'p®; it may differ by a root of unity. But the definition of log,, z
does not change if we change our choice of p"** to p'p’. In that case, z, =

z/p’p’ = X1y, and so {z;) = {x;>{y,), and
log, z = log,{z;)> = log,(x;> + log,{v,> = log, x + log, ,

where the middle equality was proved in the last section in our discussion of
the power series 3 (— 1)"" 'x"/n. This completes the proof of the proposition.

O

Now let x4 # 0 be a fixed point of Q. Let r = [x,/,, and suppose that
x is in the largest disc about x, which does not contain zero, ie., D (r7).
Then |x/xq — 1], < 1, and so

log, x = log,(xo(1 + x/xq — 1)) = log, xo + z (— 1" H(x — xq)"/nxp.
n=1

Thus, in D, (r ) the function log, x can be represented by a convergent power
series in x — x,. Whenever a function can be represented by a convergent
power series in a neighborhood of any point in its region of definition, we
say that it is locally analytic. Thus, log, x is a locally analytic function on
Q — {0}

Recall from Exericse 16 of §1 that the usual definition of the derivative
can be applied to p-adic functions, and that power series are always differ-
entiable in their region of convergence, with the derivative obtained by
term-by-term differentiation. In particular, applying this to log, x in D, (r "),
we obtain

o

S =1 = xo)

n=1

ix log, x

xg' 2 (1 = x/xo)"
n=0

!

Xo ' f(x/x0) = 1/x

for xe D, (r ). We conclude:
Proposition. log,, x is locally analytic on Q — {0} with derivative 1/x.

The next function we discuss is the p-adic analogue of the gamma-function.

The classical gamma-function is a function from R to R which “inter-
polates” n! (actually, ['(s) is defined for complex s, but we aren’t interested in
that here). More precisely, it is a continuous function of a real variable s
excludings = 0, —1, —2, —3, ... (where it has “poles™) which satisfies

I's+1)=s! for s=0,1,2,3,....
Since the positive integers are not dense in R, there are infinitely many

functions which satisfy this equality; but there is only one which has certain
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other convenient properties. This gamma-function can be defined for s > 0
by:

o

I'(s) = j‘ x*"le”* dx.
0

Thus, the gamma-function is the “ Mellin transform” of e ™ * (see §7 of Chapter
I1). It is not hard to check (see Exercises 6-7 below) that this improper integral
converges for s > 0, and that the function I'(s) defined in this way satisfies
['(s + 1) = sI(s) for all s> 0. In addition, T'(1) = :e_"dx =1; then
I's+ 1)y=sl(s)=s(s — DI'(s — 1) =--- = s'I'(1) = s!, so this function
really is an interpolation of the factorial function.

We would now like to do something similar p-adically, i.e., find a con-
tinuous function from Z, to Z, whose values at positive integers s + 1
coincide with s!.

We shall assume that p > 2 in what follows; minor modifications are
needed if p = 2.

Recall from §2 of Chapter II under what conditions a function f(s) on
the positive integers can be interpolated to all of Z,. Such a continuous
interpolation exists if and only if for every ¢ > 0 there exists N such that

s = s (mod p") implies | f(s) — f(s)], < . *)

In that case the interpolating function is unique and is defined by

f(s)= lim f(k).
k—s, keN

Unfortunately, the basic condition (*) does not hold for f(s) = (s — 1)},
since, for example, | f(1) — f(1 + pN)|p = 1 for any N > 0, since p divides
s! whenever s > p. The problem is that, whenever s is a large integer in the
old-fashioned archimedean sense, s! is divisible by a large power of p, i.e.,
f(s) - 0 p-adically as s — oc.

We could modify the factorial function in a way analogous to how we
modified the Riemann zeta-function in Chapter II (*removing the Euler
factor”) by discarding indices divisible by p. That is, we could try to inter-
polate the f(s) defined by:

gl
fs+1)= j= .
,IJ*, [s/p11ptm"

However, once again we have problems (see Exercise 8 below). But if we
modify f(s) one final time by a mere change in sign for odd s, we can then
interpolate.

Propeosition. /et

ry=—v 11 k=123...

J<k,pXj
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Then T, extends uniquely to a continuous function I',: 2, — Z; defined by

)= lim (=" J] Jj

A= helN j<k.ptij
Prook. It suffices to prove (¥); in fact we shall prove that
k' =k + k,p* implies [, (k) =T, (k') (modp").

Notice that I' (k) e Z, (that is why ', will be a map from Z, to Z; as soon
as we show that the continuous interpolation exists). Hence the right side
of the above implication is equivalent to the congruence

=TT k=" T] j (modp".

M i<k phi
If we prove this for k; = 1,ie,fork’ = k + p¥, then by multiplying together
the congruences with k replaced by k + ip® i = 0,..., k; — 1)
E(;])Auwnpquﬂpw) n J (mod pN)’
k+ipN<j<h+(i+1pN,pyj

we immediately obtain the desired congruence. Since p is odd, we have
(-1 = —1, and so we have reduced the proof to showing that

H j= —1(mod p").

K< j<h+pNopgi
Since the product runs through every congruence class in (Z/pNZ)* exactly
once, we have
j=  TT j (modpY.
hsj<k+pN.prj 0<j<pN.prj

Thus, it remains to prove that the product on the right is = — 1 (mod p"). We
now pair off elements j and j° which satisfy ji' = 1 (mod p"). For each
there is precisely one such j'. Since p > 2, there are only two values of j for
which j* = j, i.e., for which j2 = 1 (mod p") (see Exercise 9 below). Thus,

[T =dupix—=1= -1 (modp",

0<j<pN.phj

as desired. O

The key step in the proof. the congruence for ['];. v ,,;Jj.is a generaliza-
tion of Wilson's theorem, which is the case N = 1:(p — 1)! = —1 (mod p).

Basic properties of T,.

Fs+D {—s if seZ);

LA 1
I (s) -1 il sepZ, (D

ProoF. Since both sides are continuous functions from 7, to Z,, it suffices
to check equality on the dense subset N, i.e., when s = ke N. But then it
follows immediately from the definition of I" (k). O
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2 The logarithm, gamma and Artin—Hasse exponential functions

(2) fseZ,, write s = 5o + ps,, where so € {1,2,..., p} is the first digit in s
unless s € pZ,,, in which case s, = p rather than 0. Then

T ()C(1 — 8) = (= 1.

PROOF. Again by continutty it suffices to check this when s = k. Fors = 1 the
equality holds because I' (1) = —1 by definition, and I'j(0) = —T',(1) = 1
by property (1). Now use induction, assuming the equality for s = k and then
proving it for k + 1. Using property (1), we have

L+ DI (1=(+1) [=s—(=s)=—-1 if seZ;;
L1 — s) T l=1A-D=1 if sepz,,

and this shows that the equality in (2) for s + 1 follows from the equality for s.
O

(3) For se Z,, define s, and s, as in property (2). Let m be any positive
integer not divisible by p. Then
TT750 Tp((s + hym) _
T () TT5= T (h/m)

ml—So(m—(p—l))sl_

Remarks. 1. The expression on the right makes sense, because the number
being raised to the p-adic power, namely m~~1), is congruent to 1 mod p.
(See §2 of Chapter I1.) Of course, s, is a positive integer, so m! ~*° makes
sense.

2. The classical gamma-function can be shown to satisfy the “Gauss-
Legendre multiplication formula ™

[T7= TG + hym) _
[(s) TT3= Th/m) |

PrOOF OF (3). Let f{s) be the left side and let g(s) be the right side of the
equation. Both f and g are continuous, so it suffices to check equality for

s = keN. Fors =k = 1 both sides are clearly 1. We proceed by induction
on k. We have

f+1)  TO0(s/m +1) {l/m if sezr;

fGs) T s+ DIs/m) |1 if sepZ,

On the other hand, if s€ Z;, we have g(s + 1)/g(s) = 1/m, since then (s + 1),
=5 + land (s + 1), = s;, while if se pZ, we have g(s + 1)/g(s) = L, since
then(s + 1) = s, — (p — Dand (s + 1), = s, + 1. Hence f(s + 1)/f(s) =
g(s + 1)/g(s), and the induction step follows. 1

This concludes our discussion of the p-adic gamma-function.
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We now introduce an ‘“‘elementary function” which is ‘““better”” than
exp,—has a larger disc of convergence—and which can often be used to play
a similar role to exp in situations when better convergence than D(p ' ~Y7)
is needed. To do this, we first give an infinite product formula for the ordinary
exponential function, in terms of the “Mobius function” u{n), which is often
used in number theory. For ne {1, 2, 3, ...} we define

) 0, if n is divisible by a perfect square greater than 1;
n) = )
# (— D)%, if nis a product of & distinct prime factors.

Thus, I = p(l) = u(6) = n(221) = p(1155),0 = w(9) = p(98), -1 = p(2) =
#(97) = u(30) = u(105). A basic fact about g is that the sum of the values
of u over the divisors of a positive integer n equals | if n = 1 and 0 otherwise.
This is true because, if #n = p,%:- - pS is the decomposition into prime
factors, and if s > 1, then we have:

2 u(d) = > pprie ) = (=D = (I — 1y = 0.

din all possible
gg=0orl,i=1,---,s

We now claim that the following *‘formal identity” holds in Q[[X]]:
exp(X) = FI (l - Xn)”u{m’n det II B*u(ﬂ)/n‘ p(_Xn)'
n=1 n=1

{Note that this infinite product of infinite series makes sense, since the nth
series starts with 1 — u(n)/nX™, i.e., has no powers of X less than the nth;
thus, only finitely many series have to be multiplied together to determine
the coefficient of any given power of X.) To prove this, take the log of the
right hand side. You get:

= o aemin S ) . &op(n) < Xt
1ogljl(1 — Xmyamm = ZI#Tlog(l - X" = Z%Z

n=1 y M

= i {? Zy(n)] (j = old mmn),

ni
gathering together coefficients of the same power of X. By the basic property
of u proved above, this equals X. Taking exp of both sides, we obtain the
desired formal identity.

(Several times we have used the principle, mentioned in the discussion of
log, and developed in Exercise 21 of the last section, that manipulation of
formal power series as though the variables were real numbers is justified
as long as the series involved all converge in some interval about 0.)

If we look at [ 7., (1 — X™)~#™® " p-adically, we can focus in on where
the “trouble” comes in. By *““trouble” I mean why it only converges on
D(p """ Y7 yand noton D(17). Namely. if p{nand p? y n.then (1 — X7y~ rt»
only converges when an x is substituted for which

/

[xnip = |x],"€ D(r7), wherer = p’”"*”/ _fi('_ﬂ

-1p-1 nl...
: il

92
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For example, if n = p, then this converges precisely when

—up-n )P — p-litp-1
Jxlo < {p ? p .

But as long as ptn we’re O.K.: that is, since —u(n)/neZ,, we have
(1 — xm~#®wireZ [[X]]. (Remember in all this that (I — X™)* is just
shorthand for B, ,(— X") = 32qal@a — )---(@ — i + DIV (= X™Y)

So let’s define a new function E,, which we call the *“Artin-Hasse ex-
ponential,” by just forgetting about the ‘“bad” terms in the infinite product
(this is very similar to our “removing the Euler factor” in order to define
the p-adic zeta-function in Chapter II):

el

E(X) = ] [ (1 = xm)-soine Q[Lx]).

n=1
pin

Since each infinite series B_ iy .(— X™) is in 1 + X"Z,[[X]], their infinite
product makes sense (only finitely many have to be multiplied to get the
coefficient of any given power of X), and it lies in 1 + XZ,[[X]].

We can easily find a simpler expression for £,(X), using the property of
the p function:

1 if nis a power of p;
dlg,; . wd) = {0 otherwise.

This property follows immediately from the earlier property of y, applied to
n[p°%" in place of n. Considering E,(X) over R (or C) and taking the loga-
rithm as before gives:

log E(X) = — i 20, i 2 i [Z(—I > u(n)}

m=1 M i=1 J nlj,pin

Hence,
xr  x»®  x®
ED(X)=CXP(X+—p—+-pT+p—3+'--),

as an equality of formal power series in Q[[X]].

The important thing about E,(X), in distinction from exp, (X), is that
E(X) e Z,[[X]). Thus, E,(X) converges in D(17). It can be seen (Exercise 11
of §IV.4) that this is its exact disc of convergence, i.e., it does not converge
on D(1).

We conclude this section with a useful general lemma, due to Dwork.

Lemma 3. Let F(X) = Y aX'el + XQ,[[X]]. Then F(X)el + XZ,[[X]]
if and only if F(XP)/(F(X)Pe 1 + pXZ,[[X]].

ProoF. If F(X)e 1 + XZ,[[X]], then, since (@ + b)" = a® + b* (mod p) and
a® = a (mod p) for a € Z,,, it follows that

(F(X))* = F(X?) + pG(X) for some G(X)e XZ,[[X]]
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Hence
F(X?) pG(X)
=1 = ] XZ,[[X]],
Fxy T Eyp s T
because (F(X))Pe1 + XZ,[[X]] and hence can be inverted (see Exercise 3
of §1).

In the other direction, write
F(X?) = (F(X)PG(X), G(X)el + pXZ,[[X]L
G(X) =D bX:, F(X)=aX".

We prove by induction that a, € Z,,. By assumption, a, = !. Suppose a,€ 7,
for i < n. Then, equating coefficients of X" on both sides gives

. o a n
@y 1T p dw!des n} = coefficient of X™in (Z a;X‘)n(l + Z bL,Yl) .
0 otherwise oy S
If we expand the polynomial on the right, subtract a,,, in the case pin (and
recall that a,, = a3, modp), and notice that the resulting expression
consists of pa, added to a bunch of terms in pZ,, we can conclude that
pa,epl, ie., a,€Z,. U

Dwork’s lemma can be used to give an easy direct proof (without using
the infinite product expansion) that the formal power series E(X) =

eX+XPip + XD+ oo coefficients in Z, (see Exercise 17 below).

Dwork’s lemma, which seems a little bizarre at first glance, is actually an
example of a deep phenomenon in p-adic analysis. It says that if we know
something about F(X?)/(F(X))®, then we know somecthing about F. This
quotient expression F(XP)/(F(X))® measures how much difference there is
between raising X to the pth power and then applying F, versus applying F
and then raising to the pth power, i.e., it measures how far off Fis from
commuting with the pth power map. The pth power map plays a crucial
role, as we've seen in other p-adic contexts (recall the section on finite fields).
So Dwork’s lemma says that if F *“commutes to within mod p”” with the pth
power map, i.e., F(XP)/(F(X)) = 1 + p-> (p-adic integers) X?, then F has
p-adic integer coefficients.

We apply this lemma to a function that will come up in Dwork’s proof of
the rationality of the zeta-function. First, note that Lemma 3 can be general-
ized as follows: Let F(X, Y) = > a,, ,X" Y™ be a power series in fwo variables
X and Y with constant term 1, i.e.,

F(X, Vel + XQ,[[X, Y]] + YQ,[[X, Y]]
Then all the a,, ,’s are in Z, if and only if
F(X?, YONF(X, Y)y el + pXZ,[X, Y]] + pYZ,[X, Y]].

The proof is completely analogous to the proof of Lemma 3.

94



Exercises

We now define a series F(X, Y)in Q[[X, Y]] as follows:
F(X, Y)= Bx.p(Y)B<x”—x>/p.p( YP)B(x’z-x’)/pz.p( sz)' < Bt 9" 1)/z:".p( an). o
= (1 + Y)*(1 + Yp)Xe-Xip(] 4 Yp2)(xﬂ’—xv)/p2 e
x (1 4 Yoyx"-x""hon

o X(X -1 X—-i+1
Z( )!( i+1)y

] £ Xpn - Xpn-l Xpn — Xpn—l )
—1}--
g (tZO " ( r

Xp“ - Xpn 1 Ytpn

x (——n - i+ 1) ; )
p i!

Since we only have to take finitely many terms in the product to get the co-

efficient of any X"Y™, this is a well-defined infinite series F(X, Y) =

Yan X"Y™in 1 + XQ,[[X, Y]] + YQ,[[X, Y]]. We use the generalization

of Lemma 3 to prove that a, , € Z,. Namely ,we have
F(X?, Y?) (1 + Y?)(1 + YP)X2-X0p(] 4 yeoyx»*-xe%ip2,
FX, V)P (1 +Y)PX(1 + YP)X°-X(1 4 YP)x -5,
_ 1+ Yor
T+ Y)px

We must show that (1 + Y?)X/(1 + Y)* is in | + pXZ,[[X, Y]] +
pYZ,[[X, Y]]. Applying Lemma 3 in the other direction shows that, since
1 + Yel + YZ,[[Y]), it follows that

I+ Y91+ YP=1+4+pYGY),GY)eZ[ Y]]

Thus,

e = (1 + pya(nys = 5 XE= D= I D vy,

which is clearly in | + pXZ,[[X, Y]] + pYZ,[[X. Y]]. We conclude that
F(X, Y)eZ,[[X, Y]].

EXERCISES

1. Find log; 42 mod 7* and log, 15 mod 2'2.

2. Prove that the image of Z, under log, is pZ,for p > 2 and is 4Z, for p = 2.

3. Forp > 2and a € Z,, prove that p? divides log, aif and only if a* ™! = 1 mod p*.
4. Find the derivative of the locally analytic function x log, x — x.
5

. Suppose that a functionf: Q> — Q satisfies properties (1) and (2) of the proposition
at the beginning of this section. Prove that f(x) must be of the form f(x) = log, x
+ ¢ ord, x for some constant ce Q.
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IV p-adic power series

10.

11.

12.

13.

96

. Verify that the improper integral [J x*

'e™* dx converges if and only if s > 0.

. Using integration by parts, prove that T'(s + 1) = sI'(s), where I['(s) is defined by the

integral in Exercise 6.

. Show that the function f(s) = [ '], ,,;j for s€ N does not extend to a continuous

function on Z,,.

. For p > 2, show that if 2 — 1 = 0 mod p", then j = +1 mod p". What happens if

p =27

Show that T (1/2)* = —(S}), where (51) = 1 if x> = —1 has a solution in F, and
it equals — 1 otherwise.

Compute I"5(1/4) and I'-(1/3) to four digits (if you don’t have a computer or pro-
grammable calculator handy, then compute them to two digits).

Let ./ —1 € Z5 denote the root with first digit 3, and let \[-3 € 7, be the root with
first digit 2. Use Exercise 9 of §1.5 and Exercise 11 above to verify the following
equalities to 4 digits:

Ts(1/4)2 = =2 + /= 1;T,(1/3)* = (1 — 3./ 3)2.

Note: These equalities are known to be true, but no down-to-earth proof
(without p-adic cohomology) is known for them. They are special cases of a more
general situation. To explain this, let us take, for example, the second equality. Then
for p =7 welet { = ¢*™7 ¢ C be a primitive pth root of unity, and let

w=(~1+./=3)2 =3

be a nontrivial (p — 1)th root of unity. Next take a generator of the multiplicative
group F, (see Exercise 2 of §I11.1); in our case p = 7 let us take 3. Then
'

M
M=

g =

€

=%

It

i=1
is known as a Gauss sum. [t is not hard to verify that the right side of the second
equality above is equal to g3/7. More generally, one can prove that, whenever a/d
is a rational number whose denominator divides p — 1, the p-adic number Fp(a/d)d
is an element of the field Q(w), where w is a primitive dth root of unity. (Exercise 10
gives another special case of this, in which a/d = 1/2, w = — 1.) Namely, it turns out
that T (a/d)! can be expressed in terms of suitable Gauss sums. (For a treatment of
this, see Lang, Cyclotomic Fields, Vol. 2, or else Koblitz, p-adic Analysis: a Short
Course on Recent Work.)

Note, by the way, that this shows a major difference between I', and the classical
I'-function, since, for example, I'(1/3) is known to be transcendental.

Lets = r/(p — 1) be a rational number in the interval (0, 1), and let m be a positive
integer not divisible by p. Prove that

Ly(s) 113! T (hfm)
is equal to the Teichmiiller representative of m!! ~9' =P (je., to the (p — D)th root
of unity in Z,, which is congruent mod p to m' ~#*" = m"). (Recall that if [, is re-
placed by the classical T-function, then this expression equals m' ~%).




3 Newton polygons for polynomials

14. Prove that exp, X, (sin, X)/X, and cos, X have no zeros in their regions of
convergence, and that E,(X) has no zeros in D(17).

15. Find the coefficients up through the X* term in E,(X) for p = 2, 3.

16. Find the coefficients in E,(X) through the X?~! term. Find the coefficient of
X?. What fact from elementary number theory is reflected in the fact that the
coefficient of X? lies in Z,?

17. Use Dwork’s lemma to give another proof that the coefficients of E,(X)
are in Z,.

18. Use Dwork’s lemma to prove: Let f(X) = exp(S&Zo b X?"), bye @,. Then
f(X)el + XZ,[[X]] if and only if b,., — pbjepZ, for i =0,1,2, ...
(where b, = 0).

3. Newton polygons for polynomials

Let f(X) =1+ St.ia X' el + XQ[X] be a polynomial of degree n with
coefficients in Q and constant term 1. Consider the following sequence of
points in the real coordinate plane:

0,0), (1, ord, a,), (2, ord, a), ..., (i, ord, @), ..., (n, ord, a,).

(If @, = 0, we omit that point, or we think of it as lying “infinitely” far
above the horizontal axis.) The Newton polygon of f(X) is defined to be the
“convex hull” of this set of points, i.e., the highest convex polygonal line
joining (0, 0) with (n, ord, a,) which passes on or below all of the points
(i, ord, @). Physically, this convex hull is constructed by taking a vertical
line through (0, 0) and rotating it about (0, 0) counterclockwise until it hits
any of the points (i, ord, a;), taking the segment joining (0, 0) to the last such
point (i,, ord, a;,) that it hits as the first segment of the Newton polygon,
then rotating the line further about (i, ord, a;,) until it hits a further point
(i, ord, @) (i > i;), taking the segment joining (i;, ord, a;,) to the last such
point (i, ord, a;,) as the second segment, then rotating the line about
(i3, ord, a;,) and so on, until you reach (n, ord, a;).

As an example, Figure 1 shows the Newton polygon for f(X) =1 +
X2+ 3X® + 3X*in Qu[X].

By the vertices of the Newton polygon we mean the points (i;, ord, ;)
where the slopes change. If a segment joins a point (i, m) to (i*, m’), its slope is
(m" — m)/(i’ — i); by the “length of the slope” we mean i’ — i, i.e., the
length of the projection of the corresponding segment onto the horizontal
axis.

Lemma 4. In the above notation, let f(X) = (1 — X/ey)--- (1 — X/a,) be the
factorization of f(X) in terms of its roots o, € Q. Let A; = ord, 1/«;. Then,
if X is a slope of the Newton polygon having length 1, it follows that precisely |
of the A are equal to A,
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4.1

(3.—D

Figure 1V.1

In other words, the slopes of the Newton polygon of f(X) “are’ (counting
multiplicity) the p-adic ordinals of the reciprocal roots of f(X).

ProoE. We may suppose the o, to be arranged so that A, < A, < --- < A, Say
AL = Ay == A < A,,. We first claim that the first segment of the
Newton polygon is the segment joining (0, 0) to (r, rA;). Recall that each q; is
expressed in terms of I/ay, [/ay, ..., l/a, as {(— 1) times the ith symmetric
polynomial, i.e., the sum of all possible products of i of the l/a’s. Since the
p-adic ordinal of such a product is at least iA;, the same is true for a,. Thus, the
point (i, ord, a,) is on or above the point (i, i1}), i.e., on or above the line
joining (0, 0) to (r, rA,).

Now consider 4,. Of the various products of r of the 1/a’s, exactly one has
p-adic ordinal rA,, namely, the product 1/{eyey---«a,). All of the other
products have p-adic ordinal > rA,, since we must include at least one of the
Aits Arios ooy A Thus, @, is a sum of something with ordinal rA, and
something with ordinal >rA;, so, by the “isosceles triangle principle,”
ord, a, = rA;.

Now suppose / > r. In the same way as before, we see that all of the
products of i of the 1/o’s have p-adic ordinal >iA;. Hence, ord, a; > iA,. If
we now think of how the Newton polygon is constructed, we see that we
have shown that its first segment is the line joining (0, 0) with (r, rA,).

The proof that, if we have A, < A, = Apa = -+ = Ay, < Agir41, then
the line joining (s, A; + Ay + - + AJto(s + 1, Ay + Ay + -+ + Ay +rA4 1)
is a segment of the Newton polygon, is completely analogous and will be
left to the reader. ]

4. Newton polygons for power series

Now let f(X) =1+ 32,4, X'el + XQ[[X]] be a power series. Define
HXy=1+2r,aX el + XQ[X] to be the nth partial sum of f(X).
In this section we suppose that f(X) is not a polynomial, i.e., infinitely many
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4 Newton polygons for power series

Figure 1V.2

a; are nonzero. The Newton polygon of f (X)) is defined to be the “limit " of the
Newton polygons of the f,( X). More precisely, we follow the same recipe as in
the construction of the Newton polygon of a polynomial: plot all of the points
0,0), (1, ord, @), ..., (7, ord, a), ...;rotate the vertical line through (0, 0)
until it hits a point (/, ord, a;), then rotate it about the farthest such point it
hits, and so on. But we must be careful to notice that three things can happen:

(1) We get infinitely many segments of finite length. For example, take
S(X) =1+ 32, p" X, whose Newton polygon is a polygonal line inscribed
in the right half of the parabola y = x2 (see Figure 2).

(2) At some point the line we’re rotating simultaneously hits points
(i, ord, a,) which are arbitrarily far out. In that case, the Newton polygon
has a finite number of segments, the last one being infinitely long. For example,
the Newton polygon of f(X) =1+ >2, X* is stmply one infinitely long
horizontal segment.

(3) At some point the line we’re rotating has not yet hit any of the (i, ord, a,)
which are farther out, but, if we rotated it any farther at all, it would rotate
past such points, i.e., it would pass above some of the (i, ord, @,). A simple
exampleis f(X) = 1 + S, pX" In that case, when the line through (0, 0)
has rotated to the horizontal position, it can rotate no farther without passing
above some of the points (i, 1). When this happens, we let the last segment of
the Newton polygon have slope equal to the least upper bound of all possible
slopes for which it passes below all of the (i, ord, a,). In our example, the
slope is 0, and the Newton polygon consists of one infinite horizontal segment
(see Figure 3).

A degenerate case of possibility (3) occurs when the vertical line through
(0, 0) cannot be rotated at all without crossing above some points (i, ord,, a,).
For example, this is what happens with f(X) = > 2, X'/p"". In that case, f (X)
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Figure IV.3

1s easily seen to have zero radius of convergence, i.e., f(x) diverges for any
nonzero x. In what follows we shall exclude that case from consideration and
shall suppose that f(X) has a nontrivial disc of convergence.

In the case of polynomials, the Newton polygon is useful because it
allows us to see at a glance at what radii the reciprocal roots are located. We
shall prove that the Newton polygon of a power series f(X) similarly tells
us where the zeros of f(X) lie. But first, let’'s make an ad hoc study of a
particularly illustrative example.

Let

X Xz X! 1
f(X)—1+5+T++I+1+——X,logp(l-‘X)

The Newton polygon of f{ X) (see Figure 4, in which p = 3) is the polygonal line
joining the points (0,0), (p — 1, =1, (p2 =1, =2),....(p = 1, =)),...;
it is of type (1) in the list at the beginning of this section. If the power series
analogue of Lemma 4 of §3 is to hold, we would expect from looking at this
Newton polygon that f{X) has precisely p’*! — p’ roots of p-adic ordinal
Ut - p).

But what are the roots of —1/X log,(1 — X)? First, if x = 1 — {, where
{ is a primitive p’ * *th root of 1, we know by Exercise 7 of §I11.4 that ord, x =
I/(p’** — p’); and we know by the discussion of log, in §IV.1 that log,
(I — x) = log, { = 0. Since there are p’*! — p’ primitive p’*'th roots of 1,
this gives us all of the predicted roots. Are there any other zeros of f(X) in
D(17)?

Let x € D(17) be such a root. Then for any j, x, = 1 — (I — x)*’ € D(17)

is also a root since log,(I — x,) = p’log,(l — x) = 0. But for j sufficiently
large, we have x, € D(p~?~b-). For x, € D(p~Y?~Y7), we have | — x, =
exp,y(log,(1 — x,)) = exp, 0 = 1. Hence (I — x)» = 1, and x must be one

Figure IV.4
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4 Newton polygons for power series

of the roots we already considered. Thus, the appearance of the Newton
polygon agrees with our knowledge of all of the roots of log,(1 — X).

We now proceed to prove that the Newton polygon plays the same role for
power series as for polynomials. But first we prove a much simpler result:
that the radius of convergence of a power series can be seen at a glance from
its Newton polygon.

Lemma 5. Let b be the least upper bound of all slopes of the Newton polygon of
JX)=1+3>2,aX €l + XQ[[X]]. Then the radius of convergence is
P’ (b may be infinite, in which case f(X) converges on all of Q).

Proor. First let |x|, < p° ie., ord,x > —b. Say ord, x = —b’, where
b < b. Then ord,(a,x') = ord, a; — ib’. But it is clear (see Figure 5) that,
sufficiently far out, the (i, ord, a;) lie arbitrarily far above (i, #’i), in other
words, ord,(a,x') — o0, and f(X) converges at X = x.

Figure IV.5

Now let |x|, > p® i.e., ord, x = —b" < —b. Then we find in the same
way that ord,(g;x") = ord, a; — b’i is negative for infinitely many values of i.
Thus f(x) does not converge. We conclude that f(X) has radius of conver-
gence exactly p®. O

Remark. This lemma says nothing about convergence or divergence
when |x|, = p®. Itis easy to see that convergence at the radius of convergence
(““on the circumference’”) can only occur in type (3) in the list at the beginning
of this section, and then if and only if the distance that (i, ord, a;) lies above
the last (infinite) segment approaches co as i — 0. An example of this
behavior is the power series f(X) = 1 + 32, p'X?', whose Newton polygon
is the horizontal line extending from (0, 0). This f(X) converges when
ord, x = 0.

One final remark should be made before beginning the proof of the power
series analogue of Lemma 4. If c€ Q, ord, ¢ = A, and g(X) = f(X/c), then
the Newton polygon for g is obtained from that for f by subtracting the line
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y = Ax—the line through (0, 0) with slope A—from the Newton polygon for f.
This is because, if f(X) =1+ >a X" and g(X) =1+ 2 b X", then we
have ord, b, = ord,(a/c') = ord, a, — Ai.

Lemma 6. Suppose that \, is the first slope of the Newton polygon of f(X) =
L+ 22 aXel + XQ[IX]I. Let ceQ, ord, ¢ = X < A,. Suppose that
J(X) converges on the closed disc D(p*) (by Lemma 5, this automatically
holds if X < Ay or if the Newton polygon of (X} has more than one segment).
Let

gX)=(I —cX)f(X)el + XQ[[X]].

Thern the Newton polygon of g(X) is obrained by joining (0, 0) to (1, A) and
then translating the Newton polygon of f(X) by | to the right and X upward.
In other words, the Newton polygon of g(X) is obtained by ** joining” the
Newton polygon of the polynomial (1 — ¢X) to the Newton polygon of the
power series f(X). In addition, if f(X) has lust slope X, and converges on
D(p’7). then g( X)) also converges on D(p’). Conversely, if g( X)) converges on
D(p™). then so does f(X).

PrOOF. We first reduce to the special case ¢ = [, A = 0. Suppose the [emma
holds for that case, and we have f(X) and g(X ) asin the lemma. Then f1(X) =
f{X/e) and g (X) = (I — X)fi(X) satisfy the conditions of the lemma with
¢, A, A; replaced by 1, 0,4, — A, respectively (see the remark immediately
preceding the statement of the lemma). Then the lemma, which we’re assum-
ing holds for f; and g,, gives us the shape of the Newton polygon of g,( X)(and
the convergence of g; on D(p*s~*) when f converges on D(p*/)). Since g(X) =
gfeX), if we again use the remark before the statement of the lemma, we
obtain the desired information about the Newton polygon of g(X). (See
Figure 6.)

Thus, it suffices to prove Lemma 6 with ¢ = 1, A = 0. Let g(X) =1 +
>0 b X' Then, since g(X) = (I — X)f(X), we have b,,, = a,,, — a, for
i > 0 (with g, = 1), and so

ord, b,,, > min(ord, a,,, ord, a,),

with equality holdingiford, a,., # ord, a, (by the isosceles triangle principle).
Since both (i, ord, @) and (i, ord, a,, ;) lie on or above the Newton polygon
of f(X), so does (i, ord, b,,,). If (i,ord, a) is a vertex, then ord, a,,; >
ord, a,, and so ord, b,,, = ord, a,. This implies that the Newton polygon of
g(X) must have the shape described in the lemma as far as the last vertex of
the Newton polygon of f(X). It remains to show that, in the case when the
Newton polygon of f(X) has a final infinite slope A,, g(X) also does; and, if
f(X)converges on D(p*/), then so does g(X) (and conversely). Since ord,, b, ,
2 min(ord, a;, , ord, a;), it immediately follows that g(X) converges wher-
ever f(X) does. We must rule out the possibility that the Newton polygon of
g(X) has a slope 4, which is greater than A,. If the Newton polygon of g(X)
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h &1

-+

Figure IV.6

did have such a slope, then for some large i, the point (i + 1, ord,, a;) would
lie below the Newton polygon of g(X). Then we would have ord, b; >
ord, g; for all j > i + 1. This first of all implies that ord, a;,, = ord, a,
because a;,; = b, + a;; then in the same way ord, a;,, = ord, a;,,, and
so on: ord, a; = ord, a; for all j > i. But this contradicts the assumed con-
vergence of f(X) on D(1). The converse assertion (convergence of g implies
convergence of f) is proved in the same way. O

Lemma 7. Let f(X) =1+ 32, aX '€l + XQ[[X]] have Newton polygon
with first slope X,. Suppose that f(X) converges on the closed disc D(p™:),
and also suppose that the line through (0, 0) with slope A, actually passes
through a point (i, ord, a,). (Both of these conditions automatically hold if
the Newton polygon has more than one slope.) Then there exists an x for
which ord, x = —A; and f(x) = 0.

Proor. For simplicity, we first consider the case A; = 0, and then reduce the
general case to this one. In particular, ord, a; = 0 for all / and ord, g, —
as i—>o0. Let N > 1 be the greatest / for which ord, @, = 0. (Except in the
case when the Newton polygon of f(X) is only one infinite horizontal line,
this N is the length of the first segment, of slope A, = 0.) Let f(X) =
1 + >y a X" By Lemma 4, for n > N the polynomial f,(X) has precisely N
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FOOtS X, 1, ..., Xox With ord, x,; = 0. Let xy = xy;, and for n > N let
X1 beanyof the x, .11, ..., Xpp 1.4 With |x, .5, — X,|, minimal. We claim
that {x,} is Cauchy, and that its limit x has the desired properties.

For n = N let S, denote the set of roots of f,(X) (counted with their
multiplicities). Then for n > N we have

Ifn+1(xn) —fn(xn)]p = |fn+1(xn){p (Sincefn(xn) = O)
- 11

x€Sn +1

= l [ Il — xu/x,014lp (sinceifxe S, ., hasord, x <0,
i=1
we then have |1 — x, /x|, = 1)

N
= H Xns14 — Xa|p (since Xnsialp = 1)
=

Ixn+1 - xnle;

by the choice of x, ;. Thus,
[xn+1 - xnIpN < lf;z+1(xn) _fn(xn)(p = |an+1x:+llp = lan+1|p-

Since |a, .|, — 0 as n — oo, it follows that {x,} is Cauchy.
If x, — x € Q, we further have f(x) = lim,_, » f2(x), while

n X — x,!
Z X — X |p
since |a], < land [(x' — x.)/(x — x)|, = [*'"7* + x'72x, + x'"3x,.2 + - -
+ xi71, < 1. Hence, f(x) = lim,_ ,, fy(x) = 0. This proves the lemma when
A = 0.

Now the general case follows easily. Let = € Q be any number such that
ord, = = A;. Note that such a = exists, for example, take an ith root of an
a; for which (i, ord, a,) lies on the line through (0, 0) with slope A,. Now let
g(X) = f(X/=). Then g(X) satisfies the conditions of the lemma with A; = 0.
So, by what’s already been proved, there exists an x, with ord, x, = 0 and
g(xp) = 0. Let x = xo/m. Thenord, x = —A; and f(x) = f(xo/m) = g(x,) = 0.
™

Ifn(x)lp = ]fn(x) _f;t(xn)|p = x - X l

< lx - xn[p’

Lemma8 Let f(X) =1+ 352, aX' el + XQ[[X]] converge and have
value 0 at «. Let g(X) =1 + 22, b X* be obtained by dividing f(X) by
1 — X/e, or equivalently, by multiplying f(X) by the series 1 + X/« +
X?%e® 4 --- + X'/t + - - . Then g(X) converges on D(|a|,).

Proor. Let f,(X) = 1 + 27, a X' Clearly,

= lje + ajfa!™! + ap/dd 2+ - + @y e + @y,
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so that
bt = fi().
Hence |b,ef|, = | fie)|, — 0 as i — oo, because f(x) = 0. |

Theorem 14 (p-adic Weierstrass Preparation Theorem). Let f(X) =1 +
>2.aX el + XQ[X]] converge on D(p). Let N be the total horizontal
length of all segments of the Newton polygon having slope < X if this horizontal
length is finite (i.e., if the Newton polygon of f(X) does not have an infinitely
long last segment of slope A). If, on the other hand, the Newton polygon of
J(X) has last siope A, let N be the greatest i such that (i, ord, a;) lies on that
last segment (there must be a greatest such i, because f(X) converges on
D(p")). Then there exists a polynomial (X)) e 1 + XQ[X] of degree N and
a power series g(X) = 1 + 22, ;X" which converges and is nonzero on
D(p"), such that

h(X) = f(X)-g(X).

The polynomial h(X) is uniquely determined by these properties, and its
Newton polygon coincides with the Newton polygon of f(X) out to (N,
ord, ay).

PrOOF. We use induction on N. First suppose N = 0. Then we must show
that g(X), the inverse power series of f{X), converges and is nonzero on
D(p*). This was part of Exercise 3 of §IV.1, but, since this is an important
fact, we’ll prove it here in case you skipped that exercise. As usual (see the
proofs of Lemma 6 and 7 and the remark right before the statement of
Lemma 6), we can easily reduce to the case A = 0.

Thus, suppose f(X) =1+ > aX* ord,a;, > 0, ord, a, = 0, g(X) =
1 + Y b X Since f(X)g(X) = 1, we obtain

by = —(b_1a; + b_sa, + -+ + bia_, + a)fori>1,

from which it readily follows by induction on i that ord, b; > 0. Next, we
must show that ord, b, — co as i — co. Suppose we are given some large M.
Choose m so that i > m implies ord, q; > M. Let

e = min(ord, a;, ord, a,, ..., ord, a,) > 0.

We claim that / > »nm implies that ord, b, > min(M, ne), from which it will
follow that ord, b, — co. We prove this claim by induction on n. It’s trivial
for n = 0. Suppose n > 1 and i > nm. We have

by = —(b_yay + - + bi_na, + bi tmavlmar + -+ @)

The terms b,_,a, with j > m have ord,(b,_,a,)> ord, a, > M, while the
terms with j < m have ord,(b,_,a,) = ord, b,_, + ¢ > min(M, (n — 1)e) + ¢
by the induction assumption (since i — j > (n — 1)m) and the definition of e.
Hence all summands in the expression for b; have ord, > min(M, ne). This
proves the claim, and hence the theorem for ¥ = 0.
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IV p-adic power series

Now suppose N > 1, and the theorem hoids for N — [. Let A; < A be
the first slope of the Newton polygon of f(X). Using Lemma 7, we find an «
such that f(«) = 0 and ord, « = —A,. Let

A(X)=f(X)(1+§+§+---+§+...)

=1+ Ya'Xel+ XQX]).

By Lemma 8, f,(X) converges on D(pM). Let ¢ = 1/a, so that: f(X) =
(1 — cX)f1(X). If the Newton polygon of f,(X) had first slope A, less than A,
it would follow by Lemma 7 that f;(X) has a root with p-adic ordinal —A,’,
and then so would f(X), which itis easy to check is impossible. Hence A, > A,,
and we have the conditions of Lemma 6 (with f1, £, A;’, and A, playing the roles
of £, g, A1, and A, respectively). Lemma 6 then tells us that /;(X) has the same
Newton polygon as f(X'), minus the segment from (0, 0) to (1, A,). In addition,
in the case when f (and hence f;) have last slope A, because f converges on
D(p*), Lemma 6 further tells us that f; must also converge on D(p").

Thus, fi(X) satisfies the conditions of the theorem with N replaced by
N — 1. By the induction assumption, we can find an A,(X) e | + XQ[X] of
degree N — 1 and a series g(X)el + XQ[[X]] which converges and is
nonzero on D(p"), such that

hi(X) = f1(X)-g(X).

Then, multiplying both sides by (I — ¢X) and setting /(X) = (1 — cX)h, (X)),
we have

h(X) = f(X)-g(X),

with A(X) and g(X) having the required properties.

Finally, suppose that h(X)el + XQ[X] is another polynomial of
degree N such that b (X) = f(X)g,(X), where g,(X) converges and is non-
zero on D(p*). Since h(X)g(X) = f(X)g(X)g,(X) = h(X)g,(X). uniqueness
of h(X) follows if we prove the claim: h,;g = hg, implies that h, and h have
the same zeros with the same multiplicities. This can be shown by induction
on N. For N = 1 it is obvious, because h,(x) = 0 <> h(x) = 0 for x € D(p*).
Now suppose N > 1. Without loss of generality we may assume that — 2 is
ord, of a root « of h(X) having minimal ord,. Since a is a root of both h(X)
and h,(X) of minimal ord ,, we can divide both sides of the equality h,(X)g(X)
= W(X)g(X) by (1 — X/x), using Lemma 8, and thereby reduce to the case
of our claim with N replaced by N — 1. This completes the proof of Theorem
14. O

Corollary. If a segment of the Newton polygon of f(X) e 1 + XQ[[X]] has finite
length N and slope A, then there are precisely N values of x counting
multiplicity for which f(x) = 0 and ord, x = —A.
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Exercises

Another consequence of Theorem 14 is that a power series which converges
everywhere factors into the (infinite) product of (1 — X/r) over all of its roots
r, and, in particular, if it converges everywhere and has no zeros, it must be a
constant. (See Exercise 13 below.) This contrasts with the real or complex
case, where we have the function e* (or, more generally, e**, where A is any
everywhere convergent power series). In complex analysis, the analogous
infinite product expansion of an everywhere convergent power series in terms
of its roots is more complicated than in the p-adic case; exponential factors
have to be thrown in to obtain the “Weierstrass product” of an “‘entire”
function of a complex variable.

Thus, the simple infinite product expansion that results from Theorem 14
in the p-adic case is possible thanks to the absence of an everywhere conver-
gent exponential function. So in the present context we’re lucky that exp, has
bad convergence. But in other contexts—for example, p-adic differential
equations—the absence of a nicely convergent exp makes life very compli-
cated.

EXERCISES

1. Find the Newton polygon of the following polynomials:

)1 - X+ px2 (i) 1 — x3/p® (i) 1 + X2+ pX* + pX°®
(iv) P, ix ¢t v) (I — X)1 - pX)(1 — p®X)(do thisintwo ways)
(vi) TTP2, (1 — iX).

2. (a) Let f(X)e 1 + XZ,[X] have Newton polygon consisting of one segment
Joining (0, 0) to the point (n, m). Show that if » and m are relatively prime,
then f(X) cannot be factored as a product of two polynomials with coefficients
in Z,,.

(b) Use part (a) to give another proof of the Eisenstein irreducibility criterion
(see Exercise 14 of §1.5).

(c) Is the converse to (a) true or false, i.e., do all irreducible polynomials have
Newton polygon of this type (proof or counterexample)?

3. Let f(X)el + XZ,{X] be a polynomial of degree 2n. Suppose you know
that, whenever « is a reciprocal root of f(X), so is p/a (with the same multipli-
city). What does this tell you about the shape of the Newton polygon? Draw
all possible shapes of Newton polygons of such f(X) when n = 1, 2, 3, 4.

4. Find the Newton polygon of the following power series:
(i) 3% X?'p (1) Z2o((pX) + X*) (i) T2, X
(iv) 2% X/i! W) (1 = pXH1 - p>X?) (vi) (1 = p*X)/(1 - pX)
(vii) TTZo(1 — p'X) (vii)) 3720 p"2 X"

5. Show that the slopes of the finite segments of the Newton polygon of a power

series are rational numbers, but that the slope of the infinite segment (if there
is one) need not be (give an example).

6. Show by a counterexample that Lemma 7 is false if we omit the condition
that the line through (0, 0) with slope A; pass through a point (i, ord, a)),
i> 0.
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p-adic power series

. Suppose f(X)e 1 + XQ[[X]] has Newton polygon which is the degenerate case (3),

1.e., a vertical line through (0, 0). In other words, if the vertical line through (0, 0) is
rotated counterclockwise at all, it passes above some points (i, ord, q,). Prove that
f(x) diverges for any nonzero x € Q.

CLletf(X) =1+ 2, a4, X el + XQ[[X]] converge in D(p*) where 1 is a rational

number. Prove that max, . p, ,| f(x)|, is reached when |x|, = p*, ie., on the “cir-
cumference,” and that this maximal value of f(x) has p-adic ordinal equal to

ming:o‘l‘...(ordp a; — IA),

i.e., the minimum distance (which may be negative) of the point (i, ord, a;)
above the line through (0, 0) with slope A.

. Let f(X) = 220 a; X' €Z,[[X]]. Suppose that f(X) converges in the closed

unit disc D(1). Further suppose that at least two of the a, are not divisible by
p. Prove that f(X) has a zero in D(1).

Let f(X) be a power series which converges on D(r) and has an infinite
number of zeros in D(r). Show that f(X) is identically zero.

Prove that E,(X) converges only in D(1 ) (i.e., not in D(1)).

Let g(X) = A(X)/f(X), where g(X)e 1l + XQ[[X]] has all coefficients in
D(1), and where A(X) and f(X)el + XQ[X] are polynomials with no
common roots. Prove that A(X) and f(X) also have all coefficients in D(1).

Suppose that f(X) e 1 + XQ[[X]]converges on all of Q. For every A, let &,(X)
be the (X ) in Theorem 14. Prove that A, — fas A —  (i.e., each coefficient
of h, approaches the corresponding coefficient of f). Prove that f has in-
finitely many zeros if it is not a polynomial (but only a countably infinite set
of zeros ry, ry, ...), and that f(X) = [ [}, (1 — X/r). In particular, there is
no nonconstant power series which converges and is nonzero everywhere (in
contrast to the real or complex case, where, whenever A(X) is any everywhere
convergent power series, the power series €™*’ is an everywhere convergent
and nonzero power series).



CHAPTER V

Rationality of the zeta-function of a set
of equations over a finite field

1. Hypersurfaces and their zeta-functions

If Fis a field, let A} denote ““n-dimensional affine space over F,” i.e., the set
of ordered n-tuples (x,, ..., x,) of elements x; of F. Let f(Xy, ..., X,)¢€
Fl[X,, ..., X,] be a polynomial in the » variables X3, ..., X,. By the affire
hypersurface defined by fin A}, we mean

Hy 2 (s, - X)) € AR f(x1, - Xxa) = 0},

The number n — 1 is called the dimension of H,. We call H; an affine curve if
n = 2, i.e., if H, is one-dimensional.

The companion concept to affine space is projective space. By n-dimen-
sional projective space over F, denoted P%, we mean the set of equivalence
classes of elements of

A;’U-l - {(09 05 ) O)}
with respect to the equivalence relation
(Xos X1y sy Xn) ~ (X', %1y .., XY ANeF*  withx = Ax,i=0,...,n

In other words, as a set P% is the set of all lines through the origin in AZ*!,

% can be included in P} by the map (xy, ..., x,)—= (1, xq, ..., X,)-
The image of A} consists of all of P} except for the ““hyperplane at infinity”’
consisting of all equivalence classes of (» + 1)-tuples with zero x,-coordinate.
That hyperplane looks like a copy of P%~!, by virtue of the one-to-one
correspondence

equiv. class of (0, x4, ..., x;) —> equiv. class of (x,, ..., x,).

(For example, if n = 2, the projective plane P% can be thought of as the
affine plane plus the “line at infinity.”) Continuing in this way, we can write
P} as a disjoint union

AU AR YU AR 2 ... U AU point.
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V Rationality of the zeta-function of a set of equations over a finite field

By a homogeneous polynomial f(X,, ..., X,) € F[X,, ..., X,] of degree d
we mean a linear combination of monomials of the same roral degree d. For
example, X, + X2X; — 3X, X, X5 + X,° is homogeneous of degree 3.
Given a polynomial f(X,, ..., X,) e F[X,, ..., X,] of degree d, its homo-
geneous completion f(X,, X, ..., X,) is the polynomial

ng(Xl/Xm AR | Xn/XO);

which is clearly homogeneous of degree d. For example, the homogeneous
completion of X;® — 3X,X5X; + X, + 1 is the above example of a homo-
geneous polynomial of degree 3. '

If /(X,, ..., X,) is homogeneous, and if f(x,, ..., x,) = 0, then also
Ffxo, ..., Ax,) = 0 for Ae F*. Hence it makes sense to talk of the set of
points (equivalence classes of (n + 1)-tuples) of P} at which f vanishes. That
set of points H: is called the projective hypersurface defined by fin Pr.

If f(Xo, ..., X,) is the homogeneous completion of f(X,, ..., X,), then
Hj is called the projective completion of H,. Intuitively, A; is obtained from
H, by “throwing in the points at infinity toward which H, is heading.”” For
example, if H, is the hyperbola (say F = R)

X2 X2
a® b

then f(Xo, X1, X,) = X,%/a*> — X,%/b* — X2, and Hj consists of
{1, Xy, Xp)| X\ ?/a® — Xo2/b% = 11U {0, 1, X)X, = tb/a},

i.e., H; plus the points on the line at infinity corresponding to the slopes of
the asymptotes.

Now let X be any field containing F. If the coefficients of a polynomial are
in F, then they are also in K, so we may consider the * K-points™ of H,, i.e.,

HA(K) = {(x1, .- .» Xa) € Ak | fxy, ..o, x,) = O

If f(X,, ..., X,) is homogeneous, we similarly define H;(K).

We shall be working with finite fields F = [F, and finite field extensions
K = Fs. In that case H,(K) and Ay K) consist of finitely many points, since
there are only finitely many (namely, ¢g**) #-tuples in all of A} (and only
finitely many points in P}). In what follows H, (or H;) will be fixed through-

=1,

out the discussion. [n that case we define the sequence N, Ny, N3, ... to be
the number of F-, Fye-, Fgs-, ... -points of H, (or f3), i.e.,
N def #(H/(G:qs))-

Given any sequence of integers such as {N,} which has geometric or number
theoretic significance, we can form the so-called ‘‘generating function”
which captures all the information conveyed by the sequence {N,} in a
power series. This is the *zeta-function,” which is defined as the formal
power series

exp(si1 NSTS/S) e Q[[T]]
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1 Hypersurfaces and their zeta-functions

We write this function as Z(H,/F,; T), where F, indicates what the original
field F was. Note that the power series Z(H,/F,; T) has constant term 1.
Before giving some examples, we prove a couple of elementary lemmas.

Lemma 1. Z(H,/F,; T) has coefficients in Z.

ProoF. We consider the K-points P = (x4, ..., x,,) of H, (K a finite extension
of F,) according to the least s = s, for which all x;eF 5. If P = (xy), ..., X)),
Jj=1,...,5, are the “conjugates” of P, i.e, x,, ..., X;5, are the conjugates
of x; = x;; over F,, then the P, are distinct, because if all of the x, are left
fixed by an automorphism ¢ of F, over F,, it follows that they are all in a
smaller field (namely, the “fixed field” of o: {x € Fs | o(x) = x}).

Now let’s count the contribution of P,, ..., Py, to Z(H,/F,; T). Each of
these points is an F-point of H, precisely when Fgs = Fgs, i.€., when s,s (see
Exercise 1 of §I11.1). Thus, these points contribute s, to Ny, Nag,, Nagy, - -
and so their contribution to Z(H,[F,; T) is:

exp(z sonSO/jso) = exp(—log(l — T*%0)) = T——IT% = Z T %%,

i=1 i=0

A1

The whole zeta-function is then a product of series of this type (only finitely
many of which has first 7-term with degree <s,), and so has integer co-
efficients. i O

Remark. Note that a corollary of the proof is that the coefficients are
positive integers.

Lemma 2. The coefficient of T’ in Z(H/[F; T) is < g™.

Proor. The maximum value for N, is ¢" =4 A . The coefficients of
Z(H,/F,; T) are clearly less than or equal to the coefficients of the series with
N replaced by g™. But

exp(z q"sTs/S) = exp(—log(l —¢"T)) = 1/(1 = ¢"T) = > q"T". O]
s=1 i=0

As a simple example, let’s compute the zeta-function of an affine line
L = Hy, < A{_. We have N; = ¢°, and so
1
Z(L[Fq; T) = exp(2.¢°T*/s) = exp(—log(l — ¢T)) = 1— T
The zeta-function is defined analogously for projective hypersurfaces,
where now we use

N & #(Hy(Fy)).
For example, for a projective line Z we have N, = ¢° + 1, and so

Z(L/¥; T) = exp(3(g°T¥/s + T°ls))

= exp(—log(l — ¢T) — log(l — T)) = !

(I -=T)(1—¢T)
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V Rationality of the zeta-function of a set of equations over a finite field

It turns out that it’s much more natural to work with projective hypersurfaces
than with affine ones.

For example, take the unit circle X, + X, = 1, whose projective
completion is H7, f= X2 + X2 — X, It’s easier to compute Z(H7/F,; T)
than Z(H,/F,; T). (We're assuming that p=char F, # 2.) Why is it easier?
Because there is a one-to-one correspondence between H;(K) and L(K) (L
denotes the projective line). To construct this map, project from the south
pole onto the line X, = [, as shown in Figure 1. A simple computation gives:

X2

/
/

/
; (x1,x2)

X1

Figure V.1

Xy =44 + ), x, = (4 — t3)/(4 + 1), t = 2x,/(x, + 1). This map goes
bad in the t-to-x direction if 12 = —4, i.e., for 2 values of t if ¢° = | (mod 4)
and no values of 7 if ¢° = 3 (mod 4) (see Exercise 8 of §II1.1). It goes bad in
the other direction when x, = —1, x; = 0. But if we take the projective
completions and let (X,, X;, X;) be coordinates for the completed circle
and (Xy', X,’) for the completed line, then it is easy to check that we have a
perfectly nice one-to-one correspondence given by

(xo', X ) > (4xp"% + X2, 4xy"xy, 4x0"2 — x,'%);
(X0, X1, Xg) > (X5 + Xxg, 2x,) if (x5 + X4, 2x,) # (0,0), and (0, 1) otherwise.

The reader should carefully verify that this does in fact give a one-to-one
correspondence between the projective line and the set of equivalence classes
of triples (xo, X1, X,) satisfying x;2 + x,%2 — x,2 = 0. Thus, since N, is the
same for H; and I, we have

Z(Hif¥y; T) = Z(L[F,; T) = 1[(1 = TX(1 — ¢T)].

If we wanted to know Z(H,/F,;T), f= X,> + X, — 1, we'd have to
subtract from N, the points “at infinity” on H;, i.e., those for which x;? +
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1 Hypersurfaces and their zeta-functions

x,% = x,% and x, = 0. There are 2 such points whenever — 1 has a square
root in [z and no such points otherwise.

Case (1). ¢ = 1 (mod 4). Then —1 always has a square root in [, (see
Exercise 8 of §III.1), and

N, = N, - 2,
o ZEFST) (=T —qD) _ 1 =T
Z(H//[Fq’ T) B exp( 21 2TS/S) - 1/(1 — T)2 1 —qT

Case (2). ¢ = 3 (mod 4). Then it is easy to see that N, = N, if s is odd,
and N, = N, — 2 if s is even, so that
21y = —ZUWFEST) 0= T —gT)_ 14T
exp( 3 277%/2s) (=T q
s=1

Notice that in all of these examples, as well as in the examples in the
exercises below, the zeta-function turns out to be a rational function, a ratio
of polynomials. This is an important general fact, which Dwork first proved
in 1960 using an ingenious application of p-adic analysis.

Theorem (Dwork). The zeta-function of any affine (or projective—see Exercise
5 below) hypersurface is a ratio of two polynomials with coefficients in Q
(actually, with coefficients in Z and constant term 1—see Exercise 13
below).

The rest of this chapter will be devoted to Dwork’s proof of this theorem.

We note that zeta-functions of hypersurfaces can be generalized to a
broader class of objects, including affine or projective “algebraic varieties,”
which are the same as hypersurfaces except that they may be defined by more
than one simultaneous polynomial equation. Dwork’s theorem holds for
algebraic varieties (see Exercise 4 below).

Dwork’s theorem has profound practical implications for solving systems
of polynomial equations over finite fields. It implies that there exists a finite
set of complex numbersay, ..., a, B, ..., Bysuchthatforalls = 1,2,3, ...
we have N, = 3!'_, «° — Y%, B° (see Exercise 6 below). In other words,
once we determine a finite set of data (the «, and 8,)—and this data is already
determined by a finite number of N—we’ll have a simple formula which
predicts all the remaining N,. Admittedly, in order to really work with this in
practice, we must know a bound on the degree of the numerator and denomi-
nator of our rational function Z(H/F,; T) (see Exercises 7-9 below for more
details). Actually, in all important cases the degree of the numerator and
denominator, along with much additional information, is now known about
the zeta-function. Thisinformation is contained in the famous Weil Conjectures
(now proved, but whose proof, even in the simplest cases, goes well beyond
the scope of this book).
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V Rationality of the zeta-function of a set of equations over a finite field

The rationality of the zeta-function was part of this series of conjectures
announced by A. Weil in 1949. Dwork’s proof of rationality was the first
major step toward the proof of the Weil Conjectures. The final step, Deligne’s
proof in 1973 of the so-called ** Riemann Hypothesis™ for algebraic varieties,
was the culmination of a quarter century of intense research on the conjec-
tures.

In the case of a **smooth™ projective hypersurface H; (i.e., for which the
partial derivatives of f with respect to all the variables never vanish simul-
taneously), the Weil Conjectures say the following:

() Z(H3/¥,: T) = P/ — TX1 = gTX1 — ¢*T)--- (1 — g*7'T)),
where P(T)e | + TZ[T] has degree B, where 8 is a number related to the
“topology™ of the hypersurface (called its **Betti number;” when f; is a
curve, this is twice the genus, or “number of handles,” of the corresponding
Riemann surface). Here the + 1 means we take P(T) if nis even and 1/P(T)
if nis odd.

(i1} If « is a reciprocal root of P(T), then so is g" /a.

(iit) The complex absolute value of each of the reciprocal roots of P(T) is
q'" = V2 (This is called the ** Riemann Hypothesis™ part of Weil’s conjectures,
out of analogy with the classical Riemann Hypothesis for the Riemann
zeta-function—see Exercise 15 below.)

EXERCISES
1. What is the zeta-function of a point? What is Z(Ag /F,; T)?
2. Compute Z(Pg /Fq; T).

3. Let f(Xy, ..., X)) = Xo+ g(Xy, ..., Xa_1), where ge F (X1, ..., Xn-1)
Prove that

Z(H, 3 T) = Z(AgHFq; T).

4. Letfl(Xl, ey Xn),fz(Xl, ey Xn), .. A,f;(Xh ey Xn)e qu[Xl, ey Xn],and
let Hy, s, .o(Fe) = AR, be the set of n-tuples of elements of F,s which
satisfy all of the equations f, = 0,/ = 1,2, ..., r:

Hifx»/z-- -v/y’([Ffls) df! {(XI‘ ey Xn)6 AELQS lfl(xls Sy xn) =t
= flxy, o, x0) = Oh

Such an H is called an (affine) algebraic variety. Let Ny = #H(F,s) (where H
isshort for Hy; . ,)), and define the zeta-function as before: Z(H /Fq; T) T,
exp(st 1 N,T3/s). Prove that Dwork’s theorem for affine hypersurfaces
implies Dwork’s theorem for affine algebraic varieties.

5. Prove that if Dwork’s theorem holds for affine hypersurfaces, then it holds
for projective hypersurfaces.
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Exercises

Prove that Dwork’s theorem is equivalent to: There exist algebraic complex
numbers a,, ..., o, Bi, ..., Bu, such that all conjugates of an « is an «, all
conjugates of a 8 is a B, and we have:

t u
Ne= > o — > B¢, foralls=1,2,3,....
=1 (=1

. It is known that the zeta-function of a smooth cubic projective curve E = Hr

(thus, dim £ = 1, deg f = 3: E is called an “elliptic curve”) is always of the
form: (1 + aT + qT®/[(1 — TY(1 — qT)] for some a < Z. Show that if you
know the number of points in E(F,), you can determine: (1) a, and (2)
H#HE(F,) for any s.

. Using the fact stated in the previous problem, find Z(Hy/F,; T) when

f(Xy, Xo) is:

(i) X® - X,® — landg = 2 (mod 3);
(ii) X32 — X;1®* + X;andg = 3(mod 4), alsog = 5,13,and 9.

. Suppose we know that Z(H/F,; T) is a rational function whose numerator

has degree m and whose denominator has degree n. Prove that N, = H#HH(Fg)
fors = 1,2,3, ..., m + nuniquely determine all of the other Ni.

Compute Z(H,/F,; T) when H, is the 3-dimensional hypersurface defined by
XXy — XoX;3 = 1.

Compute Z(H,/F,; T) and Z(H7/F,; T) (f = homogeneous completion of f)
when H; is the curve:

(l) X1X2 = 0 (li) Xle(Xl + Xz + 1) =0 (ili) X22 - X12 =1
(lV) X22 = X13 (V) X22 = Xla + X12.

Lines in P? are obtained by intersecting two distinct hyperplanes, i.e., a line
is the set of equivalence classes of quadruples which satisfy simultaneously
two given linear homogeneous polynomials. Let N; be the number of lines in
Pi,.s. Using the same definition of the zeta-function in terms of the N, as
before, compute the zeta-function of the set of lines in projective 3-space.

Using Exercise 12 of §IV.4, prove that Dwork’s theorem, together with
Lemma 1 above, imply that Dwork’s theorem holds with “coefficients in Q"
replaced by ““coefficients in Z and constant term 1.”

Let H, be given by X,% = X,° + 1, and let p = 3 or 7 (mod 10). Assuming the
Weil Conjectures for the genus 2 curve H 7 prove that
o~ 1 + p?T*
Z(HiF 3 T) = —
HiF: T) = g5 =7

Let fI; be a smooth projective curve. Assuming the Weil Conjectures for
Z(Hji|F,; T) (which were proved for curves much earlier than for the general
case), show that all of the zeros of the complex function of a complex variable

F(s) = Z(H7/Fs;q7°)
are on the line Re s = 4. This explains the name * Riemann Hypothesis™ for

part (iii) of the Weil Conjectures.
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V Rationality of the zeta-function of a set of equations over a finite field

2. Characters and their lifting

An Q-valued character of a finite group G is a homomorphism from G to the
multiplicative group €2* of nonzero numbers in €. Since goréer°'¢ = | for
every g € G, it follows that the image of G under a character must be roots
of unity in Q. For example, if G is the additive group of F,, if ¢ is a pth root
of 1in Q, and if 4 denotes the least nonnegative residue of a € F,, then the
map a > ¢° is a character of F,. In what follows, we shall omit the tilde and
simply write a —> &% If ¢ # 1, then the character is “nontrivial,” i.e., its image
is not just 1.

If F, is a finite field with ¢ = p® elements, we know that there are s =
[F,:F,] automorphisms o, ..., o,_; of F, given by: o,(a) = a* fora e F,(see
Exercise 6 of §III.1). If a € F,, by the trace of a, written Tr a, we mean

s-1
Trad—;}hzo ofa) =a+a® +a” + -+ a" "
It 1s easy to see that (Tra)” = Tra, ie., TraeF,, and that Tr(a + b) =
Tra + Tr b. It then follows that the map

ar> etre

is an Q-valued character of the additive group of F,.

Recall that for every a € F, we have a unique Teichmiiller representative
t € Q, lying in the unramified extension K of Q, generated by the (g — I)st
roots of 1, such that 12 = ¢ and a is the reduction of 7 mod p. Our purpose
in this section is to find a p-adic power series ®(T) whose value at T = ¢
equals "¢, (More precisely, we’ll get the value of (T)Q(T?O(T??)---
O(T? "), where g = p%, tobe e™%at T = )

Now fixa € F,*, and let ¢ € K be the corresponding Teichmiiller representa-
tive. Let Trg denote the trace over O, of an element of K, i.e., the sum of its
conjugates. Then for our Teichmiiller representative ¢ we have (see Exercise 1
at the end of §4 below)

Trgt=t+1P+ 1"+ + 1" e,
and the reduction mod p of Trg ¢ is
a+a’+a*+ ---+a” ' =Traekl,

Hence, since e raised to a power in Z, depends only on the congruence class
mod p, we can write: eT'% = T x!,

Let A = ¢ — . We have seen that ord, A = 1/(p — 1) (see Exercise 7 of
§111.4). We want a p-adic expression in ¢ for

2 s—1
(1 + /\)t+t1’+ﬂ’ 4o P = ¢Tra
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2 Characters and their lifting

The naive thing to do would be to let

oT) = (L + N7 = Z:’:T(T— 1)-- (T—z+ D

and then take the series g(7)g(T?)g(T?®)---g(T?"~"). But the problem is:
how to make sense out of the infinite sum g(7) for the values T = r that
interest us. Namely, as soon as ¢ ¢ Z,, i.e., its residue a isn’t in F,, then
clearly |t — i|, = I for all i€ Z; then

tt—-1)-- (t—l+l)

ord, T

which does not — co.
What we have to do is use the better behaved series F(X, Y) introduced at
the end of §IV.2:

F(X, Y) = (1 + Y)X(1 + Y?)&-Dip(] 4 yo)ax*-xowt. ..
x (14 Y@ -x""her .

where recall that each term on the right is understood in the sense of the
corresponding binomial series in Q[[X, Y]]. We now consider F(X, Y) as a
series in X for each fixed Y:

FX, V)= > (X" > am,,,Ym), Ann €Ly,
n=0 m=n
where we’re using the fact that g, , # 0 only when m > n; this follows be-

cause each term in the series Byr»_ xon-1)n (Y77), ie.,

X ) (v
pﬂ. pﬂ n

has the power of X that appears less than or equal to the power Y" of Y.
Recall that A = ¢ — 1, and that ord, A = 1/(p — 1). We set

O(T) = F(T, ) = i a,T

with a, = > 2., a, ,A" Clearly ord, a, > n/(p — 1), since each term in a,
is divisible by A" Also, since the field Q,(¢) = @, (A) is complete, we
have a, € Q,(c), and &(T) € Q,(=)[[T]]. Moreover, ®(T) converges for te
D(p¥®-1b-), because ord, a, = n/(p — 1).

For our fixed ¢+ we now consider the series

(1 4 Yyt = Byt (Y).

It is easy to prove the following formal identity in Q[[ Y]]:
(1 + Y&+ 427 = F(t, Y)F(t?, Y)--- F(t* 7%, Y).
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V Rationality of the zeta-function of a set of equations over a finite field

Namely, after trivial cancellations, the right hand side reduces to
(1 + Y)y+ere- Hw‘l(l + Yp)(tf"—t)/p(l + Yp2)<zvs“—zv)/p2
x (14 Yottt

Since ¢?* = 1, we get what we want.
Thus, if we substitute ¢ for T in O(T)O(T?) - - -&(T*°~'), we obtain

F(t, VF(t2, X) - F@™ 7" 0) = (1 4 A et ooset !

ETr a

To conclude, we have found a nice p-adic power series &(T) = Y a,T" €
Q()IT]), satisfying ord, a, = n/(p — 1), such that the character a+> ™
of [, can be obtained by evaluating &(T)-©(T?)-.-O(T?*™") at the Teich-
miiller lifting of a. ® can be thought of as ““lifting” the character of F,to a
function on Q (more precisely, on some disc in Q, which includes the closed
unit disc, and hence all Teichmiiller representatives).

Liftings such as @ are important because concepts of analysis often apply
directly only to p-adic fields, not to finite fields. If a situation involving finite
fields—such as zeta-functions of hypersurfaces defined over finite fields—
can be lifted to p-adic fields, we can then do analysis with them. Notice how
important it is that our lifting ® converge at least on the closed unit disc
(rather than, say, only on the open unit disc): the points we're mainly interested
in, the Teichmiiller representatives, lie precisely at radius 1.

3. A linear map on the vector space of power series

Let R denote the ring of formal power series over € in n indeterminates:
R = QX1, Xy, ..., X,))

A monomial X *1X,%2- - X, ¥ will be denoted X, where u is the n-tuple of
nonnegative integers (i, ..., #,). An element of R is then written > a,X™,
where u runs through the set U of all ordered n-tuples of nonnegative integers,
and where a, € Q.

Notice that R is an infinite dimensional vector space over Q. For each
G € R we define a linear map from R to R, also denoted G, by

r— Gr,

i.e., multiplying power series in R by the fixed power series G.
Next, for any positive integer ¢ (in our application ¢ will be a power of
the prime p), we define a linear map 7,: R — R by:

r= Z a, X > T(r) = Z anX*,
where qu denotes the n-tuple (quy, qu,, . . ., qu,). For example, if n = 1, this
is the map on power series which forgets about all X’-terms for which j is
not divisible by ¢ and replaces X’ by X7 in the X’-terms for which ¢|;.
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3 A linear map on the vector space of power series

NowletW, 6 = T,oG: R—> R IfG = T ey g, X", then ¥, ¢ is the linear
map defined on elements X by

¥, (XY = Tq(z ngww) = > Zaw-uX".

weU velU
(Here if the n-tuple gv — u is not in U, i.e., if it has a negative component,
we take g,, ., to be zero.)
Let G,(X) denote the power series G(X?) =3 cv g.X%. The following
relation is easy to check (Exercise 7 below):

GoTy=T,0G, = ¥ypq,.
We define the function | | on U by: |u| = 7., u,. Let

R, ;I{G = Z gwX¥ € R | forsome M > 0,0rd, g, > M|w|forallwe U}-
welU

It is not hard to check that R, is closed under multiplication and under the
map G+ G, Note that power series in R, must converge when all the
variables are in a disc strictly bigger then D(1). An important example of a
power series in R, is @(aX™¥), where X¥ is any monomial in X, ..., X, and
a is in D(1) (see Exercise 2 below).

If ¥ is a finite dimensional vector space over a field F, and if {a;;} is the
matrix of a map A4: V' — V with respect to a basis, then the trace of A4 is

defined as
Tr A ci:ef Z a,-,-,

i.e., the sum of the elements on the main diagonal (this sum is independent of
the choice of basis—for details on this and other basic concepts of linear
algebra, see Herstein, Topics in Algebra, Ch. 6). (The use of the same symbol
Tr as for the trace of an element in [, should not cause confusion, since it will
always be clear from the context what is meant.) If F has a metric, we can
consider the traces of infinite matrices A4, provided that the corresponding
sum >, a, converges.

Lemma 3. Let Ge Ry, and let ¥ = ¥ 5. Then Tr(¥*) converges for s =

1,2,3,...,and
(@ = D" Tr(¥) = > G®)-Gx) G- G,
st
where x = (xy,...,X,); x¥ = (x,%,...,x,7); and x* ' = 1 means x9" !

=lforj=12...,n

ProOOF. We first prove the lemma for s = 1, and then easily reduce the gen-
eral case to this special case. Since W(X*) = J.cy g X", We have

Tr Y = Z 8- 1w

uel

which clearly converges by the definition of R,.
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V Rationality of the zeta-function of a set of equations over a finite field

Next, we consider the right-hand side of the equation in the lemma. First

of all, foreachi = 1,2, ..., n, we have
{q —~ 1, if g — 1 divides w;
x‘wi = X
“h 0, otherwise.
x§"1=1

{See Exercise 6 below.) Hence,

w w (g — 1)y, ifg— 1dividesw
;‘fzﬁ;fl T H (xgzx:ﬂ i ‘) B {0, otherwise.

Thus,
Z 0 = gvgw qZ x¢ = (g — 1)"uezug<q b= (g = )" TrY,
which proves the lemma for s = 1.
Now suppose that s > 1. We have:
Y= T,0GoT,0GoW"2 =T 0T,0G,0Go¥"2
=Tp20G Guo¥s 2 =TproT,o(G G),Go¥ 2
=TpolG Gy GeoY 2= =TpoG GGz Gpn
= IFQS.G~GQ~GQ2---GQS—1'

Thus, replacing g by ¢* and G by G-G,- G2+ - - G;s-1 gives the lemma in the
general case. O

If Aisanr x r matrix with entries in a field F, and if T'is an indeterminate,
then (1 — AT) (where | is the r x r identity matrix) is an r X r matrix with
entries in F[T). It plays a role in studying the linear map on F” defined by 4,
because for any concrete value te€ F of T, the determinant det(l — At)
vanishes if and only if there exists a vector v € F” such that 0 = (1 — At)v =
v — tAv, i.e., Av = (l/t)v, in other words, if and only if 1/t is an eigen-value
of A. If 4 = {g,,}, we have

det(l — AT) = > b,T™,
m=0

where
bm = (‘_ l)m Z Sgn(o)auba(ul)auz.amz) C oy otugy
1<uy...., Uy ST
¢ a permutation of the u's
(Here sgn(o) equals +1 or — I depending on whether the permutation o is a

product of an even or odd number of transpositions, respectively.)

Now suppose that 4 = {,,}%, - is an infinite *“square’’ matrix, and suppose
F = Q. The expression for det(l — AT) still makes sense as a formal power
series in Q[[T]], as long as the expression for b, which now becomes an

120



3 A linear map on the vector space of power series

infinite series (i.e., the condition “ <r” is removed from the u,), is convergent.

We apply these notions to the case when 4 = {g., _.}u.seu IS the “matrix”
of ¥ =T,oG, where GeR,, i.e., ord,g, > M|w|. We then have the
following estimate for the p-adic ordinal of a term in the expression for b,,:

ordp[gqa(ul)—ul *Baouz) —ug " 'gao(um)—um]
2 MJlqo(uy) — uy| +|qo(uy) — ua| + -+ - +|qo(uy) —Uy|]
2 M glo()] = 2 |u]] = M(g — 1) D |ul.

(Notice that, if G is a series in »n indeterminates, then each ¥, is an n-tuple of
nonnegative integers: u; = (4. ..., U,), and 4| = X7, u;;.) This shows
that

ord, b, >0 asm—>w

and also that

|
Eord,,bm—>oo as m — .

The latter relationship holds because, if we take into account that there are
only finitely many «’s with a given |u|, we find that the average |u| as we run
over a set of distinct u, i.e., (1/m) 3™ |u;|, must approach co.

This proves that

det(l — AT) = > b,T"
m=0

is well-defined (i.e., the series for each b, converges), and has an infinite
radius of convergence.

We now prove another important auxiliary result, first for finite matrices
and then for {g ,_,}. Namely, we have the following identity of formal power
series in Q[[T]]:

det(l — AT) = exp,,(— i Tr(As)Ts/s).

To prove this, we first recall from the theory of matrices (Herstein, Ch. 6)
that the determinant and trace are unchanged if we conjugate by an invertible
matrix: A — CAC™1, i.e., they are invariant under a change of basis. More-
over, over an algebraically closed field such as Q, a change of basis can be
found so that A4 is upper triangular (for example, in Jordan canonical form),
in other words, so that there are no nonzero entries below the main diagonal.
So without loss of generality, suppose 4 = {a;,}},,-, is upper triangular. Then
the left hand side of the above equality takes the form [[i.; (I — a.T).
Meanwhile, since Tr(4%) = >i., a,°, the right hand side is

Cpr(— i i ausTs/s) = Ijexpp(_ i (ai,-T)‘/s)

= [ Jexp,(log,(1 — a,T) =] [ (1 — a.7T).
i=1 1=1
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V  Rationality of the zeta-function of a set of equations over a finite field

We leave the extension to the case when A4 is an infinite matrix as an
exercise (Exercise 8 below).
We summarize all of this in the following lemma.

Lemma 4. If G(X) = 2 ,cv8,XY € Ry and ¥ = T, G, so that ¥ has matrix
A = {ge-utv.ucu, then the series det(l — AT) is a well-defined element of
QI[T1] with infinite radius of convergence, and is equal to

expp{— i Tr(AS)TS/s}.

4. p-adic analytic expression for the zeta-function

We now prove that for any hypersurface H, defined by f(X,, ..., X,)€
F X, ..., X,], the zeta-function

Z(H,/¥,; T) e Z[[T]] = Q[[T]]

1s a quotient of two power series in Q[[T']] with infinite radius of convergence.
(Alternate terminology: 1s p-adic meromorphic, is a quotient of two p-adic
entire functions.)

We prove this by induction on the number n of variables (i.e., on the
dimension #n — 1 of the hypersurface H,). The assertion is trivial if n = 0
(i.e., H, 1s the empty set). Suppose it holds for 1,2, ..., n — [ variables. We
claim that, instead of proving our assertion for

Z(H,[F; T) = exp(D N.T°s),

it suffices to prove it for

ZH[FaT) g exp( 3, VT,
s=1
where
N = number of (x,, ..., x,) € F2 such that f(x;, ..., x,) =0
and all of the x, are nonzero

= number of (xy, ..., x,) € FZsuch that f(x;, ..., x,) =0

andxfF~'=1, i=1,...,n

How does Z'(H,/F,; T) differ from Z(H,/F,; T)? Well,
Z(H,[F; T) = Z'(H,[Fo; T)- exp(D (N, — N)T?[s),

and the exp factor on the right is the zeta-function for the union of the n
hypersurfaces H; (i = [,..., n) defined by f(X,,..., X,) =0and X, = 0.
Note that H, either is a copy of (n — 1)-dimensional affine space given in
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4 p-adic analytic expression for the zeta-function

Ag, by the equation x; = O (thisis the case if f (X, ..., X,)is divisible by X),
or else is a lower dimensional ((n — 2)-dimensional) hypersurface. In the
first case we know its zeta-function explicitly (see Exercise 1 of §1), and in the
latter case we know that its zeta-function is meromorphic by the induction
assumption. Now the zeta-function for the union of the H, is easily seen to
be the product of the individual zeta-functions of the H,, divided by the
product of the zeta-functions of the overlaps of H; and H, (i # j)--ie, the
hypersurface in a copy of Aﬁ;q‘z defined by X; = X; = Oand f(X,...,X,) =
O--multiplied by the product of the zeta-functions of the triple overlaps,
divided by the product of the zeta-functions of the quadruple overlaps, and
so on. But all of these zeta-functions are p-adic meromorphic by the induction
assumption or by the explicit formula for the zeta-function of affine space.
Hence, if Z' 1s proved to be p-adic meromorphic, it then follows that Z is
p-adic meromorphic as well. See Exercises 4-5 of §1 for a similar argument.

Fix an integer s > 1. Let ¢ = p". Recall that, if 7 denotes the Teichmller
representative of a € Fs, then the pth root of 1 given by ¢™¢ has a p-adic
analytic formula in terms of ¢:

£ = O()OUPOE*) - O™ ).

A basic and easily proved fact about characters (see Exercises 3-5 below) is
that

Z (Tregn {O, ifuelFy
XxpElFqs qs’ lfu = 07

and so, if we subtract the x, = 0 term,

z ETr(xowz{_l’ ifuelg
g¢—1, ifu=0.

onE;s
Applying this to u = f(xy, ..., x,) and summing over all x, ..., x, € Fs,
we obtain

Z ETr(xof(xl ..... x. ) — qus' _ (qs . l)n

Now replace all of the coefficients in Xy f( Xy, ..., Xp) € F [Xo, Xy, oo, X5
by their Teichmiuller representatives to get a series F(X,, Xy, ..., X)) =
N aXve Q[X,, X, ..., X,], where X% denotes XWX ¥m ... X, ¥,

W, = (Wlog Wiy, - ..y wm)'
We obtain:
quS/ _ (qs . ])n + Z STrixflx . ..., x,)
Xgi ¥y ... Xn€F
N
=@ -+ 2 [ ] O@x)o(arxm)---
XQgsX1s.ons xpeQd i=1
X351 2 sz”l—l

. @(a?rs - lxprs - lwi),
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V Rationality of the zeta-function of a set of equations over a finite field

Note that, since f/(X;, ..., X,) has coefficients in F,, g = p’, it follows that
a® = a,. Now let

Cos -0 X0 5 H O@X)0(@rX%) -+ - Oar X7,
so that
N = (¢ — D" + > G(x)- G- G(x™) - - - G(xe" ™)

Since the series ®(a,” X7'*:) are each in R, (see Exercise 2 below), so is G:
G(Xg, ..., X)) ERy © QX ..., Xu]l
Hence, by Lemma 3, we have

qSNSI — (qs - 1)71 + (qS —_ ])ﬂ+l Tr(\FS)’

n+1

= 2}(4)‘(’;) smoemb g Z( (” * 1) =0 Tr(¥s).

If we set (recall: 4 is the matrix of ¥)

A(T) = det(l — AT) = expp{— i Tr(‘P’S)TS/s,}a

we conclude that

Z'(H,fF; T) = exp,,{ 2. NS'TS/s}
\s=1
= I‘I [expp{z qs(n—i—l)Ts/s}‘l(v”‘(‘)A
1=0 s=1 |
n [CXP {Z s(n — i) Tr(l{'ﬂs)TS/S}](—l)‘( &)
1=0 =

n+l
= H (1 - q"“i’lT)<’1"*’('.‘)H A(qn—zT)(~1)‘*1("Tl).
=1 1=0

By Lemma 4, each term in this “alternating product” is a p-adic entire
function.

This concludes the proof that the zeta-function is p-adic meromorphic.
This result is the heart of the proof of Dwork’s theorem. In the next section
we finish the proof that the zeta-function is a quotient of two polynomials.

EXERCISES

1. Let t € Q be a primitive (p° — 1)th root of 1. Prove that the conjugates of ¢
over Q, are precisely: ¢, r?, 1>, ..., t*""'. In other words, the conjugates of
the Teichmiiller representative of a € F, are the Teichmiiller representatives of
the conjugates of a over F,.
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5 The end of the proof

2. Let X¥ = X,“1--- X,”», and let a € D(1). Prove that ®(aX™) € R,.

3. Let oy, ..., o, be distinct automorphisms of a field K. Prove that there is no
nonzero linear combination S a;0; such that Y a,0i(x) = 0 for every x € K.

4. Let £ € Q be a primitive pth root of 1. Prove that Jer, 6% = 0.

5. Prove that

S g {—1, if ueF
i g -1, fu=0.

6. Prove that for any positive integers n and a,

S fe= {n, if n divides a;
teg. In=1 0, otherwise.

7. Prove that G- T, = T, G, in the notation of §V.3.
8. Extend the result
det(l — AT) = exp,,(— » Tr(As)Ts/s)
s=1

to infinite matrices A4, with a suitable hypothesis on convergence of Tr.

°

A review problem. Let f(X) = 2{.oa; X' € F[X] be a polynomial in one
variable with coefficients in F,, ¢ = p”, and nonzero constant term. We are
interested in the number N of distinct roots of f(X) in F,. For each i = 0,
1, ...,n, let 4; be the Teichmiiller representative of a,. Let e =1 + A be a
fixed primitive pth root of 1 in Q, and define ©(T) as in §V.2. Let

n r—1
G(X, V) =T]T] o x# y»).
i=0j=0
Prove that

g — 1 1
N=1_"-4°Z G(x, y).
p p > (>, »)

x. VEN
z9-l=ys~1=1

5. The end of the proof

Dwork’s theorem will now follow easily once we prove the following criterion
for a power series to be a rational function.

Lemma 5. Let F(T) = 32, aT' € K[[T]], where K is any field. For m, s > 0,
let A, be the matrix {a,,;, Josijsm:

as sy dsi2 ot dsam

a5+ s s 2 ds+3 Asim+1

Qs+ dsi3 s 14 ot Gsims2 0

Asim Gsem+1 Asymsez T Qsiom

and let N ,, = det(4; ). Then F(T) is a quotient of two polynomials

P(T)

FT) = —==» P(T), X(T)e K[T],
o P omeKT)
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V  Rationality of the zeta-function of a set of equations over a finite field

if and only if there exist integers m > 0 and S such that N, ,, = 0 whenever
s =S,

Proor. First suppose that F(T) is such a quotient. Let P(T) = >M, b T,
O(T) = >N e,T'. Then, since F(T) Q(T) = P(T), equating coefficients of
T for i > max(M, N) gives:

N
Z a5y, = 0.
7=0

Let S=max(M — N+ 1,1, and let m = N. If 5 > S, we write this
equationfori=s + N,s + N + I, ..., s + 2N:

acy + @10y 1+t Ay = 0
Ay Cy + Ay oCy 1+ -+ dyyn1Co =0
Ay oyCy + GoeneOn-1 + 0+ dypanCo = 0.

Hence the matrix of coefficients of the ¢,, which 1s 4, ,, has zero determinant:
N.s,m - NS,N =0 fors > S.

Conversely, suppose that N, = 0 for s > S, where m is chosen to be
minimal with this property that N, , = 0 for all s larger than some S. We
claim that N, ,_, # Oforall s > S.

Suppose the contrary. Then some linear combination of the first m rows
fos F1y -y Fm—1 Of A, vanish in all but perhaps the last column. Let r, be
the first row having nonzero coefficient in this linear combination, i.e., the
ioth row r, can be expressed as

o F e +(12"10+—2+"' +“m710—1rm—1
except perhaps in the last column. In A4, ,, replace r, by r,, — (cir, vy + - +
O —1y-1rm-1), and consider two cases:
(1) iy > 0. Then we have a matrix of the form
a, 2} T Asim
S N 1(lwmﬂ
N : ‘ : s
0 0 - 0 \ B
: : | :
as+m a.s‘m+1 | ab+’2m

and the boxed matrix has determinant N, , = 0.
(2) iy = 0. Then we have:
0

)

:

1
(1.54'1: Asyo

o

l

a,im as+m+1
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5 The end of the proof

Now N,,; .-, is the determinant of either of the boxed matrices. Since the
determinant N, ,, of the entire matrix is O, either the determinant of the lower
left boxed matrix is 0, or eise § = 0, in which case also Ny, ,_; = 0.

Thus, in either case Ny, ; ,,_, = 0, and, by induction, we may obtain
Ny m-1 = 0 for all ' > s. This contradicts our choice of m to be minimal.

But then for any s > S we have N, ,, = O and N, _, # 0. Hence there is
a linear combination of the rows of A, , which vanishes, in which the co-
efficient of the last row is nonzero. Thus, the last row of A, ,, forany s > Sisa
linear combination of the preceding m rows. Hence any simultaneous
solution to

Aslm + Qs qllp-y + 0+ Asiplio =0

Asim-1lhn + sy plim—1 + -+ + Aseom-1to = 0
is also a solution to
Asimlin + Gsems1Um-1 + * + Asiantto = 0,
and, by induction, to every
AUy + AUy + -+ Qgyptlyg = 0

for s = S. This clearly implies that

=0 =1

is a polynomial (of degree < S + m). |

We now use Lemma 5 to prove the theorem. We must make use of the
“p-adic Weterstrass Preparation Theorem” (Theorem 14, §1V.4). In the form
we need, it says that, if F(7") is a p-adic entire function, then for any R there
exists a polynomial P(T) and a p-adic power series Fo(T) € | + TQ[[T]] which
converges, along with its reciprocal G(T), on the disc D(R) of radius R, such
that F(T) = P(T)- Fy(T). Namely, in Theorem 14 let p* = R; since F is
entire, it converges on D(p™).

For brevity, let Z(T) = Z(H,/F,; T). We know from §4 that we can
write Z(T) = A(T)/B(T), where A(T) and B(T) are p-adic entire functions.
Choose R > q"; for simplicity, take R = ¢*". If we apply the fact in the last
paragraph to B(T), we may write B(T) = P(T)/G(T), where G(T) converges
on D(R). Let F(T) = A(T)-G(T), which converges on D(R). Thus,

F(T) = P(T)-Z(T).

Let F(T) = >2,bT' el + TQTI, P(T) = >¢.q T el + TQ[T], Z(T)
= >®2q.aT el + TZ[[T]]. By Lemma 2 of §1, we have

la]. < g™
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V Rationality of the zeta-function of a set of equations over a finite field

Since F(T) converges on D(R), we also have for i sufficiently large:
bl R = g7

Choose m > 2e. Then fix m. Let 4; , = {a,,.4,}o<,.;<m as before, and
N, . = det(A4, ). We claim that for our m we have N, ,, = 0 for s sufficiently
large. By Lemma 5, this claim will imply that Z(T') is a rational function.

Equating coefficients in F(T) = P(T)Z(T), we have:

bive =0, + 18,01 + Collj o9 + - + Ceo,

In the matrix A, ., we add to each (j + e)th column—starting from the last
and moving left until the eth column—the linear combination of the previous e
cotumns with coefficient ¢, for the (j + e — k)th column. This gives us a
matrix whose first e columns are the same as in A, ,, the rest of its columns
have a’s replaced by the corresponding b’s, and which still has determinant
N .. We use this form of the matrix to estimate |N; ,|,.

Since a, € Z, we have |a,|, < 1. Thus, [Ny nl, £ (MaX, s, .]0,[,)"* ¢ <
R—stm+1-9 for s sufficiently large. Since R = ¢?*, and m > 2e, this gives us:
]Ns,m|p < q—ns(m+2)'

On the other hand, a crude estimate based directly on A, ,, gives: [N, n]w <
(m + Dlgrer2mmab = (g4 |)lg2nmim+ Dgnstm+ b Myltiplying together these
two estimates, we see that the product of the p-adic norm and the usual
absolute value of N, is bounded by an expression which is less than 1 for s
sufficiently large:

(m+ 1) !q2nm(m+ 1)
- qns
for s sufficiently large. But N, ,, € Z, and the only integer » with the property
that |n|-|n|, < 1is n = 0. Hence N, ,, = 0 for s sufficiently large.
Therefore, Z(T) is a rational function, and Dwork’s theorem is proved.

O

le,mlp'INs,m|co < q~ns(m+2),(m+1)!q2nm(m+1)qns(m+1) <1

128



Bibliography

Within each section, the order is approximately by increasing difficulty. In the
case of books and long articles, this is very rough, and is based on the level
of background required to understand the sections most relevant to the material
in our Chapters 1-V.

()
1.

Background

G. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill,
1963.

2. 1. Herstein, Topics in Algebra, John Wiley and Sons, 1975.

w

S. Lang, Algebra, Addison-Wesley, 1965.

4. W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1976.

(b)

General

. Z. 1. Borevich and I. R. Shafarevich, Number Theory (translated from

Russian), Academic Press, 1966.

. S. Lang, Algebraic Number Theory, Addison-Wesley, 1970.
. J.-P. Serre, A Course in Arithmetic (translated from French), Springer-Verlag,

1973.

. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,

Springer-Verlag, 1982.

. E. B. Dynkin and V. A. Uspenskii, Problems in the Theory of Numbers, Part

Two of Mathematical Conversations (translated from Russian), D. C. Heath
and Co., 1963,

6. L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1982.

N. Koblitz, p-adic Analysis: a Short Course on Recent Work, Cambridge University
Press, 1980.

. K. Mabhler, Introduction to p-adic Numbers and Their Functions, Cambridge

University Press, 1973.

129



Bibliography

9.

10.
11.
(c
1.
2.

~—

G. Bachman, Introduction to p-adic Numbers and Valuation Theory, Academic
Press, 1964.

A. F. Monna, Analyse non-archimédienne, Springer-Verlag, 1970.

S. Lang. Cyelotomic Fields, Vols. 1 and 2. Springer-Verlag, 1978 and 1980.
Chapter 11

K. Iwasawa, Lectures on p-adic L-Functions, Princeton University Press, 1972.

T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte |,
J. Reine Angew. Math., 214/215 (1964), 328 339.

. N. Katz, p-adic L-functions via moduli of elliptic curves, Proceedings A.M.S.

Summer Institute of Alg. Geom. at Arcata, Calif., 1974.

. S. Lang, Introduction to Modular Forms, Springer-Verlag, 1976.
. J.-P. Serre, Formes modulaires et fonctions zéta p-adiques, Modular Functions

of One Variable 111 (Lecture Notes in Math. 350), Springer-Verlag, 1973.

. Ju. I. Manin, Periods of cusp forms and p-adic Hecke series, transiated in

Math. USSR-Sb., 21 (1973), 371-393. (Note especially §8.)

. M. M. Visik, Non-Archimedean measures connected with Dirichlet series,

translated in Math. USSR-Sb., 28 (1976).

. Y. Amice and J. Vélu, Distributions p-adiques associées aux séries de Hecke,

Journées arithmétiques, 1974,

. N. Katz, p-adic properties of modular schemes and modular forms, Modular

Functions of One Variable I (Lecture Notes in Math. 350), Springer-Verlag,
1973.

. N. Katz, The Eisenstein measure and p-adic interpolation, Amer. J. Math.,

99 (1977), 238-311.

. N. Katz, p-adic interpolation of real analytic Eisenstein series, Ann. of Math.,

104 (1976), 459-571.

. B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math.,

25 (1974), 1-61.
Chapter 1V

. G. Overholtzer, Sum functions in elementary p-adic analysis, Amer. J. Math., 74

(1952), 332 -346.
Y. Morita, A p-adic analogue of the I'-function, J. Fac. Sci. Unir. Tokyo, 22 (1975),
255-266.

. J. Diamond. The p-adic log gamma function and p-adic Euler constants, Trans.

AM.S., 233 (1977), 321 337.

. B. Dwork, §1 of: On the zeta function of a hypersurface, Publ. Math. . H.E.S.,

12 (1962), 7-17.

5. Y. Amice, Les nombres p-adiques, Presses Universitaires de France, 1975.
6. B. H. Gross and N. Koblitz, Gauss sums and the p-adic I'-function, Annals of Math.,

(®

130

109 (1979), 569-581.

. B. Ferrero and R. Greenberg, On the behavior of p-adic L-functions at s = 0,

Inventiones Math., 50 (1978), 91- 102.
Chapter V

. A. Weil, Number of solutions of"equations in finite fields, Bu/l. Amer. Math.

Soc., 55 (1949), 497-508.



Bibliography

. I.-P. Serre, Rationalité des fonctions { des variétés algébriques (d’aprés
Bernard Dwork), Séminaire Bourbaki, No. 198, February 1960.

. B. Dwork, On the rationality of the zeta function of an algebraic variety,
Amer. J. Math., 82 (1960), 631-648.

. P. Monsky, p-adic Analysis and Zeta Functions, Lectures at Kyoto University,
Kinokuniya Book Store, Tokyo, or Brandeis Univ. Math. Dept., 1970.

. N. Katz, Une formule de congruence pour la fonction {, S.G.A4. 7 II (Lecture
Notes in Math. 340), Springer-Verlag, 1973.

. B. Dwork, On the zeta function of a hypersurface, Publ. Math. I.H.E.S., 12
(1962), 5 68.

. B. Dwork, On the zeta function of a hypersurface I, Ann. of Math., 80 (1964),
227 -299.

. B. Dwork, A deformation theory for the zeta function of a hypersurface,
Proc. Int. Cong. Math. 1962 Stockholm, 247-259.

. N. Katz, Travaux de Dwork, Séminaire Bourbaki, No. 409 (Lecture Notes in
Math. 317), Springer-Verlag, 1973.

131






Answers and hints for the exercises

CHAPTER | §2

3.

Write [|x + yii¥ = [(x + y)"||, use the binomial expansion and Property (3) of a
norm to get an inequality for ||x + y||¥ in terms of max(||x}, lly|), then take Nth
roots and let N — oo.

. If x € F has the property that ||x| < 1 and ||x — 1|| < 1, and if | || is non-Archi-

medean, then 1 = ||1 — x + x| < max(|lx — 1], x|} < 1, a contradiction. Con-
versely, suppose that | || is Archimedean. Then by definition, there exist x, ye F
such that {|x + y| > max(|x||, |[y]). Letx = x/(x + y), and show that |a|| < 1 and
floo — 1)} < 1.

. Suppose || ||; ~ || |l.- Let ae F be any nonzero element with |a, # 1, say |al|,

> 1. Then there is a unique « such that |a]|, = [al|}. Claim: ||x||, = |x||3 for all
x € F. If, say, there were an x with {|x|; > [|x||% (also suppose that ||x|,; > 1), then
choose large powers x™ and a" such that || x™/a"||; approaches 1; but then show that
iIx™/a")|, approaches 0, and hence the two norms are not equivalent. Finally, note
that @ > 0, or else we would not have || ||; ~ || |,. (The converse direction in this
exercise is easy.)

. If p = 1, you get the trivial norm. If p > 1, you don’t get a norm at all; for example,

choose N large enough so that p¥ > 2and takex = 1,y = p¥ — 1. Then check that
pordp(x+y) > pordpx + pordpy‘

. The sequence {p,"} approaches Oin | |, butnotin| |,

. The hardest part is to prove the triangle inequality for | |* « < 1. By supposing

|x| = |y| and setting u = y/x, reduce to showing that
-1<ux<l1 implies [1+uf* <1+ |ulf
which is true if
O<ux<i implies f)=1+uw—(1+uy=0
Since f(0) = 0 and f(1) > 0, this follows by showing that f“(u) # 0 on (0, 1).
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Answers and hints for the exercises

9. Use Exercises 2 and 3: 1f ||nl] 5., > 1, then the sequence {1/n'} approaches zero in

“ ”Arch bUt not in H Hnon-Arch'

10. Show that the least positive integer of the form nN + mM must be a common

divisor of N and M.
11. 3,7, 1, 1,7, =2,0,0,3,2, —=2,0, -1, — 1, 4.

12-14. Prove the lemma: ord (n!) = > [n/p’]. where [ ] is the greatest integer function
and the sum is over j > 1 (note that this is only a finite sum).

15, 1/25,25,1, 1725, 1/243,1/243, 243, 1/13, 1/7,1/2, 182, 1/81, 3,2 2% 1,2,

16. p does not divide its denominator when x is written as a fraction in lowest terms.

17. Use Exercise 14.

19. Use the “diagonal process,” as follows. Choose an infinite subsequence of integers

with the same first digit, an infinite subsequence of that with the same first two digits,
and so on. Then take the subsequence consisting of the first element from the first
subsequence, the second element from the second subsequence, . . ., the ith element
from the ith subsequence, .. ..

CHAPTER | §5

L(p—dp ™+ (p—1—app "+
+(p-l—a)+(p—-1—a)dp+---.
i)4+0-7+1-77+5.7°
() 2+0-54+1-52+3.5°
(i) 8- 117"+ 8+ 911 +5-11°
(iv) 1-241-224+0.2° (the bar denotes repeating digits)
M 1+1-7+1-72
(vi) 10 +9-11 +9-117
(vi) I0+0-13 +4-132 +7-13°
(viii) 2-57 '+ 4.5+ 1-57"
(ix) 2-32+2-37 4 2.3 4 2.3
23741+ 73
(xiy 1-:27% 41272 40-27"!
(xii) 4-5" ' +4+ 35
. To prove that «’b € @ has repeating digits in its p-adic expansion, first reduce to the
case pfb. Then tirst suppose that a/b is between 0 and — 1. Multiply the denomi-
nator and numerator of a/b by some ¢ which gets the denominator in the form
¢b =p" — lforsomer. Letd = —ac,sothat0 < d < p” — 1. Thena/b = d/(1 — p");
now expand as a geometric series. You find that a/b has a “purely” repeating
expansion. If a/b is not between 0 and — 1, then it is obtained by adding or sub-
tracting a positive integer from a purely repeating expansion. and the result will
still be a repeating expansion once you're past the first few digits. An alternate proof
15 to show that in long division you must eventually get repetition in the remainders.

. The cardinality of the continuum. You can construct a one-to-one correspondence
f between Z, and the real numbers in the interval [0, 1] written to the base p by

134



10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

Answers and hints for the exercises

setting f(ao + @p + - + ap" + ) =ag/p +ar/p’ + 4 a4 (]
is not quite one-to-one, since a real number in (0, 1) with a terminating expansion
has two preimages; for example, f(1) = f(—p) = 1/p.)

1402412240224 1-2% 4.
- (), (iif), (iv), (v), (ix).
24154282 41-53+-,34+3.542.543.54..:2+5-74+0.7?

+6- 7+ 541 7T+677+0-7" 4.,
5,13, 17.

Let o, € Z, be any number which is a square mod p, let a, € Z, be any number
which is not a square mod p, and let a3 = pay, 2, = pa,.

Take, for example: 1, 3, 5, 7, 2, 6, 10, 14.

In @, we have +1 and the two square roots of —1 found in Exercise 9. To prove
the general fact, use Hensel’s lemma for each a, =0, 1, ..., p — 1 with F(x) =
xP — x.

See Herstein’s Topics in Algebra, p. 160 (where it’s proved for polynomials with
integer coefficients; but the proof is the same with p-adic integer coefficients).

If there were such a pth root, then the polynomial (x? — 1)/(x — 1) would have a
linear factor. But substituting y = x + 1 leads to an Eisenstein polynomial, which
is irreducible by Exercise 14. To give the second proof, notice that (1 + p'x')? =
1 + p"*!'x’ + (terms divisible by p?** '), and this cannot equal 1.

Note that 1/1 —p)— (1 +p+ p* + --- + p™) = p¥ /(1 — p). The other two
series converge to 1/(1 + p), (p> — p + /1 — p?).

(a) More generally, in place of p’ one can take any sequence p;e Z, such that
ord,(p;) = i. Namely, show by induction on n that the map

{all sums agpy + - + Gy 1Pn1

-{0,1,2,...,p" =1
with varying digits a; } { ? }

obtained by reducing modulo p", is one-to-one.
(b) We have
—-(p-1 2 P<a+ +a (-p<p-D 2 P
i<n,iodd i<n,ieven
since there are 1 + (p — 1) 3,., p' = p" integers in this interval, by part (a) each
such integer has exactly one representation in the form gy + - -+ + a,_(—p)" "

Use Hensel's lemma with F(x) = x" —a (or ax ™" — 1 if n < 0) and g, = L.
1 + p has no pth root. Next, if « = | 4+ a,p* + -, then to find a pth root let
ay = 1 + a,p and apply Exercise 6 with M = 1, F(x) = x? — a.

pM -

Use induction on M to prove the congruence: if a”™ ' = > + pM 1B for some
B (this is the induction assumption), then raising both sides to the pth power gives
the desired congruence. Then show that the limit as M — oo has the properties (1)
its pth power is itself, and (2) it’s congruent to x mod p.

Use the same idea as in Exercise 19 of §2.
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Answers and hints for the exercises

21. Look for X = Ay + pA, + p*A, + ---, where the 4, are r x r matrices whose

entries are p-adic digits 0, 1,2,...,p — 1. Let X, = Ag + --- + p"A,. We want X,
to satisfy X* — AX + B = 0 mod p"*! (where we use the congruence notation for
matrices to denote entry-by-entry congruence). Use induction on n. Whenn = 0 we
obtain the congruence by choosing 4, = 4 mod p. The induction step is:
(Xp-1 + P"4)? — AX, ., + p"4,) + B

= (Xr%——l - AXn-l + B) + p"(Aan—l + Xn—lAn - AAH)

= (X7 1 — AX,  + B) + p'4,4 (mod p"*h),
because X,_; = A (mod p). Choose 4, modulo p to be

— X3y = AX,y + Bp AT

Notice that this argument falls through for higher degree polynomials because of
the noncommutativity of matrix multiplication.

CHAPTER 1I §2

1.

Expand 1/(1 — g %) in a geometric series; then multiply out, and use the fact that
every positive integer n can be written (uniquely) as g3* - - - gi~.

. Definef(t) = 4t + t/(e" — 1) and show that f(¢) is an even function, i.e., f (t) = f(—1).
. For large k, {(2k) is near 1. Answer: 4\/;1—k(k/ne)2".

(i) modulo 5% we have (1 4 2-5)ME2571-25 = (1 4 2. 515 = 11 .(1 4+ 2-5)%
=142-540.5242-5+2.5%

(ii) modulo 3% we have (1 +3%) =1 +3)'""*¥=14+0-3+1-324
1-3% 4 1-3%;

) 1+5-74+3- 774277427 4.

. Note that p¥ = 1 modulo p — 1 for any N, so that, if you first approximate a given

p-adic integer by the nonnegative integer obtained from the first N places in its p-adic
expansion, you can then add a suitable multiple of p¥ to get a positive integer con-
gruent to s, modulo p — 1 which is an equally good approximation.

LD =m/4; LA =TT 11 — #@)/g®).

CHAPTER I §3

2.
5.

An example is the complement of a point.

It suffices to prove this for U = a + (p"), since any U is a disjoint union of such sets.
Let @’ be the least nonnegative residue mod p" of aa; then since |aj, = 1, it follows
that «U = ' + (p"), and so both U and aU have the same Haar measure p~".

. (1) the first digit in o: (2) (p — 1)/2: 3) 3228 ala/p — 1/2) = (1 — pP)/6.

CHAPTER 11 §5

1.

For the first assertion, compare coefficients of ¢* in the identity: te”/(e' — 1) =
(2 Bt kDS (tx)/j). To prove the second assertion, take f(i .- dx of both sides of
the identity 3 B (x)t*/k! = te’~/(¢' — 1) and compare coefficients of t*. To get the
third assertion, apply (1/t)(d/dx) to both sides of the same identity.
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Answers and hints for the exercises

2. Claim: p(U) = 0for any U if u has this property. Since U is a union of sets of the form
a + (p")for N arbitrarily large, we have for such N: |(U)|, < max,|u(a + (p")l,.
Now let N — oo.

3. By; P 'Bi; (1 — P H)B;
5.1 —a™B,; (1 — a1 — pF"HB,; Si-pall — a1 — pHB. /G + 1).

7. Use the corollary at the end of §5 with g(x) = 1/(the first digit in x), so that f(x) =
g(x) mod p, and g(x) is locally constant.
9, lim > a/pM*1

N-w 0<ga<pN
N=2M a=ap+azp?+ - +amp?™

. 1 p=1 p—1 p—1
= lim M—H(p"z a+p" 2 apt+ -+ 2 anp™
M-ow P ag=0 az=0 axm=0

p—1 1
= __Q 2 ) - —
y AP+t =—-

CHAPTER II §7

2. (i) Use the Kummer congruence (1 — 52~ 1)(~B,/2) = (1 — 51927 1)(—=B,,,/102)
modulo 5% to obtain 1/3 = —B,,,/102 (mod 5°), and hence Byy, =1 + 3-5
+3.524+....

(i) From the congruence (1 — 72~ Y)(—B,/2) = (1 — 7*°571)(—B,46/296) (mod
7%), obtain Bygg =6+ 6-74+3.7> 4 .-,

(iii) Use (1 — 74~ 1)(=By/d) = (1 — 7592 1)(— Bys,/592) (mod 7%) to obtain Byo,
=34+4.74+3.72+...,

3. Recall that a rational number belongs to Z if and only if for each p it isin Z,. Then
use parts (1) and (3) of Theorem 7.

6. Let =1+ p? =35, and let g(x) = (ao + 2a,)” ", where a,, a, are the first two
2-adic digits in x. Then follow the proof given for odd p. In the case p = 2, the
Clausen—von Staudt theorem says that every nonzero Bernoulli number starting
with B, has exactly one power of 2 in the denominator.

CHAPTER III §1

1. Allroots of X?'~1 — 1 are also roots of X?’~1 — 1 if and only if X*"~* — 1 divides
X?'=1 _ 1; this is true if and only if p" — 1 divides p/ — 1, which, in turn, is
equivalent to f* dividing f.

2. Here is a table of all possible generators of F,':

p|2|3|5|7‘11 l 13

possible a | i 2023352678 26711

137



Answers and hints for the exercises

10.

. (1 4 jpnyeddeower ig 4 penerator.

. Adjoinarootjof X* + X + 1 = Oand X* + X + 1 = 0,respectively. Forexample,

in Fy we multiply as follows:
(@ + bj + ¢j>)d + ¢ + fj*) = (ad + bf + ce) + (ae + bd + bf + ce + ¢f)j
+ (af + be + cd + ).

Finaily, note that when ¢ — 1 is prime, any element (not 1) of F is a generator.

. Clearly Fa) = [,

. If any two of the 4, were the same, you would get a polynomial of degree less than g

having g roots.

. If P(X) factored over F,.say, P(X) = P(X)P,(X) with deg P, = d < p, then the

coefficient of X4~ ' in P,(X), which is minus the sum of d of the roots a + i, would
bein F,. Butthendae F,.and so a € F,. But all elements of F,are roots of X* — X,
and so cannot be roots of P(X).

. If p=2then —1 =1 and it's trivial; otherwise F, contains a square root of —1

il and only if | has a primitive fourth root, i.c., if and only if 4 divides ¢ — 1.

. Assume the contrary, and use the same approach as in Exercise 19 of §1.2 and

Exercise 20 of §1.5.

First show, without using limits, that the formal derivative of a polynomial over any
field obeys the product rule. This can be done quickly by using linearity of the
derivative to reduce to the case of a product of two powers of X.

CHAPTER III §2

A good reference for the ideas in these exercises (especially Exercises 2,6, 7, 8)

is
3.
4.

5.

Chapter IV of Simmons’ textbook (see Bibliography).

Uy Uy = Py, bUL Hvzusup' Ih"zusup = 1~ Hpvl“sup = |p|p = 1/[)

Let F, = A/M be the residue field of K, where g = p’; it is an extension of degree f of
the residue field F, of . In the proof of the last proposition we saw that /' < n =
[K : @] (In the next section we'll see that fdivides n; e = n/fis called the ramification
index.) First suppose that K is unramified, i.c., f = n. If we let X denote the image of x
under the residue map 4 — [, we see that we can choose a basis {v,... .. t,} of K
over Q, such that {7, ..., #,} is a basis of F, over F,. One now checks that the sup-
norm with respect to such a basis has the desired multiplicative property. Namely,
first prove that for x € K we have: ||x|,, < 1 if and only if x€ 4; || x{,, < 1 if and
only if x e M. Then to show that fixyll,,, = Ixll.p - I¥ll.p, reduce to the case when
Ixlsup = l¥llsup = 1, 1€, x, y€ A — M. But then xye A — M. Conversely, if K is
ramified, the sup-norm is never a field norm. Namely, one can show that in a field norm
K has elements with norm a fractional power of p.

Any element x € Z,, can be written in the form x = p"u, where u is a unit.
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CHAPTER 111 §4

1.

The values of | |, on Qare the same as on @, since any element can be approximated
by an element of @,. To show that, for example, the unit ball in @, is not sequentiaily
compact, take any sequence of distinct roots of unity of order prime to p and show
that it has no convergent subsequence.

. Let ry = |b — al, You get the empty set unless r is a sum r, + r, of two rational

powers of p (or zero). Then consider cases depending on the relative size of ro, r, r;.
For example, if r, = r, > r,, then you get the two disjoint circles of radius r, about
a and b. The “hyperbola™ has exactly the same possibilities; now r = r; — r, must
be a difference of two rational powers of p.

. Let C; = max(1, Cy). Suppose f is a root with |}, > C,. Then f = —b,_; —

b2/ — -+ = bo/f*" !, and [B], < max({b,_;_,/f'],) < max(|b;|,) = Cy, a con-
tradiction.

. Set & = minja — 2,{,. where the minimum is over all roots o, # « of /- Use the last

proposition in this section with the roles of § and ¢ reversed to find a root f of g such
that |« — B|, < 4. By Krasner’s lemma, K(x) < K(f). Since f is irreducible,
[K(a): K] = degf=degg > [K(f): K], and hence K(x) = K(B). As a counter-
cxample when f is no longer irreducible, take, say, K = Q,, f(X) = X%, a =0,
g(X) = X? — p*¥* ! for large N.

. Let « be a primitive element. i.e, K = Q,(«), and let f(X)e Q,[X] be its monic

irreducible polynomial. Choose ¢ as in Exercise 4, and find g(X) € Q[X] such that
|/ — gl, < & (For example, take the coefficients of g to be partial sums of the p-adic
expanstons of the corresponding coefficients of f) Then g has a root f such that
K = Q) = Q(p), and it’s easy to see that F = Q(p) is dense in K and has degree
n=[K:Q, over Q.

. Set o = \/"'—‘i, B = v'—;z (with any fixed choice of square roots). We can apply

Krasner’s lemma if either | — «f, or | — (—a)], is less than |x — (—2)]|,, which
cquals 1if p # 2and 1/21f p = 2. Since

fa — 1], ={~a— (=D, =18 — a1} + 2f,
this holds if ja — 1, < 1 for p # 2 and <1/4 for p = 2. To do the next part, set
%= p, =</ a Then it suffices to have either | § — af, or | — (—=)|, less than

[2/pl, Since ja — pl, =1 — al,-|f + «|, this holds if |a — pl, < |4p|, So
choosee = 1/pifp#2and =1/8if p = 2.

. First note that « satisfies the monic irreducible polynomial (X?" — D/X" ! — 1).

(For the case n = 1, see Exercise 15 of §1.5.)) Now let B = (—p)' " D ie, fisa
fixed rootof X?™' + p=0.Lety, =a~ Loy =a? — I,...,0,_, =a’"' — I be
the conjugates of a — 1. Check that |%, — x|, = p~*~ Dforanyi s j. By Krasner’s
lemma, it suflices to show that | — 2}, < p~ ' »~ " for some i. If this were not the
case,wewouldhavep ™' <172/} B — o1, = [((B + 1)P — 1)/B],.since TT(X — «)
=((X + 1) — 1)/X. Now use the relation 7' 4+ p =0 to obtain: (( + 1)7 — 1)/
=f-372) ("B 2. Butthe p-adicnormof thisis bounded by pf8 l,<p~ L. Toprovethe
last assertion in the exercise, suppose that a is a primitive mth root of 1, with m not
a power of p, and [a — 1|, < 1. Then we would have |a' — 1], < 1 for any i. Let
[ # p be a prime factor of m, and let b = ™, which is a primitive Ith root of unity.
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10.

11

12.

13.

14.

Then ff = b — 1 satisfies: ||, < I, and at the same time 0 = ((§ + 1)' — 1)/f =
S, (OB + L Butthen 1], = |B(— Sic, (OF DI, < 1, a contradiction.

. Let 7 be an element of K with ord, m = 1/e, where e is the ramification index of K.

Then {r'}._4 ; ... m—, are in distinct multiplicative cosets modulo (K )™, and any
element of K™ can be written uniquely as 7' "™y for some 0 < i <m,jeZ,ue K
with |u|, = 1. Now show that u is an mth power. Namely, since its image in the
residue field [, is an mth power, we can find u, such that « = u/uy™ — 1 satisfies
||, < 1. Finally. write the p-adic expansion 1'm = aq + a;p + a,p> + ---, and
obtain

u=uy(l + 2) = (u(1 + 1)““””"“-”’“ .

Otherwise, K would have residue degree f > 1, since it would have more than p — 1
roots of unity of order prime to p, and any two such roots have distinct residues
in 1?;,;

All have the cardinality of the continuum.

Let yy, ..., ), be elements in K such that |y;|, = 1 and the images of the y, in the
residue field form a basis of the residue field over F,. Show that y;z/, 1 <i </
0 <j<e— 1, form a basis of K over Q,, where ord, n = l/e.

If 8 satisfies the Eisenstein polynomial X* + a. X7' + - + ag, set o = —a,.
Then 2eZ, ord,a =1, and '~ a=f+ay= —a, "' — - —ap has
p-adic norm less than 1/p.

Follow the proof of Theorem 3 of Ch. I but working over the field K, with § playing

the role of p (recall that ord,, § = 1/e). Note that ord ,(f“ — «) > 1 + 1/e. Look for
B+ a,fp* with a;€{0, 1, ..., p — 1} such that ord (B + a, )" — a) = 1 + 2fe,
and so on. An alternate method is to note that [z/f° — 1|, < 1, then write the p-adic

15.

expansion for l/ee Z,. and compute f(x/f)' “ e K this will be an eth root of a.
Finally, we have K = Q (f) because f§ has degree e.

Let V' = Z,[X] be the set of monic polynomials of degree n. For f, ge V define
| f— gi, by the sup-norm. Note that V' looks like Z, with the sup-norm, and it is
compact. Let S = V be the subset consisting of irreducible polynomials. Any such
polynomial gives at most n different degree n extensions of @, in @,,. For fixed f e S,
the last two propositions in §3 show that there exists > 0 such that any g € S with
| f — gl, < 0 gives precisely the same set of degree n extensions as does f. By com-
pactness, the set S has a finite covering of subsets in cach of which the polynomials
give the same extensions. So there are only finitely many extensions of degree n.

16-17. See the article “ Algebraic p-adic expansions” by David Lampert, to appear in

the Journal of Number Theory.

CHAPTER 1V §1

1.
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Answers and hints for the exercises

3. A counterexample for the last question: let f; = 1 4+ pX if jis a power of 2, and let

f; = 1 otherwise. Then f(X) = [T, (1 + pX¥) = S%0 PP XY, where S denotes
the sum of the binary digits in j; this does not converge on D(1).

. Letd(x, Z,) = min{|x — y|,|{y€ Z,}, 1e, the “distance™ from x to Z,. First prove

that if d(x, Z,) = 1. then the series converges, in fact, it converges under a much
weaker condition on |a,|, Now suppose that d(x, Z,) = r < 1. Choose M so that
p~M*D < < p~M Then for n = p* with N > M, show that: p¥ — p" ! of the
factors in the denominator of the nth term are of norm 1, p¥ = ! — p¥ =2 of the factors
are of norm 1/p, p"~? — p”~3 of the factors are of norm 1/p?, and so on, and finally
pN M — pN=M=1 of the factors are of norm 1/pM, and the remaining p¥ M ~!
factors are of norm r. Use this to give a lower bound for the ord, of the nth term,
namely,

Ordp a, + ordpn! _ (pzv—l _ pN—z) _ 2(pN—2 _ pN—a) ...
_ M(pN—M _ pN—M—1) — (M + l)pN—M—l
=ord,a, +ord,n! —n(p ' +p i+ -+ p M
=ord,a, + (n/p"" — Di(p — D).

The more general case when n is not a power of p involves the same sort of estimate.
In all cases, one finds that ord, of the nth term approaches infinity.

. For p > 2, write the congruence in the form ((1 + 1)? — 2)/p = 0 (mod p), use the

binomial expansion for (1 + 1)” to get 322/ (p— D(p — 2) .-~ (p — j + 1)/j' on
the left, and consider each term modulo p.

. Leta = log,(1 — 2) = —lim,., 3", 2//i Now2a = log,((1 — 2)*) = log, 1 = 0;

hence, a = 0. Thus, ord, 37_, 2Y/i = ord, 32, 2%/i = min,,,,,(i — ord, i). For
example, for n = 2™ this minimum is n + 1.

8-9. Non-theorem 1 is being used.

10. (a) Therealseriesfor the square root converges to the positive squareroot (m + p)/m;

11.

the p-adic series converges to the square root which is congruent to | modulo p. Here
they're both the same.

(b) Here the positive square root is (p + 1)/2n = (p + 1)/(p — 1), but this is the
negative of the square root which is =1 mod p.

(d)-(e) Consider the following cases separately:

Case (i). a — b is divisible by an odd prime p. Note that, since ¢ and b are positive,
relatively prime, and not both 1, it follows that a + b > 3 is divisible either by 4 or
by an odd prime p, # p. Then (I + «)!"? converges to a/b p-adically and converges
to —a/b either 2-adically (if 4 divides a + b) or p,-adically (if p, divides a + b).
Case (i1)). a — b = +2",r > 2. Note that in this case there must be an odd prime p
dividing a + b. Then (1 + o)'/? converges to a/b 2-adically and to —a/b p-adically.
Case (iii). a — b = +2, so that « = (a/b)* — 1 = 4 +b + 1)/b%. Notc that here a
and b are both odd. Then (1 + «)"/? converges to —a/h 2-adically and to a/b in the
reals, provided that —1 < a < 1. The latter inequality holds unless b = 1, = 8 or
b=30=16/9.

Case (iv). a — b = +1, so that a = (+2b + 1)/b%. Then (1 + x)'/? converges to
—ay/b p-adically for p a prime dividing +2b + 1, and it converges to a/b in the reals
unlessbh = l,a=3orb =2 a=35/4
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14.

15.

17.

18.

20.

21.

. The series (x d/dx)*1/(1 — x) = 5 n*x" represents a polynomial in Z[X] divided by
(I — X)**! in its disc of convergence, in both the real and p-adic situations. In
particular. for x = p you get an integer divided by (p — 1)** .

The left side is —loga(1 + 5) = —log,;(}2): the right side is
—2logy(1 — ) = —logy((—)") = —log,(73).

As an example where the exact regions of convergence differ, take /(X) = 2 X"
Then f(X) converges on D(1 ") and f'(X) converges on D(1).

(a) For example. 3 | i!'p.. where p, denotes the ith prime. (b) I don’t know of an
example, or of a proof that it’s impossible.

For each rational number r = a/b e @, make a choice of p” € Q, i.e., choose a root of
x" — p* = 0 and denote it p". Now take, for example. f(x) = p'od»>)",

No.

If you want cach coefficient to j places, choose N so that p¥ > Mp'~ ' writea/be Z,
modulo p¥inthe formay + a;p + - + ay_p" ' and compute the coefficients of
(1 + X)mrwprrax 2% Umodulo pl.

(6) First prove that the convergence assumptions allow you to rearrange terms.
Reduce everything to proving than an element in R[[X]] which vanishes for values
of the variables in [ — &', «'] must be the zero power series. Prove this fact by induction
on .

CHAPTER 1V §2

1
2

10.

12.

14

L6 T 2T 572 25 20 4 28 20 210 4t

. By removing roots of unity, show that the image of Z,, is the same as the image of
I +pZ,forp>2and 1+ 4Z,forp =2

. plog, a<>p’l(p — Dlog, a = log,(u” '), and the latter is congruent to

a’~ ' — 1 mod p?. since in general log (1 + x) = x mod p* for xe pZ,,.

. log, x (no surprise!).

. Let¢ = f(p), and show that f (x) — ¢ ord, x satisfies all three properties which char-
acterize log,, x.

P =D =11 =1, =1

L2 =1 =( + 1)j—1),and for p > 2 exactly one of the two factors is divisible by

p. and hence by p¥. If p = 2, then you have j = + 1 mod 2%~ 1.

Approximate 1/2 by (p¥ + 1)/2,and compare (T, < s + 1) 2. pr; /) WItH [T, < pv, py,
which we proved is = — 1 (mod p").

In the first equality both sides are 1 +3-5+2-52 +3-5% + ... and in the
second equality both sidesare 1 + 6-7 4+ 5-72 4 4-7% 4 ---.
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14.
15.
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Answers and hints for the exercises

On the right side of property (3), we have s =p—r,s; =(p — 1 — /(1 — p).
Note that the expression is congruent to m* ~*° mod p; then it remains to verify that
the (p — Dthpoweris . Use:(p — )s; =1 —p+r=1—s,.

In all cases show that the image of the function is in the open unit disc about 1.
14+ X +X2+3X3 4 2x% 1+ X +1X2 +4x3 + 3x°.

The coefficient of X7 is (p — 1)! + 1)/p!; Wilson’s theorem.

E(X")E/XY = e P el + pXZ,[(X]]

SXP(XY = exp(Z2obi-y — pb)X™). If ¢; = b,y — pb;e pZ,, for all i, then

idef i
since e® € 1 + pXZ,[[X]] whenever c € pZ,, it follows that

[TeX e 1+ pXZ,[[X]]

Converqely, suppose ¢, is the first ¢; not in pZ,; then the coefficient of X*' in
IT ¢*" is congruent mod p to ¢;, # 0 mod p, and by Dwork’s lemma f(X)¢
14+ XZ,[[x7].

CHAPTER IV §4

1.

(i) Join (0, 0) to (1, 0) and (1, 0) to (2, 1).
(i) Join (0, 0) to (3, —2).
(i) Join (0, 0) to (2, 0), (2, 0) to (4, 1), and (4, 1) to (6, 3).
(iv) Join (0, 0) to (p — 2,0) and (p — 2,0) to (p — 1, 1).
(v) Join (0, 0) to (1, 0), (1,0) to (2, 1), and (2, 1) to (3, 4).
(vi) Join (0,0) to (p* — p,0),(p> — p,O)to (p*> — 1,p — 1),and (p> — 1,p — 1) to
(. p+ 1)

. (a) Any root « of f(X) that satisfied a polynomial of lower degree d would have

ord, a equal to a fraction with denominator at most d; but by Lemma 4, ord, a =
—m/n.

(b) If f(X) is an Eisenstein polynomial, then a, ' X (1/X) =1 + a,_,/a, X + ---
+ ag/a, X" has for its Newton polygon the line joining (0, 0) to (n, 1).

(¢) Counterexample: 1 + pX + ap®X?, where ae Z) is chosen so that 1 — 4a is
not a square in Z,,.

. All slopes are between 0 and 1, and for each segment of slope A there’s a segment (of

the same horizontal length) with slope 1 — A. The number of possible Newton
polygons of this type is: 2 forn = 1;3forn = 2; 5forn = 3;8forn = 4.

® Join(p — I, =o' — 1, —( + ) forj=0,1,2,....

(ii) The horizontal line from (0, 0).

(i) Join(p' — 1,1 +p4+.---+p ' —)to

P r=Ll+p+-+p i+ p -+ Dforj=012...

(iv) One infinite straight line from (0, 0) with slope —1/(p — 1).

(v) The segment joining (0, 0) to (2, 1) and the infinite line from (2,1) with slope 1.
(vi) The infinite line from (0, 0) with slope 1.
(vit) Join(j,1 + 2+ -+ Pto(j+ L1 +2+---+j+j+ Dforj=0,1,2,....
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10.

11.

12,

(viii) Starting with a segment from (0, 0) to (2, 2), there are infinitely many segments
with slope increasing toward \/2: the details of these segments depend upon
rational approximations to \/3.

. The Newton polygon of 1 + 3%, p!*BV2iX" is the infinite line from (0, 0) with
slope /2.

. Forexample, 5=, p'X”'~ ! converges on D(1), its Newton polygon is the horizontal
line from (0, 0), and it has no zero in D(1).

. Reduce to the case 1 = 0 by replacing f(X) by f(p~*X), where p* is a choice of
fractional power of p. Then multiply by a scalar to reduce to the case when

min ord,a, = 0.

For x e D(1) clearly | f(x)[, < 1. To obtain an x for which | f(x)[, = 1, it suffices
to reduce modulo the maximal ideal of €, i.e., to consider the series f(X) e [f,,[X].
(This has only finitely many terms, because ord, a; — oc.) Then choose any x such
that f(x) # 0in F

s

. Apply the Weierstrass Preparation Theorem to the series f1(X) = f(X)/a, X" € 1
+ XQ[[X]] which is obtained by dividing f(X) by its leading term a, X". Take A = 0.

Reduce to the case f(X)e 1 + XQ[[X]] by factoring out the leading term, as in
Exercise 9. Use the Weierstrass Preparation Theorem to write h(X) = f(X)g(X).
But f(x) = 0 implies that h(x) = 0, and A(X) is a polynomial.

Use Exercises 9 and 10, and show that if £, has one zero, then it must have infinitely
many. To do this, let x be any pth root of a zero of E ,, and use the relation E (X)? =
E(X?)e".

Write f(X)g(X) = i(X). If f(X) has a coefficient a; with ord, a; < 0, then, by
Lemma 4, f(X) has a root « in D(17). But then h(a} = 0; however, fand s have no
common roots. If A(X) has a coefficient g, with ord, a; < 0, then it has a root « in
D(17). Since g(=) # 0 it follows that f(z) = 0, and we again have a contradiction.

CHAPTER V §1

1. 1/(1 — 1); /11 - ¢"T).
2. 1/(1 = TX1 — qT)--- (1 — ¢"T).
3. There is a one-to-one correspondence between the points of (n — 1)-dimensional
affine space and the points of H, given by
(xl’ axn—l)H(le s Xy s _g(X1, ""xnfl))‘
4. Suppose, for example, that r = 2. Then show that 4t H,, ,(F,) =3 H, (F.s)

14

+HH, (Fp) =34 Hy, ; (F,), where H, ,, is the hypersurface defined by the
product of the two polynomials.

. Write an n-dimensional projective hypersurface as a disjoint union of affine hyper-
surfaces (one in each dimension n,n — 1, n — 2,...).
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Let T)=T1(1 —o,T), P(T) =T1 (1 — B;T); these are both in Q[T]; then

exp(3 N T%/s) = P(T)/Q(T). The converse is shown by reversing this procedure.

. Comparing coefficients of T gives a = N, — 1 — g, where N; = #E(U:q); by

Exercise 6, N, = | + ¢* — o — &5, where o, o, are given by (1 + aT + qT?) =
1=, TY1 —a,T).

. (1) For g = 2 (mod 3), every element of F, has a unique cube root; then show that

N, = g + 1,sothata = 0, and the zeta-functionis (1 + gT?)/(1 — T)1 — ¢T).

(ii) For g = 3 (mod 4), —1 does not have a square root. Then for exactly one from
each pairx, = a,x, = —awehaveasolutiontox, = +./x} — x,;thisgivesa
one-to-one correspondence between aeF, and points (x;, x,) on the affine
curve. Counting the point at infinity, we obtain N = g + 1, as in part (i), and the
zeta-function is (1 + ¢T?)/(1 — T)1 — qT). Next, for g = 9 = 32, we have N,
= (the N, wheng =3) = 16,a = 6, Z(T) = (1 + 3T)*/(1 — T)(1 — 9T). For
q = 5we have Z(T) = (1 + 2T + 5T?)/(1 — T)(1 — 5T), and for g = 13 we
have Z(T) = (1 — 6T + 13T3/(1 — T)(1 — 13T).

. Suppose we have two rational functions f(T)/g(T) and u(T)/v(T) with numerator

of degree m and denominator of degree n, where the first is exp(3 & N, T%/s) and
the second is exp(3 &, N, T%/s), and suppose that N, = N fors = 1,2,...,m + n.
It suffices to show that then f(T)/g(T) = u(T)/v(T), because that implies that
N, = N for all s. But f(T(T) = g(Tu(T) exp(3Z (N, — N)T?/s) = g(T(T)
X eXp(Z X e 1(Ng — NOT?/s), and the equality of polynomials comes from
comparing coefficients of powers of T up to T™*".

Show that there are (g — 1)q? four-tuples with nonzero x5 and (g — 1)gq with zero
x3; then the zeta-function is (1 — qT)/(1 — ¢*T).

The zeta-function of the affine curve is listed first, followed by the zeta-function of its
projective completion:
() (1 = T = gT)y*; 141 - TYA - qT)*.
(i) (1 = TY*/(1 — qT)*; 1/(1 — qT)".
@iii) (1 — T)/(1 — qT) (unless p = 2, inwhich case it is 1/(1 — ¢gT));

(L= TX1 = qT).

(v) 1/(1 = qT); /(1 = T)(1 — qT).
) (1 =T/ - qT): 1/1 - qT).

(1 =TI = g1 = ¢*TY(1 — ¢*TX1 — ¢*T).

It suffices to show that for any prime p, the coefficients (which are a priori in Q) are
inz,.
P

Write the numerator in the form 1 + a, T + a, T? + a3 T> + ¢*T*. To show that
a, = a; = a; = 0, ie., that the zeta-function agrees with the zeta-function of the
projective line through the T3-term, it suffices to show that N, =¢* + 1 for
s =1, 2, 3. But since ¢° # 1 (mod 5) every element of F,. has a (unique) 5th root.
(This is the same procedure as in Exercise 8(i).)
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CHAPTER V §4
1. See the proof of the second proposition in §ITL.3.

2. Since &(T)= 3 aJ-Tj with ord,a, = j/(p — 1), we have OaX}'--- X3 =
e juw & X" with ord, g, 2 [v]/(Iwj(p — ). Set M = 1/(|w](p — 1)) then ord, g,
> M|u|.

3. Use induction on the number of nonzero a,’s; in case of difficulty. see Lang’s Algebra,
p. 209.

4. Make a change of variables x — x + x,, where x, € F, has nonzero trace.

5. For u # 0 make the change of variables x +» ux in Exercise 4.
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Convergence

conditional, 77

disc of, 77, 83, 84

of power series, 76-77

radius of, 76
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disc of convergence of. 84
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Dirac distribution, 33
Dirichlet L-functions, 29-30. 49-50, 136
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closed. 77
non-Archimedean, 6
open, 77
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Bernoulli, 34-35
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Dirac, 33
Haar, 32-33
Mazur, 33
Dwork, 113
Dwork’s lemma, 93-94, 97, 143

Eisenstein
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series, 50
Ellipse, 74. 139
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Entire function, 107
p-adic, 122
Euler
factor, 28, 43-44_ 50, 89
&-function, 56
product, 28. 29
Exponential function, p-adic, 79, 80-81,
83, 107
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fixed, 54

Galois group of, 54
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residue, 55. 65, 66. 69
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p-adic. 89-91, 96
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Katz, N. M., 50
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p-adic, 50
value at one, 50, 136
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Lipschitz condition, 41
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Mazur
distribution, 33
measure, 36, 44, 47
—Mellin transform, 4748
Mean Value Theorem, 85
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Mazur, 36, 44, 47
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Meromorphic function, p-adic, 122
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Archimedean, 3
equivalent, 3
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p-adic, 7, 8
space, 1
Mbobius function, 92
Modular forms, 50
p-adic, 50
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of logarithm, 100
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of power series, 98-100, 107-108,
143-144
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101
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