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To Professor Mark Kac 





Preface to the second edition 

The most important revisions in this edition are: (1) enlargement of the 
treatment of p-adic functions in Chapter IV to include the Iwasawa logarithm 
and the p-adic gamma-function, (2) rearrangement and addition of some 
exercises, (3) inclusion of an extensive appendix of answers and hints to the 
exercises, the absence of which from the first edition was apparently a source 
of considerable frustration for many readers, and (4) numerous corrections 
and clarifications, most of which were proposed by readers who took the 
trouble to write me. Some clarifications in Chapters IV and V were also 
suggested by V. V. Shokurov, the translator of the Russian edition. I am 
grateful to all of these readers for their assistance. I would especially like to 
thank Richard Bauer, who provided me with a systematic list of misprints 
and unclarities. 

I would also like to express my gratitude to the staff of Springer-Verlag 
for both the high quality of their production and the cooperative spirit with 
which they have worked with me on this book and on other projects over the 
past several years. 

Seattle, Washington N.l. K. 
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Preface to the first edition 

These lecture notes are intended as an introduction to p -adic analysis on the 
elementary level. For this reason they presuppose as little background as possi­
ble. Besides about three semesters of calculus, I presume some slight exposure to 
more abstract mathematics, to the extent that the student won't have an adverse 
reaction to matrices with entries in a field other than the real numbers, field 
extensions of the rational numbers, or the notion of a continuous map of topolog­
ical spaces. 

The purpose of this book is twofold: to develop some basic ideas of p-adic 
analysis, and to present two striking applications which, it is hoped, can be as 
effective pedagogically as they were historically in stimulating interest in the 
field. The first of these applications is presented in Chapter II, since it only 
requires the most elementary properties of QP; this is Mazur's construction by 
means of p-adic integration of the Kubota-Leopoldtp-adic zeta-function, which 
· 'p -adically interpolates'' the values of the Riemann zeta-function at the negative 
odd integers. My treatment is based on Mazur's Bourbaki notes (unpublished). 
The book then returns to the foundations of the subject, proving extension of the 
p -adic absolute value to algebraic extensions of QP, constructing the p -adic 
analogue of the complex numbers, and developing the theory of p-adic power 
series. The treatment highlights analogies and contrasts with the familiar con­
cepts and examples from calculus. The second main application, in Chapter V, is 
Dwork's proof of the rationality of the zeta-function of a system of equations 
over a finite field, one of the parts of the celebrated Wei) Conjectures. Here the 
presentation follows Serre's exposition in Seminaire Bourbaki. 

These notes have no pretension to being a thorough introduction to p-adic 
analysis. Such topics as the Hasse-Minkowski Theorem (which is in Chapter 1 
of Borevich and Shafarevich's Number Theory) and Tate's thesis (which is also 
available in textbook form, see Lang's Algebraic Number Theory) are omitted. 

IX 



Preface 

Moreover, there is no attempt to present results in their most general form. For 
example, p-adic L-functions corresponding to Dirichlet characters are only dis­
cussed parenthetically in Chapter II. The aim is to present a selection of material 
that can be digested by undergraduates or beginning graduate students in a 
one-term course. 

The exercises are for the most part not hard, and are important in order to 
convert a passive understanding to a real grasp of the material. The abundance of 
exercises will enable many students to study the subject on their own, with 
minimal guidance, testing themselves and solidifying their understanding by 
working the problems. 

p-adic analysis can be of interest to students for several reasons. First of all, in 
many areas of mathematical research-such as number theory and representation 
theory-p-adic techniques occupy an important place. More naively, for a stu­
dent who has just learned calculus, the "brave new world" of non-Archimedean 
analysis provides an amusing perspective on the world of classical analysis. 
p-adic analysis, with a foot in classical analysis and a foot in algebra and number 
theory, provides a valuable point of view for a student interested in any of those 
areas. 

I would like to thank Professors Mark Kac and Yu. I. Manin for their help 
and encouragement over the years, and for providing, through their teaching and 
writing, models of pedagogical insight which their students can try to emulate. 

Logical dependence of chapters 

Cambridge, Massachusetts N.l. K. 
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CHAPTER I 

p-adic numbers 

1. Basic concepts 
If X is a nonempty set, a distance, or metric, on X is a function d from pairs 
of elements (x, y) of X to the nonnegative real numbers such that 

(1) d(x, y) = 0 if and only if x = y. 
(2) d(x, y) = d(y, x). 
(3) d(x, y) ~ d(x, z) + d(z, y) for all z eX. 

A set X together with a metric dis called a metric space. The same set X can 
give rise to many different metric spaces (X, d), as we'll soon see. 

The sets X we'll be dealing with will mostly be fields. Recall that a field F 
is a set together with two operations + and · such that F is a commutative 
group under +, F - {0} is a commutative group under ·, and the distributive 
law holds. The examples of a field to have in mind at this point are the field 
iQ of rational numbers and the field IR of real numbers. 

The metrics d we'll be dealing with will come from norms on the field F, 
which means a map denoted II II from F to the nonnegative real numbers 
such that 

(1) llxll = 0 if and only if x = 0. 
(2) llx·yll = llxii·IIYII· 
(3) llx+ Yll ~ llxll +II Yll-

When we say that a metric d "comes from" (or "is induced by") a norm 
II 11. we mean that dis defined by: d(x,y) = llx- Yll· It is an easy exercise 
to check that such a d satisfies the definition of a metric whenever II II is a 
norm. 

A basic example of a norm on the rational number field Q is the absolute 
value lxl. The induced metric d(x, y) = lx - Yl is the usual concept of 
distance on the number line. 



I p-adic numbers 

My reason for starting with the abstract definition of distance is that the 
point of departure for our whole subject of study will be a new type of 
distance, which will satisfy Properties (1)-(3) in the definition of a metric 
but will differ fundamentally from the familiar intuitive notions. My reason 
for recalling the abstract definition of a field is that we'll soon need to be 
working not only with Q but with various "extension fields" which contain Q. 

2. Metrics on the rational numbers 
We know one metric on 10, that induced by the ordinary absolute value. Are 
there any others? The following is basic to everything that follows. 

Definition. Let p E {2, 3, 5, 7, 11, 13, ... } be any prime number. For any 
nonzero integer a, let ordP a be the highest power of p which divides a, i.e., 
the greatest m such that a = 0 (mod pm). (The notation a = b (mod c) 
means: c divides a - b.) For example, 

ord5 35 = 1, ord5 250 = 3, ord2 96 = 5, ord2 97 = 0. 

(If a = 0, we agree to write ordp 0 = oo.) Note that ordp behaves a little 
like a logarithm would: ordp(a1a2) = ordp a1 + ordp a2 • 

Now for any rational number x = afb, define ordP x to be ordp a -
ordP b. Note that this expression depends only on x, and not on a and b, 
i.e., if we write x = acfbc, we get the same value for ordp x = ordp ac -
ordp be. 

Further define a map I IP on Q as follows: 

{ or~"'' ifx =t= 0; 
lxiP = p • 

0, if X= 0. 

Proposition. I IP is a norm on C. 

PROOF. Properties (I) and (2) are easy to check as an exercise. We now verify 
(3). 

If x = 0 or y = 0, or if x + y = 0, Property (3) is trivial, so assume x, y, 
and x + y are all nonzero. Let x = afb and y = cfd be written in lowest 
terms. Then we have: x + y = (ad+ bc)fbd, and ordp(x + y) = 
ordp(ad + be) - ordp b - ordp d. Now the highest power of p dividing the 
sum of two numbers is at least the minimum of the highest power dividing 
the first and the highest power dividing the second. Hence 

ordp(x + y) :2!: min(ordp ad, ordp be) - ordP b - ordp d 
= min(ordP a + ordp d, ordp b + ordP c) - ordP b - ordp d 
= min( ordp a - ordp b, ordP c - ordP d) 
= min( ordp x, ordp y ). 

Therefore, jx + YIP = p-ord.<><+Y> :S max(p-ord•"',p-ord•Y) = max(jxjp, !YIP), 

and this is :S lxiP + !YIP· 0 

2 



2 Metrics on the rational numbers 

We actually proved a stronger inequality than Property (3), and it is this 
stronger inequality which leads to the basic definition of p-adic analysis. 

Definition. A norm is called non-Archimedean if !lx + Yll ~ max(!lx!l, !IY!i) 
always holds. A metric is called non-Archimedean if d(x, y) ~ 
max(d(x, z), d(z, y)); in particular, a metric is non-Archimedean if it is 
induced by a non-Archimedean norm, since in that case d(x, y) = 
!lx- Y!i = !l(x- z) + (z- y)!i ~ max(!lx- z!l, liz- y!i) = max(d(x, z), 
d(z,y)). 

Thus, I IP is a non-Archimedean norm on C. 
A norm (or metric) which is not non-Archimedean is called Archimedean. 

The ordinary absolute value is an Archimedean norm on C. 
In any metric space X we have the notion of a Cauchy sequence 

{a1o a2, a3 , .•• } of elements of X. This means that for any e there exists an 
N such that d(am, a,.) < e whenever both m > Nand n > N. 

We say two metrics d1 and d2 on a set X are equivalent if a sequence is 
Cauchy with respect to d1 if and only if it is Cauchy with respect to d2• We 
say two norms are equivalent if they induce equivalent metrics. 

In the definition of I IP, instead of (l/p)0 rdpx we could have written pordpx 

with any p E (0, 1) in place of 1/p. We would have obtained an equivalent 
non-Archimedean norm (see Exercises 5 and 6). The reason why p = 1/p is 
usually the most convenient choice is related to the formula in Exercise 18 
below. 

We also have a family of Archimedean norms which are equivalent to 
the usual absolute value I 1. namely I Ia when 0 < a ~ 1 (see Exercise 8). 

We sometimes let I I"" denote the usual absolute value. This is only a 
notational convention, and is not meant to imply any direct relationship 
between I I "" and I I P· 

By the "trivial" norm we mean the norm II II such that 11011 = 0 and 
!lx!l = 1 for x =F 0. 

Theorem 1 (Ostrowski). Every nontrivial norm II II on ill is equivalent to I IP 
for some prime p or for p = oo. 

PRooF. Case (i). Suppose there exists a positive integer n such that !In !I > 1. 
Let n0 be the least such n. Since !lno!l > 1, there exists a positive real number 
a such that !lno!l = n0a. Now write any positive integer n to the base n0, i.e., 
in the form 

Then 

!ln!l ~ !lao!l + !la1no!l + !la2no2 !1 + · · · + !la.no'!l 
= !lao!l + !la1!1 ·noa + lla2!1 ·no2a + .. · + !la.ll ·no•a. 

3 



I p-adic numbers 

Since all of the a1 are < n0 , by our choice of n0 we have lladl :::; 1, and hence 

llnll :S 1 + noa + no2a + · · · + no•a 
= no•a(l +no -a+ ni)2a + ... + no•a) 

:::; n{~ (lfn0ay], 

because n ~ n0•. The expression in brackets is a finite constant, which we 
call C. Thus, 

llnll :::; cna for all n = 1, 2, 3, .... 

Now take any n and any large N, and put nN in place of n in the above 
inequality; then take Nth roots. You get 

lin II :::; -tl cna. 

Letting N- oo for n fixed gives lin II :::; na. 
We can get the inequality the other way as follows. If n is written to the 

basen0 asbefore,wehaven~+ 1 > n ~ n0•.Sincelln~+ 1 ll =lin+ n~+l- nil :S 

llnll + lln~+ 1 - nil, we have 

llnll ~ lln~+ 1 ll - lln~+l- nil 
~ n~+l)a _ (n~+l _ n)a, 

since lln~+ 1 ll = llnoll•+l, and we can use the first inequality (i.e., llnll :S na) 
on the term that is being subtracted. Thus, 

lin II ~ n~+l>a - (n~+l - n0•)a (since n ;?;: n08) 

= n~+l)a[1- (1- ~or] 
;?;: C'na 

for some constant C' which may depend on n0 and a but not on n. As before, 
we now use this inequality for nN, take Nth roots, and let N- oo, finally 
getting: llnll ;?;: na. 

Thus, lin II = na. It easily follows from Property (2) of norms that llxll = 
I xi a for all x E Q. In view of Exercise 8 below, which says that such a norm is 
equivalent to the absolute value I 1. this concludes the proof of the theorem 
in Case (i). 

Case (ii). Suppose that llnll :::; 1 for all positive integers n. Let n0 be the 
least n such that lin II < 1; n0 exists because we have assumed that II II is 
nontrivial. 

n0 must be a prime, because if n0 = n1 · n2 with n1 and n2 both < n0, then 
lind= lln2ll = l,andsollnoll = lln1ll·lln211 = l.Soletpdenotetheprimeno. 

We claim that llqll = 1 if q is a prime not equal top. Suppose not; then 
llqll < 1, and for some large N we have llqNII = llqiiN < !. Also, for some 
large M we have IIPMII < t. Since pM and qN are relatively prime-have no 

4 



2 Metrics on the rational numbers 

common divisor other than 1-we can find (see Ecercise 10) integers nand m 
such that: mpM + nqN = l. But then 

1 = III II = llmpM + nqNII ~ llmpMII + llnqNII = llmiiiiPMII + llnll llqNII, 

by Properties (2) and (3) in the definition of a norm. But lim II, llnll ~ l, so 
that 

1 ~ IIPMII + llqNII < t + t = 1, 

a contradiction. Hence llqll = 1. 
We're now virtually done, since any positive integer a can be factored into 

prime divisors: a = P/1P2b2 • • • p,b,. Then llall = IIPdlb1 ·IIP2IIb2 • • ·IIPrllb•. 
But the only IIPtll which is not equal to 1 will be liP II if one of the pt's is p. Its 
corresponding ht will be ordp a. Hence, if we let p = liP II < 1, we have 

llall = pordPa. 

It is easy to see using Property (2) of a norm that the same formula holds with 
any nonzero rational number x in place of a. In view of Exercise 5 below, 
which says that such a norm is equivalent to I IP• this concludes the proof 
of Ostrowski's theorem. 0 

Our intuition about distance is based, of course, on the Archimedean 
metric I I,.,. Some properties of the non-Archimedean metrics I IP seem very 
strange at first, and take a while to get used to. Here are two examples. 

For any metric, Property (3): d(x, y) ~ d(x, z) + d(z, y) is known as 
the "triangle inequality," because in the case of the field C of complex 

numbers (with metric d(a +hi, c + di) =V(a- c)2 + (b- d)2) it says 
that in the complex plane the sum of two sides of a triangle is greater than 
the third side. (See the diagram.) 

z 

X 

y 

Let's see what happens with a non-Archimedean norm on a field F. For 
simplicity suppose z = 0. Then the non-Archimedean triangle inequality says: 
llx- Yll ~ max(llxll, IIYII). Suppose first that the "sides" x and y have 
different "length," say llxll < IIYII· The third side x- y has length 

llx- Yll ~ IIYII· 

But 

IIYII = llx- (x- Y)ll ~ max(llxll, llx- Yll). 

SinceiiYIIisnot~llxll,wemusthaveiiYII ~ llx-yll,andsoiiYII = llx-yll· 

5 



I p-adic numbers 

Thus, if our two sides x and y are not equal in length, the longer of the two 
must have the same length as the third side. Every "triangle" is isosceles! 

This really shouldn't be too surprising if we think what this says in the 
case of I lv on Q. It says that, if two rational numbers are divisible by 
different powers of p, then their difference is divisible precisely by the lower 
power of p (which is what it means to be the same "size" as the bigger of 
the two). 

This basic property of a non-Archimedean field-that llx ± Yll :::;; 
max(llxll. i!Y!I), with equality holding if llxll # !IY!I-will be referred to as 
the "isosceles triangle principle" from now on. 

As a second example, we define the (open) disc of radius r (r is a positive 
real number) with center a (a is an element in the field F) to be 

D(a, r-) = {xEF\IIx- all< r}. 

Suppose II II is a non-Archimedean norm. Let b be any element in D(a, r-). 
Then 

D(a, r-) = D(b, r-}, 

i.e., every point in the disc is a center! Why is this? Well 

x E D(a, r-) => 1\x - all < r 

=> llx - bll = il(x - a) + (a - b)ll 

:::;; max(\lx- all, !Ia- bll) 

< r 

=> X E D(b, r), 

and the reverse implication is proved in the exact same way. 
If we define the closed disc of radius r with center a to be 

D(a, r) = {xEF\IIx- all:::;; r}, 

for non-Archimedean II II we similarly find that every point in D(a, r) is a 
center. 

EXERCISES 

6 

1. For any norm II II on a field F, prove that addition, multiplication, and 
finding the additive and multiplicative inverses are continuous. This means 
that: (1) for any x, y E F and any e > 0, there exists 8 > 0 such that 
llx' - xll < 8 and IIY' - Yll < 8 imply ll(x' + y') - (x + y)ll < e; (2) the 
same statement with ll(x' + y') - (x + y)ll replaced by llx'y' - xyll; (3) for 
any nonzero x E Fand any e > 0, there exists S > 0 such that llx' - xll < 8 
implies 110/x') - (1/x)ll < e; (4) for any x E F and any e > 0, there exists 
8 > 0 such that llx' - xll < 8 implies I!( -x') - ( -x)ll < e. 

2. Prove that if II II is any norm on a field F, then II - 1 II = II 1 II = 1. Prove that 
if II II is non-Archimedean, then for any integer n: llnll :::;; 1. (Here "n" 
means the result of adding 1 + 1 + 1 + · · · + 1 together n times in the 
field F.) 



Exercises 

3. Prove that, conversely, if II II is a norm such that lin II :$.; 1 for every integer n, 
then II II is non-Archimedean. 

4. Prove that a norm II II on a field F is non-Archimedean if and only if 

{xeFIIIxll < 1} n{xeFIIIx- 111 < 1} = 0. 

5. Let II ll1 and II II• be two norms on a field F. Prove that II b "' II II• if and 
only if there exists a positive real number ex such that: llxb = llxll 2a for 
allxeF. 

6. Prove that, if 0 < p < 1, then the function on x E (]I defined as p0r 4P" if 
x :f:. 0 and 0 if x = 0, is a non-Archimedean norm. Note that by the previous 
problem it is equivalent to I IP· What happens if p = 1 ? What about if p > 1 ? 

7. Prove that I lp 1 is not equivalent to I I"• if p1 and P• are different primes. 

8. For x E (]I define llxll = lxla for a fixed positive number ex, where I I is the 
usual absolute value. Show that II II is a norm if and only if ex :$.; 1, and that 
in that case it is equivalent to the norm I 1. 

9. Prove that two equivalent norms on a field Fare either both non-Archimedean 
or both Archimedean. 

10. Prove that, if Nand M are relatively prime integers, then there exist integers 
nand m such that nN + mM = 1. 

11. Evaluate: 
(i) ord3 54 

(iv) ord7( -700/197) 
(vii) ord5(- 0.0625) 

(x) ord7( -13.23) 
(xiii) ord1a(- 26/169) 

(ii) ord2 128 
(v) ord2(128/7) 

(viii) ord3(109 ) 

(xi) ord5( -13.23) 
(xiv) ordloa( -1/309) 

(iii) ord3 57 
(vi) orda(7 /9) 
(ix) ord3( -13.23) 

(xii) ord11(- 13.23) 
(xv) orda(9 !) 

12. Prove that ordp((pN)!) = 1 + p + p 2 + ... + pN- 1. 

13. IfO :$.;a:$.; p- 1, prove that: ordp((apN)!) = a(l + p + p• + ... + pN-1). 

14. Prove that, if n = a0 + a1p + a2p2 + · · · + a,p' is written to the base p, 
so that 0 :$.; a1 :$.; p - 1, and if we set Sn = ~ a1 (the sum of the digits to the 
base p ), then we have the formula: 

n-S ordp(n!) = __ n. 
p- 1 

15. Evaluate Ia - blp, i.e., the p-adic distance between a and b, when: 

(i) a = 1, b = 26, p = 5 
(iii) a = 1, b = 26, p = 3 
(v) a = 1, b = 244, p = 3 

(vii) a= 1, b = 1/243,p = 3 
(ix) a = 1, b = 183,p = 7 
(xi) a= 1, b = 183,p = oo 

(xiii) a = (9 !)2f39, b = 0, p = 3 
(xv) a= 22N/(2N)!, b = O,p = 2. 

(ii) a = 1, b = 26, p = oo 
(iv) a= 1/9,b = -1/16,p = 5 
(vi) a= 1, b = 1/244,p = 3 

(viii) a= 1, b = 183,p = 13 
(x) a = 1, b = 183, p = 2 

(xii) a = 9 !, b = 0, p = 3 
(xiv) a = 22N/2N, b = 0, p = 2 

7 



I p-adic numbers 

16. Say in words what it means for a rational number x to satisfy JxJP :::; 1. 

17. For x e Q, prove that lim1-"' Jx1/i! JP = 0 if and only if: ordp x <! 1 when 
p 'f:. 2, ord2 x <! 2 when p = 2. 

18. Let x be a nonzero rational number. Prove that the product over all primes 
including oo of JxiP equals 1. (Notice that this "infinite product" actually 
only includes a finite number of terms that are not equal to 1.) Symbolically, 
np lxlp = 1. 

19. Prove that for any p ( 'f:. oo ), any sequence of integers has a subsequence which 
is Cauchy with respect to I lp· 

20. Prove that if x e Q and lxiP :::; 1 for every prime p, then x e ?L. 

3. Review of building up the complex 
numbers 

We now have a new concept of distance between two rational numbers: two 
rational numbers are considered to be close if their difference is divisible by 
a large power of a fixed prime p. In order to work with this so-called "p-adic 
metric" we must enlarge the rational number field Q in a way analogous 
to how the real numbers ~ and then the complex numbers C were constructed 
in the classical Archimedean metric I I· So let's review how this was done. 

Let's go back even farther, logically and historically, than IQ. Let's go back 
to the natural numbers N = {1, 2, 3, ... }. Every step in going from N to C 
can be analyzed in terms of a desire to do two things: 

(l) Solve polynomial equations. 
(2) Find limits of Cauchy sequences, i.e., "complete" the number system to 

one "without holes," in which every Cauchy sequence has a limit in 
the new number system. 

First of all, the integers 7L (including 0, - 1, -2, ... ) can be introduced as 
solutions of equations of the form 

a+ x = b, a, beN. 

Next, rational numbers can be introduced as solutions of equations of the 
form 

ax= b, a, be 71.. 

So far we haven't used any concept of distance. 
One of the possible ways to give a careful definition of the real numbers is 

to consider the set S of Cauchy sequences of rational numbers. Call two 
Cau.:hy sequences s1 = {a1} e Sand s2 = {b1} e S equivalent, and write s1 - s2 , 

if !a1 - b1! --+ 0 as j--+ oo. This is obviously an equivalence relation, that is, 
we have: (l) any s is equivalent to itself; (2) if s1 - s2, then s2 - s1; and 
(3) if s1 "' s2 and s2 ,..., sa, then s1 - sa. We then define ~ to be the set of 
equivalence classes of Cauchy sequences of rational numbers. It is not hard 
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3 Review of building up the complex numbers 

to define addition, multiplication, and finding additive and multiplicative 
inverses of equivalence classes of Cauchy sequences, and to show that IR is a 
field. Even though this definition seems rather abstract and cumbersome at 
first glance, it turns out that it gives no more nor less than the old-fashioned 
real number line, which is so easy to visualize. 

Something similar will happen when we work with I IP instead of I I: 
starting with an abstract definition of the p-adic completion of Q, we'll get a 
very down-to-earth number system, which we'll call O!P. 

Getting back to our historical survey, we've gotten as far as IR. Next, 
returning to the first method-solving equations-mathematicians decided 
that it would be a good idea to have numbers that could solve equations like 
x2 + 1 = 0. (This is taking things in logical order; historically speaking, 
the definition of the complex numbers came before the rigorous definition 
of the real numbers in terms of Cauchy sequences.) Then an amazing thing 

happened! As soon as i = v'=l was introduced and the field of complex 
numbers of the form a + bi, a, bE IR, was defined, it turned out that: 

(1) All polynomial equations with coefficients inC have solutions inC-this 
is the famous Fundamental Theorem of Algebra (the concise terminology 
is to say that C is algebraically closed); and 

(2) Cis already "complete" with respect to the (unique) norm which extends 

the norm I I on IR (this norm is given by Ia + bil = v' a2 + b2), i.e., any 
Cauchy sequence {a1 + bi} has a limit of the form a + bi (since {a1} and 
{b1} will each be Cauchy sequences in IR, you just let a and b be their 
limits). 

So the process stops with C, which is only a "quadratic extension" of IR 
(i.e., obtained by adjoining a solution of the quadratic equation x2 + 1 = 0). 
C is an algebraically closed field which is complete with respect to the Archime­
dean metric. 

But alas! Such is not to be the case with I I P· After getting O!p, the comple­
tion of 4J! with respect to I lp, we must then form an infinite sequence of 
field extensions obtained by adjoining solutions to higher degree (not just 
quadratic) equations. Even worse, the resulting algebraically closed field, 
which we denote QP, is not complete. So we take this already gigantic field 
and "fill in the holes" to get a still larger field n. 

What happens then? Do we now have to enlarge n to be able to solve 
polynomial equations with coefficients in n? Does this process continue on 
and on, in a frightening spiral of ever more far-fetched abstractions? Well, 
fortunately, with n the guardian angel of p-adic analysis intervenes, and it 
turns out that n is already algebraically closed, as well as complete, and our 
search for the non-Archimedean analogue of C is ended. 

But this n, which will be the convenient number system in which to study 
the p-adic analogy of calculus and analysis, is much less thoroughly 
understood than C. As I. M. Gel'fand has remarked, some of the simplest 
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questions, e.g., characterizing 01>-linear field automorphism& of n, remain 
unanswered. 

So let's begin our journey to n. 

4. The field of p-adic numbers 

For the rest of this chapter, we fix a prime number p t= oo. 
Let S be the set of sequences {a,} of rational numbers such that, given 

e > 0, there exists an N such that la1 - a1·lp < e if both i, i' > N. We call 
two such Cauchy sequences {a1} and {b1} equivalent if la1 - bdp ~ 0 as 
i ~ oo. We define the set QP to be the set of equivalence classes of Cauchy 
sequences. 

For any x E Q, let {x} denote the" constant" Cauchy sequence all of whose 
terms equal x. It is obvious that {x} "' {x'} if and only if x = x'. The equiva­
lence class of {0} is denoted simply 0. 

We define the norm I IP of an equivalence class a to be Iim1-oo lad~>• 
where {a1} is any representative of a. The limit exists because 

(1) If a= 0, then by definition Iim1 ... oo la1lp = 0. 
(2) If a t= 0, then for some e and for every N there exists an iN > N with 

la1NIP > e. 

If we choose N large enough so that la1 - a1·lp < e when i, i' > N, we have: 

la1 - a1NIP < e for all i > N. 

Since la1NIP > e, it follows by the "isosceles triangle principle" that lad~>= 
la1 NI~>· Thus, for all i > N, lad~> has the constant value la1NIP· This constant 
value is then lim1 ... oo ladp· 

One important difference with the process of completing Q to get IR should 
be noted. In going from Q to IR the possible values of I I = I I oo were 
enlarged to include all nonnegative real numbers. But in going from Q to QP 
the possible values of I IP remain the same, namely {pn}nez U {0}. 

Given two equivalence classes a and b of Cauchy sequences, we choose 
any representatives {a1} E a and {b1} E b, and define a·b to be the equivalence 
class represented by the Cauchy sequence {a1b1}. If we had chosen another 
{a/} E a and {b/} E b, we would have 

la/b/ - a;btlp = la/(b/ - b1) + b;(a/ - a,)IP 

::; max(la/(b;' - b1)IP• lht<a/ - a,)IP); 

as i ~ oo, the first expression approaches lalp· lim lb/ - bdP = 0, and the 
second expression approaches lblp·limla/ -ad~> = 0. Hence {a/b/}"' {a1b1}. 

We similarly define the sum of two equivalence classes of Cauchy se­
quences by choosing a Cauchy sequence in each class, defining addition 
term-by-term, and showing that the equivalence class of the sum only 
depends on the equivalence classes of the two summands. Additive inverses 
are also defined in the obvious way. 

10 



4 The field of p-adic numbers 

For multiplicative inverses we have to be a little careful because of the 
possibility of zero terms in a Cauchy sequence. However, it is easy to see that 
every Cauchy sequence is equivalent to one with no zero terms (for example, 
if a1 = 0, replace a1 by at' = p1). Then take the sequence {l/a1}. This sequence 
will be Cauchy unless la1111 - 0, i.e., unless {a1} - {0}. Moreover, if {llt} - {at'} 
and no a1 or a/ is zero, then {l/a1} - {1/a/} is easily proved. 

It is now easy to prove that the set 0 11 of equivalence classes of Cauchy 
sequences is a field with addition, multiplication, and inverses defined as 
above. For example, distributivity: Let {a1}, {b1}, {c1} be representatives of 
a, b, c E 0 11 ; then a(b + c) is the equivalence class of 

{at(b, + Ct)} = {a1b1 + a,ct}, 

and ab + ac is also the equivalence class of this sequence. 
Q can be identified with the sub field of 0 11 consisting of equivalence classes 

containing a constant Cauchy sequence. 
Finally, it is easy to prove that 0 11 is complete: if {a1}1 = 1 , 2 , ••• is a sequence 

of equivalence classes which is Cauchy in 0 11, and if we take representative 
Cauchy sequences of rational numbers {aii};= 1 , 2 , ... for each ai, where for 
eachj we have laii- aii'lp <p-i whenever i, i' 2=: Ni, then it is easily shown 
that the equivalence class of{aiN)i=l,z, ... is the limit of the ai. We leave the 
details to the reader. 

It's probably a good idea to go through one such tedious construction in 
any course or seminar, so as not to totally forget the axiomatic foundations 
on which everything rests. In this particular case, the abstract approach also 
gives us the chance to compare the p-adic construction with the construction 
of the reals, and see that the procedure is logically the same. However, after 
the following theorem, it would be wise to forget as rapidly as possible 
about "equivalence classes of Cauchy sequences," and to start thinking in 
more concrete terms. 

Theorem 2. Every equivalence class a in 0 11 for which lal 11 ::;; 1 has exactly one 
representative Cauchy sequence of the form {a1} for which: 

(1) 0 ::;; a1 < p 1 for i = 1, 2, 3, . . . . 

(2) a1 = a1+ 1 (modp1)for i = 1, 2, 3, .... 

PROOF. We first prove uniqueness. If {a/} is a different sequence satisfying (1) 
and (2), and if a10 "# a10', then a10 :¢ a10' (mod p1o ), because both are between 
0 and p'o. But then, for all i ~ i0 , we have a1 = a10 :¢ a10' = a/ (mod p'o ), 
i.e., a1 :¢ a/ (mod p1o). Thus 

la1 - a/1 11 > 1/p1o 

for all i ~ i0 , and {a1} ~ {a/}. 
So suppose we have a Cauchy sequence {b1}. We want to find an equivalent 

sequence {a1} satisfying (1) and (2). To do this we use a simple lemma. 
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Lemma. If x E Q and I xJ P :S I, then for any i there exists an integer a E 7L such 
that Ja- xJP :S p- 1• The integer a can be chosen in the set {0, I, 2, 3, ... , 
pi- I}. 

PROOF OF LEMMA. Let x = afb be written in lowest terms. Since JxiP :S I, 
it follows that p does not divide b, and h::nce b and i are relatively prime. So 
we can find integers m and n such that: mb + np1 = I. Let a = am. The idea 
is that mb differs from I by a p-adically small amount, so that m is a good 
approximation to 1/b, and so am is a good approximation to x = afb. More 
precisely, we have: 

Ja- xJP = Jam- (a/b)JP = JafbJP Jmb- IJP 

:S Jmb - IJP = JniJP = JnJP/P1 :S l/P1• 

Finally, we can add a multiple of p1 to the integer a to get an integer between 
0 and i for which Ja - xJP :S p-t still holds. The lemma is proved. D 

Returning to the proof of the theorem, we look at our sequence {ht}. and, 
for every j = I, 2, 3, ... , let N{j) be a natural number such that Jb1 - b1,Jp :S 

r' whenever i, i' ~ N(j). (We may take the sequence N(j) to be strictly 
increasing with}; in particular, N(j) ~}.)Notice that JbdP :S I if i ~ N(I), 
because for all i' ~ N(I) 

JbdP :S max(Jb;,Jp, lht - ht'IP) 

:S max(Jbt'lp, Ifp), 

and Jbt IP--+ JaJP :S I as i'--+ oo. 
We now use the lemma to find a sequence of integers a1, where 0 :S a1 < p1, 

such that 

I claim that {a,} is the required sequence. It remains to show that a1 + 1 = a1 

(mod p1) and that {b1} ,..., {a,}. 
The first assertion follows because 

Ja1 + 1 - a,JP = Ja1 + 1 - bN<i + 1> + bN<i + 1> - bNu> - (a1 - bNu>)lP 

:S max(Jai+1 - bNu+dp, JbNu+ 1>- bN<ilJP, Ja1 - bNu>lP) 
:S max(ljpi+l, I/p1, lfp') 

= Ifp'. 

The second assertion follows because, given any}, for i ~ N(j) we have 

Jat - htlp = Jat - a1 + a1 - bN<i> - (b1 - bN<il)JP 

:S max(Ja1 - a1Jp, Ja1 - bN<i>IP, Jbt - bN<J>lP) 
:S max(Ifp1, lfp', Ifp1) 

= !Jpf. 

Hence Ja1 - btJ 11 --+ 0 as i--+ oo. The theorem is proved. 
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4 The field of p-adic numbers 

What if our p-adic number a does not satisfy !alp ::::;; 1? Then we can 
multiply a by a power pm of p (namely, by the power of p which equals I alP), 
to get a p-adic number a' = apm which does satisfy la'IP ::::;; 1. Then a' is 
represented by a sequence {a/} as in the theorem, and a = a'p-m is repre­
sented by the sequence {a;} in which a1 = a;'p-m. 

It is now convenient to write all the a;' in the sequence for a' to the base p, 
i.e., 

where the b's are all" digits," i.e., integers in {0, I, ... , p - 1}. Our condition 
a/ = a;+ 1 (mod p1) precisely means that 

where the digits b0 through b1_ 1 are all the same as for a/. Thus, a' can be 
thought of intuitively as a number, written to the base p, which extends 
infinitely far to the right, i.e., we add a new digit each time we pass from a;' 
to a;+l· 

Our original a can then be thought of as a base p decimal number which 
has only finitely many digits "to the right of the decimal point" (i.e., corres­
ponding to negative powers of p, but actually written starting from the left) 
but has infinitely many digits for positive powers of p: 

bo b1 bm -1 b b b 2 
a = - + -- + · · · + -- + + 1P + 2P + · · · · pm pm - 1 p m m + m + 

Here for the time being the expression on the right is only shorthand for the 
sequence{a1}, wherea1 = b0p-m + · · · + b1 _ 1p~-l-m, that is, a convenient way 
of thinking of the sequence {a1} all at once. We'll soon see that this equality 
is in a precise sense "real" equality. This equality is called the "p-adic 
expansion" of a. 

We let ll.P = {a E QP llaiP ::::;; 1}. This is the set of all numbers in QP 
whose p-adic expansion involves no negative powers of p. An element of ll.P 
is called a "p-adic integer." (From now on, to avoid confusion, when we 
mean an old-fashioned integer in 71., we'll say "rational integer.") The sum, 
difference, and product of two elements of ll.p is in ll.p, so ll.p is what's called a 
"subring" of the field QP. 

If a, bE QP, we write a = b (mod pn) if Ia - hiP ::::;; p-n, or equivalently, 
(a - b)fpn E ll.p, i.e., if the first nonzero digit in the p-adic expansion of a - b 
occurs no sooner than the pn-place. If a and b are not only in QP but are 
actually in 71. (i.e., are rational integers), then this definition agrees with the 
earlier definition of a = b (mod c). 

Wedefinell.P x as{xE ll.P ll/xE 7L.P}, or equivalently as{x E 7L.P I x ~ O(modp)}, 
or equivalently as {x E 7L.P llxiP = 1}. A p-adic integer in 7L.P x-i.e., whose 
first digit is nonzero-is sometimes called a "p-adic unit." 
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Now let {b1h~ -m be any sequence of p-adic integers. Consider the sum 

S b_m b-m+1 b b b 2 b N 
N = - + --_- + ... + 0 + 1P + 2P + ... + NP • pm pm 1 

This sequence of partial sums is clearly Cauchy: if M > N, then ISN - SMIP 
< IfpN. It therefore converges to an element in lOP. As in the case of infinite 
series of real numbers, we define L:i= -m hti to be this limit in lOP. 

More generally, if {ct} is any sequence of p-adic numbers such that lc1IP ~ 0 
as i ~co, the sequence of partial sums SN = c1 + · c2 + · · · +eN converges to 
a limit, which we denote _Lj., 1 Ct. This is because: ISM - SNIP = 

lcN+1 + cN+2 + · · · + cMIP :s; max(icN+11P, lcN+21P, · · ·, lcMIP)which~ Oas 
N ~ co. Thus, p-adic infinite series are easier to check for convergence than 
infinite series of real numbers. A series converges in QP if and only if its terms 
approach zero. There is nothing like the harmonic series 1 + ! + t + ! + · · · 
of real numbers, which diverges even though its terms approach 0. Recall 
that the reason for this is that I IP of a sum is bounded by the maximum (not the 
sum) of the I IP of the summands when p =F co, i.e., when I IP is non­
Archimedean. 

Returning now to p-adic expansions, we see that the infinite series on the 
right in the definition of the p-adic expansion 

b0 b1 bm- 1 b b b 2 - + -- + .. · + -- + + +1P + +2P + .. · pm pm-1 p m m m 

(here bt E {0, I, 2, ... , p - I}) converges to a, and so the equality can be 
taken in the sense of the sum of an infinite series. 

Note that the uniqueness assertion in Theorem 2 is something we don't 
have in the Archimedean case. Namely, terminating decimals can also be 
represented by decimals with repeating 9s: I = 0.9999 · · ·. But if two p-adic 
expansions converge to the same number in lOP, then they are the same, i.e., 
all of their digits are the same. 

One final remark. Instead of {0, 1, 2, ... , p - 1} we could have chosen 
any other set S = {a0, al> a 2 , .•• , aP _ 1} of p-adic integers having the property 
that at = i (mod p) for i = 0, 1, 2, ... , p - 1, and could then have defined 
our p-adic expansion to be of the form L:i= -m b1pt, where now the" digits" b1 

are in the set S ;ather than in the set {0, 1, ... , p - 1}. For most purposes, 
the set {0, 1, ... , p - 1} is the most convenient. But there is another set S, 
the so-called "Teichmiiller representatives" (see Exercise 13 below), which 
is in some ways an even more natural choice. 

5. Arithmetic in lOP 

The mechanics of adding, subtracting, multiplying, and dividing p-adic 
numbers is very much like the corresponding operations on decimals which 
we learn to do in about the third grade. The only difference is that the 
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"carrying," "borrowing," "long multiplication," etc. go from left to right 
rather than right to left. Here are a few examples in 0 7 : 

3 + 6 X 7 + 2 X 72 + · · · 2 X 7- 1 + 0 X 7° + 3 X 71 + · · · 
X 4 + 5 X 7 + } X 72 + · · · - 4 X 7- 1 + 6 X 7° + 5 X 71 + · · · 

5 + 4 X 7 + 4 X 72 + · · · 5 X 7- 1 + 0 X 7° + 4 X 71 + · · · 
I X 7 + 4 X 72 + ... 

3 X 72 + · · · 
5 + 5 X 7 + 4 X 72 + · · · 

3 + 5 X 7 + I X 72 + ... I I + 2 X 7 + 4 X 72 + ... 
1 + 6 X 7 + 1 X 72 + · · · 

3x7+2x72 +··· 
3 X 7 + 5 X 72 + · · · 

4 X 72 + · · · 
4 X 72 '+ · · · 

As another example, let's try to extract v6 in 0 5, i.e., we want to find 
a 0, a1o a2 , ••• , 0 ~ a1 ~ 4, such that 

(a0 + a1 x 5 + a2 x 52 + · · · )2 = I + I x 5. 

Comparing coefficients of I = 5° on both sides gives a02 = I (mod 5), and 
hence a0 = 1 or 4. Let's take a0 = I. Then comparing coefficients of 5 on 
both sides gives 2a1 x 5 = I x 5 (mod 52), so that 2a1 = 1 (mod 5), and 
hence a1 = 3. At the next step we have: 

1 + I x 5 = (I + 3 x 5 + a2 x 52) 2 = I + I x 5 + 2a2 x 52 (mod 53). 

Hence 2a2 = 0 (mod 5), and a2 = 0. Proceeding in this way, we get a series 

a = I + 3 X 5 + 0 X 52 + 4 X 53 + a4 X 54 + as X 55 + ... 

where each a1 after a0 is uniquely determined. 
But remember that we had two choices for a0 , namely I and 4. What if we 

had chosen 4 instead of I? We would have gotten 

-a = 4 + I X 5 + 4 X 52 + 0 X 53 

+ (4 - a,) X 54 + (4 - as) X 56 + · · · . 

The fact that we had two choices for a0 , and then, once we chose a0 , only a 
single possibility for a1o a2, a3, ••• , merely reflects the fact that a nonzero 
element in a field like 0 or IR or OP always has exactly two square roots in the 
field if it has any. 

Do all numbers in 0 5 have square roots? We saw that 6 does, what about 
7? If we had 

(a0 + a1 x 5 + · · · )2 = 2 + I x 5, 
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it would follow that a0 2 = 2 (mod 5). But this is impossible, as we see by 
checking the possible values a0 = 0, 1, 2, 3, 4. For a more systematic look 
at square roots in QP, see Exercises 6-12. 

This method of solving the equation x2 - 6 = 0 in 0 5-by solving the 
congruence a0 2 - 6 = 0 (mod 5) and then solving for the remaining a1 in a 
step-by-step fashion-is actually quite general, as shown by the following 
important "lemma." 

Theorem 3 (Hensel's lemma). Let F(x) = c0 + c1x + · · · + cnxn be a poly­
nomial whose coefficients are p-adic integers. Let F'(x) = c1 + 2c2x + 
3c3x2 + · · · + ncnxn - 1 be the derivative of F(x). Let a0 be a p-adic integer 
such that F(a0 ) = 0 (mod p) and F'(a0 ) "¥= 0 (mod p). Then there exists a 
unique p-adic integer a such that 

F(a) = 0 and a = a0 (mod p). 

(Note: In the special case treated above, we had F(x) = x2 - 6, F'(x) = 
2x, a0 = 1.) 

PROOF OF HENSEL's LEMMA. I claim that there exists a unique sequence 
of rational integers ab a2 , a3, ... such that for all n ::=:: 1 : 

(1) F(an) = 0 (modpn+ 1). 

(2) an = an -1 (mod pn). 
(3) 0 ::; an < pn+1. 

We prove that such an exist and are unique by induction on n. 
If n = 1, first let ii0 be the unique integer in {0, 1, ... , p - 1} which is 

congruent to a0 mod p. Any a 1 satisfying (2) and (3) must be of the form 
ii0 + b1p, where 0 s b1 s p - 1. Now, looking at F(ii0 + b1p), we expand the 
polynomial, remembering that we only need congruence to 0 mod p 2 , so 
that any terms divisible by p 2 may be ignored: 

F(a1) = F(iio + b1p) = 2 C;(iio + b1p)1 

= 2 (c;ii01 + ic;a&- 1b1p + terms divisible by p 2) 

= 2 c;iio1 + (2 ic1ii&- 1 )b1p (mod p 2) 

= F(ii0 ) + F'(iio)b1P· 

(Note the similarity to the first order Taylor series approximation in calculus: 
F(x +h)= F(x) + F'(x)h +higher order terms.) Since F(a0 ) = O(modp) 
by assumption, we can write F(ii0 ) = ap (mod p 2) for some a E {0, 1, ... , p - 1}. 
So in order to get F(a1) = 0 (mod p 2) we must get ap + F'(ii0 )b1p = 0 
(mod p 2 ), i.e., a + F'(ii0 )b1 = 0 (mod p). But, since F'(a0 ) "¥= 0 (mod p) by 
assumption, this equation can always be solved for the unknown b1 • Namely, 
using the lemma in the proof of Theorem 2, we choose b1 E {0, I, ... , p - 1} 
so that b.1 = -a/F'(ii0 )(modp). Clearly this b1 E{0, l, ... ,p- 1} is 
uniquely determined by this condition. 
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Now, to proceed with the induction, suppose we already have a1o a2 , .•• , 

an-l· We want to find an. By (2) and (3), we need an= an-l + hnPn with 
hnE{O, 1, ... ,p- 1}. We expand F(an-l + hnpn) as we did before in the 
case n = 1, only this time we ignore terms divisible by pn + 1 • This gives us: 

F{an) = F(an-1 + hnp") = F(an- 1) + F'(an_ 1)hnp" (modp"+ 1). 

Since F(an _1) = 0 (mod p") by the induction assumption, we can write 
F(an_ 1) = a'p" (modp"+ 1), and our desired condition F(an) = 0 (modp"+ 1) 

now becomes 

a'p" + F'(an_ 1)hnp" = 0 (modp"+ 1), i.e., a'+ F'(an_ 1)hn = 0 (modp). 

Now, since an-l = a0 (modp), it easily follows that F'(an_ 1) = F'(a0 ) "¥= 0 
(mod p ), and we can find the required h" E {0, 1, ... , p - I} proceeding 
exactly as in the case of h1 , i.e., solving bn = -a'jF'(an_ 1) (modp). This 
completes the induction step, and hence the proof of the claim. 

The theorem follows immediately from the claim. We merely let a = 

ii0 + h1p + h2p2 + · · · .SinceforallnwehaveF(a) = F(an) = O(modp"+ 1), 

it follows that the p-adic number F(a) must be 0. Conversely, any a = ii0 + 
h1p + h2p2 + · · · gives a sequence of an as in the claim, and the uniqueness 
of that sequence implies the uniqueness of the a. Hensel's lemma is proved. D 

Hensel's lemma is often called the p-adic Newton's lemma because the 
approximation technique used to prove it is essentially the same as Newton's 

Figure 1.1. Newton's method in the real case 
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method for finding a real root of a polynomial equation with real coefficients. 
In Newton's method in the real case, (see Figure 1.1), iff'(an_ 1) '# 0, we take 

f(an-1) 
an= an-1 -f'( ). an-1 

The correction term -f(an_ 1)/f'(an_ 1) is a lot like the formula for the 
"correction term" in the proof of Hensel's lemma: 

b n- a'pn - F(an-1) ( d n+1) 
nP = - F'( ) = - F'( ) mo p . an-1 an-1 

In one respect the p-adic Newton's method (Hensel's lemma) is much 
better than Newton's method in the real case. In the p-adic case, it's guaranteed 
to converge to a root of the polynomial. In the real case, Newton's method 
usually converges, but not always. For example, if you take f(x) = x3 - x 
and make the unfortunate choice a0 = 1/VS, you get: 

a1 = 1/v5 - [1/5v5 - 1/vSJ/(3/5 - 1) 
= 1/v5[1 - (1/5 - 1)(3/5 - 1)] = -1/v5; 

a2 = 1/v5; a3 = -1/v5, etc. 

(See Figure 1.2.) Such perverse silliness is impossible in QP. 

Figure 1.2. Failure of Newton's method in the real case 
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Exercises 

EXERCISES 

1. If a E 0, has p-adic expansion a-mP-m + a-m+lP-m+l + · · · + a0 + 
a1p + · · ·, what is the p-adic expansion of -a? 

2. Find the p-adic expansion of: 

(i) (6 + 4 X 7 + 2 X 72 + 1 X 73 + · · • )(3 + 0 X 7 + 0 X 72 + 6 X 73 + · · ·) 
in 07 to 4 digits 

(ii) 1/(3 + 2 x 5 + 3 x 52 + 1 x 53 + ···)in 0 5 to 4 digits 
(iii) 9 X 1 }2 - (3 X 11 -l + 2 + 1 X 1 }l + 3 X 1 }2 + · · ·) in 0 11 tO 4 

digits 
(iv) 2/3 in 02 

(vii) -9/16in013 
(x) 1/3! in 03 

(v) -1/6 in 07 
(viii) 1/1000 in 0 5 

(xi) 1/4! in 02 

(vi) 1/10 in Ou 
(ix) 6! in 03 

(xii) 1/5! in Os 

3. Prove that the p-adic expansion of a E 0, terminates (i.e., a1 = 0 for all i 
greater than some N) if and only if a is a positive rational number whose 
denominator is a power of p. 

4. Prove that the p-adic expansion of a E 0, has repeating digits from some point 
on (i.e., a1 +, = a1 for some r and for all i greater than some N) if and only 
if a E 0. 

5. What is the cardinality of "Zv? Prove your answer. 

6. Prove the following generalization of Hensel's lemma: Let F(x) be a poly­
nomial with coefficients in Z,. If a0 E Z, satisfies F'(a0) = 0 (mod pM) but 
F'(a0 ) $ 0 (mod pM + 1 ), and if F(a0 ) = 0 (mod p 2M + 1 ), then there is a unique 
a E Z, such that F(a) = 0 and a = a0 (mod pM + 1). 

7. Use your proof in Exercise 6 to find a square root of -7 in 0 2 to 5 digits. 

8. Which of the following 11-adic numbers have square roots in 0 11 ? 

(i) 5 (ii) 7 (iii) -7 
(iv) 5 + 3 X 11 + 9 X 11 2 + 1 X 11 3 
(v) 3 x 11- 2 + 6 x 11- 1 + 3 + 0 x 11 + 7 x 11 2 

(vi) 3 X 11 -l + 6 + 3 X 11 + 0 X 11 2 + 7 X 113 
(vii) 1 x 1 F (viii) 7 - 6 x 1 P 
(ix) 5 X 11- 2 + 2:=on x 11n. 

9. Compute ±J=l in (11 5 and ±FJ in 0 7 to 4 digits. 

10. For which p = 2, 3, 5, 7, 11, 13, 17, 19 does -1 have a square root in 0,.? 

II. Let p be any prime besides 2. Suppose ex E 0, and lex!, = 1. Describe a test 
for whether ex has a square root in 0,. What about if lex!,. ;f. 1? Prove that 
there exist four numbers cx1, cx2, cx3, cx4, E 0,. such that for all nonzero ex E 0, 
exactly one of the numbers cx1cx, cx2cx, cx3cx, cx4cx has a square root. (In the case 
when p is replaced by oo and 0, by Ill, there are two numbers, for example 
± 1 will do, such that for every nonzero ex E Ill exactly one of the numbers 
I ·ex and - 1 ·ex has a square root in Ill.) 

12. The same as Exercise II when p = 2, except that now there will be eight 
numbers cx1o •.• , cx8 E 0 2 such that for all nonzero ex E 0 2 exactly one of the 
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I p-adic numbers 

numbers o:ro:, ... , o:ao: has a square root in iQ 2 • Find such o:h ... , o:8 (the 
choice of them is not unique, of course). 

13. Find all4 fourth roots of 1 in iQ 5 to four digits. Prove that iQP always contains 
p solutions Go, G 1 , •.• , Gp-1 to the equation xP - x = 0, where G1 = i (mod p). 
These p numbers are called the" Teichmtiller representatives" of {0, I, 2, ... , 
p - I} and are sometimes used as a set of p-adic digits instead of 
{0, 1,2, ... ,p- 1}. 

14. Prove the following "Eisenstein irreducibility criterion" for a polynomial 
f(x) = Go + G1X + · · · + GnXn with coefficients G1 E ?Lp: If G1 = 0 (mod p) for 
i = 0, I, 2, ... , n- I, if Gn ¢0 (modp), and if Go¢ 0 (modp2), then f(x) 
is irreducible over iiJp, i.e., it cannot be written as a product of two lower 
degree polynomials with coefficients in iQP. 

15. If p > 2, use Exercise 14 to show that 1 has no pth root other than 1 in iQP. 

16. Prove that the infinite sum I + p + p 2 + p 3 + · · · converges to 1/(1 - p) in 
iQP. What about I - p + p 2 - p 3 + p 4 - p 5 + · · · ? What about I + 
(p - l)p + p2 + (p - l)p3 + p4 + (p - 1)p5 + ... ? 

17. Show that (a) every element x E ?LP has a unique expansion of the form x = a0 + 
a 1(- p) + a 2(- p)2 + · .. + a.(- p)" + .. ·,with ai E {0, I, ... , p - I}, and (b) this 
expansion terminates if and only if x E ?L. 

18. Suppose that n is a (positive or negative) integer not divisible by p, and let 
o: = 1 (mod p). Show that o: has an nth root in Qp. Give a counter-example 
if n = p. Show that o: has a pth root if o: = I (mod p 2 ) and p of. 2. 

19. Let o: E ?Lp. Prove that o:PM = o:PM- 1 (mod pM) for M = I, 2, 3, 4, .... Prove 
that the sequence {o:PM} approaches a limit in iQP, and that this limit is the 
Teichmtiller representative congruent too: mod p. 

20. Prove that ?LP is sequentially compact, i.e., every sequence of p-adic integers 
has a convergent subsequence. 

21. Define matrices with entries in Qp, their sums, products, and determinants 
exactly as in the case of the reals. Let M = {r x r matrices with entries in ?Lp}, 
let M x = {A E M I A has an inverse in M} (it's not hard to see that this is 
equivalent to: det A E ?LP x ), and let pM = {A EM I A = pB with BE M}. 
If A E Mx and BE pM, prove that there exists a unique X E Mx such that: 
X 2 - AX+ B = 0. 
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CHAPTER II 

p-adic interpolation of the Riemann 
zeta-function 

This chapter is logically independent of the following chapters, and is pre­
sented at this point in the middle of our ascent to n as a plateau in the level 
of abstraction-namely, everything in this chapter still takes place in the 
fields IQ, Ov, and IR. 

The Riemann {-function is defined as a function of real numbers greater 
than I by 

"' I 
{(s) = ~ -· 

def n~ n• 

It is easy to see (by comparison with the integral J; (dxfx') = If(s - I) for 
fixed s > I) that this sum converges when s > I. 

Let p be any prime number. The purpose of this chapter is to show that 
the numbers {(2k) fork = I, 2, 3, ... have a "p-adic continuity property." 
More precisely, consider the set of numbers 

c (2k - I)' 
f(2k) = (1 - p 2"- 1) 1T:1c {(2k), where c" = ( -1)1< 22~c 1 • • 

as 2k runs through all positive even integers in the same congruence class 
mod(p- I). It turns out thatf(2k) is always a rational number. Moreover, 
if two such values of 2k are close p-adically (i.e., their difference is divisible 
by a high power of p), then we shall see that the corresponding/(2k) are also 
p-adically close. (We must also assume that 2k is not divisible by p - 1.) 
This means that the function/can be extended in a unique way from integers 
to p-adic integers so that the resulting function is a continuous function of a 
p-adic variable with values in Ov· ("Continuous function" means, as in the 
real case, that whenever a sequence of p-adic integers {xn} approaches x 
p-adically, {f(xn)} approachesf(x) p-adically.) 
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II p-adic interpolation of the Riemann zeta-function 

This is what is meant by p-adic "interpolation." The process is analogous 
to the classical procedure for, say, defining the function f(x) = ax (where a 
is a fixed positive real number): first define f(x) for fractional x; then prove 
that nearby fractional values of x give nearby values of ax; and, finally, 
define ax for x irrational to be the limit of ax• for any sequence of rational 
numbers Xn which approach x. 

Notice that a function/ on the set S of, for example, positive even integers 
can be extended in at most one way to a continuous function on lLfJ (assume 
p :f. 2). This is because S is "dense" in 1Lr>-any x E 7Lr> can be written as a 
limit of positive even integers Xn. Iff is to be continuous, we must have 
f(x) = limn- oo f(xn). In the real case, while the rational numbers are dense 
in IR, the set S is not. It makes no sense to talk of "the" continuous real­
valued function which interpolates a function on the positive even integers; 
there are always infinitely many such functions. (However, there might be a 
unique real-valued continuous interpolating function which has additional 
convenient properties: for example, the gamma-function f(x + I) inter­
polates k! when x = k is a nonnegative integer, it satisfies f(x + I) = xf(x) 
for all real x, and its logarithm is a convex function for x > 0; the gamma­
function is uniquely characterizl!d by these properties.) 

1. A formula for '(2k) 

The kth Bernoulli number Bk is defined as k! times the kth coefficient in the 
Taylor series for 

00 

def L Bktkjk!. 
k=O 

The first few Bk are: 

Bo =I, B1 = -1/2, B2 = 1/6, B3 = 0, 

B4 = -1/30, B5 = 0, B6 = 1/42, .... 

We now derive the formula: 

((2k) = (-1)kn2k- 22k-!- (-B2k2k) fork= 1,2,3, .... 
(2k- 1)! 

Recall the definition of the "hyperbolic sine," abbreviated sinh (and 
pronounced "sinch "): 

. ex-e-x 
smh x = · 

2 
It is equal to its Taylor series 

. xa xs x2k+ 1 

smh x = x + 3 ! + 5 ! + ... + (2k + 1)! + . . . ' 
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1 A formula for '(2k) 

obtained by averaging the series for ex and -e-x. Note that this Taylor 
series is the same as that for sin x, except without the alternation of sign. 

Proposition. For all real numbers x, the infinite product 

wx 0 (I + ~:) 
converges and equals sinh(7rx). 

PROOF. Convergence of the infinite product is immediate from the logarithm 
test: 

i llog(I + x:)l :::; i x: < oo for all x. 
n=1 n n=1n 

We start by deriving the infinite product for sin x. 

Lemma. Let n = 2k + I be a positive odd integer. Then we can write 

sin(nx) = P,. (sin x) 

cos(nx) = cos x Q,._ 1 (sin x) 

where P,. (respectively Q,. _1) is a polynomial of degree at most n (respectively 
n - I) with integer coefficients. 

PROOF OF LEMMA. We use induction on k. The lemma is trivial for k = 0 
(i.e., n = I). Suppose it holds fork - 1. Then 

sin[(2k + I)x] = sin[(2k - 1)x + 2x] 

= sin(2k - 1 )x cos 2x + cos(2k - 1 )x sin 2x 

= P21c -1 (sin x)(l - 2 sin2 x) 

+ cos xQ2~c_ 2 (sin x)2 sin x cos x, 

which is of the required form P2~c+ 1 (sin x). The proof that cos(2k + l)x = 

cos x Q2~c (sin x) is completely similar, and will be left to the reader. 0 

We now return to the proof of the proposition. Notice that, if we set 
x = 0 in sin nx = P,. (sin x), we find that P,. has constant term zero. Next, 
we take the derivative with respect to x of both sides of sin nx = P,. (sin x): 

n cos nx = P,.'(sin x) cos x. 

Setting x = 0 here gives: n = P,.'(O), i.e., the first coefficient of P,. is n. Thus, 
we may write: 

sm nx - . 
--.- = P2k(sm x) = I + a1 sin x + a2 sin2 x + · · · 
n sm x 

(n = 2k + 1), 

where the a; are rational numbers. Note that for x = ± (7Tjn), ... , ± (k7Tjn), 
the left-hand side vanishes. But the 2k values y = ± sin(7T/n), ± sin(27T/n), ... , 

23 



II p-adic interpolation of the Riemann zeta-function 

± sin(br/n) are distinct numbers at which the polynomial P2k(y) vanishes. 
Since P2 k has degree 2k and constant term I, we must have: 

Pzk(y) = ( 1 - si;~/n)( 1 - -si~1r/n)( 1 - sini1r/n)( 1 - -si:21rjn) 

· ·· ( 1 - sin~1r/n)( 1 - -si:k1rjn) 

- I- . k ( y2 ) - Q sin2 m/n 

Thus 

sin nx - . nk ( sin2 X ) 
-.- = p2k(sm x) = l - si·n2 r-/n . 
n Sin X r=l " 

Replacing x by 1rxjn gives: 

sin 1rx = rl (r _ sin2(1rxjn)). 
n sin(1rxjn) r=l sin2(1rrjn) 

Now take the limit of both sides as n = 2k + l-+ oo. The left-hand side 
approaches (sin 1rX)j1rx. For r small relative ton the rth term in the product 
approaches I - ((1rxjn)/(1Trjn))2 = l - (x2fr 2). It then follows that the 
product converges to r1~ 1 (l - (x2/r 2)). (The rigorous justification is 
straightforward, and will be left as an exercise below.) 

We conclude: 

n (r - ~) = sin(1TX) = I - 1T2X2 + 1T4X4 - 1T6X6 + 1T8X8 - ... 
n=l n2 1TX 3! 5! 7! 9! ' 

using the Taylor series for sine. But 

sinh(1rx) 
1TX 

If we multiply out the infinite product for sin(1rx)/(1rx), we get a minus sign 
precisely in those terms having an odd number of x2/n 2 terms, i.e., precisely 
for the terms in the Taylor series for sin(1rx)/{1rX) having a minus sign. Thus, 
changing the sign in the infinite product has the effect of changing all of the 
- 's to + 's on the right, and we have the desired product expansion of the 
proposition. (For a "better" way of thinking of this last step, see Exercise 3 
below.) D 

We are now ready to prove: 

Theorem 4. 
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1 A formula for ~(2k) 

PROOF. First take the logarithm of both sides of 

sinh(1rx) = 1TX n (I + ~:) 
(for x > 0). On the left we get 

log sinh(1rx) = log[(e"x - e-"x)/2] = log[(e"x/2){1 - e- 2"x)] 

= log(! - e- 2"x) + 1TX - log 2. 

On the right we get (for 0 < x < I) 

a) 00 00 2k 

log1r+logx+ L log(l+x2/n2)=log1T+logx+ L L (-J)k+ 1 \~c' 
n = 1 n = 1 Jc = 1 kn 

by the Taylor series for log(l + x). Since this double series is absolutely 
convergent for 0 < x < I, we can interchange the order of summation and 
obtain the equality: 

log(l - e- 2"x) + 1rX- log 2 = log 1r + log x + i [< -J)k+ 1 x2
" i ~] 

Jc=1 k n=1n 

00 2Jc 
= log1r + logx + L (-J)k+ 1 xk {(2k). 

Jc=1 

We now take the derivative of both sides with respect to x. On the right 
we may differentiate term-by-term, since the resulting series is uniformly 
convergent in 0 < x < 1 - e for any e > 0. Thus, 

21Te- 2nx I oo 

1 2nx + 1T =- + 2 L (-J)k+1x2k-1{(2k). 
- e x k=1 

Multiplying through by x and then substituting x/2 for x gives: 

1TX 1TX_I ~(-J)k+ 1{(2k) 2" 
1tX - 1 + 2 - + L. 22k 1 X . e k=1 

The left-hand side gives: (1rx)j2 + Lk'=o B~c(1Tx)kjk!. Comparing coefficients 
of even powers of x gives: 1T2kB2~c/(2k)! = (( -J)k+ 1/22"- 1){(2k), which gives 
us the theorem. D 

As examples, we have 

The arrangement of the formula for {(2k) in the statement of Theorem 4 
was deliberate. We think of the (- B2~c/2k) as the "interesting" part, and the 
( -1)"1T2k22k-lj(2k- I)! as a nuisance factor. It is the interesting part that 
we end up interpolating p-adically. Some justification for taking ( -B2~c/2k) 
rather than the whole mess will be given later (§7). For now, let's remark that 
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II p-adic interpolation of the Riemann zeta-function 

at least the 7T2 k factor has to be discarded when we interpolate the values 
p-adically, since transcendental real numbers cannot be considered p-adically 
in any reasonable way. (What could "p-adic ordinal" mean for them?) 

2. p-adic interpolation of the 
function f(s) = as 

This section will eventually play a role in the subsequent logical development. 
It is included at this time as a "dry run" in order to motivate certain features 
of the later p-adic interpolation which may otherwise seem somewhat 
idiosyncratic. 

As mentioned before, if a is a fixed positive real number, the function 
.f(s) = a' is defined as a continuous function of a real variable by first defining 
it on the set of rational numbers s, and then "interpolating" or "extending 
by continuity" to real numbers, each of which can be written as the limit of 
a sequence of rational numbers. 

Now suppose that a = n is a fixed positive integer. Consider n as an 
element in Ov· For every nonnegative integer s, the integer n' belongs to lLv. 
Now the nonnegative integers are dense in lLv in the same way as Q is dense 
in IR. In other words, every p-adic integer is the limit of a sequence of non­
negative integers (for example, the partial sums in its p-adic expansion). So 
we might try to extend.f(s) = n' by continuity from nonnegative integers s to 
all p-adic integers s. 

To do this, we must ask if n' and n'' are close whenever the two non­
negative integers s and s' are close, for example, when s' = s + pN for some 
large N. A couple of examples show that this is not always the case: 

(1) n = p, s = 0: In' - n''lv = II - pvNiv = I no matter what N is. 
(2) I < n < p: by Fermat's Little Theorem (see §Ill. I, especially the first 

paragraph of the proof of Theorem 9), we have n = nv (mod p), and so 
n = nP = nP2 = nv3 = · · · = nvN(modp);hencen'- n•+vN = n'(I- nvN) 
= n'(l - n) (modp); thus In'- n''IP = I no matter what N is. 

But the situation is not as bad as these examples make it seem. Let's 
choose n so that n = I (modp), say n = I + mp. Let Js'- slv ~ IfpN, so 
that s' = s + s"pN for some s" ElL. Then we have (say s' > s) 

In'- n''lp = Jn'lvii- n•'-slv =II- n•'-slp =II- (1 + mp)s•pNlv· 

But expanding 

(l + mp)'"vN = I + (s"pN)mp + s"pN(s"pN - I) (mp)2 + ... + (mp)•"vN 
2 

shows that each term in I - (l + mp )•"vN has at least pN + 1 . Thus, 

In'- n''l < IPN+11 =_I_, 
P - P pN+l 

In other words, if s' - sis divisible by pN, then n' - n'' is divisible by pN + 1 . 

Thus, if n = I (mod p), it makes sense to define .f(s) = n' for any p-adic 
integers to be the p-adic integer which is the limit of n'' as s1 runs through any 
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2 p-adic interpolation of the function f(s) = a• 

sequence of nonnegative integers which approach s (for example, the partial 
sums of the p-adic expansion of s). Then f(s) is a continuous function 
from lLP to lLP. 

We can do a little better-allowing any n not divisible by p-if we're 
willing to insist that sands' be congruent modulo (p - I), as well as modulo 
a high power of p. That is, we fix some s0 E {0, I, 2, 3, ... , p - 2}, and, 
instead of considering n' for all nonnegative integers s, we consider n' for all 
nonnegative integers s congruent to our fixed s0 modulo (p - I). Letting 
s = s0 + (p- I)s1 , we are looking at n•o+<P- 1Js, for s1 any nonnegative 
integer. We can do this because then 

and for every n not divisible by p we have nP - 1 = I (mod p ). Thus, we are in 
the situation of the last paragraph with nP- 1 in place of n and s1 in place of 
s (and a constant factor n'o thrown in). 

Another way of expressing this function is as follows. Let S,0 be the set of 
nonnegative integers congruent to s0 mod (p - I). S,0 is a dense subset of lLP 
(Exercise 7 below). The function f: S,0 -+ lLP defined by f(s) = n• can be 
extended by continuity to a function f: lLP-+ lLP. Notice that the function f 
depends on s0 as well as on n. 

If n = 0 (mod p), we are out of luck. This is because n'•-+ 0 p-adically for 
any increasing sequence of nonnegative integers. And if s E 7Lp is not itself a 
nonnegative integer, any sequence of nonnegative integers which approach s 
p-adically must include arbitrarily large integers. It follows that the zero 
function is the only possible candidate for n•, and that's absurd. 

One final remark: the above discussion applies word-for-word to the 
function I/n' (Exercise 8 below). 

Now let's look at the Riemann zeta-function 

"' I 
~(s) = L 8 (s > I). 

n=1 n 

The naive way to try to interpolate ~(s) p-adically would be to interpolate 
each term individually and then add the result. This won't work, because 
even the terms which can be interpolated-those for which pfn-form an 
infinite sum which diverges in lLP. However, let's forget that for a moment 
and look at the terms one-by-one. 

The first thing we'll want to do is get rid of the terms Ijn• with n divisible 
by p. We do this as follows: 

"' I "' I "' I 
~(s) = 'L .. + 'L --. = 'L - + 

n=1,pfn n n=l,pln n n=l,pfn n• p•n• 
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II p-adic interpolation of the Riemann zeta-function 

It is this last sum 

'*(s) = " - = 1 - - '(s) oo 1 ( 1) 
del n=fPin n' p' 

which we will be dealing with later. This process is known as "taking out 
the p-Euler factor." The reason is that '(s) has a famous expansion (see 
Exercise 1 below) 

'(s) = n 
primes q 1 - (Ijq') 

The factor 1/[1 - (Ijq')] corresponding to the prime q is called the "q-Euler 
factor." Thus, multiplying '(s) by [I - (ljp')] amounts to removing the 
p-Euler factor: 

'*(s) = n 
primes q '# p 1 - (ljq'). 

The second thing we'll want to do when interpolating '(s) is fix s0 E 

{0, I, 2, ... , p - 2} and only let s vary over nonnegative integers s E S,0 = 

fs Is= So (modp- I)}. 
It will turn out that the numbers (- B2"/2k) arrived at in §1, when multi­

plied by (l - p 2"- 1 ), can be interpolated for 2k E S2, 0 (2s0 E {0, 2, 4, ... , p - 3}). 
Note that we are not multiplying by [I - (Ijp 2")], as you might expect, but 
rather by the Euler term with 2k replaced by 1 - 2k: 1 - (Ijp 1 - 2") = 
1 - p 2 " - 1 • The reason why this replacement 2k ._. 1 - 2k is natural will be 
discussed in §7. (We'll see that the "interesting factor" -B2"j2k in '(2k) 
actually equals W - 2k); '(x) and W - x) are connected by a "functional 
equation.") 

More precisely, we will show that, if 2k, 2k' E s2ko (where 2ko E {2, 4, ... ' 
p - 3}; there's a slight complication when k0 = 0), and if k = k' (mod pN), 
then (see §6) 

(1- p2"- 1)(-B2k/2k) = (1- p2k'- 1)(-B2k,j2k')(modpN+ 1). 

These congruences were first discovered by Kummer a century ago, but their 
interpretation in terms of p-adic interpolation of the Riemann '-function was 
only discovered in 1964 by Kubota and Leopoldt. 

EXERCISES 

1. Prove that 

1 
'(s) = n •) for s > 1. 

prlmesq (1 - q 

2. Prove that 

n" (1 - sin2(7Tx/n)/ sin2(11r/n)) 
----:-:-'--::'--c:::--'----'--"- -->- 1 

r= 1 (1 - x 2 /r 2 ) 
as n = 2k + 1 -->- (fj. 
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Exercises 

3. Use the relationship e'x = cos x + i sin x for e to a complex power to show 
that sinh x = - i sin ix. Give another argument for how the infinite product 
for sinh x follows from the infinite product for sin x. 

4. Prove that Bk = 0 if k is an odd number greater than 1. 

5. Use the formula for ~(2k), along with Stirling's asymptotic formula n! 
v21Tn n"e-n (where - means that the ratio of the two sides --*1 as n--* <Xl) to 
find an asymptotic estimate for the usual Archimedean absolute value of B2 k. 

6. Use the discussion of n' in §2 to compute the following through the p 4-place: 

(i) 1P1601 in I(Ji 5 (ii) V1/10 in I(JI 3 (iii) ( -6)2 +4· 7 + 3 ' 72 + 7 "+··· in I(Ji 7 • 

7. Prove that for any fixed s0 E {0, 1, ... , p - 2), the set of nonnegative integers 
congruent to so modulo (p - 1) is dense in 7l.p, i.e., any number in 7l.p can be 
approximated by such numbers. 

8. What happens to the discussion in §2 if we take n E 7l.p instead of taking n to 
be a positive integer? What happens if we replace the function f(s) = n' by 
f(s) = 1/n'? Note that this is the same as replacing "nonnegative integer" by 
"non positive integer" when defining the dense subset of 7l.v from which we 
extend f 

9. Let x be the function on the positive integers defined by: 

{ 
1, ifn = 1 (mod4); 

x(n) = -1, ifn = 3(mod4); 

0, if2ln. 

Define Lx(s) .lee :D~'= 1 (x(n)/n') = 1 - (1/3') + (1/5') - (1/7') + · · · . Prove 

that L,(s) converges absolutely if s > 1 and conditionally if s > 0. Find 
L,(l). Find an Euler product for Lx(s) and for L,*(s) d~ Ln "1.vtn (x(n)/n'). (It 

turns out that there is a formula similar to Theorem 4 for Lx(2k + 1) (i.e., for 
positive odd rather than even integers) with Bn replaced by 

1 • • • te1 te31 ( - t ') Bx,n = n. times the coefficient oft" m - 4- 1--1 - -4-~--1 = t + e-t .) 
def e - e - e 

Note: Exercise 9 is a special case of the following situation. Let N be a 
positive integer. Let (71./ N7l.) x be the multiplicative group of integers prime 
to N modulo N. Let x: (71./ N7l.) x --* C x be a group homomorphism from 
(71./ N7l.) x to the multiplicative group of nonzero complex numbers. (It is easy 
to see that the image of x can only contain roots of 1 in C.) Suppose that x is 
"primitive," which means that there is no M dividing N, 1 ~ M < N, such 
that the value of x on elements of (71./ N7l.) x only depends on their value 
modulo M. Consider x as a function on all positive inte~ers n by Jetting 
x(n) equal x(n modulo N) if n is prime to Nand x(n) = 0 if n and N have a 
common factor greater than 1. x is called a "character of conductor N." 

Now define 

L (s) = ~ x(n). 
X def n.fl ns 
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It can then be shown that a formula similar to Theorem 4 holds with Bn 
replaced by 

N-1 (a)teat 
Bx.n = n! times the coefficient oft" in L ~· 

def a=le -1 

The formula gives L, of even integers if x(- 1) = 1 and L, of odd integers if 
x( -1) = - 1. (See lwasawa, Lectures on p-adic L-functions.) 

In addition, we have the formula 

"' x(n) {- T~) Nf X(a) log sin Q7r, if x( -1) = I; 
L.{l) = L- = a=l N 

n=l n 7TiT(X) N-1-
f:i2 a~1 x(a)·a, ifx(-1) = -1, 

where the bar over X denotes the complex conjugate character: x(a) d~r x(a), 

and where 
N-1 

T(X) = L x(a)e2nta/N 
def a= 1 

(this is known as a" Gauss sum"). (For a proof, see Borevich and Shafarevich, 
Number Theory, p. 332-336.) 

10. Use the formula for L.(l) in the above note to check the value for L.(l) in 
Exercise 9 and to prove that: 

1111111 I I 1 
(a) I - 2 + 4 - 5 + 7 - 8 + 10 - TI + · · · + 3k + 1 - 3k + 2 + ... 

II II I 1 I I I 1 I ----+-+-----+-+-----+-+ ... 
3 5 7 9 11 13 15 17 19 21 23 

log(l + v2) 
v2 

3. p-adic distributions 

The metric space Qv has a "basis of open sets" consisting of all sets of the 
form a+ pN?LP = {x E QP llx- alP :::; (ljpN)} for a E QP and NEll. This 
means that any open subset of QP is a union of open subsets of this type. 
We shall sometimes abbreviate a + pN?LP as a + (pN), and in this chapter 
we shall call a set of this type an "interval" (in other contexts we often call 
such a set a "disc"). Notice that all intervals are closed as well as open, 
since the complement of a + (pN) is the union over all a' E QP such that 
a' ¢ a + (pN) of the open sets a' + (pN). 

Recall that 7LP is sequentially compact: every sequence of p-adic integers 
has a convergent subsequence (see Exercise 19 of §1.5). The same is easily 
seen to be true for any interval or finite union of intervals. In a metric space X, 
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3 p-adic distributions 

the property of sequential compactness of a set S c X is equivalent to the 
following property, called "compactness": every time S is contained in a 
union of sets, it is contained in a union of finitely many of those open sets 
("every open covering has a finite subcovering "). (See Simmons, Introduction 
to Topology and Modern Analysis, §24, for this equivalence; this book is also 
a good standard reference for other concepts from general topology.) It then 
follows (see Exercise I below) that an open subset of Ov is compact if and 
only if it is a finite union of intervals. It is this type of open set, which we call 
a "compact-open," that repeatedly occurs in this section. 

Definition. Let X and Y be two topological spaces. A map f: X-+ Y is 
called locally constant if every point x E X has a neighborhood U such 
that/( U) is a single element of Y. 

It is trivial to see that a locally constant function is continuous. 
The concept of a locally constant function is not very useful in classical 

situations, because there usually aren't any, except for constants. This is the 
case whenever X is connected, for example IR or C. 

But for us X will be a compact-open subset of Ov (usually 7l.p or 7l.p x = 
{x E 7l.p I lxlp = !}). Then X has many nontrivial locally constant functions. 
In fact,/: X-+ Ov is locally constant precisely when/is a finite linear com­
bination of characteristic functions of compact-open sets (see Exercise 4 
below). 

Locally constant functions play the same role for p-adic X that step­
functions play when X = IR in defining integrals by means of Riemann 
sums. 

Now let X be a compact-open subset of Qp, such as ll.v or ll.v x. 

Definition. A p-adic distribution /1. on X is a Qp-linear vector space homo­
morphism from the Ov-vector space of locally constant functions on X to 
QP. Iff: X-+ QP is locally constant, instead of writing 11.(/) for the value 
of /1. at/, we usually write Jf/1.· 

Equivalent definition (see Exercise 4 below). A p-adic distribution /1. on X is 
an additive map from the set of compact-opens in X to Ov; this means that 
if U c X is the disjoint union of compact-open sets U1 , U2 , ••. , Un, then 

By "equivalent definition," we mean that any /1. in the second sense 
"extends" uniquely to a /1. in the first sense, and any /1. in the first sense 
"restricts" to a /1. in the second sense. More precisely, if we have a distribution 
/1. in the sense of the first definition, we get a distribution (also denoted /1.) in 
the sense of the second definition by letting 

11-C U) = J (characteristic function of U)/1., 
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for every compact-open U. If we have a distribution p. in the sense of the 
second definition, we get a distribution in the sense of the first definition by 
first letting 

J (characteristic function of U)p. = p.( U), 

and then defining ffp. for locally constant/by writingfas a linear combina­
tion of characteristic functions. 

Proposition. El•ery map p. from the set of intervals contained in X to Ov for 
which 

p-1 

p.(a + (pN)) = L p.(a + bpN + (pN+1)) 
b=O 

whenever a + (pN) c X, extends uniquely to a p-adic distribution on X. 

PROOF. Every compact-open U c X can be written as a finite disjoint union 
of intervals: U = U J, (see Exercise 1). We then define p.(U) dcl- 2: p.(l;). 

(This is the only possible value of p.( U) if p. is to be additive.) To check that 
p.( U) does not depend on the partitioning of U into intervals, we first note 
that any two partitions U = U I, and U = U I,' of U into a disjoint union of 
intervals have a common subpartition ("finer" than both) which is of the 
form I, = U, It" where, if I, = a + (pN), then the It;s run through all 
intervals a' + (pN') for some fixed N' > N and for variable a' which are 
=a (mod pN). Then, by repeated application of the equality in the statement 
of the proposition, we have: 

pN'-N -1 

p.(I,) = p.(a + (pN)) = L p.(a + jpN + (pN')) = L p.(I,i). 
J = 0 j 

Hence 2:, p.(I,) = 2:,,i p.(I"). Thus, 2:, p.(J,) = 2:, p.(J;'), because both sides equal 
the sum over the common subpartition. It is now clear that p. is additive. 
Namely, if U is a disjoint union of U, we write each U, as a disjoint union of 
intervals 11,, so that U = Ut,j I,i, and 

We now give some simple examples of p-adic distributions. 

(I) The Haar distribution ILHaar· Define 

I 
ILHaar(a + (pN)) .M pN' 

This extends to a distribution on 1Lv by the proposition, since 

p-1 p-1 1 1 L /LHaar{a + bpN + (pN+1)) = L pN+1 = N 
b=O b=O p 
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Exercises 

This is the unique distribution (up to a constant multiple) which is "transla­
tion invariant," meaning that for all a E 7LP we have /LHaar(a + U) = /LHaar( U), 
where a + U ~~ {x E 1Lv I x - a E U}. 

(2) The Dirac distribution !La concentrated at a E 7LP (a is fixed). Define 

( U) = { 1, if a E U; 
!La def 0, otherwise. 

It is trivial to check that !La is additive. Note that J fiLa = f(a) for locally 
constant! 

(3) The Mazur distribution /LMazur· First, without loss of generality, when 
we write a + (pN) we may assume that a is a rational integer between 0 and 
pN - 1. Assuming this, we define 

/LMazur(a + (pN)) dcl ;N - ~· 

We postpone the verification that !LMazur has the additivity property in the 
proposition, since this will come as a special case of a more general result in 
the next section. 

Notice one important difference between the distributions !LHaar and 
!LMazur and classical measures. In these two p-adic examples, as the interval 
being measured "shrinks" (i.e., as N-+ ro), its measure in terms of J.L 

increases as a number in Ov, namely: 

IJ.LHaar(a + (pN))iv =))NIP =pN; 
and, if pta (and if N > 1 in the case p = 2), then 

IJ.LMazur(a + (pN))iv = I:N- ~~P =pN· 
We'll deal with this peculiarity later. 

EXERCISES 

1. Give a direct proof that 7lv is compact (i.e., that any open covering of 7lp has a 
finite subcovering). Then prove that an open set in 7lp is compact if and only if 
it can be written as a finite disjoint union of intervals. Note that any interval 
can be written as a disjoint union of p "equally long" subintervals: a + (pn) = 

ug;; 6 a + bpn + (pn + 1). Prove that any partition of an interval into a disjoint 
union of subintervals can be obtained by applying this process a finite number 
of times. 

2. Give an example of a noncompact open subset of 7lp. 

3. Let U be an open subset of a topological space X. Show that the characteristic 
function f: X--+ 7l defined by 

{
1, ifxEU; 

f(x) = 0, otherwise, 
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is locally constant if X = 1lv and U is a compact-open but is not locally 
constant for any open set U if X = IR (unless U is IR itself or the empty set). 

4. Let X be a compact-open subset of Ov· Show that f: X->- Ov is locally constant 
if and only if it is a finite linear combination with coefficients in Ov of charac­
teristic functions of compact-opens in X. Then prove that the two definitions 
of a distribution on X are equivalent. 

5. If a E Ov, Ia lv = 1, show that /LHaar(aU) = /LHaar( U) for all compact-open U, 
where aU denotes {ax lx E U}. 

6. Let f: 1lv->- Ov be the locally constant function defined by: f(x) = the first 
digit in the p-adic expansion of x. Find J ffL when: (I) fL = the Dirac distribu­
tion fLa; (2) fL = /LHaar; (3) fL = /LMazur· 

7. Let fL be the function of intervals a + (pN) which is defined as follows ([ ] = 

greatest integer function): 

{
P- [<N +lll 2 l, if the first [N/2] digits in a corresponding to odd 

fL(a + (pN)) = powers of p vanish; 
0, otherwise. 

Prove that fL extends to a distribution on 1lv· 

8. Discuss how one could go about making up examples of p-adic distributions fL 

on 1lv with various growth rates(i.e., rates of growth of maxo,. a <vN ifL(a + (pN))fv 
as N increases). 

4. Bernoulli distributions 

We first define the Bernoulli polynomials Bk(x). Consider the function in 
two variables t and x 

/e:_t = ( 2: Bk ~~) ( 2: (xtt)· 
e I k=o k. k=o k. 

In this product, we collect the terms with tk, obtaining for each k a poly­
nomial in x, and we define Bk(x) to be k! times this polynomial: 

text oo tk 

et- I= k,fo Bk(x) k!. 

The first few Bernoulli polynomials are: 

B0(x) = I, 

B3(x) = x3 - fx 2 + -!x, . ... 

Throughout this section, when we write a + (pN) we will assume that 
0 :::::: a ::::; pN - I. Fix a nonnegative integer k. We define a map fLa,k on 
intervals a + (pN) by 
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4 Bernoulli distributions 

Proposition. /LB.k extends to a distribution on 7LP (called the "kth Bernoulli 
distribution"). 

PROOF. By the proposition in §3, we must show that 

p-1 

fLB.k(a + (pN)) = 2 fLB.k(a + bpN + (pN + 1 )). 

b=O 

The right-hand side equals 

p-1 ( b N) P<N+1l<k-1l " B a+ 'P 
L_. k pN+1 ' 

b=O 

so, multiplying by p-N<k- 1) and setting a= ajpN+l, we must show that 

The right-hand side is, by the definition of B~c(x), equal to k! times the coeffi­
cient of tk in 

p-1 te<a+b/p)t pk-1teat p-1 pk-lteat et _ 1 
pk- 1 " = " ebtlp = . , 

b~ et - I e1 - I b~ e1 - I e11P - I 

by summing the geometric progression :z:g;;; ~ ebtfp. This expression equals 

pk(tjp)e<Pa)tfp - k ~ (t/p)f 
tip I - p L. BJ(pa) -.,-• 

e - J=o 1· 

again by the definition of B/x). Hence, k! times the coefficient of tk is simply 

as desired. 0 

The first few B~c(x) give us the following distributions: 

fLB.o(a + (pN)) = P-N, i.e., /LB.o = 11-Haar; 

fLB.1(a + (pN)) = B1 (;N) = :N - ~' i.e., 11-B.l = 11-Mazur; 

fLB 2(a + (pN)) = pN(~ - .E._ + !) • . p2N PN 6 

and so on. 
It can be shown that the Bernoulli polynomials are the only polynomials 

(up to a constant multiple) that can be used to define distributions in this way. 
We shall not need this fact, and so will not prove it. But it should be noticed 
that the Bernoulli polynomials B~c(x) have appeared in an important and 
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unique role in p-adic integration. This will turn out to be related to the 
appearance of the Bernoulli numbers Bk (which are the constant terms in 
the Bk(x); see Exercise I below) in the formula for n2k). 

5. Measures and integration 

Definition. A p-adic distribution fL on X is a measure if its values on compact­
open U c X are bounded by some constant BE IR, i.e., 

ifL(U)Iv :::; B for all compact-open U c X. 

The Dirac distribution fia for fixed a E 7l.v is a measure, but none of the 
Bernoulli distributions are measures. There is a standard method, called 
"regularization," for turning Bernoulli distributions into measures. We first 
introduce some notation. If a E 7l.v, we let { a}N be the rational integer between 
0 and pN - I which is = a (mod pN). If fL is a distribution and a E Ov, we let 
afi denote the distribution whose value on any compact-open is a times the 
value of fL: (af.L)(U) = a·(fL(U)). Finally, if U c Ov is a compact-open set 
and a E Ov, a =f. 0, we let aU d~r {x E Ov I xja E U}. It is trivial to check that the 
sum of two distributions (or measures) is a distribution (resp. measure), any 
scalar multiple afi of a distribution (or measure) fL is a distribution (resp. 
measure), and, if a E 7l.v x and if fL is a distribution (or measure) on 7l.m then 
the function fi' defined by fL'(U) = fL(aU) is a distribution (resp. measure) 
on 7l.v. 

Now let a be any rational integer not equal to I and not divisible by p. 
Let fia.k.a-or, more briefly, fik.a-be the "regularized" Bernoulli distribution 
on 7l.v defined by 

fik.a(U) d~ fLB.k(U) - a-kfia,iaU). 

We will soon show that fik.a is a measure. In any case, it's clearly a distribu­
tion by the remarks in the last paragraph. 

We easily compute an explicit formula when k = 0 or I. For k = 0, 
fia.o = fLHaan and it is easy to see that fLo.aC U) = 0 for all U (see Exercise 5 of 
§3). If k = I, we have 

fit (a + (pN)) = !!.._ _ ! _ !({aa}N _ !) 
,a PN 2 a PN 2 

= (!fa) - I + !!.._ _ !(aa _ raal) 
2 PN a PN PN 

(where [ ] means the greatest integer function) 

= ![aal + (Ija) - 1. 
a PN 2 

Proposition. lfL1 ,a(V)Iv :::; I for all compact-open U c 7l.v. 

PRooF. Notice that(a- 1 - 1)/2 E 7l.v, since I fa E 7l.v and 1/2 E 7l.v unlessp = 2. 
If p = 2, then a- 1 - 1 = 0 (mod 2), and we're still OK. Since [aafpN] E 71., 
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5 Measures and integration 

it follows by the above formula that f.L 1 ,a(a + (pN)) E 7L". Then, since every 
compact-open U is a finite disjoint union of intervals ft. we may conclude that 

lf-L1,a(U)I" :::::; max lf-L1,a(/t)IP :::::; 1. 0 

Thus, f.LI,a is a measure-the first interesting example of a p-adic measure 
that we've come across. In fact, we'll soon see that f.LI,a plays a fundamental 
role in p-adic integration, almost as fundamental as the role played by "dx" 
in real integration. 

We next prove a key congruence that relates f.Lk,a to f.L 1 ,a. The proof of 
this congruence at first looks unpleasantly computational, but it becomes 
more transparent if we think of an analogous situation in real calculus. 

Suppose that in taking integrals such as J f(.ijx)dx we want to make the 
change of variables x r-+ xk, i.e., to evaluate J f(x)d(xk). The simple rule is: 
d(xk)jdx = kxk- 1 • Actually, d(xk) can be thought of as a "measure" f.Lk on 
the real number line, which is defined by letting f.Lk([a, b]) = bk- ak; then 
fl-1 is the usual concept of length. The relation d(xk)jdx = kxk - 1 actually 
means 

I. f.Lk([a, b]) k k-1 1m = a 
b-a f.L1([a, b]) 

Thus, in the Riemann sums 2.f(x1)f.Lk(It) in the limit as the It's all become 
smaller we may replace f.Lk(/1) by kxk- 1 fl-1 (/1) and get J f(x)kxk - 1 dx. 

The actual proof that limb-a f.Lk([a, b ])ff.L 1([a, b]) = kak - 1 uses the binomial 
expansion for (a + h)k (where h = b - a)-actually, only the first two terms 
ak + khak - 1 really matter. Similarly, in the p-adic case, when we show that 
f.Lk,a(I) "'kak- 1f.L 1 ,a(l) if I is a small interval containing a, we also use the 
binomial expansion. Thus, Theorem 5 should be thought of as analogous to 
the theorem that (djdx)(xk) = kxk- 1 from real calculus. (Forget about the dk 
on both sides of the congruence in Theorem 5; all it means is that, when we 
divide both sides by dk, we must replace pN by pN- ord•d", where ordP dk is just 
a constant which doesn't matter for large N.) 

Theorem 5. Let dk be the least common denominator of the coefficients of Bix). 
Thus: d1 = 2, d2 = 6, d3 = 2, etc. Then 

dkf.Lk.aCa + (i")) = dkkak - 1f.L1,a(a + (pN)) (mod pN). 

PROOF. By Exercise I below, the polynomial Bk(x) starts out 

k k-1 k k k-1 B0 x + kB1x + · · · = x - -x + · · · 
2 

Now 

dkf.Lk,a(a + (pN)) = dkpN<k- 1l(Bk(;N)- a-kBke;JN))· 

The polynomial dkBk(x) has integral coefficients and degree k. Hence we 
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need only consider the leading two terms d~cx" - d~c(k/2)x" - 1 of d~cB~c(x), 
since our x has denominator pN, so that the denominators in the lower terms 
of d~cB~c(x) will be canceled by pN<~<- 1 > with at leastpN left over. We also note 
that 

and 

{aa}N aa [PaaN] y = PN - ([ ] = greatest integer function). 

Hence 

dlcfLic,a(a + (pN)) := dlcpN<Ic-l)(;:lc -- a-lc({;JN)" 

k( ~c- 1 -k N<l<-1>(aa [aa])"-1)) --a -a p ---
2 PN PN 

= d~cka"-1(U;~] + Ifa 2- 1) 
= d~cka" - 1p.1,a(a + (pN)). D 

Corollary.fLI<,aisameasurefora/lk = 1,2,3, ... andanyaE7l.,af/=p7l.,a i= 1. 

PROOF. We must show that fL~c.ia + (pN)) is bounded. But by Theorem 5, 

ifL~c,a(a + (pN))iP ~ max ( ~~:1 P' ika"- 11-Ll,a(a + (pN))IP) 

~ max( ~~J / ll-'-1.ia + (pN))iP) · 

D 

What is the purpose of going to all this fuss to modify ("regularize") 
Bernoulli distributions to get measures? The answer is that for an unbounded 
distribution p., J fp. is defined by definition as long as f is locally constant, 
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but you run into problems if you try to use limits of Riemann sums to extend 
integration to continuous functions f 

For example, let p. = P.Haan and take the simple function/: 1Lv--+ 1Lv given 
by f(x) = x. Let's form the Riemann sums. Given a function/, for any N we 
divide Up 7LP intO u~: (/ (a + (pN)), We Jet Xa,N be an arbitrary point in the 
ath interval, and we define the Nth Riemann sum off corresponding to 
{xa,N} as 

pN -1 

SN,<xa,Nl(f) cW- ,2 f(xa,N)p.(a + (pN)). 
a=O 

In our example, this sum equals 

pN -1 I 
"" X -· a4:o a,N PN 

For example, if we simply choose Xa,N = a, we obtain 

- pH- 1 - (pN - I )(pN) PN - I 
p N 2: Q = p N = ---· 

a=O 2 2 

This sum has a limit in Ov as N--+ oo, namely -I/2. But if, instead of Xa,N = 

a E a + (pN), we change one of the Xa,N to a + a0 pN E a + (pN) for each N, 
where a0 is some fixed p-adic integer, we then obtain 

rNC~: a+ GoPN) = PN; I +Go, 

whose limit is a0 - !. Thus, the Riemann sums do not have a limit which is 
independent of the choice of points in the intervals. 

A "measure" p. is not much good, and has no right to be called a measure, 
if you can't integrate continuous functions with respect to it. (This is a slight 
exaggeration-see Exercises 8-10 below.) Now we show that bounded 
distributions earn their name of" measure". 

Recall that X is a compact-open subset of Ov, such as 1Lv or 1Lv •. (For 
simplicity, let X c 1Lv.) 

Theorem 6. Let p. be a p-adic measure on X, and let f: X--+ Ov be a continuous 
function. Then the Riemann sums 

SN,{xa,Nl d~ ,2 f(xa,N)p.(a + (pN)) 
0 !!>;a< pH 

a+(pN)cX 

(where the sum is taken over all a for which a + (pN) c X, and Xa,N is 
chosen in a + (pN)) converge to a limit in Ov as N--+ oo which does not 
depend on the choice of {xa.N}. 

PROOF. Suppose that p.(U) ::; B for all compact-open U c X. We first 
estimate for M > N 
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By writing X as a finite union of intervals, we can choose N large enough so 
that every a + (pN) is either c X or disjoint from X. We rewrite SN,<xa,Nl as 
follows, using the additivity of /L: 

2 f(xti.N)/L(a + (pM)) 
O:Sa<pM 

a+ (pM) c X 

(where ii denotes the least nonnegative residue of a mod pN). We further 
assume that N is large enough so that lf{x) - f(y)jP < e whenever x = y 
(mod pN). (Note that continuity implies uniform continuity, since X 1s 
compact; this is an easy exercise, or else see Simmons' book.) Then 

ISN,(xa,Nl - SM,<xa,MliP = I 2 (f(Xa,N) - J(xa,M))f.L(a + (pM))I 
o::s;a<pM P 

a+(pM)cX 

:$ max(jf(xa,N) - f(xa,M)IP·If.L(a + (pM))jP) 

:$ eB, 

since Xa,N = Xa,M (mod pN). Since e is arbitrary and B is fixed, the Riemann 
sums have a limit. 

It follows similarly that this limit is independent of {xa.N}. Namely, 

ISN.<xa,Nl - SN,(x'a,N>IP = I 2 (f(xa,N) - J(x~.N))/L(a + (pN))I 
0 :s: a< pN p 

a+(pN)cX 

:$ maxa(lf(xa,N)- f(x~.I·;)IP·If.L(a + (pN))IP) 

:$ eB. 0 

Definition. Iff: X--* QP is a continuous function and /Lis a measure on X, we 
define J fiL to be the limit of the Riemann sums, the existence of which was 
just proved. (Note that, if /is locally constant, this definition agrees with 
the earlier meaning of J ff.L.) 

The following simple but important facts follow immediately from this 
definition. 

Proposition. Iff: X--* QP is a continuous function such that lf(x)IP :$ A for all 
x E X, and if /L( U) :$ B for all compact-open U c X, then 

Corollary. iff, g: X--* QP are two continuous functions such that lf(x) - g(x)lp 
:$ e for all x E X, and if /L( U) :$ B for all compact-open U c X, then 
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Exercises 

EXERCISES 

1. Show that Bk(x) = L~=o (DBtxk-t, and, in particular, Bk(O) = Bk. Further 
show that 

rl {1 if k = 0, 
• 0 

Bk(x) dx = 0 otherwise, 
and that 

2. Prove that no distribution J.L (except for the identically zero distribution) has 
the property that 

max IJ.L(a + (pN))!P-+ 0 as N-+ oo. 
O.sa<pN 

4. Prove that a p-adic distribution J.L is a measure if and only if for some a E ZP 
the distribution a· J.L takes values in ZP. Prove that the set of measures on X 
is a Op-vector space. 

5. Express /"k,a(ZP) and /"k,a(ZP x) in terms of a and k. Find f 7lp x f /"l,a if f(x) = 

Lr=() atX1• 

6. Letp be an odd prime. For any a = 0, 1, ... , pn - 1, let Sa denote the sum of 
the p-adic digits in a. Show that J.L(a + (pn)) = (- 1 )8 • gives a measure on Z.p, 
and that f fJ.L = 0 for any odd function f (i.e., for which/(- x) = - f(x)). 

7. Letp > 2,/(x) = 1/x, and a = 1 + p. Prove that h" x f /"l,a = -1 (mod p). 

8. A distribution J.L on X is called "boundedly increasing" if max0 "' a< PN 
lPN J.L(a + (pN))!P -+ 0 as N-+ oo, i.e., J.L "increases strictly slower than /"Haar·" 

Prove that Theorem 6 holds for J.L if we assume that f: X-+ (JIP satisfies the 
Lipschitz condition: there exists an A E IR such that for all x, y E X 

lf(x)- f(y)IP :5 Alx- YIP· 

(This concept was introduced by Manin and applied by him to p-adic inter­
polation of certain Heeke series.) 

9. Let J.L be the distribution defined in Exercise 7 of §3. Check that J.L is boundedly 
increasing. Let f: Z.P-+ ZP be the function f(x) = x. Evaluate f fJ.L, which we 
know is well defined by the previous problem. 

10. Let r be a positive real number. A function/: Zp -+ (JIP is called (by Mazur) 
"of type r" if there exists A E IR such that for all x, x' E ZP we have 

1/(x) - /(x') IP :5 A ix - x' 1/. 

Note that any such function is continuous. If r ~ 1, then f is Lipschitz (see 
Exercise 8). Now let J.L be a p-adic distribution on ZP such that for some 
positive s E IR 

p-ns max IJ.L(a +(pN))Ip-+0 asN-+oo. 
0 Sa< PN 

Prove the analogue of Theorem 6 for such a J.L and functions of type r when­
ever r ~ s. 
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II p-adic interpolation of the Riemann zeta-function 

6. The p-adic '-function as a Mellin-Mazur 
transform 

If X is a compact-open subset of 7Lp, any measure !L on 7Lp can be restricted to 
X. This means we define a measure !L* on X by setting !L*(U) = !L(U) when­
ever U is a compact-open in X. In terms of integrating functions, we have 

I f~L* =I I (characteristic function of X)/L· 

We shall use the notation fxf!L for this restricted integral JJIL*· 
We said that what we want to interpolate is - Bkjk. We have the simple 

relationship 

I I . !LB,k = !LB,k(7Lp) = Bk 

(see Exercise 3 of §5). Hence we want to interpolate the numbers 
-(l/k) J J/LB,k• 

For different k are the distributions !LB,k related to each other in any 
straightforward way? Not quite, but the regularized measure !Lk,a is related 
to /L 1 ,a by Theorem 5. More precisely, we have the following corollary of 
Theorems 5 and 6: 

Proposition. Let f: 7LP ___,.. 7LP be the function f(x) = xk - 1 (k a fixed positive 
integer). Let X be a compact-open subset of 7LP. Then 

fx 1/Lk,a = k fx f!L1,a· 

PROOF. By Theorem 5, we have 

/Lk,a(a + (pN)) = kak-1/L1,a(a + (pN)) (modpN-ordPdk). 

Now, assuming that N is large enough so that X is a union of intervals of the 
form a + (pN), we have 

f 1/Lk,a = 
X 

L /Lk.aCa + (pN)) 
0 ::;a< pN 

a+(pN)c:X 

L kak-1/LJ,a(a + (pN)) (modpN-ordPdk) 
0 !Sa< pN 

a+(pN)c:X 

= k L f(a)/LJ.a(a + (pN)). 
0 :Sa< pN 

a +(pN)c X 

Taking the limit as N -+ x gives Jx lJ1k., = k Jx .fl.1 1., 0 

If we replace f by xk -J in our notation, treating x as a "variable of inte­
gration," we may write this proposition as 

Ix 1/Lk,a = k Ix xk-J}~J.a· 
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6 The p-adic ~-function as a Mellin-Mazur transform 

The right-hand side looks much better than the left hand side from the 
standpoint of p-adic interpolation, since instead of k appearing mysteriously 
in the subscript of p., it appears in the exponent. And we know from §2 what 
the story is for interpolating the integrand xk - 1 for any fixed x (see also 
Exercise 8 of §2). Namely, we're in business as long as x ;jE 0 (mod p). To 
make all of our x's in the domain of integration have this property, we must 
take X= ZP x. 

Thus, we claim that the expression Jz.x xk- 1 p.1 ,a can be interpolated. To 
do this, we combine the results of §2 with the corollary at the end of §5. That 
corollary tells us that if lf(x)- xk- 1lp :<::; e for x E ZP x, then 

I I x /P.1.a - f x xk-11-'-1,a I :::; e 
z. z. p 

(recall that IP.1 .a(V)IP :::; 1 for all compact-open U). Choose forfthe function 
xk' -I, where k' = k (mod p - 1) and k' = k (mod pN) (writing this as one 
congruence: k' = k (mod (p - l)pN)). By §2, we have: 

lxk'-1- xk-llp:::; p}+1 forxE"l..px· 

Thus, 

If xk'-1 -J xk-1 I <_I . 
Zpx l-'-1,a IZpx l-'-1,a P- pN+1 

We conclude that, for any fixed s0 E {0, 1, 2, ... , p - 2}, by letting k run 
through S,0 d~ {positive integers congruent to s0 (mod p - 1)}, we can 
extend the function of k given by fz x xk- 1p.1,a to a continuous function of 
p-adic integers s: • 

J x'o+s(p-1)-1 11 • 
x rl,a z. 

But we have strayed a little from our original numbers -(1/k) J lp.8 ,k. We 
just saw that we can interpolate 

J X xk-11-'-1,a = k~ I X 1p.k,a· 
!Zp !Zp 

Let's relate these two numbers: 

~ fz. x lp.k,a = ~ 1-'-k,a("l..P x) 

1 
= k (1 - a-k)(1 - pk- 1)Bk (see Exercise 5 of§5) 

= (a-k- 1)(1 - pk- 1)( -~ fz. 1p.B,k)· 

The term 1 - pk - 1 made its appearance because we had to restrict our 
integration from Zp to zp X. This is the phenomenon predicted at the end of 
§2: because we can not interpolate n• when pin, we must remove a "p-Eu1er 
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II p-adic interpolation of the Riemann zeta-function 

factor" from the '-function before it can be interpolated. So we will inter­
polate the numbers (1 - pk- 1)( -Bk/k): 

( I k- 1)( Bk) _ 1 f k-1 
- p -k - a k- 1 lLpx X IL1,a· 

One slight embarrassment, which we warned of in §2, is that the Euler term 
is 1 - pk - 1 and not I - p- k as you might think it should be from the 
heuristic discussion in §2. It's as though, instead of '(k ), we were really 
interpolating "'(1 - k)" (we haven't yet defined what this means for 
positive k). So we define our p-adic '-function to have the value (1 - pk - 1). 
(- Bk/k) at the integer I - k, not at k itself. 

Definition. If k is a positive integer, let 

so that, by the preceding paragraph, 

Note that the expression on the right does not depend on a, i.e., if f3 E 7L, 
pff3,f3 f= 1, then(,B-k- 1)- 1 J11 Px xk- 1fL 1 •8 = (a-k- 1)- 1 J11Px xk- 1fL1.a,since 

both equal (1- pk- 1)(-Bk/k). This equality-this independence of a-can 
also be proved directly (see Exercise 1). We shall use this independence of a 

later, when we define 'v(s) for p-adic s. 
But we first derive some classical number theoretic facts about Bernoulli 

numbers. These facts were considered to be elegant but mysterious oddities 
until their connection with the Kubota-Leopoldt 'P and Mazur's measure 
fL 1 ,a revealed them as natural outcomes of basic "calculus-type" considera­
tions (namely, the corollary at the end of §5, which says, roughly speaking, 
that when two functions are close together on an interval, so are their 
integrals). 

Theorem 7. (Kummer for (1) and (2), Clausen and von Staudt for (3)). 

(1) If p - lfk, then IBk/klv :<:; 1. 

(2) If p - 1 fk and if k = k' (mod(p - 1 )pN), then 

(1 _ pk-1) ~k = (1 _ pk'-1) ~~- (modpN+1). 

(3) Ifp - Ilk and k is even (or k = 1, p = 2), then 

pBk = -1 (mod p). 

PROOF. We assume p > 2, and leave the proof of (3) when p = 2 as an exer­
cise (Exercise 6 below). 

We need a fact which will be proved at the beginning of the next chapter 
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6 The p-adic ,_function as a Mellin-Mazur transform 

(at the end of §III .I): There exists an a E {2, 3, ... , p - 1} such that a~' - 1 is 
the lowest positive power of a which is congruent to 1 modulo p. Put another 
way, the multiplicative group of nonzero residue classes of 71. mopulo p is 
cyclic of order p - 1, i.e., there's a generator a E {2, 3, ... , p - 1} such that 
the least positive residues of a, a2 , a3 , ... , a~' - 1 exhaust { 1, 2, 3, ... , p - 1 }. 

In the proof of parts (1) and (2), we choose our "measure regularizer" a 

to be such a generator in {2, 3, ... , p - 1 }. This means that, since p - 1 f(- k), 
we have a-k "¥=. 1 (modp), so that (a-k- 1)- 1 E 7l.P x. 

To prove (1), we write (assuming k > 1; if k = 1 and p > 2, then 
IB1fllp = l-1/211' = 1): 

JBkjkJP = J1/(a-k - 1)JPJ1/(1 

=I fz.· xk-1P.1.a IP 
:-::; 1' 

by the proposition at the end of §5 (with A = B = 1), since Jp.1,a(V)IP :-::; 
for all compact-open sets U c 7Lp x and I x" - 11 p :-::; 1 for all x E 71.~' x. 

To prove (2), we rewrite the desired congruence as 

1 J k- 1 - 1 f k' - 1 ( d N + 1) -k 1 X P.1.a = -k' 1 X P.1,a mo p . a - llp x a - ll..p x 

Notice that, if for a, b, c, dE 7l.P we have a = c (mod pn) and b = d (mod pn), 
then we also have ab = cb = cd(modpn). Thus, since a= (a-k- 1)- 1, 
b -J k-1 -( -k' 1)-1 d d-I k'-1 . 71. . - 71•x X p.1,a, c- a - , an - z.x x p.1,a are In ~'' It 
suffices to prove that (a-"- 1)- 1 = (a-k'- 1)- 1 (modpN+ 1) and 

I X x"- 1p.1 a= I X xk'- 1f.L1 a (modpN+ 1). The first reduces to a"= a."' z. . z. . 
(modpN+ 1), and the second reduces (using the corollary at the end of §5, 
with B = 1 and e = p-N- 1) to showing that x"- 1 = x"'- 1 (modpN+ 1) for 
all x E 71.~' x. But this all follows from the discussion in §2. 

Finally, we prove the Clausen-von Staudt congruence. For this let a = 

+ p. Recall that we are proving it for p > 2. We have 

pB" = -kp(-B"/k) = -:kp 1 (1- p"- 1)- 1 J x"- 1f.L 1,,. 
a - z,x 

First take the first of the three terms on the right. If we let d = ordp k, then 

a-k- 1 =(I + p)-k- 1 = -kp (modpd+ 2), 

so that 

-kp 
1 =a "_ 1 (modp). 

Next, since k must be ~2, we have (1 - p"- 1)- 1 = 1 (modp). Thus, 

pBk = f x x"- 1f.L1.a (mod p). 
z. 
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II p-adic interpolation of the Riemann zeta-function 

Again using the corollary at the end of §5, this time with f(x) = xk -l and 
g(x) = Ijx, we obtain 

pBk =I . x- 1f-< 1 .a(modp). 
ll.p 

But by Exercise 7 of §5, this latter integral is congruent to -I (mod p). D 

We now return to p-adic interpolation. 

Definition. Fix s0 E {0, l, 2, ... , p - 2}. For s E ll.P (s #- 0 if s0 = 0), we 
define 

It should by now be clear that this definition makes sense, namely, 

are defined for p-adic s by taking any sequence {k1} of positive integers 
which approach s p-adically. Another way to define ,p,s0(s) is as follows: 
-limk,~.(l- p•o+<P-l)k,-l)B,o+<p-l)kJ(s0 + (p- I)k.). 

We now see that if k is a positive integer congruent to s0 (mod p - 1), i.e., 
k = s0 + (p - I )k0 , then we have: 'P(l - k) = ,p,s0(k 0 ). We think of the 
,P,so as p-adic "branches" of ,p, one for each congruence class mod p - l. 
(But note that the odd congruence classes-s0 = 1, 3, ... , p - 2-give us 
the zero function, since for such s0 always B,0 + <P -l)k, = 0; so we are only 
interested in even s0 .) 

In the definition of 'P.•o• we excluded the case s = 0 when s0 = 0. This is 
because in that case a-<•o+<P-l)s) = l, and the denominator vanishes. If we 
write 'i1 - k) = ,p,s0(k 0 ), where k = s0 + (p - l)k0 , then this excluded 
case corresponds to 'P(I ). Thus, the p-adic zeta-function, like the Archimedean 
Riemann zeta-function, has a "pole" at I. 

Theorem 8. For fixed p and fixed s0 , ,p,s0(s) is a continuous function of s which 
does not depend on the choice of a Ell., pfa, a #- I, which appears in its 
definition. 

PROOF. It is clear that §2 and the corollary at the end of §5 imply that the 
integral is a continuous function of s. The factor lj(a-<•o+<p-l)s)- I) is a 
continuous function as long as we don't allow s = 0 when s0 = 0, because 
a-<so+<p-l)s) is a continuous function by §2. So ,P,so(s) is also continuous. 

It remains to show that ,p,s0(s) does not depend on a. Let {3 Ell., pf{3, 
{3 #- 1. The two functions 

and 
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7 A brief survey (no proofs) 

agree whenever s0 + (p - 1)s = k is an integer greater than 0, i.e., whenever 
s is a nonnegative integer (s > 0 if s0 = 0), since in that case both functions 
equal (1 - pk - 1 )(- Bk/k). But the nonnegative integers are dense in 7l.p, so 
that any two continuous functions which agree there are equal. Therefore, 
taking f3 instead of a does not effect the function. D 

Theorem 8 gives us our p-adic interpolation of the "interesting factor" 
- B2 k/2k in n2k). But a few things remain to be explained: (I) the terminology 
"Mazur-Mellin transform" in the title of this section; and (2) the mysterious 
switch from k to 1 - k. In addition, something should be said about (3) 
deeper analogues with classical ~-functions and L-functions, and (4) a 
connection with modular forms. Since these four topics will take us beyond 
the scope of what we intend to prove in this book, they are gathered together 
in a section which surveys some basic relevant facts without attempting any 
proofs. References for proofs and further discussion of (I )-(4) are: (1) Manin, 
"Periods of cusp forms, and p-adic Heeke series," §8; (2) Iwasawa, Lectures 
on p-adic L-functions, §1 and appendix; (3) Iwasawa, Lectures on p-adic 
L:functions, especially §5, and Borevich and Shafarevich, Number Theory, 
p. 332-336; ( 4) Serre, "Formes modulaires et fonctions zeta p-adiques," 
in Springer Lectures Notes in Mathematics 350. 

7. A brief survey (no proofs) 

(l)Fors> I, ~(s) can be expressed. as an integral 
' 

1 foo .r-1 dx 
r(s) 0 ex - ( 

where r(s) is the gamma-function, which satisfies r(s + I) = sr(s), r(l) = I, 
so that, in particular, r(k) = (k - !)! for positive integers k. (See Exercise 4 
below for the cases = k.) The integral is what is known as a Mellin transform. 
For a function f(x) defined on the positive reals, the function 

g(s) = {oo x•-lj(x) dx, 

whenever it exists, is called the Mellin transform of f(x) (or of f(x) dx). 
Thus, r(s)S(s) is the Mellin transform of dxj(ex - 1), which exists for s > 1 
(see Exercise 4 below). 

In §6, we showed that the function which p-adically interpolates (1 - pk- 1 ) 

( -Bk/k) is essentially (except for the 1/(a-•- 1) factor and the s0 business) 

I .r-1 
x IL1,a• 

llp 

where JL 1 .a is the regularized Mazur measure. Thus, the p-adic ~-function 
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II p-adic interpolation of the Riemann zeta-function 

can be thought of, in analogy to the classical case, as the "p-adic Mazur­
Mellin transform" of the regularized Mazur measure f.Ll,a· 

(2) If we consider 

00 1 
'(s) = 2 5 

n= I n 

for s complex, with real part > 1, this sum still converges and defines a 
"complex analytic" function of s. By the technique of "analytic continua­
tion," '(s) can be extended onto the entire complex plane except for the point 
s = I (where its behavior is like the function l;(s - 1)). A very basic pro­
perty of '(s) is that it satisfies a "functional equation" which relates its 
value at s to its value at I - s. Namely, 

Y(I _ ) = ? COS(7TS/2)f(s) Y( ) 
'= S (27T)s '= S 

Let's let s = 2k be a positive even integer. Then 

On the other hand, if s is an odd integer greater than I, the right-hand side 
of the functional equation vanishes because cos(7Ts/2) = 0 (we needs > I in 
order for '(s) to be finite). Hence '(I - s) vanishes, and so there too 
W - k) = - Bkjk, but all this says is that 0 = 0. 

Table of W - k) = -Bk/k 

!-k w- k) 

-I -I/I2 
-3 1/120 
-5 -1/252 
-7 1/240 
-9 -I I 132 

-II 691/32760 
-13 -1/12 
-15 3617/8I60 
-17 -43867/14364 
-19 174611/6600 
-21 -77683/276 
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7 A brief survey (no proofs) 

So what we were "really" interpolating was the Riemann ~-function at 
negative odd integers. We can now summarize the relationship between ~P and 
~in the following simple way, using the definition of ~P: 

~P(l - k) = (1 - p"- 1)~(1 - k) fork = 2, 3, 4, .... 

If we're a little sloppy (forgetting that everything will diverge), we can 
write; w - k) = nprlmesq 1/(1 - q"- 1), 

~*(! - k) = f1 1/(1 - q"-1) = (I - p"-1)W - k), 
primes q, q <F p 

so the appearance of the (1 - p"- 1) factor makes heuristic sense from this 
devil-may-care point of view. 

In the same tack, we can derive the formula ((1 - k) = - Bk/k in a com­
pletely straightforward way: 

W- k) = i (dd)"-1enti-
n=1 t t-O 

- 2 ent ( d)"-1 00 I 
dt n= 1 t=O 

(3) Connections between ~P and ~ go deeper. An important example 
requires us to consider the generalization of ~ to functions of the form 

~ x(n) 
Lx(s) d.r L. -. ' 

n=1 n 
s > 0, 

where xis a "character" (see Exercises 9-10 of §2). As long as xis not the 
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II p-adic interpolation of the Riemann zeta-function 

''trivJal" character (equal to 1 for all n), this function Lx(s) converges when 
s = I: 2:::'= 1 (x(n)jn), and can be computed explicitly. The result is: 

where N is the conductor of x and r(x) = 'L~;; l x(a)e2" 1a!N (this formula 
easily reduces to tho~e given in Exercises 9-10 of §2). 

In a manner very similar to the construction of ~1, it is possible to inter­
polate Lx(l - k) by "p-adic L-functions" Lx.v· Amazingly, it turns out that 
Lx.P( I) equal~ the following expression: 

in which "logP" is the "p-adic logarithm:· which is a p-adic function of a 
p-adic variable (see §IV.l and §IV.2), and all of the roots of unity that 
occur- namely, e2 nia N and the values of x -are considered as elements of 
an algebraic extension of QP (see §IIL2-3). Here (1 - (x(p)/p)) should be 
thought of as the p-Euler factor (for the (-function, x = 1, and the Euler 
factor in ((I), if ((1) were finite, would be (1 - (1/p)); see also Exercise 9 of 
§2 concerning Euler products for L 1 ). The rest of the expression for L 1 jl) 
is the same as L ;( l ). except that the classical log is replaced by its p-adic 
analogue logP. 

(4) Very important in the study of elliptic curves and of modular forms 
(see Chapter VII of Serre, A Course in Arithmetic) are the Eisenstein series 
E2 k> k ;::>:: 2. which are functions defined on all complex numbers z with 
positive imaginary part by: 

where 

The series should be thought of as a "Fourier series" -i.e., a series in powers 
of e2" 12-with constant term equal to H(l - 2k). 

It turns out that Eisenstein series can be p-adically interpolated. One hint 
of this is that we can interpolate each nth coefficient as long as pfn. Namely, 
that coefficient a 2k_ 1(n) is a finite sum of functions d 2k-I, all of which can 
be interpolated, by §2, since pfd. Then interpolating W - 2k) can be thought 
of as "getting the constant coefficient too." Vague as this all may seem, it is 
actually possible to derive the results in this chapter using the theory of p-adic 
modular forms. For details, see Serre's paper mentioned before, and papers 
by N. Katz on p-adic Eisenstein measures and p-adic interpolation of Eisen­
stein series (see Bibliography). 
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Exercises 

EXERCISES 

1. Using the relationship between fl-1 ,a, 1'-~c.a. and P-a.~c, give a direct proof (without 
mentioning Bernoulli numbers) that 

1 J 1<-1 I< 1 X f'-1,a 
a - z. • 

does not depend on a. 

2. Check the Kummer congruences from the table of ~(l - k) when p = 5, 
k = 2, k' = 22, N = 1. Check in the table that the congruences fail when 
p - 1jk. Use the Kummer congruences and the first few values of B~c to compute 
the following through the p 2-place: 

(i) B102 in Os (ii) B2ee in 07 (iii) Bse2 in 07. 

3. Use Theorem 7 and Exercise 20 of §1.2 to prove the following version of the 
theorem of Clausen and von Staudt: (Bk + 2 i) E J'., for any even k (or k = 1), where 
the summation is taken over all p for which p - 11 k. 

4. Show that f;;' x•- 1dx/(ex- 1) exists when s > 1. By writing 1/(ex- 1) = 

e-x;(l -e-x)= L~=1e-nx, prove that: 

I,"' :"- 1
1 dx = (k- 1)! ~(k) fork= 2, 3, 4, ... 

• o e -

(justify your computations). 

5. Prove that 

J. oo xk-1 
-- dx = (k- 1)! (l - 21 -")~(k) fork= 2, 3, 4, .... 

o ex+ 1 

Show that the function 

1 f."' x'-1 
r(s)(l - 21 - 1) 0 eX+ 1 dx, 

which you just showed equals ~(s) for s = k = 2, 3, 4, ... , exists and is 
continuous as a function of s for s > 0, s t= 1. 

6. Prove the Clausen-von Staudt theorem when p = 2. 
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CHAPTER III 

Building up n 

1. Finite fields 

In what follows, we'll have to assume familiarity with a few basic notions 
concerning algebraic extensions of fields. It would take us too far afield to 
review all the proofs; for a complete and readable treatment, see Lang's 
Algebra or Herstein's Topics in Algebra. We shall need the following concepts 
and facts: 

(I) The abstract definition of afield F; a field extension K ofF is any f1eld K 
containing F; a field extension K is called algebraic if every a E K satisfies 
a polynomial equation with coefficients in F: a0 + a1a + a2a2 + · · · + 
anan = 0, where a, E F. For example, the set of all numbers a + b v'2 
with a, bE Q is an algebraic extension of Q. 

(2) If F is any field, its characteristic char(F) is defined as the least n such 
that when you add 1 to itself n times you get 0. If 1 + 1 + · · · + I 
always of 0, we say char(F) = 0. (It might sound more sensible to say 
char(F) = co, but the convention is to say that such fields have charac­
teristic 0.) Q, Qp, IR, and C are fields of characteristic 0, while the set 
of residue classes modulo a prime pis a field of characteristic p. (We'll 
see more examples of fields of characteristic p in a little while.) 

(3) The definition of a vector space V over a field F; what it means to have 
a basis for V over F; what it means for V to be finite-dimensional; if V 
is finite-dimensional, its dimension is the number of elements in a basis. 

(4) A field extension K ofF is an F-vector space; if it is finite-dimensional, 
it must be an algebraic extension, and its dimension is c<J11ed the degree 
[K:F]. If a E K has the property that every element of K can be written 
as a rational expression in a, we write K = F(a) and say that K is the 
extension obtained by "adjoining" a to F. If K' is a finite extension of 
K, then it is easy to see that K' is a finite extension ofF, and [K': F] 
[K': K] · [K: F]. 
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1 Finite fields 

(5) Any element a in a field extension K of F which is algebraic over F 
satisfies a unique monic irreducible polynomial ("monic" means it has 
leading coefficient 1, "irreducible" means it cannot be factored into a 
product of polynomials of lower degree with coefficients in F): 

a1 EF; 

n is called the degree of a. The field extension F(a) has degree n over F 
(in fact, {1, a, a2, .. . , an- 1} is one possible basis for F(a) as a vector 
space over F). 

(6) IfF is a field of characteristic 0 (for example, Q or 0 11) or a finite field 
(we'll study finite fields in detail very soon), then it can be proved that 
any finite extension K of F is of the form K = F(a) for some a E K. 
a is called a "primitive element." (Actually, this holds if F is any 
"perfect" field, where "perfect" means that either char (F) = 0, or 
else, if char (F) = p, every element in F has a pth root in F.) Knowing a 
primitive element a of a field extension K makes it easier to study K, 
since it means that everything in K is a polynomial in a of degree < n, 
i.e., K = {:Lf:J- a,a1 I a1 E F}. 

(7) Given an irreducible polynomial f of degree n with coefficients in F, we 
can construct a field extension K ::::> F of degree n in which/has a root 
a E K. Roots of all possible polynomials with coefficients in F can be 
successively adjoined in this way to obtain an "algebraic closure" 
(written pal~rcl or F) of the field F; by definition, this means a smallest 
possible algebraically closed field containing F (recall: a field K is called 
algebraically closed if every polynomial with coefficients in K has a 
root in K). Any algebraic extension of F is contained in an algebraic 
closure of F (i.e., can be extended to an algebraic closure of F). Any 
two algebraic closures of F are isomorphic, so we usually say "the 
algebraic closure," meaning "any algebraic closure." The algebraic 
closure of a field F is usually the union of an infinite number of finite 
algebraic extensions of F; for example, the algebraic closure of Q 
consists of all complex numbers which satisfy a polynomial equation 
with rational coefficients. However, the algebraic closure of the real 
numbers IR is C = IR( V- l ), which is a finite algebraic extension of IR of 
degree 2; but this is the exception rather than the rule. 

(8) If K = F(a), if K' is another extension field of F, and if a: K-+ K' 
gives an isomorphism of K with a subfield of K' (where a is an "£­
homomorphism," i.e., it preserves the field operations, and a(a) = a 
for all a E F), then the image a( a) of a in K' satisfies the same monic 
irreducible polynomial over F as a does. Conversely, if K = F(a), if 
K' is another extension field ofF, and if a' E K' satisfies the same monic 
irreducible polynomial over F as a does, then there exists a unique 
isomorphism a of K with the subfield F(a') of K' such that a(a) = a for 
all a E F and such that a(a) = a'. 

(9) In F = paitrci, all the roots of the monic irreducible equation over F 
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III Building up 0 

satisfied by an element a E Fare called the conjugates of a. There is a 
one-to-one correspondence between isomorphisms of F(a) with a sub­
field of F and conjugates a' of a (see the preceding paragraph (8)). If 
char (F) = 0 or if F is finite (or if F is perfect), then an irreducible 
polynomial can not have multiple roots, i.e., all the conjugates of a 

are distinct. In that case: (number of conjugates) = [F(a):F]. 
(10) If K = F(a), then K is called "Galois" if all of the conjugates of a are 

in K. In that case all conjugates of any x = LJ; J ata1 E K are in K, since 
such a conjugate is of the form L:r:J a,a' 1, where a' is a conjugate of a. 
Examples of Galois extensions of Q are: Q(V2) (since a = v2 has 
one conjugate a' = - v2, which is the other root of x2 - 2 = 0; here 
-VlEQ(Vl)); Q(i); Q(Vd) for any dEQ; Q(~m), where ~m = e2" 11m 
is a primitive mth root of I inC (since the conjugates of ~mare other primi­
tive mth roots, and these are of the form ~mt for i having no common 
factor with m). An example of a non-Galois extension of Q is Q('¢'2), 
since the conjugates of -¢12 are the 4 roots of x 4 - 2 = 0, namely 
± V"2 and ± iV"2, and we have if/2 ¢' Q(-¢12) (since Q(V"2) is contained 
in the real numbers). 

(11) If K is a Galois extension ofF, then the isomorphisms in paragraph (8) 
all have image K itself, i.e., they are £-isomorphisms from K to K, or 
"F-automorphisms of K." The set of these automorphisms is a group, 
called the "Galois group of Kover F." If a is such an automorphism, 
then the set of x E K such that a(x) = x is called the "fixed field of a" 
(it's easy to see that it's a subfield of K containing F). For example, 
if K = Q(V2 + V3), which is a Galois field extension of Q of degree 4, 
and if a takes v2 + v3 to v2 - v3, then the fixed field of a turns 
out to be Q(V2). It is not hard to prove that, if K is a Galois extension 
ofF and K' i= K is a field between K and F: F c K' c K, then there is 
a nontrivial automorphism of K which leaves K' fixed. In turns out there 
is a one-to-one correspondence between subgroups S of the Galois group 
of K over F and such intermediate fields F c K' c K, where 

S *+ Ks' = {x E K I ax = x for all a E S}. 

But we shall only need simple cases of the facts in this paragraph, not 
the full power of Galois theory. 

We now proceed to the study of finite fields. The simplest example of a 
finite field is the "integers modulo a prime p." This means: take the set of 
equivalence classes of integers for the equivalence relation: x ~ y means 
x = y (mod p). There are p such equivalence classes: the class of 0, I, 2, 3, 
... , p - 2, p - 1. It is easy to define addition and multiplication and check 
that this set, which we call !Fv, forms a field (in particular, every non-zero 
equivalence class has an inverse; this amounts to saying that if p does not 
divide x, then there exists a y such that xy = 1 (mod p)). IF v is sometimes 
written 7!../ plL (meaning "the integers divided out by p times the integers"). 

We could have equally well started out with the p-adic integers lLP, and 
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defined x "' y (x, y E l:p) to mean x = y (mod p) (i.e., x andy have the same 
first digit in their p-adic expansions). That is, IF P can also be written l:P/ plp 
("the p-adic integers divided out by p times the p-adic integers"). l:P/ plp is 
called the "residue field" of lp. The reason why we have to study general 
finite fields before going further is as follows: the residue fields we get when, 
instead of IQP and l:P, we deal with algebraic extensions of IQP are not quite as 
simple as IF p· They turn out to be algebraic extensions of IF p· So we need to get 
a picture of what general finite fields look like. 

Let Fbe a finite field. Since not all the numbers 0, 1, 1 + I, 1 + 1 + 1, ... 
can be distinct, F must have characteristic ;60. Let n = char(F). Note that 
n must be a prime, since if we could write n = n0nl> with n0 and n1 both < n, 
we would have n0 # 0, so multiplying by n0 - 1 would give: n1 = n0 - 1n = 0, 
a contradiction. So let p denote the prime number char(F). 

Clearly, any field F of characteristic p contains the field of p elements as a 
subfield (namely, by taking the subfield ofF formed by all numbers of the 
form 1 + · · · + 1 ). This subfield is called the "prime field" of F. 

Note that in any field F of characteristic p, the map x ~---+ xP preserves 
addition and multiplication: 

xy ~---+ (xy )P = xPyP; 

x+y~--+(x+y)P = i (~)xlyP-l=xP+yP, 
~~ o I 

because for 1 ~ i ~ p- I the integer m = p!/(i! (p - i)!) is divisible by p, 
and hence equal to 0 in F. 

Theorem 9. Let F be a finite field containing q elements, and let f = [F: IFP] 
(i.e., the dimension ofF as a vector space over its prime field IF P). Let K be an 
algebraic closure of IF P containing F. Then q = p1; F is the only field of q 
elements contained in K; and F is the set of all elements of K satisfying the 
equation JC'I - x = 0. Conversely ,for any power q = p1 of p, the roots of the 
equation JC'I - x = 0 in K are a field of q elements. 

PROOF. Since F is an /-dimensional vector space over IF P' the number of 
elements is equal to the number of choices of the f components (i.e., "co­
ordinates" in terms of a basis off elements) from IF P• which is p1. Next, any 
field F of q elements has q - I nonzero elements, so that the nonzero elements 
of F under multiplication form a group of order q - 1. In this group the 
powers of an element x form a subgroup of order equal to the least power of 
x which equals one (called the "order" of x). But it is easy to prove that any 
subgroup of a finite group has order dividing the order of the group. Thus, x 
has order dividing q - I, and so xq - 1 = I for all nonzero x in F. Then 
JC'I - x = 0 for all x (including 0) in F. Since this holds for any field of q 
elements in K, and a polynomial of degree q has at most q distinct roots in a 
field, it follows that any field of q elements in K must be the roots of JC'I - x, 
and there is only one such set of q roots. 
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Conversely, given any q = p1, the set of elements of K such that :x'l = xis 
closed under addition and multiplication (the argument is the same as in the 
paragraph right before the statement of this theorem), and so is a subfield of 
K. This polynomial has distinct roots, because, if it had a double root, by 
Exercise 10 below, that root would also be a root of the formal derivative 
polynomial qxq - 1 - 1 = - 1 (because q = 0 in K); but the polynomial - 1 
has no roots. D 

Remark. Because any two algebraic closures of IF~> are isomorphic, it 
follows that any two fields of q = p' elements are isomorphic. 

We let IFq denote the unique (up to isomorphism) field of q = p' elements. 
IfF is a field, px denotes the multiplicative group of non-zero elements 

of F. 

Proposition. IF q x is a cyclic group of order q - 1. 

PROOF. If we let o(x) denote the order of x (the least power of x which 
equals 1), we know that o(x) is a divisor of q - 1 for all x E IFQ x. But if dis 
any divisor of q - 1, the equation xa = 1 has at most d solutions, because the 
degree d polynomial xa - 1 has at most d roots in a field. If d = o(x), then 
all d distinct elements x, x 2 , ••. , xa - 1 , xa = 1 satisfy this equation, and so 
they must be the only ones that do. How many of these d eleme~ts have 
order exactly d? It is easy to see that the answer is: the number of integers 
in {1, 2, ... , d- I, d} which are relatively prime to d (have no common 
divisor with d other than 1). This number is denoted cp(d). Thus, at most cp(d) 
elements of IF q x have order d. We claim that exactly cp(d) have order d for all 
divisors d of q - I, and in particular for d = q - I. This follows from the 
following lemma. 

Lemma. Lalncp(d) = n. 

PROOF OF THE LEMMA. Let 7Lfn7L denote the additive group {0, I, ... , n - I} of 
integers modulo n. 7Lfn7L contains a subgroup Sa for each divisor d of n defined 
as follows: Sa is the set of all multiples of nfd. Clearly, every subgroup of 
7Lfn7L is obtained in this way. 

Sa has d elements, of which cp(d) generate the full subgroup (i.e., the set of 
all multiples of mnfd exhausts the set of all multiples of nfd in 7Lfn7L if and only 
if m and dare relatively prime). But each integer 0 ,I, ... , n- 1 generates 
one of the subgroups Sa. Hence 

{0, I, ... , n - I} = U {elements generating Sa}. 
din 

Since this is a disjoint union, we have: n = .La1ncp(d), and the lemma is proved. 
The proposition follows immediately, because if there were fewer than 

cp(d) elements of order d for some din ,we would have: n = Lain {elements of 
order d} < .La1ncp(d) = n. Hence, in particular, there are cp(q - 1) elements 
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of order q - 1. Since rp(q - I) ;;?: I (for example, I has no common factor 
with q - 1), there exists an element a of order exactly q - 1. Then IFq x 

{a, a2, •.• , aq- 1}. 0 

EXERCISES 

1. Let F be a field of q = p1 elements. Show that F contains one (and only one) 
field of q' = p1' elements if and only iff' divides f. 

2. For p = 2, 3, 5, 7, 11, and 13, find an element a E {1, 2, ... , p - 1} which 
generates IF, x, i.e., such that IF, x = {a, a2, ••• , a"- 1}. In each case, determine 
how many choices there are for such an element a. 

3. Let F be the set of numbers of the form a + bj, where a, bE IF3 = {0, 1, 2}, 
addition is defined component-wise, and multiplication is defined by 
(a + bj)(c + dj) = (ac + 2bd) + (ad+ bc)j. Show that F = IF9 ; show that 
1 + j is a generator of IF9 x ; and find all possible choices of a generator of IF9 x. 

4. Write IF4 and IF8 explicitly in the same way as was done for IFg in the previous 
problem. Explain why any element except 1 in IF 4 x or IF 8 x is a generator. 

5. Let q = p 1, and let a be an element generating IFq x. Let P(X) be the monic 
irreducible polynomial which a satisfies over IF,. Prove that deg P =f. 

6. Let q =pl. Prove that there are precisely f automorphisms ofiFq over IF P,namely the 
automorphisms a" i = 0, 1, .. . ,f- 1, given by: a1(x) = x"' for x E IFq. 

7. Let a E IF, x, and let P(X) = X" - X- a. Show that, if a is a root of P(X), 
then so is a + 1, a + 2, etc. Show that the field obtained by adjoining a to IF, 
has degree p over IF,, i.e., it is isomorphic to IF,P. 

8. Prove that IFq contains a square root of -1 if and only if q ~ 3 (mod 4). 

9. Let e be algebraic of degree n over 0,, i.e., ~satisfies a polynomial equation of 
degree n with coefficients in 0,, but none of degree less than n. Prove that 
there exists an integer N such that ~ does not satisfy any congruence 

an-1~n- 1 + an-2~n- 2 + · · · + a1~ + ao = 0 (modpN), 

in which the a, are rational integers not all of which are divisible by p. 

10. If F is any field, and f(X) = xn + an-1xn- 1 + · · · + a1X + a0 has co­
efficients in F and factors in F, i.e., f(X) = nr=1 (X- a,) with a, E F, show 
that any root a, which occurs more than once is also a root of nxn- 1 + 
an-1(n- l)xn- 2 + an-2(n-2)xn- 3 + · · · + a1. 

2. Extension of norms 

If X is a metric space, we say X is compact if every sequence has a convergent 
subsequence (see beginning of §JI.3). For example, ll..P is a compact metric 
space (see Exercise 19 of §1.5). We say that Xis locally compact if every point 
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x E X has a neighborhood (i.e., a subset of X contammg some disc 
{y I d(x, y) < e}) which is compact. The real numbers IR are not compact, 
but are a locally compact metric space with the usual Archimedian absolute 
value metric. Ov with the p-adic metric is another example of a locally 
compact metric space, for the simple reason that for any x the neighborhood 
x + 'lv ct~r {y I I y - xl v :<::; I} is compact (in fact, it is isomorphic to 'lv as a 
metric space). More generally, if X is an additive group such that d(x, y) = 
d(x - y, 0) for all x, y (for example, if X is a vector space and the metric is 
induced from a norm on X, as defined below), then X is locally compact 
whenever 0 has a compact neighborhood U. Namely, for any x, the transla­
tion of U by x: x + U ct~c {y I y - x E U}, is a compact neighborhood of x. 
In Ov, U = 'lv is such a compact neighborhood of 0. It is not hard to see 
(Exercise 6 below) that any such locally compact group is complete. 

Let F be a field with a non-Archimedean norm II 11. For the duration of 
this section we assume that F is locally compact. 

Let V be a finite dimensional vector space over F. By a norm on V we 
mean the analogous thing to a norm on a field, namely, a map II llv from V 
to the nonnegative real numbers satisfying: (I) llxllv = 0 if and only if 
x = 0; (2) llaxJiv = llaii llx!lv for all x E V and a E F (here ilal! is the norm in 
F); and (3) II x + y li v :<::; ii x II v + II y II v· For example, if K is a finite extension 
field ofF, then any norm on K as a field whose restriction to F is II II is also 
a norm on K as a vector space. However, a word of caution: the converse is 
false, since Property (2) for a vector space norm is weaker than the corres­
ponding property for a field norm (see Exercises 3-4 below). 

As in the case of fields, we say that two norms II 11 1 and II 11 2 on V are 
equivalent if a sequence of vectors is Cauchy with respect to II 11 1 if and only 
if it is Cauchy with respect to II 11 2 • This is true if and only if there exist posi­
tive constants c1 and c2 such that for all XE V: lixllz :<::; (\ llxll1 and llxl\1 :<::; 

c2\lxll2 (see Exercise I below). 

Theorem 10. If V is a finite dimensional vector space over a locally compact 
field F, then all norms on V are equivalent. 

PROOF. Let {vi> ... , vn} be a basis for V. Define the sup-norm II !!sup (pro­
nounced "soup norm") on V by 

This II !!sup is a norm (see Exercise 2 below). Now let II h be any other norm 
on V. First of all, for any x = a1v1 + · · · + anvn we have 

!!xliv :<::; lla1ll [jv1!i.· + · · · + llan[l !lvnl[v 
:<::; n (max lla~lll max llv~!lv, 

so that we get II liv :<::; C1 il II sup if we choose c1 = n max1s;l,;n(llvlllv). It 
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remains to find a constant c2 such that the reverse inequality holds; then it 
will follow that any norm on Vis equivalent to the sup-norm. 

Let 

U = {x E V ll!xl!sup = 1}. 

We claim that there is some positive e such that llxllv :?: e for x E U. If this 
weren't the case, we would have a sequence {x1} in U such that llxdlv-+ 0. 
By the compactness of U with respect to II II sup (Exercises 2, 8 below), there 
exists a subsequence {x11} which converges in the sup-norm to some x E U. 
But for every j 

llxllv ~ llx - Xt1llv + llxt1 llv ~ C1 llx - Xt1llsup + llxdv. 

by our first inequality relating the two norms. Both of these terms approach 
0 asj-+ oo, since X 11 converges toxin II II sup• and llxdlv-+ 0. Hence llxllv = 0, 
so that x = 0 ¢: U, a contradiction. 

Using this claim, we can easily prove the second inequality, and hence the 
theorem. The idea is: the claim says that on the sup-norm unit sphere U 
the other norm II llv remains greater than or equal to some positive number e, 

and hence II II sup ~ c2 II llv on U, where c2 = I/e (on U the left side of this 
inequality is I, by definition); but everything in V can be obtained by multi­
plying U by scalars (elements in F), so the same inequality holds on all of V. 

More precisely, let x = a1v1 + · · · + anvn be any element in V, and 
choosej so that llaill = maxlla;ll = llxllsup· Then clearly (xfai) E U, and so 

llx/aillv :?: e = 1/c2, 
so that 

0 

Corollary. Let V = K be afield. Then there is at most one norm II IlK of K as a 
field which extends II II on F (i.e., such that llaiiK = llaJJ for a E F). 

PROOF OF COROLLARY. By Theorem 10, any two such norms II 11 1 and II ll2 on 
K must be equivalent. Hence II 11 2 ~ c1ll k Let x E K be such that llxll1 #­
l!xll2, say, Jlxll 1 < JJxk But then for a sufficiently large N we have c1llxNII1 < 
llxNII 2, a contradiction. 0 

This still leaves the question of whether there exists any norm on K 
extending II II on F. 

We now recall a basic concept in field extensions, that of the "norm" of 
an element. This use of the word "norm" should not be confused with the 
use so far in the sense of metrics. "Norm" in the new sense will always 
be in quotation marks and denoted by N. 

Let K = F(a) be a finite extension of a field F generated by an element a 
which satisfies a monic irreducible equation 
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Then the following three definitions of the "norm of a from K to F," abbre­
viated NK1F(a), are equivalent: 

(I) If K is considered as an n-dimensional vector space over F, then multipli­
cation by a is an F-linear map from K to K having some matrix Aa. We 
let NK1F(a) d.r det(Aa). 

(2) NK/F(a) dcl (-!)nan. 
(3) NK/F(a) def nr=1a!> where the a, are the conjugates of a = a1 over F. 

The equivalence (2) = (3) comes from: xn + a1xn - 1 + · · · + an = nr = 1 
(x - a,). The equivalence ( 1) = (2) is easy to see if we use {I, a, a2 , ... , an- 1} 

as a basis for K over F. Namely, the matrix of multiplication by a is then 
clearly (using: an= -a1an- 1 - ... - an-1a- an): 

0 0 -an 
0 0 -an-1 

0 

0 -a2 
-a1 

which has determinant (- I )nan, as follows immediately by expanding using 
the first row. 

If f3 E K = F(a), we can define NK1F(f3) as either(!) the determinant of the 
matrix of multiplication by f3 inK, or, equivalently, (2) (NF<m1F(f3))EK:F<8ll. The 
two are equivalent because, if we choose bases for F(f3) as a vector space 
over F and for K as a vector space over F(f3), then as a basis for Kover F we 
can take all products of an element in the first basis with an element in the 
second basis; using this basis forK over F, we see that the matrix of multipli­
cation by f3 in K takes the following "block form" 

where A8 is the matrix of multiplication by f3 in F(f3). The determinant of this 
matrix is the [K:F(/3)]-th power ([K:F(f3)] is the number of blocks) of det A8 , 

i.e., the [K:F(f3)]-th power of NF<BliF(f3). Thus, the two definitions of NKIF(,B) 
are in fact equivalent. 

Since NK;F(a) is defined for any a E K as the determinant of the matrix 
of multiplication by a in K, it follows that NKIF is a multiplicative map from 
K to F, i.e., NK;F(af3) = NKIF(a)NK;F(f3). (Namely, multiplication by af3 is 
given by the product of the matrix for a and the matrix for f3, and the determi­
nant of a product of matrices is the product of the determinants.) 

We can now figure out how the extension of 1 IP to an algebraic number 
a E Q~1g 01 must be defined if it exists. Suppose a has degree n, i.e., its monic 
irreducible polynomial over IOv has degree n. Let K be a finite Galois extension 
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of Ov containing a (see paragraph (10) at the beginning of this chapter), for 
example, K can be the field obtained by adjoining a and all of its conjugates 
to 0 11 (it's easy to check that this field is finite and Galois over 0 11). Suppose 
we find an extension II II of I \11 to K. By the corollary to Theorem 10, II II 
is the unique field norm on K extending I \11 • Now let a' be any conjugate of a, 
and let a be an automorphism of K taking a to a' (see paragraphs (8), (9), and 
(11) in §III.1). Clearly the map II 1\':K-+ IR defined by \\x\1' = \\a(x)\\ is a 
field norm on K which extends \ \11 • Hence I\ \\' = \\ \\, and so \\a\\ = \\a\\' = 
\\a( a)\\ = \\a'\\. We conclude that the norm of a equals the norm of each of its 
conjugates. But then the norm of NQ.<a>IQ.(a), which is in 0 11, equals 

Thus, 

\ No.<aJ/Q.(a)\P = \\ No.<al/Q.(a)\\ 

=II 0 a'\1 
conjugates a' of a 

=0\\a'\\ 
= \jajjn. 

\\a\\ = !No.<aJ/Q•(a)\~ 1 n. 

So, concretely speaking, to find the p-adic norm of a, look at the monic 
irreducible polynomial satisfied by a. If it has degree n and constant term 
an, then the p-adic norm of a is the nth root of \an\ 11 • (Of course, we have not 
yet proved that this rule really has all of the required properties of a norm; 
this will be Theorem 11 below.) 

Note that we can equivalently define \\all to be 

\ NKIQ.(a)\~I[K:Q•I, 

where K is any field containing a. This is because 

NKIQ.(a) = (No.<aliQ.(a)YK:Q.<all, 
and 

- ["" ( )·""]- [K:Qp] 
n- "-~'P a ·"-~'p - [K:QP(a)( 

We now prove that this rule II II really is a norm. We shall write I \11 

instead of \\ 1\ to denote the extension of \ \11 to K; this should not cause 
confusion. The reader should be warned that Theorem 11 is not an easy 
fact to prove. The proof given here, which was told to me by D. Kazhdan, 
is much more efficient than other proofs I've seen. But it should be read and 
re-read carefully until the reader is thoroughly convinced by the argument. 

Theorem 11. Let K be a finite extension of 0 11 • Then there exists a field norm 
on K which extends the norm I \11 on 0 11 • 

PROOF. Let n = [K: 0 11 ]. We first define I \11 on K, and then prove that it's 
really a field norm on K extending I \P on 0 11 • For any a E K we define 

\a\P d~ \NK/Q•(a)\~'n, 

61 



III Building up n 

where the right-hand side is the old norm in Ov· It is easy to check that: 
(l) ialv agrees with the old !alP whenever a E IQP; (2) !alP is multiplicative; 
and (3) !alP = 0-¢> a = 0. The hard part is the property: Ia + ,BIP ~ 
max(laiP, I,BIP). 

Suppose that I filr is the larger of I a lr• I filr· Setting y = a/ {-J, we have 
IYir::::: 1. We want to show that Ia: + filr::::: max(la:lr• lfilr) = lfilr, or 
equivalently (after dividing through by J/llr): 11 + Ylr::::; 1. Thus, Theorem 
11 follows from the following lemma. 

Lemma. With I lr defined as above on K, one has 11 + ~· lr ::::; 1 j(Jr any y E K 
withiYir::;;l. 

PROOF OF THE LEM\1A. We noted before that we can define II' IP and 11 + )' IP 
using the field Q(/') = Q(l + y) in place of K: 

l~·lp = JN<!Jp(i)<!Jp(/')1~ l<!J,(,):<!Jp]; 11 +YIP= IN<!Jp())I<!J,(l + /')I~[<!Jp()'):<!J,J_ 

So without loss of generality we may suppose that K = QP(y), in other words, 
that 1' is a "primitive element" of K. Then { 1, /', y2 , •. . , yn- 1 } is a vector space 
basis forK over QP, where n = [K: i[j)P]. 

For any element a= 2:7:6 ad E K, let lla:ll denote the sup-norm in this 
basis, i.e., lla:ll &rmax, la,lp· Similarly, if A= {au} is any n x n matrix with 
entries in i[j)P' let IIAII denote the sup-norm IIAII &r max,, 1 laulp· 

Any 1[j)P-linear map from K to K, when written in terms of the basis 
{ 1, y, ')' 2 , ... , yn- 1 }, gives ann x n matrix with entries in i[j)P. Now let A denote 
the matrix of the i[j)r-linear map from K to K which is multiplication by I'· 
(This is the type of matrix used before in our discussion of the three equivalent 
definitions of the norm of an element.) Then the matrix A' is the matrix cor­
responding to multiplication by/, and 1 + A is the matrix corresponding to 
multiplication by I + 1'· (More generally, the matrix P(A) corresponds to 
multiplication by the element P(";) for any polynomial P E QP[X].) 

We claim that the sequence of real numbers { IIA'II L= o. 1. 2 .... is bounded. 
Suppose the contrary. Then we can find a sequence ii,j = 1, 2, ... , such that 
IIA''II > j. Let bi ct~r II A'' II, which is the maximum I IP of any of the n2 entries 
A''. Let f3i be an entry of A'' with maximum I lr; thus, l/3ilr = IIA''II = h1. 

Define the matrix Bi = A''//31, i.e., divide all entries of A'' by fiJ· Then clearly 
II Bill = 1. Since the sup-norm unit ball is compact (Exercises 2 and 8 below), 
we can find a subsequence {Bikh= I. 2.. .. which converges to some matrix B. 
Since det Bi = (det A'')//3'], we have 

ldet Bilr < ldet A'' lr/l = I NK;<!Jp(y)''lp// = 11'1;''/t::::; 1/t. 

By the definition of convergence in the sup-norm, each entry of B is the limit 
as k ~ X• of the corresponding entry of B ik; hence det B = lim det B ik = 0. 

Because det B = 0, there exists a nonzero element IE K, considered as a 
vector written with respect to the basis { 1, y, /, ... , '/- 1 }, such that B! = 0. 
We now show that this implies that B is identically zero, contradicting 
II B I! = 1 and hence proving the claim that {II A' II} is bounded. 
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Since {yil}i=O,l, ... ,n-l is a basis for the 11)P-vector space K, it suffices to 
show that Byil = 0 for any i. But since multiplication by yi is given by the 
matrix Ai, we have Byil = (BAi)l = AiB[ = 0, where the relation BAi = AiB 
comes from the fact that B is a limit of matrices of the form Bj = Ai1//3j, 
i.e., scalar multiples of powers of A, and any such matrix Bj commutes with 
Ai. This proves our claim that {//Aill} is bounded by some constant C. 

Notethatforanyn x nmatrixA = {a11}wehave: /detAIP ~ (max1,1 /a,1 /p)n 
= II A II n; this is clear if we expand the determinant and use the additive and 
multiplicative properties of a non-Archimedean norm. 

Now let N be very large, and consider: (I + A)N = I + (f)A + · · · + 
(N':. 1)AN- 1 + AN. We have 

/1 + y/PN = /det(I + A)N/!'n ~ //(1 + A)N/1 

~ (max IIA111) ~ C. 
OslsN 

Hence II + YIP ~ \YC. Letting N ~ oo gives II + YIP :5 I as required. (Note 
the similarity with the proof of Ostrowski's theorem in §1.2.) D 

Let R be a (commutative) ring, i.e., a set R with two operations + and · 
which satisfy all the rules of a field except for the existence of multiplicative 
inverses. In other words, it's an additive group under + ; has associativity, 
identity, and commutativity under ·; and has distributivity. R is called an 
integral domain if xy = 0 always implies x = 0 or y = 0. 7L and 7LP are 
examples of integral domains. 

A proper subset I of R is called an ideal if it is an additive subgroup of R 
and for all x E Rand a E I we have: xa E I. In the ring lL, the set of all multiples 
of a fixed integer is an ideal. In 7LP, for any r ~ I the set {x E 7LPI lxiP < r} is 
an ideal. If, say, r = p-n, this is the set of all p-adic integers whose first 
n + I digits are zero in the p-adic expansion. 

If I 1 and I 2 are ideals of R, then the set 

{x E R / x can be written as x = x 1x 1' + · · · + XmXm' with x1 E I1o x/ E I 2} 

is easily checked to be an ideal, which is written I 1I 2 and is called the product 
of the two ideals. An ideal I is called prime if: x 1x2 E I implies x 1 E I or 
x 2 EI. 

It is easy to verify (see Exercise 5 below) that lLP has precisely one prime 
ideal, namely 

plLP d~f {x E 7LP I lxiP < I}, 

and that all ideals of lLP are of the form 

pnlLP ~r {x E 7LP //x/P ~ p-"}. 

If I is an ideal in a ring R, it is easy to see that the set of additive cosets 
x + I form a ring, called Rfi. (Another way of describing this ring: the set of 
equivalence classes of elements of R with respect to the equivalence relation 

63 



III Building up Q 

x "' y if x - y E /.) For example, if R = 7L (or if R = lLp), the ring RJ pR is 
the field IF" of p elements, as we've seen. 

An ideal M in R is called maximal if there is no ideal strictly between M 
and R. It is an easy exercise to check that: 

(l) An ideal Pis prime if and only if RJP is an integral domain. 
(2) An ideal M is maximal if and only if R/ M is a field. 

Now let K be a finite extension field of IQ". (Or, more generally, let K be 
an algebraic extension of a field F which is the field of fractions of an integral 
domain R, e.g., F = iQ is the field of fractions of R = 71, F = IQ" is the field 
of fractions of R = 71", and so on.) Let A be the set of all x E K which satisfy 
an equation of the form Xn + a1xn- 1 + · · · + an-1X +an= 0 with the 
a1 E 71". (Every x E K of course satisfies an equation of this form with 
coefficients in QP, but usually not all the a, are in lLp.) A is called the" integral 
closure of lLP in K." 

It is not hard to show that if x E A, then its monic irreducible polynomial 
has the above form. Moreover, the integral closure is always a ring. (For the 
general proof, see Lang's Algebra, p. 237-240; in the case we'll be working 
with-the integral closure of lLP inK-we prove that it's a ring in the proposi­
tion that follows.) 

Proposition. Let K be a finite extension of QP of degree n, and let 

A= {xEKIIxlp ::-:; 1}, 

M = {x E K I lxiP < 1}. 

Then A is a ring, which is the integral closure of lLv in K. M is its unique 
maximal ideal, and A/ M is a finite extension of IF P of degree at most n. 

PROOF. It is easy to check that A is a ring and M is an ideal in A, using the 
additive and multiplicative properties of a non-Archimedean norm. Now let 
a E K have degree m over IQP, and suppose that a is integral over lLP: am + 
a1am- 1 + · · · + am= 0, a, E 7LP. If laiP > I, we would have: 

lalpm = lamlp = la1am-1 + ... + amlp ::<:; max la,am-tlv 
1 stsm 

::<:; max lam-ilv = lal~'-1, 
1 :St.Sm 

a contradiction. Conversely, suppose lrx!P ::-:; 1. Then all the conjugates of 
a= a1 over IQP also have la,IP = Oi- 1 la1 1~ 1 "' = laiP ::<:; I. Since all the 
coefficients in the monic irreducible polynomial of a are sums or differences 
of products of a, (the so-called "symmetric polynomials" in the a,), it follows 
that these coefficients also have I lv ::<:; I. Since they lie in Ov, they hence 
must lie in lLv. 

We now prove that M contains every ideal of A. Suppose a E A, a¢= M. 
Then I alP = 1, so that ll/aiP = I, and 1/a EA. Hence any ideal containing a 

must contain (lja)·a = I, which is impossible. 
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Exercises 

Note that M n lLP = plLP from the definition of M. 
Consider the field A/M. Recall that its elements are cosets a + M. 

Notice that if a and b happen to be in ll.P, then a + M is the same coset as 
b + M if and only if a - b EM n lLP = plLP. Thus, there's a natural inclusion 
of lLp/plLP into A/M given by coset a + plLP r-+ coset a + M for a E lLP. Since 
lLp/plLP is the field IF P of p elements, this means that A/ M is an extension field 
of IF p· 

We now claim that A/Mhas finite degree over IFP, in fact, that [A/M: IFp] s 
[K: QP]. If n = [K: QP], we show that any n + 1 elements iih ii2, ... , 
iin + 1 E A/ M must be linearly dependent over IF p· For i = 1, 2, ... , n + 1, 
let a1 be any element in A which maps to ii1 under the map A___,.. A/M (i.e., 
a, is any element in the coset iih in other words: ii1 = a, + M). Since 
[K: QP] = n, it follows that ab a2, ... , an+ 1 are linearly dependent over QP: 

Multiplying through by a suitable power of p, we may assume that all the 
b, E lLP but at least one b1 is not in plLP. Then the image of this expression in 
A/Mis 

ii151 + ii252 + · · · + iin+l5n+1 = 0, 

where 5, is the image of b, in lLP/plLP (i.e., 5, is the first digit in the p-adic 
expansion of b1). Since at least one b1 is not in pll.p, it follows that at least one 
5, is not 0, so that iih ii2, ... , iin+ 1 are linearly dependent, as claimed. D 

The field A/ M is called the residue field of K. It's a field extension of IF P of 
some finite degree f A itself is called the "valuation ring" of I I v in K. 

EXERCISES 

1. Prove that two vector space norms II ll1 and II 11 2 on a finite dimensional vector 
space V are equivalent if and only if there exist c1 > 0 and c2 > 0 such that 
for all x E V: 

llxb s c1llxll1 and llxll1 :5 c2llxk 

2. Let F be a field with a norm II 11. Let V be a finite dimensional vector space 
over Fwith a basis {vh ... , Vn}. Prove that lla1v1 + · · · + anvnllsup ~r maxutsn 
<lla1ll) is a norm on V. Prove that if Fis locally compact, then so is V. 

3. Let V = (MYp), v1 = 1, V2 = Vp. Show that the sup-norm is not a field 
norm on (l1p(Yp). 

4. If V = K is a field, can the sup-norm ever be a field norm (for any basis 
{vh ... , vn}) when n = dim K > 1? Discuss what type of finite extensions 
K of (JIP can never have the sup-norm being a field norm. 

5. Prove that 7l.p has precisely one prime ideal, namely p7l.p, and that all ideals in 
7l.p are of the form pn7l.p, n E {1, 2, 3, ... }. 

6. Prove that, if a vector space with a norm II llv is locally compact, then it is 
complete. 
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7. Prove that a vector space with a norm II llv is locally compact if and only if 
{x I llxllv ::::;: 1} is compact. 

8. Prove that, if a vector space with a norm !I llv is locally compact, then 
{x I llxllv = 1} is compact. 

3. The algebraic closure of Qv 

Putting together the two theorems in §2, we conclude that I IP has a unique 
extension (which we also denote I IP) to any finite field extension of QP. 
Since the algebraic closure QP of QP is the union of such extensions, I IP 
extends uniquely to QP. Concretely speaking, if a E QP has monic irreducible 
polynomial xn + a1xn- 1 + ... +an, then !alp= lanl~ln. 

Let K be an extension of QP of degree n. For a E K we define 

1 
ordp a d=f -logp !alP= -logp INKtO (a)j~tn = --logP INKtQ (a)ip· e p n p 

This agrees with the earlier definition of ordP when a E QP, and clearly has 
the property that ordP af3 = ordp a + ordP {3. The image of K under the 
ordP map is contained in (1/n)7l.. ~r {x E Q I nx E 7!..}. Since this image is an 
additive subgroup of (Ifn)7l.., it must be of the form (1/e)7!.. for some positive 
integer e dividing n. This integer e is called the "index of ramification" of K 
over QP. If e = 1, we say that K is an unramified extension of Ov- Now let 
rr E K be any element such that ordP rr = (1/e). Then clearly any x E K can 
be written uniquely in the form 

rrmu, where iuiv = 1 and mE 7!.. (in fact, m = e· ordv x). 

It can be proved (Exercise 12 below) that n = ef, where n = [K: Qv], 
e is the index of ramification, and f is the degree of the residue field A/ M 
over IFv. In any case, we've already seen thatf ~ nand e ~ n. In the ca~e of 
an unramified extension K, i.e., when e = 1, we may choose p itself for rr 
in the preceding paragraph, since ordvp = 1 = (lje). At the other extreme, 
if e = n, the extension K is called totally ram;jied. 

Proposition. If K is totally ramified and rr E K has the property ordv rr = (1/e), 
then rr satisfies an "Eisenstein equation" (see Exercise 14 of §1.5) 

where a; = 0 (mod p) for all i, and a0 =/'. 0 (mod p 2). Conuersely, if a is a 
root of such an Eisenstein equation over Ov, then Ov(a) is totally ramified 
over Ov of degree e. 

PROOF. Since the a, are symmetric polynomials in the conjugates of rr, all of 
which have I lv = p- 1te, it follows that ja,IP < l. As for a0 , we have iaolv = 

H,e = 1/p. 
Conversely, we saw in Exercise 14 §1.5 that an Eisenstein polynomial is 

irreducible, so that adjoining a root a gives us an extension of degree e. 
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Since ord" a0 = 1, it follows that ord" a = (lje) ord" a0 = (lje), and hence 
iCMa) is totally ramified over Q". D 

A more precise description of the types of roots of polynomials that can 
be used to get a totally ramified extension of degree e can be given if e is not 
divisible by p (this case is called "tame" ramification; pIe is called "wild" 
ramification). Namely, such tamely totally ramified extensions are obtained 
by adjoining solutions of the equation x• - pu = 0, where u E lLv •, i.e., such 
extensions are always obtained by extracting an eth root of p times a p-adic 
unit (see Exercises I3 and 14 below). 

Now let K be any finite extension of Q"" The next proposition tells us that 
if K is unramified, i.e., e = I, then K must be of a very special type, namely, a 
field obtained by adjoining a root of I ; while if K is ramified, it can be 
obtained by first adjoining a suitable root of I to obtain its "maximal un­
ramified subfield" and then adjoining to this subfield a root of an Eisenstein 
polynomial. Warning: the proof of the following proposition is slightly 
tedious, and the reader who is impatient to get to the meatier material in the 
next chapter may want to skip it (and also skip over some of the harder 
exercises in §111.4) on a first reading. 

Proposition. There is exactly one unramified extension K;nram of Q" of degree J, 
and it can be obtained by adjoining a primitive (p1 - 1 )th root of I. If K is an 
extension of Q" of degree n, index of ramification e, and residue field degree! 
(so that n = ef, as proved in Exercise 12 below), then K = Kfnram('IT), 
where 'IT satisfies an Eisenstein polynomial with coefficients in K;nram. 

PROOF. Let a be a generator of the multiplicative group fF ;, (see the proposition 
at the end of §1), and let P(x) = x 1 + ii1x1 - 1 + · · · + a,, ii1 E fF", be its monic 
irreducible polynomial over fF" (see Exercise 5 of§ I). For each i, let a, E 7L" be 
any element which reduces to ii1 mod p, and let P(x) = x' + a1x1 -I + · · · + 
a,. Clearly, P(x) is irreducible over 0", since otherwise it could be written as a 
product of two polynomials with coefficients in 7L", and each could be 
reduced mod p to get P(x) as a product. Let a E 0;1~" 01 be a root of P(x). Let 
K = Op(a),A = {xEKIIxlv :S I},M = {xEK!Ixl" < 1}. Then [K: Q"] = 
J, while the coset a + M satisfies the degree f irreducible polynomial P(x) 
over fF". Hence [AjM: ff"] = J, and K is an unramified extension of degreef 
(We have not yet proved that it is the only one.) 

Now let K be as in the second part of the proposition. Let A = 
{x E K llxl" :S I} be the valuation ring of I I" in K, and let M = 

{x E K I lxl" < I} be the maximal ideal of A, so that A/M = fF"r. Let a E fF"' 
be a generator of the multiplicative group rr:;,. Let a 0 E A be any element 
that reduces to a mod M. Finally, let 'IT E K be any element with ord" 'IT = Ije; 
thus, M ='ITA. 

We claim that there exists a = a0 mod 'IT such that a"1 -l - I = 0. The 
proof is a Hensel's lemma type argument. Namely, we write a = a0 + a 1'1T 
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(mod 7T2 ), so that mod .,.z we need 0 = (a 0 + a 17T)P1 - 1 - 1 = ag' - 1 - 1 + 
(p1 - 1)a17Tag'-z = ag'- 1 - 1- a 17Tag'- 2 (mod7T2). Butag'- 1 = 1 (mod1r), 
so that, if we set a 1 = ( ag'- 1 - 1 )/( 1rag'- 2 ) (mod 1r), then we get the desired 
congruence mod 1r2 • Continuing in this way, just as in Hensel's lemma, we 
find a solution a = a0 + a 17T + a21r2 + · · · to the equation aP1 -l = l. 

Note that a, a2 , ..• , av' - 1 are all distinct, because their reductions 
mod M-a, a2 , .•• , av' - 1-are distinct. In other words, a is a primitive 
(p1 - 1)th root of 1. Also note that [Cilv(a):Ov] ~ J, since/is the residue 
field degree of the extension. (We will soon prove that [Ov(a): Ov] =f) 

The above disc•1ssion applies, in particular, to the field K constructed in 
the first paragraph of the proof. Hence K ::::> Ov(a), where a is a primitive 
(p1 -l)th root of l. Since/= [K:Ov] ~ [Ov(a):Ov] ~f. it follows that 
K = Ov(a). Thus, the unramified extension of degree f is unique. Call it 
Krram. 

We now return to our field K of degree n = ef over Q"' Let E(x) be the 
monic irreducible polynomial of 7T over R = Krram. Let {1r,} be the 
conjugates of 7T over K'jnram, so that E(x) = fl (x - 1r,). Let d be the degree 
and c the constant term of E(x). Then ordv c = d ordv 7T = dje. But since 
ef= n = [K:Ovl = [K:Kynram][Kynram:Ovl = [K:Kynram]j; it follows that 
d :::; e. Since c E Kynram, ordv c is an integer. We conclude that d = e, and 
ordv c = I. Thus, E(x) is an Eisenstein polynomial, and K ~ K~nram(1r). [J 

Corollary. If K is a finite extension of Ov of dewee n, index of ramification e, 
and residue field degreej; and ij'1r chosen so that ordv 7T = I /c. then el'ery 
a E K can be written in one and only one H'ay as 

1rhere ;n = e ordv rt and each a, satisfies a,vr = a, (i.e., the a,'s are Teich­
mu/ler digits). 

The proof of the corollary is easy, and will be left to the reader. 

If m is any positive integer not divisible by p, we can find a power p 1 of p 
which is congruent to I mod m (namely, letfbe the order of pin the multipli­
cative group (7l/m7l) x of residue classe~ mod m of integers prime tom). Then, 
if p 1 - I = mm', and if we adjoin to Ova primitive (p 1 - I )th root a of I, 
it follows that am' is a primitive mth root of I. Hence, we may conclude that 
finite unramified extensions of Ov are precisely the extensions obtained by 
adjoining roots of I of order not divisible by p. 

The union of all the finite unramified extensions of Op is written o~nram 
and is called the "maximal unramified extension of Or." The ring of integers 
7l~nram of o~nram (also called the "valuation ring"), \\hich is 

7lunram = {x E ounram I I X• < I\ 
P def "' P ~ 1 P - J ' 
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has a (unique) maximal ideal Munram = plL~nram = {x E Q~nram I JxJP < 1} = 
{x E o~nram I JxJP :':::: 1/p}. The residue field 7L~nram/p7L~nram is easily seen to 

be the algebraic closure iF p of IF v· Every x E iF P has a unique "Teichmiiller 
representative" x E 7L~nram which is a root of I and has image x in ll_~nram; 
p7L~nram. For this reason, 7L~nram is often called the "lifting to characteristic 

zero of iF v" (also called the "Witt vectors of iF v "). 

Q~nram, which is a much smaller field than Q~Igci, can be used instead of 
Q~Igci in many situations. 

The "opposite" of unramified extensions is totally ramified extensions. 
We can get a totally ramified extension, for example, by adjoining a primitive 
p'th root of !-this will give us a totally ramified extension of degree 
n = e = p'- 1(p - I) (see Exercise 7 below). However, unlike in the un­
ramified case, not by a long shot can all totally ramified extensions be ob­
tained by adjoining roots of I. For example, adjoining a root of xm - p 
clearly gives a totally ramified extension K of degree m; but if Kwere contained 
in the field obtained by adjoining a primitive p'th root of I, we would have 
mJpr- 1(p- 1), which is impossible if, say, m > p and pfm. About all we 
can say about the set of all totally ramified extensions of Ov is contained 
in the proposition at the beginning of this section and in Exercise 14 
below. 

We repeat: An extension K of QP of degree n, index of ramification e, and 
residue field degree f is obtained by adjoining a primitive (p1 - 1 )th root 
of 1 and then adjoining to the resulting field K~nram a root of an Eisenstein 
polynomial with coefficients in K~nram. 

We conclude this section with a couple of useful propositions. 

Proposition (Krasner's Lemma). Let a, bE 0/p ( = Q~Igci), and assume that b 
is chosen closer to a than all conjugates a1 of a (a1 #- a), i.e., 

Then Qp(a) c Qv(b). 

PROOF. Let K = Ov(b), and suppose a¢ K. Then, since a has conjugates 
over K equal in number to [K(a): K], which is > 1, it follows that there is at 
least one a, ¢ K, a1 #- a, and there is an isomorphism a of Qv(a) to QP(a1) 

which keeps K fixed and takes a to a1• We already know, because of the 
uniqueness of the extension of norms, that JaxJP = JxJP for all x E K(a). In 
particular, Jb - a;JP = Jab - aaJP = Jb - aJP, and hence 

Ja; - aJP :':::: max(Jat - bJP, Jb - aJP) = Jb - aJP < Ja, - alP• 

a contradiction. D 

Note that Krasner's Lemma can be proved in exactly the same way in a 

more general situation: If a, bE liiv- K is a finite extension of QP, and for all 
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conjugates a, of a over K (at #- a) we have lb - a/P < /at - aJP, then K(a) c 
K(b). 

Now let K be any field with a norm II JJ. Iff, g E K[X], i.e., f = .L atX1 

and g = .L b,Xt are two polynomials with coefficients in K, we define the 
distance II/- g // from f to g as 

II/- g // ~r max; /Ja, - b,JJ. 

Proposition. Let K be a finite extension of QP. Let f(X) E K[X] have degree n 

Suppose the roots off in QP are distinct. Then for every e > 0 there exists a o 
such that, if g = .Lr = 0 b,X' E K[X] has degree n, and if If- g /P < o, then 
for every root a, of f(X) there is precisely one root f3t of g(X) such that 
/at - f3dP < e. 

PROOF. For each root {3 of g(X) we have 

" /!({3)/p = 1!({3) - g(f3)/P = I L (a; - b1){31/p 
1=0 

where C1 is a suitable constant (see Exercise 3 below). 
LetC2 = min1 sts;snlat- ai/P.Sincethea,'saredistinct,wehaveC2 #- 0. 

Then the relation lf3 - a,IP < C2 is only possible for at most one a, (since if it 
held for another a1 #-a, we'd have /at - aiiP ~ max(/at - f31P• /{3- a1 /p) < 
C2). Since 

C1"o > /!({3)/p 

= Ja,. n ({3 - at)/p (sincef(X) = a,. n (X- at)) 

= la .. /p n lf3 - a,/p. 

it's clear that for o sufficiently small such an a, with /{3 - at/P < C2 must 
exist. Moreover, for that a, we have: 

c "o < 1 1' 
- Ja,.JP.q 

which can be made < e by a suitable choice of o. 0 
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4. n 

So far we've been dealing only with algebraic extensions of QP. But, as 
mentioned before, this is not yet enough to give us the p-adic analogy of the 
complex numbers. 

Theorem 12. QP is not complete. 

PROOF. We must give an example of a Cauchy sentence {a1} in QP such that 
there cannot exist a number a E QP which is the limit of the a1• 

Let b, be a primitive (p21 - l)th root of I in QP, i.e., bf21 - 1 = I, but 
b,m i= l if m < p 21 - l. Note that bf21 • - 1 = 1 if i' > i, because 2112" implies 
p 2 ' - l I p 2'' - I. (In fact, instead of 2' we could replace the exponent of p 
by any increasing sequence whose ith term divides its (i + 1)th, e.g., 3', i!, 
etc.) Thus, if i' > i, b, is a power of b1 •• Let 

! 

a1 = L b1pN1, 
J=O 

where 0 = N 0 < N 1 < N 2 < · · · is an increasing sequence of nonnegative 
integers that will be chosen later. Note that the b1 ,j = 0, l, ... , i, are the 
digits in the p-adic expansion of a1 in the unramified extension Qib1), since 
the b1 are Teichmiiller representatives. Clearly {a1} is Cauchy. 

We now choose the N1, j > 0, by induction. Suppose we have defined N1 

for j :::; i, so that we have our a1 = L}=o b1pN1. Let K = Qp(b1). In §3 we 
proved that K is a Galois unramified extension of degree 2'. First note that 
Oia1) = K, because otherwise there would be an automorphism a of K which 
leaves a1 fixed (see paragraph (ll) in §l). But a(at) has p-adic expansion 
L~=o a(b1)pN1, and a(b,) i= b1, so that a(a1) i= a1 because they have different 
p-adic expansions. 

Next, by exercise 9 of §111.1, there exists N1 + 1 > N, such that a, does not 
satisfy any congruence 

for n < 21 and a 1 E 7LP not all divisible by p. 
This gives us our sequence {a1}. 

Suppose that a E op were a limit of {a.}. Then a satisfies an equation 

where we may assume that all of the a 1 E lLP and not all are divisible by p. 
Choose i so that 21 > n. Since a= a1 (modpN'+'), we have 

a contradiction. This proves the theorem. 0 
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Note that we have actually proved that Q~nram, not only Qp = Q~lgcl, is 
not complete. 

So we now want to "fill in the holes," and define a new field Q to be the 
completion of QP. Strictly speaking, this means looking at equivalence classes 
of Cauchy sequences of elements in QP and proceeding in exactly the same 
way as how QP was constructed from Q (or how IR was constructed from Q, 
or how a completion can be constructed for any metric space). Intuitively 
speaking, we're creating a new field Q by throwing in all numbers which are 
convergent infinite sums of numbers in QP, for example, of the type considered 
in the proof of Theorem 12. 

Just as in going from Q to QP, in going from QP to Q we can extend the 

norm J IP on QP to a norm on Q be defining JxJP = lim1_,Jxt!P, where {x1} 

is a Cauchy sequence of elements in QP that is in the equivalence class of x 
(see §1.4). As in going from Q to QP, it is easy to see that if x i= 0 this limit 
JxJP is actually equal to Jx1JP for i sufficiently large. 

We also extend ordp to Q: 

ordP x = -logPJxfp· 

Let A= {xEDIIx!P::::; 1} be the "valuation ring" of Q, let M = 

{x E DllxiP < 1} be its maximal ideal, and let Ax = {x E DllxiP = 1} = 
A - M be the set of invertible elements of A. Suppose that x E Ax, i.e., 
I x IP = 1. Since 0! P is dense in Q, we can find an algebraic x' such that 
x - x' EM, i.e., I x - x' IP < 1. Since then I x' IP = 1, it follows that x' is 
integral over ZP' i.e., it satisfies a monic polynomial with coefficients in ZP. 
Reducing that polynomial modulo p, we find that the coset x + M = x' + M 
is algebraic oz,er IF P' i.e., lies in some IF pf. Now let w(x) be the (p1 - 1 )th root 
of 1 which is the Teichmilller representative of x + ME IF pf, and set (x) = 

xjw(x). Then (x) E I + M. In other words, any x E Ax is the product of a 
root of unity w(x) and an element (x) which is in the open unit disc about 1. 
(If X E zp has first digit ao, this simply says that X is the product of the Teich­
milller representative of a0 and an element of 1 + pZP.) Finally, an arbitrary 
nonzero x E Q can be written as a fractional power of p times an clement 
x 1 E Q of absolute value 1. Namely, if ordP x = r = ajb (see Exercise 1 
below), then let p' denote any root of xb - pa = 0. Then X = p'xl = 
p' w(x 1 )(x 1 ) for some x 1 of norm 1. In other words, any nonzero element ofO 
is a product of afractional power of p, a root of unity, and an element in the open 
unit disc about 1. 

The next theorem tells us that we are done: Q will serve as the p-adic 
analogue of the complex numbers. 

Theorem 13. Q is algebraically closed. 

PROOF. Let: /(X)= xn + an-lxn-l + ... + aiX +Go, a, E £2. We must 
show that /(X) has a root in n. For each i = 0, I, ... , n - I, let {a,;}; be a 
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sequence of elements of OP which converge to a;. Let g1(X) = xn + 
Gn- 1 ,1Xn- 1 + · · · + auX + a0 ,1• Let r;1 be the roots of g;(X) (i = I, 2, ... , 
n). We claim that we can find i1 (I ~ i1 ~ n) for j = I, 2, 3, ... such that 
the sequence {r;1,1} is Cauchy. Namely, suppose we have r;1.i and we want to 
findr;1+ 1•1+ 1 .LetS1 = Jg1 - g1+ 1 lp = max,(Ja;, 1 - a;, 1 + 1 Jp)(whichapproaches 
0 asj ~ oo). Let A1 = max(l, Jr;1,1 Jpn). Clearly there is a uniform constant A 
such that A1 ~ A for all j (see Exercise 3 below). Then we have 

Hence at least one of the I r;1,1 - r,, 1 + 1! P on the left is ~ ~. Let r;1 + 1 ,1 + 1 be 
any such r;,1 + 1. Clearly this sequence of r,1,1 is Cauchy. 

Now let r = lim, .... "' r;j.i En. Thenf(r) = lim, .... oo/(r;J,f) =lim, .... "' g;(r,j) 
= 0. 0 

Summarizing Chapters I and Ill, we can say that we have constructed n, 
which is the smallest field which contains Q and is both algebraically closed 
and complete with respect to J lp· (Strictly speaking, this can be seen as 
follows: let Q' be any such field; since Q' is complete, it must contain a field 
isomorphic to the p-adic completion of Q, which we can call (lip; then, since 
Q' contains QP and is algebraically closed, it must contain a field isomorphic 
to the algebraic closure of QP, which we can call QP; and, since Q' contains 
op and is complete, it must contain a field isomorphic to the completion of 
QP, which we call Q. Thus any field with these properties must contain a 
field isomorphic to n. The point is that both completion and algebraic 
closure are unique processes up to isomorphism.) 

Actually, n should be denoted np, so as to remind us that everything we're 
doing depends on the prime number p we fixed at the start. But for brevity of 
notation we shall omit the subscript p. 

The field n is a beautiful, gigantic realm, in which p-adic analysis lives. 

EXERCISES 

1. Prove that the possible values of I IP on Ov is the set of all rational powers 
of p (in the positive real numbers). What about on n? Recall that we let the 
ordp function extend to n by defining ordp x = -logv lx lp (i.e., the power 
lfp is raised to get lxlp). What is the set of all possible values of ordp on n? 
Now prove that Ov and n are not locally compact. This is one striking 
difference with IC, which is locally compact under the Archimedean metric 
(the usual definition of distance on the complex plane). 
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2. What happens if you define an "ellipse" in n to be the set of points the sum 
of whose distance from two fixed points a, bE n is a fixed real number r? 
Show that this "ellipse" is either two disjoint circles, the intersection of two 
circles, or the empty set, depending on a, b, and r. What do you get if you 
define a "hyperbola" as {XE Q llx- alp- !x- blp = r}? 

3. Let g(X) = X"+ b,.~1X"~ 1 + · · · + b1X + bo. Let Co= lglp dct maxjlbtlp· 
Show that there exists a constant C1 depending only on Co such that any 
root {3 of g(X) satisfies lf31p < C1. 

4. Let :x be a root of a monic irreducible polynomialf(X) E K[X], where K is a finite 
extension of 11JP. Prove that there exists an 1: > 0 such that any polynomial g(X) 
having the same degree as f and satisfying If- g IP < <: has a root {3 such that 
K(x) = K({J). Show that this is not necessarily the case iff is not irreducible. 

5. Prove that any finite extension K of I!)P contains a finite extension F of the 
rational numbers 11) such that [F: 11)] = [K: Ov] and F is dense in K, i.e., 
for any element x E K and any e > 0 there exists y E F such that lx - YIP < e. 

6. Let p be a prime such that - I does not have a square root in I!)P (see Exercise 
8 of §III.I). Use Krasner's Lemma to find an e such that I!)P(V- a) = 
11Jp(V-=i) whenever !a - liP < e. For what e does Ia - Plv < e imply 
Ov(V~) = 11Jp(Vp)? (Treat the casep = 2 separately.) 

7. Let a be a primitive p"th root of I in QP, i.e., aP" 1 # 1. Find Ia - lip· Also show 
that I a - liP = I if a is a primitive mth root of I and m is not a power of p. 

8. Let K be a finite extension of l!)p· Let m be a positive integer, and let (Kx)m 
denote the set of all mth powers of elements of K x. Suppose that (1) lm IP = 1, 
and (2) K contains no mth roots of I other than 1 itself. (For example, if 
K = l!)p, these two conditions both hold if and only if m is relatively prime 
to both p and p - I, as you can prove as an exercise.) Prove that the index 
of (Kx )m as a multiplicative subgroup in Kx (i.e., the number of distinct 
cosets) is equal to m. 

9. If in the previous exercise we remove the assumption that K contains no nontrivial 
m-th roots of I, show that the index of(K x )minK" equals mw, where w is the number 
of m-th roots of I contained in K. 

10. If K is a totally ramified extension of l!)p, show that every mth root of 1 in K 
is in 11)" if p does not divide m. 

11. Determine the cardinality of the sets l!)p, 0", and n. 
12. Prove that ef = n, where n = [K: Ov]. e is the index of ramification, and f 

is the residue field degree. 

13. Let K be a totally ramified extension of I!)P of degree e. Show that there exists 
{3 E K such that 1.8" - a lv < 1 /p for some a E ?'.p with ordv a = 1. 

14. Suppose K is tamely totally ramified. Using a Hensel's lemma type argument, 
show that f3 can be further adjusted so that ,8" E l!)p, i.e., f3 satisfies x• - a = 
0, where a E ?'.v and ordv a = 1. Note that K = Ov(f3) (explain why). 

15. For any n, show that there are only finitely many extensions of I!)P of degree 
less than or equal to n. 
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16. The complex numbers IC are much more numerous than the rational numbers, 
or even the algebraic numbers, because the latter sets are only countably 
infinite, while IC has the cardinality of the continuum. n is also much, much 
bigger than Q~1g 01, although not in precisely that way (see Exercise 11 above). 
Prove that there does not exist a countably infinite set of elements of n such 
that n is an algebraic extension of the field obtained by adjoining all those 
elements to OP (i.e., the field of all rational expressions involving those 
elements and elements of ijp). One says that n has "uncountably infinite 
transcendence degree over Op." (Warning: this exercise and the next are hard!) 

17. Does n have countably infinite transcendence degree over the p-adic comple­
tion of o~nram? 
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CHAPTER IV 

p-adic power series 

1. Elementary functions 
Recall that in a metric space whose metric comes from a non-Archimedean 
norm II II, a sequence is Cauchy if and only if the difference between adjacent 
terms approaches zero; and if the metric space is complete, an infinite sum 
converges if and only if its general term approaches zero. So if we consider 
expressions of the form 

00 

f(X) = 2 anXn, an E Q, 
n=O 

we can give a value _L;;' = 0 anxn to f(x) whenever an x is substituted for X for 
which lanxnlv-+ 0. 

Just as in the Archimedean case (power series over IR or C), we define the 
"radius of convergence" 

1 r= , 
lim suplanl ~In 

where the terminology" 1/r = lim suplanl~'n" means that 1/r is the least real 
number such that for any C > 1/r there are only finitely many lanl~'n greater 
than C. Equivalently, 1/r is the greatest "point of accumulation," i.e., the 
greatest real number which can occur as the limit of a subsequence of 
{lanl~'n}. If, for example, limn~oolanl~'n exists, then 1/r is simply this limit. 

We justify the use of the term "radius of convergence" by showing that 
the series converges if Jxlv < rand diverges if lxlv > r. First, if lxlv < r, then, 
letting Jxlv = (1 - E)r, we have: Janxnlv = (rlanl~'n)n(l - Et. Since there are 
only finitely many n for which Janl~'n > 1/(r- -!er), we have 

· n . ( (1 - E )r ) n _ . ( 1 - E ) n _ 
hm I anx I v ~ hm (1 -! ) - hm -1 _ ~ - 0. 
n-+oo n-oo - E r n-oo -ze 
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Similarly, we easily see that if [x[ r > r, then anxn does not approach 0 as n---o- x. 
What if [x[v = r? In the Archimedean case the story on the boundary of 

the interval or disc of convergence can be a little complicated. For example, 
log(! + x) = L::= 1 (-It+ 1xn/n has radius of convergence I. When [x[ = I, 
it diverges for x =-I and converges ("conditionally," not "absolutely") for 
other values of x (i.e., for x = l in the case of the reals and on the unit circle 
minus the point x = -I in the case of the complexes). 

But in the non-Archimedean case there's a single answer for all points 
[x[v = r. This is because a series converges if and only if its terms approach 
zero, i.e., if and only if [anlrlxl~ ---o- 0, and this depends only on the norm [xlr 
and not on the particular value of x with a given norm-there's no such thing 
as "conditional" convergence ('L ± an converging or diverging depending on 
the choices of ± 's). 

If we take the same example L::= 1 (-l)n+lxn;n, we find that [anlv = 
pord"n, and limn~oo[an[~ 1 n = I. The series converges for [x[v < I and diverges 
for [x[v > I. If [xlv = l, then [anxnlv = pord"n ;::: I, and the series diverges 
for all such x. 

Now let's introduce some notation. If R is a ring, we let R[[X]] be the ring 
of formal power series in X with coefficients in R, i.e., expressions L:::' =oanxn, 
an E R, which add and multiply together in the usual way. For us, R will 
usually be 7L, Q, 1Lv, Ov, or n. We often abbreviate other sets using this 
notation, for example, 

l + XR[[X]] ct~r VE R[[X]][ constant term a0 offis 1}. 

We define the "closed disc of radius r E IR about a point a E f.!" to be 

Da(r) ~r{XE n llx- a[p ~ r}, 

and we define the "open disc of radius r about a" to be 

Da(,-) ~r {x En I lx- alp < r}. 

We let D(r) ~r D0(r) and D(r-) ~r D0(r-). (Note: whenever we refer to the 

closed disc D(r) in n, we understand r to be a possible value of I lr, i.e., a 
rational power of p; we always write D(r-) if there are no x En with 
[xlv = r.) 

(A word of caution. The terms "closed" and "open" are used only out of 
analogy with the Archimedean case. From a topological point of view the 
terminology is bad. Namely, the set Cc = {x En I lx - alp = c} is open in 
the topological sense, because every point x E Cc has a disc about it, for 
example Dx(c-), all points of which belong to Cc. But then any union of Cc's 
is open. Both Da(r) and D a(r- ), as well as their complements, are such unions: 
for example, Da(,-) = Uc<a Cc. Hence both Da(r) and Da(r-) are simul­
taneously open and closed sets. The term for this peculiar state of affairs in n 
is "totally disconnected topo!ogical space.") 

Just to get used to the notation, we prove a trivial lemma. 
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Lemma 1. Every f(X) E Zv[[X]] converges in D(!-). 

PROOF. Letf(X) = L::'=o anxn, OnE .:Zp, and let X E D(l-). Thus, !xlp < I. 
Also Jan[v :S I for all n. Hence [anxnlv :S Jxlvn--+ 0 as n--+ oo. 0 

Another easy lemma is 

Lemma 2. Ecery f(X) = L::'=oanXn E Q[[X]] which converges in an (open or 
closed) disc D = D(r) or D(r-) is continuous on D. 

PROOF. Suppose [x' - xlv < o, where o < Jxlv will be chosen later. Then 
[x'[P = Jxlv· (We are assuming x of. 0; the case x = 0 is very easy to check 
separately.) We have 

But [xn-1 + xn-2x' + ... + xx'n-2 + x'n-11P :S max1,;;i,;;nJxn-tx'i-1JP = 

jx[~- 1 • Hence 

Since [an[PJx[Pn IS bounded as n--+ oo, this Jf(x)- /(x')[P IS <e for suit­
able o. 0 

Now let's return to our series L::'= 1(- l)n+ 1 xn;n, which, as we've seen, has 
disc of convergence D(l-). That is, this series gives a function on D(l -) 
taking values in Q. Let's call this function logp(l + X), where the subscript p 
reminds us of the prime which gave us the norm on Q used to get D, and 
also remind us not to confuse this function with the classical log(l + X) 
function-which has a different domain (a subset of IR or IC) and range 
(IR or IC). Unfortunately, the notation logP for the "p-adic logarithm" is 
identical to classical notation for" log to the base p." From now on, we shall 
assume that logp means p-adic logarithm 

00 

logp(l + X): D(l -)--+ D, logp(I + x) = L (- l)n+ 1xn/n, 
n=l 

unless explicitly stated otherwise. 
The dangers of confusing Archimedean and p-adic functions will be 

illustrated below, and also in Exercises 8-10 at the end of§ l. 
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Anyone who has studied differential equations (and many who haven't) 
realize that exp(x) = ex = L:;>= 0 xnjn! is about the most important function 
there is in classical mathematics. So let's look at the series L:'=o xnjn! 
p-adically. The classical exponential series converges everywhere, thanks to 
the n! in the denominator. But while big denominators are good things to 
have classically, they are not so good p-adically. Namely, it's not hard to 
compute (see Exercise 14 §1.2) 

ordin !) = n - S1n (Sn = sum of digits inn to base p); 
p-

Our formula for the radius of convergence r = !/(lim sup\an\~1n) gives us 

ordP r = lim inf(~ ordP an), 

(where the "lim inf" of a sequence is its smallest point of accumulation). In 
the case an = 1/n!, this gives 

d I. . f( n- Sn) or P r = 1m In - n(p _ 1) ; 

but limn~oo( -(n- Sn)/(n(p - 1))) = -1/(p- 1). Hence L:'=o xnjn! 'con­
verges if \x\P < p- 1f<p- 1J and diverges if lxlp > p- 1I<P- 1>. What if lxiP = 
p- 1/<P- 1>, i.e., ordP x = 1/(p- 1)? In that case 

d ( ) n- Sn n Sn 
or a xn = ---- + -- = --· P n p-1 p-1 p-1 

If, say, we choose n = pm to be a power of p, so that Sn = I, we have: 
ordiapmXPm) = !j(p - 1), \aPmxPmiP = p- 1/<P- 1 >, and hence anxn r'>- 0 as n _,.. 
oo. Thus, L;;'=o xnjn! has disc of convergence D(p- 11<P- 1>-) (the- denoting 
the open disc, as usual). Let's denote expiX) ct~r L:::'=o xnjn! E Qp[[X]]. 

Note that D(p- 11<P- 1>-) c D(l-), so that expP converges in a smaller 
disc than Iogp! 

While it is important to avoid confusion between log and exp and logP 
and expP, we can carry over some basic properties of log and exp to the p-adic 
case. For example, let's try to get the basic property of log that log of a 
product equals the sum of the logs. Note that if x E D(l-) andy E D(l-), then 
also (1 + x)(l + y) = 1 + (x + y + xy) E 1 + D(!-). Thus, we have: 

<Xl 

logP[(I + x)(I + y )] = L ( -1)n+ 1(x + y + xy )njn. 
n=1 

Meanwhile, we have the following relation in the ring of power series over Q 
in two indeterminates (written Q[[X, Y]]): 

_L(-1)n+1Xnjn + _L(-1)n+1ynjn = _L(-1)n+1(X+ Y+ XY)njn. 
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This holds because over IR or C we have log( I + x)( I + y) = log(! + x) + 
log( I + y), so that the difference between the two sides of the above equality­
call it F(X, Y)-must vanish for all real values of X and Yin the interval 
( -1, 1). So the coefficient of xm yn in F(X, Y) must vanish for all m and n. 

The argument for why F(X, Y) vanishes as a formal power series is 
typical of a line of reasoning we shall often need. Suppose that an expression 
involving some power series in X and Y-e.g., log(! + X), log(l + Y), and 
log(l + X+ Y + XY)-vanishes whenever real values in some interval are 
substituted for the variables. Then when we gather together all xm yn_terms in 
this expression, its coefficient must always be zero. Since this is a general fact 
unrelated to p-adic numbers, we won't digress to prove it carefully here. 
But if you have any doubts about whether you could prove this fact, turn to 
Exercise 21 below for further explanations and hints on how to prove it. 

Returning to the p-adic situation, we note that if a series converges in n, 
its terms can be rearranged in any order, and the resulting series converges 
to the same limit. (This is easy to· check-it's related to there being no such 
thing as "conditional" convergence.) Thus, logv[(l + x)(l + y)] = 2.:= 1 

( -l)n+ 1(x + y + xy)n/n can be written as 2.:-::.n=O Cm,nXnym. But the 
"formal identity" in Q[[X, Y]] tells us that the rational numbers cm,n will be 
0 unless n = 0 or m = 0, in which case: Co,n = Cn,o = (- l t + 1/n (co. a = 0). 
In other words, we may conclude that 

00 00 

logP[(l + x)(l + y)] = 2 (-l)n+1xn/n + 2 (-l)n+lyn/n 
n=l n=l 

= logv(l + x) + logv(l + y). 

As a corollary of this formula, take the case when 1 + xis a pmth root of 1. 
Then lxlv < 1 (see Exercise 7 of §III.4), so that: pm logv(l + x) = logP 
(I + x)Pm = logv I = 0. Hence logv(I + x) = 0. 

In exactly the same way we can prove the familiar rule for exp in the p-adic 
situation: if x, y E D(p- 11<P - 1 )~), then x + y E D(p - 1l<v -u~), and exp/x + y) 

= expv x· expv y. 
Moreover, we also find a result analogous to the Archimedean case as far 

as logv and expv being inverse functions of one another. More precisely, 
supposexE D(p- 1 /(p- 1 )~). ThenexppX =I+ 2.:=1 xnfn!,andordp(xn(n!) > 
nf(p - I) - (n - Sn)f(p - I) = Snf(p - I) > 0. Thus, expv x- 1 E D(l~). 
Suppose we take 

00 

logv(l + expP x- I)= L ( -J)n+ 1(expP x- l)n(n 
n=l 

= ~/-l)n+ 1 c~ xmfm!r;n. 

But this series can be rearranged to get a series of the form 2.:= 1 cnxn. And 
reasoning as before, we have the following formal identity over Q[[X, Y]]: 

n~1 (-l)n+tc~1 xmfm!r/n =X, 
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coming from the fact that log(exp x) = x over IR or C. Hence c1 = I, en = 0 
for n > 1, and 

logp(l + expP x- I)= x for x E D(p- 11<v- 1>-). 

To go the other way-i.e., expv(logil + x))-we have to be a little 
careful, because even if xis in the region of convergence D(l-) oflogp(l + X), 
it is not necessarily the case that logP( I + x) is in the region of convergence 
D(p - 1 t<v - 1>-) of expv X. This is the case if x E D(p - 1 t<v - 1>-), since then for 
n ~ 1: 

n 1 n I n-1 
(ord x fn) - -- > -- - ord n - -- = -- - ord n 

p p-I p-1 p p-1 p-1 P• 

which has its minima at n = 1 and n = p, where it's zero. Thus, ordv logv 
(I + x) ~ minn ordv xnjn > 1/(p - I). Then everything goes through as 
before, and we have: 

expp(logp(l + x)) = I + x for x E D(p- 11<P -ll-). 

All of the facts we have proved about logv and expv can be stated succinctly 
in the following way. 

Proposition. The functions logv and expv give mutually inverse isomorphisms 
between the multiplicative group of the open disc of radius p - 1 t<v - 1> about 1 
and the additive group of the open disc of radius p- 11<P- 1> about 0. 
(This means precisely the following: logv gives a one-to-one correspondence 
between the two sets, under which the image of the product of two numbers 
is the sum of the images, and expv is the inverse map.) 

This isomorphism is analogous to the real case, where log and exp give 
mutually inverse isomorphisms between the multiplicative group of positive 
real numbers and the additive group of all real numbers. 

In particular, this proposition says that logp is injective on D 1(p - 1 t<v - 1>-), 
i.e., no two numbers in D 1(p - 1 t<v - 1>-) have the same logv· It's easy to see 
that D1(p - 1t<v -u-) is the biggest disc on which this is true: namely, a primitive 
pth root ~ of I has I~ - Ilv = p -It<P -I> (see Exercise 7 of §lll.4), and also 
Iogv ~ = 0 = logv I. 

We can similarly define the functions 
00 

sinv: D(p - 1 t<v - 1>-) ~ n, sinP X= L (-l)nX2 n+ 1j(2n +I)!; 
n=O 

co 

cosv X= L ( -l)nX2n/(2n)!. 
n=O 

Another function which is important in classical mathematics is the 
binomial expansion Ba(x) = (I + x)a = 2.:'=o a(a - I)··· (a-n+ 1)/n! xn. 
For any a E IR or C, this series converges in IR or (: if [x[ < I and diverges 
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If lxl > I (unless a is a nonnegative integer); its behavior at lxl = I IS a 
little complicated. and depends on the value of a. 

Now for any a E Q lefs define 

B (X) = ~ a(a- I)··· (a-n + I) xn 
a.P def n~O n! ' 

and proceed to investigate its convergence. First of all, suppose [a[v > I. Then 
ia- ilv = [alv• and the nth term has I lv equal to [ar[//[n!lv· Thus, for 
!alv > I, the series Ba.vCX) has region of convergence D((p- 11<v-ll)j[a[v-)-

Now suppose [aiv ::::;; I. The picture becomes more complicated, and 
depends on a. We won't derive a complete answer. In any case, for any such a 
we have [a- ilv ::::;; I, and so [a(a- I)··· (a-n+ 1)/n! xnlv::::;; [xnjn![v, so 
that at least Ba.v(X) converges on D(P"· 11<P - 1l-). 

We'll soon need a more accurate result about the convergence of Ba.v(X) 
in the case when a E llv. We claim that then Ba.v(X) E llv[[X]] (and, in particu­
lar, it converges on D(l-) by Lemma 1). Thus, we want to show that 
a( a - I)· · ·(a - n + I )/n! E llv. Let a0 be a positive integer greater than n 

such that ordv(a - a0 ) > N (N will be chosen later). Then 
a0(a0 - I) · · · (a0 - n + I )/n! = (~o) E 7l c llv. It now suffices to show 
that for suitable N the difference between a0(a0 - I) · · · (a0 - n + I )jn! and 
a( a - I) · · ·(a - n + I )/n! has [ lv ::::;; I. But this follows because the 
polynomial X(X- I)··· (X- n + I) is continuous. Thus, 

Ba.v(X) E llv[[X]] if a E llv. 

As an important example of the case a E llv, suppose that a = 1/m, 
m f:C 7l, pfm. Let x E D(I-). Then it follows by the same argument as used to 
prove logv( I + x)(l + y) = logP(l + x) + Iogv(l + y) that we have 

[Bum,v(x)]m = I + X. 

Thus, B11 m.v(x) is an mth root of I + x in !.1. (If p[m, this still holds, but now 
we can only substitute values of x in D([mlvP- 11<P- 1l-).) So, whenever a is an 
ordinary rational number we can adopt the shorthand: Ba.vCX) = (I + X)a. 

But be careful! What about the following "paradox"? Consider 4/3 = 

(I + 7/9)112 ; in 7l7 we have ord 7 7/9 = I, and so for x = 7/9 and n ;::: I: 

1
-'-1 /_2(--'1 /_2_---'-1 )_· -c. ·:-'-(1-'--/2_-_n_+---'l) n I 7 _ n/ [ 1 [ I , x :::::: n. 1 < . 

n. 1 

Hence 

1 > [(I + ~) 112 - I[? = [~-- 117 = [![7 = I. 
What's wrong?? 

Well, we were sloppy when we wrote 4/3 = (I + 7/9)112 . In both IR and 
01 the number 16/9 has two square roots ± 4/3. In IR, the series for (I + 7/9)112 

converges to 4/3, i.e., the positive value is favored. But in 1()1 7 , the square 
root congruent to l mod 7, i.e., -4/3 = 1 - 7/3, is favored. Thus, the exact 
same series of rational numbers 

i l/2(1/2 - I)···, (l/2 - n + I) (2)n 
n~o n. 9 
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converges to a rational number both 7-adically and in the Archimedean 
absolute value; but the rational numbers it converges to are different! This is 
a counterexample to the following false "theorem." 

Non-theorem 1. Let 2:::'= 1 an be a sum of rational numbers which converges to a 
rational number in I I P and also converges to a rational number in I I"'. Then 
the rational value of the infinite sum is the same in both metrics. 

For more "paradoxes," see Exercises 8-10. 

EXERCISES 

1. Find the exact disc of convergence (specifying whether open or closed) of the 
following series. In (v) and (vi), logv means the old-fashioned log to base p, 
and in (vii) ~ is a primitive pth root of 1. [ ] means the greatest integer 
function. 

(i) .Ln!Xn (iii) 2: p" X" 

(iv) 2: p"Xv" 

(v) LP[logvnlxn (vii) 2: (~- I)nX"/n! 
(ii) L pn[Iognlxn (vi) L p[logpnlX"/n 

2. Prove that, if 2: an and 2: bn converge to a and b, respectively (where a" b,, a, 
b E Q), then 2: en, where en = .Lr= o a,bn _, converges to ab. 

3. Prove that 1 + XZv[[X]] is a group with respect to multiplication. Let D be 
an open or a closed disc in n of some radius about 0. Prove that {f E I + 
XQ[[X]] If converges on D} is closed under multiplication, but is not a group. 
Prove that for fixed.\, the set of f(X) = 1 + 2:,"': 1 a, X' such that ordv a, - .\i 
is greater than 0 for all i = 1, 2, ... and approaches oo as i---+ oo, is a multipli­
cative group. Next, let/; E 1 + XZv[[X]], j = 1, 2, 3, .... Let/( X) = nt= 1 

J;(X'). Check that /(X) E 1 + XZv[[X]]. Suppose that all of the J; converge 
in the closed unit disc D(l). Does f(X) converge in D(l) (proof or counter­
example)? If all of the nonconstant coefficients of all of the / 1 are divisible by 
p, does that change your answer (proof or counterexample)? 

4. Let {a"} c Q be a sequence with lanlv bounded. Prove that 

oo n! .L an --;---:-:-;----:::----:--------: 
n=o x(x + I)(x + 2) · · · (x + n) 

converges for all x E n not in 7Lv. What can you say if x E Zv? 

5. Let i be a square root of -I in Ov (actually, i lies in Ov itself unless p = 3 
mod 4). Prove that: expv(ix) = cosv x + i sinv x for x E D(p -liCP -ll-). 

6. Show that 2v- 1 = I (mod p2 ) if and only if p divides 2};; f ( -1)i/j (of course, 
meaning that p divides the numerator of this fraction). 

7. Show that the 2-adic ordinal of the rational number 

2 + 22 /2 + 23 /3 + 24 /4 + 25 /5 + 0 0 0 + 2"/n 

approaches infinity as n increases. Get a good estimate for this 2-adic ordinal 
in terms of n. Can you think of an entirely elementary proof (i.e., without 
using p-adic analysis) of this fact, which is actually completely elementary 
in its statement? 
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8. Find the fallacy in the following too-good-to-be-true proof of the irr3tionality 
of -rr. Suppose -rr = a/b. Let p "# 2 be a prime not dividing a. Then 

"' 
0 = sin(pb-rr) = sin(pa) = L (- l)"(paf" + 1 /(2n + 1)! = pa (mod p 2), 

n=o 

which is absurd. 

9. Find the fallacy in the following proof of the transcendence of e. Suppose e 
were algebraic. Then e - I would also be algebraic. Choose a prime p "# 2 
which does not divide either the numerator or denominator of any coefficient 
of the monic irreducible polynomials satisfied by e and by e - I over i(Jl. 

You can show as an exercise that this implies that lelv = le - llv = 1. We 
have: 1 = le - 1lv~' = l(e - 1)~' lv = le~' - l - L:f.;;}(f)(- e)liP· Since the 
binomial coefficients in the summation are all divisible by p, and since 
1-elv =!,it follows that l = le~'- llv = II:=1P"/11!!p, which is impossible 
since each summand has I IP < 1. 

10. (a) Show that the binomial series for (l - pf(p + 1))-" (where 11 is a positive 
rational integer) and for (1 + (p2 + 2mp)/m2 ) 112 (where m is a rational 
integer with m > (v'2 + l)p, pfm) converge to the same rational number as 
real and as p-adic infinite sums. 
(b) Let p ~ 7, 11 = (p - l)/2. Show that (1 + p/112) 112 gives a counter-example 
to Non-theorem 1. 

II. Suppose that rx E i(Jl is such that l + rx is the square of a nonzero rational number a;b 
(written in lowest terms, with a and b positive). LetS be the set of all primes p for 
which the binomial series for (I + rx) 1 2 converges in 1 lp· Thus, pES implies that 
(I + rx)1'2 converges to either ajb or -ajb in 1 lp· We also include the "infinite 
prime" in S if the binomial series converges in I I x = I I, i.e., if rx E (- I, 1 ). Prove 
that: 

(a)Forpanoddprime,pESifandonlyifpla + borpla- b,inwhichcase(l + rx) 1 2 

converges to -ajb when pia+ band to ajb when pia- b. 
(b) 2ES if and only if both a and bare odd, in which case (I+ rx) 112 converges to 
ajb when a= b (mod 4) and to -ajb when a= -b (mod 4). 
(c) IX, E S if and only if 0 < a;b < v lz, in which case (I + rx) 1 2 converges to ajb. 
(d) There is no rx for which S is the empty set, and S consists of one element if rx = 8, 
.if, 3, i and for no other rx. 
(e) There is no rx other than 8, lf-, 3, i for which ( 1 + rx) 1 2 converges to the same value 
in I IP for all pES. (This is one example of a very general theory of E. Bombieri.) 

12. Prove that for any nonnegative integer k, the p-adic number L::=o 111cpn is in i(Jl. 

13. Prove that in i(Jl 3 : 

a:_ 32n "' 32n 

2: <- t )" ~ = 2 · 2: -" · 
n=l n4 n=l n4 

14. Show that the disc of convergence of a power series f(X) = Z: anX" is 
contained in the disc of convergence of its derivative power series {'(X) = 

2: nanX"- 1 • Give an example where the regions of convergence are not the 
same. 
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15. (a) Find an example of an infinite sum of nonzero rational numbers which con­
verges in I I P for every p and which converges in the reals (i.e., in I I oo = I 1). 
(b) Can such a sum ever converge to a rational number in any I IP or I I oo? 

16. Suppose that, instead of dealing with power series, we decided to mimic the 
familiar definition of differentiable functions and say that a function/: !.1--+ !.1 
is "differentiable" at a E !.1 if (f(x) - f(a))/(x - a) approaches a limit in !.1 
as lx - alp--+ 0. First of all, prove that, if /(X) = 2::'=o anX" is a power 
series, then it is differentiable at every point in its disc of convergence, and it 
can be differentiated term-by-term, i.e., its derivative at a point a in the disc of 
convergence is equal to 2:::' = 1 na,,a" - 1 . In other words, the derivative function 
is the formal derivative power series. 

17. Using the definition of "differentiable" in the previous problem, give an 
example of a function f: !.1 --+ !.1 which is everywhere differentiable, has 
derivative identically zero, but is not locally constant (see discussion of 
locally constant functions at the beginning of §II.3). This example can be 
made to vanish along with all of its derivatives at x = 0, but not be constant 
in any neighborhood of 0. Thus, it is in the spirit of the wonderful function 
e- 11 x 2 from real calculus, which does not equal its (identically zero) Taylor 
series at the origin. 

18. The Mean Value Theorem of ordinary calculus, applied to f: IR--+ IR, 
f(x) = xP - x, on the interval {x E IR I lxl :::; 1}, says that, since f(l) = 
f(- l) = 0, we must have 

f'(a) = 0 for some a E IR, Ia I :::; 1. 

(In fact, a= ±(l/p)11 (P- 1 > works.) Does this hold with IR replaced by !Jand 
I I replaced by I IP? 

19. Let/: i(JIP--+ i(JIP be defined by x = 2: GnP">-+ 2: g(an)P\ where 2: GnP" is the 
p-adic expansion of x and g: {0, l, ... , p - l} --+ i(JIP is any function. Prove 
that/is continuous. If g(a) = a2 andp =f. 2, prove that/is not differentiable. 

20. Prove that for any N and for any j = 1, 2, ... , N, 

(l + X)PN - l E p1£:[X] + XPN- j + 1£:[X]. 

Suppose that a/b is a rational number with I alb IP :::; 1, and you want to find 
the first M coefficients (M is a large number) of the power series (I + X)alb 

to a certain p-adic accuracy. Discuss how to write a simple algorithm (e.g., 
a computer program) to do this. (Only do arithmetic in 1:/p"£:, not in i(JI, 
since the former is generally much easier to do by computer.) 

21. If R is any ring, define the ring R[[Xr. ... , Xn]] (abbreviated R[[X]]) of 
formal power series inn variables as the set of all sequences {r11 , ... , 1"} indexed 
by n-tuples i1o ... , in of nonnegative integers (such a sequence is thought of as 
2: r1, ..... 1nX11t • · • Xn'n and sometimes abbreviated 2: r1X'), with addition and 
multiplication defined in the usual way. Thus, {r; 1 , ... ,,.} + {siv·. ;.} = 

{111 , ... , 1.), where /11 , ... , 1• = r, 1 , ... , 1• + s11 , ... , 1.; and {r11 , ... , 1n}·{s11 , ... , 1.} = 
{t,,, ... ,,nl, where t," .. ·,in = 2: rfL, .. ·.insk,, ... ,kn with the summation taken over 
all pairs of n-tuples jlo ... , jn and k,, ... , kn for which j, + k, = i1o 

jz + k2 = i2, .. . ,jn + kn = in. 
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86 

By the minimal total degree deg /of a nonzero power series/ we mean the 
least d such that some r,,, .. ·.•n with i 1 + i2 + · · · + in = dis nonzero. We 
can define a topology, the "X-adic topology," on R[[X]] by fixing some 
positive real number p < I and defining the "X-adic norm" by 

( 10 :x is defined to be 0). 

(I) Show that! lx makes R[[X]] into a non-Archimedean metric space (see 
the first definition in ~I. I; by "'non-Archimedean," we mean, of course, that 
the third condition can be replaced by: d(x, y) <e:: ma ... (d(x, z), d(z, y))). Say 
in \\ ords \\hat it means for I I ix to be < I. 

(2) Show that R[[X]] is complete with respect to I [x. 
(3) Show that an infinite product of series J; E R[[X]] converges if and 

only if If~ - 1[x--+ 0 (where I is the constant power series {r,, ..... 1"} for 
which r0 •.... o = 1 and all other ri ..... i" = 0). We will use this in §2 to see that the 
horrible power series defined at the end of that section makes sense. 

(4) If /E R[[X]], define /d to be the same as f but with all coefficients 
rt 1 ..... in with i, + · · · + in > d replaced by 0. Thus, j~ is a polynomial in n 
variables. Let g, ... , gn E R[[X]]. Note that fig 1(X), g 2(X), ... , gn(X)) is 
well-defined for every d, since it's just a finite sum of products of power series. 
Prove that {fig1(X), ... , g"(X))}a~o.t.2 ... is a Cauchy sequence in R[[X]] if 
L~)x < 1 for j = 1, ... , n. In that case caJI its limit fog. 

(5) Now let R be the field IR of real numbers, and suppose that j, !~. g 1 , ... , 

g" are as in (4), with lg, lx < I. Further suppose that for some E > 0 the 
series/and all of the series g 1 are absolutely convergent >'henever we substi­
tute X, = x, in the interval [- <, e] c IR. Prove that the series/ o g is absolutely 
convergent whenever we substitute X, = x, in the (perhaps smaller) interval 
[- e', e'] for some~,;' > 0. 

(6) Under the conditions in (5), prove that if fo g(x 1 , ... , x") has value 0 
for every choice of x 1, ... , Xn E [- s', <'], then/ o g is the zero power series 
in IR[[X]]. 

(7) As an example, let n = 3, write X, Y, Z instead of X1 , X2 , X 3 , and let 

f(X, Y, Z) = 2 ( -1)1+ 1(X'/i + Y'/i- Z'/i), 
l = 1 

g 1(X, Y, Z) = X, 

g 2(X, Y, Z) = Y, 

gJ(X, Y, Z) = X+ Y + XY. 

As another example, let n = 2, 

00 

g 1(X, Y) = 2 X 1/i!, 
t = 1 

Explain how your result in (6) can be used to prove the basic facts about the 
elementary p-adic power series. (Construct the /and g 1 for one or two more 
cases.) 
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2. The logarithm, gamma and Artin-Hasse exponential 
functions 

In this section we look at some further examples of p-adic analytic functions 
(more precisely, "locally" analytic functions) which have proven useful in 
studying various questions in number theory. The first is Iwasawa's extension 
of the logarithm. 

Recall that the Taylor series logP x = L :'= 1 ( -1)"+ 1(x - lt/n converges 
in the open unit disc around 1. The following proposition says that there is a 
unique function extending logP x to all nonzero x and having certain con­
venient properties. 

Proposition. There exists a unique function logP: !:Y --> Q (where Q x 

Q - {0}) such that: 

(1) logP x agrees with the earlier definition for lx- liP< 1, i.e., 
00 

logPx = 2 (-1)"+ 1(x- ltfn for lx- liP< 1; 
n= 1 

(2) logP (xy) = logP x + logP y for all x, y E Q x; 
(3) logP p = 0. 

PROOF. Recall from §III.4 that any nonzero x E Q can be written in the form 
x = p' w(x d(x 1 ), where p' is some fixed root of the equation xb - p" = 0, 
with r = ajb = ordP x, w(x 1) is a root of unity, and l(x 1)- liP< 1. There 
is thus only one possible way to define logP x consistently with (1)-(3). 
Namely, (2) and (3) imply that logp(p') = logp(w(x 1)) = 0, and hence we 
must have 

00 

logPx = _2(-1)"+ 1((x 1 ) -1)"/n. 
n=1 

We thus know that there is at most one definition of logP x which has 
the desired properties, namely, the definition logP x = logp(x 1). It remains 
to show that the three desired properties are actually satisfied. Properties 
(1) and (3) are obvious from the definition. 

In the course of our definition of logP x, we made a rather arbitrary choice 
of a bth root of p". But if we had chosen another bth root of p" for our p', this 
would have altered x 1 by a bth root of unity and hence would have altered 
w(x 1) and (x 1 ) by certain roots of unity. Notice that the new (x'1 ) would 
have to differ from the old (x 1 ) by a pth power root of unity, because ( = 

(x'1 )/(x 1 ) is in the open unit disc about 1 (see Exercise 7 in §III.4). In any 
case, the definition logP x = logp(x 1 ) would not be affected by this replace­
ment of x 1 by x'1, because logP ( = 0, as remarked in §1. Thus, our definition 
really does not depend on the choice of p'. 

We now prove property (2). Let x = p'w(xd(x 1), y = p5w(y 1)(y 1), 

z = xy = p'+sw(z 1)(z 1 ). Now pr+s is not necessarily the same fractional 
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power of pas p' ps; it may differ by a root of unity. But the definition of logP z 
does not change if we change our choice of p'+s to p'p5 • In that case, z 1 

zjp'ps = XIJ' 1, and so <z 1 ) = <x 1 )<y 1 ), and 

logP z = logP<z 1 ) = logP<x 1 ) + logp(v 1 ) = logP x + logP y, 

where the middle equality was proved in the last section in our discussion of 
the power series 2: (- 1)" + 1 x" jn. This completes the proof of the proposition. 

D 

Now let Xo of. 0 be a fixed point of n. Let r = I Xo [p, and suppose that 
x is in the largest disc about x 0 which does not contain zero, i.e., DxJr-). 
Then [x/x0 - 1[P < 1, and so 

a; 

logP x = logp(x0(1 + x/x0 - 1)) = logP x 0 + 2 ( -1)"+ 1(x - x0)"/nx~. 
n~J 

Thus, in Dx0(r-) the function logP x can be represented by a convergent power 
series in x - x 0 . Whenever a function can be represented by a convergent 
power series in a neighborhood of any point in its region of definition, we 
say that it is locally analytic. Thus, logP x is a locally analytic function on 
n- {O}. 

Recall from Exericse 16 of §1 that the usual definition of the derivative 
can be applied to p-adic functions, and that power series are always differ­
entiable in their region of convergence, with the derivative obtained by 
term-by-term differentiation. In particular, applying this to logP x in Dx0(r-), 
we obtain 

d 0:: 

--log x= 2C-1)"+ 1(x-x0 )". 1/xZ 
dx p n= I 

Q 

= x0 1 2 (1 - x/x 0 )" 
n=O 

= x0 1 /(x/x 0 ) = 1/x 

for x E D,0(r- ). We conclude: 

Proposition. logp X is locally analytic on n - {0} with derivative 1/x. 

The next function we discuss is the p-adic analogue of the gamma-function. 
The classical gamma-function is a function from IR to IR which "inter­

polates" n! (actually, r(s) is defined for complex s, but we aren't interested in 
that here). More precisely, it is a continuous function of a real variable s 
excluding s = 0, -1, -2, -3, ... (where it has "poles") which satisfies 

res + 1) = s! for s = 0, 1' 2, 3, .... 

Since the positive integers are not dense in IR, there are infinitely many 
functions which satisfy this equality; but there is only one which has certain 
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other convenient properties. This gamma-function can be defined for s > 0 
by: 

r(s) = toe xs-le-x dx. 

Thus, the gamma-function is the" Mellin transform" of e-x (see §7 of Chapter 
II). It is not hard to check (see Exercises 6-7 below) that this improper integral 
converges for s > 0, and that the function r(s) defined in this way satisfies 
r(s + 1) = sr(s) for all s > 0. In addition, r(l) = r e-xdx = 1; then 
r(s + 1) = sr(s) = s(s- l)r(s- 1) = · · · = s!r(l) = ~!, so this function 
really is an interpolation of the factorial function. 

We would now like to do something similar p-adically, i.e., find a con­
tinuous function from 7l.P to 7l.P whose values at positive integers s + 1 
coincide with s!. 

We shall assume that p > 2 in what follows; minor modifications are 
needed if p = 2. 

Recall from §2 of Chapter II under what conditions a function f(s) on 
the positive integers can be interpolated to all of 7l.P. Such a continuous 
interpolation exists if and only if for every £ > 0 there exists N such that 

s = s' (mod pN) implies I f(s) - f(s') IP < £. (*) 

In that case the interpolating function is unique and is defined by 

f(s) = lim f(k). 
k~s,kd" 

Unfortunately, the basic condition(*) does not hold for f(s) = (s- 1)!, 
since, for example, 1 f(1) - f(1 + pN) IP = 1 for any N > 0, since p divides 
s! whenever s 2 p. The problem is that, whenever s is a large integer in the 
old-fashioned archimedean sense, s! is divisible by a large power of p, i.e., 
f(s)-+ 0 p-adically ass-+ XJ. 

We could modify the factorial function in a way analogous to how we 
modified the Riemann zeta-function in Chapter II ("removing the Euler 
factor") by discarding indices divisible by p. That is, we could try to inter­
polate the f(s) defined by: 

s' 
f(s + I)= n j = [I J; rs;p1· 

j<;s,p{' j S p .p 

However, once again we have problems (see Exercise 8 below). But if we 
modify f(s) one final time by a mere change in sign for odd s, we can then 
interpolate. 

Proposition. Let 

rp(k) = (-1)k n j, k = 1, 2, 3, .... 
j<k,p{' j 
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Then r P extends uniquely to a continuous jimction r P: 7LP--> 7L; defined by 

rp(s) = lim (-I)' n j. 

PROOF. It suffices to prove ( *); in fact we shall prove that 

k' = k + k,p~ implies fp(k) = f)k') (modpN). 

Notice that rp(k) E 7L; (that is why rp will be a map from 7LJ! to 7L; as soon 
as we show that the continuous interpolation exists). Hence the right side 
of the above implication is equivalent to the congruence 

n j (mod p'''>. 
k<: j<k',p{'j 

If we prove this for k 1 = I, i.e., fork'= k + pN, then by multiplying together 
the congruences with k replaced by k + ipl\ (i = 0, ... , k 1 - 1) 

n j (mod pN), 

we immediately obtain the desired congruence. Since p is odd, we have 
( -l)P" = -1, and so we have reduced the proof to showing that 

n j = -I (mod {JN). 

Since the product runs through every congruence class in (7L/pN7L) x exactly 
once, we have 

[1 i= n j (mod p"). 
O<j<pN,p{' j 

Thus, it remains to prove that the product on the right is = - 1 (mod p.v). We 
now pair off elements j and j' which satisfy jj' = I (mod pN). For each j 
there is precisely one such j'. Since p > 2, there are only two values of j for 
which j' = j, i.e., for which / = I (mod pN) (see Exercise 9 below). Thus, 

n = ( njj')(l)( -I)= -1 (mod p"''), 
0 < j< pX, P ~ j 

as desired. 0 

The key step in the proof, the congruence for [1 i< p". P ,r j j, is a generaliza­
tion of Wilson's theorem, which is the case N = I: (p - 1)! = -I (mod p). 

Basic properties of rr. 

~ p(.s + ___!l = { - s 
rp(.\) -1 

if S E 7L;; 

if SEp7LP. 
(1) 

PROOF. Since both sides are continuous functions from d' P to 7L;, it suffices 
to check equality on the dense subset N, i.e., when s = kEN. But then it 
follows immediately from the definition of r p(k). 0 
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2 The logarithm, gamma and Artin-Hasse exponential functions 

(2) If s E 7LP, writes= s0 + pst. where s0 E {1, 2, ... , p} is the first digit ins 
unless s E plLP, in which case s0 = prather than 0. Then 

PROOF. Again by continuity it suffices to check this when s = k. For s = 1 the 
equality holds because r p( 1) = - 1 by definition, and r p(O) = - r p(1) = 1 
by property (1). Now use induction, assuming the equality for s = k and then 
proving it fork + 1. Using property (1), we have 

rp{s + 1)rp{l- (s + 1)) = {-sj(-(-s)) = -1 if sElL;; 
rp{s)rp{1- s) -1/(-1) = 1 if SEplLP, 

and this shows that the equality in (2) for s + 1 follows from the equality for s. 
0 

(3) For s E 7LP, define s0 and s1 as in property (2). Let m be any positive 
integer not divisible by p. Then 

n;:':d rp((~ + h)/m) = m1-socm-(p-1))'1. 
rp(s) n;:'=1 rp(hjm) 

Remarks. 1. The expression on the right makes sense, because the number 
being raised to the p-adic power, namely m-<p- 1>, is congruent to 1 mod p. 

(See §2 of Chapter II.) Of course, s0 is a positive integer, so m1-so makes 
sense. 

2. The classical gamma-function can be shown to satisfy the "Gauss­
Legendre multiplication formula" 

n ;:': d r((s + h)/m) 1-s 
r(s) n;:':l r(hjm) = m . 

PROOF OF (3). Let f(s) be the left side and let g(s) be the right side of the 
equation. Both f and g are continuous, so it suffices to check equality for 
s = kEN. For s = k = 1 both sides are clearly 1. We proceed by induction 
on k. We have 

f(s + 1) = rp{s)rp((s/m) + 1) = {1/m if sElL;; 
f(s) rp(s+l)rp(sjm) 1 if SEplLP" 

On the other hand, if s E 7L;, we have g(s + 1)/g(s) = 1/m, since then (s + 1)0 

= s0 + 1 and (s + 1)1 = s1, while if s E plLP we have g(s + 1)/g(s) = 1, since 
then (s + 1)0 = s0 - (p - 1) and (s + 1)1 = s1 + 1. Hence f(s + 1)/f(s) = 
g(s + 1)/g(s), and the induction step follows. 0 

This concludes our discussion of the p-adic gamma-function. 
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IV p-auic power series 

We now introduce an "elementary function" which is "better" than 
expv-has a larger disc of convergence-and which can often be used to play 
a similar role to exp in situations when better convergence than D(p- 11<v- 1>-) 
is needed. To do this, we first give an infinite product formula for the ordinary 
exponential function, in terms of the "Mobius function" IL(n), which is often 
used in number theory. For n E {I, 2, 3, ... } we define 

{
0, 

!-'(n) = (_I)\ 
if n is divisible by a perfect square greater than 1; 

if n is a product of k distinct prime factors. 

Thus, I = !-'0) = !-'(6) = !-'(221) = !-'( 1155), 0 ~ !-'(9) = !-'(98), - 1 = !-'(2) = 
!-'(97) = !-'(30) = 1-'0 05). A basic fact about IL is that the sum of the values 
of IL over the divisors of a positive integer n equals I if n = I and 0 otherwise. 
This is true because, if n =Pta,.·· Psa' is the decomposition into prime 
factors, and if s ~ 1, then we have: 

.L !-'(d) = 
d)n 

.L 
all possible 

Et=Oorl,i=l.···,s 

We now claim that the following "formal identity" holds in Q[[X]]: 
00 00 

exp(X) = fl (I - X")-~'"l'" ~~ rJ B_ll<nltn.i -Xn). 
n = 1 n=- 1 

(Note that this infinite product of infinite series makes sense, since the nth 
series starts with I - 1-'(n)/nXn, i.e., has no powers of X less than the nth; 
thus, only finitely many series have to be multiplied together to determine 
the coefficient of any given power of X.) To prove this, take the log of the 
right hand side. You get: 

00 r x} l 
1~[)~1-'(n) (j = old mn), 

gathering together coefficients of the same power of X. By the basic property 
of IL proved above, this equals X. Taking exp of both ~ides, we obtain the 
desired formal identity. 

(Several times we have used the principle, mentioned in the discussion of 
logP and developed in Exercise 21 of the last section, that manipulation of 
formal power series as though the variables \\ere real numbers is justified 
as long as the series involved all converge in some interval about 0.) 

If we look at f1:~ 1 (I - X")-~'" 1 " p-adically, we can focus in on where 
the "trouble" comes in. By "trouble" I mean why it only converges on 
D(p - 1 lp- 11 -) and not on D( I- ). Namely. if pIn and p2 {' n. then (I - X")- 1' 1" 11 " 

only converges when an x is substituted for which 

lx"lv = lxlv" E D(r-), where r = p-1 <v-1)11-~-'~n) lv = p-ll<v-lllnlv· 
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2 The logarithm, gamma and Artin-Hasse exponential functions 

For example, if n = p, then this converges precisely when 

( 1) 1/p lxlp < p-1t<P-1> p = p-1t<P-1l. 

But as long as pfn we're O.K.: that is, since - p.(n)/n E ll..p, we have 
(1 - xn)-ll(n)/n E ll..p[[X]]. (Remember in all this that (I - X")" is just 
shorthand for B .. ,p(- xn) = Li=o a( a - I) ... (a - i + 1)/i! (- xnn 

So let's define a new function Ev, which we call the "Artin-Hasse ex­
ponential," by just forgetting about the "bad" terms in the infinite product 
(this is very similar to our "removing the Euler factor" in order to define 
the p-adic zeta-function in Chapter II): 

co 

Ep(X) de'r n (1 - xn)-ll(n)/n E Q[[X]]. 
n=1 
ptn 

Since each infinite series B-,.<n>tn,v(- xn) is in I + Xnll..p[[X]], their infinite 
product makes sense (only finitely many have to be multiplied to get the 
coefficient of any given power of X), and it lies in l + Xll..v[[X]]. 

We can easily find a simpler expression for Ep(X), using the property of 
the JL function: 

:2 p.(d) = {I if n is a. power of p; 
tt\n,vttt 0 otherwise. 

This property follows immediately from the earlier property of p., applied to 
nfpordpn in place of n. Considering Ep(X) over IR (or C) and taking the loga­
rithm as before gives: 

logEv(X) =- :2 I!:..!!... :2- = :2 -:- :2 p.(n) 
co ( ) co xmn co [Xi ] 

n=1 n m=1 m J=1 1 n\j,ptn 
ptn 

Hence, 

( XP xv2 xv3 ) 
E (X) = exp X + - + - + - + .. · , 

p p p2 p3 

as an equality of formal power series in Q[[X]). 
The important thing about Ev(X), in distinction from expv (X), is that 

Ev(X) E lLv[[X]]. Thus, Ev(X) converges in D(l-). It can be seen (Exercise 11 
of §IV.4) that this is its exact disc of convergence, i.e., it does not converge 
on D(l). 

We conclude this section with a useful general lemma, due to Dwork. 

Lemma 3. Let F(X) = L a1X 1 E 1 + XQv[[X]]. Then F(X) E 1 + Xll..v[[X]] 
if and only if F(XP)/(F(X))P E 1 + pXlLv[[X]]. 

PROOF. If F(X) E 1 + Xll..v[(X]], then, since (a + b)P =: av + bP (mod p) and 
av = a (mod p) for a E lLv, it follows that 

(F(X))P = F(XP) + pG(X) for some G(X) E Xll..p[[X]]. 
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Hence 

F(XP) pG(X) 
(F(X))P = 1 - (F(X))P E I + pXZ'p[[X]], 

because (F(X))P E 1 + X.Zp[[X]] and hence can be inverted (see Exercise 3 
of §1). 

In the other direction, write 

F(XP) = (F(X))"G(X), 

G(X) = L b,Xi, 

G(X) E I + pXZ'p[[X]], 

F(X) = L a,X'. 

We prove by induction that a, E Z' •. By assumption, a0 = I. Suppose a, E Z'p 
for i < n. Then, equating coefficients of xn on both sides gives 

a if p divides n} . . (' ~ )v( ~~ ) 
Ontv h . = coeffiCient of xn 111 L a, X' I + L b, X' · 

ot erw1se ;~o .~1 

If we expand the polynomial on the right, subtract antp in the case p\n (and 
recall that an1v = a~'P mod p), and notice that the resulting expression 
consists of pan added to a bunch of terms in pZ'v, we can conclude that 
pan E pZ'p, i.e., an E Z'v- D 

Dwork's lemma can be used to give an easy direct proof (without using 
the infinite product expansion) that the formal power series Ep(X) = 

eX+<x•;vJ+<X" 21 • 2J+· .. has coefficients in z. (see Exercise 17 below). 

Dwork's lemma, which seems a little bizarre at first glance, is actually an 
example of a deep phenomenon in p-adic analysis. It says that if we know 
something about F(XP)j(F(X))P, then we know something about F. This 
quotient expression F(X•)j(F(X))• measures how much difference there is 
between raising X to the pth power and then applying F, versus applying F 
and then raising to the pth power, i.e., it measures how far off F is from 
commuting with the pth power map. The pth power map plays a crucial 
role, as we've seen in other p-adic contexts (recall the section on finite fields). 
So Dwork' s lemma says that ifF" commutes to within mod p" with the pth 
power map, i.e., F(XP)j(F(X))" = I + p· Z: (p-adic integers) Xi, then F has 
p-adic integer coefficients. 

We apply this lemma to a function that will come up in Dwork's proof of 
the rationality of the zeta-function. First, note that Lemma 3 can be general­
ized as follows: Let F(X, Y) = 2: am,nXn ym be a power series in two variables 
X and Y with constant term I, i.e., 

F(X, Y) E 1 + XQv[[X, Y]] + YQv[[X, Y]]. 

Then all the am.n's are in Z'P if and only if 

F(Xv, P)/(F(X, Y))P E I + pXZ'v[[X, Y]] + p YZ'v[[X, Y]]. 

The proof is completely analogous to the proof of Lemma 3. 
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We now define a series F(X, Y) in Q[[X, Y]] as follows: 

F(X, Y) = Bx,p(Y)B<x" -Xl/P,P( YP)B<x"•- x"Jtv•.P( yv•)· .. B<x•" -x••-1)/P",v( yv")· .. 

= (1 + Y)x(I + yvyx•-XliP(l + yv•)<x• 2 -x•JtP• ... 

" n. -1 x (1 + yv•yx• -x• ltv• . .. 

~ X(X- 1) ···(X- i + 1) 1 
L.., ., y 

t=O 1. 

"' ( "' xv•- xv•-1 (XP" - xv•-1 ) OL n n -1 ... 
n=l t=O P P 

x -z+1 --· ( XP"- xv•- 1 . ) ytv") 
pn i! 

Since we only have to take finitely many terms in the product to get the co­
efficient of any xn ym, this is a well-defined infinite series F(X, Y) = 
.Z:am,nxn ym in 1 + XQP[[X, Y]] + YQP[[X, Y]]. We use the generalization 
of Lemma 3 to prove that am,n E 7Lp. Namely ,we have 

F(XP, P) 
(F(X, Y))P 

( 1 + YP/• (1 + yv•yx•2 - x•liP(l + YP3)<x•3- x• 2Jtv• ... 

(1 + Y) pX(l + yvy•-x(1 + p•)<X" 2 -x•JtP ... 

(1 + P)X 
(1 + Y)pX 

We must show that (1 + P)x/(1 + Y)Px is in 1 + pX7LP[[X, Y]] + 
p Y1Lp[[X, Y]]. Applying Lemma 3 in the other direction shows that, since 
1 + Y E 1 + Y7LP[[ Y]], it follows that 

(l + P)/(1 + Y)P = 1 + p YG( Y), G( Y) E 7Lp[[ Y]]. 

Thus, 

(1 + YP)X = (1 + YG(Y))x = ~ X(X- 1)·. ·(X-i+ I) t(YG(Y))t 
( 1 + Y)PX p ~~ i ! p , 

which is clearly in 1 + pX1Lp[[X, Y]] + p Y1Lp[[X. Y]]. We conclude that 
F(X, Y) E 7Lp[[X, Y]]. 

ExERCISES 

1. Find log7 42 mod 74 and log2 15 mod 212 . 

2. Prove that the image of 7LP under logP is p7LP for p > 2 and is 47L 2 for p = 2. 

3. For p > 2 and a E 7L;, prove that p2 divides logP a if and only if ap- 1 = 1 mod p2. 

4. Find the derivative of the locally analytic function x logP x - x. 

5. Suppose that a function f: n X ---> n satisfies properties ( 1) and (2) of the proposition 
at the beginning of this section. Prove thatf(x) must be of the formf(x) = logP x 
+ c ordP x for some constant c En. 

95 



IV p-adic power series 

6. Verify that the improper integral J; xs- 'e-x dx converges if and only if s > 0. 

7. Using integration by parts, prove that r(s + 1) = sr(s), where r(s) is defined by the 
integral in Exercise 6. 

8. Show that the functionf(s) = n j<s,p{jj for sEN does not extend to a continuous 
function on zp. 

9. For p > 2, show that if/- 1 = 0 mod pN, thenj = ±I mod pN. What happens if 
p = 2? 

10. Show that r p( 1/2)2 = - C/), where (=f) = 1 if x 2 = - 1 has a solution in IF P and 
it equals -I otherwise. 

11. Compute r 5(1/4) and ro(1/3) to four digits (if you don't have a computer or pro­
grammable calculator handy, then compute them to two digits). 

12. Let J=l E Z5 denote the root with ftrst digit 3, and let J...:.3 E Z 7 be the root with 
first digit 2. Use Exercise 9 of §1.5 and Exercise 11 above to verify the following 
equalities to 4 digits: 

r 5(1/4) 2 = -2 + J=-1; r 7(1/W = (1- 3J=-3)/2. 

Note: These equalities are known to be true, but no down-to-earth proof 
(without p-adic cohomology) is known for them. They are special cases of a more 
general situation. To explain this, let us take, for example, the second equality. Then 
for p = 7 we let ( = e2" 117 E C be a primitive pth root of unity, and let 

w = (- 1 + ye))/2 = e2•1!3 

be a nontrivial (p - 1 )th root of unity. Next take a generator of the multiplicative 
group IFPx (see Exercise 2 of §111.1); in our case p = 7 let us take 3. Then 

is known as a Gauss sum. It is not hard to verify that the right side of the second 
equality above is equal to g 3 j7. More generally, one can prove that, whenever ajd 
is a rational number whose denominator divides p - 1, the p-adic number r p(a/d)d 
is an element of the field i(JI(w), where w is a primitive dth root of unity. (Exercise 10 
gives another special case of this, in which a/d = 1/2, w = -1.) Namely, it turns out 
that r p(ajd)d can be expressed in terms of suitable Gauss sums. (For a treatment of 
this, see Lang, Cyclotomic Fields, Vol. 2, or else Koblitz, p-adic Analysis: a Short 
Course on Recent Work.) 

Note, by the way, that this shows a major difference between r P and the classical 
r-function, since, for example, r(l/3) is known to be transcendental. 

13. Lets = r/(p - 1) be a rational number in the interval (0, 1), and let m be a positive 
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integer not divisible by p. Prove that 

I J;:d rp((s + h)/m) 
---- -----

rp(.s) I r;:/ r"(h/m) 

is equal to the Teich muller representative of m11 - silt- PI (i.e., to the (p - 1 )th root 
of unity in Z P which is congruent mod p to m 1 - P +' = m'). (Recall that if r P is re­
placed by the classical r-function, then this expression equals m1 -s). 



3 Newton polygons for polynomials 

14. Prove that expP X, (sinP X)/ X, and cosP X have no zeros in their regions of 
convergence, and that Ev(X) has no zeros in D(l- ). 

15. Find the coefficients up through the X4 term in Ev(X) for p = 2, 3. 

16. Find the coefficients in Ev(X) through the xv- 1 term. Find the coefficient of 
xv. What fact from elementary number theory is reflected in the fact that the 
coefficient of xv lies in 1Lv? 

17. Use Dwork's lemma to give another proof that the coefficients of Ev(X) 
are in 1Lv. 

18. Use Dwork's lemma to prove: Let /(X) = exp(l:i"=o b,Xv'), b, E Ov. Then 
f(X). E I + X7Lv[[X]] if and only if b, _ 1 - pb1 E p7Lv for i = 0, l, 2, ... 
(where b_ 1 d~ 0). 

3. Newton polygons for polynomials 

Letf(X) = I + Lf= 1 a1X 1 E I + XD[X] be a polynomial of degree 11 with 
coefficients in Q and constant term I. Consider the following sequence of 
points in the real coordinate plane: 

(0, 0), (I, ordv a 1), (2, ordv a2 ), ••• , (i, ordv a.), ... , (n, ordP an). 

(If a1 = 0, we omit that point, or we think of it as lying "infinitely" far 
above the horizontal axis.) The Newton polygon of f(X) is defined to be the 
"convex hull" of this set of points, i.e., the highest convex polygonal line 
joining (0, 0) with (n, ordv an) which passes on or below all of the points 
(i, ordv a1). Physically, this convex hull is constructed by taking a vertical 
line through (0, 0) and rotating it about (0, 0) counterclockwise until it hits 
any of the points (i, ordv a1), taking the segment joining (0, 0) to the last such 
point (i1 , ordp a1,) that it hits as the first segment of the Newton polygon, 
then rotating the line further about (i1 , ordp a1,) until it hits a further point 
(i, ordp a1) (i > i1), taking the segment joining (il> ordp a,) to the last such 
point {i2 , ordP a12) as the second segment, then rotating the line about 
(i2 , ordP a12) and so on, until you reach (n, ordP an). 

As an example, Figure I shows the Newton polygon for f(X) = I + 
X 2 + j-X3 + 3X4 in llb[X]. 

By the vertices of the Newton polygon we mean the points (ii> ordp a11) 

where the slopes change. If a segment joins a point (i, m) to (i', m'), its slope is 
(m'- m)/(i'- i); by the "length of the slope" we mean i'- i, i.e., the 
length of the projection of the corresponding segment onto the horizontal 
axis. 

Lemma 4. In the above notation, let f(X) = (1 - X/a1) • • · (l - X fan) be the 
factorization of f(X) in terms of its roots a, En. Let Aj = ordp If a,. Then, 
if A is a slope of the Newton polygon having length /, it follows that precisely I 
of the A; are equal to A. 
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(4, I) 

(3, -I) 

Figure IV. I 

In other words, the slopes of the Newton polygon of.f(X) "are" (counting 
multiplicity) the p-adic ordinals of the reciprocal roots of .f(X). 

PROOF. We may suppose the a, to be arranged so that A1 :::;; A2 :::;; · · · :::;; An. Say 
A1 = A2 = · · · = A, < Ar+ 1 • We first claim that the first segment of the 
Newton polygon is the segment joining (0, 0) to (r, rA1). Recall that each a1 is 
expressed in terms of I jab lja2 , ••• , I fan as ( -IY times the ith symmetric 
polynomial, i.e., the sum of all possible products of i of the Ija's. Since the 
p-adic ordinal of such a product is at least iA1 , the same is true for a,. Thus, the 
point (i, ordP a.) is on or above the point (i, iA1), i.e., on or above the line 
joining (0, 0) to (r, rA1). 

Now consider a,. Of the various products of r of the !/a's, exactly one has 
p-adic ordinal rA1 , namely, the product Ij(a1a2 • ··a,). All of the other 
products have p-adic ordinal > rA~> since we must include at least one of the 
A, +I• A,+ 2 , ... , An. Thus, a, is a sum of something with ordinal rA1 and 
something with ordinal > r,\~> so, by the "isosceles triangle principle," 
ordP a, = rA1• 

Now suppose i > r. In the same way as before, we see that all of the 
products of i of the I fa's have p-adic ordinal > iA1 • Hence, ordP a1 > iA1• If 
we now think of how the Newton polygon is constructed, we see that we 
have shown that its first segment is the line joining (0, 0) with (r, rA1). 

The proof that, if we have A. < As+ 1 = As+ 2 = · · · = As+r < As+r+ 1 , then 
the line joining (s, A1 + A2 + · · · + A.) to (s + r, A1 + A2 + · · · + A. + rA. + 1) 

is a segment of the Newton polygon, is completely analogous and will be 
left to the reader. 0 

4. Newton polygons for power series 

Now let .f(X) = 1 + .L~ 1 a;Xi E 1 + XU[[ X]] be a power series. Define 
.fn(X) = I + .Lr= 1 a,X1 E I + XO[X] to be the nth partial sum of f(X). 
In this section we suppose that.f(X) is not a polynomial, i.e., infinitely many 
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Figure IV.2 

ai are nonzero. The Newton polygon of[(X) is defined to be the "limit" of the 
Newton polygons ofthef~(X). More precisely, we follow the same recipe as in 
the construction of the Newton polygon of a polynomial: plot all of the points 
(0, 0), (I, ordv a 1), ... , (i, ordv a,), ... ; rotate the vertical line through (0, 0) 
until it hits a point (i, ordv at), then rotate it about the farthest such point it 
hits, and so on. But we must be careful to notice that three things can happen: 

(I) We get infinitely many segments of finite length. For example, take 
f(X) = I + 2.t"= 1 i 2 X 1, whose Newton polygon is a polygonal line inscribed 
in the right half of the parabola y = x 2 (see Figure 2). 

(2) At some point the line we're rotating simultaneously hits points 
(i, ordv a,) which are arbitrarily far out. In that case, the Newton polygon 
has a finite number of segments, the last one being infinitely long. For example, 
the Newton polygon of f(X) = I + 2._,"'= 1 X' is simply one infinitely long 
horizontal segment. 

(3) At some point the line we're rotating has not yet hit any of the (i, ordv aJ 
which are farther out, but, if we rotated it any farther at all, it would rotate 
past such points, i.e., it would pass above some of the (i, ordv a,). A simple 
example isf(X) = 1 + 2.. ~ 1 pXi. In that case, when the line through (0, 0) 
has rotated to the horizontal position, it can rotate no farther without passing 
above some of the points (i, 1 ). When this happens, we let the last segment of 
the Newton polygon have slope equal to the least upper bound of all possible 
slopes for which it passes below all of the (i, ordP a;). In our example, the 
slope is 0, and the Newton polygon consists of one infinite horizontal segment 
(see Figure 3). 

A degenerate case of possibility (3) occurs when the vertical line through 
(0, 0) cannot be rotated at all without crossing above some points (i, ordP a;). 
For example, this is what happens withf(X) = L ~ 0 Xi/pi 2

• In that case,.f(X) 
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• • • 

Figure IV.3 

is easily seen to have zero radius of convergence, i.e.,f(x) diverges for any 
nonzero x. In what follows we shall exclude that case from consideration and 
shall suppose that.f(X) has a nontrivial disc of convergence. 

In the case of polynomials, the Newton polygon is useful because it 
allows us to see at a glance at what radii the reciprocal roots are located. We 
shall prove that the Newton polygon of a power series f(X) similarly tells 
us where the zeros of f(X) lie. But first, let's make an ad hoc study of a 
particularly illustrative example. 

Let 

X X 2 X 1 1 
f(X) = 1 +- +- + · · · +--+···=--log (1 -X) 2 3 i+l X p • 

The Newton polygon off( X) (see Figure 4, in which p = 3) is the polygonal line 
joining the points (0, 0), (p- I, -1), (p2 - I, -2), ... , (p1 - I, -j), ... ; 
it is of type (I) in the list at the beginning of this section. If the power series 
analogue of Lemma 4 of §3 is to hold, we would expect from looking at this 
Newton polygon that f(X) has precisely pJ+ 1 - pi roots of p-adic ordinal 
1/(pi+l - p'). 

But what are the roots of -1/ X logil - X)? First, if x = 1 - ~. where 
~ is a primitive p' + 1th root of I, we know by Exercise 7 of §III.4 that ordP x = 
lf(pJ+ 1 - p'); and we know by the discussion of logp in §IV.l that logP 
(I - x) = logP ~ = 0. Since there are p1 + 1 -pi primitive pH 1th roots of 1, 
this gives us all of the predicted roots. Are there any other zeros of f(X) in 
D(l-)? 

Let x E D(l-) be such a root. Then for any j, x, = 1 - (1 - x)P1 E D(l-) 
is also a root since logP(l - x,) = p 1 logP(I - x) = 0. But for j sufficiently 
large, we have x, E D(p- 11<P- 1>-). For x, E D(p- 11<P- 1>-), we have I - x, = 
expv{logv(l - x,)) = expp 0 = I. Hence (I - x)P1 = I, and x must be one 

• • • • • • 
• 

Figure IV.4 
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of the roots we already considered. Thus, the appearance of the Newton 
polygon agrees with our knowledge of all of the roots of logp(l - X). 

We now proceed to prove that the Newton polygon plays the same role for 
power series as for polynomials. But first we prove a much simpler result: 
that the radius of convergence of a power series can be seen at a glance from 
its Newton polygon. 

Lemma 5. Let b be the least upper bound of all slopes of the Newton polygon of 
f(X) = I + Lt"'= 1 aiXi E I + XQ[[X]]. Then the radius of convergence is 
pb (b may be infinite, in which case f(X) converges on all of 0). 

PROOF. First let lxlp < pb, i.e., ordp x > -b. Say ordp x = -b', where 
b' < b. Then ordp(a,xi) = ordP ai - ib'. But it is clear (see Figure 5) that, 
sufficiently far out, the (i, ordp ai) lie arbitrarily far above (i, b'i), in other 
words, ordp(a,xi)--?- oo, and f(X) converges at X= x. 

/ 

/ 
/ 

Figure IV.5 

Now let lxlp > pb, i.e., ordp x = -b' < -b. Then we find in the same 
way that ordp(aixi) = ordP a; - b'i is negative for infinitely many values of i. 
Thus f(x) does not converge. We conclude that f(X) has radius of conver­
gence exactly pb. D 

Remark. This lemma says nothing about convergence or divergence 
when lxiP = pb. It is easy to see that convergence at the radius of convergence 
("on the circumference") can only occur in type (3) in the list at the beginning 
of this section, and then if and only if the distance that (i, ordp a;) lies above 
the last (infinite) segment approaches oo as i--?- oo. An example of this 
behavior is the power seriesf(X) = l + Li"= 1 iXP', whose Newton polygon 
is the horizontal line extending from (0, 0). This f(X) converges when 
ordv x = 0. 

One final remark should be made before beginning the proof of the power 
series analogue of Lemma 4. If cEQ, ordp c = A, and g(X) = f(X/c), then 
the Newton polygon for g is obtained from that for fby subtracting the line 

101 
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y = Ax-the line through (0, 0) with slope A-from the Newton polygon forf 
This is because, if f(X) = I + 2: a,X' and g(X) = I + 2: b,X', then we 
have ordP b, = ordp(a,jc') = ordv a, - Ai. 

Lemma 6. Suppose that t\ 1 is the first slope of the Newton polygon off( X) = 

I + ,2:,"': 1 a, X' E I + X!l[[X]]. Let c E n, ordp c = A :s:; A1. Suppose that 
f(X) converges on the closed disc D(pA) (by Lemma 5, this automatically 
holds ifA < A1 or if the Newton polygon off( X) has more than one segment). 
Let 

g(X) = (I - c X).f(X) E I + Xt![[X]]. 

Then the Newton polygon ofg(X) is obtained by joining (0, 0) to (I, A) and 
then translating the Newton polygon off( X) by I to the right and A upward. 
In other words, the Ne1rton polygon of g(X) is obtained by "joining" the 
Nell' ton polygon of the polynomial (I - eX) to the Newton polygon of the 
power series f(X). In addition, iff( X) has last slope A, and conrerges on 
D( p' 1). I hen g( X) also com·erge., on D(p' 1 ). C onrerse/y, if g( X) co m-erges on 
D(p'·1 ). then so does f"(X). 

PROOF. We first reduce to the special case c = I, A = 0. Suppose the lemma 
holds for that case, and we havef(X) and g(X) as in the lemma. Then.f~(X) = 

f(X/c) and g 1(X) = (I - Xif1(X) satisfy the conditions of the lemma with 
c, A, A1 replaced by I, 0, A1 - A, respectively (see the remark immediately 
preceding the statement of the lemma). Then the lemma, which we're assum­
ing holds for.f~ and g 1 , gives us the shape of the Newton polygon of g 1(X)(ancl 
the convergence of g 1 on D(p't- A) when{ converges on D(pAt)). Since g(X) = 

g 1(cX), if we again use the remark before the statement of the lemma, we 
obtain the desired information about the Newton polygon of g(X). (See 
Figure 6.) 

Thus, it suffices to prove Lemma 6 with c = I, A = 0. Let g(X) = 1 + 
,2:,"': 1 b,X'. Then, since g(X) = (I - X)f(X), we have bt+ 1 = a,+l -a, for 
i ~ 0 (with a0 = 1), and so 

ordp b, + 1 ~ min( ordP a,+~> ordp a,), 

with equality holding if ordp a,+ 1 =1= ordP a, (by the isosceles triangle principle). 
Since both (i, ordP a,) and (i, ordP a,+l) lie on or above the Newton polygon 
of f(X), so does (i, ordp b, + 1). If (i, ordP a,) is a vertex, then ordP at+ 1 > 
ordp a, and so ordp b, + 1 = ordP a,. This implies that the Newton polygon of 
g(X) must have the shape described in the lemma as far as the last vertex of 
the Newton polygon of .f(X). It remains to show that, in the case when the 
Newton polygon off( X) has a final infinite slope t\1, g(X) also does; and, if 
f(X) converges on D(pJ.f), then so does g(X) (and conversely). Since ordP bi+ 1 

~ min(ordP ai+ 1, ordP aJ, it immediately follows that g(X) converges wher­
ever .f(X) does. We must rule out the possibility that the Newton polygon of 
g(X) has a slope A.g which is greater than A.1 . If the Newton polygon of g(X) 
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Figure IV.6 

did have such a slope, then for some large i, the point (i + 1, ordP aJ would 
lie below the Newton polygon of g(X). Then we would have ordP bi > 
ordP ai for all j ;;:: i + 1. This first of all implies that ordP ai + 1 = ordP ai, 

because ai+ 1 = bi+ 1 + ai; then in the same way ordP ai+z = ordP ai+ ~>and 
so on: ordP aj = ordP ai for allj > i. But this contradicts the assumed con­
vergence ofj(X) on D(l). The converse assertion (convergence of g implies 
convergence off) is proved in the same way. 0 

Lemma 7. Let f(X) = 1 + 2:t";, 1 a,X1 E 1 + XD[[X]] have Newton polygon 
with first slope A1 • Suppose that f(X) converges on the closed disc D(p"',), 
and also suppose that the line through (0, 0) with slope ,\1 actually passes 
through a point (i, ordp a,). (Both of these conditions automatically hold if 
the Newton polygon has more than one slope.) Then there exists an x for 
which ordP x = -,\1 and f(x) = 0. 

PROOF. For simplicity, we first consider the case ,\ 1 = 0, and then reduce the 
general case to this one. In particular, ordp at ~ 0 for all i and ordp a1 -+ oo 
as i-+ oo. Let N ~ 1 be the greatest i for which ordp a1 = 0. (Except in the 
case when the Newton polygon of f(X) is only one infinite horizontal line, 
this N is the length of the first segment, of slope ,\1 = 0.) Let fn(X) = 

1 + 2:r= 1 a,X1. By Lemma 4, for n ~ N the polynomialfn(X) has precisely N 
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roots Xn,l> .. . , Xn,N with ordv Xn,t = 0. Let xN = xN, 1 , and for n ~ N let 
Xn + 1 be any of the Xn + 1,1> ... , Xn + 1,N with ixn+ 1,, - Xniv minimal. We claim 
that {xn} is Cauchy, and that its limit x has the desired properties. 

For n ~ N let Sn denote the set of roots of fn(X) (counted with their 
multiplicities). Then for n ~ N we have 

- n 11- Xnl 
xESn + 1 X P 

N 

= n II- Xn/Xn+1,dp (sinceifxESn+1hasordpx < 0, 
j;1 

we then have II - Xn/xlv = 1) 
N 

= n lxn+1,i- Xnlp (since ixn+1,dp = I) 
j; 1 

by the choice of Xn + 1. Thus, 

lxn+1 - XnlvN:::;; ifn+1(xn)- fnCxn)iv = ian+1X~+ 1 Iv = ian+dv· 

Since lan+llv---+ 0 as n---+ w, it follows that {xn} is Cauchy. 
If Xn---+ X E Q, We further have j(x) = limn~ 00 fn(X), while 

since ja,lv:::;; 1 and \(x1 - Xn1)/(x- Xn)iv = \x1 - 1 + x 1- 2Xn + x1- 3Xn 2 + · · · 
+ x~- 1 \v:::;; 1. Hence,f(x) = limn~oofn(x) = 0. This proves the lemma when 
,\1 = 0. 

Now the general case follows easily. Let 7T E n be any number such that 
ordv 7T = A1. Note that such a 7T exists, for example, take an ith root of an 
a1 for which (i, ordv a,) lies on the line through (0, 0) with slope A1 . Now let 
g(X) = f(X j7T). Then g(X) satisfies the conditions of the lemma with A1 = 0. 
So, by what's already been proved, there exists an x0 with ordv x0 = 0 and 
g(x0 ) = 0. Let x = x 0/7T. Then ordv x = -,\1 andf(x) = f(x0/7T) = g(x0 ) = 0. 

0 

Lemma 8. Let f(X) = 1 + :z:t;, 1 a1X 1 E I + XQ[[X]] converge and have 
value 0 at a. Let g(X) = 1 + 2t'; 1 b,X1 be obtained by dividing f(X) by 
1 - Xja, or equivalently, by multiplying f(X) by the series 1 + X/a + 
X 2/a2 + · · · + X 1/a1 + · · · . Then g(X) converges on D(\aiv). 

PROOF. Letfn(X) = 1 + 2:r; 1 a,X1• Clearly, 

b1 = 1/a1 + ada1- 1 + a 2/a1 - 2 + · · · + a1_da +a;, 
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so that 
b1a 1 = ft(a). 

Hence lb1a1lv = !J,(a)!p-+ 0 as i-+ oo, becausef(a) = 0. 0 

Theorem 14 (p-adic Weierstrass Preparation Theorem). Let f(X) = 1 + 
L:/';, 1 a1X 1 E 1 + XD[[X]] converge on D(p;.'). Let N be the total horizontal 
length of all segments of the Newton polygon having slope :::; A if this horizontal 
length is finite (i.e., if the Newton polygon of f(X) does not have an infinitely 
long last segment of slope A). If, on the other hand, the Newton polygon of 
f(X) has last slope A, let N be the greatest i such that (i, ordP a1) lies on that 
last segment (there must be a greatest such i, because f(X) converges on 
D(p;.,)). Then there exists a polynomial h( X) E 1 + XD[X] of degree Nand 
a power series g(X) = 1 + L:t'~ 1 b1X 1 which converges and is nonzero on 
D(p;.,), such that 

h(X) = f(X) · g(X). 

The polynomial h(X) is uniquely determined by these properties, and its 
Newton polygon coincides with the Newton polygon of f(X) out to (N, 
ordp aN). 

PROOF. We use induction on N. First suppose N = 0. Then we must show 
that g(X), the inverse power series of f(X), converges and is nonzero on 
D(p;.,). This was part of Exercise 3 of §IV.1, but, since this is an important 
fact, we'll prove it here in case you skipped that exercise. As usual (see the 
proofs of Lemma 6 and 7 and the remark right before the statement of 
Lemma 6), we can easily reduce to the case A = 0. 

Thus, suppose f(X) = 1 + L a1Xt, ordv a1 > 0, ordp a1 -+ oo, g(X) = 

1 + L: b1X 1• Sincef(X)g(X) = 1, we obtain 

b; = -(b1 _ 1al + b1 _ 2a2 + · · · + b1a;-1 + a1) fori;?: 1, 

from which it readily follows by induction on i that ordP b1 > 0. Next, we 
must show that ordP b1 -+ oo as i-+ oo. Suppose we are given some large M. 
Choose m so that i > m implies ordp a1 > M. Let 

e = min( ordP a~> ordP a2 , ••• , ordP am) > 0. 

We claim that i > nm implies that ordP b, > min(M, ne), from which it will 
follow that ordP b,-+ oo. We prove this claim by induction on n. It's trivial 
for n = 0. Suppose n ;?: 1 and i > nm. We have 

b; = -(bi-lal + ... + b;-mam + bi-(m+l)am+l + ... + a;). 

The terms b,_ p 1 with j > m have ordp{b1 _ 1a;);?: ordp a1 > M, while the 
terms withj:::; m have ordP(b,_ 1a1) ;?: ordP b,_ 1 + e > min(M, (n- 1)e) + e 

by the induction assumption (since i- j > (n - 1)m) and the definition of e. 
Hence all summands in the expression for b1 have ordv > min(M, ne). This 
proves the claim, and hence the theorem for N = 0. 
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Now suppose N ::::: 1, and the theorem holds for N - 1. Let A1 ::; A be 
the first slope of the Newton polygon of f(X). Using Lemma 7, we find an a 

such thatf(a) = 0 and ordP a = -A1 . Let 

By Lemma 8, / 1(X) converges on D(p"t). Let c = 1/a, so that: f(X) = 

(1 - cX)f1(X). If the Newton polygon of/1(X) had first slope A1 ' less than At. 
it would follow by Lemma 7 thatf1(X) has a root with p-adic ordinal -A1 ', 

and then so wouldf(X), which it is easy to check is impossible. Hence A/ ::::: At. 
and we have the conditions of Lemma 6 (with/1,/, A1', and A1 playing the roles 
off, g, A1 , and A, respectively). Lemma 6 then tells us thatf1(X) has the same 
Newton polygon asf(X), minus the segment from (0, 0) to (I, A1). In addition, 
in the case when f (and hence / 1) have last slope A, because f converges on 
D(p"), Lemma 6 further tells us that/1 must also converge on D(p"). 

Thus, / 1 (X) satisfies the conditions of the theorem with N replaced by 
N - 1. By the induction assumption, we can find an h1(X) E I + XG[X] of 
degree N - I and a series g(X) E I + XG[[X]] which converges and is 
nonzero on D(p"), such that 

h1(X) = / 1(X)·g(X). 

Then, multiplying both sides by (I - eX) and setting h(X) = (I - cX)h1(X), 
we have 

h(X) = f(X) · g(X), 

with h(X) and g(X) having the required properties. 
Finally, suppose that h 1(X) E I + XQ[X] is another polynomial of 

degree N such that h 1 (X) = f(X)g 1 (X), where g 1 (X) converges and is non­
zero on D(pA). Since h 1(X)g(X) = f(X)g(X)g 1(X) = h(X)g 1(X). uniqueness 
of h(X) follows if we prove the claim: h 1g = hg 1 implies that h 1 and h have 
the same zeros with the same multiplicities. This can be shown by induction 
on N. For N = 1 it is obvious, because h 1(x) = 0 ¢;> h(x) = 0 for x E D(pA). 
Now suppose N > l. Without loss of generality we may assume that -A is 
ordP of a root r:t. of h(X) having minimal ordP. Since r:t. is a root of both h(X) 
and h 1(X) of minimal ordP, we can divide both sides of the equality h 1(X)g(X) 
= h(X)g 1(X) by (l - X/r:t.), using Lemma 8, and thereby reduce to the case 
of our claim with N replaced by N - 1. This completes the proof of Theorem 
14. D 

Corollary. If a segment of the Newton polygon off( X) E I + XG[[X]] has finite 
length N and slope A, then there are precisely N values of x counting 
multiplicity for which f(x) = 0 and ordP x = -A.. 

106 



Exercises 

Another consequence of Theorem 14 is that a power series which converges 
everywhere factors into the (infinite) product of (1 - X/r) over all of its roots 
r, and, in particular, if it converges everywhere and has no zeros, it must be a 
constant. (See Exercise 13 below.) This contrasts with the real or complex 
case, where we have the function ex (or, more generally, en<x>, where his any 
everywhere convergent power series). In complex analysis, the analogous 
infinite product expansion of an everywhere convergent power series in terms 
of its roots is more complicated than in the p-adic case; exponential factors 
have to be thrown in to obtain the "Weierstrass product" of an "entire" 
function of a complex variable. 

Thus, the simple infinite product expansion that results from Theorem 14 
in the p-adic case is possible thanks to the absence of an everywhere conver­
gent exponential function. So in the present context we're lucky that expv has 
bad convergence. But in other contexts-for example, p-adic differential 
equations-the absence of a nicely convergent exp makes life very compli­
cated. 

EXERCISES 

1. Find the Newton polygon of the following polynomials: 

(i) I - X+ pX2 (ii) l - X 3 jp2 (iii) l + X 2 + pX4 + p3 X 6 

(iv) L.f~ 1 iX'- 1 (v) (l- X)(l- pX)(J- p3 X)(dothisintwoways) 
(vi) flf:1 (I - iX). 

2. (a) Let /(X) E l + XZ'v[X] have Newton polygon consisting of one segment 
joining (0, 0) to the point (n, m). Show that if n and m are relatively prime, 
thenf(X) cannot be factored as a product of two polynomials with coefficients 
in Z'v. 
(b) Use part (a) to give another proof of the Eisenstein irreducibility criterion 
(see Exercise 14 of §1.5). 
(c) Is the converse to (a) true or false, i.e., do all irreducible polynomials have 
Newton polygon of this type (proof or counterexample)? 

3. Let f(X) E I + XZ'v[X] be a polynomial of degree 2n. Suppose you know 
that, whenever a is a reciprocal root of f(X), so is pjcx (with the same multipli­
city). What does this tell you about the shape of the Newton polygon? Draw 
all possible shapes of Newton polygons of such f(X) when n = I, 2, 3, 4. 

4. Find the Newton polygon of the following power series: 

(i) L.t"~o xv'- 1 /p' (ii) L..~a((pX)' + xv') (iii) Lt~O i!X' 
(iv) 2:,~ 0 X'/i! (v) (I - pX 2 )/(I - p2 X 2) (vi) (I - p 2 X)/(I - pX) 

(vii) Jl,ro~o(l- p'X) (viii) 2_,"'~oP( 1 ./ 21 X' 

5. Show that the slopes of the finite segments of the Newton polygon of a power 
series are rational numbers, but that the slope of the infinite segment (if there 
is one) need not be (give an example). 

6. Show by a counterexample that Lemma 7 is false if we omit the condition 
that the line through (0, 0) with slope ,\ 1 pass through a point (i, ordv a,), 
i > 0. 

107 



IV p-adic power series 

7. Suppose.f(X) E 1 + XQ[[X]] has Newton polygon which is the degenerate case (3), 
i.e., a vertical line through (0, 0). In other words, if the vertical line through (0, 0) is 
rotated counterclockwise at all, it passes above some points (i, ordP a,). Prove that 
f(x) diverges for any nonzero x E Q. 

8. Let .f(X) = 1 + ~.";, 1 a; X' E 1 + XQ[[X]] converge in D(p•) where .l. is a rational 
number. Prove that maxx•D!p Jl.f(x)lp is reached when lxiP = p•, i.e., on the "cir­
cumference," and that this maximal value off(x) has p-adic ordinal equal to 

mint= o. 1 •••• ( ord, at - iA), 

i.e., the minimum distance (which may be negative) of the point (i, ord, at) 
above the line through (0, 0) with slope A. 

9. Let f(X) = :Lt"'=o atX' E Z,[[X]]. Suppose that f(X) converges in the closed 
unit disc D(l). Further suppose that at least two of the a, are not divisible by 
p. Prove that f( X) has a zero in D(l ). 

10. Let f(X) be a power series which converges on D(r) and has an infinite 
number of zeros in D(r ). Show that f( X) is identically zero. 

11. Prove that E,(X) converges only in D(l -)(i.e., not in D(l)). 

12. Let g(X) = h(X)If(X), where g(X) E l + XO[[X]] has all coefficients in 
D(l), and where h(X) and f(X) E I + XO[X] are polynomials with no 
common roots. Prove that h(X) and f(X) also have all coefficients in D(l). 

13. Suppose thatf(X) E l + X!l[[X]] converges on all of n. For every A, let h~(X) 
be the h(X) in Theorem 14. Prove that h" ~/as A~ oo (i.e., each coefficient 
of h" approaches the corresponding coefficient of f). Prove that f has in­
finitely many zeros if it is not a polynomial (but only a countably infinite set 
of zeros r 1 , r 2 , ... ), and that /(X) = I I.""= 1 (I - X /r,). In particular, there is 
no nonconstant power series which converges and is nonzero everywhere (in 
contrast to the real or complex case, where, whenever h(X) is any everywhere 
convergent power series, the power series eh<X1 is an everywhere convergent 
and nonzero power series). 
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CHAPTER V 

Rationality of the zeta-function of a set 
of equations over a finite field 

1. Hypersurfaces and their zeta-functions 

IfF is a field, let A.~ denote "n-dimensional affine space over F," i.e., the set 
of ordered n-tup1es (x1 , •.. , Xn) of elements X; of F. Let /(XI> ... , Xn) E 

F[X1o ... , Xn] be a polynomial in the n variables X1o ... , Xn. By the affine 
hyper surface defined by fin A.~, we mean 

H, d~f {(x1, ... , Xn) EA.~ I f(x1, ... , Xn) = 0}. 

The number n - 1 is called the dimension of H1. We call H1 an affine curve if 
n = 2, i.e., if H1 is one-dimensional. 

The companion concept to affine space is projective space. By n-dimen­
sional projective space over F, denoted IP~, we mean the set of equivalence 
classes of elements of 

.4,~+ 1 - {(0,0, ... ,0)} 

with respect to the equivalence relation 

In other words, as a set IP~ is the set of all lines through the origin in A.~+ 1 • 

A.~ can be included in IP~ by the map (xi> ... , Xn) f-+ {I, xJ> ... , Xn). 
The image of A.~ consists of all of IP~ except for the" hyperplane at infinity" 
consisting of all equivalence classes of (n + 1 )-tuples with zero x0-coordinate. 
That hyperplane looks like a copy of IP~-I, by virtue of the one-to-one 
correspondence 

equiv. class of (0, x 1, •.. , Xn) f-+ equiv. class of (x1 , ••. , xn). 

(For example, if n = 2, the projective plane IP~ can be thought of as the 
affine plane plus the "line at infinity.") Continuing in this way, we can write 
IP~ as a disjoint union 

A.Fn U A.~- 1 U A.~- 2 U · · · U A} U point. 
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V Rationality of the zeta-function of a set of equations over a finite field 

By a homogeneous polynomial /(X0 , •.• , Xn) E F[X0 , ... , Xn] of degree d 
we mean a linear combination of monomials of the same total degree d. For 
example, Xo 3 + X0 2 X 1 - 3X1 X2 X3 + X 3 3 is homogeneous of degree 3. 
Given a polynomial f(X~> ... , Xn) E F[X~> ... , Xn] of degree d, its homo-
geneous completion /(X0 , Xr. ... , Xn) is the polynomial 

Xgj(Xr/ Xa, ... , Xn/ Xa), 

which is clearly homogeneous of degree d. For example, the homogeneous 
completion of X3 3 - 3X1 X 2 X 3 + X 1 + I is the above example of a homo-
geneous polynomial of degree 3. · 

If ](X0 , ••• , Xn) is homogeneous, and if j(x0 , ... , xn) = 0, then also 
/(Ax0, ... , Axn) = 0 for ,\ E F x. Hence it makes sense to talk of the set of 
points (equivalence classes of (n +I )-tuples) of IP~ at which /vanishes. That 
set of points fir is called the projective hypersurface defined by J in IP~ .. 

If ](X0 , •.. , Xn) is the homogeneous completion of f(Xr. ... , Xn), then 
Rr is called the projective completion of H1. Intuitively, R1 is obtained from 
H 1 by "throwing in the points at infinity toward which H1 is heading." For 
example, if H1 is the hyperbola (say F = IR) 

Xr 2 _ Xz 2 = I 
az bz ' 

then](X0 , Xr. X2 ) = X 1 2 ja2 - X 2 2 /b 2 - X0 2, and R1 consists of 

{(!, X 1 , X2)IX1 2/a2 - Xz 2/b2 = I} U {(0, I, X2)IXz = ±b/a}, 

i.e., H 1 plus the points on the line at infinity corresponding to the slopes of 
the asymptotes. 

Now let K be any field containing F. If the coefficients of a polynomial are 
in F, then they are also in K, so we may consider the "K-points" of H 1, i.e., 

HJCK) dct {(Xr, ... , Xn) E A'].: I j(Xr, ... , Xn) = 0}. 

If /(X0 , ••• , Xn) is homogeneous, we similarly define R7(K). 
We shall be working with finite fields F = IF0 and finite field extensions 

K = IF o'· In that case H 1(K) and fi1(K) consist of finitely many points, since 
there are only finitely many (namely, qsn) n-tuples in all of A'k (and only 
finitely many points in IP'k). In what follows H1 (orR 1) will be fixed through­
out the discussion. In that case we define the sequence Nr. N2 , N3 , ... to be 
the number of IF0-, IF0z-, IF0s-, ... -points of H1 (or R1), i.e., 

Ns d~r #(HJCIFo')). 

Given any sequence of integers such as {N,} which has geometric or number 
theoretic significance, we can form the so-called "generating function" 
which captures all the information conveyed by the sequence { NJ in a 
power senes. This is the "zeta-function," which is defined as the formal 
power senes 
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1 Hypersurfaces and their zeta-functions 

We write this function as Z(H1j'f0 ; T), where 'f0 indicates what the original 
field F was. Note that the power series Z(Hrf'f0 ; T) has constant term I. 

Before giving some examples, we prove a couple of elementary lemmas. 

Lemma 1. Z(H1/IF 0 ; T) has coefficients in 7L. 

PROOF. We consider the K-points P = (xi> ... , xn) of H1 (K a finite extension 
of IF q) according to the least s = s0 for which all xi E IF q'O. If P = (x1i, ... , xn), 
j = I, ... , s0 , are the "conjugates" of P, i.e., x11 , ••• , x,,0 are the conjugates 
of X; = Xn over 'f0 , then the P1 are distinct, because if all of the x, are left 
fixed by an automorphism a of 'f0 'o over IF0 , it follows that they are all in a 
smaller field (namely, the "fixed field" of a: {x E 'f0 'o I a(x) = x}). 

Now let's count the contribution of P 1 , •.. , P,0 to Z(Hr/'f0 ; T). Each of 
these points is an IF0•-point of H 1 precisely when IF0 ' :::::> IF0•o, i.e., when s0 Js (see 
Exercise I of §III.I). Thus, these points contribute s0 to N,0 , N2, 0, N3 , 0 , •.• , 

and so their contribution to Z(H1/IF 0 ; T) is: 

(
00 ) 1 00 

exp ;~ s0 T 1'ojjs0 = exp( -log( I - Po)) = I _ Po = ;~ Tl'o. 

The whole zeta-function is then a product of series of this type (only finitely 
many of which has first T-term with degree s s0 ), and so has integer co­
efficients. D 

Remark. Note that a corollary of the proof is that the coefficients are 
positive integers. 

Lemma 2. The coefficient ofT1 in Z(HrfiF0 ; T) iss qn1• 

PROOF. The maximum value for N, is q"' =#A~,,,. The coefficients of 
Z(H1j'f 0 ; T) are clearly less than or equal to the coefficients of the series with 
Ns replaced by q"'. But 

exp(~ q"'Pjs) = exp( -log( I - qnT)) = Ij(I - q"T) = 1~ qnfTi. D 

As a simple example, let's compute the zeta-function of an affine line 
L = Hx, c A~ •. We haveN, = q', and so 

1 
Z(Lj'f 0 ; T) = exp('f.q'P/s) = exp(-log(l- qT)) = 1 _qT. 

The zeta-function IS defined analogously for projective hypersurfaces, 
where now we use 

R, d~ #(H7('f o' )). 

For example, for a projective line L we have N, = q• + 1, and so 

Z(lj'f0 ; T) = exp('f.(q•Pjs + P/s)) 

1 
= exp( -log( I - qT) - log(l - T)) = (I _ T)(l _ qT) 
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V Rationality of the zeta-function of a set of equations over a finite field 

It turns out that it's much more natural to work with projective hypersurfaces 
than with affine ones. 

For example, take the unit circle X1 2 + X2 2 = I, whose projective 
completion is ifr, J = X 1 2 + X 2 2 - X0 2 • It's easier to compute Z (ih/'f q; T) 
than Z(Hr/'fq; T). (We're assuming thatp=char 'fq =f. 2.) Why is it easier? 
Because there is a one-to-one correspondence between Hy(K) and l(K) (I 
denotes the projective line). To construct this map, project from the south 
pole onto the line X2 = I, as shown in Figure I. A simple computation gives: 

L 

------~---------+----~--1r-------XI 
I 

I 
I 

Figure V.l 

X 1 = 4tj(4 + t 2), x 2 = (4 - t 2)/(4 + t 2), t = 2x1((x2 + 1). This map goes 
bad in the t-to-x direction if t 2 = -4, i.e., for 2 values oft if qs = I (mod 4) 
and no values oft if qs = 3 (mod 4) (see Exercise 8 of §III. I). It goes bad in 
the other direction when x 2 = -1, x1 = 0. But if we take the projective 
completions and let (X0 , X 1 , X2) be coordinates for the completed circle 
and (X0', X/) for the completed line, then it is easy to check that we have a 
perfectly nice one-to-one correspondence given by 

(xo, xi> x 2 ) f--':>- (x2 + x 0 , 2x1) if (x2 + x 0 , 2x1 ) =f. (0, 0), and (0, I) otherwise. 

The reader should carefully verify that this does in fact give a one-to-one 
correspondence between the projective line and the set of equivalence classes 
of triples (x0 , xi> x2 ) satisfying x1 2 + x2 2 - x0 2 = 0. Thus, since Ns'is the 
same for fi1 and I, we have 

If we wanted to know Z(H1/'fq; T), f = X1 2 + X2 2 - I, we'd have to 
subtract from Ns the points "at infinity" on Hr. i.e., those for which x 1 2 + 
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1 Hypersurfaces and their zeta-functions 

x2 2 = x0 2 and x0 = 0. There are 2 such points whenever -1 has a square 
root in IF q' and no such points otherwise. 

Case (1). q = 1 (mod 4). Then -1 always has a square root in IFq' (see 
Exercise 8 of §III.1 ), and 

N, = N,- 2, 

Z(H /IF . T) = Z(fi,/IFq; T) = 1[(1 - T)(l - qT)] = ~. 
r q, ( oo ) 1/(1 - T) 2 1 - qT 

exp L: 2P/s 
s= 1 

Case (2). q = 3 (mod 4). Then it is easy to see that N, = N, if s is odd, 
and N, = N, - 2 if s is even, so that 

Z(H /IF . T) = Z(Hr/IFq; T) 
f q, ( 00 ) 

exp • ~1 2T2'/2s 

1/[(1 - T)(l - qT)] 1 + T 
1/(l - T 2 ) = 1 - qT. 

Notice that in all of these examples, as well as in the examples in the 
exercises below, the zeta-function turns out to be a rational function, a ratio 
of polynomials. This is an important general fact, which Dwork first proved 
in 1960 using an ingenious application of p-adic analysis. 

Theorem (Dwork). The zeta-function of any affine (or projective-see Exercise 
5 below) hypersurface is a ratio of two polynomials with coefficients in Q 

(actually, with coefficients in 7L and constant term !-see Exercise 13 
below). 

The rest of this chapter will be devoted to Dwork's proof of this theorem. 
We note that zeta-functions of hypersurfaces can be generalized to a 

broader class of objects, including affine or projective "algebraic varieties," 
which are the same as hypersurfaces except that they may be defined by more 
than one simultaneous polynomial equation. Dwork's theorem holds for 
algebraic varieties (see Exercise 4 below). 

Dwork's theorem has profound practical implications for solving systems 
of polynomial equations over finite fields. It implies that there exists a finite 
set of complex numbers a 1 , •.. , a" {31 , ... , f3u such that for all s = I, 2, 3, ... 
we have N, = L:~ = 1 a,• - L:r = 1 {3,' (see Exercise 6 below). In other words, 
once we determine a finite set of data (the a, and {3,)-and this data is already 
determined by a finite number of N,-we'll have a simple formula which 
predicts all the remaining N,. Admittedly, in order to really work with this in 
practice, we must know a bound on the degree of the numerator and denomi­
nator of our rational function Z (H/IF q; T) (see Exercises 7-9 below for more 
details). Actually, in all important cases the degree of the numerator and 
denominator, along with much additional information, is now known about 
the zeta-function. This information is contained in the famous Wei! Conjectures 
(now proved, but whose proof, even in the simplest cases, goes well beyond 
the scope of this book). 
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V Rationality of the zeta-function of a set of equations over a finite field 

The rationality of the zeta-function was part of this series of conjectures 
announced by A. Weil in 1949. Dwork's proof of rationality was the first 
major step toward the proof of the Wei I Conjectures. The final step, Deligne's 
proof in I973 of the so-called "Riemann Hypothesis" for algebraic varieties, 
was the culmination of a quarter century of intense research on the conjec­
tures. 

In the case of a "smooth" projective hypersurface Hr (i.e., for which the 
partial derivatives of J with respect to all the variables never vanish simul­
taneously), the Wei! Conjectures say the following: 

(i)Z(H;/Ifq: T) = P(T)± 1j((1 -·T)(l- qT)(I- q2T)···(I- qn- 1T)), 
where P(T) E I + T.:l[T] has degree (3, where (3 is a number related to the 
"topology" of the hypersurface (called its "Betti number;" when H7 is a 
curve, this is twice the genus, or "number of handles," of the corresponding 
Riemann surface). Here the ± I means we take P(T) if n is even and 1/P(T) 
if n is odd. 

(ii) If a is a reciprocal root of P(T), then so is q"- 1/a. 
(iii) The complex absolute value of each of the reciprocal roots of P(T) is 

q<"- 1112 . (This is called the" Riemann Hypothesis" part of Weil's conjectures, 
out of analogy with the classical Riemann Hypothesis for the Riemann 
zeta-function-see Exercise 15 below.) 

EXERCISES 

I. What is the zeta-function of a point? What is Z(AG'./IFq; T)? 

2. Compute Z(IP'If./IF.; T). 

3. Let {(X1. .. . , X.,)= Xn + g(Xt. .. . , Xn- 1), where gE IF.[Xt. ... , Xn-d· 
Prove that 

:L(HtfiF.; T) = Z(A~; 1 /IF 0 ; T). 

4. Let[1(X~o ... , Xn)J2(X~o ... , Xn), ... J,(X1 , ••• , Xn) E IF.[Xl> ... , Xn], and 
let Hu 1 • 12 • • .r,1(1F"') c AG'., be the set of n-tuples of elements of IF•' which 
satisfy all of the equations[. = 0, i = I, 2, ... , r: 

Hu 1 .r2 •. . .r,,(IF,,s) d~l [(x1, ... , Xn) E A;}0, / [,(xl, ... , Xn) = · · · 

= j;(x 1, ... , Xn) = 0}. 

Such an His called an (affine) algebraic variety. Let N, = #H(IF"•) (where H 
is short for Hu ,. .r, 1), and define the zeta-function as before: Z(H /IF 0 ; T) ~r 
exp(~:'~, N, T' /s). Prove that Dwork 's theorem for affine hypersurfaces 
implies Dwork's theorem for affine algebraic varieties. 

5. Prove that if Dwork 's theorem holds for affine hypersurfaces, then it holds 
for projective hypersurfaces. 
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Exercises 

6. Prove that Dwork's theorem is equivalent to: There exist algebraic complex 
numbers a 1 , .•• , a1, {31 , ••• , f3u, such that all conjugates of an a is an a, all 
conjugates of a {3 is a {3, and we have: 

t u 

N, = 2 a,' - 2 {31', for all s = 1, 2, 3, ... 
! ~ 1 ! ~ 1 

7. It is known that the zeta-function of a smooth cubic projective curve E =fir 
(thus, dim E = 1, deg f = 3; E is called an "elliptic curve") is always of the 
form: (1 + aT+ qT2)/[(1 - T)(1 - qT)] for some a E :E.. Show that if you 
know the number of points in E(IFq), you can determine: (1) a, and (2) 
#E(IFq•) for any s. 

8. Using the fact stated in the previous problem, find Z(Hr/IFq; T) when 
j(X1, Xz) is: 

(i) X2 3 - X 1 3 - 1 and q = 2 (mod 3); 
(ii) X2 2 - X1 3 + X 1 and q = 3 (mod 4), also q = 5, 13, and 9. 

9. Suppose we know that Z(H/IFq; T) is a rational function whose numerator 
has degree m and whose denominator has degree n. Prove that N, = #H(IFq') 
for s = 1, 2, 3, ... , m + n uniquely determine all of the other N,. 

10. Compute Z(Hr/IFq; T) when Hr is the 3-dimensional hypersurface defined by 

X1X4- XzXa = 1. 

11. Compute Z(H1 /1Fq; T) and Z(Hr/IFq; T) (/ = homogeneous completion of f) 
when H 1 is the curve: 

(i) X1Xz = o 
(iv) Xz 2 = X13 

(ii) X 1X 2(X1 + X2 + I) = 0 
(v) Xz 2 = X1 3 + X1 2 • 

12. Lines in IP' 3 are obtained by intersecting two distinct hyperplanes, i.e., a line 
is the set of equivalence classes of quadruples which satisfy simultaneously 
two given linear homogeneous polynomials. Let N, be the number of lines in 
IP'~q'" Using the same definition of the zeta-function in terms of the N, as 
before, compute the zeta-function of the set of lines in projective 3-space. 

13. Using Exercise 12 of §IV.4, prove that Dwork's theorem, together with 
Lemma 1 above, imply that Dwork's theorem holds with" coefficients in Q" 

replaced by "coefficients in :E. and constant term 1." 

14. Let H f be given by X/ = X 1 5 + 1, and let p = 3 or 7 (mod 10). Assuming the 
Wei! Conjectures for the genus 2 curve fi J• prove that 

, - 1 + pzT4 
Z(HJIIFq; T) =(I _ T)(l _ pT). 

15. Let ih be a smooth projective curve. Assuming the Wei! Conjectures for 
Z(HJIIFq; T) (which were proved for curves much earlier than for the general 
case), show that all of the zeros of the complex function of a complex variable 

are on the line Res = 1. This explains the name" Riemann Hypothesis" for 
part (iii) of the Wei! Conjectures. 
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V Rationality of the zeta-function of a set of equations over a finite field 

2. Characters and their lifting 

An !.1.-va/ued character of a finite group G is a homomorphism from G to the 
multiplicative group n X of nonzero numbers in n. Since gorderofg = 1 for 
every g E G, it follows that the image of G under a character must be roots 
of unity in n. For example, if G is the additive group of IFv, if e is a pth root 
of I in n, and if ii denotes the least nonnegative residue of a E IF v• then the 
map a~ ii is a character of IF v· In what follows, we shall omit the tilde and 
simply write a f--+ e". If e # I, then the character is" nontrivial," i.e., its image 
is not just I. 

If IF0 is a finite field with q = p' elements, we know that there are s = 
[IF q: IF vl automorphisms a0 , ... , a,_ 1 of IF 0 given by: a,(a) = av' for a E IF 0 (see 
Exercise 6 of §111.1). If a E IFq, by the trace of a, written Tr a, we mean 

s-1 

Tract~ .2: a,(a) =a+ aP + aP2 + ... + av'- 1 • 

t=O 

It is easy to see that (Tr a)P = Tr a, i.e., Tr a E IFv, and that Tr(a + b) = 
Tr a + Tr b. It then follows that the map 

is an D-valued character of the additive group of IF 0 • 

Recall that for every a E IFq we have a unique Teichmuller representative 
tEn, lying in the unramified extension K of Qp generated by the (q - l)st 
roots of 1, such that ! 0 = t and a is the reduction oft mod p. Our purpose 
in this section is to find a p-adic power series 0(T) whose value at T = t 

equals eTra. (More precisely, we'll get the value of 0(T)0(P)0(P2) • • • 

0(TP'-'), where q = p', to be eTra at T = t.) 
Now fix a E IF q x, and lett E K be the corresponding Teichmiiller representa­

tive. Let TrK denote the trace over Ov of an element of K, i.e., the sum of its 
conjugates. Then for our Teichmiiller representative t we have (see Exercise 1 
at the end of §4 below) 

and the reduction mod p of TrK t is 

Hence, since e raised to a power in 1Lv depends only on the congruence class 
mod p, we can write: eTra = eTrKt. 

Let.\ = e - I. We have seen that ordv .\ = !j(p - I) (see Exercise 7 of 
§111.4). We want a p-adic expression in t for 
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2 Characters and their lifting 

The naive thing to do would be to let 

g(T) = ( 1 + ,\)T = i T(T- 1)· ·:1(T- i + 1) ,\1, 

i=O l • 

and then take the series g(T)g(P)g(P2) • • • g(P'- 1). But the problem is: 
how to make sense out of the infinite sum g(T) for the values T = t that 
interest us. Namely, as soon as t ¢: 7L11 , i.e., its residue a isn't in IF 11 , then 
clearly It- il 11 =I for all iEll.; then 

t(t- 1) ... (t - i + 1) j • i- s~ si 
ord11 • 1 ,\ = 1 ord11 ,\ - --1 = --1 ' l. p- p-

which does not --+ oo. 
What we have to do is use the better behaved series F(X, Y) introduced at 

the end of §IV.2: 

F(X, Y) = (1 + Y)X(l + YP)<Xl'-X)/11(1 + P2)(XP2 -XP)fp2 ... 

where recall that each term on the right is understood in the sense of the 
corresponding binomial series in iQ[[X, Y]]. We now consider F(X, Y) as a 
series in X for each fixed Y: 

F(X, Y) = ~0 ( xn m~n am,n ym ). 

where we're using the fact that am,n #- 0 only when m ~ n; this follows be­
cause each term in the series B<x"" _ x""- 1>111•, 11( Y 11"), i.e., 

has the power of X that appears less than or equal to the power Y1P" of Y. 
Recall that,\ = e - I, and that ordp ,\ = 1/{p - 1). We set 

"" 
0(T) = F(T, ,\) = L anrn, 

n=O 

with a.= L~=n am.nA.m. Clearly ordP a.~ n/(p- 1), since each term in a. 
is divisible by ,\n. Also, since the field ii:Me) = !Ov(,\) is complete, we 
have an E i0 11(e), and 0(T) E !Op(e)[[T]]. Moreover, 0(T) converges for t E 

D(p11<P- I>-), because ordp an ~ nf(p - 1 ). 
For our fixed t we now consider the series 

(1 + Y) t+tl'+ ••• +tl''- 1 = B s-1 (Y) 
def t+t"+ ··· +t" ,P • 

It is easy to prove the following formal identity in 0[[ Y]]: 

(1 + yy+tl'+ ... +tP•- 1 = F(t, Y)F(tP, Y) ... F(tP'-\ Y). 
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V Rationality of the zeta-function of a set of equations over a finite field 

Namely, after trivial cancellations, the right hand side reduces to 

( 1 + yy + t• + · · · + t•' - 1 ( 1 + yv)<t•'- Olv( 1 + yvz)<t•' + 1 - t•J!pz 

X ( 1 + yp3yt•' + 2- tP2)/p3 .••• 

Since tP' = t, we get what we want. 
Thus, if we substitute t for Tin 8(T)8(P) · · · 8(P'- 1), we obtain 

F(t, t..)F(tP, A)··· F(tp'-', /..) = (1 + t..)L+t•+ ··· +t•'- 1 

= ETra. 

To conclude, we have found a nice p-adic power series 8(T) = L anTn E 

QP(s)[[T]], satisfying ordP an ~ nj(p - 1), such that the character a 1-+ sTra 
of IF 0 can be obtained by evaluating 8(T) · 8(P) · · · G(P' - 1) at the Teich­
miiller lifting of a. 8 can be thought of as "lifting" the character of IF 0 to a 
function on !.1 (more precisely, on some disc in !.1, which includes the closed 
unit disc, and hence all Teichmiiller representatives). 

Liftings such as 8 are important because concepts of analysis often apply 
directly only to p-adic fields, not to finite fields. If a situation involving finite 
fields~such as zeta-functions of hypersurfaces defined over finite fields~ 
can be lifted to p-adic fields, we can then do analysis with them. Notice how 
important it is that our lifting 8 converge at least on the closed unit disc 
(rather than, say, only on the open unit disc): the points we're mainly interested 
in, the Teichmiiller representatives, lie precisely at radius 1. 

3. A linear map on the vector space of power series 

Let R denote the ring of formal power series over Q inn indeterminates: 

R d~ l:l[[Xb X 2 , ... , XnlJ· 

A monomial X1u1X2 uz · · · Xnu" will be denoted xu, where u is then-tuple of 
nonnegative integers (ub ... 'un). An element of R is then written L auxu, 
where u runs through the set U of all ordered n-tuples of nonnegative integers, 
and Where au E !J. 

Notice that R is an infinite dimensional vector space over !.1. For each 
G E R we define a linear map from R to R, also denoted G, by 

r 1-+ Gr, 

i.e., multiplying power series in R by the fixed power series G. 
Next, for any positive integer q (in our application q will be a power of 

the prime p), we define a linear map T0 : R-+ R by: 

r = ~ auxu ~-+ To(r) = ~ a0uXu, 

where qu denotes the n-tuple (qui> qu2 , .•• , qun). For example, if n = 1, this 
is the map on power series which forgets about all X'-terms for which j is 
not divisible by q and replaces X 1 by Xilo in the X 1-terms for which qJj. 
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3 A linear map on the vector space of power series 

Now let 'fq,G ~r Tq o G: R--* R. If G = LwEu gwXw, then '¥q,G is the linear 
map defined on elements X" by 

'fq,a(X") = Tq( 2 gwXw+u) = 2 gqv-uXv. 
weU veU 

(Here if the n-tuple qv - u is not in U, i.e., if it has a negative component, 
we take gqv-u to be zero.) 

Let GiX) denote the power series G(Xq) = LwEU gwXqw. The following 
relation is easy to check (Exercise 7 below): 

G o Tq = Tq o G q = '¥ q,G .. 

We define the function I I on U by: juj = .Lf~ 1 u1• Let 

R0 ~r {c = 2 gwXw E R I for some M > 0, ordvgw ~ Mjwj for all wE u}· 
WEU 

It is not hard to check that R0 is closed under multiplication and under the 
map G 1----i> Gq. Note that power series in R0 must converge when all the 
variables are in a disc strictly bigger then D(l ). An important example of a 
power series in R 0 is 0(aXw), where xw is any monomial in X1 , ... , X, and 
a is in D( I) (see Exercise 2 below). 

If Vis a finite dimensional vector space over a field F, and if {a11} is the 
matrix of a map A: V--* V with respect to a basis, then the trace of A is 
defined as 

i.e., the sum of the elements on the main diagonal (this sum is independent of 
the choice of basis-for details on this and other basic concepts of linear 
algebra, see Herstein, Topics in Algebra, Ch. 6). (The use of the same symbol 
Tr as for the trace of an element in IF q should not cause confusion, since it will 
always be clear from the context what is meant.) IfF has a metric, we can 
consider the traces of infinite matrices A, provided that the corresponding 
sum .Lt''~ 1 a" converges. 

Lemma 3. Let G E R0 , and let '¥ = 'Yq,G· Then Tr('f') converges for s = 
I, 2, 3, ... , and 

(q•- I)"Tr('Y') = 2 G(x)·G(xq)·G(xq2)···G(xq'- 1), 

xenn 
xq'- 1 = 1 

h - ( ) . q' - ( q' q'). d q'- 1 - 1 q'- 1 w ere x - x1, ... , Xn , x - x1 , ... , Xn , an x - means xj 
= 1 for j = 1, 2, ... , n. 

PROOF. We first prove the lemma for s = I, and then easily reduce the gen­
eral case to this special case. Since 'f(X") = LvEU gqv-uX", we have 

Tr '¥ = 2 gcq-l)u• 
UEU 

which clearly converges by the definition of R0 • 
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V Rationality of the zeta-function of a set of equations over a finite field 

Next, we consider the right-hand side of the equation in the lemma. First 
of all, for each i = I, 2, ... , n, we have 

if q - 1 divides W; 

otherwise. 

(See Exercise 6 below.) Hence, 

Thus, 

if q - 1 divides w 

otherwise. 

G(x) = L gw L Xw = (q - l)n L g1q-l)u = (q - l)n Tr 'F, 
UJeU xq-1 = 1 UEU 

which proves the lemma for s = l. 
Now suppose that s > l. We have: 

'F• = Tq o G o Tq o G o 'f"•- 2 = Tq o Tq o G q o G o 'f"•- 2 

= Tq2 o G · G q o 'f"•- 2 = Tq2 o Tq o (G. G q)qG o 'f"•- 3 

= TqaoG·Gq·Gq2o'F•- 3 = ... = Tq•oG·Gq·Gq2···Gq•-l 

Thus, replacing q by q• and G by G · G q · G q2 · · · G q,_, gives the lemma in the 
general case. 0 

If A is an r x r matrix with entries in a field F, and if Tis an indeterminate, 
then (I - AT) (where I is the r x r identity matrix) is an r x r matrix with 
entries in F[T]. It plays a role in studying the linear map on F' defined by A, 
because for any concrete value t E F of T, the determinant det(I - At) 
vanishes if and only if there exists a vector v E F' such that 0 = (l - At)v = 
v- tAv, i.e., Av = (1/t)v, in other words, if and only if lft is an eigen-value 
of A. If A = {a,1}, we have 

n 

det(l - AT)= L bmTm, 
m=O 

where 

(Here sgn(a) equals +I or -I depending on whether the permutation a is a 
product of an even or odd number of transpositions, respectively.) 

Now suppose that A = {ai)L':'1 = 1 is an infinite" square" matrix, and suppose 
F = !2. The expression for det(l - AT) still makes sense as a formal power 
series in U[[T]], as long as the expression for bm, which now becomes an 
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3 A linear map on the vector space of power series 

infinite series (i.e., the condition"$ r" is removed from the u;), is convergent. 
We apply these notions to the case when A = {gqv-uL.veu is the "matrix" 

of 'Y = Tq a G, where G E R0 , i.e., ordv gw ~ MJwJ. We then have the 
following estimate for the p-adic ordinal of a term in the expression for bm: 

~ M[Jqa(u1)- u1[+Jqa(u2)- u2 [+ ···+Jqa(um) -umll 

~ M(L qJa(u1)J - L JudJ = M(q- I) L JuJ 

(Notice that, if G is a series in n indeterminates, then each u; is an n-tuple of 
nonnegative integers: U; = (un, ... , U;n), and I ud = .L7 = 1 U;j·) This shows 
that 

and also that 

I 
- ordv bm--+ oo as m--+ oo. 
m 

The latter relationship holds because, if we take into account that there are 
only finitely many u's with a given JuJ, we find that the average Jul as we run 
over a set of distinct u;, i.e., (Ijm) .Lf= 1 Ju;J, must approach oo. 

This proves that 
00 

det(l -AT)= L bmTm 
m=O 

is well-defined (i.e., the series for each bm converges), and has an infinite 
radius of convergence. 

We now prove another important auxiliary result, first for finite matrices 
and then for {gqv-u}· Namely, we have the following identity of formal power 
series in D[[T]]: 

det(l -AT) = expv(- s~ Tr(A 5)Pjs )· 

To prove this, we first recall from the theory of matrices (Herstein, Ch. 6) 
that the determinant and trace are unchanged if we conjugate by an invertible 
matrix: A H> CAc-r, i.e., they are invariant under a change of basis. More­
over, over an algebraically closed field such as D, a change of basis can be 
found so that A is upper triangular (for example, in Jordan canonical form), 
in other words, so that there are no nonzero entries below the main diagonal. 
So without loss of generality, suppose A = {a;,}~.;= 1 is upper triangular. Then 
the left hand side of the above equality takes the form nr= 1 (I - a11T). 
Meanwhile, since Tr(A•) = .Lr = 1 a,;', the right hand side is 

r r 

= TI expp(logp(l - a,T)) = n (I - a,T). 
i=l l = 1 
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V Rationality of the zeta-function of a set of equations over a finite field 

We leave the extension to the case when A is an infinite matrix as an 
exercise (Exercise 8 below). 

We summarize all of this in the following lemma. 

Lemma 4. If G(X) = LwEVgwXw E R 0 and 'I' = Tq a G, so that 'I' has matrix 
A = {gqv-uLuEU• then the series det(l - AT) is a well-defined element of 
Q[[T]] with infinite radius of convergence, and is equal to 

4. p-adic analytic expression for the zeta-function 

We now prove that for any hypersurface H 1 defined by f(XI> ... , Xn) E 

IF q[X~o ... , Xn], the zeta-function 

is a quotient of two power series in Q[[T]] with infinite radius of convergence. 
(Alternate terminology: is p-adic meromorphic, is a quotient of two p-adic 
entire functions.) 

We prove this by induction on the number n of variables (i.e., on the 
dimension n - 1 of the hypersurface H1 ). The assertion is trivial if n = 0 
(i.e., H 1 is the empty set). Suppose it holds for 1, 2, ... , n - I variables. We 
claim that, instead of proving our assertion for 

Z(H1/IFq; T) = expCiN,Pfs ), 

it suffices to prove it for 

where 

Ns' d~ number of (xi> ... , Xn) E IF~· such thatf(x1, •.. , Xn) = 0 

and all of the x, are nonzero 

=number of(x1, •.• , Xn) E IF~ such thatf(x1, ••. , Xn) = 0 

and x?'- 1 = 1, i = 1, ... , n. 

How does Z'(H1/IFq; T) differ from Z(HrfiFq; T)? Well, 

Z(HrfiFq; T) = Z'(HrfiFq; T)· exp(L(N,- Ns')Pfs), 

and the exp factor on the right is the zeta-function for the union of the n 
hypersurfaces Hi (i = I, ... , n) defined by f(X 1 , ... , Xn) = 0 and Xi= 0. 
Note that Hi either is a copy of (n - I)-dimensional affine space given in 
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4 p-adic analytic expression for the zeta-function 

A;Fq by the equation xi = 0 (this is the case if[(X 1, ... , X") is divisible by XJ, 
or else is a lower dimensional ((n - 2)-dimensional) hypersurface. In the 
first case we know its zeta-function explicitly (see Exercise 1 of §1), and in the 
latter case we know that its zeta-function is meromorphic by the induction 
assumption. Now the zeta-function for the union of the Hi is easily seen to 
be the product of the individual zeta-functions of the Hi, divided by the 
product of the zeta-functions of the overlaps of Hi and H1 (i =!= j)-i.e., the 
hypersurface in a copy of A;F~ 2 defined by Xi = X 1 = 0 and.f(X 1, ... , X") = 
0--multiplied by the product of the zeta-functions of the triple overlaps, 
divided by the product of the zeta-functions of the quadruple overlaps, and 
so on. But all of these zeta-functions are p-adic merom orphic by the induction 
assumption or by the explicit formula for the zeta-function of affine space. 
Hence, if Z' is proved to be p-adic meromorphic, it then follows that Z is 
p-adic meromorphic as well. See Exercises 4-5 of §1 for a similar argument. 

Fix an integers :::: I. Let q = pr. Recall that, if t denotes the Teichmuller 
representative of a E IFq'• then the pth root of I given by eTra has a p-adic 
analytic formula in terms oft: 

eTra = 0(t)0(tP)0(tP2 ) • • • 0(tp"-'). 

A basic and easily proved fact about characters (see Exercises 3-5 below) is 
that 

and so, if we subtract the x 0 = 0 term, 

if u E IF;, 

ifu = 0; 

if u E IF;, 

if u = 0. 

Applying this to u = .f(x1, ... , Xn) and summing over all Xt. ... , Xn E IFqx,, 
we obtain 

L x 8 TrCx0[Cx1 , ... ,x,)) = q'N/ _ (q' _ l)n. 
Xo,XI• ... , XnE[Fqs 

NOW replace all of the coefficients in X of( XI> ... ' Xn) E IF q( Xo, xl> ... ' Xn] 
by their Teichmuller representatives to get a series F(X0 , X~> ... , Xn) = 
L~~l a,xw, E Q[Xo, Xr, .. . , Xn], where xw, denotes XowiDxlw" ... xnw,., 
Wt :::::::: (wto, Wn, · · ·, Wtn). 

We obtain: 

q' Ns' = ( q' - I )n + e Tr(x0[(x 1 , .. , xn)) 

N 

= (q' - l)n + .L: n 0(G1XW<)0(a,PXPW<)· • · 
X 0 ,x1 , ... , XnEn j ~I 

xgs~t.:::···=x~s-t=l 
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V Rationality of the zeta-function of a set of equations over a finite field 

Note that, since f( X~> ... , Xn) has coefficients in IF q• q = p', it follows that 
a,v' = a,. Now let 

N 

G(Xo, ... , Xn) dcl n 0(a,xw,)0(a,v xvw,) ... G)(af' _, xvr-Iw•), 
l = 1 

so that 

q•Ns' = (q•- l)n + 2 G(x)·G(xq)·G(xq 2 ) • • • G(xq'- 1 ). 

x 0 ,x1 , ... , XnE.0. xz'- 1 =.-. = x~s- 1 = 1 

Since the series tJ(a/1 XP'w,) are each in R0 (see Exercise 2 below), so is G: 

G(X0 , ... , X1) r:: R0 c G[[X0 , ... , Xn]]. 

Hence, by Lemma 3, we have 

q'Ns' = (q' - l)n + (q• - I)n + 1 Tr('¥•), 

I.e., 

If we set (recall: A is the matrix of 'F) 

t.(T) ~r det(l - AT) = expv{- 5~1 Tr('J!'•)P/s} 

we conclude that 

n f { "' }l<-J)'C) 
= Q lexpv s~ q•<n-i-l)T'/s J . 

n+l r {"' }1<-1)'("+') 
X Q lexpp s~ q•<n-i)Tr('F')T'js ' 

n n + 1 
= n (I __ qn-i-JT)<-l)'•'C)n t..(qn-•T)<-1),.,(";'). 

i = 1 i-::; 0 

By Lemma 4, each term in this "alternating product" is a p-adic entire 
function. 

This concludes the proof that the zeta-function is p-adic meromorphic. 
This result is the heart of the proof of Dwork's theorem. In the next section 
we finish the proof that the zeta-function is a quotient of two polynomials. 

ExERCISES 

1. Let t E 0 be a primitive (ps - l)th root of 1. Prove that the conjugates oft 
over Ov are precisely: t, tv, tv2 , •• • , tv'- 1 • In other words, the conjugates of 
the TeichmUIIer representative of a E IFq are the TeichmUIIer representatives of 
the conjugates of a over IFv. 
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5 The end of the proof 

2. Let xw = xlwl ... x,.wn, and let a E D(l). Prove that 0(aXW) E Ro. 

3. Let o-1 , •.. , a, be distinct automorphisms of a field K. Prove that there is no 
nonzero linear combination ~ a1a1 such that ~ a1a1(x) = 0 for every x E K. 

4. Let£ E n be a primitive pth root of 1. Prove that ~xeiFq £Trx = 0. 

S. Prove that 

L £Tr(XU) = { ~ 1, ~f u ~IF;. 
xeiF" q - 1, If U - 0 . •• 

6. Prove that for any positive integers n and a, 

L {a = {n, if n divides a; 
cen. en = 1 0, otherwise. 

7. Prove that GoT. = T. o G. in the notation of §V.3. 

8. Extend the result 

det(1 - AT) = exp11 (- .~ Tr(A')T'/s) 

to infinite matrices A, with a suitable hypothesis on convergence of Tr. 

9. A review problem. Let /(X) = ~f=o a1X 1 E IF.[X] be a polynomial in one 
variable with coefficients in IF., q = p', and nonzero constant term. We are 
interested in the number N of distinct roots of f(X) in IF •. For each i = 0, 
I, ... , n, let A; be the Teichmtiller representative of a1• Let e = 1 + .\ be a 
fixed primitive pth root of 1 in n, and define 0(T) as in §V.2. Let 

n r-1 

G(X, Y) = Il fl 0(A1111 X1~' 1 Y"1). 
1=0 f=O 

Prove that 

N =q-1+! ' G() L., X, y . 
q q :r.yen 

:rll- 1 = yq- 1 = 1 

5. The end of the proof 

Dwork's theorem will now follow easily once we prove the following criterion 
for a power series to be a rational function. 

Lemma 5. Let F(T) = .Li=a a,T1 e K[[T]], where K is any field. Form, s ~ 0, 
let As.m be the matrix {as+t+J}ost,Jsm: 

(' 
as+ 1 as+2 •... ) a.+ 1 as+2 as+3 as+m+ 1 

as+2 as+3 as+4 as+;m+2 ' 

as+m a.+ m + 1 as+m+2 as+2m 

and let N,,m dct det(A •. m). Then F(T) is a quotient of two polynomials 

P(T) 
F(T) = Q(T)' P(T), Q(T) E K[T], 
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V Rationality of the zeta-function of a set of equations over a finite field 

if and only if there exist integers m ;:::.: 0 and S such that N,, m = 0 whenever 
s :::0: S. 

PROOF. First suppose that F(T) is such a quotient. Let P(T) = L~~o b,T', 
Q(T) = L~~o c,T'. Then, since F(T)· Q(T) = P(T), equating coefficients of 
T' fori> max(M, N) gives: 

.v 

2 a,-.v+;Cv.; = 0. 
1-= 0 

Let S = max(M- N + I, 1), and let m = N. If s :::0: S, we write this 
equation fori= s + N,s + N +I, .. . ,s + 2N: 

a,Cv + a,,1C.~-1 + · · · + as+NCo = 0 
as+1C.v + a,.,.2CN-1 + ··' + as+.V>1Co = 0 

a,+ vC.v + as TN+ 1 C,v- 1 + ... + a,+ 2.vCo = 0. 

Hence the matrix of coefficients of the c1 , which is A,,,v, has zero determinant: 

N,,m ~ Ns.N = 0 for S :::0: S. 

Conversely, suppose that N,_m = 0 for s 2: S, where m is chosen to be 
minimal with this property that N,,m = 0 for all s larger than some S. We 
claim that N,,m_ 1 # 0 for all s 2: S. 

Suppose the contrary. Then some linear combination of the first m rows 
r 0, rb .. . , rm-l of As,m vanish in all but perhaps the last column. Let r, 0 be 
the first row having nonzero coefficient in this linear combination, i.e., the 
i 0 th row r, 0 can be expressed as 

except perhaps in the last column. In A.,,m replace r, 0 by r, 0 

am -•o _ 1' m _ 1 ), and consider two cases: 

(I) i0 > 0. Then we have a matrix of the form 

a, a,+ 1 as+- m 

as+- 1 as+ 2 (/<, T m + 1 

0 0 0 (3 

as+ m G:, + m + 1 a~+ 2m 

and the boxed matrix has determinant N, + 1,, _ 1 = 0. 

(2) i 0 = 0. Then we have: 
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5 The end of the proof 

Now Ns + 1 ,m _ 1 is the determinant of either of the boxed matrices. Since the 
determinant Ns,m of the entire matrix is 0, either the determinant of the lower 
left boxed matrix is 0, or else f3 = 0, in which case also Ns + 1 .m _ 1 = 0. 

Thus, in either case Ns+ 1 .m-I = 0, and, by induction, we may obtain 
N 8 • • m _ 1 = 0 for all s' ~ s. This contradicts our choice of m to be minimal. 

But then for any s ~ S we have Ns,m = 0 and Ns.m _1 #- 0. Hence there is 
a linear combination of the rows of As,m which vanishes, in which the co­
efficient of the last row is nonzero. Thus, the last row of As,m for any s ~ Sis a 
linear combination of the preceding m rows. Hence any simultaneous 
solution to 

=0 

is also a solution to 

and, by induction, to every 

for s ~ S. This clearly implies that 

is a polynomial (of degree < S + m). D 

We now use Lemma 5 to prove the theorem. We must make use of the 
"p-adic Weierstrass Preparation Theorem" (Theorem 14, §lV.4). In the form 
we need, it says that, if F(T) is a p-adic entire function, then for any R there 
exists a polynomial P(T) and a p-adic power series F0 (T) E I + TO[[T]] which 
converges, along with its reciprocal C(T), on the disc D(R) of radius R, such 
that F(T) = P(T) · F0(T). Namely, in Theorem 14 let p" = R; since F is 
entire, it converges on D(p"). 

For brevity, let Z('T) = Z(H1j'f 0 ; T). We know from §4 that we can 
write Z(T) = A(T)j B(T), where A(T) and B(T) are p-adic entire functions. 
Choose R > q"; for simplicity, take R = q 2". If we apply the fact in the last 
paragraph to B(T), we may write B(T) = P(T)/C(T), where C(T) converges 
on D(R). Let F(T) = A(T) · C(T), which converges on D(R). Thus, 

F(T) = P(T)·Z(T). 

Let F(T) = L,": 0 b,T'E I+ H2[[T]], P(T) = L~~ 0 c,T'E I+ H2[T], Z(T) 
= 2:,~ 0 a,T' E I + TZ[[T]]. By Lemma 2 of §I, we have 
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V Rationality of the zeta-function of a set of equations over a finite field 

Since F(T) converges on D(R), we also have for i sufficiently large: 

lb,lv :0:: R-i = q-2nt. 

Choose m > 2e. Then fix m. Let As.m = {as+t+ 1} 0 ,,.i,m• as before, and 
Ns.m = det(As,m)· We claim that for our m we have Ns.m = 0 for s sufficiently 
large. By Lemma 5, this claim will imply that Z(T) is a rational function. 

Equating coefficients in F(T) = P(T)Z(T), we have: 

In the matrix As,m• we add to each (j + e)th column-starting from the last 
and moving left until the eth column-the linear combination of the previous e 
columns with coefficient C~c for the (j + e - k)th column. This gives us a 
matrix whose first e columns are the same as in As,m• the rest of its columns 
have a's replaced by the corresponding b's, and which still has determinant 
Ns.m· We use this form of the matrix to estimate INs,mlv· 

Since a, E Z, we have la,lv :0:: I. Thus, INs.mlv :0:: (max,,s+elb1 lv)m+l-e < 
R- s<m + 1 -el for s sufficiently large. Since R = q 2n, and m > 2e, this gives us: 
INs.mlp < q-ns(m+2). 

On the other hand, a crude estimate based directly on As.m gives: I Ns.m I oo :0:: 
(m + l)!qn<s+ 2ml<m+ll = (m+ l)!q2nm<m+llqns(m+ll. Multiplying together these 
two estimates, we see that the product of the p-adic norm and the usual 
absolute value of Ns,m is bounded by an expression which is less than I for s 
sufficiently large: 

( + J)l 2nm(m+l) 
IN I ·IN I < q-ns(m+2l.(m+ J)lq2nm(m+llqns(m+l) = m .q < I 

s,m P s,m ro • qns 

for s sufficiently large. But Ns.m E Z, and the only integer n with the property 
that lnl·lnlv < I is n = 0. Hence Ns,m = 0 for s sufficiently large. 

Therefore, Z(T) is a rational function, and Dwork's theorem is proved. 
0 
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CHAPTER I §2 

3. Write llx + yiiN = ll(x + y)NII, use the binomial expansion and Property (3) of a 
norm to get an inequality for llx + YIIN in terms of max(llxll, IIYII), then take Nth 
roots and let N ---> oo. 

4. If x E F has the property that llxll < 1 and llx- 111 < 1, and if II II is non-Archi­
medean, then 1 =Ill- x + xll s max(llx- 111, llxll) < 1, a contradiction. Con­
versely, suppose that II II is Archimedean. Then by definition, there exist x, y E F 
such that llx + Yll > max(llxll, IIYII). Let C( = x/(x + y), and show that IIC(II < 1 and 
II C( - 111 < 1. 

5. Suppose II 11 1 - II 11 2 . Let aEF be any nonzero element with llall 2 i= 1, say llall 2 

> 1. Then there is a unique C( such that llall 1 = llallz· Claim: llxll1 = llxll2 for all 
x E F. If, say, there were an x with llxll 1 > llxll2 (also suppose that llxll 1 > 1), then 
choose large powers xm and a" such that llxm/a"ll 1 approaches 1; but then show that 
llxm/a"ll 2 approaches 0, and hence the two norms are not equivalent. Finally, note 
that C( > 0, or else we would not have II 11 1 - II 11 2 • (The converse direction in this 
exercise is easy.) 

6. If p = 1, you get the trivial norm. If p > 1, you don't get a norm at all; for example, 
choose N large enough so that pN > 2 and take x = 1, y = pN - 1. Then check that 
pordp(x+y) > pordpx + pordpY. 

7. The sequence {pn approaches 0 in I lp, but not in I IP2 • 

8. The hardest part is to prove the triangle inequality for I 1", C( s 1. By supposing 
I xI ~ I y I and setting u = y/x, reduce to showing that 

-lsusl implies 11 + u I" s 1 + I u I", 

which is true if 

Osusl implies f(u) = 1 + u" - (1 + u)' ~ 0. 

Sincef(O) = 0 andf(l) ~ 0, this follows by showing thatf'(u) i= 0 on (0, 1). 
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9. Use Exercises 2 and 3: if llniiAc<h > I, then the sequence { 1/n'} approaches zero in 

II II Acch but not in II II non-Arch· 

10. Show that the least positive integer of the form nN + mM must be a common 
divisor of N and M. 

11. 3. 7, I, I, 7. -2. 0. O. 3, 2, - 2, 0, - I. - 1, 4. 

12-14. Prove the lemma: ordP(n 1) = L [njp 11, where [ ] is the greatest integer function 
and the sum is over j 2: I (note that this is only a finite sum). 

15. 1/25,25. I, 1;25. 1/243. 1/243,243, 1113, 1;7, 1/2, 182. 1;81, 3, 2"'_ 2 N. 1/2. 

16. p does not divide its denominator when x is written as a fraction in lowest terms. 

17. Use Exercise 14. 

19. Use the "diagonal process," as follows. Choose an infinite subsequence of integers 
with the same lirst digit, an infinite subsequence of that with the same first two digits, 
and so on. Then take the subsequence consisting of the first element from the t!rst 
subsequence. the second element from the second subsequence, .... the ith element 
from the ith subsequence, .... 

CHAPTER I §5 

J. (p- iLm)P-m +(p-I- (1-m+t)P-m+l + ··· 
+ (p -- I - a0 ) + (p- I - a 1)p + .. ·. 

2. (i) 4 + 0 · 7 + I · 72 + 5 · 73 

(ii) 2 + 0 · 5 + I ·5 2 + 3. 53 

(iii) 8-11- 1 + 8 + 9-11 + 5-11 2 

(iv) I · 2 + I · 22 + 0 · 23 (the bar denotes repeating digits) 

(v) I + I · 7 + I · 72 

(vi) 10 + 9 ·II+~ 
(vii) 10 + 0-13 + 4-13 2 + 7-13 3 

(viii) 2 ·5- 3 + 4 · 5 2 + I . 5 1 

(ix) 2 · 31 + 2 · 33 + 2 · 34 + 2 · 35 

(x) 2 · 3-t + I + r:3 
(xi) I · 2- 3 + I · 2- 2 + 0. 2' 1 

(xii) 4-5- 1 + 4 + 3-5 

4. To prove that a lh E I)J) has repeating digits in its p-adic expansion. 11rst reduce to the 

case pt h. Then tirst suppose that ajb is between 0 and - I. Multiply the denomi­
nator and numerator of alb by some c which gets the denominator in the form 
ch = p'- I forsomer. Letd = -ac,sothatO < d < p'- I. Thena/h = d/(1 - p'): 
now expand as a geometric series. You find that a/h has a "'purely" repeating 
expansion. If a/h is not between 0 and - I. then it is obtained by adding or sub­
tracting a positive integer from a purely repeating expansion. and the result will 
still be a repeating expansion once you're past the first few digits. An alternate proof 
is to show that in long division you must eventually get repetition in the remainders. 

5. The cardinality of the continuum. You can construct a one-to-one correspondence 
f between 71_" and the real numbers in the interval [0. I] written to the base p by 
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setting f(a 0 + a1p + · · · + anp" + · · ·) = a0/p + a1/p2 + · · · + an/P"+ 1 + · · ·. (f 
is not quite one-to-one, since a real number in (0, 1) with a terminating expansion 
has two preimages; for example,{(!) = f(- p) = 1/p.) 

7. 1 + 0. 2 + 1 . 22 + 0. 23 + 1 . 24 + .... 

8. (i), (iii), (iv), (v), (ix). 

9. 2 + 1 . 5 + 2. 52 + 1 . 53 + ... ' 3 + 3 . 5 + 2 . 52 + 3 . 53 + ... ; 2 + 5 . 7 + 0. 72 

+ 6. 73 + ... ' 5 + 1 . 7 + 6 . 72 + 0. 73 + .... 
10. 5, 13, 17. 

11. Let a 1 E z; be any number which is a square mod p, let a2 E z; be any number 
which is not a square mod p, and let a 3 = pa 1, a4 = pa2 . 

12. Take, for example: 1, 3, 5, 7, 2, 6, 10, 14. 

13. In 0 5 we have ± 1 and the two square roots of -I found in Exercise 9. To prove 
the general fact, use Hensel's lemma for each a0 = 0, 1, ... , p - 1 with F(x) = 

XP- X. 

14. See Herstein's Topics in Algebra, p. 160 (where it's proved for polynomials with 
integer coefficients; but the proof is the same with p-adic integer coefficients). 

15. If there were such a pth root, then the polynomial (xP- 1)/(x - 1) would have a 
linear factor. But substituting y = x + 1 leads to an Eisenstein polynomial, which 
is irreducible by Exercise 14. To give the second proof, notice that (1 + p'x')P = 

1 + p'+ 1x' + (terms divisible by p2 '+ 1 ), and this cannot equal 1. 

16. Note that 1/(1 - p) - (1 + p + p2 + · · · + pN) = pN+ 1 /(I - p). The other two 
series converge to 1/(1 + p), (p2 - p + 1)/(1 - p2). 

17. (a) More generally, in place of p; one can take any sequence P; E ZP such that 
ordp(p;) = i. Namely, show by induction on n that the map 

{all sums Go Po+ ... + an-1Pn-1} n 
. . . . --> {0, 1, 2, ... , p - 1} 

With varymg digits a; 

obtained by reducing modulo p", is one-to-one. 
(b) We have 

-(p- 1) 2: pi:":: ao + ... + an-1(-p)"-1 :":: (p- 1) 2: pi; 
i < n, iodd i<n, ieven 

since there are 1 + (p- l) Li<n pi= p" integers in this interval, by part (a) each 
such integer has exactly one representation in the form a0 + · · · + an_ 1 (- p)"- 1• 

18. Use Hensel's lemma with F(x) = x" - a (or ax-" - l if n < 0) and a0 = 1. 
I + p has no pth root. Next, if a = 1 + a2 p2 + · · ·, then to find a pth root let 
a0 = I + a2 p and apply Exercise 6 with M = I, F(x) = xP- a. 

19. Use induction on M to prove the congruence: if aPM-' = aPM-' + pM- 1 f3 for some 
f3 (this is the induction assumption), then raising both sides to the pth power gives 
the desired congruence. Then show that the limit as M --> :o has the properties (I) 
its pth power is itself, and (2) it's congruent to rx mod p. 

20. Use the same idea as in Exercise 19 of §2. 
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21. Look for X = A0 + pA 1 + p2 A 2 + · · ·, where the A; are r x r matrices whose 
entries are p-adic digits 0, I, 2, ... , p- 1. Let X,= A 0 + · · · + p"A,. We want X, 
to satisfy X 2 - Ax + B = 0 mod p"+ 1 (where we use the congruence notation for 
matrices to denote entry-by-entry congruence). Use induction on n. When n = 0 we 
obtain the congruence by choosing A0 = A mod p. The induction step is: 

(X,_ 1 + p"A,) 2 - A(X,_ 1 + p"A,) + B 

= (X~- 1 - AX,_ 1 +B)+ p"(A,X,_ 1 + X,_ 1A,- AA,.) 

= (X;_ 1 - AX,_ 1 +B)+ p"A,A (mod p"+ 1), 

because X,_ 1 =A (mod p). Choose A, modulo p to be 

-(X;_l- AX,_ 1 + B)p-"A- 1• 

Notice that this argument falls through for higher degree polynomials because of 
the noncommutativity of matrix multiplication. 

CHAPTER II §2 

I. Expand 1/(1 - q-s) in a geometric series; then multiply out, and use the fact that 
every positive integer n can be written (uniquely) as q~' · · · q;'. 

4. Definef(t) = !t + t/(e'- I) and show thatf(t) is an even function, i.e.,f(t) = f( -t). 

5. For large k, ((2k) is near I. Answer: 4Jnk(kjne)n. 

6. (i) modulo5 5 wehave(1 +2·5) 11<625 + 1 - 251 =(1 +2·5)1 + 5'= 11·(1 +2·5)5 ' 

= 1 + 2. 5 + 0. 52 + 2. 53 + 2. 54 ; 

(ii) modulo 35 we have (1 + 32)- 112 = (1 + 32 ) 1 +3+ 3 ' = 1 + 0·3 + 1·3 2 + 
1·33 +1·34 ; 

(iii) 1 + 5. 7 + 3. 72 + 2. 73 + 2. 74 + .... 
7. Note that pN = 1 modulo p - 1 for any N, so that, if you first approximate a given 

p-adic integer by the nonnegative integer obtained from the first N places in its p-adic 
expansion, you can then add a suitable multiple of pN to get a positive integer con­
gruent to s0 modulo p - 1 which is an equally good approximation. 

9. L,(l) = n/4; L/s) = n 1/(1 - ;(q)/q'). 

CHAPTER II §3 

2. An example is the complement of a point. 

5. It suffices to prove this for U = a + (p"), since any U is a disjoint union of such sets. 
Let a' be the least nonnegative residue mod p" of aa; then since I alP = 1, it follows 
that aU = a' + (p"), and so both U and aU have the same Haar measure p-". 

6. (1) the first digit in a; (2) (p - 1)/2: (3) L_~;:J a(a/p- 1/2) = (1 - p2)/6. 

CHAPTER II §5 

1. For the first assertion, compare coefficients of t' in the identity: te'x/(e' - 1) = 

(L Bkt'jk!)(L_(tx)1jj!). To prove the second assertion, take J<~ · · · dx of both sides of 
the identity :L Bk(x)t' /k! = te'x;(e' - 1) and compare coefficients of tk. To get the 
third assertion, apply (1/t)(d/dx) to both sides of the same identity. 
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2. Claim: ll(U) = 0 for any U if ll has this property. Since U is a union of sets oftheform 
a+ (pN)for N arbitrarily large, we have for such N: lll(U)IP:::;;; max.lll(a + (pN))Iv· 
Now let N -+ oo. 

3. Bk;pk-1Bk;(1- t-1)Bk. 

5. (1- et.-k)Bk; (1- et.-k)(1 -l- 1)Bk; L:?=o all- et.-;- 1)(1- p;)B;+ 1/(i + 1). 

7. Use the corollary at the end of §5 with g(x) = 1/(the first digit in x), so thatf(x) = 
g(x) mod p, and g(x) is locally constant. 

9. lim 
N_. oo 0 $a<pN 
N=2M a=ao+a2p2 + .. ·+a2MP2M 

p-1 2 4 1 
= -2- (l + p + p + .. ·) = - -2(_p_+_1_) 

CHAPTER II §7 

2. (i) Use the Kummer congruence (1- 52 - 1)( -B2/2) = (1- 5102 - 1)( -B102/102) 
modulo 53 to obtain 1/3 = -B 102 j102 (mod 53), and hence B102 = 1 + 3 · 5 
+ 3. 52 + .... 

(ii) From the congruence (1 -72 - 1)(-B2/2) = (1-7296 - 1)(-B296/296) (mod 
73), obtain B296 = 6 + 6 · 7 + 3 · 72 + · · ·. 

(iii) Use (1 - 74 - 1)(-B4/4) = (1 - 7592 - 1)(-B 592 j592) (mod 73) to obtain B592 

= 3 + 4. 7 + 3 . 72 + .... 

3. Recall that a rational number belongs to Z if and only if for each pit is in ZP. Then 
use parts (1) and (3) of Theorem 7. 

6. Let Ct.= 1 + p 2 = 5, and let g(x) = (a0 + 2a1)- 1, where a0 , a 1 are the first two 
2-adic digits in x. Then follow the proof given for odd p. In the case p = 2, the 
Clausen-von Staudt theorem says that every nonzero Bernoulli number starting 
with B1 has exactly one power of 2 in the denominator. 

CHAPTER III § 1 

1. All roots of XP~'- 1 - 1 are also roots of XP1 - 1 - 1 if and only if xpf'- 1 - 1 divides 
XP1 - 1 - 1; this is true if and only if pf' - 1 divides pf - 1, which, in turn, is 
equivalent to f' dividing! 

2. Here is a table of all possible generators of IF;: 

p 2 3 5 7 l 11 13 

possible a 2 2, 3 3, 5 I 2, 6, 7, 8 2, 6, 7, 11 
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3. (I + j)any odd IJO"Cf is a genera tor. 

4. Adjoin a rootj of X 2 + X + 1 = 0 and X 3 + X + 1 = 0, respectively. For example, 
in IF8 we multiply as follows: 

(a + bj + c/)(d + ej + f/) = (ad + Q/ + ce) + (ae + bd + bf + ce + cj)j 

+ (af + be + cd + cf)/. 

Finally, note that when q - I is prime, any element (not I) of IF; is a generator. 

5. Clearly IFr(a) = IFq. 

6. If any two of the rr, were the same, you would get a polynomial of degree less than q 
having q roots. 

7. If P(X) factored over !Fr. say, P(X) = P1(X)P 2(X) with deg P1 = d < p, then the 
coefficient of xd~ 1 in P 1 (X), which is minus the sum of d of the roots a + i, would 
be in !Fr. But then da E !Fr. and so a E !Fr. But all elements of IFr are roots of xr- X, 
and so cannot be roots of P(X). 

8. If p = 2, then -I = I and it's trivial; otherwise IF" contains a square root of - 1 
if and only if 1 has a primitive fourth root, i.e., if and only if 4 divides q - I. 

9. Assume the contrary, and use the same approach as in Exercise 19 of ~1.2 and 
Exercise 20 of ~1.5. 

10. First show, without using limits, that the formal derivative of a polynomial over any 
field obeys the product rule. This can be done quickly by using linearity of the 
derivative to reduce to the case of a product of two powers of X. 

CHAPTER III §2 

A good reference for the ideas in these exercises (especially Exercises 2, 6, 7, 8) 
is Chapter IV of Simmons' textbook (see Bibliography). 

3. Vz · Vz = PVt, but ilvzllsup ·llt•zllsur = 1, IIPVtllsup = IPir = 1/p. 

4. Let !Fq = A/ M be the residue field of K, where q = pf; it is an extension of degree{ of 
the residue field IF I' of il)r· In the proof of the last proposition we saw that f s; 11 = 

[K : ilJi]. (In the next section we'll see that{ divides n; e = n/f'is called the ramification 
index.) First suppose that K is unramified, i.e.J = n. If we let .x denote the image of x 
under the residue map A_... !Fq. we see that we can choose a basis {v 1 •••• , r"} of K 
over il)r such that {ii, ... , v"} is a basis of lt4 over !Fr. One now checks that the sup­
norm with respect to such a basis has the desired multiplicative property. Namely, 
first prove that for x E K we have: llxllsur s; I if and only if x E A; llxllsur < I if and 
only if x EM. Then to show that lixYLr = llxLr · IIYII,ur• reduce to the case when 
!lxllsur = ll.vl!sur = I, i.e., x, yEA - M. But then xy E A - M. Conversely, if K is 
ramified, the sup-norm is nerer a field norm. Namely, one can show that in a field norm 
K has elements with norm a fractional power of p. 

5. Any element x E ;zl' can be written in the form x = p"u, where u is a unit. 
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CHAPTER Ill §4 

1. The values of 1 IP on n are the same as on UP, since any element can be approximated 
by an element ofU"v. To show that, for example, the unit ball in QP is not sequentially 
compact, take any sequence of distinct roots of unity of order prime to p and show 
that it has no convergent subsequence. 

2. Let r 0 = I b - a IP' You get the empty set unless r is a sum r 1 + r 2 of two rational 
powers of p (or zero). Then consider cases depending on the relative size of r0 , r 1, r2 • 

For example, if r0 = r1 > r2 , then you get the two disjoint circles of radius r2 about 
a and b. The "hyperbola" has exactly the same possibilities; now r = r1 - r2 must 
be a difference of two rational powers of p. 

3. Let cl = max(l, Co). Suppose pis a root with IPiv > cl. Then p = -bn-1-

b.-ziP-···- b0 /fJ"- 1, and I PIP~ max(lbn-i- 1/fJ'Ip) ~ max(lbilp) = C0 , a con­
tradiction. 

4. Set b =mini()(- Q(,lv• where the minimum is over all roots()(,¥- I)( off Use the last 
proposition in this section with the roles of band t: reversed to find a root fJ of g such 
that II)(- Plv <b. By Krasner's lemma, K(OI() c K(fJ). Since f is irreducible, 
[K(I)(): K] = degf = deg g ;:::: [K(fJ): K], and hence K(l)() = K(fJ). As a counter­
example when f is no longer irreducible, take, say, K = Ov, f(X) = X 2 , I)(= 0, 
g(X) = X 2 - p2 N+ 1 for large N. 

5. Let 01( be a primitive element. i.e., K = Qv(l)(), and let f(X) E QP[X] be its monic 
irreducible polynomial. Chooses as in Exercise 4, and find g(X) E Q[X] such that 
If- g lv < c. (For example, take the coefficients of g to be partial sums of the p-adic 
expansions of the corresponding coefficients of f) Then g has a root fJ such that 
K = Op(fJ) ::o Q(fJ), and it's easy to see that F = Q(p) is dense inK and has degree 
n = [K: Op] over Q. 

6. Set I)( = p, {3 = ...,/-~(with any fixed choice of square roots). We can apply 
Krasner's lemma if either I fJ - I)( lv or I fJ - (-I)() lv is less than II)( - (-I)() lr, which 
equals 1 if p ¥- 2 and 1/2 if p = 2. Since 

Ia- liP= 1-a- ( -l)lp = IP- l)(lviP + OI(IP' 

this holds if I a - liP < I for p ¥- 2 and < 1/4 for p = 2. To do the next part, set 

I)( = JP, fJ = .,/a. Then it suffices to have either I fJ - I)( lr or I fJ - (-I)() IP less than 

12)Piv· Since Ia- Plv =I#- I)(IP·I/3 + Ol(lr, this holds if Ia- PIP< l4plp· So 
choose c = 1/p if p ¥- 2 and = 1/8 if p = 2. 

7. First note that a satisfies the monic irreducible polynomial (XP"- 1)/(Xr"- 1 - 1). 

(For the case n = I, see Exercise 15 of §1.5.) Now let fJ = (- p) 11<p-1)' i.e., pis a 
fixed root of xv-l + p = 0. Let 01( 1 = a - I, 1)( 2 = a2 - I, ... , I)(P_ 1 = ap- 1 - I be 
the conjugates of a - I. Check that II)(, - x1 lv = p- 11<r- 11 for any i ¥- j. By Krasner's 
lemma, it suffices to show that I !l - 01(; lr < p- 1'<r- 11 for some i. If this were not the 
case,wewouldhavep- 1 ~fli,;;} lfJ- Ct,lv = I(({J + l)P- 1)/fJIP,sincefl(X- C£,) 
=((X+ l)P- 1)/X. Now use the relation pv- 1 + p = 0 to obtain:((#+ 1)P- 1)//l 
= f3 · L:i: i (;'){3'- 2 . Butthep-adicnormofthisis bounded by I pfJ I"< p- 1• To prove the 
last assertion in the exercise, suppose that a is a primitive mth root of 1, with m not 
a power of p, and Ia- liP< 1. Then we would have Ia'- liP< 1 for any i. Let 
I ¥- p be a prime factor of m, and let b = am'1, which is a primitive /th root of unity. 

139 



Answers and hints for the exercises 

Then fJ = b- 1 satisfies: 1/JIP < 1, and at the same time 0 = ((/3 + 1)1 - 1)//3 = 

L::~z (;){3'- 1 +I. But then lilp = 1/3(-L:;~z (i)f3'- 2)lp <!,a contradiction. 

8. Let n be an clement of K with ordP n = lje, where e is the ramification index of K. 
Then {nt~o. 1 . .... m _ 1 are in distinct multiplicative co sets modulo (K x )"', and any 
element of K x can be written uniquely as n'+"''u for some 0 ::;; i < m, j E Z, u E K 
with luiP = 1. Now show that u is an mth power. Namely, since its image in the 
residue field IF,, is an mth power, we can find u0 such that :x = uju0 "' - 1 satisfies 
I :x IP < 1. Finally, write the p-adic expansion I 1m = a 0 + a 1p + a2 p2 + · · ·, and 
obtain 

u = u0'(1 + :x) = (uo(l + :x)'"'+a,p+a,p'+ ')"'. 

10. Otherwise, K would have residue degree f > 1, since it would have more than p -
roots of unity of order prime to p, and any two such roots have distinct residues 
in IF;J. 

11. All have the cardinality of the continuum. 

12. Let y 1, ... , y 1 be elements in K such that I.\'; IP = 1 and the images of the ,1', in the 
residue field form a basis of the residue field over IF p· Show that J; n1, 1 :S: i :S: .t: 
0 ::;; j ::;; e - 1, form a basis of Kover QP, where ordP n = 1/e. 

13. If f3 satisfies the Eisenstein polynomial X' + a,. 1 x··- 1 + · · · + a0 , set :x = - a 0 . 

Then :xEZP, ordP:x = 1, and fl"- :x = fi" + a0 = -a,,_ 1fj"- 1 - ···- a 1{J has 
p-adic norm less than 1/p. 

14. Follow the proof of Theorem 3 of Ch. I but working over the field K, with fJ playing 
the role of p (recall that ordP fi = 1/e). Note that ordp(/3''- :x) 2 I + 1/e. Look for 
{3 + a 2 {3 2 with a 2 E {0, 1, ... , p- 1} such that ordp((/3 + a 2 {3 2 )"- :x) 2 1 + 2/e, 
and so on. An alternate method is to note that I :xj{J"- liP < 1, then write the p-adic 
expansion for I /e E ZP. and compute f3(:x/ {3") 1 "E K: this will be an eth root of :x. 
Finally, we have K = 4Jp(f3) because f3 has degree e. 

15. Let V c ZP[X] be the set of monic polynomials of degree n. For .1: g E V define 
If- g IP by the sup-norm. Note that V looks like z; with the sup-norm, and it is 
compact. LetS c V be the subset consisting of irreducible polynomials. Any such 
polynomial gives at most n different degree n extensions of 1) Pin ij P. For fixed .f E S. 
the last two propositions in §3 show that there exists b > 0 such that any g E S with 
If- g lr < c5 gives precisely the same set of degree n extensions as does f By com­
pactness, the set S has a finite covering of subsets in each of which the polynomials 
give the same extensions. So there are only finitely many extensions of degree 11. 

16-17. See the article" Algebraic p-adic expansions" by David Lampert, to appear in 
the Journal of Number Theory. 

CHAPTER IV § 1 

1. (i) D(p 1.rp- 11 -): (ii) D(x) =all of 0: (iii) D(p-): (iv) D(l): (v) D(1): (vi) D(l-): 
(vii) D(l- ). 
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3. A counterexample for the last question: let .f; = I + pX ifj is a power of 2, and let 
fj = 1 otherwise. Then.f(X) = n:'~o (1 + pX2') = L~o l'X1, where sj denotes 
the sum of the binary digits in j; this does not converge on D( I). 

4. Let d(x, Z:r) .kr min{ I x ~ y lr I y E Z:r}, i.e., the "distance" from x to Z:r. First prove 
that if d(x, Z:r) 2 L then the series converges, in fact, it converges under a much 
weaker condition on 1 an lp· Now suppose that d(x, Z:r) = r < I. Choose M so that 
p~(M+ 11 s r < p~M. Then for n = pN with N > M, show that: pN ~ p-''~ 1 of the 
factors in the denominator of the nth term are of norm I, pN~ 1 ~ pN~ 2 of the factors 
are of norm 1 /p, pN ~ 2 ~ pN ~ 3 of the factors are of norm I 1 p2, and so on, and finally 
pN~M ~ pN~M~ 1 of the factors are of norm 1/pM, and the remaining pN~M~ 1 

factors are of norm r. Use this to give a lower bound for the ordr of the nth term, 
namely, 

ordran + ordPn! ~ (pN~I ~ PN~z) ~ 2(pN~2 ~ PN~3) ~ ... 

~ M(pN~M ~ PN~M~I) ~ (M + 1)pN~M~1 
= ordpan + ordrn! ~ n(p~ 1 + p~z + ... + p~M~1) 
= Ordp an+ (njpM+ I ~ 1)/(p ~ 1). 

The more general case when n is not a power of p involves the same sort of estimate. 
In all cases, one finds that ordr of the nth term approaches infinity. 

6. For p > 2, write the congruence in the form ((1 + 1)P ~ 2)/p = 0 (mod p), use the 
binomial expansion for (1 + l)P to get L:'f;;;l (p ~ 1)(p ~ 2) · · · (p ~ j + 1)/j! on 
the left, and consider each term modulo p. 

7. Let a = log2 (1 ~ 2) = ~limn~ oc 2: 7~ 1 2;/i. Now 2a = log2 ((1 ~ 2)2 ) = log2 1 = 0; 
hence, a= 0. Thus,ord 2 2:7~ 1 2;/i = ord 2 L~n+l 2'/i 2 min<>n+ 1(i ~ ord 2 i). For 
example, for n = 2m this minimum is n + 1. 

8-9. Non-theorem 1 is being used. 

10. (a) The real series for the square root converges to the positive square root (m + p);m; 
the p-adic series converges to the square root which is congruent to 1 modulo p. Here 
they're both the same. 
(b) Here the positive square root is (p + 1 )/2n = (p + I )/(p ~ I), but this is the 
negative of the square root which is = 1 mod p. 

11. (d)-( e) Consider the following cases separately: 
Case (i). a ~ b is divisible by an odd prime p. Note that, since a and hare positive, 
relatively prime, and not both 1, it follows that a + b 2 3 is divisible either by 4 or 
by an odd prime p1 # p. Then (1 + :x) 1 ' 2 converges to ajb p-adically and converges 
to ~ ajb either 2-adically (if 4 divides a + b) or p 1-adically (if p 1 divides a + b). 
Case (ii). a ~ b = ± 2', r 2 2. Note that in this case there must be an odd prime p 

dividing a + b. Then (1 + :x) 112 converges to ajb 2-adically and to ~ajh p-adically. 
Case (iii). a~ b = ±2, so that :x = (a/b) 2 ~ 1 = 4(±b + 1)/b 2 • Note that here a 
and bare both odd. Then (1 + :x) 112 converges to ~ajb 2-adically and to ajb in the 
reals, provided that ~ 1 < :x < 1. The latter inequality holds unless b = I, :x = 8 or 
b = 3, Ct.= 16/9. 
Case (iv). a~ h = ±1, so that rx = (±2b + 1)/V Then (I+ rx) 112 converges to 
~ ajb p-adically for p a prime dividing ± 2b + 1, and it converges to a/bin the reals 
unless b = 1, :x = 3 orb= 2, rx = 5/4. 
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12. The series (x djdx)"lj(l - x) = ~ n'x" represents a polynomial in Z[X] divided by 
(I - X)k+ 1 in its disc of convergence, in both the real and p-adic situations. In 
particular, for x = p you get an integer divided by (p - I )k+ 1• 

13. The left side is -log3( I + T~;) = -log3(}t); the right side is 

-2 log_,( 1 - ~) = -log3((- .i)2 ) = -log3m). 

14. As an example where the exact regions of convergence differ, take l(X) = ~ XP". 
Thenj(X) converges on D(l-) andf'(X) converges on D(l). 

15. (a) For example, 'jf 1 i!1p;, where p, denotes the ith prime. (b) I don't know of an 
example, or of a proof that it's impossible. 

17. For each rational number r = a/bE Q, make a choice of p' E Q, i.e., choose a root of 
xb- p" = 0 and denote it p'. Now take, for example.f(x) = p<ordp·'1'. 

18. No. 

20. If you want each coefficient toj places, choose N so that pN > Mp'- 1: write alb E Zv 
modulo pN in the form a0 + a1p + · · · + aN-IPN- 1 ; and compute the coefficients of 
(I + X)""+a,p+ ···+aN •PN ' modulo p1• 

21. (6) First prove that the convergence assumptions allow you to rearrange terms. 
Reduce everything to proving than an element in IR[(X]] which vanishes for values 
of the variables in [ -1:'.1:') must be the zero power series. Prove this fact by induction 
on n. 

CHAPTER IV §2 

2. By removing roots of unity, show that the image of l'P is the same as the image of 
I + pl'P for p > 2 and I + 41'2 for p = 2. 

3. p2 !logP a= p2 1 (p - I )logP a = iogP(ap-l ), and the latter is congruent to 
av-l - I mod p2 • since in generallogv(l + x) = x mod p2 for x E pl'P. 

4. logP x (no surprise!). 

5. Let c = .f(p), and show that j'(x) - c ordv x satisfies all three properties which char­
acterize logv x. 

8. If'(! +pN)-((I)!P= 1-1 -llv= I. 

9. l - I = (j + l )(j - 1 ), and for p > 2 exactly one of the two factors is divisible by 
p, and hence by p.v. If p = 2, then you have j = ±I mod 2N- 1• 

10. Approximate I /2 by (pN + I )!2, and compare <TI,<(p~ +II 2.p-l' ,})2 with n,<pv,p-l'Jj, 

which we proved is = - 1 (mod pN). 

12. In the first equality both sides are 1 + 3 · 5 + 2 · 52 + 3 · 53 + · · ·, and in the 
second equality both sides are I + 6 · 7 + 5 · 72 + 4 · 73 + · · ·. 
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13. On the right side of property (3), we have s0 = p - r, s1 = (p - 1 - r)/(1 - p). 
Note that the expression is congruent to m 1 -so mod p; then it remains to verify that 
the (p - 1 )th power is 1. Use: (p - 1 )s 1 = 1 - p + r = 1 - s0 . 

14. In all cases show that the image of the function is in the open unit disc about I. 

15. 1 + x + X 2 + jX3 + jX4 ; 1 + x + ~X2 + ~X 3 + iX4 . 

16. The coefficient of XP is ((p - 1)! + 1 )/p!; Wilson's theorem. 

17. Ep(XP)jEp(X)P = e-px E 1 + pXZP[(X]]. 

18. f(XP)jf(X)P = exp(L:r;, 0(b,_ 1 - pb;)XP'). If C; ckf b,_ 1 - pb; E pZP for all i, then 
since e'x E I + pXZp[[X]] whenever c E pZP, it follows that 

T1 e'·xp' E 1 + pXZp[[X]]. 

Conversely, suppose C; is the first c, not in pZP; then the coefficient of XP'o in 
T1 e'•xP' is congruent :'nod p to C;0 'I; 0 mod p, and by Dwork's lemma f(X) ~ 
I+ XZP[[X]]. 

CHAPTER IV §4 

1. (i) Join (0, 0) to (1, 0) and (1, 0) to (2, 1). 
(ii) Join (0, 0) to (3, - 2). 

(iii) Join (0, 0) to (2, 0), (2, 0) to (4, 1), and (4, 1) to (6, 3). 
(iv) Join (0, 0) to (p- 2, 0) and (p- 2, 0) to (p- 1, 1). 
(v) Join (0, 0) to (1, 0), (1, 0) to (2, 1), and (2, I) to (3, 4). 

(vi) Join (0, 0) to (p2 - p, 0), (p2 - p, 0) to (l - 1, p - 1), and (p2 - I, p- I) to 
(pz, p + 1). 

2. (a) Any root Ct. of f(X) that satisfied a polynomial of lower degree d would have 
ordP Ct. equal to a fraction with denominator at most d; but by Lemma 4, ordP Ct.= 

-mjn. 
(b) Ifj(X) is an Eisenstein polynomial, then a; 1r{(1/X) =I+ an-danX + · · · 
+ a0/a.X" has for its Newton polygon the line joining (0, 0) to (n, 1). 
(c) Counterexample: 1 + pX + ap2 X 2, where a E z; is chosen so that I - 4a is 
not a square in ZP. 

3. All slopes are between 0 and 1, and for each segment of slope A there's a segment (of 
the same horizontal length) with slope I - A. The number of possible Newton 
polygons of this type is: 2 for n = 1; 3 for n = 2; 5 for n = 3; 8 for n = 4. 

4. (i) Join (pi- 1, - j) to (pi+ 1 - I, -(j + 1)) for j = 0, I, 2, .... 
(ii) The horizontal line from (0, 0). 

(iii) Join (pi- 1, 1 + p + .... + pi- 1 - j) to 
(pl + 1 - 1, 1 + p + ... + p1- 1 + pl - (j + 1)) forj = 0, I, 2, ... 

(iv) One infinite straight line from (0, 0) with slope -1/(p - I). 
(v) The segment joining (0, 0) to (2, 1) and the infinite line from (2,1) with slope I. 

(vi) The infinite line from (0, 0) with slope 1. 
(vii) Join (j, 1 + 2 + · · · + j) to (j + 1, 1 + 2 + · · · + j + j + I) for j = 0, 1, 2, .... 
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(viii) Starting with a segment from (0, 0) to (2, 2), there are infinitely many segments 

with slope increasing toward ji: the details of these segments depend upon 

rational approximations to ,)2. 

5. The Newton polygon of 1 + I;~ 1 p1 + [i~ 1X' is the infinite line from (0, 0) with 
F slope v 2. 

6. For example, I~ 0 p'X P'- 1 converges on D( 1 ), its Newton polygon is the horizontal 
line from (0, 0), and it has no zero in D(l). 

8. Reduce to the case A = 0 by replacing f(X) by f(p-;, X), where p;, is a choice of 
fractional power of p. Then multiply by a scalar to reduce to the case when 

For xED(l) clearly lf(x)lr ~ 1. To obtain an x for which lf(x)lr = 1, it suffices 
to reduce modulo the maximal ideal of Q, i.e., to consider the series f(X) E ~ r[X]. 
(This has only finitely many terms, because ordr a;--> ex::.) Then choose any x such 
thatf(x) # 0 in ~r· 

9. Apply the Weierstrass Preparation Theorem to the series JJX) = .f(X)/anX" E 1 
+ XQ[[X]] which is obtained by dividing f(X) by its leading term a" X". Take A= 0. 

10. Reduce to the case f(X) E 1 + XQ[[X]] by factoring out the leading term, as in 
Exercise 9. Use the Weierstrass Preparation Theorem to write h(X) = f(X)g(X). 
Butf(x) = 0 implies that h(x) = 0, and h(X) is a polynomial. 

11. Use Exercises 9 and 10, and show that if EP has one zero, then it must have infinitely 
many. To do this, let x be any pth root of a zero of E P' and use the relation EP(X)P = 
Ep(XP)ePx. 

12. Write f(X)g(X) = h(X). If f(X) has a coefficient a; with ordP a; < 0, then, by 
Lemma 4,.f(X) has a root iX in D(l-). But then h(iX) = O: however,fand h have no 
common roots. If h(X) has a coefficient a, with ordP a; < 0, then it has a root a in 
D(l-). Since g(iX) # 0 it follows thatf(iX) = 0, and we again have a contradiction. 

CHAPTER V §I 

1. 1/(1 - T): 1/(1 - q"T). 

2. 1/(1 - T)(l - qT) · · · (1 - q"T). 

3. There is a one-to-one correspondence between the points of (n - I)-dimensional 
affine space and the points of H f given by 

4. Suppose, for example, that r = 2. Then show that::j:j:H1r,J, 1(1F",) =::j:j:HJ1 (iF",) 
+#Hh(iFq,)- ::j:j::Hftf/IFq,), where Hfth is the hypersurface defined by the 
product of the two polynomials. 

5. Write ann-dimensional projective hypersurface as a disjoint union of affine hyper­
surfaces (one in each dimension 11, n - I, n - 2, ... ). 
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6. Let Q(T) = D (I - et:; T), P(T) = D (1 - {3; T); these are both in I[JJ[T]; then 
exp(:Z: N, T'/s) = P(T)/Q(T). The converse is shown by reversing this procedure. 

7. Comparing coefficients of T gives a= N 1 - 1 - q, where N 1 = #E(IF q); by 
Exercise 6, N, = 1 + q'- et:~ - a'2 , where Ct:~o a 2 are given by (1 +aT+ qT2 ) = 

(1 - a1 T)(1 - a2 T). 

8. (i) For q = 2 (mod 3), every element of IFq has a unique cube root; then show that 
N 1 = q + 1, so that a= 0, and the zeta-function is (1 + qT2 )/(1 - T)(1 - qT). 

(ii) For q = 3 (mod 4), -1 does not have a square root. Then for exactly one from 
eachpairx 1 = a,x 1 = -awehaveasolutiontox 2 = ±Jxi- x 1 ;thisgivesa 
one-to-one correspondence between a E 1Fq and points (x~o x2) on the affine 
curve. Counting the point at infinity, we obtain N = q + 1, as in part (i), and the 
zeta-function is (1 + qT 2)/(1 - T)(1 - qT). Next, for q = 9 = 32 , we haveN 1 

= (theN 2 when q = 3) = 16, a = 6, Z(T) = (1 + 3T)2 /(1 - T)(1 - 9T). For 
q = 5 we have Z(T) = (1 + 2T + 5T2)/(1 - T)(1 - 5T), and for q = 13 we 
have Z(T) = (1 - 6T + 13T2)/(l - T)(1- 13T). 

9. Suppose we have two rational functions f(T)/g(T) and u(T)/v(T) with numerator 
of degree m and denominator of degree n, where the first is exp(:Z:~ 1 N, T'/s) and 
the second is exp(:Z:~= 1 N~ T'/s), and suppose that N, = N; for s = 1, 2, ... , m + n. 
It suffices to show that then f(T)/g(T) = u(T)/v(T), because that implies that 
N, = N; for all s. But f(T)v(T) = g(T)u(T) exp(:Z:~= 1(N, - N;)T'/s) = g(T)u(T) 
x exp(:Z:~m+n+l(N,- N;)T'/s), and the equality of polynomials comes from 
comparing coefficients of powers ofT up to Tm+n. 

10. Show that there are (q - 1)q2 four-tuples with nonzero x3 and (q - 1)q with zero 
x3 ; then the zeta-function is (1 - qT)/(1 - q3 T). 

11. The zeta-function of the affine curve is listed first, followed by the zeta-function of its 
projective completion: 

(i) (1 - T)/(1 - qT?; 1/(1 - T)(l - q1Y 

(ii) (1- T)3/(1- qT?; 1/(1 - qT)3 . 

(iii) (1 - T)/(1 - qT) (unless p = 2, in which case it is 1/(1 - qT)); 

1/(1 - T)(1 - qT). 

(iv) 1/(1 - qT); 1/(1 - T)(l - qT). 

(v) (1 - T)/(1 - qT); 1/(1 - qT). 

13. It suffices to show that for any prime p, the coefficients (which are a priori in I[JJ) are 
in zp. 

14. Write the numerator in the form 1 + a 1 T + a 2 T 2 + a3 T 3 + q2 T 4 . To show that 
a 1 = a 2 = a 3 = 0, i.e., that the zeta-function agrees with the zeta-function of the 
projective line through the T 3-term, it suffices to show that N, = q' + 1 for 
s = 1, 2, 3. But since q' of. 1 (mod 5) every element of IFq' has a (unique) 5th root. 
(This is the same procedure as in Exercise 8(i).) 
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CHAPTER v §4 

1. See the proof of the second proposition in §III.3. 

2. Since G(T) = 2 aJj with ordP a1 '?. jj(p- 1), we have 0(aX~' ···X;;'")= 
2,·-jwgvX" with ordPg,. '?.lvl/(lwl(p- 1)). Set M = 1/(lwl(p- I)); then ordpgv 
'?.Mivl. 

3. Use induction on the number of nonzero a,'s; in case of difficulty. see Lang's Algebra, 
p. 209. 

4. Make a change of variables x f--> x + x 0 , where x 0 E iF q has nonzero trace. 

5. For u i= 0 make the change of variables x f--> ux in Exercise 4. 
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