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DYNAMICAL GREEN FUNCTIONS AND DISCRETE
SCHRÖDINGER OPERATORS WITH POTENTIALS

GENERATED BY PRIMITIVE INVERTIBLE SUBSTITUTION

ARNAUD GIRAND

Abstract. In this paper, we set up a "dictionary" between discrete Schrödinger
operators and the holomorphic dynamics on certain affine cubic surfaces, build-
ing on previous work by Cantat, Damanik and Gorodetski.
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1. Set–up and Main Results

The goal of this paper is to add on previous work by Cantat [6], Damanik
and Gorodetski [14, 15] (see also [9, 28] for instance) to establish a correspondence
between the study of certain discrete Schrödinger operators and the holomorphic
dynamics of automorphisms on certain affine cubic surfaces.

1.1. Discrete Schrödinger Operators.

1.1.1. Left shift dynamics. Consider the free group on two generators F2 := 〈a, b | ∅〉
and let ϕ ∈ Aut(F2) be a positive automorphism, i.e such that the images ϕ(a)
and ϕ(b) are words in a and b — and thus do not involve the inverse a−1 and b−1.

Using the action of Aut(F2) on the abelianized group Ab(F2) = Z2, one can
associate a matrix Mϕ ∈ GL2(Z) to ϕ. Assume Mϕ to be hyperbolic, i.e:

• either det(Mϕ) = 1 and Tr(Mϕ) > 2;
• or det(Mϕ) = −1 and Tr(Mϕ) 6= 0.

By replacing ϕ with ϕ2 := ϕ ◦ϕ ,which is still positive, we can restrict ourselves to
the first case; this means that the spectrum of Mϕ is of the form {λ, λ−1} where λ
denotes a quadratic integer greater than one.
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Let Ω be the set of finite words on the generators a and b, endowed with the
topology pertaining to the following distance:

d : (u, v) 7→ 1
inf{|n| |un 6= vn}+ 1

.

The initial automorphism ϕ extends to a substitution ι over the letters a and b
which has a unique "positively infinite" invariant word u+ ∈ {a, b}N.

Example 1.1. Let ζ be the Fibonacci substitution, given by a 7→ ab and b 7→ a;
its associated matrix Mζ is given by:

Mζ :=
(

1 1
1 0

)
∈ GL2(Z)

and it fixes the infinite word beginning with abaababaabaababaababaabaababaabaab . . .

Now consider the left shift on {a, b}Z:

T : {a, b}Z → {a, b}Z

u 7→ (un+1)n∈Z

and let W be the set of all adherent values for the sequence (T pu+)p≥0 — in other
words, it is the ω–limit setW of the T–orbit of u+. It is well known (see for instance
[12]) that there exists a unique T–invariant probability measure ν on the topological
set W and that the left shift T is ergodic with respect to ν — see [23, p.58] for an
outlook on uniquely ergodic maps.

1.1.2. Discrete Schrödinger operators. Given any word w ∈ W , one can define the
following potential function:

vw : Z→ {0, 1}

n 7→
{

1 if wn = a
0 else .

Consider for any fixed κ ∈ R and w ∈ W the following operator, defined on the
space `2(Z) of complex–valued square–summable sequences:

Hκ,w : `2(Z)→ `2(Z)

ξ 7→ (ξn+1 + ξn−1 + κvw(n)ξn)n∈Z.

Remark that this operator is self–adjoint and ‖Hκ,w‖ ≤ 2 + |κ|; therefore its spec-
trum Σκ,w is a subset of the real interval [−2− |κ|, 2 + |κ|].

Since Hκ,w is uniquely ergodic, we can apply the following result due to Kotani
and Pastur [25].

Theorem 1.2 (Kotani – Pastur).
There exists a compact set Σκ ⊂ [−2 − |κ|, 2 + |κ|] such that Σκ,w = Σκ for all
w ∈W .

We call the set Σκ the almost–sure spectrum of the operator Hκ,w with
respect to the measure ν.

Remark 1.3. If Hκ,w was ergodic — non–uniquely —, one would have Σκ,w = Σκ
for ν–almost every w ∈W , hence the colloquial name of "almost–sure spectrum".
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1.1.3. Density of states. LetHN
κ,w be the restricted operatorHκ,w to the set C{−N,...,N}

with Dirichlet boundary conditions, meaning we only consider sequences (ξ)n with
−N ≤ n ≤ N such that:

• ξn = 0 for n ≤ −N − 1;
• ξn = 0 for n ≥ N + 1.

This gives a self–adjoint endomorphism of C2N+1; as such it has real eigenvalues
λN0 , . . . , λ

N
2N . Define the following probability measure:

µκN :=
1

2N + 1

2N∑
j=0

δλNj .

Theorem 1.4 (Avron – Simon [1]).
(i) For ν–almost every w ∈ W the sequence (µκN )N weakly converges to a

probability measure dkκ on C, called density of states;
(ii) for any continuous function g : C→ C:∫

C
g(E)dkκ(E) =

∫
w∈W

〈g(Hκ,w) · δ0 | δ0〉dν(w) ;

(iii) supp(dkκ) = Σκ.

Remark 1.5. It is standard to then define the integrated density of states as
the repartition function of the probability measure dkκ:

kκ : (E ∈ R) 7→
∫ E

−∞
dkκ.

1.1.4. Lyapunov exponent. A hypothetical eigenvalue–eigenvector pair (E, ξ) for
Hκ,w should satisfy the equation:

(1.1) ∀n ∈ Z, ξn+1 + ξn−1 + κvw(n)ξn = Eξn ,

that is:

(1.2) ∀n ∈ Z,
(
ξn+1

ξn

)
= ME

n,κ,w

(
ξn
ξn−1

)
where:

ME
n,κ,w :=

(
E − κvw(n) −1

1 0

)
∈ SL2(C),

i.e ME
n,κ,w is equal to one of the two matrices:

ME
κ (a) :=

(
E − κ −1

1 0

)
, ME

κ (b) :=
(
E −1
1 0

)
.

Consider the Lyapunov exponent:

γκ(E) := lim sup
N→∞

1
N

∫
W

log

∥∥∥∥∥
N∏
n=0

ME
n,κ,w

∥∥∥∥∥ dν(w).

By Osseledet’s Theorem, this quantity is well defined and:

lim sup
N→∞

log

∥∥∥∥∥
N∏
n=0

ME
n,κ,w

∥∥∥∥∥
is ν–almost surely constant equal to γκ(E).
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Theorem 1.6 (see[12] and [8]).
The Lyapunov exponent is a non–negative function such that :

(i)

γκ(E) =
∫

Σκ

log |E − E′|dkκ(E′);

(ii)

(1.3) ddcγκ = 2πdkκ;

(iii) the almost–sure spectrum satisfies Σκ = {γκ = 0}.

Proof. The first item is the Thouless formula — see [8, p.340] — and thus, since
ddc log |z − z0| = 2πδz0 , one obtains property (ii). The third result is a theorem
due to Ishii, Kotani and Pastur — see [12] for an overview.

�

1.1.5. Green function for the almost–sure spectrum. First, recall the following defi-
nition. Let U be an open set in C such that its complement C \U is a compact set.
A function gU : U → (0,∞) is aGreen function for the domain U — alternatively,
for the compact C \ U — if:

(G1) gU is harmonic;
(G2) the following limit exists:

lim
z→∞

(gU (z)− log |z|);

(G3) for all ξ ∈ ∂U , one has:

lim
z→ξ

gU (z) = 0.

Remark 1.7.
(1) If U is such an open subset of C then its Green function, if it exists, is unique

— see [22, p.182]. Moreover, one can replace (G2) with gU (z)−log |z| = O(1)
at infinity.

(2) If U as a Green function, there exists a positive real number C such that

gU (z) = log |z| − log(C) + o(1) as z goes to infinity.

C is called the capacity of the compact set C \U . For more details on set
capacities, see [26, p.132].

(3) The measure ddcgU is called the equilibrium measure of the compact set
C \ U .

Consider the open set U := C \ Σκ; it satisfies ∂U = Σκ. We then have the
following result, which is well known to experts — see for example [15, p.979],
remark (g).

Proposition 1.8.
(i) The Lyapunov exponent γκ is the Green’s function for the domain U .

(ii) The density of states is the equilibrium measure of Σκ.
(iii) The capacity Cap(Σκ) of the almost–sure spectrum is one.
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Proof. The Thouless formula shows that γκ : U → (0,∞) satisfies condition (G1);
moreover, for E ∈ C:

γκ(E)− log |E| =
∫

Σκ

log |E − E′|dkκ(E′)− log |E|

=
∫

Σκ

log
∣∣∣∣1− E′

E

∣∣∣∣ dkκ(E′)

−−−−→
E→∞

0,

where the final line follows from the preceding because the function log |1−E′/E|
converges uniformly towards zero on the compact support Σκ of dkκ. Therefore
condition (G2) holds. Finally, one checks (G3) using Theorem 1.6. Thus (i) and
(ii) hold, using 1.3 and since γκ(E)− log |E| −−−−→

E→∞
0, one immediately gets (iii).

�

1.2. Holomorphic Dynamics.

1.2.1. Character variety of the free group on two generators. Let us fix a generating
set {a, b} of the free group F2 and consider the algebraic quotient χ(F2) of:

Rep(F2) := Hom(F2, SL2(C)) ∼= SL2(C)× SL2(C)

under SL2(C)–conjugacy. The variety χ(F2) is isomorphic to C3 with the following
projection map:

χ : Rep(F2) 7→ C3

ρ 7→ (x, y, z) = (Tr(ρ(a)),Tr(ρ(b)),Tr(ρ(ab))).

Moreover, if one enforces the condition Tr([ρ(a), ρ(b)]) = D− 2 ∈ C one obtains an
affine cubic surface SD, the equation of which is (see [6, 7] for details):

x2 + y2 + z2 = xyz +D.

Let ϕ be an element of Aut(F2); then the following defines an automorphism of the
surface SD:

f : χ(ρ) 7→ χ(ρ ◦ ϕ−1).
Since the group Aut(F2) acts on Ab(F2) = Z2 one can set

Mf =
(
p q
r s

)
∈ GL2(Z)

to be the matrix corresponding to ϕ−1 and if A := ρ(a), B := ρ(b) for some
ρ ∈ Rep(T2

1) then:

(1.4) f(χ(ρ)) = ((Tr(ApBq),Tr(ArBs),Tr(ApBqArBs)).

This gives us an action of GL2(Z) on SD whose kernel contains ±I2; therefore
PGL2(Z) acts on the surface SD.

Using (1.4) and Fricke–Klein’s formulas, one sees that f is a polynomial auto-
morphism of SD; in the following, we will denote by B be the subgroup of Aut(SD)
formed by such mappings f . We will say that an automorphism f ∈ B is hyperbolic
if one of the next two conditions holds:

• either det(Mf ) = 1 and Tr(Mf ) > 2;
• or det(Mf ) = −1 and Tr(Mf ) 6= 0.
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Example 1.9. For the Fibonacci substitution ζ, consider the automorphism f
associated with ζ. Then:

Mf = Mζ−1 =
(

0 1
1 −1

)
.

Since det(Mf ) = −1 and Tr(Mf ) = −1 6= 0 the morphism f is in fact hyperbolic.
It is given by:

f(x, y, z) = (y, xy − z, x).

Denote by SD the compactified surface:

w(x2 + y2 + z2) = xyz + w3D,

where [x : y : z : w] are homogeneous coordinates on the projective space P3. Its
intersection with the plane at infinity {w = 0} is equal to the "triangle at infinity"
∆ = {xyz = 0}. Thus Aut(SD) embeds into the birational transformations of SD.
The dynamics at infinity of the hyperbolic elements in B is quite rich, as we will
see throughout this paper; first, we have the following result.

Proposition 1.10 (see [6, 7, 18]).
Let f ∈ B be a hyperbolic automorphism. Then f extends to a birational transfor-
mation of SD and:

(i) f has a unique indeterminacy point v− which is either [1 : 0 : 0 : 0],
[0 : 1 : 0 : 0] or [0 : 0 : 1 : 0];

(ii) the mapping f contracts ∆ \ {v−} onto the indeterminacy point v+ of f−1;
(iii) up to conjugacy by an element of B, one can assume v+ to be distinct from

v−.

Remark 1.11. Èl’Huti [18] gave a detailed description of the automorphism group
Aut(SD); in particular, he proved that B has finite index in Aut(SD).

1.2.2. Main theorem on dynamical Green functions. Fix a hyperbolic automor-
phism f ∈ B for which v+ 6= v− and denote by λ the spectral radius of Mf .
We now try to understand the escape rate at infinity in the unbounded orbits un-
der f . First, a theorem by Dloussky [17] combined with work by Cantat [6] — see
also [19] — yields the following result, which will be essential to our study of the
dynamics of f at infinity.

Proposition 1.12 ([6]).
There exists a matrix Nf ∈ GL2(Z) with non–negative entries which is conjugate
to Mf in PGL2(Z), an open neighbourhood U of v+ in SD and a biholomorphism
ψ+
f : D× D→ U such that:

(i) ψ+
f (0, 0) = v+;

(ii) for all (u, v) ∈ D∗ × D∗ one has:

ψ+
f ((u, v)Nf ) = f(ψ+

f (u, v)),

where (u, v)Nf denotes the monomial action of Nf on the pair (u, v), i.e if

Nf =
(
p q
r s

)
then (u, v)Nf = (upvq, urvs).
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As a consequence, if m ∈ SD has unbounded forward orbit under f , then fn(m)
goes to v+ at infinity.

Before stating our main result regarding dynamical Green functions, let us set a
few conventions:

• define the filled Julia set K+(f) as follows:

K+(f) := {m ∈ SD | ∃M > 0, ∀n ≥ 0, ‖fn(m)‖ ≤M} ,

where ‖.‖ denotes the standard euclidean norm on C3;

• set α, β ∈ R∗+ to be the coordinates of the projection of the vector
(

1
1

)
on

the eigenline for Nf associated with the maximal eigenvalue of Mf — and
so of Nf —.

Theorem A (Dynamical Green function).
Let f ∈ B be a hyperbolic element and let m ∈ SD. Then the following quantity is
well defined:

G+
f : m 7→ lim

n→∞

1
λn

log+ ‖fn(m)‖ ,

and:
(i) the function G+

f is pluriharmonic (resp. plurisubharmonic) on the comple-
ment of the filled Julia set K+(f) in SD (resp. on SD) and takes non–
negative values;

(ii) the zero set of G+
f is K+(f);

(iii) the following relation holds:

(1.5) G+
f ◦ f = λG+

f ;

(iv) if m = ψ+
f (u, v) ∈ ψ+

f (D∗ × D∗), then:

(1.6) G+
f (m) = −α log |u| − β log |v|

(v) the function G+
f is locally Hölder–continuous.

Example 1.13. In the Fibonacci case, Mf is conjugate to

Nf =
(

1 1
1 0

)
in PGL2(Z).

The eigenvalues of Mf — and so of Nf — are

φ :=
1 +
√

5
2

and φ :=
1−
√

5
2

.

and the corresponding eigenlines for Nf are spanned by
(
φ
1

)
and

(
φ
1

)
. Thus,

since: (
1
1

)
=

1− φ√
5

(
φ
1

)
+
φ− 1√

5

(
φ
1

)
,

one has α =
1− φ√

5
φ =

φ− 1√
5

and β =
1− φ√

5
. Moreover, we have in this case

v+ = [0 : 1 : 0 : 0].

1.3. Applications to Discrete Schrödinger Operators.
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1.3.1. Schrödinger curve. Consider the following cubic surface in C3, for some fixed
κ ∈ R:

(S4+κ2) x2 + y2 + z2 = xyz + 4 + κ2 ;

this is a connected smooth — ifκ 6= 0 — affine surface, containing what we call its
Schrödinger curve:

s : C→ S4+κ2

E 7→ (E − κ,E,E(E − κ)− 2).

Remark 1.14. The function s is in fact the trace map associated with the matrices
ME
n,κ,w. Namely, one has s(E) = (Tr(ME

κ (a)),Tr(ME
κ (b)), tr(ME

κ,(b)M
E
κ (a))).

Starting from our automorphism ϕ ∈ Aut(F2) (cf. 1.1.1) with associated sub-
stitution ι, we obtain a polynomial automorphism f of S4+κ2 associated with ϕ−1

(cf. 1.2.1); one can then explicitly compute it using the formula f(χ(ρ)) = χ(ρ ◦ϕ)
and so its restriction to the Schrödinger curve is:

∀E ∈ C, f(s(E)) = (Tr(ME
κ (ι(a))),Tr(ME

κ (ι(b))),Tr(ME
κ (ι(ab)))),

where, if u = (u1, . . . , un) ∈ {a, b}n, then:

ME
κ (u) :=

n−1∏
i=0

ME
κ (un−i).

Since ϕ is hyperbolic, f is a hyperbolic automorphism of S4+κ2 . We then have the
following result [11] — see also some earlier work by Sütő [28,29].

Proposition 1.15 (Damanik [11]).
If f is the polynomial automorphism of S4+κ2 associated with a positive hyperbolic
substitution ι on two letters, then the almost–sure spectrum Σκ satisfies:

Σκ = s−1(K+(f)).

1.3.2. "Dictionary" Between Holomorphic Dynamics and Schrödinger Operators.
We now move on to our second result. Since the subgroup B has finite index
in Aut(S4+κ2) (cf. remark 1.11) and f has infinite order we can suppose, up to
replacing it with some iterate fn0 that f ∈ B; thus, we will be able to exploit
theorem A to obtain the following result.

Theorem B.
Let ι be a positive hyperbolic substitution over the letters a and b and let f ∈ B be
the associated automorphism of S4+κ2 . Then for E ∈ C:

γκ(E) =
1

α+ β
G+
f (s(E)),

where α, β ∈ R∗+ are the same as in Theorem A.

Remark 1.16. Proposition 1.15 was mostly a qualitative one, concerning the bound-
edness of the orbit alone. Here, using our Theorem A, we get tools to estimate the
escape rate at infinity thus obtaining a more quantitative result.

This, combined with previous work by Cantat, Damanik and Gorodetski, allows
us to work out the following "dictionary".
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Discrete Schrödinger operators Holomorphic dynamics on S4+κ2

Almost–sure spectrum Σκ Julia set K+(f)
Lyapunov exponent γκ Dynamical Green’s function G+

f

Density of states dkκ Green’s current T+
f

Thouless formula T+
f = ddcG+

f

γκ and kκ Hölder–continuous near Σκ G+
f locally Hölder–continuous

Avron & Simon Theorem 1.4 Convergence to T+
f

More precisely, one goes from the right-hand side of this table to the left by
taking pull-backs with the Schrödinger curve s : C → S4+κ2 ; for instance, the first
line is Damanik’s Proposition 1.15, and the second is our Theorem B. Similarly, the
Hölder continuity of γκ corresponds to the Hölder continuity of G+

f —obtained in
Theorem A; we shall see in Section 3.2.1 that it implies directly Hölder continuity
of the integrated density of states. The last line of this table is less precise: this is
explained in paragraph 3.2.3.

2. Dynamical Green Functions

2.1. Preliminary Computations.

2.1.1. Geometry of SD at infinity. In order to measure the escape rate at infinity
of a point with unbounded orbit, we will now study the behaviour of log ‖m‖ when
m = (x, y, z) ∈ SD goes to v+, where ‖ · ‖ denotes the euclidean norm on C3. For
the sake of clarity, suppose — our problem being symmetric with respect to x, y
and z — that v+ is the point [0 : 0 : 1 : 0]; in a neighbourhood of v+, SD can be
seen, using the chart {z 6= 0}, as the surface:

(2.1) (X2 + Y 2 + 1)W = XY +DW 3,

where X := x/z, Y := y/z and W := w/z. Equivalently, this can be written as
follows:

(2.2) W = XY +DW 3 +W 2(AX +BY + C) +W (X2 + Y 2).

Using these new coordinates (X,Y,W ), v+ corresponds to the point at origin
(0, 0, 0) and one has:

log ‖m‖ =
1
2

log

(∣∣∣∣XW
∣∣∣∣2 +

∣∣∣∣ YW
∣∣∣∣2 +

1
|W |2

)

=− 1
2

log(|W |2) +
1
2

log(|X|2 + |Y |2 + 1)

=− 1
2

log(|XY +DW 3 +W 2(AX +BY + C) +W (X2 + Y 2)|2)

+
1
2

log(|X|2 + |Y |2 + 1).

Using Taylor’s approximation one gets:

log ‖m‖ = − log(|XY |) + g(X,Y,W ),

where g is bounded in a neighbourhood of (0, 0, 0). Now, for m close enough to
v+ one can apply the biholomorphism ψ+

f to get (u, v) := ψ+
f

−1
(m) and use the

following lemma.
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Lemma 2.1.
There exists a germ of bounded function h such that for all (u, v) ∈ D∗ × D∗:

log ‖ψ+
f (u, v)‖ = − log |uv|+ h(u, v).

Proof. Using Taylor’s theorem at the origin one gets:

ψ+
f (u, v) = v+ + L(u, v) +R(u, v),

where L is the linear part of ψ+
f at the origin and R is a smooth bounded function

on D × D such that R(u, v) = O(‖(u, v)‖2). Since ψ+
f is a conjugacy between the

dynamics of f and Nf and since f (resp. Nf ) only contracts the axes {X = 0} and
{Y = 0} (resp. {u = 0} and {v = 0}) on the origin then L = dψ+

f (0, 0) must be of
the form (

r1 0
0 r2

)
or
(

0 r1

r2 0

)
.

Therefore, there exists a bounded function h on D× D such that:

(2.3) log ‖ψ+
f (u, v)‖ = − log(|uv|) + h(u, v),

�

2.1.2. Estimate at infinity. Since Mf is hyperbolic, one can assume — replacing
Mf with Mf2 = M2

f — that it has eigenvalues λ and λ−1, with λ a real number
greater than one. Now consider the following quantity, for n ≥ 0 and m with
unbounded forward orbit, chosen sufficiently close to v+ — i.e in ψ+

f

−1
(D× D):

1
λn

log ‖fn(m)‖.

Let (un, vn) := (u, v)N
n
f ; using the previous lemma one gets:

1
λn

log ‖fn(m)‖ = − 1
λn

log(|unvn|) +
1
λn
h(un, vn).

Since
1
λn
h(un, vn) −−−−→

n→∞
0, we want to understand the behaviour at infinity of the

following quantity:

− 1
λn

log(|unvn|).

Lemma 2.2.
The following estimate holds, as n goes to infinity:

(2.4)
1
λn

log |unvn| −−−−→
n→∞

(α log |u|+ β log |v|),

where α, β ∈ R∗+ are the coordinates of the projection of the vector
(

1
1

)
on the

eigenline for Nf associated with λ.

Proof. Since (u, v) ∈ D∗ × D∗ one can set (es, et) := (u, v) with:

s, t ∈ {z ∈ C | <(z) < 0,=(z) ∈ (−π, π]}.
Then it is just a matter of describing the behaviour of |uv| = |es+t| = e<(s+t) under
Nf , which acts linearly on the coordinates (s, t). A computation thus yields:

1
λn

log |unvn| −−−−→
n→∞

(α<(s) + β<(t)) = (α log |u|+ β log |v|).
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�

Using lemmas 2.1 and 2.2, one gets the following estimate:

(2.5)
1
λn

log ‖fn(m)‖ −−−−→
n→∞

−(α log |u|+ β log |v|).

Note that this only holds for m sufficiently near v+, i.e for (u, v) in D∗ × D∗.

2.2. Proof of Theorem A. First remark that if m ∈ K+(f) then it is clear that
G+
f (m) is well defined and equal to 0.
Now consider m /∈ K+(f); up to replacing m with some fn0(m), one can as-

sume that m is sufficiently near v+ so that one can set (u, v) := ψ+
f

−1
(m) and

(un, vn) := (u, v)N
n
f . Since fn(m) −−−−→

n→∞
v+, for n large enough log+ ‖fn(m)‖ = log ‖fn(m)‖.

Applying the estimate (2.5) then yields, using the same notations as before:
1
λn

log ‖fn(m)‖ −−−−→
n→∞

−(α log |u|+ β log |v|)

We have thus proved that G+
f is well defined and that (ii) and (iv) hold. Moreover,

the estimate (2.5) implies that:

(2.6) ∀(u, v) ∈ D∗ × D∗, G+
f ◦ ψ

+
f (u, v) = −α log |u| − β log |v|.

(i) Let H be a compact set in SD, m ∈ H and n, p ≥ 0. If m ∈ K+(f)
then we clearly have uniform boundedness. Else, fn(m) −−−−→

n→∞
v+ and so for

n large enough m = ψ+
f (u, v) with (u, v) ∈ D∗ × D∗ and ‖fn(m)‖ > 1, ergo

log+ ‖fn(m)‖ = log ‖fn(m)‖ and:∣∣∣∣ 1
λn+p

log+ ‖fn+p(m)‖ − 1
λn

log+ ‖fn(m)‖
∣∣∣∣ =

1
λn+p

∣∣log ‖fn+p(m)‖ − λp log ‖fn(m)‖
∣∣

Since we just proved that there exists a constant Cm = (α log |u| + β log |v|) de-
pending only on the orbit of m such that log ‖fn(m)‖ = Cmλ

n + λnεm(n), with
εm(n) −−−−→

n→∞
0 so:∣∣∣∣ 1

λn+p
log+ ‖fn+p(m)‖ − 1

λn
log+ ‖fn(m)‖

∣∣∣∣ =
1

λn+p
|εm(n+ p)− εm(n)| .

As |εm(n)| −−−−→
n→∞

0, then for all positive η and m ∈ H, there exists Nm ∈ N such
that:

∀n ≥ Nm, |εm(n)| ≤ |εm(Nm)| < η

hence: ∣∣∣∣ 1
λn+p

log+ ‖fn+p(m)‖ − 1
λn

log+ ‖fn(m)‖
∣∣∣∣ ≤ 2|εm(Nm)|.

Since Cm and log ‖fn(m)‖ are continuous with respect to m (cf. (iv)),

m 7→ εm(Nm) = λ−Nm(log ‖fNm(m)‖ − Cm)

is continuous. Using the compactness of H, there exists m0 ∈ H such that:

sup
m∈H

εm(Nm) = εm0(Nm0)

where:

0 ≤ 2|εm(Nm)| ≤ 2|εm0(Nm0)| < 2η.



12 ARNAUD GIRAND

The sequence defining G+
f thus converges uniformly on all compact subsets in SD

and so the limit function inherits the pluri(sub)harmonic properties of its terms.
(iii) This stems from the fact that if m ∈ S then:

1
λn

log+ ‖fn(f(m))‖ =
1
λn

log+ ‖fn+1(m)‖ = λ

(
1

λn+1
log+ ‖fn+1(m)‖

)
.

(v) Here we adapt work by Fornaess and Sibony [20]. Since G+
f is C1 outside any

neighbourhood of K+(f) it is Hölder–continuous there. Now let z1 ∈ SD and
z0 ∈ K+(f) be such that:

d(z1,K
+(f)) = ‖z1 − z0‖.

If z1 ∈ K+(f), there is nothing to show. Else, note that by definition of the filled
Julia set there exists R0 > 0 such that:

∀n ∈ N, ‖fn(z0)‖ ≤ R0.

Let us consider a positive real number R ≥ R0 + 1 and set:

N := min{n ≥ 0 | ‖fn(z1)‖ > R} <∞;

thus:

| ‖fN (z1)‖ − ‖fN (z0)‖ | ≤ ‖fN (z1)− fN (z0)‖
≤ sup
‖z‖≤R

‖df(z)‖‖fN−1(z1)− fN−1(z0)‖ car ‖fN−1(z1)‖ ≤ R

...

≤ ( sup
‖z‖≤R

‖df(z)‖)N‖z1 − z0‖

≤ ( sup
‖z‖≤R

‖df(z)‖)Nd(z1,K
+(f)).

Hence, if one sets:
H(R) := sup

‖z‖≤R
‖df(z)‖

one gets:

1 ≤ R−R0 ≤ | ‖fN (z1)‖ − ‖fN (z0)‖ |
≤ H(R)Nd(z1,K

+(f))

thus H(R)Nd(z1,K
+(f)) ≥ 1. Setting γ :=

log(λ)
log(H(R))

one has:

(2.7)
1
λN
≤ d(z1,K)γ .

Using (iii) one gets:

G+
f (z1) =

1
λN

G+
f ◦ f

N (z1)

≤ 1
λN

sup
‖z‖≤R

G+
f ◦ f(z) car ‖fN−1(z1)‖ ≤ R

≤ d(z1,K
+(f))γ sup

‖z‖≤R
G+
f ◦ f(z) par (2.7).



DYNAMICAL GREEN FUNCTIONS AND SCHRÖDINGER OPERATORS 13

Let:

C := sup
‖z‖≤R

G+
f ◦ f(z)

one then has, in fine:

(2.8) G+
f (z1) ≤ Cd(z1,K

+(f))γ

for any point z1 ∈ SD.
�

Remark 2.3. Using the notations of paragraph 2.1.2, we can estimate the local
coordinates (X,Y ) around v+ as follows (up to a permutation of u and v in the
linear part):

(X,Y ) = (r1u, r2v) +R(u, v).

Therefore, we have, as m goes to v+:

(2.9) G+
f (m) = −α log |X| − β log |Y | − log |rα1 r

β
2 |+ o(1).

Remark 2.4. Replacing f with its inverse f−1, one can define the negative dynam-
ical Green function:

G−f := lim
n→∞

1
λn

log+ ‖f−n(m)‖.

Our main result extends to this function.

2.3. Corollaries. We can now consider the closed positive current [6] associated
with G+

f , namely:

T+
f := ddcG+

f = 2i∂∂̄G+
f

which satisfies the following:

f∗T+
f = λT+

f

and has support in the Julia set J+(f) := ∂K+(f).

Corollary A.1.
Let f ∈ B be a hyperbolic element and m ∈ SD. Then there exists a neighbourhood
U of v+ in SD such that:

ddcG+
f |U

= −2π
(
α

∫
X=0

+β
∫
Y=0

)
,

where α, β ∈ R∗+ and (v+, X, Y ) are the same as in Theorem A.

Proof. Let U := ψ+
f

−1
(D∗ × D∗); then using (2.6) and (2.9) one gets:

ddcG+
f |U

= ddc(−α log |u| − β log |v|) = ddc(−α log |X| − β log |Y |).

The result then follows from the Lelong–Poincaré lemma.

�
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3. From Holomorphic Dynamics to Schrödinger Operators

3.1. Proof of Theorem B. Consider the function:

g : C \ Σκ → (0,∞)

E 7→ G+
f (s (E)) ;

our aim is to show that it is — up to a multiplicative constant — the Green’s
function of the domain U := C \ Σκ, thus proving the theorem. Since G+

f is
psh, condition (G1) holds and (G3) is a direct consequence of Damanik’s result
(Proposition 1.15).

Using Fricke–Klein’s formulas and relation (1.4), one shows using induction that
f contracts the triangle at infinity ∆ on the point v+ = [0 : 0 : 1 : 0]. Using (2.9),
one then gets

g(E) = α log |x| − β log |y| − log |C|+ o(1) as E goes to infinity,

where C ∈ C and s (E) = [x : y : 1 : 1]. One also has:

s([E : t]) = [Et− t2κ : Et : E2 − Etκ− 2t2 : t2],

hence, using the chart {z 6= 0}:

s(E) = s ([E : 1])

=
(

E − κ
E2 − Eκ− 2

,
E

E2 − Eκ− 2
,

1
E2 − Eκ− 2

)
=
(

1
E

(
1− κ/E

1− κ/E − 2/E2

)
,

1
E

(
1

1− κ/E − 2/E2

)
,

1
E2 − Eκ− 2

)
Thus the following limit exists:

lim
E→∞

g(E)− (α+ β) log |E|.

�

Remark 3.1. Using Proposition 1.8, one has:

lim
E→∞

g(E)− (α+ β) log |E| = − log Cap(Σκ) = 0.

3.2. Consequences. Theorem B yields a few interesting corollaries, further detail-
ing the entwining between certain dynamical invariants and discrete Schrödinger
operators.

3.2.1. Hölder continuity — see also [10, 16].

Corollary B.2.
One has the following results:

(i) s∗(ddcG+
f ) = 2π(α+ β)dkκ;

(ii) the functions γκ and kκ are Hölder–continuous near Σκ, with the same
Hölder exponent τ ;

(iii) the density of states does not charge sets with Hausdorff dimension less than
τ . In particular, the Hausdorff dimension of the almost–sure spectrum is
strictly positive.
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Proof. The first assertion follows from (1.3). To prove property (ii), we reproduce
an argument from [27]. Using Theorem A, G+

f is locally Hölder–continuous near
K+(f); since s(C)∩K+(f) = Σκ is a compact set, that property is global near the
almost–sure spectrum and so γκ is Hölder–continuous near Σκ. Denote by τ the
exponent of Hölder continuity.

To show that kκ is Hölder continuous, consider two real numbers E2 > E1.
Let M be the middle point of the segment [E1, E2] and R = |E2 − E1|/2 be the
distance from M to E1. Denote by D(r) ⊂ C the disk of radius r centred at M .
Let ψ : C → R+ be a smooth function which is equal to 1 on D(R) and equal to
0 on C \D(2R), and whose partial derivatives of order 1 and 2 are bounded from
above by 100R−2 (such a function exists, see [21]). Then,

|kκ(E2)− kκ(E1)| =
∫

[E2,E1]

dkκ(E)

≤
∫
D(R)

ddc(γκ − γκ(M))

≤
∫
D(3R)

ψ · ddc(γκ − γκ(M))

≤
∫
D(3R)

ddcψ · (γκ − γκ(M))

≤ CstRτArea(D(3R))R−2

≤ 9πCst|E2 − E1|τ

for some uniform constant Cst because γκ is Hölder continuous (with exponent τ)
on a neighbourhood of Σκ.

The same proof shows that dkκ does not charge any closed subset of C whose
Hausdorff dimension is less than τ (see [27]).

�

3.2.2. Hausdorff dimension of the density of states. Once we know that γκ is equal
to (α+ β)−1G+

f ◦ s, we can generalize the first results of Damanik and Gorodetski
concerning the Hausdorff dimension of the density of states — proved in [15] for
the Fibonacci substitution. Doing this, we obtain an alternative (but almost equal)
proof of some of the results of May Mei (see [24]).

Theorem 3.2 (Damanik, Gorodetski, Mei). Let ϕ be a positive and hyperbolic
automorphism of the free group F2. Let Hκ,w be the corresponding family of discrete
Schrödinger operators. For small coupling factors 0 < κ < κ0, the density of states
dkκ is of exact dimension dim(κ), i.e. for dkκ-almost every real number E,

lim
ε→0

log dkκ[E − ε, E + ε]
| log(ε)|

= dim(κ).

Moreover,
(1) dim(κ) is a C∞-smooth function of κ ∈ (0, κ0);
(2) limκ→0 dim(κ) = 1;
(3) dim(κ) < Haus−Dim(Σκ) < 1 for κ ∈ (0, κ0);
(4) dim(κ) coincides with the infimum of the Hausdorff dimension Haus−Dim(S)

of all measurable sets S such that dkκ(S) = 1.
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The proof is due to Damanik, Gorodetski, and Mei. Let us explain how one can
relate its proof to Theorem A and Theorem B:

a.– The dynamics of f on the intersection of its filled Julia sets K+(f)∩K+(f−1)
is uniformly hyperbolic, the filled Julia set K+(f) is the support of a lamination
by holomorphic curves, and the current T+

f is a current of integration on this lam-
ination with respect to a transverse measure µ+

f — see [6]).

b.– The Schrödinger curve s is transverse to the lamination ofK+(f) if the coupling
factor is sufficiently small. This is proved in [14]; it follows from the transversality
for κ = 0 and a study of the bifurcation from κ = 0 to κ > 0.

c.– There exists κ′0 such that, for 0 < κ < κ′0, there are two saddle periodic points
p(κ) and q(κ) of f on S4+κ2 with distinct multipliers.

To prove this, take a periodic point p on S4 which is not a singular point of S4.
Deform it into a family of periodic points p(κ) for −κ1(p) ≤ κ ≤ κ1(p). Do the same
for a second periodic point q: it can be deformed into q(κ) for κ1(q) < q < κ1(q).
If the multipliers of p(κ) and q(κ) are equal for a sequence of parameters κn > 0
converging to 0, they are equal for all κ because they are analytic functions of κ.
In particular, q can be analytically deformed along the interval [−κ1(p), 0]. Thus,
if the assertion was not satisfied, there would exist κ1 > 0 such that all periodic
points of f on S4 (distinct from the singularities) could be analytically deformed to
saddle periodic points of the same period for κ1(p) < κ < 0. This would contradict
the fact that the topological entropy of f on S4−ε(R) is strictly less than log(λ) for
ε > 0, a property that implies that most periodic points of f on S4−ε(C) are not
real — see [6].

With these three remarks in hand, one can then copy the proof given by Damanik
and Gorodetski in [15].

3.2.3. Convergence theorems. From [6] and [4] (see also [27], [3]) one gets the fol-
lowing convergence theorem. Let f be a hyperbolic automorphism of the surface
SD. Let T be a positive current and ψ a smooth non-negative function with com-
pact support which vanishes in a neighbourhood of the support of ∂T . Then, the
sequence of currents

1
λn

(fn)∗(ψT )

converges towards a multiple cT+
f , with c = 〈T−f |ψT 〉. For instance, T can be the

current of integration on an algebraic curve C ⊂ SD.
Our goal is to explain, heuristically, why this result is similar to Avron-Simon

convergence theorem for the density of states (see Theorem 1.4).
Consider the restrictionHN

κ,w of the Schrödinger operator to some interval [0, N ] ⊂ Z.
If (u(0), . . . , u(N)) is an eigenfunction of HN

κ,w with eigenvalue E, then (u(2), u(1))
is obtained from (u(1), u(0)) by the linear action of the matrix ME

κ (w(0)), . . . ,
and (u(N), u(N − 1)) is obtained from (u(1), u(0)) by the action of the product
ME
κ (w(N − 2)) . . .ME

κ (w(0)).
Now, restrict the study to w = u+, the infinite ι-invariant word, and to intervals

[0, `(n)], where `(n) is the length of the word ιn(a). When n goes to infinity,
`(n) behaves approximately like λn. With such a choice, the trace of the product
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ME
κ (w(`(n)− 2)) . . .ME

κ (w(0)) is equal to the first coordinate of fn(s(E)). Thus,
if

Λ := {E | Tr(ME
κ (ιn(a))) = 2},

then
Λ = {E | s(E) ∈ (fn)−1(C2)}

where C2 is the algebraic curve C2 = {(x, y, z) ∈ SD|x = 2}. In other words, Λ
corresponds to the intersection of the algebraic curve s(C) with the algebraic curve
f−n(C2); it contains approximately λn points, and the convergence theorem for
currents tells us, roughly, that the average measure on these λn points converges
towards s∗(T+

f ), up to some multiplicative factor.
On the other hand, the trace of a matrix M ∈ SL(2,R) is 2 if and only if 1 is

an eigenvalue of M . Thus, a complex number E is in Λ if and only if there is an
eigenvector (u(0), . . . , u(`(n))) of H`(n)

κ,w with eigenvalue E such that

(?)
(

u(`(n))
u(`(n)− 1)

)
=
(
u(`(1))
u(0)

)
;

these are mixed boundary conditions — not the usual Dirichlet conditions, as in [1].
Thus, the convergence theorem for currents implies a convergence theorem for the
density of states of HN

κ,w with the boundary conditions (?). Changing the curve C2

into another algebraic curve — for instance x = 3 —, one gets different boundary
conditions.

To sum up, Avron-Simon convergence theorem corresponds to the convergence
theorem towards T+

f , with the following differences: One only gets convergence
along subsequences (one has to take N = `(n)), the boundary conditions are not
the classical ones, but one gets convergence theorems which are valid in SD (not
only along the Schrödinger curve) and work for all positive currents.
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