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1. Introduction

Let Γ be a finitely generated group. Given a finite set of generators S of Γ, the
word length lS(γ) for an element γ ∈ Γ is defined to be the smallest positive
integer for which there exist s1, · · · , sn ∈ S ∪ S−1 such that γ = s1 · · · sn .

For each n ∈ N, denote by BS(n) the set of elements in Γ whose word
length with respect to S is at most n. It follows from the subadditive property
of lS(·) that limn→∞ |BS(n)|1/n exists, which we denote by ωS(Γ).

A finitely generated group Γ is said to be of exponential growth if
ωS(Γ) > 1, of polynomial growth if for some c > 0 and d ∈ N, |BS(n)| ≤
c · nd for all n ≥ 1 and of intermediate growth otherwise, for some finite
generating set S of Γ. Observe that the growth type of Γ does not depend
on the choice of generating set S.

If a finitely generated group Γ is linear, it is known that Γ is either of
polynomial growth in which case Γ is virtually nilpotent, or of exponential
growth otherwise ([Tit72], [Mil68], [Wol68]).

Definition 1.1. A finitely generated group Γ is said to have uniform expo-
nential growth if

inf
S

ωS(Γ) > 1,

where the infimum is taken over all finite generating sets S of Γ.
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A main open problem concerning the growth property of a group is
whether a group Γ of exponential growth is necessarily of uniform expo-
nential growth, as first asked by Gromov (Remark 5.12 of [Gro81]).

This was answered affirmatively in the case when Γ is hyperbolic by
M. Koubi [Kou98] (see also [Del96]) and in the case when Γ is solvable in-
dependently by D. Osin [Osi03] and J. Wilson [Wil00]. Recently R. Alperin
and G. Noskov [AN] have announced an affirmative answer for certain sub-
groups of SL2(C). For a general discussion of these questions see the survey
[GdlH97].

While writing the final version of the paper we have learned from J. Wil-
son that he has recently constructed groups having exponential growth but
not uniform exponential growth [Wil02].

Our main result is the following:

Theorem 1.2. Let Γ be a finitely generated group which is linear over a field
of characteristic 0 and not virtually solvable. Then there exists a positive
integer n depending only on Γ such that for any finite generating set S of Γ,
BS(n) contains two elements generating free semi subgroup.

This immediately implies:

Theorem 1.3. Let Γ be as above. Then Γ has uniform exponential growth.

Combined with the results of Osin and Wilson mentioned above, our
theorem implies the following:

Corollary 1.4. Let Γ be a finitely generated subgroup of GLn(C). The
following are equivalent:
• Γ is not virtually nilpotent
• Γ is of uniform exponential growth.
• Γ is of exponential growth.

Recall that for a compact Riemannian manifold M, the volume entropy
hvol(M) is given by

hvol(M) = lim
r→∞

log Vx(r)

r

where Vx(r) denotes the volume of the ball of radius r centered at (any) x
in the universal cover M̃ with the induced metric.

One motivation for studying the notion of uniform exponential growth
is the observation that if the fundamental group of a compact manifold M
has uniform exponential growth then one has a positive lower bound on the
volume entropy for any Riemannian metric on M of normalized diameter.

On the other hand, Manning showed that the topological entropy h top(M)
(see [Ma79] for definition) of the geodesic flow on the unit tangent bundle
of a compact Riemannian manifold M is bounded below by the volume
entropy hvol(M) of M [Ma79].
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Thus, we have the following:

Corollary 1.5. Let M be a compact manifold such that π1(M) is linear
over a field of characteristic 0 and not virtually nilpotent. Then

inf h top(g) ≥ inf hvol(g) > 0

where the infimum is taken over all Riemannian metric g on M with nor-
malized diameter.

An announcement of our result has appeared in [EMO] with an account
for a main strategy. The approach is outlined in Sect. 2. Sections 3–7 are
preparation for the proof of the main Theorem 1.3, which is given in Sect. 8.
With the exception of Lemma 4.2, only the results labelled propositions are
used in the sequel.

2. A version of the ping-pong lemma

To show that a non virtually solvable subgroup Γ < GLn(C) has uniform
exponential growth we shall show that there is some bounded constant m
so that given any finite generating set S there exists a pair of elements in the
ball BS(m) (with respect to the word metric corresponding to the generating
set S) generating a free non-abelian semigroup. We recall the well-known
result of J. Tits [Tit72] which states that any non-virtually-solvable linear
group contains two elements A and B which generate a free non-abelian
subgroup; the proof is based on the so called “ping-pong lemma”. Theo-
rem 1.2 may be viewed as a sort of quantitative version of Tits’ theorem,
in the sense that we obtain a uniform bound on the word length of the
elements A and B; however our elements are only guaranteed to generate
a free semigroup.

Showing that a pair of elements generates a free semigroup is based on
the following version of the ping-pong lemma which is due to G. A. Mar-
gulis.

Definition 2.1 (Ping-pong pair). Let V be a finite dimensional vector
space. A pair of matrices A, B ∈ SL(V ) is a ping-pong pair if there exists
a nonempty subset U ⊂ P(V ) such that
• BU ∩ U = ∅;
• ABU ⊂ U and A2 BU ⊂ U .

Lemma 2.2. If a pair A, B ∈ SL(V ) is a ping-pong pair then AB and A2 B
generate a free semigroup.

Proof. Suppose that the semigroup generated by AB and A2 B is not free.
Then (after some cancellation) we could find a relation of the form w1 = w2,
where w1 and w2 are words in AB and A2 B with w1 starting with A2 B and
w2 starting with AB. But this is a contradiction since we have A−1w1U ⊂ U
and A−1w2U ∩ U = ∅, and hence A−1w1 
= A−1w2. ��
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The above lemma clearly yields:

Proposition 2.3. Let Γ be a finitely generated subgroup of SL(V ). Suppose
that there exists an integer N ∈ N such that for any finite generating subset
S of Γ, BS(N) contains a ping-pong pair A and B. Then Γ has the uniform
exponential growth property.

Notation: Let k be a local field (with char k = 0) endowed with an absolute
value | · | and V a k-vector space of dimension n. By fixing a basis, we
identify V with kn. We fix a norm ‖ · ‖ on V by

‖(x1, · · · , xn)‖ = max{|xi| | 1 ≤ i ≤ n}.
Define a distance d on the projective space P(V ) = P(kn) by

d(x1, x2) = {inf ‖v1 − v2‖ | vi ∈ xi, ‖vi‖ = 1 for each i = 1, 2}.
If X1 and X2 are closed subsets ofP(V ), we set d(X1, X2) to be the Hausdorff
distance between X1 and X2, that is,

d(X1, X2) = sup{d(xi, X j) | xi ∈ Xi, {i, j} = {1, 2}}
where d(xi , X j) = inf{d(xi, x j) | x j ∈ X j}. We also set a norm on the
space Mn(k) of n × n matrices by

‖A‖ = max{|Aij | | 1 ≤ i, j ≤ n}.
Before we state an effective way of showing that a pair of matrices is

a ping-pong pair, we need the following simple lemma:

Lemma 2.4. There exist a constant C > 0 and a positive integer l, depend-
ing only on n, such that

d(Bx, By) ≤ C · ‖B‖l · d(x, y)

for any B ∈ SL(V ) and for any x, y ∈ P(V ).

Proof. We first claim that there exists a positive constant C′ and a positive
integer m such that for any B ∈ SL(V ),

C′ · ‖B‖−m ≤ inf{‖Bv‖ | v ∈ V, ‖v‖ = 1}.
Since any matrix in SL(V ) can be brought into a diagonal form by mul-
tiplying orthogonal matrices from both sides, we may assume that B is
a diagonal matrix; and then the claim is clear since detB = 1.

Now let v and w be unit vectors in V such that v ∈ x and w ∈ y. Then
∥
∥
∥
∥

Bv

‖Bv‖ − Bw

‖Bw‖
∥
∥
∥
∥

≤ ‖B‖ · ‖v − w‖
inf{‖Bv‖ | v ∈ V, ‖v‖ = 1} ≤ 1

C ′ ‖B‖m+1 · ‖v − w‖.
Hence,

d(Bx, By) ≤ 1

C ′ · ‖B‖m+1 · d(x, y).

��
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Let e1, . . . , en ∈ kn denote the standard basis, and let ē1, . . . , ēn ∈ P(kn)
denote the corresponding points in projective space.

Proposition 2.5. Let c1, c2, c3, κ1, κ2, and κ3 be fixed positive constants.
Suppose that A, B ∈ SLn(k) are matrices such that

(L1) A = diag(a1, · · · , an) with |a1| ≥ |a2| ≥ · · · ≥ |an| and

|a1|
|a2| ≥ max(2, c1‖A‖κ1)

for some constants c1 > 0 and κ1 > 0;
(L2) ‖A‖ ≥ c2‖B‖1/κ2 for some constants c2 > 0 and κ2 ≥ 1.
(L3) |B11| ≥ c3‖A‖−κ3 and Be1 
∈ ke1 for some constants c3 > 0 and

κ3 ≥ 0;

Then there exists a constant m ∈ N (depending only on n, c1, c2, c3,
κ1, κ2, κ3 and the field k) such that Am and B form a ping-pong pair.

Proof. Denote by W the projective hyperplane spanned by e2, · · · , en . Let
cB = C · ‖B‖l be as in Lemma 2.4.

Case 1: d(ē1, Bē1) ≤ 1
2 · d(ē1, W ) = 1

2 .

Set

δ = d(ē1, Bē1)

4(cB + 1)

and U = B(ē1, δ), i.e., the open ball of radius δ with the center ē1 in P(kn).
To show that BU∩U = ∅, assume the contrary, i.e., there exists v ∈ BU∩U .
Let u ∈ U such that Bu = v. Then

d(Bē1, ē1) ≤ d(Bē1, Bu) + d(v, ē1) ≤ cBd(ē1, u) + d(v, ē1)

< δ(cB + 1) < d(Bē1, ē1).

This contradiction proves the claim that BU ∩ U = ∅.
Note that for any z ∈ BU ,

d(ē1, z) ≤ d(ē1, Bē1) + d
(

Bē1, B(B−1z)
) ≤ d(ē1, Bē1) + cB · δ

≤ 5
4 d(ē1, Bē1), (1)

and hence BU ⊂ B(ē1,
5
4d(ē1, Bē1)) ⊂ B(ē1,

5
8). Now consider the “stereo-

graphic projection” map

π : B(ē1,
5
8

) → {x ∈ kn | x1 = 1}
defined by (x1, · · · , xn) �→ (1, x2

x1
, · · · , xn

x1
). Clearly π(Am x) = Amπ(x).

Note that there is a constant L ≥ 1 depending only on n, such that for all
x ∈ B(ē1,

5
8),

L−1‖π(x) − e1‖ ≤ d(x, ē1) ≤ L‖π(x) − e1‖. (2)
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Also note that for any x ∈ P \ W and any m ∈ N,

‖Amπ(x) − e1‖ ≤
∣
∣
∣
∣

a2

a1

∣
∣
∣
∣

m

‖π(x) − e1‖. (3)

In view of (L1) and (L2), since ‖A‖ = |a1|, and cB ≤ c · ‖A‖κ for
c, κ > 0 depending only on n, c1, c2, κ1, κ2, there exists r0 ≥ 1 (depending
only on n, c1, c2, κ1, κ2) such that for any m ≥ r0,

∣
∣
∣
∣

a2

a1

∣
∣
∣
∣

m

≤ 1

20L2 max(cB, 2)
. (4)

Hence for any z ∈ BU and any m ≥ r0,

d(Am z, ē1) ≤ L‖Amπ(z) − ē1‖ ≤ L

∣
∣
∣
∣

a2

a1

∣
∣
∣
∣

m

‖π(z) − ē1‖

≤ L2

∣
∣
∣
∣

a2

a1

∣
∣
∣
∣

m

d(z, ē1) ≤ L2 5|a2|m
4|a1|m d(ē1, Bē1) ≤ 1

4
· cB + 1

max(cB, 2)
δ ≤ 1

2
δ,

using (1), (4), and the definition of δ. Hence for any m ≥ r0, Am(B(U)) ⊂ U .

Case 2: d(ē1, Bē1) > 1
2 · d(ē1, W ) = 1

2 .
From (L2) and (L3), we have

|B11|
‖B‖ ≥ c2c−κ3

3 ‖A‖−κ2−κ3

and hence there exist constants c4 > 0 and κ4 > 0 (depending only on n,
c2, c3, κ2 and κ3) such that d(Bē1, W ) ≥ c4‖A‖−κ4 . Clearly we may assume
c4 < 1. Set

δ = c4

4 · ‖A‖κ4 · (cB + 1)

and U = B(ē1, δ). Assume that there exists v ∈ BU ∩U and let u ∈ U such
that Bu = v. Then

d(Bē1, ē1) ≤ d(Bē1, Bu) + d(v, ē1) ≤ cB · d(ē1, u) + d(v, ē1)

< δ(cB + 1) = c4

4‖A‖κ4
< d(Bē1, ē1),

since c4 < 1, κ4 ≥ 0, ‖A‖ ≥ 1, and d(ē1, Bē1) ≥ 1
2 . This contradiction

proves that BU ∩ U = ∅.
Note that for any z ∈ BU ,

d(z, W ) ≥ d(Bē1, W ) − cBδ ≥ c4

‖A‖κ4
− cBc4

4‖A‖κ4 · (cB + 1)
≥ 3c4

4‖A‖κ4
.

Hence

BU ⊂ X :=
{

z ∈ P(kn) : d(z, ē1) ≤ 1 − 3c4

4‖A‖κ4

}

.
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Let π be the stereographic projection from X to {x ∈ V | x1 = 1} defined
in the same way as in Case 1. Note that (2) holds with L ≤ 4d · ‖A‖κ4

3c4
for

some constant d > 0 depending only on n.
Hence for any z ∈ BU ⊂ X and any m ∈ N,

d(Am z, ē1) ≤ L2

∣
∣
∣
∣

a2

a1

∣
∣
∣
∣

m

d(z, ē1) ≤ L2

∣
∣
∣
∣

a2

a1

∣
∣
∣
∣

m

≤ d2

(
4‖A‖κ4

3c4

)2 ∣
∣
∣
∣

a2

a1

∣
∣
∣
∣

m

= d2

(
4‖A‖κ4

3c4

)2 (
4‖A‖κ4 (cB + 1)

c4

) ∣
∣
∣
∣

a2

a1

∣
∣
∣
∣

m

δ.

Hence using (L2), there exist constants c5 > 0 and κ5 > 0 depending only
on n, c1, c2, c3, κ1, κ2, κ3 such that for any m ∈ N

d(Am z, ē1) ≤ c5‖A‖κ5

∣
∣
∣
∣

a2

a1

∣
∣
∣
∣

m

δ.

Thus, for some integer r0 ∈ N (depending only on n, c1, c2, c3, κ1, κ2, κ3),
Am(BU) ⊂ U for all m ≥ r0. ��
Remark. The strategy of the proof of Theorem 1.2 is to try to find words
W1 and W2 of a length which is bounded independently of the generating
set, and a matrix g such that A = gW1g−1 and B = gW2g−1 satisfy the
conditions of Proposition 2.5.

3. Getting out of Zariski closed subsets

Theorem 3.1 (Generalized Bezout theorem). Let X1, . . . , Xs be pure-
dimensional varieties over C and let Z1, . . . , Zt be the irreducible compo-
nents of X1 ∩ · · · ∩ Xs. Then

t∑

i=1

deg Zi ≤
s∏

j=1

deg X j

(see: [Sch00, p. 519]).

The aim of this section is to show the following proposition using the
generalized Bezout theorem:

Proposition 3.2. Let Γ ⊂ GLn(C) be any finitely generated subgroup and
let H denote the Zariski closure of Γ, which is assumed to be Zariski-
connected. For any proper subvariety X of H, there exists N ≥ 1 (depending
on X) such that for any finite generating set S of Γ, we have

BS(N) 
⊂ X.
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The rest of this section is devoted to the proof of Proposition 3.2. Let Y =
∪n

i=1Yi ⊂ H be an algebraic variety where Yi , 1 ≤ i ≤ n are the irreducible
components of Y . Set d(Y ) = maxi dim(Yi). Denote by irr(Y ) the number
of irreducible components of Y , by irrmd(Y ) the number of irreducible
components of Y of the maximal dimension d(Y ) and by mdeg(Y ) the
maximal degree of an irreducible component of Y .

Let S be any given finite generating set of Γ in what follows.

Lemma 3.3. If irrmd(Y ) = 1 then there exists an element s ∈ S such that
the variety Z = Y ∩ sY satisfies d(Z) < d(Y ).

Proof. Without loss of generality we may assume that Y1 is the unique
irreducible component of maximal dimension. If for every s ∈ S we have
sY1 = Y1 then it would follow that Y1 is invariant under the group generated
by S. However as this subgroup is Zariski dense and Y1 is a proper closed
subvariety it follows that this is impossible; hence there is some s ∈ S such
that sY1 
= Y1. It follows that d(sY ∩ Y ) < d(Y ).

Lemma 3.4. Given Y as above there exists an s ∈ S such that for Z = Y∩sY
either d(Z) < d(Y ) or irrmd(Z) < irrmd(Y ).

Proof. Consider the set M of all maximal dimension irreducible compo-
nents of Y . If every element of S would have mapped this set into itself
it would have been 〈S〉-invariant and this would contradict the assumption
that Γ = 〈S〉 is Zariski dense whereas Y is a Zariski closed proper subset.
Hence there is some s ∈ S so that for some element Yi ∈ M sYi 
∈ M and it
follows that for Z = Y ∩ sY either d(Z) < d(Y ) or irrmd(Z) < irrmd(Y ). ��
Lemma 3.5. Let Y be a proper subvariety of H. Then there exists an integer
m ∈ N (depending only on irr(Y ) and mdeg(Y )) and a sequence of m
elements s0, s1, · · · , sm−1 of S so that if we define the following sequence
of varieties V0 = Y, Vi+1 = Vi ∩ si Vi, 0 ≤ i ≤ m − 1, then Vm satisfies
d(Vm) < d(Y ). Moreover irr(Vm) as well as mdeg(Vm) are also bounded
above by constants depending only on irr(Y ) and mdeg(Y ).

Proof. We shall be applying Theorem 3.1 to the intersections of pairs of
irreducible varieties. Namely, let W = ∪n

i=1Wi be the decomposition of
a Zariski closed variety W into irreducible components. Then we have
W̃ = W ∩ sW = ∪n

i, j=1Wi ∩ W j . Thus given n = irr(W ) and mdeg(W ) we
have an estimate both on irr(W̃) as well as on mdeg(W̃). Combining this
observation with Lemmas 3.3 and 3.4 one can deduce Lemma 3.5. ��
Proof of Proposition 3.2.. By repeated application of Lemma 3.5 at most
d(X) + 1 times we find elements w1, w2, . . . , wt ∈ BS(n), where n ≥ 2 is
bounded above by some bound depending only on irr(X) and mdeg(X), so
that ∩t

i=1wi X = ∅.
Observe that this implies that BS(n) 
⊂ X. Indeed if BS(n) were con-

tained in X, then it would follow that e ∈ ∩t
i=1wi X, as BS(n) = BS(n)−1

and hence w−1
i ∈ BS(n) for each 1 ≤ i ≤ t. ��
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4. Specialization

Note that if a homomorphic image of a finitely generated group has uniform
exponential growth then so does the original group. Also if Γ′ is a subgroup
of Γ with index d, then for any finite generating set S of Γ, BS(2d − 1)
contains a generating set for Γ′ (see [ShaWa92]).

Thus in view of the theorem of Osin and Wilson mentioned in the
introduction, we may assume in proving Theorem 1.2 that the Zariski closure
of Γ is connected and simple, both in the algebraic sense.

Specialization. Let E be the ring generated by the coefficients of Γ. Note
that since Γ is finitely generated it follows that E is finitely generated.
Using the fact (see [LM91]) that if a finitely generated subgroup Λ of
GLn(C) is virtually solvable then there is an upper bound (say M) on the
index of a solvable subgroup in Λ depending only on n, we deduce that
there exists a “specialization” i.e. there exists an appropriate number field
K and a ring homomorphism σ : E → K inducing a homomorphism
ρ : GLn(E) → GLn(K ) so that ρ(Γ) is not virtually solvable. Indeed let
Γ0 = ⋂

|Γ/Λ|≤M Λ and choose a number field K and a ring homomorphism
σ : E → K so that the image of the finite index subgroup Γ0 under the
induced homomorphism ρ is not solvable. The existence of such K and σ
can be deduced as follows: For a solvable subgroup H of SL(n,C) one has
by Theorem 8.1 in [Ra] a uniform bound ϕ(n) on its degree of solvability.
On the other hand since the group Γ0 is not solvable, its ϕ(n)-th commutator
subgroup Γϕ(n) is not trivial. Choose a non-trivial element g ∈ Γϕ(n) and
observe that there is a number field K and a ring homomorphism σ : E → K
so that under the induced homomorphism ρ, the image of g is non-trivial
(see [GS79] where a much stronger assertion is proved). It follows that the
image of Γ0 under ρ is not solvable. The image ρ(Γ) < GLn(K ) cannot
be virtually solvable since if it were it would follow that the image of Γ0
would be solvable.

Hence we may assume that we have a finitely generated group Γ con-
tained in SLn(K ) with K a number field and having a connected Zariski
closure which is simple.

Notational conventions. Let K be a number field. Denote by VK the equiv-
alence classes of all valuations of K . For each ν ∈ VK , we denote by Kν

the local field which is a completion of K with respect to ν and | · |ν be the
absolute value on Kν given by ν. For any finite set of valuations S containing
all the archimedean valuations, we denote by OK (S) the ring of S-integral
elements in K , that is,

OK (S) = {x ∈ K | |x|ν ≤ 1 for each ν /∈ S}
Since Γ is finitely generated, we may, after possibly replacing Γ by a finite
index subgroup, assume that Γ ⊂ SLn(OK (S)), where S ⊂ VK consists of
all archimedean valuations as well as the valuations ν such that Γ is un-
bounded in GLn(Kν). Thus the diagonal embedding of Γ in

∏

ν∈S SLn(Kν)
is discrete.
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It follows that if Γ is infinite, then the image of Γ in
∏

ν∈S SLn(Kν) is
unbounded under the diagonal embedding.

Summarizing the above discussion we have:

Proposition 4.1. It suffices to prove Theorem 1.2 for any finitely generated
subgroup Γ ⊂ SLn(OK (S)) whose image in

∏

ν∈S SLn(Kν) is unbounded
under the diagonal embedding, where K is a number field, S a finite set of
valuations containing all archimedean valuations and the Zariski closure
H of Γ is connected and simple.

Notational convention. A positive constant depending only on n, K, H and
S will be referred to in the rest of the paper as a bounded constant.

Remark. For any group Γ as in Proposition 4.1 the lower bound on the rate
of exponential growth actually depends only on n, K, H and S.

We choose, for each ν ∈ S, an extension of the absolute value | · |ν to
the algebraic closure K̄ of K and denote by K̄ν the completion of K̄ with
respect to the valuation ν. For any A ∈ SLn(OK (S)), we set

Λ(A) := max{|λ|ν | λ : an eigenvalue of A, ν ∈ S}.

For x = (xν)ν∈S ∈ ∏

ν∈S K̄ν and A = (Aν)ν∈S ∈ ∏

ν∈S SLn(K̄ν), we set

|x| = max
ν∈S

|xν|ν and ‖A‖ = max
ν∈S

‖Aν‖ν.

For A ∈ SLn(OK (S)), the notation ‖A‖ is understood via the identification
of SLn(OK(S)) with its diagonal embedding into

∏

ν∈S SLn(K̄ν),
The following simple lemma plays a key role in the proof. It is the main

reason we specialize so that Γ ⊂ SLn(OK (S)).

Lemma 4.2. Suppose A ∈ SLn(OK (S))). Then

(a) If λ1, · · · , λm is the set of all distinct eigenvalues of A, then

∏

ν∈S

∏

1≤i< j≤m

|λi − λ j |ν ≥ 1.

(b) For each ν ∈ S,

∏

1≤i< j≤m

|λi − λ j |ν ≥ C · Λ(A)−N ,

for some positive constants C and N depending only on n and S.
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Proof. First note that x := ∏

1≤i< j≤m(λi−λ j)∈ K , since
∏

1≤i< j≤m(λi − λ j)

is stable under the Galois group Gal (K̂/K ) where K̂ is the splitting field of
the characteristic polynomial of A. If ν /∈ S, A ∈ SLn(Oν) where Oν denotes
the valuation ring of Kν; hence |λi − λ j |ν ≤ 1 for each 1 ≤ i 
= j ≤ m. It
follows that

∏

ν /∈S |x|ν ≤ 1. On the other hand, by the product formula, we
have

∏

ν∈VK
|x|ν = 1. Hence

∏

ν∈S |x|ν ≥ 1.
To show (b), in view of (a) it suffices to note that

|λi − λ j |ν ≤ 2Λ(A)

for each 1 ≤ i < j ≤ n. ��

5. The main proposition

Motivation. In the sequel we would like given two matrices to produce
words of bounded length whose entries satisfy certain conditions. Fix a valu-
ation ν ∈ VK and rescale the given matrices so that their norms are less
than 1. Given N and ε, there always exists a subspace V = V(N, ε, ν) ⊂
Mn(Kν) of minimal dimension such that every word of length at most N, is
within ε of V . (It is possible that V = Mn(Kν)). Roughly, the assertion of
the main proposition (see Proposition 5.1 below) is that with the appropriate
choice of constants we can choose V to be an algebra (i.e. is closed under
matrix multiplication). This implies strong restrictions on V , some of which
we will discuss in Sect. 6.

The group T(A, ν). Let A = diag(λ1, λ2, . . . , λn) be a diagonal matrix, and
let K ′ ⊃ K be the field generated by the elements of A over K . We assume
n! ≥ [K ′ : K ]. Let ν ∈ S be a valuation. Let T = T(A, ν) < SLn(K ′

ν)
to be the subgroup of the diagonal defined by T = {diag(t1, t2, . . . , tn) ∈
SLn(K ′

ν) : ti = t j whenever λi = λ j}. Note that any element which com-
mutes with A commutes with all of T as well. We remark that since there are
only finitely many extension fields of degree at most n! of Kν (cf. [Kob84]
Chap. III) there are only finitely many possibilities for T independent of the
specific element A.

The T -blocks of B. Let Wij be the eigenspaces for both right and left
action of T on Mn(K ′

ν), so that for Cij ∈ Wij , SkCij Sl = λk
i λ

l
jCij for

any S = diag(λ1, · · · , λn) in T . In particular, if T is the whole diagonal
subgroup of SLn , then each Wij is spanned by the elementary matrix Eij .
As another example if T = {diag(t, t, t−2) : t ∈ K ′

ν} then

W11 =
(∗ ∗ 0

∗ ∗ 0
0 0 0

)

W12 =
(

0 0 ∗
0 0 ∗
0 0 0

)
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W21 =
(

0 0 0
0 0 0
∗ ∗ 0

)

and W22 =
(

0 0 0
0 0 0
0 0 ∗

)

.

Note that by the choice of T , Wij with respect to T is the same as those
with respect to the single element A.

For a matrix B ∈ SLn(K ′
ν), define Bij = prWij

(B)/‖B‖ν, where pr
denotes orthogonal projection of Mn(K ′

ν) onto Wij . We call the Bij the blocks
of B with respect to the torus T . Observe that Bij Bst = 0 unless j = s; hence
any nonzero word in the T -blocks of B is of the form Bi1i2 Bi2i3 · · · Bir ir+1

for some 1 ≤ i1, · · · , ir+1 ≤ m (here m is equal to the number of different
eigen-values of A and in particular m ≤ n). In the rest of this paper the
notation Bij always denotes the blocks of B with respect to some torus of
the diagonal subgroup which will be specified whenever used. For an n × n
matrix X, the notation XT means its transpose as usual.

We can now state

Proposition 5.1 (Main proposition). Let K ′ ⊃ K be a field extension with
[K ′ : K ] ≤ n!. Let A ∈ SLn(K ′) be a diagonal element which is conjugate
to an element of SLn(OK (S)) and let T = T(A, ν). For each ν ∈ S, let
B ∈ SLn(K ′

ν). For any ε > 0, there exists a subalgebra Eν(ε) ⊂ Mn(K ′
ν)

normalized by T such that

(a) for any word w in the blocks of B (with respect to ν) of length at most
22n2

,
dν(w,E ν(ε)) < ε,

where dν(w, V ) = infv∈V ‖w − v‖ν.
(b) for any θ ∈ Mn(K ′

ν), there exists a word Wν(ε) in A and B of length at
most 22n2

such that

|〈θ, Wν(ε)〉|ν ≥ c · Λ(A)−r1 · ‖B‖ν ·
(

sup
X∈Eν(ε)\{0}

|〈θ, X〉|ν
‖X‖ν

− 2ε‖θ‖ν

)

,

where the inner product 〈·, ·〉 is given by 〈X, Y 〉 = Tr XY T , r1 is a posi-
tive constant depending only on n, K and S, and c is a positive constant
depending only on n, K, S and ε.

Remarks. If θ is almost orthogonal to E ν(ε) the statement (b) is vacuous.
In the course of the proof we will first prove an alternative version of

assertion (b), namely,

(b’) for any θ ∈ Mn(K ′
ν), there exists a word Wν(ε) in the blocks of B of

length at most 2n2+2 such that

|〈θ, Wν(ε)〉|ν ≥ c · Λ(A)−r1 · ‖B‖ν ·
(

sup
X∈Eν(ε)\{0}

|〈θ, X〉|ν
‖X‖ν

− 2ε‖θ‖
)

,

where r1 is a positive constant depending only on n, K and S, and c is
a positive constant depending only on n, K, S and ε.
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The assertion (b’) is essentially the statement that Eν(ε) viewed as a sub-
space is of minimal dimension among all subspaces satisfying (a). Indeed,
if there is an element v ∈ Eν(ε) which is almost orthogonal to all the words
in the blocks of B of length at most 2n2+2, then we can choose θ = v (and
X = v), contradicting (b’).

The rest of this section consists of the proof of Proposition 5.1. The
proof relies on a concept of an almost-algebra. Roughly, an almost-algebra is
a subspace of Mn(K ′

ν) which is “almost” closed under matrix multiplication.
In Sect. 5.1 we make a precise definition and show that any almost-algebra
is close to an algebra. In Sect. 5.2 we show how to obtain an almost-algebra
which will lie close to the words generated by any given finite collection of
elements (which in our case will be the blocks of B). This almost-algebra
will then be close to an algebra V which will satisfy the conditions (a)
and (b’) of Proposition 5.1. It will also be normalized by T , since all the
blocks of B are normalized by T . Finally, in Sect. 5.3, we show how to
get the condition (b) from (b’). This is done by a direct argument using the
Vandermonde determinant.

5.1. Almost algebras

Let k be a local field (with char k = 0) endowed with an absolute value
| · |. For A ∈ Mn(k), we set ‖A‖ = |〈A, A〉|1/2, where the inner product
〈·, ·〉 was defined in Proposition 5.1. Since this norm is equivalent to the one
defined in Sect. 2 (in fact they coincide when k is non-archimedean), we
do not need to distinguish them for our purpose. Let d(A, B) = ‖A − B‖
denote the associated distance function on Mn(k). Considering the canonical
projection π : Mn(k)−{0} → P(Mn(k)), for subspaces V1 and V2 of Mn(k),
we define d(V1, V2) to be the Hausdorff distance between π(V1 − {0}) and
π(V2 − {0}).

For a subset Λ ⊂ GLn(k), we say that a subspace V of Mn(k) is normal-
ized by Λ if AVA−1 = V for all A ∈ Λ.

For ε > 0, we say that a subspace V of Mn(k) is an ε-almost subalgebra
if

sup
X,Y∈V\{0}

d(XY, V )

‖X‖ · ‖Y‖ < ε,

where, as usual, the distance between a vector z and a subspace V is given
as infv∈V ‖z − v‖.

Lemma 5.2. If there exists an orthonormal basis {A1, . . . , Am} of a sub-
space V ⊂ Mn(k) such that d(Ai A j , V ) < ε for all 1 ≤ i, j ≤ m, then V
is an n4 · ε-almost subalgebra of Mn(k).

Proof. Consider arbitrary elements X, Y ∈ V . Then for some xi, yi ∈ k,
we have X = ∑m

i=1 xi Ai and Y = ∑m
i=1 yi Ai . Let Cij ∈ V such that
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d(Ai A j , V )=d(Ai A j , Cij). Note that

‖XY −
∑

ij

xi y jCij‖ ≤
∑

1≤i, j≤m

|xi y j | · ‖Ai A j − Cij‖

≤ m2‖X‖ · ‖Y‖ε.
Since m ≤ n2, V is an n4 · ε-almost subalgebra. ��

Theorem 5.3 (Almost algebras are close to algebras). There exists an
increasing function h : R+ → R

+, depending only on n, with h(ε) → 0
as ε → 0 such that for any ε-almost-subalgebra V ⊂ Mn(k) there exists
a subalgebra E ε ⊂ Mn(k) such that d(V,E ε) < h(ε). Moreover if V is
normalized by a subset T of SLn(k), we may take E ε to be normalized by
T as well.

Proof. (This proof was suggested to us by G. Margulis.) For a subspace V
of Mn(k), define η(V ) = 1 if there is no subalgebra of Mn(k) of dimension
same as that of V ; otherwise set η(V ) to be

inf{d(V,E 0) : E0 is a subalgebra of Mn(k) with dim E0 = dim V }.
For any ε > 0, define

h(ε) = sup{η(V ) : V is an ε-almost-algebra in Mn(k)}.
Clearly h is an increasing function on R+. We only need to show that
h(ε) → 0 as ε → 0. Suppose not. Then there exist δ > 0, a sequence
εn → 0 and a sequence Vn of εn-almost-subalgebras such that for any n,
η(Vn) > δ. But by the compactness of the Grassmannian variety of Mn(k),
there is a subsequence of {Vn } which converges to V . It is then easy to see that
V must be an algebra and hence η(Vn) → 0, which yields a contradiction.
In the case when V is normalized by T , we modify the definition of η(V ) so
that we take the infimum only over those subalgebras which are normalized
by T . Then it is easy to see that the resulting subalgebra V is also normalized
by T . ��

5.2. Almost algebras generated by a finite set

Lemma 5.4. Let T be a torus in SLn(k), i.e., a commutative subgroup
consisting of semisimple elements. Consider matrices B1, . . . , Bm ∈ Mn(k)
such that for each 1 ≤ i ≤ m, ‖Bi‖ ≤ 1 and ABi A−1 is a scalar multiple
of Bi for each A ∈ T . Then for any ε > 0, there exists a subalgebra
E ε ⊂ Mn(k) normalized by T such that

• for any word w in B1, · · · , Bm of length at most 2n2+2,

d(w,E ε) ≤ ε;
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• for any θ ∈ Mn(k), there exists a word w in B1, · · · , Bm of length at most
2n2+2 such that

|〈θ,w〉| ≥ c ·
(

sup
X∈Eε\{0}

|〈θ, X〉|
‖X‖ − 2ε‖θ‖

)

, (5)

where c is a positive constant depending only on n and ε.

Proof. Let ε0 = ε. For each 0 ≤ r ≤ n2 + 1, let us choose constants εr > 0
as big as possible so that εr+1 ≤ εε2n2

r /(3n422n2
), εr+1 ≤ εεn2

r /(n22n2+1),
and h(3n422n2

ε−2n2

r εr+1) ≤ εr/(3n2). In the following proof, a word means
a word in B1, · · · , Bm . For each 1 ≤ r ≤ n2 + 1, let

f(r) = inf{ j ∈ N | there exists a subspace Vr ⊂ Mn(k) of dimension j
normalized by T and such that d(Vr, w) ≤ εr

for any word w of length at most 2r .}
If f(1) = 0, then ‖Bi‖ < ε0 for each 1 ≤ i ≤ m, and hence it suffices to
take E ε = {0} to prove the claim. Suppose that f(1) ≥ 1. By construction,
the function f is increasing, and is bounded by n2. Hence there exists
a minimal integer 1 ≤ r ≤ n2 + 1 such that f(r) = f(r + 1). Fix a subspace
Vr+1 ⊂ Mn(k) of dimension f(r) such that d(Vr+1, w) ≤ εr+1 for any word
w of length at most 2r+1.

Claim 5.5. The subspace Vr+1 is an 3n422n2
ε−2n2

r εr+1-almost subalgebra of
Mn(k) normalized by T , and for every θ ∈ Mn(k), there exists a word w of
length at most 2r such that

|〈θ,w〉| ≥ εεn2

r

n22n2+1
·
(

sup
v∈Vr+1\{0}

|〈θ, v〉|
‖v‖ − ε‖θ‖

)

. (6)

Proof of claim. For a subspace W of Mn(k), the notation prW means the
projection map of Mn(k) to W . For simplicity, let p = prVr+1

. By the
definition of f , for any word w of length at most 2r+1, we have

‖p(w) − w‖ < εr+1.

We now pick words w1, . . . w f(r) of length at most 2r inductively as follows:
w1 is a word of length at most 2r of maximal norm, and for each 2 ≤ j ≤
f(r), denoting by W j−1 the subspace spanned by {w1, . . . , w j−1}, let w j be
a word such that the norm ‖ prW⊥

j−1
(w j)‖ is maximal among all words of

length at most 2r . Clearly each W j−1 is normalized by T .
Note that for each 1 ≤ j ≤ f(r), ‖ prW⊥

j−1
(w j)‖ > εr , since, other-

wise, all the words of length at most 2r would be within εr-distance to the
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subspace W j−1 where j − 1 = dim W j−1 < f(r), contradicting the defin-
ition of f . Let W ′

j ⊂ Vr+1 denote the subspace spanned by the projections
p(w1), · · · , p(w j). Then

‖ pr(W ′
j−1)

⊥(p(w j))‖ = d
(

p(w j), W ′
j−1

)

≥ d
(

w j, W ′
j−1

) − d(w j, p(w j)) ≥ εr − εr+1 ≥ εr

2
.

Hence the vectors p(w j), 1 ≤ j ≤ f(r), form a basis for Vr+1, and the
determinant of the matrix, say Q, whose rows are the vectors p(w j) is at
least εn2

r /2n2
(cf. Lemma 7.5). Thus if X = ∑ f(r)

j=1 x j p(w j) for some x j ∈ k,
then

max
j

|x j | ≤ det(Q)−1‖X‖ ≤ 2n2
ε−n2

r ‖X‖, (7)

using ‖p(w j)‖ ≤ ‖w j‖ ≤ 1 for each 1 ≤ j ≤ f(r). On the other hand,

d(wiw j, Vr+1) < εr+1; hence d(p(wi)p(w j), Vr+1) < 3εr+1.

Thus for any X1 = ∑

j c1 j p(w j ) and X2 = ∑

j c2 j p(w j) in Vr+1 of unit
norm, we have

d(X1 X2, Vr+1) ≤
∑

1≤i, j≤ f(r)

c1ic2 jd(p(wi)p(w j), Vr+1)

≤ f(r)222n2
ε−2n2

r 3εr+1 ≤ 3n422n2
ε−2n2

r εr+1.

It follows that Vr+1 is an 3n422n2
ε−2n2

r εr+1-almost-subalgebra of Mn(k).
Let θ̃ denote the orthogonal projection of θ to Vr+1. Then, since θ and

θ̃ differ by an element of V ⊥
r+1, we have 〈θ, v〉 = 〈θ̃, v〉 for all v ∈ Vr+1.

Hence

sup
v∈Vr+1\{0}

|〈θ, v〉|
‖v‖ = ‖θ̃‖.

If ‖θ̃‖ ≤ ε‖θ‖, then there is nothing to prove. Hence, we may assume
that ‖θ̃‖ ≥ ε‖θ‖. We may write θ̃ = ∑

x j p(w j). Taking inner product with
θ̃ we obtain,

‖θ̃‖2 =
∑

x j〈p(w j), θ̃〉.

Hence there is a j such that |x j〈p(w j), θ̃〉| ≥ 1
n2 ‖θ̃‖2. Then, in view of (7),

we have

|〈p(w j), θ̃〉| ≥ εn2

r

n22n2 ‖θ̃‖.
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Hence

|〈θ,w j〉| ≥ |〈θ, p(w j )〉| − |〈θ,w j − p(w j )〉| ≥ εn2

r

n22n2 ‖θ̃‖ − εr+1‖θ‖

≥ εn2

r

n22n2 ‖θ̃‖ − εr+1

ε
‖θ̃‖ ≥ εn2

r

n22n2+1
‖θ̃‖

where the last inequality is justified on the choice of εr made in the beginning
of the proof.

This proves the claim. ��
Proof of Lemma 5.4. Note that by the choice of εr , ε ≤ 3n422n2

ε−2n2

r εr+1.
Hence by Theorem 5.3, there exists an algebra E ε such that

d(Vr+1,E ε) < h
(

3n422n2
ε−2n2

r εr+1
)

< εr/(3n2) ≤ ε.

Now, (5) follows from (6). ��

5.3. Proof of Proposition 5.1

Proposition 5.1 (a) and (b’) follow from Lemma 5.4. To complete the proof
we need to show how to deduce (b) from (b’).

Fix ε > 0. Consider the subalgebra E ε ⊂ Mn(K ′
ν) and Nε as in

Lemma 5.4. Let θ ∈ Mn(k), as observed before we may assume that
‖θ̃‖ ≥ ε‖θ‖, where θ̃ denotes the orthogonal projection of θ into E ε.
(Otherwise (b) is vacuous).

Then for some 2 ≤ r ≤ 2n2+2 + 1, there exists an r-tuple (i1, · · · , ir) of
positive integers with 1 ≤ i j ≤ m for each 1 ≤ j ≤ r such that

|〈θ, Bi1i2 Bi2i3 . . . Bir−1 ir 〉| ≥ c · sup
X∈Eε\{0}

|〈θ, X〉|ν
‖X‖ν

.

Note that for any positive integers 0 ≤ k1, · · · , kr ≤ m − 1,

Tr(θT Ak1 BAk2 B . . . BAkr )

= ‖B‖r−1
ν ·

∑

I=(i1,...,ir )

λ
k1
i1

. . . λ
kr
ir Tr

(

θT
ir i1 Bi1i2 Bi2i3 . . . Bir−1 ir

)

(8)

where the sum is taken over all the r-tuples I = (i1, · · · , ir) such that
1 ≤ i j ≤ m for all 1 ≤ j ≤ r.

Let (θT B)I denote Tr(θT
ir i1

Bi1i2 Bi2i3 . . . Bir−1 ir ), that is

(θT B)I = 〈θ, Bi1i2 Bi2i3 . . . Bir−1 ir 〉.
For each multi-index L = (l1, · · · , lr) and I = (i1, · · · , ir) where

0 ≤ l j ≤ m − 1 and 1 ≤ i j ≤ m for each 1 ≤ j ≤ r, let

DIL = λL
I = λ

l1
i1

. . . λ
lm
im
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and
C(L) = Tr θT Al1 BAl2 B . . . BAlm .

Thus (8) can be rewritten as

C(L) = ‖B‖m−1
ν

∑

I

DIL(θT B)I .

If we set the m × m-matrix

X =







1 1 . . . 1
λ1 λ2 . . . λm
...

...
. . .

...

λm−1
1 λm−1

2 . . . λm−1
m







then the mr × mr-matrix D whose IL entry is DIL = λL
I coincides with

the Kronecker tensor product ⊗r X. Since det X = ∏

1≤i< j≤m(λi − λ j),

det D = ∏

1≤i< j≤n(λi − λ j)
rmr−1

.
In view of Lemma 4.2, ‖D−1‖ν ≤ CΛ(A)M , where C and M are positive

constants depending only on n, m, L and S (note that the dependency on r
is resolved to that on N, but N is again dependent only on n, m, L and S.)

Therefore

‖B‖r−1
ν · max

I

∣
∣(θT B)I

∣
∣
ν

≤ C · Λ(A)M · max
L

|C(L)|ν.
Hence

max
L

|C(L)|ν ≥ ε · c

C
· Λ(A)−M · ‖B‖r−1

ν · sup
X∈Eε\{0}

|〈θ, X〉|
‖X‖ ,

where K ranges over the multi indices (l1, · · · , lr) with 0 ≤ l j ≤ m − 1
for all 1 ≤ j ≤ r. Note that r − 1 ≥ 1, since r ≥ 2. Noting that C(L) =
Tr(θT Al1 BAl2 B · · · BAlr ) and that the word Al1 BAl2 · · · BAlr is of length
less than m(2n2+2+1) for any L , set Eν(ε) = E ε. Since m(2n2+2+1) ≤ 22n2

,
the claim is proved. ��

6. Algebras

In view of Sect. 5, we need a result on the subalgebras of Mn(k), where k is
a local field. Denote by D the diagonal subgroup of SLn(k). In this section,
we fix a subtorus T of D .

We say that an algebra is unipotent if it is nilpotent and its exponentiation
is a unipotent group. Note that if an algebra is not unipotent, then it contains
an element of non-zero trace. On the other hand, for any unipotent algebra,
there exists an element α ∈ SLn(k) such that conjugation by α contracts
each element in the algebra by a given factor. The following proposition is
a quantitative version of the combination of these assertions.
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Proposition 6.1. For any 0 < η < 1 there exist constants d1 > 0 and
d2 > 0 (depending only on η and n) such that for any subalgebra E of
Mn(k) normalized by T , one of the following holds:

(1) There exists X ∈ E with | Tr X| > d1‖X‖.
(2) There exists g ∈ SLn(k) in the centralizer of T with max(‖g‖, ‖g−1‖)

≤ d2 such that for all X ∈ E , ‖gXg−1‖ ≤ η‖X‖.

The rest of the section consists of the proof of Proposition 6.1.

Let E be a subalgebra of Mn(k) normalized by T and let m = dim E .
Let G denote the Grassmanian of m-dimensional subspaces of Mn(k). Let
R ⊂ G denote the subset consisting of subalgebras which are normalized
by T . It is easy to see that R is closed in G. Denote by Ru the subset of
R consisting of unipotent algebras. Then Ru is also a closed subset of G.
Note that for a subalgebra E ∈ R, E belongs to Ru if and only if Tr X = 0
for all X ∈ E .

Lemma 6.2. Suppose δ > 0. Let E be a subalgebra of Mn(k) normalized
by T . Then at least one of the following holds:

(a) For some constant d > 0 depending only on T and δ, there exists an
element X ∈ E such that | Tr X| > d · ‖X‖.

(b) d(E ,Ru) < δ.

Proof. Let F ⊂ R denote the complement of the open δ-neighborhood of
Ru in R. Then F is a compact subset of G. Note that for each E0 ∈ F ,
there exists X ∈ E0 with | Tr X| > 0. Then, by compactness of F , there is
a constant d > 0 depending on δ and on T such that

inf
E0∈F

sup
X∈E0\{0}

| Tr X|
‖X‖ > d.

��
Lemma 6.3. For any unipotent subalgebra E 0 of Mn(k) and a diagonal sub-
algebra T̃ normalizing E 0, there exists g ∈ SLn(k) such that ‖g‖, ‖g−1‖ ≤ 1,
gE 0g−1 is contained in the upper triangular subalgebra and gT̃ g−1 is
contained in the diagonal subalgebra of Mn(k).

Proof. Let e1, · · · , en denote the standard basis in kn. Let 0 = V0 ⊂ V1 ⊂
· · · ⊂ Vr = kn be the flag associated with E 0. (I.e., E 0Vi ⊂ Vi−1 with
V−1 = 0). Let kn = E1 ⊕ · · · ⊕ Es be the decomposition of kn into the
eigenspaces of T̃ corresponding to the distinct eigenvalues. Then since T̃
normalizes E0 we have

Vi = ⊕s
j=1(Vi ∩ E j) for each i. (9)

For each 1 ≤ j ≤ s, consider the flag Fj in E j given by

0 ⊂ E j ∩ V1 ⊂ · · · ⊂ E j ∩ Vr = E j .
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Let L j be a flag in E j of same type as Fj compatible with the basis
E j ∩ {e1, . . . , en}. There exists an element h ∈ SLn(k) such that ‖h‖ ≤ 1,
‖h−1‖ ≤ 1, hE j = E j and hL j = Fj for each j. Observe that by (9) the
basis he1, he2, . . . , hen is compatible with the flag 0 = V0 ⊂ V1 ⊂ · · · ⊂
Vr = kn. I.e., there is a permutation matrix w such that the basis f1 =
whe1, f2 = whe2, . . . , fn = when is such that for each 1 ≤ i ≤ r Vi =
Span{ f1, f2, . . . , fdim Vi}. With respect to this basis E 0 is upper triangular
and T̃ is diagonal. The element g = wh satisfies the assertions. ��
Lemma 6.4. For any 0 < η1 < 1, there exists a constant d3 > 0 (depending
only on n and η1) such that for any unipotent algebra E0 normalized by T ,
there exists an element α ∈ SLn(k) which commutes with T such that
max(‖α‖, ‖α‖−1) ≤ d3 and

‖αXα−1‖ ≤ η1‖X‖ for all X ∈ E 0.

Proof. Let T̃ denote the linear span of T over k. Since E 0 is normalized by T̃ ,
by the previous lemma, for some g ∈ SLn(k) such that ‖g‖ ≤ 1, ‖g−1‖ ≤ 1,
gE 0g−1 is contained in the upper triangular subalgebra and gTg−1 ⊂ D .
Now we can find an element β ∈ D which contracts each element in the
strictly upper triangular subalgebra by the factor of η1, and the norm of β
is bounded by a constant depending only on n and η1. Now for all X ∈ E0,
‖g−1βgXg−1β−1g‖ ≤ η1 · ‖X‖. Set α = g−1βg. Since gTg−1 ⊂ D and
D is commutative, g−1Dg centralizes T . Since α ∈ g−1Dg, we finish the
proof. ��
Proof of Proposition 6.1. Let η1 = η/2, and let d3 be as in Lemma 6.4. Pick
δ = η/(3d2

3). Let d1 > 0 be such that Lemma 6.2 holds with d1 instead of d.
Now suppose (1) of Proposition 6.1 does not hold. Then (b) of Lemma 6.2
holds, hence there exists a unipotent algebra E 0 normalized by T such that
d(E ,E 0) < δ. Let α in the centralizer of T be as in Lemma 6.4. Now for
any X ∈ E with ‖X‖ = 1, there exists X0 ∈ E0 with ‖X0‖ = 1 and
‖X − X0‖ ≤ δ. Then,

‖αXα−1‖ ≤ ‖αX0α
−1‖ + ‖α(X − X0)α

−1‖
≤ η1‖X0‖ + ‖α‖‖α‖−1‖X − X0‖
≤ η1 + d2

3δ

< η.

Thus (2) of Proposition 6.1 holds. ��

7. Properties of SLn(OK (S))

In this section we prove some simple consequences of Lemma 4.2. We
continue to use the same notation K , S, Λ(·) etc. as in Sect. 4.
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7.1. A lower bound for the maximum eigenvalue of a semisimple element

The aim of this subsection is to show:

Proposition 7.1. There exists an η > 0 depending only on n, K and S such
that Λ(A) ≥ 1 + η for any semisimple element A ∈ SLn(OK (S)) of infinite
order.

Set S∞ to be the subset of S consisting of all archimedean valuations
in S.

Lemma 7.2. Let G = ∏

ν∈S∞ SLn(K̄ν). Then there exists an ε-neighbor-
hood O of the identity in G such that if (hν Bh−1

ν )ν∈S∞ ∈ O for some
hν ∈ GLn(K̄ν) and the characteristic polynomial of B has coefficients in
the set OK of algebraic integers, then B is unipotent.

Proof. Clearly the map φ sending (gν) ∈ G to ( fν(X)) for fν being the
characteristic polynomial of gν is a continuous map from G to

∏

ν K̄ν[X].
Note that the diagonal embedding of OK [X] is discrete in

∏

ν K̄ν[X]. Hence
there exists a neighborhood V of φ(e) such that the only element of V
intersecting the diagonal embedding of OK [X] is φ(e). Noting that φ((gν )) =
φ(e) implies that each gν is unipotent, it suffices to set O to be φ−1(V ). ��
Lemma 7.3. For any δ > 0, and for any diagonal matrix diag(b1e2πθ1i, · · · ,
bne2πθni) ∈ SLn(C) where bl are positive reals and 0 ≤ θl ≤ 1 for all
1 ≤ l ≤ n, there exists 1 ≤ d ≤ 1

δ2n such that for all 1 ≤ l ≤ n, dθl ≤ δ
mod 2π.

Proof. Let Rm be the subdivision of [0, 1], identified with R/Z, into m = 1
δ

subintervals of equal length δ. Consider the box [0, 1]n ×[0, 1]n and Rm×Rm ,
which are m2n subsets of size δ2n in [0, 1]2n . Letting θ = (θ1, · · · , θn),
consider l · θ for 1 ≤ l ≤ m2n+1. Then by pigeon-hole principle, for some
1 ≤ l1 < l2 ≤ m2n+1, l1 · θ and l2 · θ must be in the same box in Rm × Rm .
Hence the size of (l2 − l1) · θ is at most δ. Since 1 ≤ l2 − l1 ≤ m2n, this
proves the claim. ��

For each ν ∈ S, set Λν(A) = max{|λ|ν : λ : an eigenvalue of A}.
Proof of Proposition 7.1. Let ε be as in Lemma 7.2 and d be as in Lemma 7.3
with respect to ε

4 . Let K ′ ⊃ K be the splitting field of the characteristic
polynomial of A. Since for each ν ∈ S∞, K ′

ν ⊂ C and S∞ is finite, we
may assume, after replacing A by a suitable power of A with a bounded
exponent depending on d and |S∞|, that the arguments of each eigenvalue
of A is at most ε mod 2π. Note that since A is of infinite order, any
power of A is non-trivial. Suppose that for some non-archimedean ν ∈ S,
Λν(A) > 1. Then in fact, Λν(A) ≥ π1/n! for π being the uniformizer of
the field Kν , since [K ′

ν : Kν] ≤ n!. Now suppose that Λν(A) = 1 for all
non-archimedean ν ∈ S. It follows that all eigenvalues of A are contained
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in the maximal compact ring O′
ν of K ′

ν. Let f denote the characteristic
polynomial of A. Since the coefficients of f are contained in K ∩ O′

ν ⊂ Oν

for all non-archimedean ν ∈ S, f in fact belongs to OK [X]. By applying
Lemma 7.2, we now have an archimedean valuation ν ∈ S and a constant
ε > 0 depending only on n, S such that |λ − 1|ν ≥ ε for some eigenvalue
of A. Since the argument of λ is less than ε

4 , it follows that |λ− 1|ν ≥ 1 + η
for some η depending on ε. ��

7.2. Effective diagonalization

In this subsection, we prove the following:

Proposition 7.4. Fix ν ∈ S. Let K ′
ν be a finite extension of Kν and Cν ∈

SLn(K ′
ν) be a semisimple element which is conjugate to some matrix C ∈

SLn(OK (S)) over GLn(K ′
ν). Then there exists a matrix Xν whose columns

consist of linearly independent unit eigenvectors of Cν (so that X−1
ν Cν Xν is

diagonal) and ∥
∥X−1

ν

∥
∥

ν
≤ D1 · Λ(C)M1 · ‖Cν‖M2

ν

where D1, M1 and M2 are positive constants depending only on n and S.

The proof relies on the following standard lemma:

Lemma 7.5. Let k be local field with an absolute value | · |. Let n ≥ 1 and
v1, · · · , vn be linearly independent unit vectors in kn. For any c > 0 and
1 ≤ j ≤ n, consider the following conditions:

1. I(c) : | det(v1, · · · , vn)| ≥ c
2. IIj(c): for any 1 ≤ i ≤ j and any permutation σ on {1, · · · , j},

‖ pr(Vσ
i+1)⊥(vσ(i))‖ ≥ c

where V σ
i denotes the subspace spanned by vσ(i), · · · , vσ( j) for 1 ≤ i

≤ j and Vj+1 = {0}.
3. IIIj(c): for any a1, · · · , aj ∈ k,

‖
j

∑

i=1

aivi‖ ≥ c max
1≤i≤ j

|ai |.

Then we have I(c) ⇒ IIn(c), IIj(c) ⇒ IIIj(c) and IIn(c) ⇒ I(cn).

Proof. Note that det(v1, · · · , vn) = ∏n
i=1 ‖ pr(Vσ

i+1)⊥(vσ(i))‖. Since
‖ pr(Vσ

i+1)⊥(vσ(i))‖ ≤ 1 for each 1 ≤ i ≤ n, we obtain under assuming I(c)
that ‖ pr(Vσ

i+1)⊥(vσ(i))‖ ≥ c. Now assume IIj(c). Let Wi denotes the subspace
of kn spanned by v1, · · · , vi−1, vi+1, · · · , v j . Note that for each 1 ≤ i ≤ j,

‖
j

∑

i=1

aivi‖2 =‖ prWi
(

j
∑

i=1

aivi)‖2+‖ prW⊥
i
(

j
∑

i=1

aivi)‖2 ≥ |ai |2·‖ prW⊥
i
(vi)‖2.
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Since ‖ prW⊥
i
(vi)‖ ≥ c by IIj(c) and 1 ≤ i ≤ j is arbitrary, we have

‖
j

∑

i=1

aivi‖ ≥ c · max
1≤i≤ j

|ai |.

The implication IIn(c) ⇒ I(cn) is clear. ��
Proof of Proposition 7.4. Let γ1, · · · , γn denote the eigenvalues of Cν, and
let v1, . . . , vn denote corresponding unit eigenvectors, so that Cνvi = γivi .
We assume that if γi = γ j then vi and v j are orthogonal. Let Xν be a matrix
whose columns consist of the vi’s. Note that ‖X−1

ν ‖ν ≤ M
|det (Xν)|ν for some

constant M depending only on n.
Then by Lemma 4.2, for each γi 
= γ j ,

|γi − γ j |ν ≥ d · Λ(C)−N

for some bounded positive constants d and N. We may clearly assume that
d ≤ 1. By Lemma 7.5, it suffices to show that

‖ pr
(V I

i+1)
⊥(vi)‖ν ≥ (

d
2

)n−i · Λ(C)−(n−i)N‖Cν‖−(n−i)
ν for each 1 ≤ i ≤ n

(here I denotes the identity permutation). We proceed by induction on i.
For i = n, it is clear. Assume that for k + 1 ≤ i ≤ n,

‖ pr
(V I

i+1)
⊥(vi)‖ν ≥ (

d
2

)n−i · Λ(C)−(n−i)N‖Cν‖−(n−i)
ν

≥ (
d
2

)n−k−1 · Λ(C)−(n−k−1)N‖Cν‖−(n−k−1)
ν .

Hence by Lemma 7.5, for any xk+1, · · · , xn ∈ Kν, we have

‖(
n∑

i=k+1

xivi)‖ν ≥ (
d
2

)n−k−1 · Λ(C)−(n−k−1)N‖Cν‖−(n−k−1)
ν max

k+1≤i≤n
|xi |ν.

Write

vk = pr
(V I

k+1)
⊥(vk) +

n∑

i=k+1

aivi, (10)

where ai ∈ Kν . Now by applying Cν to both sides of (10) we obtain

‖Cν‖ν · ‖ pr
(V I

k+1)
⊥(vk)‖ν

≥ ‖Cν pr
(V I

k+1)
⊥(vk)‖ν

= ‖γk pr
(V I

k+1)
⊥(vk) +

∑

k+1≤i≤n,γi 
=γk

ai(γk − γi)vi‖ν

≥ ‖
∑

k+1≤i≤n,γi 
=γk

ai(γk − γi)vi‖ν

≥ d · ( d
2

)n−k−1 · Λ(C)−NΛ(C)−(n−k−1)N‖Cν‖−(n−k−1)
ν max

k+1≤i≤n
|ai |ν.
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On the other hand, from (10) we have

n · max
1≤i≤n

|ai |ν ≥ 1 − ‖ pr
(V I

k+1)
⊥(vk)‖ν.

Since d ≤ 1, Λ(C) ≥ 1 and ‖Cν‖ ≥ 1, we have

1 + 1
n · d · ( d

2

)n−k−1 · Λ(C)−(n−k)N‖Cν‖−(n−k−1)
ν ≤ 2.

We deduce that

‖ pr
(V I

k+1)
⊥(vk)‖ν ≥ 1

2d · ( d
2

)n−k−1 · Λ(C)−(n−k)N‖Cν‖−(n−k)
ν

= (
d
2

)n−k · Λ(C)−(n−k)N‖Cν‖−(n−k)
ν .

This proves the claim. ��

8. The steps of the proof

Preliminary reductions. Let Γ be an infinite finitely generated subgroup of
GLn(C) which is not-virtually solvable. By Proposition 4.1 we may assume
that Γ ⊂ SLn(OK(S)) where K is a number field, S is a set of valuations
containing the archimedean ones, Γ is unbounded in

∏

ν∈S SLn(Kν) via the
diagonal embedding and the Zariski closure H of Γ in GLn(C) is connected
and simple.

Furthermore, in view of the Selberg Lemma [Sel60] we may assume
that Γ is torsion free.

An element g ∈ H is called H-regular if the multiplicity of the eigen-
value 1 of Ad(g) is minimum possible in H where Ad denotes the adjoint
representation of H .

It is well known that the set of all H-regular elements is a Zariski
dense open subset in H and each H-regular element is semisimple and
hence diagonalizable over GLn(K ′) for some finite extension field K ′ of K
(cf [Bo, 12.2]).

In the following, let S be an arbitrary finite generating set of Γ.

8.1. Step 1

For each 1 ≤ i ≤ n − 1, ρi denotes the i-th wedge product representation
of SLn and set li = dim(ρi).

The following proposition will provide us with two elements of Γ de-
noted A and B. In Steps 2–4, will construct long words in A and B.

Proposition 8.1. For any N0 ∈ N, there exists a bounded constant M1 such
that BS(M1) contains H-regular elements A and B with the property that
for each 1 ≤ i ≤ n − 1,
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1. all words in ρi(A) and ρi(B) of length at most N0 are ρi(H)-regular.
2. no pair of the above elements lies in a common parabolic subgroup of

SLli not containing ρi (H) unless they, as words in a free group, commute.

Proof. Let Qi be the subset of H × H consisting of the pairs (g1, g2) such
that all words in ρi(g1) and ρi(g2) of length at most N0 are ρi(H)-regular
and none of those two words lie in a common parabolic subgroup of SLli
not containing ρi(H) unless they, as words in a free group, commute. Since
each Qi contains a Zariski open subset in H × H , so does Q := ∩n−1

i=1 Qi .
Since Γ × Γ is Zariski dense in H × H , by Proposition 3.2, there exists

a bounded constant M1 such that BS×S(M1)∩Q 
= ∅ for any finite generating
set S of Γ. Hence BS(M1) contains A, B desired as above. ��

8.2. Step 2

In the following sections, we let A, B be elements of Γ as in Proposition 8.1
for N0 = 2n2+3.

Our aim in this section is to prove the following proposition:

Proposition 8.2. For some positive bounded constants C1, and r1 there
exists a word B′ in A and B of length at most 2n2+2 which involves B
non-trivially, and for each ν ∈ S there exists xν ∈ SLn(K ′

ν) (where K ′
ν is

the splitting field of the characteristic polynomial of A) such that xν Ax−1
ν

is diagonal, and we have

Λ(B′) ≥ C1 · Λ(A)−r1 max
ν∈S

∥
∥xν Bx−1

ν

∥
∥

ν
.

Remarks. Note that since xν Ax−1
ν is diagonal, ‖xν Ax−1

ν ‖ = Λ(A). Hence,
∥
∥xν B′x−1

ν

∥
∥

ν
≤ Λ(A)N1

∥
∥xν Bx−1

ν

∥
∥

N1

ν

for N1 = 2n2+2. Hence, the assertion of Proposition 8.2 is roughly that it is
possible to replace B by a word B′ in A and B of bounded length such that
after common conjugation A becomes diagonal, and B′ has the property
that its biggest eigenvalue becomes comparable to the norm.

We now begin the proof of Proposition 8.2. We identify the Weyl group
of SLn with the set of permutation matrices.

There exists ĝ ∈ GLn(K ′) so that ĝAĝ−1 is diagonal. Fix any ν ∈ S.
There exists an element gν ∈ GLn(K ′) such that the eigenvalues of the
diagonal matrix gν Ag−1

ν are non-increasing, i.e.,

gν Ag−1
ν = diag(λ1 In1, · · · , λm Inm )

where |λ1|ν ≥ · · · ≥ |λm|ν and
∑

i ni = n.
Set

Aν := gν Ag−1
ν and B̂ν := gν Bg−1

ν .
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Let Tν = T(Aν, ν). Note that given Γ and ν there are only finitely many
possibilities for Tν independently of A and B. Hence any constant which
a priori depends on T in fact depends only on Γ (i.e. is bounded in the sense
of the introduction to Sect. 8).

Definition 8.3. Let A, B ∈ SLn(K ′
ν) with A diagonal. Let Z(T ) ⊂ SLn(K ′

ν)
denote the centralizer of T = T(A, ν). We say that B is balanced with re-
spect to A if

‖B‖ν ≤ 2 inf
x∈Z(T )

‖xBx−1‖ν.

Let hν ∈ Z(T ) be such that hν B̂νh−1
ν is balanced with respect to Aν . Set

Bν := hν B̂νh−1
ν .

Note that Aν = hν Aνh−1
ν and

Λ(A) = max{|λi|ν | 1 ≤ i ≤ m, ν ∈ S} ≥ 1

since det A = 1.

Lemma 8.4. There exists a word B̃ν in Aν and Bν of length at most 2n2+2

(which involves Bν non-trivially) such that

| Tr(B̃ν)|ν ≥ C · ‖Aν‖−r1
ν ‖Bν‖ν (11)

where C and r1 are bounded positive constants.

Proof. Fix 0 < η < 1/32. Let d1 and d2 be as in Proposition 6.1 with
respect to η. Let 0 < ε < d1/2 be such that d2

2 ε < 1/32 and ηε < 1/32.
Let E ν(ε) be a subalgebra of Mn(K ′

ν) as in Proposition 5.1 with A and B
replaced by Aν and Bν respectively.

We now claim that alternative (2) of Proposition 6.1 cannot hold for
E = E ν(ε). Indeed, let g be as in Proposition 6.1 (2). By assertion (a) of
Proposition 5.1 there exists B∗ ∈ Eν(ε) such that ‖Bν − B∗‖ν ≤ ε‖Bν‖ν.
Then

∥
∥gBνg−1

∥
∥

ν
≤ ‖gB∗g−1‖ν + ∥

∥g(Bν − B∗)g−1
∥
∥

ν

≤ η‖B∗‖ν + ‖g‖ν‖g−1‖ν‖Bν − B∗‖ν

≤ η‖B∗‖ν + d2
2ε‖Bν‖ν

≤ η(1 + ε)‖Bν‖ν + d2
2ε‖Bν‖ν

≤ (1/4)‖Bν‖ν.

Since g centralizes Aν , this contradicts the fact that Bν is balanced with
respect to Aν . Therefore assertion (1) of Proposition 6.1 holds. Now we
apply Proposition 5.1 with θ = I (the identity matrix). Since ε < d1/2, (11)
follows from part (b) of Proposition 5.1. ��
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In this subsection we have constructed Aν and Bν in SLn(K ′
ν) for some

finite extension field K ′
ν of Kν for each ν ∈ S such that [K ′

ν : Kν] is bounded
by a constant depending only on n.

Let ν1 ∈ S be such that

‖Bν1‖ν1 = max
ν∈S

‖Bν‖ν.

Let B̃ be as in Lemma 8.4 with respect to the valuation ν1. By con-
struction of B̃, clearly there exists B′ ∈ SLn(OK (S)) such that for each
ν ∈ S,

B̃ = xν B′x−1
ν (12)

where xν = hνgν. Since Λ(B′) ≥ 1
n | Tr(B̃ν1)|ν1 , we have completed the

proof of Proposition 8.2. ��

8.3. Step 3

In this subsection, our goal is the following:

Proposition 8.5. There exist bounded constants m1, c and M such that for
any given finite generating set S of Γ ⊂ SLn(OK (S)) there exist two H-
regular elements A, B ∈ BS(m1) not lying in a common parabolic, such
that for each ν ∈ S, there exists a finite extension field K ′

ν of Kν and an
element yν ∈ GLn(K ′

ν) such that each Aν := yν Ay−1
ν is diagonal and

Λ(A) = max
ν∈S

‖Aν‖ν ≥ c · max
ν∈S

‖Bν‖1/M
ν . (13)

Note that B′ is H-regular by Proposition 8.1. Set Xν ∈ GLn(K̄ ) to be
a matrix whose columns are unit eigenvectors of B̃ satisfying

∥
∥X−1

ν

∥
∥

ν
≤ D · Λ(B′)M1‖B̃‖M2

ν

for each ν ∈ S as in Proposition 7.4.

Lemma 8.6. We have

max
ν∈S

‖Aν‖ν ≥ max
ν∈S

‖Bν‖1/M
ν , or

max
ν∈S

∥
∥X−1

ν B̃Xν

∥
∥

ν
≥ D′ · max

ν∈S

∥
∥X−1

ν Aν Xν

∥
∥

1/M′
ν

where M, D′ and M′ are bounded constants.
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Proof. Set N1 = 2n2+2. Let M be a positive integer bigger than r1 +1 where
r1 is as in Proposition 8.2. If Λ(A) ≥ ‖Bν1‖1/M , then there is nothing to
prove. Suppose that Λ(A) ≤ ‖Bν1‖1/M . Consider X−1

ν B̃Xν and X−1
ν Aν Xν.

Note that
max
ν∈S

∥
∥X−1

ν B̃Xν

∥
∥

ν
= Λ(B′).

By applying Proposition 8.2 and by the assumption, we have

max
ν∈S

∥
∥X−1

ν B̃Xν

∥
∥

ν
≥ C1 · Λ(A)−r1‖Bν1‖ν1 ≥ C1 · ‖Bν1‖−r1/M+1

ν1
.

On the other hand, Proposition 7.4 with notations M1, M2 and D1 there
implies for each ν ∈ S,

max
ν∈S

∥
∥X−1

ν Aν Xν

∥
∥

ν
≤ max

ν∈S

∥
∥X−1

ν

∥
∥

ν
· ‖Aν‖ν ≤ D1 · Λ(B′)M1‖Bν‖ν

M2Λ(A)

≤ D1 · Λ(A)M1 N1+1 · ‖Bν1‖N1 M1+M2
ν1

≤ D1 · CM1
1 · ‖Bν1‖(M1 N1+1)/M+N1 M1+M2

ν1

by the assumption. Since −r1/M + 1 > 0, we can find bounded constants
M′ and D′ such that

max
ν∈S

∥
∥X−1

ν B̃ν Xν

∥
∥

ν
≥ D′ · max

ν∈S

∥
∥X−1

ν Aν Xν

∥
∥

1/M′
ν

.

��
Proof of Proposition 8.5. If the first inequality in Lemma 8.6 does not hold,
we simply need to replace Aν by X−1

ν Bν Xν and Bν by X−1
ν Aν Xν.

8.4. Step 4

In this subsection we aim to satisfy the remaining conditions of Proposi-
tion 2.5. Note that (L2) is already satisfied in view of Proposition 8.5. It
remains to satisfy (L1) and (L3).

Let ν0 ∈ S be such that ‖Aν0‖ν0 = maxν∈S ‖Aν‖ν, which is equal to
Λ(A).

Using Proposition 7.1 (note that Γ is assumed to be torsion-free), we
may assume that ‖Aν0‖ν0 ≥ 4n−1, after taking a suitable power by a bounded
exponent. By conjugating Γ by a Weyl element, we may also assume that the
diagonal entries of Aν0 are in decreasing order with respect to the absolute
value |·|ν0 . For the sake of simplicity, we omit the subscript ν0 in the notation
| · |ν0 for the rest of this section.

We now need the following easy lemma:

Lemma 8.7. For any diag(α1, · · · , αn) ∈ SLn(K ′
ν0

) where |αi| ≥ |αi+1| for
each 1 ≤ i ≤ n − 1, we have

(

max
i

|αi|
|αi+1|

)

≥ 1
2 |α1|1/(n−1).
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Proof. Suppose that |αi| ≤ 1
2 |α1|1/(n−1)|αi+1| for each 1 ≤ i ≤ n − 1.

It follows that, using
∏

i |αi | = 1, |α1|∏1≤i≤n−1 |αi| ≤ 1
2n−1 |α1|. Hence

∏

1≤i≤n−1 |αi| ≤ 1
2n−1 , or equivalently |αn| ≥ 2n−1, which contradicts the

assumption that αi is in norm decreasing order. ��
Write Aν0 := diag(λ1, · · · , λn). Let 1 ≤ i ≤ n − 1 be the smallest

integer such that
∣
∣
∣
∣

λi

λi+1

∣
∣
∣
∣
≥ 1

2 |λ1|1/(n−1) ≥ 2.

By taking the i-th wedge product of ρi , we obtain that a bounded power
of ρi(Aν0) and ρi(Bν0) satisfies (L1). Without loss of generality, we may as-
sume that ρi(Aν0) satisfies (L1). Note that the elements ρi(Aν0) and ρi(Bν0)
satisfies (L2) by (13) and the choice of ν0 and i.

Proposition 8.8. Let k be a local field with an absolute value | · |. Then for
any matrix D in SLm(k), the (1, 1)-entry (Dq)11 of the power Dq for some
1 ≤ q ≤ m satisfies

∣
∣(Dq)11

∣
∣ ≥ c‖Dq‖s

for some constants s > −∞ and c > 0 depending only on n.

Assuming Proposition 8.8, we have ρi(B̂ν0) and ρi(Aν0) satisfies (L3).
Indeed it is easy to see that they also satisfy (L1) and (L2) from the fact
that Aν0 and Bν0 satisfy those. Hence we produced a ping-pong pair using
words of bounded length in the given set of generators. This completes the
proof of the main theorem.

Proof of Proposition 8.8. Let χD(x) = ∑m
i=0 αi xi be the characteristic poly-

nomial of D. Note that α0 = 1. We then have χD(D) = 0. Hence if we write
Dq = ((Dq)ij), then

∑m
i=0 αi(Di)11 = 0 and hence

∑m
i=1 αi(Di)11 = −1.

Hence for some 1 ≤ q ≤ m,
∣
∣αq(Dq)11

∣
∣ ≥ 1/m

which implies that |(Dq)11| ≥ 1
m ‖D‖−q. This proves the proposition.
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