HEIGHTS ON SL, AND FREE SUBGROUPS
EMMANUEL BREUILLARD

ABSTRACT. In this mostly expository paper, we discuss the strong uniform Tits
Alternative and give a complete proof of it in the special case of GL2(C). The
main arithmetic ingredient, the height gap theorem, is also given a complete
treatment in that case. We then prove several applications involving expansion
properties of SLq(Z/pZ), a uniform [? spectral gap, and diophantine properties
of subgroups of GL4(C).
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1. INTRODUCTION

1.1. Statement of the main results. Recall that the Tits alternative [31] as-
serts that any finitely generated subgroup of GL4(K), where K is some field,
contains a non abelian free subgroup on two generators unless it is amenable, or
equivalently in this case, unless it contains a solvable subgroup of finite index (i.e.
is virtually solvable). In [7] and [8], we showed the following uniform version of
Tits’ theorem :

Theorem 1.1. (strong uniform Tits Alternative [8]) For every d € N there
is N = N(d) € N such that if K is any field and F' a finite symmetric subset
of GL4(K) containing 1, either FV contains two elements which freely generate
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a non abelian free group, or the group generated by F' is virtually solvable (i.e.
contains a finite index solvable subgroup).

We have denoted by F = F'-...- I the product set of n copies of F. In this paper
we will discuss some consequences of this result and we will give a self-contained
proof of it in the special case of SLs (hence equivalently GLs) and K any field of
characteristic 0 (note that this is equivalent to proving the result for K = C, since
every finitely generated field of characteristic 0 embeds in C). This case is already
representative of the general case as it captures the main difficulty, namely treat
all number fields in a uniform way. The proof given in [8] is an elaboration of the
proof for SL, that we are about to give.

Theorem 1.1 improves earlier refinements of Tits’ theorem due to Eskin-Mozes-
Oh (see [13]) and to T. Gelander and the author (see [9]). These two papers were
concerned with the S-arithmetic version of Theorem 1.1, namely they proved
uniformity of N (the “freeness radius” of F') for sets F' with coefficients inside a
fixed finitely generated ring. While in [13] the main concern was to prove uniform
exponential growth by constructing generators of a free semigroup in FV, in [9]
it was shown that the result of [13] could be pushed to get generators of a free
group in F'V, where N was depending only on d and on the ring generated by the
matrix coefficients of the elements of F'. Our main contribution in Theorem 1.1 is
to remove the dependence on the ring of coefficients. As in Tits’ proof or in [9], the
proof of Theorem 1.1 can be divided into an arithmetic step on the one hand and
a geometric step on the other. While in [9] (as well as in Tits’ original theorem)
the arithmetic step was the easier one and most of the work lied in showing that
a certain geometric configuration (the so-called “ping-pong”) did arise, roles are
reversed in our proof of Theorem [8] and the arithmetic step is the harder step,
while the geometric step routinely follows Tits’ original proof after a careful check
that all estimates are indeed uniform over all local fields. For SL, however none
of the usual difficulties of higher rank arise and as will become clear below this
geometric step is even more transparent (in that case or other rank 1 situations
this geometric step can also be performed differently by acting directly on the
hyperbolic space/tree as has been pointed out by T. Gelander).

The proof of Theorem 1.1 is effective in the sense that the constant /N can, in
principle, be made explicit. Examples due to Grigorchuk and de la Harpe [18§]
imply that N(d) must tend to infinity with d. They exhibited a sequence (I',),>0
(', < GL(n,Z)) of 4-generated subgroups whose growth exponent decays to 1.
These groups arise by chopping the usual presentation of the Grigorchuk group
after finitely many relators (see [18]).

The arithmetic step in Theorem 1.1 relies on the following result, proved by
the author in [7], which can be seen as a global adelic analogue of the Margulis
Lemma about discrete subgroups of isometries in hyperbolic geometry. We will
present here a self-contained proof of it in the case of SLs.
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Let @ be an algebraic closure of Q. In [7] we introduced the arithmetic spectral
radius (or normalized height) of F', defined as

~ 1
F)= lim —h(F"
WF) = lim —h(EF"),
where h is the (absolute) height defined for F' a finite subset of My(Q) by :

W(F) = [K{ g > e los” IFL

veVE

where logt = max{0,log}, K is the number field generated by the matrix coef-
ficients of F, Vi is the set of all places of K, and ||F||, = max{]||f||.,f € F}
is the maximal operator norm of f € F, where ||f||, = max,.o || f(2)|],/||z||, for
the standard norm ||x||, induced on K¢ by the standard absolute value | - |, on
the completion K, of K associated to v € Vk. We have also set n, = [K,, Q,],
where Q, is the field of p-adic numbers if v|p is finite and is R if v is infinite. The
normalization of the absolute value | - |, is such that |A|”* is the modulus of the
multiplication by A on K,.

The quantities h(F') and h(F') are well defined, i.e. they are independent of the
chosen number field. Moreover E(F ) is invariant under conjugation by elements

from GL4(Q). The main statement is:
Theorem 1.2. (Height Gap Theorem [7]) There is a positive constant ¢ =

e(d) > 0 such that if F is a finite subset of GL4(Q) generating a non virtually
solvable subgroup I', then
h(F) > e.
Moreover, if the Zariski closure of I' is semisimple, then
hF)< inf _h(gFg™") < C - h(F)
9gEGLy(Q)

for some absolute constant C' = C'(d) > 0.

When d = 2, i.e. for SL,, the first part of Theorem 1.2 has the following
geometric interpretation: either there is a finite place v where F' acts without
global fixed point on the corresponding Bruhat-Tits tree, or after applying some
Galois automorphism of C, the set F, as it acts on the hyperbolic 3-space H? via
SLs(C), moves every point away from itself by a positive absolute constant . This
is analogous to the Margulis lemma in hyperbolic geometry, according to which if
F generates a discrete subgroup of SLs(C) which is not virtually nilpotent, then
every point of H? is moved away from itself by some element of I by some fixed
constant (see [30]).

The main purpose of Theorem 1.2 is to yield in F', or a bounded power of F', a
nice hyperbolic element, i.e. a semisimple matrix whose eigenvalue is of modulus
at least 2, say, in some local completion.
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Finally we point out that our proof of Theorem 1.1 yields a free subgroup
with the extra property that it is uniformly undistorted in the original subgroup,
namely:

Theorem 1.3. (Uniformly quasi-isometrically embedded free subgroup
[8]). There is a constant C' = C'(d) > 0 such that if K is any field and I" is any
non virutally solvable subgroup of GL,(K) generated by a finite symmetric subset
F (giving rise to a word metric dr(-,-) on I') there exists a free subgroup H of T
generated by two elements (giving rise to a word metric dy(+,-)) such that for all

he H
1

C-|F|¢ ’
1.2. Some consequences for uniform growth, spectral gap and diophan-
tine properties. We will prove here these corollaries for GL4(C), d > 2.

dr(1,h) < dg(1,h) < dr(1,h).

Corollary 1.4. (Strong uniform exponential growth) There is ¢ = ¢(d) > 0
such that if F' is a finite subset of GL4(C) containing 1 and generating a non
amenable subgroup, then for all n > 1, |[F™| > (1 + ¢)". In particular,

Pp = ngrfoo % log |[F"| > log(1+¢) > 0.

Let us remark that it may be the case that p, is bounded away from 0 assum-
ing only that F' generates a non virtually nilpotent subgroup of G'Ly(C). However
we observed in [6] that such an assertion, if true, would imply the Lehmer con-
jecture about the Mahler measure of algebraic numbers. We also observed there
that although every linear solvable group of exponential growth contains a free
semigroup, no analog of Theorem 1.1 (the UF property of [1]) holds for solvable
groups, namely one may find sets F,, in GLy(C) containing 1 and generating a
solvable subgroup of exponential growth, such that no pair of elements in (F,)"
may generate a free semigroup.

Von Neumann showed that groups containing a free subgroup are non amenable,
i.e. have a spectral gap in ¢2. The uniformity in Theorem 1.1 implies also a
uniformity for the spectral gap (see [29] for this observation). More precisely:

Corollary 1.5. (Strong uniform Spectral Gap in ¢?) There is ¢ = ¢(d) > 0
with the following property. If F is a finite subset of GL4(C) containing the
identity and generating a non amenable subgroup and if I' is a countable subgroup
of GL4(C) containing F' and f € ¢*(T'), then there is 0 € F such that

Mo ) = f@) =2 Y 1f @)

In particular, if F' in GL4(C) is a finite subset containing the identity and gen-
erating a non amenable subgroup, then for every finite subset A in GLy4(C), we
have |FA| > (1 + ¢)|A|.
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In [24] Lubotzky, Phillips and Sarnak showed that for the compact Lie group
G = SU(2), the spectral measure of the “Hecke operators” T}, = 2= >~ ., gi+g; "
acting on LZ(G) is supported on [—m,, m,] where m, is the norm of T, viewed
as an operator on ¢2(T"), I being the abstract group generated by the g;’s. This
spectral measure is by definition the limiting distribution of the eigenvalues of
T, on the n'™ dimensional representation of G. Corollary 1.5 implies that m,, is
bounded away from 1 independently of i as soon as k is fixed and I' is a non
amenable subgroup of G. In other words, there is ¢ = (k) > 0 such that the
proportion of eigenvalues of 7}, lying in [-1,—1 4] U [1 — ¢,1] tends to 0 as n
tends to infinity. The analogous result for Cayley graphs of SLo(Z/pZ) is also a
direct consequence of Corollary 1.5, i.e. the spectral measure of any limit of such
Cayley graphs is supported on [—1+4¢,1—¢]. It is believed (spectral gap conjecture,
see [24] [28]) that 1 is never an accumulation point of eigenvalues of 7), for any
given u (or at least almost any in SU(2)) whose support generates a non amenable
subgroup.

Since by Kesten’s theorem m,, is also the exponential rate of decay of the return
probability (see [21]), we also have:

Corollary 1.6. (Strong uniform decay of return probability ) There is ¢ =
e(k,d) > 0 with the property that for any non amenable k-generated subgroup I'
of GL4(C) we have

P(S,=1)<(1—-¢e)"

for all n > 1, where S,, is the simple random walk on I'.

The next corollary gives an upper bound on the co-growth of subgroups of
GL4(C).

Corollary 1.7. (Co-growth gap) Given m € N, there is n(m) > 0 such that for
every n > n(m) the following holds: F' = {ay,...,a,,} C GL4(C) generates a non
virtually solvable subgroup, if and only if the number of elements w in the free
group F, of word length n such that w(as, ..., a,,) = 1 is at most (2m —1 — -5)".
Here €, D > 0 are constants depending on d only.

This result can be paraphrased by saying that non amenable subgroups of
GL4(C) are very strongly non amenable, i.e. have few relations. This puts a
purely group theoretical restriction on an abstract finitely generated group given
in terms of generators and relations to admit an embedding in GL4(C).

The uniformity in Theorem 1.1 allows to reduce mod p and we obtain a state-
ment giving a lower bound on the girth of subgroups of GL, in positive charac-
teristic:

Corollary 1.8. (Large girth) Given k,d > 2, there is N, M € N and ¢y,C > 0
such that for every prime p and every field K of characteristic p and any finite
subset F' with k elements generating a subgroup of GL4(K) which contains no
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solvable subgroup of index at most M, then FV contains two elements a, b such
that w(a,b) # 1 in GL4(K) for any non trivial word w in Fy of length at most

f(p) =C - (logp)=.

It was conjectured in [16] that the statement of Corollary 1.8 holds for generating
subsets F' of SLy(FF,) with g9 = 1.

Theorem 1.3 on the uniform QI-embedding of the free subgroup yields a uniform
bound for the distortion of the subgroup of large girth. This in turn gives uniform
expansion for subsets of say GLs(F,) lying in a ball of radius < (log p)*°. Namely:

Corollary 1.9. (Uniform expansion for small sets) Given k,d > 2, there is
N, M € N and ¢y, C,a, > 0 such that for every prime p and every field K of
characteristic p and any finite symmetric subset F' with k£ elements, containing
1 and generating a subgroup of GL4(K) which contains no solvable subgroup of
index at most M, then for any subset A C F(°8P)° there is s € F such that
|sA A Al > «o]A|. In particular p3(e) < (1 — g)" for all n < C - (log p)*°, where
(i is the uniform probability measure on F'.

If we could get 9 = 1 in the above corollary, then applying the argument
of Bourgain and Gamburd ([4]) would give a proof that the family of all Cayley
graphs of SLy(Z/pZ) for varying p but with a fixed number of generators forms an
expander family. See Lubotzky’s book [23] for background material on expanders.
It was also proved in [16] that a random d-regular Cayley graph of GLo(F,) has
girth at least (1 — o(1))log, ;(p). Here we obtain ey = 271% for GL,, which is
quite far.

In the same vein, one obtains the following two weak form of "non-Liouvilleness"
for subgroups of GL4(C). Let d be some Riemannian distance on G Ly(C).

Corollary 1.10. (Short words are not simultaneously very Liouville)
Given d, there is Ny € N and £; > 0 with the following property. For every finite
set F' C GL4(C) generating a non virtually solvable subgroup, there is do(F) > 0
such that for every 6 € (0,dy) there are two short words a,b € FY such that
d(w(a,b),1) > ¢ for every reduced word w in the free group F; with length ¢(w)
at most (log 1)1,

In [19] Kaloshin and Rodnianski proved that for G = SU(2) < SL,(C) almost
every pair (a,b) € G x G satisfies d(w(a,b),1) > exp(—C(a,b) - £(w)?) for all
w € Fy\{e} and some constant C(a,b) > 0. Besides it is easy to see that if
a,b € GLy(Q) then the pair (a,b) satisfies the stronger diophantine condition
d(w(a,b),1) > exp(—C(a,b) - £{(w)). It is conjectured in [28] and [16], that this
stronger condition also holds for almost every pair (a,b) € SU(2).

Our result also allows us to estimate the number of words of length < n that

fall in a shrinking neighborhood of 1 in G'L4(C). More precisely,
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Corollary 1.11. (Weak diophantine property) There are 7,¢1,C > 0 with
the following property. For every {a,b} < GL4(C) which generates a non virtually
solvable subgroup, there is dg(a,b) > 0 such that for every § € (0,0) and every
n < C(logd _1)51, the proportion of elements w in the free group F; of word length
n such that d(w(a,b),1) < 0 is at most exp(—7n).

In [15], Gamburd, Jacobson and Sarnak, showed for G = SU(2) that if a pair
(a,b) € G satisfies the conclusion of Corollary 1.11 with &y = 1 and C' > Cj (for
some explicit Cy > 0) then (a,b) has a spectral gap on L*(G). In [5], Bourgain
and Gamburd showed that if a pair (a,b) € G satisfies the above condition with
g1 = 1 and some C' = C(a,b) > 0, perhaps small, then (a, b) has a spectral gap on
L?(G). This latter condition is automatically satisfied if (a, b) satisfies the stronger
diophantine condition above, for instance if (a,b) € GLy(Q). Hence these pairs
have a spectral gap. It is unknown whether there are (topologically generating)

pairs with no spectral gap.

Remark 1.12. We emphasize here that all the constants in the above theorems
and corollaries can be effectively computed. Only at one point in the proof do we
use a compactness argument. This is in our proof of Lemma 2.1 (b). However this
statement can be given an effective proof valid in M,(C) (available upon request).

Comment on the proof of Corollaries 1.8 to 1.11: Observe (see Corollary 9.2)
that the condition on a finite subset F' = {A, B} of GL4(C) that it should gen-
erate an amenable (or equivalently virtually solvable) subgroup of GL4(C) is an
algebraic one, as is the condition that all short words in A and B satisfy a relation
of length at most n. Thus the statement of Theorem 1.1 can be read as a union
of countably many assertions of first order logic. According to the “compactness
theorem” from model theory, since each assertion holds for C it must also hold
for an arbitrary field K of sufficiently large characteristic (depending on n). This
readily gives this existence of some function f(p) going to +oc with p in Corollary
1.8. To derive the bound (logp), as well as the bounds (log 6 ') in Corollaries
1.10 and 1.11, we use a standard version of the effective Nullstellensatz due to
Masser and Wustholz (see [26]).

1.3. Outline of the paper and of the proof of Theorems 1.2 and 1.1 for
SLy(C). In Section 3 we introduce our main objects, the height and normalized
height of a finite set F' of matrices and prove basic properties about them. One
of the key properties, the comparison between h and e, relies crucially on Section
2, which is devoted to the proof of a key lemma, the spectral radius lemma. This
lemma says in substance that unless F' can be conjugated in a bounded part of S'Lo,
one will find a short word with letters in F' with a large eigenvalue. In Section 4 we
prove the first part of Theorem 1.2 (the height gap). The proof makes crucial use of
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equidistribution properties of algebraic numbers of small height and in particular
a result of Zhang (Theorem 4.9) and Bilu’s equidistribution theorem for Galois
orbits (Theorem 4.4 below). Using the Eskin-Mozes-Oh escape lemma (see Lemma
4.8 below) we first reduce to the 2-generated case, when F' = {Id, A, B} say. We
can also assume that A is diagonal. By making local estimates at each place, and
with the help of Bilu’s theorem, we then show that A(F') small implies that the
heights of by1, byy and bysbe; are small. But as by1bas — biabe; = 1, Zhang’s theorem
quickly yields to a contradiction if bisbs; # 0. So bisby; = 0 and F' is made of
upper or lower triangular matrices.

Theorem 1.1 is of purely algebraic nature and we begin its proof by showing that
its validity over Q implies its validity over C. One then needs to exhibit a place v
where one can play ping-pong on the projective line P!(K,) for the local field K, as
in Tits’ proof of his alternative. These “ping-pong players” will be the generators
of the desired free subgroup. To achieve this, one needs to be able to conjugate F
in SLy(K,) in such a way that three conditions are satisfied. First the norm ||F||,
ought to be controlled (up to a fixed power) by the maximal eigenvalue say |\|,
of an element, say A, lying in F' (or F'V for a bounded N). Second |)|, should be
large enough, i.e. bounded away from 1. And third, at least one element, say B,
from F, or 'V, must send the eigenvectors of A far apart from one another with a
distance controlled by some negative power of ||F'||,. This criterion for ping-pong
is explained in Section 6.

In Section 7 we show that a place v with these properties does exist. This is
done in two steps, first (Section 5) we show that the minimal height A(F) can
be almost achieved (up to multiplicative and additive constants) by the ordinary
height h(F) after possibly conjugating F inside SLy(Q). This is the second half
of Theorem 1.2 : this step uses the estimates needed in the first part of Theorem
1.2 (i.e. the proof of the height gap). In a second step (Section 7), we use the
product formula on P!(Q) to show that the distances between eigenvectors of A
and their images under B are controlled in terms of h(F'), and hence /ﬁ(F ), only.
This implies the existence of a place v satisfying the first and third conditions.
Theorem 1.2 ensures that v can be chosen to satisfy the second condition also.

Sections 8 and 9 are devoted to the applications.

2. SPECTRAL RADIUS LEMMA FOR SEVERAL MATRICES

In this section we state and prove the crucial Lemma 2.1. It says that given a
finite set of matrices with coefficients in a local field, one may always find a short
word with letters in that finite set whose maximal eigenvalue is as large as the
minimal norm of the finite set. Together with Proposition 2.5 it can be interpreted
as an analog for several matrices of the classical spectral radius lemma relating
the maximal eigenvalue and the rate of growth of the powers of a matrix. This
lemma expresses in a condensed form an idea from a key proposition of the work
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of Eskin-Mozes-Oh where the concept of an almost algebra was used to essentially
achieve the same goal. We emphasize here that getting an equality in part (a) of
Lemma 2.1 as opposed to a mere inequality like in part (b) of the same lemma is
absolutely crucial in the whole proof and in particular in Theorem 1.2.

Let k be a local field of characteristic 0. Let ||-||, be the standard norm on £?,
that is the canonical Euclidean (resp. Hermitian) norm if £ = R (resp. C) and
the sup norm (||(z,y)||, = max{|x|x, |y|x}) if k is non Archimedean. We will also
denote by ||-||, the operator norm induced on Ms(k) by the standard norm |||,
on k% Let Q be a bounded subset of matrices in M(k). We set

1QIl), = sup gll,
9eQ

and call it the norm of Q. Let k be an algebraic closure of k. It is well known (see
Lang’s Algebra [22]) that the absolute value on k extends to a unique absolute

value on k, hence the norm ||-||, also extends in a natural way to % and to My(k).
This allows to define the minimal norm of a bounded subset @) of My (k) as

E(Q) = inf [laQz7'|,
2€GLy (k)

We will also need to consider the maximal eigenvalue of (), namely
Ap(Q) = max{|Alx, A € spec(q),q € Q}

where spec(q) denotes the set of eigenvalues (the spectrum) of ¢ in k. Finally let
Ri(Q) be the spectral radius of Q

1
Ri(Q) = tim Q"I

These quantities are related to one another. The key property concerning them
is given in the following assertion (which also holds in My(k), k > 2, see [7]).

Lemma 2.1. (Spectral Radius Lemma) Let () be a bounded subset of M(k),

(a) if k is non Archimedean, then A,(Q?) = Ex(Q)>2.
(b) if k is Archimedean, there is a constant ¢ € (0,1) independent of @, such
that Ak(Qz) Z C2 . Ek(Q)Z

Proof. We make use of the following easy lemmas.

Lemma 2.2. Let L be a field and Q a subset of My(L) such that Q and Q? consist
of nilpotent matrices. Then there is a basis (u,v) of L? such that Qu = 0 and
Qv C Lu.

Proof. For any A, B € Q, we have A? = B? = (AB)? = 0. It follows, unless A
or B are zero, that ker A = Im A and ker B = Im B. Also if AB # 0, we get
ker B = ker(AB) = Im(AB) = Im A, while if AB = 0, then Im B = ker A. So at
any case ker A = Im A = ker B = Im B. So we have proved that the kernels and
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images of non zero elements of () coincide and are equal to some line Lu, say. Pick
v € L*\{Lu}, then (u,v) forms the desired basis. O

Lemma 2.3. Let k£ be a local field with ring of integers O, and uniformizer
7. Let A = (a;;) € Ma(Of) such that trace(A) and det(A) belong to (7?) and
a11, 92, 21 € (7'('), while a2 € O]: Then ao1 € (7'('2).

Proof. We have ajsas = ajjas — det(A) € (7?), and a;p € O}, hence ay €
(m)2. O

When £ is a non-archimedean local field, if a set Id+ @ in SLy(k) and its square
have only eigenvalues very close to 1, then it must fix pointwise the 1-neighborhood
of some point in the Bruhat-Tits tree of SLy(k). This is essentially the content of
the next lemma.

Lemma 2.4. (small eigenvalues implies large fixed point set) Let & be a local field
with ring of integers Oy and uniformizer 7 together with an absolute value | - |,
which is (uniquely) extended to an algebraic closure k of k. Let @ be a subset of
My(Oy) such that A,(Q) and Ax(Q?) are both < |7|3. Then there is T € G Ly(k)
such that TQT ™' C wMy(Oy,).

Proof. We can write () as the disjoint union (); Un(Q)> where ), does not intersect
TMy(Of). Let Q' = Q1 U Qo. Then Ak(Q') and Ax(Q"?) are both < |r|;. Hence
projecting to My (L), where L is the residue field L = Oy /(x), the matrices from @’
and Q"* become nilpotent. According to Lemma 2.2, one may find a basis (u,v) of
L? such that Qu = 0 and Qv C Lu. According to Nakayama’s lemma, this basis
is the projection of a basis (u, v) of O7. Up to conjugating by a matrix in GLy(O},),
we may assume that (u,v) is the canonical basis of OF. Therefore @)’ consists of
matrices A = (a;;) € My(Oy) with aq1, age, as1 € (m). Moreover, matrices in ¢4
satisfy a12 € O and hence by Lemma 2.3, as; € (772). But for the matrices coming
from Q4 also we have ay; € (7%). So we have as; € (72) for all matrices in Q. Let
T = diag(m,1) € GLy(k). Then clearly TQT ' C wMy(O). O

We go back to the proof of Lemma 2.1. We first prove (b). By contradiction,
if such a ¢ did not exist, then we may find a sequence of such @, such that

é\:(g@ — 0. We can change @), into % and thus obtain a sequence of compact

sets in My (k) such that Ej(Q,) = 1 with A,(Q?) — 0 and A,(Q,) — 0. and
passing to a limit, we obtain a compact subset @ of Ms(k) such that Ay(Q?) =
Ar(Q) = 0 while E(Q) = 1. By Lemma 2.2, we can thus find a basis (u, v) where
Qu =0 and Qv C Lu. But then conjugating () by a suitable diagonal matrix can
shrink the norm of @) as much as we want, hence Ej(Q) = 0. A contradiction.
We now prove (a). Let = be a uniformizer for k. Let x = log Fx(Q) where
the log is taken in base ||, '. Suppose that A,(Q?) < F(Q)? and let ¢ = z —

11og Ak (Q?) > 0. Then as Ax(Q) < Ar(Q?)z, we have = — log Ay(Q) > & > 0.
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Note that with our choice of normalization, log Ax(Q?) € iZ. Let n € N such
that 2ne > 3. Let ko be the extension k(*"/7) where ?"\/7 is some 2n-root of
7 in k. Since 2 = log Ex(Q) = loginf{||gQg"||x,g € GLy(k)}, we may assume
after possibly conjugating @) inside G'Ly(k;), for some finite extension ki of ko,
that y :=log ||Q||x < = + 5~ and also that y = min{log ||gQg*||x, g € GLa(k1)}.
Let m; be a uniformizer in k. Then log|m|;" < 5= and y = log|m|™ for some
m € Z. Let Q, = m™Q C M3(Ok,). We get log E,(Q,) = z —y < 0 and
log Ai(Qy) < 31logA(Q2) =2 —y—e < —e < —3 < log|m[}. We are thus in
a position to apply Lemma 2.4, which implies that @),, and hence @ itself, can
be further conjugated inside G'Ly(k1) so as to strictly reduce its norm. But this
contradicts the minimality of y. O

Proposition 2.5. Let () be a bounded subset of Ms(k). We have
Ri(@) = lim E(Q")F = inf E(@")F = lim AQ)H =sup A"

neN
Moreover if k£ is non Archimedean, Ry(Q) = Er(Q), while if k is Archimedean,
then ¢ - Fx(Q) < Ri(Q) < Ex(Q), where ¢ is the constant from Lemma 2.1 (b).

Proof. We omit the proof: these identities follow either directly from the definitions
or as a straightforward application of Lemma 2.1. O

Note that some periodicity phenomenon may arise if Id ¢ @), namely it may be
that A, (Q?"™!) = 1 for all n while Ax(Q?") tends to infinity (for instance take for
(@ a set of symmetries around several points on a given geodesic in the hyperbolic
plane). However if Id € @, then we do have lim,,_ o Ar(Q")7 = Rp(Q).

Note also that if @) belongs to SLy(k), then Ei(Q) > Ri(Q) > Ax(Q) > 1 and
all three quantities remain unchanged if we add Id to ). The following lemma

explains what happens if these quantities are close or equal to 1.

Lemma 2.6. (Linear growth of displacement squared ) Suppose k is Archimedean
(i.e. kK =R or C). Then we have for every n € N and every bounded symmetric
subset @ of SLy(k) containing /d,

n—1

(1) Ep(Q") > EL(Q)V 5.
Moreover,

log R,(Q) > 1 - log Ex(Q) - min{1, log Ex(Q)}
for some constant ¢; > 0. In particular Fy(Q) = 1 iff Rx(Q) = 1.

Proof. We use non-positive curvature of hyperbolic space H?. For v € H? set
L(Q, ) = maxyeqn d(gx, z) and L(Q) = inf, L(Q, z). Fixe > 0 and let 2, € H? be
a point almost minimizing the displacement of Q*, i.e. L(Q*, x;)—e < 1, = L(QF).
Note that r, = 2log E(QF). For each g € Q, both Q*2gx; and Q* 2z, lie in the
intersection of the balls of radius 7 + ¢ centered at x) and at gzy. By the CAT(0)
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inequality for the median, this intersection is contained in the ball of squared
radius (rj, +¢)% — id(gxk, 71)? centered at the midpoint m between , and gry. If
h € Q¥2, then the midpoint between hz;, and hgxy, is hm. Hence, since balls are
convex, hm also lies in that ball centered at m. So r7_, < (r+¢)? — 3d(gy, x1)?,
and thus 1 L(Q)? < (ri+e)?—ri_,. As e was arbitrary, we get L(Q)? < r>—r7_,
and summing over even k, 2 L(Q)? < r3, for all n, hence (1). But by Lemma 2.1 (b),

A(Q?) > A EL(Q™)?, hence Ri(Q) > Ak(QZ”)ﬁ > C%Ek(Q)V % Optimizing in
n, we obtain the desired bound. O

3. HEIGHT, ARITHMETIC SPECTRAL RADIUS AND MINIMAL HEIGHT

For any rational prime p let us fix an algebraic closure @, of the field of p-adic
numbers Q,. We take the standard normalization of the absolute value on Q, (i.e.
Ipl, = %) It admits a unique extension to Q,, which we denote by |- |,. Let Q
be the field of all algebraic numbers and K a number field. Let Vi be the set of
equivalence classes of valuations on K. For v € Vi let K, be the corresponding
completion. For each v € Vg, K, is a finite extension of Q, for some prime p.
We normalize the absolute value on K, to be the uniquelone which extends the

standard absolute value on Q,. Namely |z|, = |Ng,|q, (z)|p* where n, = [K, : Q).
Equivalently K, has n, different embeddings in @, and each of them gives rise to
the same absolute value on K,. We identify K,, the algebraic closure of K, with
Q,- Let V; be the set of finite places and V, the set of infinite places.

Let F' be a finite subset in My(K). For v € Vi, in order not to surcharge
notation, we will use the subscript v instead of K, in the quantities E,(F) =
EKU<F)7 Av(F) = A‘KU(F)7 etc.

Recall that if x € K then its (Weil-) height is by definition (see e.g. [3]) the
following quantity

h(z) = m Z nylog™ |z,

veEVK

It is well defined (i.e. independent of the choice of K 3 x). Let us similarly define
the height of a matrix f € My(K) by

1

W) = > nulog™ [[f]].
[K : @] vEVEK
and the height of a finite set F' of matrices in My(K) by
1
hF) = ny log™ || Fl,
(F) = gy 2 mlog” 1]

vEVEK

where n, = [K, : Q,]. We also define the minimal height of F as:
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2) e(F) = m S nlog” Eu(F)

veEVK

and the arithmetic spectral radius (or normalized height) of F' as:

~

1

F)=——— log™ R, (F
M) = g 2 o )
For any height h, we also set h = ho + hy, where hy, is the infinite part of h (i.e.
the part of the sum over the infinite places of K) and h; is the finite part of & (i.e.
the part of the sum over the finite places of K).

Note that these heights are well defined independently of the number field K
such that F' C My(K). The above terminology is justified by the following facts:

Proposition 3.1. (Basic properties of heights I) For any finite set F' in M3(Q),
we have:

(1) h(F) = limy—.yo0 Lh(F™) = infpey Lh(F™),

(2) ef(F) = ﬁf(F) and e(F) + loge < /ﬁ(F) < e(F') where ¢ is the constant in
Lemma 2.1 (b),

(3) h(F™) =n-h(F) and h(F U{Id}) = h(F).

Proof. This follows directly from Proposition 2.5. O
We also record the following simple observations:

Proposition 3.2. (Basic properties of heights IT) We have, for a finite set F' in

M»(Q),

(1) e(xFz') = e(F) if x € GLy(Q).

(2) e(F") <n-e(F),

(3) If A is an eigenvalue of an element of F, then h(\) < h(F) < e(F),

Proof. This is clear. O
We can also compare ¢(F) and h(F) when h(F) is small:

Proposition 3.3. (Basic properties of heights III) Let ¢; be the constant from
Lemma 2.6, then

hoo(F) > % oo F) - min{1, ea (F)}

for any finite subset F in SLy(Q). In particular e(F) is small as soon as E(F ) is
small.

Proof. From Lemma 2.6, hy(F) > ¢1 - e,(F) - min{1, e,(F)} for every v € Vi. We
may write e (F') = ae™(F)+(1—a)e (F) where e* is the average of the e, greater
than 1 and e~ the average of the e, smaller than 1. Applying Cauchy-Schwartz, we
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have hy(F) > ¢1-(aet+(1—a)(e7)?). If aet (F F) > e (F), the enh ( ) > Feo(F),
and otherwise (1 — a)e™ > “2, hence EU(F) > (1 —a)(e™)? > Le% . At any case

hoo(F) > & - eoo(F) - min{1, ey (F)}. O
4. HEIGHT GAP THEOREM

In this section, we prove Theorem 1.2 fri)m the Introduction. First observe that
according to Propositions 3.3 and 3.1 (2), h(F) is small if and only if e(F') is small.
So we may as well replace h(F) by e(F) in Theorem 1.2. We now assume that
F ={Id, A, B}, with A semisimple. The general case follows from this as we will
show in Lemma 4.7. Since e(F) is invariant under conjugation by any element in
G'Ly(Q), we may assume that A is diagonal, i.e.

© A= (05 ) o= (0 a)

The main part of the argument consists in the following proposition:

Proposition 4.1. (small normalised height implies small height of matrix coor-
dinates) For every 3 > 0 there exists do,n > 0 such that, if F' = {A, B} are as in
(3) and if e(F') < n and deg(\) > dy, then

max{h(ad), h(bc)} <

In order to prove this statement, we are first going to give local estimates at
each place v, then use Bilu’s equidistribution theorem to show that when these
estimates are put together, the error terms give only a negligible contribution to
the height.

Let K be the number field generated by the coefficients of A and B. Let v € Vi
be a place of K. We set s, = log E,(F) and 6 = A — A\~'. We first show the
following local estimate :

Lemma 4.2. (Local estimates) For each v € Vi we have

max{|aly, |d|s, v/]bc|,} < C,e* max{1, |(571|U},

where C, is a constant equal to 1 if v is a finite place and equal to a number
Cs > 1 if v is infinite. Moreover there are absolute constants ¢y > 0 and Cy > 0
such that if v is infinite and s, < g, then

Vo | S

o, IR

Proof. In order not to overburden notation in this proof we set s, to be some
number arbitrarily close but strictly bigger than log F,(F) and we can let it tend
to log E,(F) at the end. If v is infinite, then Q, = C and SL,(C) = KAN
where K = SU,(C), A is the subgroup of diagonal matrices with real positive

max{|ad|,, |bcl,} <1+ Co(y/sy
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entries, and N is the subgroup of unipotent complex upper triangular matrices.
As K leaves the norm invariant, there must exist a matrix P € AN such that
max{||PAP7Y||,||PBP7!|} < e*. Since P € AN, we may write P = ( é ?—1 )
with ¢ > 0 and yy € C. Then we have, setting § = A — A%,

_ A tyd _ a+cyt~t bt? + dyt — ayt — cy?
1 1
(4) PAP " = ( 0 A\l ) , PBP " = < 2, et +d .

If v is finite and K, is the corresponding completion, with ring of integers O,
and uniformizer 7, we have SLy(K,) = K,A,N, where K, = SLy(0,), A, =
{diag(7™, 7~ "),n € Z} and N, is the subgroup of unipotent upper triangular
matrices with coefficients in K,. Hence we also get a P € A,N, satisfying (4)
with y € K, and t = 7" for some n € Z.

We first assume that v is finite. Recall that the operator norm in SLs(K,)
is given by the maximum modulus of each matrix coefficient. Hence we must
have [t~2c|, < e and [tyd|, < e®. It follows that |cyt™!|, < e?*v|67'|, and
hence |al, < max{e®, 628”‘571| }. Similarly, |d|, < max{e®,e*|67"|,}. Hence
lad|, < max{eQS” e**v|67|2}. Moreover ad — bc = 1, hence |be|, < max{1,|ad|,} <
max{e?, et 6712},

Now we assume that v is infinite. Claim: There is ug > 0 such that if 0 < u <
up and || B|| < e, then

(5) max{|a — d|,|b+¢|} < 2vu
(6) max{|a|® + |b]?, |d]* + |c|*} < 1+ 6u + 8/u
(7) max{|al, |b], |c|,|d]} <1+ 3u+4vu <1+ 5yu

To prove this recall that the operator norm in SLs(C) satisfies tr(B*B) =
|a)® + b2 + |¢|? + |d|> = || B||> + ||B|| . Hence |a|>+ ...+ |d|* < 1+ ¢**, hence < 4
if u is small enough (say u < .5). On the other hand, for small u, |a—d|*>+|b+¢|> =
lal? + ...+ ]d]* =2 < €® — 1 < 4u. Hence (5). Now |d| < |a| + 2y/u and since
lal, |b] < 2, we get |d|? < |a]? + 4u + 8y/u and vice versa and similarly for b and c.
Hence (6) and (7) and the claim is proved.

Let now e > 0 and assume that s, < e. From (4) we get |A|2+ X712 + |tyd]?

1 + € hence [tyd]* < €* — 1 < 4e if ¢ is small enough. So [tyd| < 2,/z. Now

since |PBP~!|| < ¢, we have |t720| < 2 as soon as ¢ < 3. Hence [yct™!| < 4\?

and max{|al,|d|} < 1+ 5+ ‘ 5| Finally for some absolute constant C' > 0
lad| <14 C(yE+ ¥ B+ weE)-

On the other hand, |cy?| = |t 2c(ty)?| < |5|2 and |d — al|yt| < 2“1(;'[ + |156‘§ Also
by (5), |bt? + (d — a)yt — cy? + t~2%¢| < 24/, and |bc + [t 2c|?| < 2|bt? + t%¢| <
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4/e+ 4T§|ﬁ+ %, and by (6), |t ~2c|> < 1+144/2, hence up to enlarging the absolute

constant C, we also have |bc| < 1+ C(y/c + “/Tf + 5)-
Without the assumption that s, is small, we can make a coarser estimate:

[t72c2 < 14 e, [tyd]* < 14 e, hence [eyt™!| < L5 and max{al, ||} <

lﬁf;Tsv + V1 + e < 2e* max{1, ITI\} and |ad| < 4e*** max{1, #} Similarly, we

compute [be| < 20e**” max{1, ;z}.

g

We now put together the local information obtained above to bound the heights.
Let n = [K : Q] and V; and Vi the set of finite and infinite places of K. Set &,
Cp and C, the constants obtained in the previous lemma. For A > 0 and x € Q,
we set

1
) VEVo,|z|v > A

where the sum is limited to those v € V, for which |z|, > A. We have:

Lemma 4.3. For some constant Cy (2 < Cy < 2+ (2log C +4)/log 2), we have
for all & € (0, 3) and all ¢ < min{eo, &7}

9)  max{h(ad), h(be)} < C..,e(F) + 600§ +2hp (67 4+ Cy b (67Y)

where 06,51 = (12+ 2logEC’Oo + 2|10€g€1\> and § = A — AL

Proof. If v € V,, and s, > ¢, then according to Lemma 4.2 log™ |ad|, < 2log Cy +
45, 4+ 2log™ |67, hence

1 2log C 1 2
- v'l M dv < (4 — =)= vov T T v'l M 5_1 v
- Z ny-log™ |ad|, < ( + . ) Z NyS +n Z ny-log™ |67

n
VEVoo,8y € VEVoo,80 € VEVoo,80 €

Fix e; < 1. On the other hand, if s, < ¢ < min{eg,e?} and |§|, > &; then
log* |ad|, < Co(y/50 + L + ) < 3(70\6/—1g and, as n, < 2,

9]
JE

1 €
€1

- > n, - log™ |ad|, < 6C;

V€EVo,80<8,[8|v>e1
While if s, < ¢ and [0], < & < 3, then log* |ad|, < Cylog® |67, for some
absolute constant Csy, (2 < Cy <2+ (2log Cy +4)/log 2), hence

1 1 _
- Z n, - log" |ad|, < - Z Cony - logt |67,

VE€Ve0,80 <6, |d]v <e1 VE V0,80 <E,|0]v<e1



HEIGHTS ON SL; AND FREE SUBGROUPS 17

When v € V4, from Lemma 4.2, we get

Z n, - log" |ad|, < Z 4n,s, + Z 2n, - log" |67,

UGVf ’UGVf UEVf
but 2 2 log e 1
- 0g e
- E ny -logt |67, < T—=—— g NSy
n e n
VE€EVoo0,506,|0]v >€1 VEVoo,80 €
Putting together the above estimates, we indeed obtain (9) for ad. The same
computation works for bc. O

It is now time to recall the following result (see also [12] and [25]):

Theorem 4.4. (Bilu’s equidistribution of small points, [2]) Suppose (A,),>1
is a sequence of algebraic numbers (i.e. in Q) such that i()\,) — 0 and deg(),) —
+o00 as n — +oo. Let O()\,) be the Galois orbit of A, in Q. Then we have the
following weak-* convergence of probability measures on C,

1
(10) s Y 0, — df

#O()‘n) 2€0(0\) n—+oo

where df is the normalized Lebesgue measure on the unit circle {z € C, |z| = 1}.
We now draw two consequences of this equidistribution statement :

Lemma 4.5. (bounding errors terms via Bilu’s theorem IlFor every a > ( there is
di,m, > 0 and €1 > 0 with the following property. If A € Q is such that h(\) < 7,

deg(\) > d; then
-1, 1
et (——) <
-1
where hol was defined in (8).
Proof. Let P € Z[X] be the minimal polynomial of X, i.e. P(X) =37, a;X' =

a, Hieo(/\)(X—a:). As P(1) € Z\{0}, log|P(1)| = log |an|+zx60()\) log|1—x| > 0.

S0
1
Z log T < Z log |1 — z| + log |ay|
[1—2|<e1 [1—z|>e1
Recall (see [22] IIL.1.) that h(\) = < (Zmeo(,\) log™ |z| + log |an|) . Hence
1 1 1
11 — log—— < h(A) + — log |1 —
(1) LY s 3 logli-al
[1—z|<e1 [1—z|>e1

Consider the function f;,(2) = 1j._1>¢, log |1 — 2z|. It is locally bounded on C. By
Theorem 4.4, for every £, > 0, there must exist dy,n,; > 0 such that, if h(\) < n,

and deg(\) > dy, then |25 f. (z) — fol fgl(e%i@)d@‘ < 4. On the other hand we
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verify that § +— log |1 — €2™| is in L'(0,1) and fol log |1 — €2™|df = 0. Hence we

can choose €; > 0 small enough so that ‘ fol fel(e%w)dﬁ) < &. Combining these

-1
inequalities with (11) and choosing 7, < %, we get hob ((1 - X)) < a.
U

Combining this with Bilu’s theorem, we get:

Lemma 4.6. (bounding errors terms via Bilu’s theorem I_I) For every a > 0
there exists n, > 0 and A; > 0 such that for any A € Q, if h(A\) < 7, and
d = deg(\) > Ay, then
1
hi(——) <2
f(T—) =2

Proof. We apply the product formula to i = 1 — A, which takes the form h(u) =
h(p=1), hence hy(u™) = hoo(pt) — hoo(p™) + hyp(p). But hp(u) = he(l = A) <
hi(X) < my and heo(p) — heo(p™t) = ﬁ > wev, Mo - log |pl,. Lemma 4.5 shows
that the convergence (10) in Bilu’s theorem not only holds for compactly sup-
ported functions on C, but also for functions with logarithmic singularities at 1.
In particular it holds for the function f(z) = log |1 — z|, which is exactly what we
need, since fol f(e2™)df = 0. Hence m > vev Mo - log |p], becomes small. We
are done. 0

Proof of Proposition 4.1. Since hy(5—=r) < hy(A)+hs(=z) and similarly hZ, (5=

hi () + hi(5z), it follows from the last two lemmas that we can find e; > 0,
n > 0 and dy € N so that 2hf(5_1)+02-h2.¥_ (6 < g as soon as h(A\) < e(F)<n
and deg(\) > dy. Then choose ¢ so the 201\8/_15 < § and finally take 7 even smaller

so that C. .,n < § Now apply Lemma 4.3 and we are done. U

End of the proof of Theorem 1.2: The following lemma allows us, when proving
Theorem 1.2, to assume without loss of generality that F' = {1, A, B}, where A

and B are two semisimple elements in SL,(Q) that do not satisfy some prescribed
finite set of algebraic relations. More precisely:

Lemma 4.7. For every d; € N, there exists N(d;) € N with the following property.
Let F be a finite subset of SLy(Q) containing 1 and generating a non-virtually
solvable subgroup, then there exists A, B € FN() gsuch that A and B are semi-
simple, generate a non-virtually solvable subgroup of SLs, A is not of order at

most dy, and be ¢ {0, —1,¢5,e5" } after we conjugate A and B in the form (3).

Proof. This is a direct application of Lemma 4.8 below applied to ¥ = F x F
in SL2 X SLQ S GL4 with X = X1 U X2 U X3 U X4 where X1 = {(A,B), A or
B has order at most d;}, Xo = {(A, B), tr(A) or tr(B) is 2}, X3 = {(A, B),
A and B generate a virtually solvable subgroup} and X, the Zariski closure of

A=AT

) <
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{(gAg~t,gBg™1'), g € SLy, A diagonal, bc € {0,—1, e e }}. For dimension
reasons X, is a proper subvariety of SLy x SLo, and Prop051t10ns 9.2 and 9.1 show
that so is Xj3. O

Lemma 4.8. (Eskin-Mozes-Oh "Escape from subvarieties", see [13] and
[9]) Let K be a field, d € N. For every m € N, there is N € N such that
if X a K-algebraic subvariety of GL4(K) such that the sum of the degrees of
the geometrically irreducible components of X is at most m, then for any subset
Y C GL4(K) containing Id and generating a subgroup which is not contained in
X(K), we have ¥V ¢ X(K)

Observe that for every dy € N there is 77, > 0 and d; > 0 such that if h()\) < 7,
and A is not a root of 1 of order at most d;, then deg(\) > do. However, recall the

following well known result (which is also a straightforward corollary of Theorem
4.4),

Theorem 4.9. (Zhang’s theorem [32]) There exists an absolute constant ag > 0
such that for any x € Q, we have

h(z) +h(l+z) > ag
unless = € {0, —1, e, 5" }.
Let = < where «p is given by Theorem 4.9. Proposition 4.1 yields dy > 0

and 1 = n(%2) > 0 such that max{h(ad), h(bc)} < /3 as soon as e({/d, A, B}) <7
and deg()\) > dy. By Lemma 4.7, if we have some nice A, B € FN@ If ¢(F) <

%27‘1’)),770}7 then e({Id, A, B}) < min{n,n,} and A is not a root of 1 of order at
most d;. Hence deg(\) > dy and by Proposmon 4.1, h(ad) + h(bc) < 28 = ay.

Then according to Theorem 4.9, bc € {0,—1,e 5 ,€ 5 ), which contradicts our
choice of A, B. So W > (0 is the desired gap.
This ends the proof of Theorem 1.2.

Finally observe that Theorem 1.2 combined with Lemma 3.1 to 3.3 implies :

Proposition 4.10. There exists a constant ¢y > 0 such that if F' is any finite
subset of SLy(Q) generating a non-virtually solvable subgroup, then

e(F) > h(F) > ¢ - e(F)

5. SIMULTANEOUS QUASI-SYMMETRIZATION OVER Q

Here we are going to use our previous height estimates once again to show
the following proposition. Observe that the minimal height e(F') coincides with
the infimum of h(gFg™!) over all adelic points ¢ = (g,),. The lemma we are
about to state essentially means that this infimum is attained (up to additive and
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multiplicative constants) with a conjugating matrix ¢ lying already in SLy(Q)
as opposed to SLy(A) (the adelic group). When a matrix with real entries is
symmetric, then its norm coincides with the modulus of its maximal eigenvalue.
Thus the lemma amounts to conjugating F' simultaneously (i.e. by a single g €

SLy(Q)) in a "quasi-symmetric" position.

Proposition 5.1. (Simultaneous quasi-symmetrization) There is an absolute con-

stant C' > 0 such that if F' is a finite subset of SLy(Q) generating a non-virtually

solvable subgroup, then there is an element g € SLy(Q) such that
h(gFg ™) < C-e(F)+C

Proof. As we may replace F' by a bounded power of it, Lemma 4.7 above allows us
to assume that I’ contains a semisimple element. Let F' = {Id, A, By, ..., B;} with
A semisimple. Conjugating by some g € SLy(Q), we may assume that A is in di-
agonal form and we write each B; in the form (3) with entries a;, b;, ¢;, d;. Changing
F into F? if necessary, we may assume that both b; and ¢; are not zero (otherwise
F would be contained in the group of upper or lower triangular matrices). We may
further conjugate F' by the diagonal matrix diag(t,t'), where t € Q is a root of
t* = ¢1/by, so as to ensure by = ¢;. Then h(By) < h(ay)+h(dy)+2h(b;)+1og2. On
the other hand, since a;d; — byc; = 1, we have b2 = ayd; — 1 and 2h(by) = h(b?) <
h(aidy) + log2 < 2e({A, B}) 4+ log2C4. On the other hand, by Lemma 4.2 ap-
plied to {A, B;} we have max{|a;|,, |di|,} < C,e?** max{1,[6""|,}, for every place
v, where 6 = A — A\~ ! and s, = s,({4, B;}) = log E,({A, B;}). Applying Lemma
4.2 to {A, Ble} we get max{|(BlBi)11|v, |<B1Bi)22|v} S Cv€25” max{l, |5_1|v}
with s, = s,({4, B1B;}) = log E,({A, B1B;}). We compute the matrix entry
(B1B;)11 = aia; + bic;. We get

lcilo = [[(B1Bi)11 — ara)by |y < Cue®™ max{1,[6~"|,} max{1, [b;*[,}

Similarly for |b;|,. Hence,

.....

< C, max, E,({A, By, BlBi})2 -max{1, |5_1|v}max{1, |b1_1|v}

In particular this means that
h(F) < 2logCy + 2¢(F?) + h(d) + h(by)
< Te(F) +41log2C
So we are done. O

Corollary 5.2. There exists a constant Cy,; > 0 such that if F' is as in the

Proposition, then there is an element g € SLy(Q) such that
h(gFg™) < Cys - e(F)
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Proof. 1t is clear from the combination of the previous proposition and Theorem
1.2. U

6. PING-PonNa

Here we state and prove a ping-pong criterion, which gives a sufficient condition
on the finite set F' for it, or a bounded power of it, to contain two free generators
of a free subgroup. Let ki, ko, k3 € N be three positive integers and let k be a
local field of characteristic zero with its standard absolute value. We set C), = 2
if k& is Archimedean and Cj = 1 if k£ is non Archimedean. Let F' C SLy(k) be a
finite set containing 1 such that A,(F*) > Cy||F||x (see Section 2 for notation,
it is important to require a strict inequality here when £ is non Archimedean).
Let A € F™ be such that Ay(A) = Ax(F*). Then of course A is semisimple
and admits two distinct eigenvectors v and v~ in k:g where k, is either & or
some quadratic extension of k. Since we may always replace & by k,, there is no
loss of generality in assuming that v+ and v~ lie in k2. Let d;, be the canonical
(Fubini-Study) projective distance on P*(k), namely dj(u,v) = Lol

— lellellolle

Lemma 6.1. (geometric conditions for ping-pong) Assume that there is B € F*
such that d(Bv,v®") > ||F||.*, and di(vs,v"") > ||F||.* for each ¢,&’ € {+}.
Then A' and BA'B~! play ping-pong on P!(k) and generate a free subgroup of
SLy(k) as soon as | > (ko + 1)(ks + 1).

Proof. Note that Vu,v € PY(k) we have dp(Bu, Bv) < ||B||*di(u,v) for B €
SLy(k). Note also that without loss of generality, we may assume that ||vT||, =
llo=||r = 1. Let A\, A~! be the eigenvalues of A, where we have chosen |\l > 1.
By the assumption on A, |A\| > Cg||F||x > 1. Since the roles of v and v~ are
interchangeable, we may assume that v corresponds to A and v~ to A™'. Let
P € GLy(k) be defined by Pe; = vt and Pe; = v™. Note that |det P| = [[v™ A
v7|| = di(vT,v7). Also [|P|| = 1 if k is non Archimedean, and ||P||? < 2 if k
is Archimedean, so in general ||P||? < Cy. Moreover ||[P7Y| = [|P||/|det Pl <
Ci||F||Fs. Set A’ = P"YAP, B' = P"'BP, F' = P"'FP, then A’ = diag(\,\™").

For u,v € P'(k), di(Pu, Pv) = {pttdl < | det P||| P [2dg(u, v) < Slie),
Hence for i,j € {1,2},

1 1 1

(12) dk(B'ei,ej) Z C—kdk(UJr,Ui)dk(Bpei,Pej) 2 EW
Observe also that || F'|| < ||F|| - ||P||?/|det P| < Cy||F| [+

Let m < 21 be positive integers to be determined shortly below. Let Ut = {z €
Pl(k)7 dk(x’ 61) < |)‘|72l}7 UZ = {ZL’ < Pl(k)7 dk(xa 62) < |)‘|72l}7 ug = {l’ < Pl(k)7
di(z,B'er) < |\™™} and Uy = {z € P (k), dip(z, B'es) < |A|7™}. We need to
show that these four sets are disjoint, and that A" maps (U;)¢ into U, A"~! maps
UN)¢ into Uy, C" = B'A"B'"™! maps (U )¢ into U and C'~! maps (U )¢ into Uy .
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If for instance U NU; # 0, then d(B'e;, e;) < % for some 4, j, which in turn
would contradict (12) since |A|™ > CZ||F||?** as soon as m > 2ks. The same holds
in other situations as soon as m > 2(ks + 1).

Now since A’ is diagonal, A" maps (U )¢ into UL, A"~ maps (U})¢ into U
Finally let us check the last two conditions. If x € (U )¢, then di(z, B'es) > |A|™™
and di(B' 'z, ep)||B'||*> > [A7™. So Bz € (Uy)° as long as |\*~™ > ||B||2.
Then A"B'~lx € U} and di(C'z, B'ey) < ||B'||*/|IA* < |A|7™. And similarly if
z € (UL)".

So the above works as soon as m > 2(ks+1) (so that |\|™ > C2||F|[>*s+1)) and
2l —m > 2ky(kz+1) (so that [A[2=™ > OFF2||F||#kekst2kz > ||FV| |2 > || B/|?). O

Remark 6.2. A similar ping-pong lemma holds with the ping pong players A
and BA'B (instead of BA'B~1) if we assume similar lower bounds on d,(B%°, v*")
for § € {0,£1,+2} and ¢,&’ € {&}. This allows to find the ping pong players in
some I i.e. without having to take inverses of elements of F'.

6.1. Quasi-isometrically embedded free subgroup. A free subgroup H gen-
erated by two free elements a and b in a group I' with finite generating set F
(assumed symmetric) is said to be C-quasi isometrically embedded if for all h € H

1
where dr is the word metric in I" associated to F' and dg the word metric in H
corresponding to the generating set {a*!,b*'}. In the setting of Lemma 6.1 we

have:

Lemma 6.3. (QI embedding of free subgroup) The two elements A' and BA'B~!
generate a free subgroup H which is C'-quasi isometrically embedded in the group
[’ with generating set F' with C' = 2k, + k1l. More precisely,

1

Proof. The inequality on the left hand side is clear as a := A’ and b := BA'B~!
both belong to F. To prove the inequality on the right hand side, observe that
both a and b act on the complement of their repelling neighborhood by trans-
formations that contract distances by a factor at least ﬁ < m This im-
plies that any element h that can be written as h = w(a,b) for some reduced
word w of length n = dy(1,h) in the free group will act on some open sub-

set of P!(k) by contracting distances by a factor at least W, and in particular
k
Lip(h) > ||F||%, where Lip(h) is the bi-Lipschitz constant of h acting on P'(k),

+1
Lip(h) = sup{ (dgg;li/)> |z, € PL(k)}. On the other, one easily checks that for

any g € SLyo(k), Lip(g) < ||gl|%, hence Lip(F™) < [|F||{" for all n and hence
Lip(h) < ||F||idr(1’h) which yields dg(1,h) <4 -dr(1,h) as desired. O
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7. PROOF OF THEOREMS 1.1 AND 1.3 FOR SLy(C)

We first assume that F has coefficients in Q. We explain at the end of this
section why this case implies the general case.

We are going to show that if ' generates a non virtually solvable subgroup
of SLy(K) for some number field K, then for at least one place v € Vi the
conditions of the ping-pong lemma 6.1 are satisfied, with kq, ks and k3 bounded
and independent of K. This will be done by finding an appropriate prime and a
place above it where F' will satisfy the requirements of Lemma 6.1.

Let F be a finite subset of SL;(Q) which generates a non virtually solvable
subgroup and contains 1. According to Lemma 4.7, as one may change F into a
bounded power of itself if necessary, we may assume that I’ contains two semi-
simple elements which generate a non virtually solvable subgroup. Now, from
Corollary 5.2, after possibly conjugating F inside SLy(Q), we may assume that
h(F) < Cys - e(F'), where Cys > 0 is the universal constant given by Corollary 5.2.

The last important ingredient in the proof of Theorem 1.1 is the product formula
on the projective line P1(Q) (see [3]), i.e. V(u,v) € P}(Q)?

1 1
(13) [T do(u,v)mar = T 5

veVEK

where log H(u) = h(u) = ﬁzuev}( Ny log max{|u |y, [usl,} if (ur,us) € K2
represents u € P!(K). This formula is straightforward from the usual product

formula and the definition of the standard distance d,(u,v) = %

Lemma 7.1. (Height of F' controls heights of eigenobjects) Let A € SLy (Q) and
v € P}(Q) an eigendirection of A, then h(v) < 3h(A) + log 2.

Proof. Simply solve for v in Av = Av using Cramer’s rule. O

Let us introduce some notation. Suppose A € SLQ(@ is semisimple with
eigendirections v} and v in P}(Q) and suppose B € SLy(Q). Then, assuming A
and B have coefficients in a number field K, we set for each place v € Vi:

§H(B;A) =log ———
B =8 G B o)
where d, is the standard distance on P'(K,) and K, is the completion of K at
v. Note that as d, < 1, we have 07 (B;A) > 0. If d,(Bv},v;) = 0 we set
6.7 (B; A) = 0. We define similarly 6" (B; A), 6,77 (B; A), and §,"~ (B; A) in the
obvious manner and we set
0,(B; A) = 0,7 (B; A) + 6,7 (B; A) + 0,71 (B; A) + 6,7 (B; A)

For a finite subset F' of SL5(Q), we also define
0u(F) =) 8,(1d; A) + 6,(B; A)
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where the sum runs over all pairs {A, B} of elements of F' with A semisimple and
B in “nice position” with respect to A, namely such that Bv} ¢ {v},v;} and
Buv, ¢ {v},v,}. If this set of pairs is empty we set § to be 0. However, in our
case, it will be non empty if not for F itself then for a bounded power of it (see
Lemma 7.3 below). We also define the corresponding global quantity:

5B A) = ——— 3 n, - 6,(B; A)

and

Proposition 7.2. (Height of F' controls adelic distance between eigenobjects)

With the above notation, for every B € SLy(Q) in nice position with respect to a

semisimple A € SLy(Q) (or for B = Id), we have
d(B; A) < 24h(A) 4+ 4h(B) + 12log 2

In particular for any finite subset F' in SLy(Q)
§(F) < 12|F]*(3h(F) + log 2)

Proof. From the product formula (13) above we have §*~(B; A) = h(Bv})+h(vy).
On the other hand we easily compute h(Bv}) < h(B)+h(v})+log2. From Lemma
7.1, we get 077 (B; A) < h(B) + 6h(A) + 3log 2, hence the desired bounds. O

Note that since we assume that F' generates a non virtually solvable group,
then according to Theorem 1.2, h(F') > e(F') > ¢ for some fixed €. Therefore there
exists a constant D, > 0 such that §(F) < D F|*h(F).

Lemma 7.3. There is an integer ng > 2 such that if F' is a finite subset of
SLs(C) containing 1 and generating a non virtually solvable group, then for any
semisimple A € F there exists B € F™ which is in nice position with respect to

A.

Proof. This is another occurrence of the escape trick described in Lemma 4.8.
The subvarieties X4 = {B € GLy, Bv} € {v}} or Bv, € {v}} are conjugate to
each other in GGL,. In particular there is N as in Lemma 4.8 such that for each
semisimple A in ', FV is not contained in X4(C), as the group generated by
F clearly cannot be contained in any X 4(C) for it would otherwise be virtually
solvable. O

We have for all n € N
§(F™) < Dys - |[F"?> - h(F"™) < Dy - |F|*™ - - h(F)
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We may write with obvious notation

§= Y 0,=0u+0
pe{co}UP
We fix n = ng as in Lemma 7.3 and let D], = D, - no so that 0(F™) <
Dy - |F|*™-h(F) and h(F) < Cy,-e(F). For each p € {oo} UP we set e, = e,(F),
hy, = hy(F) and §, = §,(F"). We now claim:

Claim : There ezists a constant C" > 0 such that for any set F in SLy(Q) con-
taining 1 and generating a non virtually solvable subgroup, there exist p € {oo}UP
and a place v|p such that, max{d,, h,} < C"-|F|* -e, and e, > %. Moreover if
p = 00, we may assume that e, > %e.

We now prove this claim. Suppose first that e,, > %e, then 0o + hoo <
CqS(D;SIFP”O + 1) ey. But

2
€oo S m Z Ny€y

veVy

where V{ = {v € V, e, > %=}. Indeed

1 1 €oo
oo = ————— N, €y + Nyey | < N,€y + —.
(K : Q) Z+ Z, (K : Q) 2 2
veVeo v€Vo veVss
Hence 3yt (8, + hy) < 4C0(DL|FI?M 4 1) - 2, oyt ey So for at least one
v € V3§ we have max{d,, hy} < 0, + hy < 4Cq (DL |F]P0 4+ 1) - e,

Now suppose e, < §, then ey > § > 0 and Y 0, + hy, < 2C,5(D)|F[?" +
1) - > cp€p hence there must be one p € P for which e, > 0 and §, + h, <
2Cqs(Dy,|F|*™ + 1) - e,. As this is an average over the places v|p, as before
there must be some place v|p for which e, > 2 and max{d,, h,} < 6, + h, <

2
4Cs(D/,|F|*™ + 1) - e,. So we have justified the claim.

End of the proof of Theorems 1.3 and 1.1: Let us recapitulate what we have
so far. We started with a set F' in SL;(Q) containing 1 and generating a non
virtually solvable subgroup. We found the constant nyg > 2 as in Lemma 7.3. We
also found a constant C” such that for some prime p and a place v|p such that
max{d,(F), h,(F)} < C"-|F|*™ - ¢,(F), and e,(F) > te,(F) > 0 (with es > £
in case p = 00). Set DY := C" - |F|*".

Suppose first that v € V}. Recall that we had A,(F?) > E,(F)? by Lemma 2.1.

Let Ay € F? be such that A,(Ag) = A, (F?). Then A,(Ag) > E,(F)* > ||F||1],7“L -1

and hence if k; € N is the first even integer strictly larger that D%, we have
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Ay(A) > ||F||, if A = AP/? € FF1. Moreover we have 6,(F™) < D - e,(F),
therefore for every B € F™ which is in nice position with respect to Ay (and
there are such B’s according to Lemma 7.3) we have 6,(Id; Ay) + d,(B; Ag) <

DY. - e,(F). Fix one such B. We have d, (Bvi,v) > Eo(F)P% > ||F||, " and

also d,(v5,vy) > E,(F) P > ||F||_ " for all e,e’ € {£}. Therefore we are in a
position to apply the ping-pong lemma 6.1 to the pair A and B with k; as above
(S ng + 2), ]{?2 =Ny and k?g = D;/;s

Suppose now that v € V. We have E,(F) > exp(5) > exp(5) where ¢ is
the constant from Theorem 1.2. Now Lemma 2.6 shows that there is a constant
ny = ny(e) € N such that E,(F™) > % where ¢ is the constant in Lemma 2.1.

Then by Lemma 2.1 A,(F?™) > 2E,(F™)? > 2E,(F™) > 2E,(F) > 2||F|| 7.
Observe that after possibly changing ny we may assume that it is larger than
2n;. Pick Ag € F? such that A,(Ap) = A,(F?™). Finally if k] is the smallest
integer strictly larger than D', we set A = Agll € F* where k; = 2n,k}. We have
Ay (A) > 2||F||,. Moreover §,(F™) < DY. - e,(F), therefore for every B € F™
which is in nice position with respect to Ay (and there are such B’s according to
Lemma 7.3) we have §,(Id; Ag) +9,(B; Ag) < D%-e,(F). Fix one such B. We have
dy(Bvs,v%) > B,(F)~P% > ||F||;"% and also d,(v5,v%) > E,(F) "% > ||F||,; "
for all e,¢’ € {£}. Therefore we are in a position to apply the ping-pong lemma
6.1 to the pair A and B with k; as above (< 2ny(D% + 1)), ko = no and k3 = D%..

Theorem 1.3 on the quasi-isometric embedding of the free group (in the case
F C SLy(Q)) now follows readily by application of Lemma 6.3. To complete the
proof of Theorem 1.1, it remains to observe that we can reduce to the situation
where F' has three elements {1, a,b} by application of Lemma 4.7. Note that we
cannot do this reduction for Theorem 1.3 because we need there to control the
behaviour of every element of F'.

There are several ways to see that Theorems 1.3 and 1.1 for SLy(Q) imply the
same theorems for SLy(C). One can use the remark made in the introduction
that both results are equivalent to a countable union of assertions expressible in
first order logic. By elimination of quantifiers for algebraically closed fields, we
know that two algebraically closed fields of the same characteristic satisfy the
same statements of first order logic (see e.g. [14] chp. 9). Hence the validity of
Theorems 1.3 and 1.1 over Q is equivalent to its validity over C.

Another way to see it is to invoke Proposition 9.3 below and use the fact that
if V is an algebraic variety defined over Q, then V(Q) is Zariski-dense in V(C).
From Proposition 9.3 and the above proof over Q, we know that W, (Q) C V(Q)
for every n € N, which readily implies that W,,(C) C V(C) for every n € N (W,
is defined in (15), see Section 9 below). And the theorem is proved over C with
the same constant Ng.
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For Theorem 1.1, one could also use a specialization argument as is in [13] for
instance.

8. UNIFORM SPECTRAL GAP IN {2 AND CO-GROWTH OF SUBGROUPS

We prove here Corollaries 1.4 to 1.7. Corollary 1.4 is a direct application of
Corollary 1.5, so we will not say more about it.

Proof of Corollary 1.5. We reproduce the argument given in [29] and [9]. Since
the free group F;, is non amenable, there is a constant £ > 0 such that max{||a -
I =Ffll2, 1o f = flla} = - ||fl|2 for every f € (*(Fy) where a and b are the
two free generators of F,. Then according to Theorem 1.1, there are a and b €
(F U F~1)Mo such that a and b generate a free subgroup H. For f € (*(T') and
Hzx a coset of H, let fy, denote the restriction of f to Hz. Let A (resp. B) be
the subset of H\I" of those cosets such that ||a - fg. — fuzllz > || fazll2 (vesp.
b fre — frallz 2 B[l froll2)- And set fa =3y, cx fro, and f5 =3y cp fHa-
Since ||f]|2 < ||fall? + |I/5]|3 we may assume without loss of generality that

1 £al[3 = || £1[3/2- Hence [la- f = fI3 > lla- fa — fall3 > #2[[ fall3 > 5[ £II3. Since
a € (FUF YN we have

N() NO
||a'f_f||2SZHSIH'Si'f_SIH-Si—I'fH2:Z||5i'f_fH2
=1 i=1

where a = s; - ...- sy, with s; € FUF~!. Finally, for some i we have ||s;- f — f|l2 =
lsit-f— flla> NOL\/QH fll2. Hence we have proved the first assertion of Corollary

1.5 with € = N()N\/i'

To prove the second assertion, let F' and A be as in the statement. Let I' be
the group generated by A and F' and simply apply the above with f the indicator
function of A in ¢*(T).

Proof of Corollary 1.6. Set I' = (F) with F' = {a}"',...,a’'} and as in the

coy Uy

statement and p = 5~ 37, ;. 0a; +0,-1. Then P(S,, = e) = p"(e). But p""o(e) <

||M$||2 < ||u™°||™ where || - || is the norm of the convolution operator. Theorem

1.1 shows that ¢ = aug + (1 — a)v for some probability measure v, where
fip, = 1(04+04-140,+0,-1) and a, b are the free generators in F°, and o = m
It follows that ||p™°|| <1 — a7 if ||ug|| =1 — 7 < 1. Hence the result.

Proof of Corollary 1.7. We keep the notation of the proof of Corollary decay.

One can go from spectral gap to co-growth in a one to one fashion, thanks to the
following formula (see [17], [10], [27])

(14) (2m — 1)+ (2m — 1) = (2m)?,

where 1 = lim,, cyen %logm_1 |[W!| and 6 = lim,, cyen %long |W,|, with W, the set
of paths of length n in the free group Fy, going from the identity to itself and W)
is the set of elements in [y, of length n that kill (a1, ...,ay). Since W), o] >
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[W/||W], we must have |[W,| < (2m — 1)"™? for all n > 1. On the other hand

w(e) = (‘ZVXSL and hence (2m)? < 2m||pN0||Ni0 <2m(1— aT)NLO if [|pp,||=1-7.

Hence (2m)’ < 2m(1 — W)NLO Solving equation (14), we obtain (2m — 1)7 <
2m — 1 — G5 - Hence W)l <(@2m—-1- W)” for n > n(m). We are done.

To see the converse, note that by Proposition 9.2 F' = {ay,...,a,,} C GL4(C)
generates a virtually solvable subgroup if and only if it contains a subgroup of
index < M which can be conjugated in the upper triangular matrices, hence is
of solvable length < d. In particular I' = (F') is a quotient of the free object on
m generators, which we denote by S, in this variety of groups. S is virtually
solvable, hence amenable and by the Kesten’s criterion and (14) must satisfy
(W' > (2m — 1 — €)™ for every € > 0 and all n > n(e). Since every relation in S
is also a relation in I" we are done.

9. LARGE GIRTH

Here we prove Corollaries 1.8 to 1.11. Let K be an algebraically closed field,
Fi the flag variety in K’ (Fs =PYK) if d = 2) and let V}, be the set of k-tuples
(A, ..., Ay) € GLy(K)* such that A = (Ay, ..., Ay) leaves invariant some subset
{uy,...,upr} of M not necessarily distinct points of Fy.

Proposition 9.1. Then V), is a closed subscheme of GLy4(K)* defined over Z.

Proof. We write the proof for k = 2. Consider the map ¢ : GLyxGLgx F} — FaM
which maps (A, B, uy, ..., up) to (Auy, ..., Aups, Bug, ..., Buys, uq, .., upr). For every
permutations o,n € Sy we set Ay, = {(a1, ..., an, b1y ooy bagy ua, oy upg) € FaM
such that a; = u,() and b; = u,; for each i = 1,..., M} and let A the union of
all A,,. Then A is a closed subvariety of 3™ therefore so is Vi = m o0 ¢~ (A),
where 7 is the projection onto the GLy x GGL, factor, which is a closed morphism
since F3M is complete. O

Proposition 9.2. (Zariski closedness of virtually solvable tuples) There is M =
M(d) € N such that a k-tuple A = (A, ..., Ax) in GL4(C) generates a virtually
solvable subgroup if and only if F' € Vi (C).

Proof. The if part is clear. To show the converse observe that by induction on d
we may assume that G acts irreducibly on C?. Since the connected component
Gy is solvable, Borel’s fixed point theorem implies that it fixes a point on F,. Let
U be the unipotent radical of Gg. If U is non trivial it must fix pointwise a non
trivial subspace of C?. As G normalizes U, G also must fix that subspace, which
contradicts the assumption of irreducibility. Hence U is trivial and Gy is a torus.
Therefore G is contained in the normalizer N(Gy) and N(Gy)/Z(Gy) embeds in
the Weyl group of GLy hence has size at most d!. We may thus assume that G
centralizes Gy. As we may again assume that G acts irreducibly, this forces Gy to
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be trivial. Hence we are left with the case when G is finite and we invoke Jordan’s
theorem (see e.g. [11]) to conclude: it gives M € N such that (G : A] < M where
A is an abelian subgroup of GL4(C) made of semisimple elements. Hence A is
contained in a torus .S, which fixes a flag. It follows that G stabilizes the G-orbit
of this flag, which is of cardinality at most M. O

Let us now express the conclusion of Theorem 1.1 in terms of a countable family
of algebraic conditions. Let NV be the integer obtained in the statement of Theorem
1.1 and let By(n) be the ball of radius n in the free group F, on two generators.
For n > 1 let W, be the set of k-tuples A = (A, ..., 4x) € GLy(C)* such that
for any words w; and ws in Bg (V) there exists a word w € By(n)\{1} such that
w(wy (A), we(A)) = 1. Clearly W, is a closed subvariety of GL4(C)*. Hence we
obtain:

Proposition 9.3. (reformulation of main theorem in terms of equality of algebraic
varieties) Theorem 1.1 is equivalent to the statement: Vn > 1 W,, C V.

Remark 9.4. Clearly W,, C W,,41. Also it is clear from Proposition 9.2 that V, C
W, for some ng > 1. Hence Theorem 1.1 is in fact equivalent to W,, = W,,, = Vi
for all n > ng.

For w € Fi\{1} let X, be the word variety X,, = {A € GL4(C)*, w(A) = 1}.
Equivalently X,, = {A € GL4(C)k, Q¥ = 0 for all 4,5 = 1,...,d}, where Q¥ =
P:UJ—(SZ] and {Pfj}j}lgi,jgd is the matrix U](A) with each Pg S C[((Al)”>w7 ceey ((Ak)k:l)kl]
a polynomial in the kd? variables of A = (Ay, ..., A;). Let A be the set of couples
(w1, ws) of words in By(N). Let B, be the set of words w € By(n)\{1} and finally
let C be the set of indices {ij}1<; j<a- For a = (w1,w2) € A, b = w € B, and
c={ij} € C set Qup. to be the polynomial Qfﬂj(

wi,w2)’

Lemma 9.5. (degree and height bounds for word polynomials) For each a € A,
b € B,, and ¢ € C, the polynomial Qup. € Z[((A1)ij)ij,---» ((Ar)r)) has integer
coefficients, has height at most d"" + 1 and degree at most n.V.

Proof. Here the height is understood in the naive sense of maximal modulus of
the coefficients. The proof is an easy induction on n and we omit the details. [J

With this notation, we have W,, = Naeca Upen, Neec{Qap = 0}, which we may
rewrite as

(15) Wa= | Wy

feBgt
where W, ; = Naca Neec {Qa,f(a),c = 0} where f ranges among all maps f: A —
B,.. Let I be the ideal of Z[(A;;):;, (Bri)w| associated to V. Let I, s be the ideal of
QI[(Aij)ij, (Br)w) generated by the @, f(a),c With a € A and ¢ € C. Let I/ be the
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ideal of all polynomials in Q[(A;;)i;, (Bki)w) that vanish on W, ;. Then Hilbert’s
Nullstellensatz asserts that I/ = \/m, and Theorem 1.1 says that [ C I/ for
every n and f € B2 Let f1, ..., f, be generators of I with integer coefficients. The
following effective version of the Nullstellensatz may be found in [26]:

Theorem 9.6. (Effective arithmetic nullstellensatz [26]) Let r,d € N, A > 0
and f,qi, ..., ¢ be polynomials in Z[X1, ..., X,] with logarithmic height at most h
and degree at most d. Assume that f vanishes at all common zeros (if any) of
¢, qr in C[X1, ..., X;]. Then there exist a,e € N and polynomials by, ..., by €
Z[ X, ..., X,] such that

n

afe = b1q1 + ...+ bqu
with e < (8d)%", the total degree of each b; at most (8d)%"** and the logarithmic
height of each b; as well as a is at most (8d)%" *'(h + 8dlog(8d)).

Here, the logarithmic height is the log of the naive height used above. We
can now finish the proof of Corollary 1.8. In our situation, Theorem 9.6 yields
numbers a; € N and polynomials b ac € Z[(Aij)ij; (Br)wi] with logarithmic height

2
h, = Od(and +2) as well as numbers e; € N such that for each i = 1,...,m

(16) aiff =Y b Qasane

a€A,ceC

It follows that if p > exp(h,,) is a rational prime, then for any field K of charac-
teristic p, and any A € G Lq(K)F, if for any words wy, ws in By(N) there is a word
w € By(n)\{1} such that w(w;(A), ws(A)) =1, then f;(A) =0foralli=1,...,m.
Since the f; generate I, according to Proposition 9.1, this means that there must
be a set {uy, ..., upr} in Fy(K) of at most M points (K is an algebraic closure of
K) which is fixed by A. In particular the group I' generated by A contains the
solvable subgroup I'y = {v € ', v-u; = u1} as a subgroup of index < M. Therefore

Corollary 1.8 holds as soon as p > exp(h,,), i.e. for all n < Od(logp)szﬂﬂ. This
ends the proof of Corollary 1.8 with e.g. g9 = 271 for k = d = 2.

Observe that in the above proof we may have replaced VW, by the larger sub-
variety W/ equal to the subset of k-tuples A = (Aj, ..., Ax) € GLy(C)* such that
for any words wy and ws in Bg (V) there exists a word w € By(n)\{1} such that
w(w;i(A), we(A)) = 1 or there are words w € By(n)\{1} and wy € By(554(w))
such that w(w;(A), we(A)) = we(A). The bounds on the height and degree of the
polynomials defining W/ are of the same magnitude as those of W, hence the
same conclusion holds, namely:

Corollary 9.7. (QI embedded subgroup of large girth) Given d, k > 2,
there is N, M € N and ¢y, C > 0 such that for every prime p and every field K
of characteristic p and any finite subset F' with k£ elements generating a subgroup
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G of GL4(K) which contains no solvable subgroup of index at most M, then F¥
contains two elements a, b such that w(a,b) # 1 in GL4(K) generating a subgroup
H with Cayley graph Gy such that girth(Gy) > f(p) and

(17) é-dg(l,h) < dy(1,h) < C - do(1,h)

for any h with dg(1,h) < f(p), where f(p) = (log p)?°. Note that C' depends on d
only.

Proof of Corollary 1.9. This follows directly from Corollary 9.7 and the following
Proposition:

Proposition 9.8. (QI embedded subgroup of large girth implies uniform expan-
sion on small sets) Suppose G is a k-generated group with Cayley graph G and
word metric dg and H is a finitely generated subgroup with Cayley graph Gy and
word metric dy. Assume further that girth(Gg) > N and that (17) holds for all
h such that d(1,h) < N. Let p be the uniform symmetric probability measure on
the generators of G. Then there exist an explicit constant 8 = S(k,C) > 0 such
that

[ fll2 < (1= B[]z
for any function f supported on a ball of radius < N/2C' in Gg.

Note that the uniform QIl-embedding of H in G is used in a key way in the
proof. This Proposition also yields in a standard way the following corollary.

Corollary 9.9. In the setting of the Proposition, there is 5§ = 5(C,k) > 0 and
a = «a(C, k) > 0 such that u*"(e) < (1 — )" for all n < N/2C. Moreover for any

subset A of G lying in a ball of radius < N/2C, there is a generator s such that
|sAAN Al > alAl

Proof of Proposition 9.8. Let Bg(N) be the ball of radius N in G centered at
1. Pick representatives rep = {T € Bg(N)} for right cosets of H : H - Bg(N) =
UzerepdT and then split f as a sum of mutually orthogonal terms

f= Z fe(-T7h)
xerep
where f; : H — R send h to f(h7). We have ||f|35 = 3., |Ifsll34. Let S =
By (1) the generating set for H. We know from the corresponding spectral gap
estimate on the free group that for every g : H — R such that Supp(g) C By (N)
there exists s € S such that ||s- g — g|lo.g > 7||g||2,z where 7 > 0 is an absolute
constant (independent of the rank of the free group). But if fz(h) # 0 then
hT € Supp(f) C Ba(N/2C), hence by (17), h € Bu(N), so Supp(fz) C Bu(N).
Hence there is sz € S such that |[sz - fz — fzlle.x > 7||fzll2,n. We get:

Dollsf=Flhe= D D ls-fo=follam =7 11fl30

seS TErep s€S
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Now since dg(1,s) < C for each s € S by (17), we get:

2
i
Is-f = fll2c > EHf”%,G

note that |S| < |Bg(C)| < (2k)°. From there it is straightforward to derive the

bound:
7—2
1+\/(1—W>] A1 fl]2-

Proof of Corollary 1.10. Applying Lemma 4.7, we may assume that Card(F') =
2. If F = {A, B} does not satisfy the conclusion of the corollary for N as in The-
orem 1.1, then for arbitrarily small 6 > 0 there is a map f : A — B, where
n =n(8) < (logd )% (with £; an absolute constant to be determined below) such
that d(f(a),1) < 0 for all a € A. This means that for some C; > 0 (depending on
the choice of the Riemannian metric d), we have Va € AVc € C, |Qa, f(a).| < C1-96.
Applying Theorem 9.6 we get (16) as above. Moreover the logarithmic height of

1
o flle < 5

. 2 .
the polynomials 0% , . is at most Oa(n®**"?), hence evaluated on F' = {A, B}, U, e

2 2 2
is Ogr(n®" "), and hence also f& = Opq(d - exp(n® ). As e; = O(n®"), we
see f; is arbitrarily small when § — 0 as soon as we take for instance g; = 2-2%+3),
It follows that (A, B) € V. A contradiction.

Proof of Corollary 1.11. With the notation of Corollary 1.7, define 7(m) > 0 by
(2m—1--%)

T = e~™™) and let 7 = 7(2). By contradiction, suppose Corollary 1.11
does not hold for (a,b) € GL4(C). Then for arbitrarily small §, there is n = n(d) <
(log 6~1) for which one can find at least 3"e~™" reduced words w of length n such
that d(w,1) < §. Let Z be the set of all subsets of cardinality 3"~ of reduced
words of length n. For I € Z, let V; the subvariety of GL4(C)? where all words in
I vanish simultaneously. Then Corollary 1.7 can be reformulated as the statement
Vi C V for every n > n(2) and every I € Z. As above the effective Nullstellensatz
applies and gives coefficients a; € Z\{0}, polynomials b¥ with coefficients in Z,

Taw,zig
2 2
of degree and logarithmic height O(n?*" ™) and integers e; = O(n?*"") such that
afit = Z bl;,w,ing
wel, {ij}eC

It follows that f* = O(6 - eXp(n22d2+2)), which again implies that f, is arbitrarily
small as § — 0 if e; = 27273 say. Hence (a,b) € V,, a contradiction. Q.E.D.
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