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Abstract

We study nilpotent groups acting faithfully on complex algebraic varieties. We use a method of base change.
For finite p-groups, we go from k, a number field, to a finite field in order to use counting lemmas. We show
that a finite p-group of polynomial automorphisms of kd is isomorphic to a subgroup of GLd(k). For infinite
groups, we go from C to Zp and use p-adic analytic tools and the theory of p-adic Lie groups. We show that a
finitely generated nilpotent group H acting faithfully on a complex quasiprojective variety X of dimension d can
be embedded into a p-adic Lie group acting faithfully and analytically on Zdp; we deduce that d is larger than
the virtual derived length of H.
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1 Introduction

1.1 Minkowski’s bound for polynomial automorphisms.
Finite subgroups of GLd(C) or of GLd(k) for k a number field have been studied extensively. For instance,
the Burnside-Schur Theorem (see [Bur11] and [SBR11]) says that a torsion subgroup of GLd(C) is finite if it is
of bounded exponent or finitely generated. The Jordan-Schur Theorem (see [Jor77] and [SBR11]) shows that
any torsion subgroup of GLd(C) admits a normal abelian subgroup of index ≤ F (d) for some F (d) ∈ Z+.
In particular, infinite finitely generated torsion groups do not have a faithful linear representation in finite
dimension. See [CR66] for a general reference for finite groups and especially §36 for reference for the results of
Burnside, Jordan and Schur.

Another interesting question is finding bounds on the order of finite subgroups of GLd(k) for k a number
field.

Rational numbers.– Let p be a prime. A finite p-group is a group of size pα for some integer α ≥ 0. For
d ∈ Z+, define MQ(d, p) to be the integer

MQ(d, p) =

⌊
d

p− 1

⌋
+

⌊
d

p(p− 1)

⌋
+

⌊
d

p2(p− 1)

⌋
+ · · ·

(Here M stands for Minkowski). Let vp be the p-adic valuation; then MQ(d, p) =
⌊

d
p−1

⌋
+ vp

(⌊
d
p−1

⌋
!
)
.

Theorem 1.1 (Minkowski 1887, see [Ser07]). Let d be a natural number and let p be a prime. If G is a finite
p-subgroup of GLd(Q), then vp(|G|) ≤ MQ(d, p), and this upper bound is optimal: there are groups of order
pMQ(d,p) in GLd(Q).
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Number fields.– Schur extended Minkowski’s result to the case of number fields. To state Schur’s result,
let us introduce some notation for cyclotomic extensions. Consider a number field k and fix an algebraic closure
k of k. Denote by za ∈ k any primitive a-th root of unity, for a any positive integer; for instance z4 = i, a square
root of −1.

• If p ≥ 3, set t(k; p) = [k(zp) : k] and let m(k; p) be the maximal integer a such that k(zp) contains zpa ;
note that m(k; p) is finite because k is a finite extension of Q. Then, define

Mk(d, p) := m(k; p) ·
⌊

d

t(k; p)

⌋
+

⌊
d

p · t(k; p)

⌋
+

⌊
d

p2t(k; p)

⌋
+ · · · .

• If p = 2, set t(k; 2) = [k(z4) : k] and let m(k; 2) be the largest integer a such that z2a ∈ k(z4). Define

Mk(d, 2) = d+ (m(k; 2)− 1)

⌊
d

t(k; 2)

⌋
+

⌊
d

2t(k; 2)

⌋
+

⌊
d

4t(k; 2)

⌋
+ · · · .

This definition is consistent with the definition of MQ(d, p) given above.

Theorem 1.2 ([Sch05], [Ser07]). Let d be a natural number, and let p be a prime. If G is a finite p-subgroup of
GLd(k) then vp(|G|) ≤Mk(d, p) and this bound is optimal.

It is not difficult to find a subgroup G ⊂ GLd(k) such that |G| = pM(d,p). We recall how to do so in
Proposition 2.17.

Polynomial automorphisms.– Let Aut(Ad
k) be the group of polynomial automorphisms of the affine

space Ad, over k. The group GLd(k) embeds naturally into Aut(Ad
k). When d = 1, we get the group of affine

transformations. When d ≥ 2, the group Aut(Ad
k) is of infinite dimension and the degree of the formulas are not

bounded anymore. When the dimension d grows, the group becomes more complicated as the sequence of groups
(Aut(Ad

k))d is increasing. When d = 2, we know the structure of the group; Jung’s Theorem (see [Jun42]) states
that it is a free amalgated product of the subgroup of affine transformations and of elementary ones. When
d ≥ 3 the structure is more complicated to describe. See [SU04] for the case d = 3. See [vdE12] for a general
reference on polynomial automorphisms of the affine space.

Surprisingly, even though the groups are much more complicated we are able to show that the Minkowski-
Schur bound still holds for subgroups of Aut(Ad

k) and in fact the same finite subgroups appear.

Theorem A. Let k be a number field, let d a natural number, and let p ≥ 3 be a prime. If G is a finite
p-subgroup of Aut(Ad

k), then there exists a group embedding G ↪→ GLd(k). In particular, Schur’s bound still
holds:

vp(|G|) ≤Mk(d, p),

and this bound is optimal.

The proof first shows the bound on the cardinal of the group G and we then find the group embedding
G ↪→ GLd(k) using a Sylow argument.

Remark 1.3. The case p = 2 is also dealt with in Section 2. But we don’t get an optimal bound. For example
for p = 2 and k = Q, we show that any 2-subgroup G of Aut(Ad

Q) can be embedded into GLd(Q(z4)) and
therefore satisfies v2(|G|) ≤ MQ(d, 2) +

⌊
d
2

⌋
. More precisely, Proposition 2.10 defines three cases (a), (b) and

(c) when p = 2. We get an embedding into GLd(k) in case (a) and (b) (this is the case for example if k
contains z4), but in case (c) we can only get an embedding of G into GLd(k(z4)) and therefore we get the bound
v2(|G|) ≤Mk(d, 2) +

⌊
d
2

⌋
= Mk(z4)(d, 2). See Theorem C page 9 for the general statement.

In fact, Theorem A still holds when k is a finitely generated field over Q but the proof is less intuitive so
we will show the proof for k a number field and explain how to extend it to finitely generated field over Q in
Remark 2.16. We then state the complete theorem for finitely generated fields over Q in Theorem D page 10.

Our method of proof follows [Ser07], in which Serre bounds the order of the finite subgroups of H(k), for H
a semi-simple algebraic group; the phenomenon mentioned in Remark 1.3 also appears for such groups H. The
general idea is to embed G into a group of linear automorphisms over a finite field, study the finite field case,
and use cyclotomic characters to find the optimal bound yield by this method.

Birational transformations.– The problem of the existence of uniform bounds on the size of finite p-
groups or finite simple groups in infinite dimensional groups such as Aut(Ad) or Bir(Ad) has been studied
extensively during the last decade (see [Ser09]). For an arbitrary complex projective variety X, one cannot
expect uniform bounds that would only depend on the dimension of X, since every finite group is the group of
automorphisms of a complex projective curve (see [Gre60]). But precise results have been obtained when X is
rationally connected. Recently, Jinsong Xu showed the following optimal result: Let d be a natural number and
let p be a prime > d+1. If X is a rationally connected variety of dimension d over an algebraically closed field of
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characteristic 0, and G is a finite p-subgroup of Bir(X), then G is abelian and its rank is at most d (see [Xu20]).
Results of this type were first shown by Prokhorov, Shramov and Birkar in [PS14] for birational transformations
of any varieties and improvements were made for rationally connected varieties in [PS16].

These results are deeper than our Theorem A, but our contribution has a few advantages: it may serve as
an introduction to the work of Prokhorov and Shramov, the techniques are more elementary, the precise bound
we obtain illustrates the interplay between the arithmetic of the field k and the size of the group, and the proof
shows why the upper bound of Minkowski and Schur is still valid in Aut(Ad

k).

Remark 1.4. The results of Prokhorov and Shramov rely on the BAB conjecture, which was proved by Birkar
in [Bir21]. The result of J. Xu relies on the work of Haution on equivariant cohomology and fixed points of finite
groups (see [Hau19]).

1.2 A bound for the action of finitely generated nilpotent groups
1.2.1 Nilpotent and solvable groups

Let H be a group. If a, b ∈ H, we denote by [a, b] := aba−1b−1 their commutator. If H1, H2 are two subgroups
of H, then we denote by H1H2 the subgroup generated by the set {h1h2 : h1 ∈ H1, h2 ∈ H2} and by [H1, H2] the
subgroup generated by the set {[h1, h2] : h1 ∈ H1, h2 ∈ H2}. The lower central (resp. derived) series is defined
by D0(H) = H (resp. D0(H) = H) and Di+1(H) = [H,Di(H)] (resp. Di+1(H) = [Di(H), Di(H)]). A group H
is nilpotent (resp. solvable) when there exists an integer k such that Dk(H) = 1 (resp. Dk(H) = 1).

If H is nilpotent, its nilpotency class nilp(H) is the lowest integer such that Dk(H) = 1. For a solvable group
H, denote by dl(H) its derived length, that is the least integer k such that Dk(H) = 1. The virtual derived
length is the minimum of dl(H0) over finite index subgroups H0 of H. Similar definitions and notation will be
used for Lie algebras.

1.2.2 Upper bounds on the virtual derived length

Finite p-groups are nilpotent. We now look at infinite, finitely generated nilpotent groups, and their actions
by automorphisms and birational transformations. In [CX18], Cantat and Xie used p-adic analysis to give
information on group actions on complex algebraic varieties by birational transformations, and sketched the
proof of the following result.

Theorem B. Let H be a finitely generated nilpotent group acting faithfully on a quasi-projective variety X by
algebraic automorphisms over a field of characteristic zero. Then,

vdl(H) ≤ dimX

where vdl(H) is the virtual derived length of H. Furthermore, this bound is optimal.

Another goal of this paper is to give a complete proof of this result. Again, the main idea is to replace the
initial field of definition by another one, here Qp, and in fact by Zp, for a suitable prime p. Then, the initial
action of the discrete group H will be extended to an analytic action of a p-adic Lie group over ZdimX

p , so that
tools from p-adic analysis will be available, in particular p-adic analytic vector fields and p-adic Lie algebras.
Thus, Theorem B will follow from a similar theorem we prove over Zp. Section 3 is dedicated to the construction
of p-adic analytic tools needed for the proof of Theorem B such as infinite dimensional p-adic Lie groups or
Tate-analytic diffeomorphisms and Section 4 is dedicated to the proof of Theorem B.

2 Finite p-groups

2.1 Preliminaries
Primes and p-adic numbers In the rest of the article, p is a prime unless mentioned otherwise, Zp denote
the ring of p-adic integers and Qp is the fraction field of Zp. Recall that Dirichlet’s theorem states for any
integers a, n such that gcd(a, n) = 1, there is an infinite amount of prime numbers ` such that ` = a mod n.

Maximal ideals and reduction If q is a power of a prime, we denote by Fq the field with q elements.
Let A be a finitely generated Z-algebra. Then for every maximal ideal m ⊂ A, A/m is a finite field. This comes
from the Nullstellensatz for Jacobson rings which is proven in [Bou07a], chapter 5, §3, theorem 3 of section 4.
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2.2 Groups of linear transformations over Q

To warm up, let us prove the theorem of Minkowski. For a ring A, we denote by A× its subgroup of invertible
elements; for any prime p the group (Z/p2Z)× is cyclic.
Proposition 2.1. Let G be a finite subgroup of GLd(Q). For any prime ` large enough there exists an injective
homomorphism G ↪→ GLd(F`).

Proof. Since G is finite, there exists an integer N such that G ⊂ GLd(Z[1/N ]). Now, for each g ∈ G \ {id}
denote by l(g) the largest prime factor that appears in the prime decomposition of the rational numbers given
by the coefficients of the matrix g − id; denote by L the maximum of the primes l(g). If ` > max(N,L), the
homomorphism of reduction modulo l is defined on G and is injective.

Thus, if G ⊂ GLd(Q) is a finite subgroup, vp(|G|) ≤ vp(|GLd(F`)|) for any ` given by Proposition 2.1. We
know that

|GLd(F`)| = `d(d−1)/2
d−1∏
i=1

(
`i − 1

)
. (1)

for any prime `. Let us compute the p-adic valuation of such a product.
Lemma 2.2. Suppose p 6= 2 and let ` be a generator of (Z/p2Z)×.

1. If p divides `i − 1 then p− 1 divides i;
2. If p− 1 divides i then vp(`i − 1) = 1 + vp(i).

Proof. Suppose p divides `i−1. Note that `ip−1 = (`i−1)
∑p−1
j=0 `

ij ; since `i ≡ 1 mod p, we have
∑p−1
j=0 `

ij ≡ 0

mod p, and then `ip ≡ 1 mod p2. Since ` is of order p(p − 1) in (Z/p2Z)×, we have that p(p − 1) divides ip
therefore, p− 1 divides i, which proves the first assertion.

We prove assertion 2 by induction on vp(i). To initialize the induction assume vp(i) = 0. Then p and therefore
p(p− 1) do not divide i; thus `i 6≡ 1 mod p2 because ` is of order p(p− 1). Thus, vp(`i − 1) = 1. Now suppose
the assertion true for vp(i) = k with k ≥ 0 and suppose vp(i) = k + 1. Write i = (p − 1)pk+1m with m not
divisible by p and suppose the result true for vp(i) = k. Let s := `(p−1)m, then

`i − 1 = sp
k+1

− 1 = (sp
k

− 1)

p−1∑
j=0

sjp
k

.

By induction, sp
k

is of the form sp
k

= 1 + upk+1 where u is an integer not divisible by p. Therefore, for all
1 ≤ j ≤ p− 1, sjp

k

= 1 + jpk+1u+ vjp
2 where vj is some integer. , therefore we can write

p−1∑
j=0

sjp
k

= p+ pk+1 p(p− 1)

2
u+ p2V = p

(
1 + pk+1 p− 1

2
u+ pV

)
where V =

∑
vj . Since p is odd, p−1

2
is an integer and this sum has p-adic valuation 1 since k + 1 ≥ 1.

sp
k+1

− 1 = (sp
k

− 1) · p

(
1 + pk

p−1∑
j=0

uj

)

since k ≥ 1, we get vp(sp
k+1

− 1) = 1 + vp(s
k − 1) = 1 + (k + 1).

Equation (1) and Lemma 2.2 provide the following corollary.
Corollary 2.3. Let d be an integer, let p be an odd prime, and let ` be a prime whose image in (Z/p2Z)× is a
generator. Then

vp(GLd(F`)) = MQ(d, p).

This proves also the fact that Theorem 1.1 "is optimal for GLd(F`)" by Sylow.
To prove Theorem 1.1, consider a finite group G ⊂ GLd(Q), then apply Dirichlet’s theorem and Proposition

2.1 to embed G in GLd(F`) for some prime generator ` of (Z/p2Z)∗. The corollary gives the desired upper
bound.
Remark 2.4. The case p = 2 is also treated by Minkowski and in fact the same bound applies. However the
proof is slightly different as it is required to embed G into an orthogonal group over a finite field. Indeed, If ` is
an odd prime then the best bound one can get is v2(GLd(Fl)) ≤ M(d, 2) + bd/2c with equality with the right
choice of ` (see Proposition 2.13). To embed a finite group H of matrices over Q into an orthogonal group over
a finite field, one just need to look at the positive definite bilinear form ψ :=

∑
h∈H

tHH. For any prime ` large
enough such that ` does not divide detψ, the group homomorphism of reduction mod ` induces an embedding of
H into an orthogonal group over Fl, however this process does not generalize well when looking at polynomial
automorphisms (See Remark 2.18).
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2.3 The Minkowski’s bound for finite groups of polynomial automorphisms
with rational coefficients
To prove Theorem A, we adapt the proof of the Minkowski bound for linear automorphisms. Actually, to
conclude it suffices to show that Proposition 2.1 also holds for finite p-subgroups of polynomial automorphisms.

Proposition 2.5. Let d be an integer. Let G be a finite p-subgroup of Aut(Ad
Q). Then, there exists a prime `

such that

1. ` is a generator of (Z/p2Z)×

2. There is an injective homomorphism G ↪→ GLd(F`)

Lemma 2.6. Let d be an integer and p a prime. Let F be a finite field with char(F ) 6= p. Let G be a finite
subgroup of Aut(Ad

F ) of order pα. Then G has a fixed point x0 ∈ Ad(F ) = F d and the homomorphism

Φ : G −→ GLd(F )
g 7−→ Dx0g

is injective.

Proof. The group G acts on F d which is of size |F |d. Since |G| = pα and p does not divide |F |, the class
equations gives the existence of at least one trivial G-orbit in F d; hence, the existence of a fixed point x0 ∈ F d.

Up to a translation we can suppose that x0 = 0. Now to show the injectivity of Φ. Take g in G such that
D0g = id, then

g(x1, · · · , xd) = g(x) = id +
∑
j≥2

Aj(x)

where Aj is the homogeneous part of g of degree j. Suppose that g 6= id, let j0 be the lowest index j ≥ 2 such
that Aj 6= 0. We rewrite g as g = id +Aj0 +B where B =

∑
j>j0

Aj and compute the second iterate

g2(x) = g(x) +Aj0(g(x)) +B(g(x))

= id +Aj0(x) +B(x) +Aj0(x +Aj0(x) +B(x)) +B(g(x))

= id +2Aj0(x) + (terms of higher degree).

And for every k ≥ 1 we obtain

gk(x) = id +kAj0(x) + (terms of higher degree).

Since, g is of order pt for a certain t > 0, replacing k by pt in this formula we get ptAj0(x) = 0, a contradiction
since charF 6= p.

Remark 2.7. If F is of characteristic 0 and x0 is fixed by G, then the proof shows also that Φ : g 7→ Dx0g is
injective.

Proof of Theorem A when k = Q. As in the linear case, we can find an integer N such that G ⊂ Aut(Ad
Z[1/N ]).

So, for ` > N prime , reduction modulo ` is well defined on G. Now, for ` large enough such that ` does not
divide any coefficient of g − id for all g ∈ G ⊂ Aut(Ad

Z[1/N ]), this homomorphism is injective and we can use
Dirichlet’s theorem to ensure that ` is a generator of (Z/p2Z)×. G is now embedded in Aut(Ad

F`
) and we replace

it by its image in Aut(Ad
F`

). By Lemma 2.6, there is a point x0 ∈ Fd` fixed by G and we have an injective
homomorphism Φ : G ↪→ GLd(F`). This concludes the proof when p 6= 2.

2.4 Extension of Minkoswski’s bound to number fields
Strategy.– This part is dedicated to the proof of Schur’s bound for finite p-groups of polynomial automor-
phisms over arbitrary number fields. We will then prove Theorem A using a Sylow argument. As in the previous
section, we want to show the

Theorem 2.8. Let k be a number field, d an integer and p be an odd prime. Let G be a finite p-subgroup of
Autk(Ad), then there exists a finite field F with charF 6= p and an injective group homomorphism G ↪→ GLd(F)
such that vp(|GLd(F)|) ≤Mk(d, p).

Indeed, this would prove that vp(|G|) ≤ vp(|GLd(F)|) ≤ Mk(d, p). The natural idea is to do an analog of
the proof for k = Q. Replace Z by the ring of integers L := Ok of k, then for any maximal ideal m of L lying
over a sufficiently large prime, there is an injective homomorphism G ↪→ Aut(Ad

L/m). By taking differentials at
a fixed point over L/m we would see G as a subgroup of GLd(L/m) and the order of GLd(L/m) would give a
bound vp(|G|) ≤

∑d
i=1 vp(|L/m|

i−1). The remaining part is to choose m wisely so that we get the lowest bound
possible. To do this, we use cyclotomic characters.
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Cyclotomic characters.– In this part, k is a finitely generated field over Q. We denote by µn the group
of n-th roots of unity in k. Recall that Aut(µn) = (Z/nZ)× because every automorphism φ is of the form
φ(ω) = ωa where a ∈ (Z/nZ)×.

Definition 2.9 (Cyclotomic character). Denote by Γk = Gal(k/k) the absolute Galois group of k. For every
n ≥ 1,Γk preserves the group µn ⊂ k

×
of n-th roots of unity, this induces a group homomorphism

χn : Γk → Aut(µn) = (Z/nZ)×

called the n-th cyclotomic character of k. In particular, if p is a prime number, since the inclusion µpn ⊂ µpn+1

induces a group homomorphism Aut(µpn+1) = (Z/pn+1Z)× → Aut(µpn) = (Z/pnZ)×, we have a compatible
family of homomorphisms

χpn : Γk → Aut(µpn).

This family of homomorphisms induces the p∞-cyclotomic character

χp∞ : Γk → Z×p = lim
←−

(Z/pnZ)×

where Zp is the ring of p-adic integers. This homomorphism is continuous with respect to the profinite topologies
on Γk and Z×p .

We are interested in the image of χp∞ which is a closed subgroup of Z×p . Define t(k; p) and m(k; p) as in
Section 1.1. The number m(k; p) is always finite if k is finitely generated over Q (see [Ser07], §4.3). If s is an
integer, we denote by Cs the cyclic group of order s.

Proposition 2.10 ([Ser07], §4).
1. If p is an odd prime, one has

Z×p ' Cp−1 × (1 + p · Zp).
The group 1 + p ·Zp is a procyclic subgroup generated by 1 + p as a topological group and isomorphic to the
additive group Zp. Its closed subgroups are the groups 1 + pjZp with j ≥ 1.
Furthermore, one has

Imχp∞ = Ct(k;p) ×
{

1 + pm(k;p) · Zp
}
.

2. If p = 2, then Z×2 = C2 × {1 + 4 · Z2}. There are 3 possibilities for Imχ2∞ :

(a) Imχ2∞ = 1 + 2m(k;p) · Z2 and then t(k; p) = 1.
(b) Imχ2∞ = 〈−1+2m(k;p)−1〉 (the closure of the group generated by −1+2m(k;p)−1) and then t(k; p) = 2.

(c) Imχ2∞ = C2 ×
{

1 + 2m(k;p)Z2

}
and then t(k; p) = 2.

Remark 2.11. Those 3 cases are distinct when m(k, p) 6= ∞. We will refer as k being in case (a), (b), or (c)
when Imχ2∞ is of the form (a),(b) or (c) of Proposition 2.10.

Recall that an integral domain L is normal if every localisation at a prime ideal of L is integrally closed. Let
L be a normal domain that is finitely generated over Z such that the fraction field of L is k. For any maximal
ideal m ⊂ L, the quotient L/m is finite by the Nullstellensatz for Jacobson rings and N(m) := |L/m| is the norm
of m. Recall that for a ring R, SpecR denotes the set of prime ideals of R and SpecmaxR the set of its maximal
ideals both with the Zariski topology. The following theorem is proven in [Ser07, §6 Theorem 7].

Theorem 2.12. Let L be a normal domain finitely generated over Z such that the fraction field of L is k. Let
n be an integer and c an element of (Z/nZ)×. Denote by Xc the set of elements x ∈ Specmax(L) such that
N(x) ≡ c mod n. Then:

1. If c 6∈ Imχn, Xc = ∅.
2. If c ∈ Imχn, then Xc is Zariski-dense in Specmax(L). In particular, Xc is infinite.

In particular, the ring of integers of a number field is normal because it is integrally closed and this property
is stable under localisation. So Theorem 2.12 holds for L the ring of integers of a number field.

Valuations.– We define the constant

M ′k(d, p) = inf
u∈Imχp∞

d∑
i=1

vp(u
i − 1).

The next proposition is adapted from Proposition 4, §6 of [Ser07] to our context.

Proposition 2.13. One has
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(a) If p 6= 2 or if p = 2 and t(k; p) = 1 (k is in case (a)), then

M ′k(d, p) =

d∑
i=1

t(k;p)|i

(m(k; p) + vp(i)) = Mk(d, p).

(b) If p = 2, t(k; p) = 2 and k is in case (b), one has

M ′k(d, 2) = r1 + (m(k; p)− 1)r0 +

d∑
i=1

v2(i) = Mk(d, 2)

where r1 is the number of odd integers between 1 and d and r0 the number of even integers in this range.

(c) If p = 2, t(k; p) = 2 and k is in case(c), one has

M ′k(d, 2) = r1 +m(k; p)r0 +

d∑
i=1

v2(i) =

⌊
d

2

⌋
+Mk(d, 2)

with the same definition for r1 and r0.

Proof. Set t = t(k; p),m = m(k; p). We start with the case p 6= 2. First if t divides i, then vp(ui−1) ≥ m+vp(i).
This is because u can be written as zv with zt = 1 and vp(v − 1) ≥ m, so vp(ui − 1) = vp(v

i − 1). So we have
an inequality M ′k(d, p) ≥

∑d
i=1
t|i

(m+ vp(i)). To have the opposite one, choose u ∈ Imχp∞ such that u = zx with

z of order t and vp(x− 1) = m. This also works for p = 2 and t = 1.
Suppose now that p = 2 and t = 2, Define m′ = m − 1 in case (b) and m′ = m in case (c). Then for every

x ∈ Imχ2∞ ,

v2(xi − 1) ≥ m′ + v2(i) if i is even.

v2(xi − 1) ≥ 1 if i is odd.

This gives
M ′k(d, 2) ≥

∑
i odd

1 +
∑
i even

(m′ + v2(i)) = r1 +m′r0 +
∑
i even

v2(i).

To show the opposite inequality, we use the fact that x = −1+2m
′
∈ Imχ2∞ and we check that

∑d
i=1 v2(xi−

1) = r1 +m′r0 +
∑d
i=1 v2(i).

Now, to show the different equalities, notice that for (a):

M ′k(d, p) = m ·
⌊
d

t

⌋
+

b dt c∑
i=1

vp(ti).

Now, since t divides p−1, one has vp(ti) = vp(i) and the rest of the computation is similar as in the case k = Q.
For (b) and (c), we have r0 =

⌊
d
2

⌋
and r1 = d− r0.

M ′k(d, 2) ≤ d−
⌊
d

2

⌋
+m′

⌊
d

2

⌋
+

d∑
i=1

v2(i)

= d+ (m′ − 1)

⌊
d

2

⌋
+

d∑
i=1

v2(i)

= d+ (m′ − 1)

⌊
d

t

⌋
+
∑
k≥1

⌊
d

2k

⌋

= d+m′
⌊
d

t

⌋
+
∑
k≥1

⌊
d

2kt

⌋
.

We can now state Theorem 2.8 without assuming p odd.

Theorem 2.14. Let k be a number field, d an integer and p be prime. Let G be a finite p-subgroup of Autk(Ad),
then there exists a finite field F with charF 6= p and an injective group homomorphism G ↪→ GLd(F) such that
vp(|GLd(F)|) ≤M ′k(d, p).
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Proof of Theorem 2.14.– Take G a finite p-subgroup of Aut(Ad
k) with p prime.

Step 1. Reduction modulo l.– Set L = Ok. For every element a ∈ k× the fractional ideal generated by a is
of the form (see [Neu99], §3)

a · Ok = (a) =
∏

l∈SpecL

lvl(a)

and the prime ideals l such that vl(a) 6= 0 are in finite number. For such an l there exists a unique prime ` ∈ Z+

such that (`) ⊂ l. We define for g ∈ Aut(Ad
k)

`g := max
a∈coeff(g−id)

{prime ` ∈ Z+ : ∃l ∈ SpecL, (`) ⊂ l, vl(a) 6= 0}

where coeff(g − id) is the set of coefficients of the polynomial transformation g − id. Set M1 = maxg∈G `g
(M1 < +∞ since G is finite) and M = max(M1, p), then for every prime ` > M and for every m ∈ Specmax(L)
such that (`) ⊂ m, we have a well-defined injective homomorphism

Ψ : G ↪→ Aut(Ad
F),

where F = L/m. Indeed, the homomorphism of rings φ : L � L/m induces the homomorphism φ : Lm :=
(L \m)−1L→ L/m. By construction, G is a subgroup of Aut(Ad

Lm
), so φ : G→ Aut(Ad

L/m) is well-defined and
it is injective by our definition of M .

Step 2. The group Ψ(G).– Now, Ψ(G) is a p-subgroup of Aut(Ad
F). Since p 6∈ m, we get char(F) 6= p. By

Proposition 2.6, there is a point x0 in Ad(F) fixed by Ψ(G) and by taking the differentials at x0, we obtain an
injective homomorphism G ↪→ Ψ(G) ↪→ GLd(F). So, we get

vp(|G|) ≤ vp

(
N(m)

d(d+1)
2

d∏
i=1

(N(m)i − 1)

)
=

d∑
i=1

vp(N(m)i − 1). (2)

Set X := {m ∈ Specmax(L) : m|(s), for some s > M prime}, then (2) holds for all m ∈ X and we obtain
vp(|G|) ≤ infm∈X

∑d
i=1 vp(N(m)i − 1). So, to conclude, all we have to prove is

inf
m∈X

d∑
i=1

vp(N(m)i − 1) ≤M ′k(d, p). (3)

Step 3. Proof of (3).– The set X is open in SpecmaxL. For, X =
(⋃

l≤M,l prime V (l)
)c

with V (l) =

{m ∈ Specmax(L) : (l) ⊂ m} and V (l) is closed. Take u ∈ Imχp∞ . For j ≥ 1, let uj be the projection of u in
(Z/pjZ)×. By Theorem 2.12 the set of maximal ideals m such that N(m) ≡ uj mod pj is dense, therefore it
intersects the open subset X, so for every j ≥ 1, we can find mj ∈ X such that N(mj) ≡ uj mod pj . Then, one
has limj→∞N(mj) = u in Z×p , therefore vp(ui − 1) = limj→∞ vp(N(mj)

i − 1) so

inf
m∈X

d∑
i=1

vp(N(m)i − 1) ≤
d∑
i=1

vp(u
i − 1);

and this holds for every u ∈ Imχp∞ . Using Proposition 2.13, we get

inf
m∈X

d∑
i=1

vp(N(m)i − 1) ≤ inf
u∈Imχp∞

d∑
i=1

vp(u
i − 1) = M ′k(d, p).

Proof of Theorem A and comments.–
Theorem C. Let k be a number field, let d be a natural number, and let p be a prime. Let G be a finite
p-subgroup of Aut(Ad

k), then

1. If p ≥ 3 or p = 2 and k is in case (a) or (b), there exists a group embedding

G ↪→ GLd(k).

2. If p = 2 and k is in case (c), there exists a group embedding

G ↪→ GLd(k(z4)).

Remark 2.15. We do not state a Sylow-like property, saying that G is conjugated to a subgroup of GLd(k),
we only state that we can find an isomorphism of abstract groups from G to a subgroup of GLd(k).
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Proof. For 1, we know that vp(|G|) ≤ Mk(d, p) and that there exists a subgroup H ⊂ GLd(k) such that
|H| = pMk(d,p) by Theorem 1.2. Let L = Ok be the ring of integers of k. The proof of Theorem 2.14 shows that
there exists an infinite number of maximal ideals m of L such that vp(GLd(F)) ≤Mk(d, p) where F = L/m. So
for any such maximal ideal m ⊂ L lying over a sufficiently large prime, there are embeddings ΨH : H ↪→ GLd(F)
and ΨG : G ↪→ GLd(F). Looking at the size of H, we deduce that vp(GLd(F)) = Mk(d, p) and ΨH(H) is a
p-Sylow of GLd(F). By Sylow’s theorems, ΨG(G) is conjugated to a subgroup of ΨH(H) in GLd(F). This implies
that G is isomorphic to a subgroup of H.

For 2, if k is in case (c) then one can check that k(z4) is in case (a) and that m(k(z4); 2) = m(k; 2), therefore
Mk(z4)(d, 2) = Mk(d, 2) +

⌊
d
2

⌋
and the same proof as 1 shows the result.

Remark 2.16. Theorem A and C still hold for k finitely generated over Q. We just need to explain how the
proof of Theorem 2.14 works in that case.

We need to find a normal domain L finitely generated over Z such that G is defined over L and to define
the open subset X ⊂ SpecmaxL used for equation (3). Here is how to proceed: since G is finite, there exists a
finitely generated Z-algebra R such that the elements of G are defined over R, we can suppose that R contains
1/p. By Noether Normalization’s Lemma and more precisely by generic freeness (see [Eis95], Theorem 14.4),
there exists t1, . . . , ts ∈ R and an integer N such that R is a finite free module over Z[1/N ][t1, . . . , ts]. We can
then take for L the integral closure of Z[1/N ][t1, . . . , ts] in k, L is a normal domain over which G is defined since
R ⊂ L. We also have that L is finitely generated over Z because by [Eis95, Theorem 4.14] it is a finite module
over Z[1/N ][t1, . . . , ts].

Now, let A be the set of coefficients of g − id for g ∈ G. Set X = {m ∈ SpecmaxL : A ∩m = ∅}. This is
an open subset of SpecmaxL as A is finite and X =

⋂
a∈A V (a)c. For any m ∈ X we have an injective group

homomorphism G ↪→ Aut(Ad
L/m) and Equation (2) holds. The proof of Equation (3) is the same as in the case

of number fields. This proves Theorem 2.14 for finitely generated fields over Q.

To prove Theorem C, the key ingredient is that there exists subgroups of GLd(k) of size pMk(d,p), as Theorem
A is stated only for number fields we show for completeness how to construct finite p-groups of GLd(k) of size
pMk(d,p) when k is finitely generated over Q. The proof of Theorem C for finitely generated fields over Q is then
similar as in the case of number fields using Noether Normalization Lemma, we leave the details to the reader.

Proposition 2.17. Let k be a finitely generated field over Q and let p be a prime, there exists a finite p-subgroup
of GLd(k) of size pMk(d,p).

Proof. Set t = t(k; p),m = m(k; p) and r = bd/tc.

The case p ≥ 3.– Let ρ = zpm ∈ k(zp). Then, the group (Z/pmZ) acts on k(zp) via multiplication by ρk for
all k ∈ Z/pmZ. Now take r copies of k(zp); this is a k-vector space V of dimension t · r ≤ d and let Sr be the
r-th symmetric group, Sr acts on V by permuting the r copies of k(zp) and therefore the group

G := Sr n (Z/pmZ)r

acts faithfully by linear automorphisms on V and has the desired size. Indeed, vp(|G|) = m ·
⌊
d
t

⌋
+ vp(b dt c!).

The case p = 2 and t = 1.– In that case, k = k(z4), then Mk(d, 2) = m ·
⌊
d
t

⌋
+ v2(

⌊
d
t

⌋
!). Therefore, the

proof above works as well, with ρ = z2m acting on k(z4) = k.

The case p = 2 and t = 2.– The construction above yields that (Z/2mZ) acts linearly on k(z4). We twist
this action by the Galois automorphism σ that sends z4 to −z4; σ is an involution that sends ρ = z2m to another
primitive 2m-th root of unity. So we get that the group H := Z/2Z n Z/2mZ acts faithfully on k(z4). Now set
r = bd/2c, we have that G := Sr nH acts faithfully and linearly on a k vector space V consisting of r copies of
k(z4). The vector space V has dimension 2 · bd/2c ≤ d. Now, we have

v2(|G|) = (m+ 1) · bd/2c+ v2(bd/2c!).

If d is even this is equal to Mk(d, 2) and we are done. If d is odd then v2(|G|) = Mk(d, 2)− 1 but then V is of
dimension d − 1 so the group G × {±1} acts faithfully on V ⊕ k that is of dimension d and this group has the
desired size.

We can therefore state:

Theorem D. Let k be a finitely generated field over Q, let d be a natural number, and let p be a prime. Let G
be a finite p-subgroup of Aut(Ad

k), then

1. If p ≥ 3 or p = 2 and k is in case (a) or (b), there exists a group embedding G ↪→ GLd(k) and vp(|G|) ≤
Mk(d; p).
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2. If p = 2 and k is in case (c), there exists a group embedding G ↪→ GLd(k(z4)) and v2(|G|) ≤Mk(d, 2)+b d
2
c.

Remark 2.18. We get the optimal bounds except when p = 2 and k is in case (c) (this includes k = Q). For
that case, following Remark 2.4, to get the optimal bound one would need a result of the following type: Let k
be a number field in case (c) and G a finite subgroup of Aut(Ad

k) of order 2α, then for m in the complement of
a finite set of SpecmaxOk the group G embeds into an orthogonal group over Ok/m.

We know that for any maximal ideal m lying over a large enough prime, there exists an embedding G ↪→
GLd(F) and a fixed point x̄ ∈ (F)d of G where F = Ok/m. The problem is to find a symmetric matrix A such
that

AG :=
∑
g∈G

tDx̄g ·A ·Dx̄g

is non-degenerate. Such an A does not exist for every subgroup of GLd(F) precisely because v2(|GLd(F|) is
larger than the 2-adic valuation of the order of any orthogonal group over F. So we have to use that G comes
from a group over k and adapt m wisely.

Here is one way to attack this problem. Pick a fixed point x of G with coordinates in Q; such a point exist
because otherwise let (Pn) be the system of polynomial equations stating that G has a fixed point. If this system
has no solution over Q then by Hilbert’s Nullstellensatz, there is a relation of the form 1 =

∑
QiPi for some

polynomials Qi. Now take a number field k′ where this relation is defined. By the previous paragraph we can
reduce modulo a large enough maximal ideal m of Ok′ (i.e lying over a large enough prime) and this would
yield an injective group homomorphism G ↪→ Aut(Ad) where F is a finite field with charF 6= p. The relation
1 =

∑
QiPi still holds in F but this is absurd since we know that G admits a fixed point over F. Let k′ be the

number field generated by the coordinates of x and k. We would like to find A such that AG is non-degenerate.
If k′ ⊂ R we can use argument of positive definiteness to do so, but otherwise a first difficulty occurs. Now, even
if such an A could be found, the arithmetic of k′ leads to another difficulty: For any maximal ideal m′ ⊂ Ok′

lying over a large enough maximal ideal m ⊂ Ok, the image x′ of x in F′ = Ok′/m
′ is a fixed point of G, and

the reduction modulo m′ of AG is an invertible symmetric matrix over F′. But if the degree [F′,F] is even, then
the 2-adic valuation of any orthogonal group over F′ will be too large to get the optimal bound.

3 p-adic analysis
To prove Theorem B, we will show that any finitely generated nilpotent group acting on a complex quasiprojective
variety of dimension d can be embedded in a finite dimensional p-adic Lie group acting analytically on a p-adic
manifold of dimension d. The theorem will follow from a version of Theorem 1.1 of [ET79] in a p-adic context.
In this section, we introduce all the tools from p-adic analysis and p-adic Lie groups needed for the proof.

3.1 Tate-Analytic Diffeomorphisms
3.1.1 Definitions and topology

Let p be a prime. We denote by Zp the completed ring of Z with respect to the p-adic norm defined such
that |p| = 1/p. Denote by Qp the completion of Q with respect to this norm. Then Qp = Frac(Zp) and Zp is
the set of elements of Qp of absolute value ≤ 1. We extend this norm to Qd

p by taking the maximum of the
absolute values of the coordinates. We will use explicitly the ring Zp and the field Qp but what follows can be
done with any complete valued ring or field of characteristic 0. The right setup would be to consider Cp the
completion of the algebraic closure of Qp and Dp the unit ball of Cp.

For reference, check [CX18]. We denote by B(x, r) =
{
y ∈ Qd

p : ||x− y|| ≤ r
}
the closed ball of radius r and

center x. It is both open and closed. Such sets will be called clopen.

Tate analytic maps.– Classically, a function Zdp → Qp is analytic if it can be written locally as a converging
power series, we work with Tate-analytic functions which are converging power series of radius ≥ 1 over Zdp.

Take Zdp with its standard coordinates x = x1, · · · , xd. On Qp[x1, · · · , xd] =: Qp[x] the Gauss norm is defined
by

∀g ∈ Qp[x], g =
∑
I⊂Zd+

aIx
I , ||g|| := max

I
|aI |

where I = (I1, · · · , Id) and xI := xI11 · · ·x
Id
d ; we denote byQp〈x1, · · · , xd〉 =: Qp〈x〉 the completion ofQp[x1, · · · , xd] with

respect to the Gauss norm. Qp〈x〉 is the set of formal power series with coefficients in Qp such that aI →
0 when I → ∞ (i.e when max(I) → ∞). It is also the set of formal power series with coefficients in Qp con-
verging over Zdp. This shows that Qp〈x〉 equipped with the Gauss norm is an infinite-dimensional Banach space
over Qp. For all polynomials f, g ∈ Qp[x], then ||f · g|| ≤ ||f || · ||g|| and this is also true in Qp〈x〉, there-
fore Qp〈x〉 is a Banach algebra over Qp, it is the Tate algebra over Qp in d variables (see [Rob00]). We also
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define Zp〈x〉 which is the completion of Zp[x] for the gauss norm; it is in fact the set of elements of Qp〈x〉 of
norm ≤ 1.

Remark 3.1. For each f ∈ Qp〈x〉 there exists an element s ∈ Zp such that s · f ∈ Zp〈x〉 and if g ∈ Qp〈x〉 is
such that g(0) ∈ Zp, then there exist an integer N > 0 such that g(pNx) ∈ Zp〈x〉. Moreover, if g ∈ Qp[[x]] is
a formal power series with coefficients in Qp with a strictly positive radius of convergence, then there exists an
integer N such that g(pNx) belongs to Qp〈x〉.
Remark 3.2. There exist Tate-analytic maps with non-integer coefficients such that f(Zdp) ⊂ Zp. For example,
take

f(x) =
xp − x
p

.

Since for all x ∈ Zp, x
p ≡ x mod p, f induces a map f : Zp → Zp. However every element f ∈ Qp〈x〉d induces

a map f : Dd
p → Cp and we have f(Dd

p) ⊂ Dp ⇔ f ∈ Zp〈x〉d. This has to do with the residue field of Zp being
finite but not the residue field of Dp (see [Rob00], Proposition of page 240).

For any m ≥ 0, elements of Qp〈x〉m are called Tate-analytic functions. If g ∈ Qp〈x〉d, then

∀x, y ∈ Zdp, ||g(x)− g(y)|| ≤ ||g|| ||x− y|| . (4)

In particular, g is ||g||-Lipschitz.
Proposition 3.3 (Strassman’s Theorem, see [Rob00], chapter 6, section 2.1). Let f ∈ Qp〈t〉 be a Tate-analytic
function in one variable, if f is not the zero function, then f has a finite number of zeros over Zp.

Corollary 3.4. Let f ∈ Qp〈x〉, if there exists a non-empty open subset U ⊂ Zdp such that f|U ≡ 0 then f is the
zero function.

Remark 3.5. This is not true for analytic functions over Zdp. For example define g by g(y) = 1 if ||y|| ≤
|p| and g(y) = 0 otherwise. Then, g is analytic at every point of Zdp because it is locally constant, it vanishes on
the open subset

{
x ∈ Zdp : ||x|| = 1

}
but g is not the zero function.

Proof of Corollary 3.4. Take y ∈ U and x ∈ Zdp. Let ϕ be the function ϕ : t ∈ Zp 7→ f(tx + (1 − t)y).
Then ϕ belongs to Qp〈t〉 and it vanishes for any sufficiently small t. By Proposition 3.3, we have that ϕ is the
zero function, therefore f(x) = 0.

Let f, g ∈ Qp〈x〉 and c > 0, we write f ≡ g mod pc if ||f − g|| ≤ |p|c and we extend such notation
componentwise for Qp〈x〉m for every m ≥ 1.

Example 3.6. If c = 1 and f, g ∈ Zp〈x〉, then f =
∑
I aIx

I ≡ id(x) mod p means that f :=
∑
I aIx

I =
id(x) where aI = aI mod p is the reduction of ai mod pZp.

Tate analytic diffeomorphisms.– The composition determines a natural map

Zp〈X1, · · · , Xn〉m × Zp〈Y1, · · · , Ys〉n −→ Zp〈Y1, · · · , Ys〉m
(g1, · · · ., gm) (h1, · · · , hn) 7−→ (g1(h1, · · · , hn), · · · , gm(h1, · · · , hn))

If the three integers n,m, s are equal to the same integer d, (Zp〈x〉d, ◦) becomes a semigroup. The invertible
elements of this semigroup are called Tate-analytic diffeomorphisms and form a group denoted by Diffan(Zdp).
Using Equation (4), we have that Diffan(Zdp) acts by isometries on Zdp.

Remark 3.7. Following Remark 3.2, we see that Diffan(Zdp) consists exactly of the elements of f ∈ Qp〈x〉 that
induces a Tate-analytic diffeomorphisms f : Dd

p → Dd
p.

The next proposition shows an easy way to construct Tate-analytic diffeomorphisms of small polydisks.

Proposition 3.8 (Local inversion theorem, see [Ser92]). Let Φ ∈ Zp[[X1, · · · ., Xd]]d be a power series with a
strictly positive radius of convergence. Suppose that Φ(0) = 0 and det(D0Φ) 6= 0, then there exists a unique Ψ ∈
Qp[[X1, · · · ., Xd]]d, with a strictly positive radius of convergence, such that Ψ(0) = 0 and

Φ ◦Ψ(x) = Ψ ◦ Φ(x) = x.

Furthermore, ||Ψn|| ≤ max(1,
∣∣∣∣D0Φ−1

∣∣∣∣n), where Ψn ∈ Qp[X1, · · · , Xn]d is the homogeneous part of de-
gree n of Ψ and ||·|| is the Gauss norm over polynomials. Therefore, if Φ belongs to Zp〈x〉d, then for any k such
that |p|k <

∣∣∣∣D0Φ−1
∣∣∣∣, we have that 1

pk
Φ(pkx) and 1

pk
Ψ(pkx) are Tate-analytic diffeomorphisms and are inverse

of each other.
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Group topology.– The following proposition shows that Diffan(Zdp) is a topological group with respect to
the topology induced by the Gauss norm.

Proposition 3.9. Let f, g, h ∈ Zp〈x〉d, then
1. ||g ◦ f || ≤ ||g||.
2. If f is an element of Diffan(Zdp) then ||g ◦ f || = ||g||.
3. ||g ◦ (id +h)− g|| ≤ ||h||.
4.

∣∣∣∣f−1 − id
∣∣∣∣ = ||f − id|| if f is a Tate-analytic diffeomorphism.

Lemma 3.10. Let f be an element of Diffan(Zdp), if f ≡ id mod p then fp
c

≡ id mod pc.

Corollary 3.11. Let c > 0 be a real number, then the subgroup Diffanc (Zdp) of Diffan(Zdp) consisting of all
elements f ∈ Diffan(Zdp) such that f ≡ id mod pc is a normal subgroup of Diffan(Zdp).

Proposition 3.9, Lemma 3.10 and Corollary 3.11 are proven in [CX18], section 2.1.

3.1.2 Analytic flow and Bell-Poonen theorem

Flows and vector fields.– As in real or complex geometry, we define vector fields and flows. Let d be an
integer:

A Tate-analytic vector field X over Zdp is a vector field of the form

X(x) =

d∑
i=1

ui(x)∂i

where each ui belongs to Qp〈x〉. The Lie bracket of two vector fields X and Y =
∑d
i=1 vi∂i is the vector field

defined by

[X,Y] =

d∑
j=1

wj(x)∂j with wj =

d∑
i=1

(
ui
∂vj
∂xi
− vi

∂uj
∂xi

)
.

The Qp-Lie algebra of Tate-analytic vector fields over Zdp is denoted by Θ(Zdp) it is a strict subalgebra of the
Lie Algebra of analytic vector fields over Zdp. The Gauss norm of a Tate-analytic vector field X =

∑
ui(x)∂i is

defined as ||X|| = maxi ||ui|| and makes Θ(Zdp) a complete Lie Algebra over Qp isomorphic as a Banach space
to Qp〈x〉d.

A Tate-analytic flow Φ over Zdp is an element of Zp〈X1, · · · , Xd, t〉d = Zp〈x, t〉d which satisfies the following
properties

(i) ∀x ∈ Zdp, ∀s, t ∈ Zp, Φ(x, s+ t) = Φ(Φ(x, s), t).

(ii) ∀x ∈ Zdp, Φ(x, 0) = id(x).

Set Φt := Φ(·, t) ∈ Zp〈x〉. Then, Φ0 = id and Φt ∈ Diffan(Zdp) since Φ−1
t = Φ−t. Then, t ∈ Zp 7→ Φt ∈

Diffan(Zdp) is a continuous homomorphism of topological groups with respect to the Gauss norm. The main
point here is that flows are parametrized by the compact group (Zp,+).

Example 3.12. If Φ is a Tate-analytic flow, then we can define its associated Tate-analytic vector field XΦ :=
∂Φt
∂t |t=0

. In particular, XΦ is Φt-invariant, for all t ∈ Zp.

From vector fields to Tate-analytic flows.– Since a Tate-analytic vector field X is analytic, it is a
general fact that it admits local analytic flows over Zdp (see [Bou07b] for example), the next proposition shows
that if the norm of X is sufficiently small, then it admits a global Tate-analytic flow.

Proposition 3.13. If X is a Tate-analytic flow over Zdp, then for any sufficiently small λ ∈ Zp, there exists a
unique Tate-analytic flow Φλ ∈ Zp〈x, t〉d such that

∂Φλt (x)

∂t
= λX(Φλt (x)).

In particular, let c > 0 be such that c > 1
p−1

, then every Tate-analytic vector fields X such that ||X|| ≤
|p|c admits a global Tate-analytic flow.

Proof. The strategy is to solve this differential equation in the space of power series Qp [[x, t]]d and then to show
some properties on the radius of convergence of the solution. We first replace X by µX for some µ ∈ Zp such
that ||X|| ≤ 1. Write X(x) =

∑
i ui(x)∂i with ui ∈ Zp〈x〉. We look at the differential equations

∂

∂t
fi(x, t) = ui(f(x, t)) (5)

12



with fi ∈ Qp [[x, t]] and f = (f1, · · · , fd) such that f(x, 0) = x. Write

fi(x, t) =
∑
k≥0

a
(i)
k (x)tk, a

(i)
k ∈ Qp [[x]]

then, the unique solution of this equation is formally given by the formulas a(i)
k (x) = 1

k!
∂kfi
∂tk

(x, 0). We show

that for all integer k ≥ 0, ∂
kfi
∂tk

(x, 0) belongs to Zp〈x〉 by induction on k. We get a(i)
0 = xi since f(x, 0) =

id(x) and a
(i)
1 (x) = ui(x) by Equation (5). Take k ≥ 2 and suppose the result to be true for all l < k. By

differentiating both sides of Equation (5) k−1 times with respect to t and taking t = 0, we see that ∂kfi
∂tk

(x, 0) is
obtained by sum and compositions of differentials of orders ≤ k−1 of the Tate-analytic function ui ∈ Zp〈x〉 and
the Tate-analytic functions ∂l

∂tl
fi(x, 0) ∈ Zp〈x〉 with l < k. So ∂kfi

∂tk
(x, 0) belongs to Zp〈x〉 by induction.

The solution f is then of the form

f(x, t) = id(x) +
∑
k≥1

∂kf

∂tk
(x, 0)

tk

k!
.

Now take λ ∈ Zp, such that |λ| ≤ |p|c. We have that for all k ≥ 0, λ
k

k!
∈ Zp and λk/k! → 0 in Zp when

k →∞. Then, Φλt := f(·, λt) is a Tate-analytic flow such that ∂Φtλ
∂t

(x) = λX(Φλt (x)).
For the final statement, take X a Tate-analytic vector field such that ||X|| ≤ |p|c and let s ∈ Zp be such that

|s| = ||X||, then Y := 1
s
X has norm ≤ 1. The proof shows that there exists a unique Tate-analytic flow Φ such

that ∂Φt
∂t |t=0

= sY = X.

Theorem 3.14 (local linearisation of vector fields). Let X1, · · · ,Xk be Tate-analytic vector fields over Zdp such
that [Xi,Xj ] = 0 for all 1 ≤ i, j ≤ k. Suppose that there exists a point m ∈ Zdp such that the vectors Xi(m) are
linearly independent. Then, there exists a clopen subset V ⊂ Zdp containing m and an analytic diffeomor-
phism ϕ from Zdp onto V such that ϕ∗(Xi|V) = ∂i and such that ϕ∗ yields an injective Lie Algebra homomor-
phism Θ(Zdp)|V ↪→ Θ(V).

Remark 3.15. This theorem is well known in p-adic differential geometry with analytic regularity (see [Bou07b]),
what is important here is that when changing coordinates we keep the Tate-analytic regularity for vector fields.

Proof. By translation, we can suppose thatm = 0. We pick Y0 ⊂ T0Z
d
p such that T0Z

d
p = Vect(X1(0), · · · , Xk(0))⊕

Y0. Let e1, · · · , ed−k be a basis of Y0. Pick local (analytic) coordinates (x1, · · · , xk, y1, · · · , yd−k) such that for
all 1 ≤ j ≤ d− k, ∂

∂yj
(0) = ej .

Define : f : Zd−kp → Zdp by
f(y1, · · · , yd−k) = (0, · · · , 0, y1, · · · , yd−k).

Take the local analytic flows ϕ1, · · · , ϕk associated to X1, · · · ,Xk at 0 (here we do not suppose these flows to
be Tate-analytic) and consider

g : Zkp × Zd−kp −→ Zdp
(t1, · · · , tk; y) 7−→ ϕ1

t1 ◦ · · · ◦ ϕ
k
tk (f(y)).

The function g belongs to Zp [[t1, · · · , tk,y]]d with a radius of convergence rg > 0, satisfies g(0) = 0 and its
differential at the point (0, 0) is

(x1, · · · , xk; z) 7→ x1X1(0) + · · ·+ xkXk(0) +
∑
j

zj
∂

∂yj
(0).

Therefore it is invertible. By Proposition 3.8 g admits a formal inverse h ∈ Qp [[t1, · · · , tk,y]]d with a radius
of convergence rh > 0. Denote by z the set of coordinates (t1, · · · , tk, y1, · · · , yd−k). Pick integers K,L such
that |p|K < rg and |p|L < rh such that g(B(0, |p|K)) ⊂ B(0, |p|L). Let V denote g(B(0, |p|K)); it is a clopen subset
of Zdp because B(0, |p|K) is clopen. Set ϕ := 1

pL
g(pKz) and ψ := 1

pK
h(pLz), they both belong to Qp〈z〉d and

are inverse of each other and we have ϕ∗Xi = ∂i. Finally, since ϕ ∈ Qp〈z〉d, the map ϕ∗ preserves Tate-analytic
vector fields.

Theorem 3.16 (p-adic version of [ET79] Theorem 1.1). Let h be a nilpotent Lie algebra of Tate-analytic vector
fields of Zdp, then d ≥ dl(h).

Proof. We follow the proof of [Can14] Proposition 3.10 and proceed by induction on the dimension d. If d = 0,
there is nothing to prove. Suppose d ≥ 1 and that the result is true in dimension d − 1. Since h is nilpotent,
its center is not trivial. Let X be a nonzero central element of h. Let m be a point where X(m) 6= 0, then
by Theorem 3.14, there exists a small clopen subset V ⊂ Zdp and an analytic diffeomorphism ϕ : V → Zdp that
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yields coordinates x1, · · · , xd over V such that ϕ∗X = ∂d and such that ϕ∗ maps Tate-analytic vector fields to
Tate-analytic vector fields. By Proposition 3.4 the morphism of restriction h → h|V is an isomorphism of Lie
algebras. We replace h by h|V and work with the coordinates x1, · · · , xd over V. Every vector field Y of h must
commute with X = ∂d so it is of the form

Y =

d∑
i=1

ui(x1, · · · , xd−1)∂i.

Let π : V ' Zdp → Zd−1
p be the projection over the first d − 1 coordinates. This yields a Lie algebra homo-

morphism π∗ : h → Θ(Zd−1
p ). Denote by h1 the image of h under π∗ and h0 its kernel. We have the exact

sequence
0→ h0 → h→ h1 → 0.

Now, h0 consists of Tate-analytic vector fields of h of the form u(x1, . . . , xd−1)∂d so it is abelian and h1 is nilpotent
because h is. So we get dl(h) ≤ dl(h1) + 1 by the exact sequence and dl(h1) ≤ d− 1 by induction.

We discuss the optimality of Theorem 3.16 in Section 4.4.

The theorem of Bell and Poonen.– The following theorem first proven by Bell in [Bel05] then by Poonen
in [Poo14] gives us an easy way to construct flows from analytic transformations. This is a very strong theorem
as it shows that, contrary to R, over Qp a lot of analytic diffeomorphisms are in a flow. See [Can18] for a more
precise discussion on Bell-Poonen theorem.

Theorem 3.17 (Bell-Poonen). Let d ≥ 1 be an integer, and f ∈ Zp〈x〉d. Take c > 1
p−1

and suppose that f ≡ id
mod pc, then

1. f is a Tate-analytic diffeomorphism.

2. There exists a unique Tate-analytic flow Φ ∈ Zp〈x, t〉d such that

∀n ∈ Z, Φ(x, n) = fn(x).

In particular, Φ1 = f .

In fact, Poonen showed this theorem for the valuation ring of any ultrametric field K. So, Bell-Poonen
Theorem also holds over Dp or over any finite extension of Qp for example.

Corollary 3.18. Let H be a subgroup of Diffan1 (Zdp) with p ≥ 3, then H is torsion-free.

Proof. Let h ∈ H, suppose that h has order N <∞. By Theorem 3.17, there exists an Tate-analytic flow Φ such
that Φ1 = h. Then for all x ∈ Zdp the function t ∈ Zp 7→ Φt(x)− x ∈ Zdp is analytic and has an infinite number
of zeros, so it is zero everywhere by Proposition 3.4. Therefore Φ1(x) = h(x) = x and h = id.

The next proposition won’t be used in the proof of Theorem B but it gives useful information on the dynamics
of Tate-analytic flows.

Proposition 3.19. Let Φ ∈ Zp〈x, t〉 be a Tate-analytic flow over Zdp. If U ⊂ Zdp is a clopen set, then there exists
an ε > 0 such that

∀t ∈ Zp, |t| ≤ ε⇒ Φt(U) = U .

Proof. Fix x ∈ Zdp and 0 < r ≤ 1. Since Φt → id as t → 0 in Diffan(Zp), there exists ε > 0 such that for
all t ∈ Zp, |t| ≤ ε ⇒ ||Φt − id|| ≤ r. Now for all z ∈ Zdp, ||Φt(z)− z|| ≤ ||Φt − id|| ≤ r. Then, for all y such
that ||y − x|| ≤ r,

||Φt(y)− x|| = ||Φt(y)− y + y − x||
≤ max(||Φt(y)− y|| , ||y − x||) ≤ r.

So if |t| ≤ ε, we have Φt(B(x, r)) ⊂ B(x, r) and Φ−t(B(x, r)) ⊂ B(x, r), so we get the equality.
Since U is clopen, by compactness, U =

⋃T
i=1 B(xi, ri) for some finite set {x1, · · · , xT } ⊂ U and radii ri ∈

(0, 1]. Thus, the results follows from the case of one ball.

14



3.2 Infinite-dimensional analytic manifold over Qp

The main goal of the next two sections is to show that the topological group Diffan(Zdp) is in fact an infinite
dimensional Lie group over Qp.

We refer to [Bou07b] for reference on analytic functions and analytic manifolds over a Banach space. In this
section k is an ultrametric complete field and E,F are Banach spaces over k (potentially of infinite dimension).
As we shall see, taking k = Qp and E,F = Qd

p allows one to recover the definition of converging power series
and analytic functions over Qd

p.
Basically, if A is a Banach algebra over Qp, then any map of the form f : Ad → A such that locally at any

point x ∈ Ad, there is a expression of f as a converging power series

f(x+ h) =
∑
I⊂Zd+

aIh
I

with aI ∈ A, aI → 0 is an analytic map from Ad to A. The problem is that if A is not finite dimensional, this
definition is not enough, as for example a continuous linear map is not necessarily described by an expression of
this form but still should be analytic.

Multi-indices, multi-linear maps.– If α = (α1, · · · , αd) ∈ Zd+ is a multi-index, then |α| :=
∑
i αi.

For 1 ≤ j ≤ |α|, we define
α(j) = max {k + 1 ∈ Z+ : α1 + · · ·+ αk < j} .

The sequence (α(j))1≤j≤|α| is the increasing sequence consisting of α1 times the number 1, α2 times the number
2, . . . , αd times the number d. For example, if α = (1, 5, 7), then d = 3, |α| = 13 and

(α(j))1≤j≤13 = (1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3).

For 1 ≤ i ≤ d, we denote by pi : Ed → E the projection to the i-th coordinate. For a multi-index α ∈ Zd+, we
define

pα := (pα(j))1≤j≤|α| : Ed → E|α|.

If β ∈ Zd+ is another multi-index, then we write α + β for the multi-index (αi + βi)1≤i≤d. We write α ≥
β if αi ≥ βi for all 1 ≤ i ≤ d; in that case there is a unique multi-index γ such that α = β + γ, and we
set α − β := γ. We also define the binomial coefficient

(
α
β

)
:=
(
α1
β1

)
· · ·
(
αd
βd

)
. Finally, if x = (x1, · · · , xd),

then xα := xα1
1 · · ·x

αd
d and if y = (y1, · · · , yd), one has the identity

(x + y)α = (x1 + y1)α1 · · · (xd + yd)
αd

=

 α1∑
β1=0

(
α1

β1

)
xβ11 yα1−β1

1

 · · ·
 αd∑
βd=0

(
αd
βd

)
x
βd
d y

αd−βd
d


=

∑
0≤β1≤α1

· · ·
∑

0≤βd≤αd

(
α1

β1

)
· · ·

(
αd
βd

)
xβ11 · · ·x

βd
d yα1−β1

1 · · · yαd−βdd

=
∑
β≤α

(
α

β

)
xβyα−β .

For an integer k, let Lk(E,F ) be the set of continuous multilinear maps from Ek to F equipped with the topology
of uniform convergence over bounded subsets. The norm of an element φ ∈ Lk(E,F ) is defined by

||φ|| = inf
{
a > 0 : ∀x1, · · · , xk ∈ Ek, ||φ(x1, · · · , xk)||F ≤ a ||x1||E · · · ||xk||E

}
.

Continuous polynomial maps and power series.– ([Bou07b] Appendix of §1-7) A continuous ho-
mogeneous polynomial map of multi degree α, is a map f : Ed → F such that there exists u ∈ L|α|(E,F ) for
which f = u ◦ pα. We denote by Pα(E,F ) the vector space of continuous homogeneous polynomial maps of
multi-degree α equipped with the quotient topology from L|α|(E,F ). The norm of a continuous homogeneous
polynomial map P ∈ Pα(E,F ) is defined by

||P || := inf
u∈L|α|(E,F ),P=u◦pα

||u||L|α|(E,F ) .

Example 3.20. Set E,F = Qp〈x〉. Let P be the monomial xα, then the map P : g ∈ Qp〈x〉d 7→ P (g) ∈ Qp〈x〉 is
a continuous homogeneous polynomial map of multi-degree α. Indeed, let k = |α| and consider the multilinear
map

Tk : Ek −→ F
(f1, · · · , fk) 7−→ f1 · · · fk;
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it is continuous as ||Tk(f1, · · · , fk)|| ≤ ||f1|| · · · ||fk|| and P = Tk ◦ pα.
Furthermore, for a multi-index β, define φβ : Qp〈x〉 → Qp〈x〉 such that φβ(g) is the homogeneous part

of multi-degree β of g. Then, φβ is linear and continuous, therefore if P (x) = xα, the map g ∈ Qp〈x〉d 7→
P (φβ1(g1), · · · , φβd(gd)) is a continuous homogeneous polynomial map of multi-degree α for any multi-index (βi)1≤i≤d.

For an integer k, Pk(Ed, F ) is the direct sum of the Pα(E,F ) for α such that |α| = k, the elements
of Pk(Ed, F ) are the continuous homogeneous polynomial maps of total degree k.

Example 3.21. If P ∈ Qp[x] is a homogeneous polynomial of degree k in d variables, then the map P :
g ∈ Qp〈x〉d 7→ P (g) is a continuous homogeneous polynomial map of total degree k and for any sequence of
multi-index (βi)1≤i≤d, the map g ∈ Qp〈x〉d 7→ P (φβ1(g), · · · , φβd(g)) also is.

We denote by P (Ed, F ) the direct sum of the spaces P (Ed, F ), its elements are the continuous polynomial
maps in d variables.

Proposition 3.22. Set E,F = Qp〈x〉. Take a polynomial P ∈ Qp[x]. Then, P induces a continuous polynomial
map Ed → F and the linear embedding Qp[x] ↪→ P (Ed, F ) is an isometry.

Finally, the set P̂ (Ed, F ) of power series in d variables over E is the (infinite) product of the Pα(E,F ) (or
of the Pk(Ed, F )) for α ∈ Zd+ (for k ∈ Z+) equipped with the product topology of the discrete topology
over each factor; equivalently if f =

∑
α fα ∈ P̂ (Ed, F ), then the order of vanishing at 0 of f is ord(f) =

min {|α| : fα 6= 0} and this is the topology induced by the norm ||f || := 2− ord(f). The space P̂ (Ed, F ) is
complete Hausdorff for this topology. A converging power series is an element f =

∑
α fα of P̂ (Ed, F ) such

that there exists R ∈ (R>0)d satisfying supαR
α ||fα||Pα(E,F ) < +∞. If f =

∑
α fα, then the polyradius of

convergence of f is
r(f) := sup

{
R ∈ (R>0)d : Rα ||fα|| → 0 when |α| → ∞

}
.

Definition 3.23. Let U be an open subset of Ed, a map f : U → F is analytic at a point a ∈ U if there exists
a converging power series fa such that for all x in a small neighbourhood of a in U , f(a + x) = fa(x). The
function f is analytic if it is analytic at every point of U .

For any integer m ≥ 1, a map f : U → Fm is analytic if each of its coordinates is analytic.

Example 3.24. Every continuous linear map Qp〈x〉d → Qp〈x〉d is analytic.

Proposition 3.25. The map Comp : (h, f) ∈ Zp〈x〉d × Zp〈x〉d 7→ h ◦ f ∈ Zp〈x〉d is analytic. In particular, it
is linear in h.

Proof. It is enough to show that the map Φ : (h, f) ∈ Zp〈x〉 × Zp〈x〉d 7→ h ◦ f ∈ Zp〈x〉 is analytic. Let (h, f) ∈
Zp〈x〉 × Zp〈x〉d, we show that Φ is analytic at (h, f). Let g ∈ Zp〈x〉d and write h(x) =

∑
α aαx

α, then

h ◦ (f + g(x)) =
∑
α

aα(f(x) + g(x))α

=
∑
α

∑
γ≤α

aα

(
α

γ

)
f(x)α−γg(x)γ

=
∑
β

∑
α≥β

aα

(
α

β

)
f(x)α−β

 g(x)β

=
∑
β

Qβ,f (h)(x) · g(x)β

where Qβ,f : Qp〈x〉 → Qp〈x〉 is a continuous linear map and ||Qβ || → 0 when β →∞, this is a converging power
series in the variables (h, g) of polyradius of convergence (+∞, 1). Therefore Φ is analytic at any point (0, f) and
by linearity in h,Φ is analytic at any point (h, f).

Analytic manifolds.– Let K be an ultrametric field and let X be a topological space. A K-chart of X is
a homeomorphism φ : U → φ(U) ⊂ E where U in an open subset of X and E a Banach space over K. We say
that two K-charts φ : U → E,ψ : V → F are compatible if

1. φ(U ∩ V ) is open in E and ψ(U ∩ V ) is open in F .

2. ψ ◦ φ−1 : φ(U ∩ V )→ F is analytic.

3. φ ◦ ψ−1 : ψ(U ∩ V )→ E is analytic.

An analytic manifold X over K is defined classically as a topological space equipped with an atlas of com-
patible K-charts. For a point x ∈ X, the tangent space at x is denoted by TxX. A function f : X → Y between
two analytic manifolds is analytic if for every chart φ : U ⊂ X → E,ψ : V ⊂ Y → F , the map ψ ◦ f ◦ φ−1 :
φ−1(U)→ F is analytic. The differential of f at a point x will be denoted Dxf .
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Proposition 3.26. The topological space Diffan(Zdp) is an analytic manifold over Qp, it is in fact an open subset
of the Banach space Qp〈x〉d. The subgroups Diffanc (Zdp) for c > 1

p−1
are diffeomorphic to Zp〈x〉d and they form

a basis of neighbourhood of id in Diffan(Zdp).

Proof. Theorem 3.17 shows that Diffanc (Zdp) is the ball of center id and radius |p|c in Zp〈x〉d, using Proposition
3.9 we see that for every f ∈ Diffan(Zdp), the ball of center f and radius |p|c is included in f ◦Diffanc (Zdp) therefore
it is an open set of Qp〈x〉d, so Diffan(Zdp) is an infinite dimensional analytic manifold over Qp.

The implicit function theorem.– Let X,Y, Z be manifolds over K and let f : X×Y → Z be an analytic
map. Let (a, b) ∈ X × Y , we write D(a,b)f the differential map of f at (a, b) and let D(1)

(a,b)f be the differential

of the partial map x ∈ X 7→ f(x, b) at a and D(2)

(a,b)f the differential of the partial map y ∈ Y 7→ f(a, y) at b.

Then, one has T(a,b)X × Y = TaX × TbY and D(a,b)f(u, v) = D
(1)

(a,b)f · u+D
(2)

(a,b)f · v.

Theorem 3.27 (Implicit function theorem, 5.6.1 of [Bou07b]). Suppose that D(2)

(a,b)f is bijective, then there
exists an open neighbourhood U of a in X and an open neighbourhood V of b in Y and a unique analytic
map g : U → V such that

∀x ∈ U, f(x, g(x)) = f(a, b)

and the differential of g at any x ∈ U is given by

Dxg = −
(
D

(2)

(x,g(x))f
)−1

◦D(1)

(x,g(x))f

Proposition 3.28. The inversion map Inv : f ∈ Diffan(Zdp) 7→ f−1 is analytic.

Proof. We write U = Diffan(Zdp), we know that U is an analytic manifold over Qp by Proposition 3.26. By
Proposition 3.25, the composition operation is analytic over Zp〈x〉d × Zp〈x〉d, therefore it is over U × U .

To show that Inv is analytic we only need to show that it is analytic at id. Indeed, take f ∈ U , then Inv =
Lf−1◦Inv ◦Rf−1 whereRf−1 is composition on the right by f−1 and Lf−1 composition on the left. Since Lf−1 andRf−1 are
analytic, Inv is analytic at f if and only if it is analytic at id. To show that Inv is analytic at id, we use the
implicit function theorem, since the map M : (f, g) ∈ U × U → f ◦ g ∈ U is analytic and the partial differ-
ential D(2)

id,idM = id, one has the existence of a unique function G : V → U with V an open neighbourhood
of id such that G is analytic at id and M(f,G(f)) = id for all f ∈ V. Therefore Inv|V = G and inversion is
analytic at id.

3.3 p-adic Lie groups
We refer to [Bou06] for more details on the results provided in this section.

A p-adic Lie group G is a topological group with a structure of a p-adic analytic manifold such that the
multiplication map and the inverse map are analytic. The dimension of G is its dimension as an analytic
manifold. It can be infinite. Its Lie algebra g is the tangent space of G at the neutral element, it is equipped
with a Lie bracket [·, ·] defined as follows. Let g ∈ G and ιg : h ∈ G 7→ ghg−1, then Ad(g) := Deιg ∈ GL(g) is
the adjoint representation of G. Define ad := De Ad, then

∀X,Y ∈ g, [X,Y] := ad(X)(Y).

Theorem 3.29. The topological group Diffan(Zdp) is an infinite-dimensional Lie group over Qp. Its Lie Algebra
is Θ(Zdp).

Moreover, the subgroups Diffanc (Zdp) are also Lie groups for c > 1
p−1

and they form a basis of neighbourhood
of id in Diffanc (Zdp).

Proof. The fact that Diffan(Zdp) is a Lie group over Qp follows from Propositions 3.25, 3.26 and 3.28 where it was
shown that it was an analytic manifold and that composition and inversion are analytic maps. The statement
for Diffanc (Zdp) follows from the same propositions.

The tangent space at id is Qp〈x〉d that we identify with Θ(Zdp) and under this identification the Lie
bracket between two Tate-analytic vector fields corresponds to the Lie bracket of the Lie algebra of the Lie
group Diffan(Zdp) because if X,Y are of norm ≤ |p|c with c > 1

p−1
, then they admit global Tate-analytic

flows ΦX and ΦY by Proposition 3.13 and

[X,Y] = ∂
∂s |s=0

∂
∂t |t=0

ΦX
−s ◦ ΦY

t ◦ ΦX
s

= ∂
∂s |s=0

∂
∂t |t=0

ιΦX
s

(ΦY
t )

= Did Ad(X)(Y) = ad(X)(Y).
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On the other hand, if f, g ∈ Diffanc (Zdp) with c > 1
p−1

, then ∂
∂s |s=0

∂
∂t |t=0

Φf−s ◦ Φgt ◦ Φfs = [Xf ,Xg] =

adXf (Xg).

Remark 3.30. Since Bell-Poonen theorem holds for any ultrametric field, the same proof shows that Diffan(Dd
p) is

a Lie group over Cp. In fact, for any complete extension K of Qp with unit ball A, the group Diffan(Ad) is a
Lie group over K.

Theorem 3.31 ([Bou06], §8, Theorem 1). Let G,H be Lie groups over Qp and φ : G → H be a continuous
homomorphism of topological groups. Then, φ is analytic and therefore a homomorphism of Lie groups.

Remark 3.32. The proof relies heavily on Q being dense in Qp and the theorem is false if we replace Qp by
any finite extension of Qp. Indeed, suppose for example that K = Qp(

√
α) is a quadratic extension. Any

element z of K is of the form z = x+
√
αy. Then, the function

f : z = x+
√
αy 7→ x−

√
αy

is a continuous group homomorphism, it is Qp-analytic but not K-analytic as f|1·Qp = id and f|√α·Qp = − id.

Let Γ be a finitely generated group, the pro-p completion Γp of Γ is the projective limit of the quotient
of Γ that are finite p-groups, it is a topological group with respect to the profinite topology. In particular, for
any γ ∈ Γ, the group homomorphism n ∈ Z 7→ γn ∈ Γ extends uniquely to a continuous group homomorphism t ∈
Zp 7→ γt ∈ Γp. In the context of Tate-analytic diffeomorphisms, if p ≥ 3 and f ≡ id mod p, then the extension
n ∈ Z 7→ fn ∈ Diffan1 (Zdp) is the Tate-analytic flow t ∈ Zp 7→ Φft ∈ Diffan(Zdp) associated to f given by
Bell-Poonen theorem.

Proposition 3.33. Let p be a prime, let c > 0 be such that c > 1
p−1

and let G be a compact Lie group over Qp.
Let Γ be a finitely generated subgroup of G such that G is the pro-p-completion of Γ and let ι : Γ→ Diffanc (Zdp) be
a group homomorphism, then ι extends uniquely to a Lie group homomorphism ι : G→ Diffanc (Zdp) such that for
all t ∈ Zp, all g ∈ Γ, ι(gt) = ι(g)t and the map (t,x) ∈ Zp × Zdp 7→ ι(g)t(x) is analytic.

Proof. Theorem 2.11 of [CX18] shows that ι extends uniquely to a continuous map. In [CX18] this is only shown
when p ≥ 3 and c = 1 but the proof is identical with p ≥ 2 and c > 1

p−1
at it is only required that the image

of the elements of Γ admits a Tate-analytic flow. Since G and Diffanc (Zdp) are both Lie groups over Qp, ι is
automatically a Lie group homomorphism by Theorem 3.31.

Theorem 3.34 ([Bou06], §8, Theorem 2). Let G be a finite-dimensional Lie group over Qp, then every closed
subgroup of G is a Lie subgroup of G.

Proposition 3.35 ([Bou06], §9, Corollary of Proposition 6). Let G be a finite-dimensional Lie group over Qp and g its
Lie algebra, there exists an open subgroup G0 of G such that for all i ≥ 0, the subgroups Di(G0) and Di(G0) are
Lie subgroups with Lie algebra Di(h) and Di(h) respectively.

3.4 Nilpotent groups and embedding into p-adic Lie groups.
3.4.1 Nilpotent groups

The main goal of this section is to show that ifH is a finitely generated nilpotent group with generators h1, . . . , hs,
then for any m ≥ 1 the subgroup Hm of H generated by hm1 , . . . , hms is a finite index subgroup of H. This will
be useful in the proof of Theorem B because if H ⊂ Diffan1 (Zdp) we will need to consider such a subgroup Hm to
get the desired result.

Recall the notation introduced in § 1.2.1 for nilpotent and solvable groups and Lie algebras. We shall say
that an expression that involves k commutator brackets is a commutator of length k; for instance [[a, [b, c]], d] is
a commutator of length 3 and a single element can be viewed as a commutator of length 0. For k ≥ 1, we denote
by [a1; · · · ; ak] the commutator [a1, [a2, · · · , [ak−1, ak] · · · ]; its length is k.

LetG,G′, G′′ be groups, a map φ : G×G′ → G′′ is bilinear if for every g ∈ G, g′ ∈ G′, the maps φ(g, ·) and φ(·, g′) are
group homomorphisms. More generally, a map G1× · · · ×Gm → G is m-linear if fixing m− 1 coordinates yields
a group homomorphism. For any triple of elements x, y, z in G, we have

• [x, y]−1 = [y, x].

• [x, yz] = [x, y][y, [x, z]][x, z].

• [xy, z] = [x, [y, z]][y, z][x, z].

The image of the map (a, b) 7→ [a, b] from G×Dk−1(G) to Dk(G) generates Dk(G). It follows from the last
three formulas that, for every k ≥ 1, this map induces a bilinear map

cok : G×Dk−1(G) 7→ Dk(G)/Dk+1(G)

and the image Im cok generates Dk(G)/Dk+1(G).
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Proposition 3.36. Let G be a group and S a set of generators of G.

1. for every integer k ≥ 0, the subgroup Dk(G)/Dk+1(G) is generated by the commutators of length k consisting
of elements of S.

2. if G is finitely generated, then Dk(G)/Dk+1(G) is finitely generated for every k ≥ 0.

3. If G is nilpotent, then Dnilp(G)−1(G) is generated by the commutators of length nilp(G) − 1 in elements
of S.

Proof. Let us prove the first assertion by induction on k. LetXk be the set of commutators of length k in elements
of S. The initialization k = 0 follows from X0 = S and the fact that S generates G. Now, suppose k ≥ 1 and
that Xk−1 generates Dk−1(G)/Dk(G). The image of the map cok generates Dk(G)/Dk+1(G); by induction and
since cok(a, b) is a homomorphism with respect to a and with respect to b, the elements [s, xk−1] for s in S and xk−1 ∈
Xk−1 generate Dk(G)/Dk+1(G), and these elements are exactly the commutators of length k in the elements
of S. The second and third assertions follow from the first one.

Proposition 3.37. Let H be a finitely generated nilpotent group, then every subgroup H0 of H is finitely
generated.

For a proof see [Seg83] where this is actually shown for polycyclic groups, the result follows since finitely
generated nilpotent groups are polycyclic.

Proposition 3.38. Let H be a nilpotent group of nilpotency class t.

1. the map Brt : Ht → Dt−1, (h1, · · · , ht) 7→ [h1;h2; · · · ;ht] is multilinear.

2. If {h1, · · · , hs} generates H, then for every m ≥ 1, the subgroup generated by {hm1 , · · · , hms } is of finite
index in H.

Proof of the first assertion. Let us do an induction on t. The case t = 1 being trivial, suppose the result true
for a nilpotent group of class t− 1 and consider H a nilpotent group of class t. Since Dt(H) = 0, one has that
the map cot−1 : (h1, h) ∈ H ×Dt−2(H)/Dt−1(H) 7→ [h;x] ∈ Dt−1(H) is bilinear; thus, Brt is a homomorphism
with respect to the first factor h1 ∈ H. Let us show that Brt is a homomorphism in the second coordinates h2,
the other coordinates are dealt with in the same way. By induction, the map

Br
H/Dt−1(H)
t−1 : (H/Dt−1(H))t−1 → Dt−2(H)/Dt−1(H)

is multilinear. Take h1, h2, h
′
2, h3, · · · , ht−1 ∈ H, the multilinearity of Br

H/Dt−1(H)
t−1 provides an element g ∈

Dt−1(H) such that
[h1;h2h

′
2; · · · ;ht−1] = [h1, [h2; · · · ;ht−1] · [h′2; · · · ;ht−1] · g]

and the bilinearity of cot−1 gives the result since [h1, g] = 0.

Proof of the second assertion. We set S = {h1, · · · , hs} and we denote by HS,m the subgroup of H generated
by the set {sm : s ∈ S}. We show by induction on t = nilp(H) that HS,m is of finite index in H.

If t = 1 then H is abelian and there is a unique surjective group homomorphism Zs → H sending the
canonical basis to S = (h1, · · · , hs). The subgroup HS,m is the image of mZs. Therefore, there is a surjective
group homomorphism Zs/mZs � H/HS,m and we get that H/HS,m has at most ms elements.

Now suppose the result true for a group of nilpotency class t − 1 and assume nilp(H) = t, with t ≥ 2.
Set T := Dt−1(H), T is central in H. One has the exact sequence

1→ T → H → H/T → 1.

By induction, the image of HS,m in H/T is of finite index; thus, one can fix a finite set A ⊂ H such
that H =

⊔
h∈A hHS,mT . To conclude, we only need to show that the index of T ∩ HS,m in T is finite.

Since, T ∩ HS,m contains the subgroup of t − 1 commutators Dt−1(HS,m) it suffices to show that the index
of Dt−1(HS,m) in T is finite.

By Proposition 3.36, T is generated by the set S′ = {[x1; · · · ;xt−1] : xi ∈ S} and Dt−1(HS,m) is generated
by the set S′′ = {[xm1 ; · · · ;xmt−1] : xi ∈ S} furthermore, the first assertion shows that S′′ consists exactly of the
elements of S′ raised to the power mt−1. So by the abelian case, Dt−1(HS,m) is of finite index in T .
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3.4.2 Malcev’s completion of nilpotent torsion-free finitely generated group

Denote by Ẑ =
∏
p prime Zp equipped with the product topology (the adelic topology). It is the profinite

completion of Z. Let H be a nilpotent torsion-free finitely generated group. It is known that H embeds
into Tri1(n,Z) the group of upper triangular matrices with integer coefficients and 1’s on the diagonal for
some integer n (see for example [Seg83] Theorem 2 of Chapter 5). For the rest of this section, we fix an
embedding ι : H ↪→ Tri1(n,Z). There are two topologies that one can consider on ι(H). First the adelic
topology induced by the inclusion Tri1(n,Z) ⊂ Tri1(n, Ẑ), and second, the profinite topology where a basis of
neighbourhood for the neutral element are the subgroups of finite index in ι(H).

Proposition 3.39. Let G ⊂ Tri1(n,Z) be a subgroup of matrices with integer coefficients and 1’s on the diagonal,
then the profinite topology and the adelic topology on G are the same. In particular, the profinite completion of
G coincides with the closure of G in Tri1(n, Ẑ).

Proof. First, let K be a subgroup of GLn(Z) of the form K = {A ∈ GLn(Z) : A ≡ id mod m} for some inte-
ger m, such groups K form a basis of open neighbourhood of id for the adelic topology. It is a normal subgroup
of GLn(Z) with finite quotient, therefore G ∩K is a finite index subgroup of G. Therefore the adelic topology
is finer than the profinite topology.

Conversely, G is a unipotent group of matrices over Q, therefore it is arithmetic (see [Seg83] Exercise 13 of
Chapter 6). By the affirmative solution to the congruence subgroup problem for arithmetic soluble groups (see
[Cha80]), we get that G is a congruence subgroup. This means that every finite index subgroup of G contains a
subgroup of the form G∩{A ∈ GLn(Z) : A ≡ id mod m} for some integer m. Therefore, the profinite topology
is finer than the adelic topology; thus, they are the same.

A consequence of this proposition is that the profinite completion of ι(H) is exactly the closure of ι(H) in Tri1(n, Ẑ).

Proposition 3.40. Let G be a nilpotent subgroup of Tri1(n,Z). The closure of G in Tri1(n,Zp) is the pro-p-
completion of G, in particular it is a p-adic Lie group.

Proof. Denote by Ĝ the profinite completion of G and for a prime `, G` the pro-`-completion of G. Since G is
nilpotent and a finite nilpotent group is a product of `-groups for some primes ` (see [Bou70] chapter 1, §7,
Theorem 4) we have that Ĝ =

∏
`G`. By Proposition 3.39, we have a continuous injective homomorphism of

topological groups

Ĝ =
∏
`

G` ↪→ Tri1(n, Ẑ) =
∏
`

Tri1(n,Z`).

For a prime p, this induces a continuous group homomorphism Gp ↪→
∏
` Tri1(n,Z`). But, Gp is a pro-p-

group and for every prime `, Tri1(n,Z`) = lim←−Tri1(n,Z/`kZ) is a pro-`-group. Therefore, Gp can be identified
with the image of Ĝ in Tri1(n,Zp); this is exactly the completion of G in Tri1(n,Zp), meaning that Gp is a
closed subgroup of the p-adic Lie group Tri1(n,Zp), so it is a Lie group by Theorem 3.34.

Theorem 3.41. Let c > 0 be such that c > 1
p−1

and let H be a finitely generated nilpotent subgroup of Diffanc (Zdp),
then the closure H̄ of H in Diffan(Zdp) is a finite-dimensional nilpotent Lie group.

Furthermore, denote by h the Lie algebra of H̄, then h is a finite-dimensional nilpotent Lie algebra and
dl(h) ≥ vdl(H).

Proof. Set G = ι(H) and ψ := ι−1 : G → Diffanc (Zdp). By Proposition 3.40 and Proposition 3.33, ψ extends to
a Lie group homomorphism ψ : Gp → Diffanc (Zdp) where Gp is the closure of G in Tri1(n,Zp); we show that the
image of ψ is the closure of H in Diffan(Zdp).

Let K be the image of ψ. Since Tri1(n,Zp) is compact and Gp is closed, Gp is also compact and so is K.
This implies that the closure H of H is included in K. And K is included in H because of the continuity of ψ.
This shows that H is a finite dimensional Lie group isomorphic to Gp/ kerψ.

Now, we show the statement for h. By Proposition 3.35, there exists an open subgroup H1 of H, such
that Di(H1) is a Lie subgroup of H with Lie algebra Di(h). Since H1 is open, by Theorem 3.29 there exists an
integer c > 0 such that Diffanc (Zdp) ∩H ⊂ H1. Take f1, · · · , fs generators of H. Then by Proposition 3.38 the
subgroup H ′ generated by the fp

c

i ’s is a finite index subgroup of H and it is included in H1 by Lemma 3.10,
therefore dl(h) = dl(H1) ≥ dl(H ′) ≥ vdl(H).

4 Finitely generated nilpotent groups

4.1 Base change from C to Zp: Good models
To prove Theorem B, we shall ultimately apply Theorem 3.41. Thus, we need a method to transfer problems
regarding groups of automorphisms defined overC to similar problems on groups of Tate analytic diffeomorphisms
over Zp, for certain primes p.
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Theorem 4.1 (Lech, see [Lec53]). Let K be a finitely generated field over Q and let S be a finite subset of K.
Then there exists an infinite number of prime numbers p with an embedding K ↪→ Qp such that all elements
of S are mapped to Zp.

Let X be an irreducible quasiprojective variety over C and Γ a finitely generated subgroup of Aut(XC).

• Let R be an integral domain. We say that (X,Γ) is defined over R, if there exists an irreducible separated
reduced scheme XR over R and an injective homomorphism Γ ↪→ AutR(XR) such that X and Γ are
obtained by the base change X = XR ×SpecR SpecC.

• Let p be a prime number. A model of (X,Γ) over Zp is the data of

(i) A ring R ⊂ C over which (X,Γ) is defined and an embedding R ↪→ Zp.
(ii) An irreducible variety X over Zp and an injective homomorphism ρ : Γ ↪→ AutZp(X ) such that

X ' XR ×SpecR SpecZp.

is the base change of XR and for all f ∈ Γ, ρ(f) is the base change of f .

• A good model over Zp of (X,Γ) is the data of a model of (X,Γ) with the additional condition that the
special fiber XFp = X ×Spec Zp SpecFp is geometrically reduced and irreducible and of dimension

dimFp(XFp) = dimQp(X ×SpecR SpecQp).

Proposition 4.2 (Proposition 4.4 of [BGT10], Proposition 3.2 of [CX18]). Let X be an irreducible complex
quasi-projective variety, α ∈ X(C) and Γ be a finitely generated subgroup of AutC(X). Then, there exists an
infinite number of primes p ≥ 3 such that (X,Γ) has a good model X over Zp and such that α extends to a
section α : SpecZp → X .
Example 4.3. For simplicity, supposeX is the affine space Ad

C with its standard coordinates x1, · · · , xd and Γ ⊂
Aut(Ad

C) is a finitely generated group of polynomial automorphisms. This is already an interesting example.
Let S be a finite symmetrical (S−1 = S) set of generators of Γ. Let R be the ring generated by all the coefficients
of the elements of S and the coordinates of α. Then, (X,Γ) is defined over R. Plus, by Theorem 4.1 there exists
a prime p and an embedding ι : R ↪→ Zp. Using this embedding, the base change X = Ad

Zp and ρ : Γ ↪→
Aut(Ad

Zp) show that (Ad,Γ) is a good model over Zp and α extends to a Zp-point of X .

4.2 From algebraic automorphisms to analytic diffeomorphisms over Zp

In this section, we consider a scheme X of dimension d over Zp, where p ≥ 3 is a prime number, such that

• X is a quasi-projective variety over Zp, and its generic fiber is geometrically irreducible over Qp.

• X = X ×Spec Zp SpecFp is the special fiber of X and is geometrically irreducible over Fp.

• f : X → X is an automorphism of Zp-schemes.

• f : X → X is the restriction of X to the special fiber.

• r : X (Zp)→ X (Fp) is the reduction map.

• x is a smooth Fp-point and there exists α ∈ X (Zp) such that r(α) = x.

For the two next propositions, we refer to [BGT10]. They will enable us to go from algebraic automorphisms
to analytic diffeomorphisms.

Proposition 4.4. Let X be a quasi-projective scheme over Zp. There exists a function ι : Zdp → X (Zp) which
induces an analytic bijection between Zdp and the open subset of X (Zp) consisting of the points β such that r(β) =
x.

Proposition 4.5. Suppose that f̄(x) = x. Let ι : Zdp → X (Zp) be the function defined in Proposition 4.4. Then
there exist analytic functions F1, · · · , Fd ∈ Zp〈T1, · · · , Td〉 such that

(i) One has
ι−1 ◦ f ◦ ι = (F1, · · · , Fd) =: F ∈ Zp〈T1, · · · , Td〉d.

(ii) if F̄ is the reduction mod p of F , then F̄ = F0 + F1 with F0 ∈ (Z/pZ)d and F1 ∈ GLd(Z/pZ).

Furthermore F is a Tate-analytic diffeomorphism because f is an automorphism.

Example 4.6. Propositions 4.4 and 4.5 are proven in [BGT10]. We only do the proof in the case X = Ad
Zp .

Take standard coordinates x = x1, · · · , xd over X . Then, X = SpecZp[x] and X = SpecFp[x]. The reduction
map r : X (Zp) = Zdp → X (Fp) = Fdp is the reduction mod p coordinates by coordinates.

Take x ∈ Fdp and z ∈ Zdp such that r(z) = x, then the open subset of X (Zp) of elements β such that r(β) = x is
the ball of center z and radius 1/p. The analytic bijection ι is given by ι : m ∈ Zdp 7→ z + p ·m ∈ X (Zp) = Zdp.
This proves Proposition 4.4.
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Now, take a polynomial automorphism f , the map f is the polynomial automorphism over Fdp obtained when
taking the coefficients of f mod p. Take a point x ∈ Fdp such that f̄(x) = x, up to a conjugation by a translation
(which does not change the result), we can suppose that x = 0 ∈ Fdp. This means that f preserves the ball of
center 0 and radius 1/p in Zdp. Writing f in coordinates, we have

f(x) = pa0 +A1(x) +A2(x) + · · ·

where a0 ∈ Zdp and Ai is the homogeneous part of degree i of f . Then,

ι−1 ◦ f ◦ ι(x) =
1

p
f(px) = a0 +A1(x) +

∑
k≥2

pk−1Ak(x).

This is indeed an element of Zp〈x〉d and 1
p
f(px) is an invertible affine transformation of Fdp, this proves Propo-

sition 4.5.

Proposition 4.7. [Proposition 3.3 of [CX18]] Let Γ be a finitely generated subgroup of AutZp(X ). There exists
a finite index subgroup Γ0 ⊂ Γ and an open subset U ⊂ X (Zp) analytically diffeomorphic to Zdp such that U is
stable by the action of Γ0 on X and this action over U is conjugated to the action of a subgroup of Diffan1 (U).

Proof. Since r(α) = x ∈ X (Fp), the set X (Fp) is not empty and since X has finitely many Fp-points, there exists
a finite index subgroup Γ1 ⊂ Γ that acts trivially on X (Fp). The point x is fixed by Γ1, let ι be as in Proposition
4.4 and U the open subset of X (Zp) consisting of the points β such that r(β) = x. Therefore, Γ1 preserves U and
by applying Proposition 4.5 to the elements of Γ1, we get that conjugation by ι induces a group homomor-
phism Γ1 ↪→ Diffan(Zdp). Composing this embedding with the homomorphism of reduction mod p induces a
group homomorphism from Γ1 to the finite group of affine transformations of (Z/pZ)d. Denote by Γ0 the kernel
of this homomorphism and the theorem is proven.

4.3 Proof of Theorem B
Take H a finitely generated nilpotent group acting by algebraic automorphisms on a quasi-projective vari-
ety X over a field of characteristic zero.

We are first going to show that we can suppose X to be irreducible in order to work on a Zp-scheme: X has
a finite number of irreducible components and H permutes them. So there exists a finite index subgroup H ′ ⊂
H that stabilizes every irreducible component Xi of X. Call Hi the restriction of H ′ to Xi, then H ′ =∏
Hi and vdl(H ′) = min vdl(Hi). We replace X by one of its irreducible component of maximal dimension

and H by H ′ restricted to this component, H ′ is also finitely generated by Proposition 3.37.
Let α ∈ X(C), X is then an irreducible complex quasi-projective variety of dimension d, by proposition 4.2,

there exists a prime number p ≥ 3 such that (X,H) admits a good model X over Zp and such that α extends
to a Zp-point of X . Now, by Proposition 4.7, there exists a finite index subgroup H0 ⊂ H which is isomorphic
to a subgroup of Diffan1 (U), for U an open subset of X (Zp) analytically diffeomorphic to Zdp. By Proposition
3.37, H0 is a finitely generated nilpotent subgroup of Diffan1 (Zdp). Using Theorem 3.41, we get that the Lie
algebra h associated to H0 is nilpotent and dl(h) ≥ vdl(H0) ≥ vdl(H). Applying Theorem 3.16, we get d ≥
vdl(H).

4.4 Optimality of Theorem B
An example from [ET79].– We will use the construction from [ET79] to find groups where Theorem B
is optimal.

Let n be an integer and let A be the matrix such that A(ei) = ei+1, 1 < i ≤ n where ei is the canonical
basis. Consider the subgroup of affine transformations G = {x ∈ Rn 7→ exp(tA)x+ b : t ∈ R, b ∈ Rn}, we will
write (t; b) for the element (x 7→ exp(tA)x + b). This is a real Lie group of dimension n + 1 of nilpotency
class n and derived length 2, diffeomorphic to Rn+1. The group law is given by

(t; b)(s; c) = (t+ s; b+ etAc).

Notice that the group law is given by polynomials with rational coefficients in s, t and the coordinates of b and
c; thus G is in fact an algebraic group.

Lemma 4.8. Recall the notation of 3.4.1. Let k < n be an integer. The map

((t0; b0), · · · , (tk; bk)) ∈ Gk+1 = R(n+1)(k+1) 7→ Brk+1 ((t0; b0), · · · , (tk; bk)) ∈ G = Rn+1

is a nonconstant polynomial map with rational coefficients from R(n+1)(k+1) to Rn+1.

Proof. The map is polynomial with rational coefficients because the group law is, and this map is not constant
because nilp(H) = n > k.
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Consider the vector space generated by the translations Tei , 2 ≤ i ≤ n. The Lie group S acts on the
variety G on the left and G/S is a variety diffeomorphic to R2. The diffeomorphisms are given by

[(t; b)] ∈ G/S 7→ (t, b1) ∈ R2

and
(x, y) ∈ R2 7→ [(x; ye1)] ∈ G/S

where the brackets mean that we take the orbit under the action of S.
The group G acts by right composition on G/S and this action is faithful. The formulas are given by

∀(t; b) ∈ G,∀(x, y) ∈ R2 = G/S, (x, y) · (t; b) =

(
x+ t, y +

n∑
k=1

tk−1

(k − 1)!
bk

)
.

We see that the action is therefore by polynomial automorphisms. We will write (t; b) on the left even though
the action is on the right because we view it as a polynomial automorphism of A2

C.

A group where theorem B is optimal.– Now, take H a finitely generated subgroup of G such
that nilp(H) = n and H contains two elements (t; b), (s; c) such that t, s and all the coordinates of b, c are
algebraically independent over Q. The group H satisfies the condition of Theorem B, it acts faithfully on the
quasiprojective variety A2

C and we have vdl(H) = 2. Indeed, if H admits an abelian finite index subgroup, then
there exists an integer N such that (t; b)N and (s; c)N commute. But this would give a non-trivial polynomial
relation over Q between s, t and the coordinates of b, c by Lemma 4.8, this is absurd. Thus, the bound in
Theorem B is optimal for H.

Derived length versus nilpotency class.– In Theorem B we suppose that H is nilpotent. One might
wonder if the bound can be improved using the virtual nilpotency class, i.e the minimum of nilp(H ′) for H ′ of
finite index in H. We show that this is not possible with a similar counterexample as above. Take H a finitely
generated subgroup of G such that H contains (t0; b0), · · · , (tn−1; bn−1) ∈ Gn such that all the ti’s and the coor-
dinates of the bi’s are algebraically independent over Q. We show that every finite index subgroup H ′ of H has a
nilpotency class equal to n. Indeed, there exists an integer N such that for all 0 ≤ i ≤ n−1, hi := (ti; bi)

N ∈ H ′.
The coordinates of the hi’s are still algebraically independent over Q because the group law is given by poly-
nomials with rational coefficients and by Lemma 4.8, the bracket [h0; · · · ;hn−1] of length n is not the identity,
because that would give a nontrivial polynomial relation between the coordinates of the hi’s.

Optimality of Theorem 3.16.– We show that in Theorem 3.16 we can’t replace the derived length with
the nilpotency class and that the theorem is optimal. In fact, the counterexample of [ET79] can be adapted
over Zp as follows. Consider the group G given by

G :=
{
x ∈ Znp 7→ exp(p · tA)x + b : t ∈ Zp, b ∈ Znp

}
.

The group law is now given by polynomials with coefficients in Zp and Lemma 4.8 still holds but the polynomials
are with coefficients in Zp.

Then, G/S is analytically diffeomorphic to Z2
p and we have an embedding of Lie groups G ↪→ Diffan(Z2

p) given
by

∀(t; b) ∈ G, (t; b)(x, y) =

(
x+ t, y +

n∑
k=1

pk−1tk−1

(k − 1)!
bk

)
.

Let g ⊂ Θ(Z2
p) be the Lie algebra of G, g is nilpotent and we show that nilp(g) = n. Let k = nilp(g), then by

Proposition 3.35, there exists a small subgroup G′ of G which is a neighbourhood of id such that nilp(G′) = k.
Therefore k ≤ n, suppose k < n. By Lemma 4.8 the map

(t0; b0), · · · , (tk; bk), (x, y) ∈ Z(n+1)(k+1)
p × Z2

p 7→ Brk+1((t0; b0), · · · , (tk; bk))(x, y) ∈ Z2
p

is polynomial. Let P1(w), P2(w) be the first and second coordinate of this map where w is a multivariate
variable representing all the variables ti, bi, x, y. Since, nilp(G) > k, the polynomials Q1(w) = P1(w) − x,
Q2(w) = P2(w)−y are not zero. Notice that if (t; b) ∈ G, then the Gauss norm of (t; b)−id ∈ Zp〈x, y〉2 is bounded
by the norm of (t; b) ∈ Zn+1

p , therefore there exists an integer N > 0 such that for all (t; b) ∈ G, (pN t; pNb) ∈ G′;
thus

Q1(pNw) ≡ 0, Q2(pNw) ≡ 0

and this implies that Q1 = 0, Q2 = 0, this is a contradiction.
By a similar argument, we can show there are no small abelian subgroups G′ ⊂ G neighbourhood of the

identity therefore dl(g) = 2 by Proposition 3.35 and Theorem 3.16 is also optimal.
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