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CHAPITRE 1

INTRODUCTION

Une variété affine X0 sur un corps algébriquement clos k est un sous espace de kN défini par
des équations polynomiales. Un endomorphisme polynomial de X0 est alors une transforma-
tion polynomiale de kN qui préserve X0 au sens où f pX0q Ă X0. Lorsque la dimension de X0

vaut 2, on dira que X0 est une surface affine. Le but de ma thèse est d’étudier le système dy-
namique donné par X0 une surface affine et f : X0 Ñ X0 un endomorphisme polynomial de
X0. Les différentes questions que j’aborderai sont les suivantes : y a-t-il des orbites denses ou
Zariski-denses? Si l’orbite d’un point part à l’infini, peut on contrôler sa vitesse de fuite ? Y
a-t-il beaucoup d’orbites périodiques? Comment construire des mesures invariantes qui sont
dynamiquement intéressantes? Pour répondre à ces questions, j’utilise des techniques valua-
tives. Le système dynamique pX0, f q induit un système dynamique pV8, f˚q où V8 est l’espace
des valuations centrées à l’infini de X0. C’est l’étude de cette action qui sera au cœur de ce
mémoire et permettra d’aborder ensuite les questions évoquées ci-dessus.

1.1 Endomorphismes

1.1.1 Degrés dynamiques

1.1.1.1 Transformations polynomiales de l’espace affine complexe

Une transformation polynomiale f de CN est la donnée de N polynômes fi P Crx1, ¨ ¨ ¨ ,xNs tels
que f “ p f1, ¨ ¨ ¨ , fNq. On définit le degré de f comme le maximum des degrés des fi ; on le note
deg f . On note f k pour le k-ième itéré de f . Lorsqu’on itère f le degré des formules de f k croît
typiquement de façon exponentielle. Il est donc naturel de considérer la quantité suivante :

λ1p f q :“ lim
k

´

deg f k
¯1{k

, (1.1)

introduite dans [RS97], que l’on appellera le premier degré dynamique de f dans la suite. Les
auteurs montrent que cette quantité est bien définie. On peut définir le premier degré dyna-
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mique de n’importe quelle transformation rationnelle de l’espace projectif PN avec un procédé
similaire.

1.1.1.2 Définitions générales

Soit X une variété projective lisse sur un corps algébriquement clos et soit d sa dimension. Pour
d diviseurs de Cartier D1, ¨ ¨ ¨ ,Dd de X on peut définir le produit d’intersection D1 ¨ ¨ ¨Dd P Z
(voir [Laz04]). Si f : X 99K X est une transformation rationnelle dominante, on définit pour
0ď l ď d le l-ième degré dynamique de f par

λkp f q :“ lim
nÑ8

´

p f n
q
˚Hk

¨Hd´k
¯1{n

, (1.2)

où H est un diviseur ample de X . On peut montrer que ces quantités sont bien définies, indé-
pendantes du choix de H. En particulier, λ0p f q “ 1. De plus, les degrés dynamiques sont des
invariants birationnels : si ϕ : X 99K Y est une application birationnelle, alors

λlp f q “ λlpϕ˝ f ˝ϕ
´1
q, @0ď l ď d. (1.3)

On a que λdp f q est le degré topologique de f où le degré topologique est définie comme le
degré de l’extension induit par f ˚ sur le corps des fonctions rationnelles de X . Les inégalités de
Khovanskii-Teissier (voir [Gro90], [DN05]) impliquent que la suite pλlq0ďlďd est log-concave ;
c’est à dire

logλl´1` logλl`1

2
ď logλl, @1ď l ď d´1. (1.4)

En particulier, on a @1ď l ď d,λ1p f ql ě λkp f q.

Soit X0 une variété affine lisse de dimension d et f : X0 Ñ X0 un endomorphisme de X0. On
définit les degrés dynamiques de f de la façon suivante. Une complétion de X0 est une variété
projective lisse X munie d’une immersion ouverte ι : X0 ãÑ X telle que ιpX0q est dense dans X .
L’endomorphisme f induit une transformation rationnelle de X par rf “ ι ˝ f ˝ ι´1 et on définit
les degrés dynamiques

λlp f q :“ λlprf q. (1.5)

Comme les degrés dynamiques sont des invariants birationnels, cette quantité ne dépend pas
du choix de la complétion X . En particulier, si X0 “ kN et X “ PN

k on retrouve la définition du
premier degré dynamique donnée au premier paragraphe.

La connaissance de ces degrés dynamiques donne des informations sur le système dyna-
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mique. Par exemple sur C, Dinh et Sibony ont montré dans [DS03] que pour toute transforma-
tion rationnelle f : X 99K X

htopp f q ď max
0ďlďd

logpλlq (1.6)

où htop est l’entropie topologique de f , Gromov avait au préalable montré ce résultat pour les en-
domorphismes de PN dans [Gro03]. Yomdin a montré dans [Yom87] l’égalité des deux membres
si f est un endomorphisme. Récemment, Favre, Truong et Xie ont montré dans [FTX22] que
l’inégalité (2.6) était encore valable dans le cadre non-archimédien ; cependant l’égalité n’est
pas vérifiée même pour des endomorphismes.

1.1.2 Degrés dynamiques sur les surfaces projectives

Une question naturelle est de se demander quels nombres peuvent apparaître comme le premier
degré dynamique d’une transformation rationnelle d’une surface projective. On peut d’abord
mentionner le résultat suivant dû à Bonifant et Fornaess dans [BF00] pour PN

C et généralisé par
Urech

Théorème 1.1.1 ([Ure16]). L’ensemble

tλ1p f qu (1.7)

où f parcourt l’ensemble des transformations rationnelles de toute variété projective lisse sur

n’importe quel corps, est dénombrable.

En 2021, Bell, Diller et Jonsson ont montré dans [BDJ20] l’existence d’une transformation
rationnelle σ : P2 99KP2 telle que λ1pσq est transcendant. Les trois auteurs et Krieger ont montré
dans [BDJ20] que cet exemple peut se généraliser pour donner un exemple de transformation
birationnelle de PN ,N ě 3 avec un premier degré dynamique transcendant. Mais en dimension
2, il y a de fortes contraintes sur λ1p f q pour f birationnelle. Dans [DF01], Diller et Favre
ont montré que le premier degré dynamique d’une transformation birationnelle d’une surface
projective est un entier algébrique. Plus précisément c’est un nombre de Pisot ou de Salem.
Dans [BC13], Blanc et Cantat ont obtenu les résultats suivants

Théorème 1.1.2. Soit X une surface projective sur un corps algébriquement clos.

1. Soit f : X 99K X une transformation birationnelle telle que λ1p f q est un nombre de Sa-

lem, alors il existe une application birationnelle ϕ : X 99K Y telle que ϕ ˝ f ˝ϕ´1 est un

automorphisme de Y .
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2. Si X est rationnelle sur un corps k, alors l’ensemble ΛpXq :“ tλ1p f q| f P BirpXqu ĂR est

bien ordonné. Il est fermé si k n’est pas dénombrable.

En particulier, ΛpXq est un ordinal et Bot montre dans [Bot22] que cet ordinal est exacte-
ment ωω où ω est l’ordinal des entiers naturels. On ne peut cependant pas espérer obtenir une
information sur les degrés des entiers algébriques obtenus. En effet Bedford, Kim et McMul-
len construisent dans [BK06] et [McM07] des exemples de transformations birationnelles de
surfaces projectives dont le premier degré dynamique est un entier algébrique de degré arbi-
trairement grand. En particulier le théorème 1.1 de [McM07] établit que pour tout d ě 10 on
peut trouver une surface projective avec un automorphisme de premier degré dynamique entier
algébrique de degré d.

1.1.3 Degrés dynamiques des endomorphismes des surfaces affines

Dans ma thèse je considère des endomorphismes de surfaces affines. Le premier exemple de
surface affine est le plan complexe C2. Un endomorphisme est alors une transformation poly-
nomiale. Même dans ce cas, le premier degré dynamique n’est pas nécessairement un entier. En
effet, soit

A“

˜

a b

c d

¸

(1.8)

une matrice à coefficients entiers positifs tels que ad´ bc ‰ 0. Considérons la transformation
monomiale suivante

f px,yq “
´

xayb,xcyd
¯

, (1.9)

alors f N est la transformation monomiale dont les monômes sont donnés par les coefficients de
AN et λ1p f q est égal au rayon spectral de A. Ainsi, λ1p f q est un entier algébrique de degré 2 car
il vérifie l’équation

λ1p f q2´TrpAqλ1p f q`detpAq “ 0. (1.10)

Ainsi, il existe des transformation polynomiales f du plan avec λ1p f q entier ou entier algébrique
de degré 2. Favre et Jonsson ont montré qu’il n’y a pas d’autres possibilités.

Théorème 1.1.3. [FJ07] Soit f : C2 Ñ C2 une transformation polynomiale dominante, alors

λ1p f q est un entier algébrique de degré ď 2.

Le premier résultat de ma thèse est d’étendre ce résultat à toutes les surfaces affines et en
toute caractéristique. Même si on peut trouver des surfaces affines où le monoïde des endo-
morphismes peut changer de façon drastique. Par exemple, Blanc et Dubouloz, dans [BD13],
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construisent des surfaces affines lisses avec un gros groupe d’automorphismes, bien plus riche
que celui du plan affine. Bot a utilisé cette construction pour montrer l’existence de surfaces
affines rationnelles lisses avec une infinité non dénombrable de formes réelles (voir [Bot23]).
Le travail établi dans ma thèse montre que même si du point de vue de la structure algébrique,
ces groupes sont bien plus riche ; du point de vue de la dynamique individuelle de chaque auto-
morphisme, ce n’est pas le cas.

Théorème A. Soit X0 une surface affine normale sur un corps k algébriquement clos. Si

f : X0 Ñ X0 est un endomorphisme dominant, alors λ1p f q est un entier algébrique de degré

ď 2.

La preuve utilise des techniques valuatives que je décris dans la section suivante. Si la ca-
ractéristique de k est nulle, j’obtiens des résultats sur la dynamique de l’endomorphisme f . Je
donnerai un énoncé précis dans le cas des automorphismes (voir Théorème C).

1.2 Valuations, Diviseurs à l’infini et dynamique

1.2.1 Existence d’une valuation propre

Soit A l’anneau des fonctions régulières d’une surface affine normale X0 sur un corps algébri-
quement clos k. Une valuation est une fonction ν : AÑ RYt8u telle que

1. νpPQq “ νpPq`νpQq ;

2. νpP`Qq ěminpvpPq,νpQqq ;

3. νp0q “ 8 ;

4. ν|kˆ “ 0

Deux valuations ν et µ sont équivalentes s’il existe t ą 0 tel que ν“ tµ. Par exemple, si X est une
complétion de X0, pour toute courbe irréductible E Ă X , la fonction ordE telle que ordEpPq est
l’ordre d’annulation de P le long de E est une valuation. Toute valuation de la forme λordE avec
λą 0 est dite divisorielle. Si f est un endomorphisme de X0, alors f induit un homomorphisme
d’anneaux f ˚ : AÑ A. On peut alors définir le poussé en avant f˚ν d’une valuation ν par

f˚νpPq “ νp f ˚Pq. (1.11)
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On dit qu’une valuation est centrée à l’infini s’il existe P P A tel que νpPq ă 0. Si X est une
complétion de X0 les valuations divisorielles centrées à l’infini sont exactement celles qui cor-
respondent aux composantes irréductibles de XzX0. Soit V8 l’ensemble des valuations centrées
à l’infini et pV8 celui des valuations centrées à l’infini modulo équivalence. Supposons pour
simplifier que f est un automorphisme de X0, alors f˚ induit une bijection de V8 et de pV8 qui
sera en fait un homéomorphisme pour une topologie que l’on décrira dans le mémoire.

Si X0 est le plan affine complexe, alors Favre et Jonsson prouvent l’existence d’une valuation
ν˚ PV8 telle que f˚ν˚“ λ1p f qν˚. Une telle valuation est appelée valuation propre de f . Pour ce
faire, ils montrent dans [FJ04] que pV8 a une structure d’arbre réel et f˚ est compatible avec cette
structure. L’existence de ν˚ provient alors d’un théorème de point fixe sur les arbres. L’existence
de cette valuation propre a un grand impact sur la dynamique de f . Elle permet notamment de
trouver une bonne complétion X de C2 qui admet un point fixe attractif de f à l’infini. Xie
utilise cette construction de valuation propre pour démontrer la conjecture des orbites Zariski-
denses et la conjecture de Mordell-Lang dynamique pour les endomorphismes du plan affine
([Xie17b]). Jonsson et Wulcan utilisent ces techniques pour construire une hauteur canonique
pour les endomorphismes du plan affine complexe avec petit degré topologique dans [JW12].

Théorème B. Soit X0 une surface affine normale sur un corps k algébriquement clos (de carac-

téristique quelconque) et f un endomorphisme dominant de X0. Sous les hypothèses suivantes

1. krX0s
ˆ “ kˆ.

2. Pour toute complétion X de X0, Pic0pXq “ 0.

3. λ1p f q2 ą λ2p f q.

Il existe une valuation centrée à l’infini ν˚, unique à équivalence près, de f telle que

f˚pvq “ λ1p f qν˚. (1.12)

Les techniques que j’emploie n’exploite pas la géométrie globale de pV8 au sens où cet es-
pace n’est plus nécessairement un arbre. Soit X une complétion de X0, je montre qu’à toute
valuation ν centrée à l’infini on peut associer un unique diviseur Zν,X de X supporté en de-
hors de X0, de plus si Y est une autre complétion de X0, il y a une compatibilité entre Zν,X et
Zν,Y (voir Proposition 3.6.6). Cette construction fait intervenir l’espace de Picard-Manin de X0.
L’analyse spectrale des opérateurs f˚, f ˚ définit par f sur cet espace (voir [BFJ08, Can11]) per-
met de construire la valuation propre ν˚ et de prouver son unicité. Ce procédé est similaire aux
techniques de [DF21] §6.
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1.2.2 Discussion des hypothèses du théorème

Les hypothèses du théorème B peuvent paraître arbitraires mais elles ne sont pas restrictives.
En effet, si les hypothèses (1) ou (2) ne sont pas vérifiées, alors on peut montrer que l’endo-
morphisme f préserve une fibration vers une variété 1quasi-abélienne. On peut décomposer la
dynamique de f par cette fibration et elle devient plus simple à étudier.

Si l’hypothèse (3) n’est pas satisfaite alors on a λ1p f q2 “ λ2p f q. Notons que dans ce cas
λ1p f q est automatiquement un entier algébrique de degré ď 2 car λ2p f q est le degré topolo-
gique de f , donc un entier. Dans le cas du plan affine complexe, Favre et Jonsson arrivent à une
classification des endomorphismes polynomiaux satisfaisant λ2

1 “ λ2 : ou bien ils préservent
une fibration rationnelle, ou bien il existe une complétion X de A2

C avec au plus des singu-
larités quotients à l’infini telle que f s’étende en un endomorphisme de X . Je m’attends à ce
qu’une classification similaire existe dans le cas général, tous les exemples que j’ai étudié jus-
qu’à présent satisfont cette dichotomie. On peut remarquer que dans le cas inversible, une telle
classification existe déjà : Par [Giz69] et [Can01], toute transformation birationnelle σ : X Ñ X

d’une surface projective lisse telle que λ1pσq “ 1 est un automorphisme de X ou préserve une
fibration rationnelle ou elliptique.

1.2.3 Énoncé du résultat dans le cas des automorphismes

En caractéristique nulle, l’existence de cette valuation propre a des conséquences sur la dyna-
mique de f . Je prouve également pour n’importe quel endomorphisme l’existence d’une com-
plétion X de X0 qui admet un point fixe attractif de f à l’infini et dans le cas des automorphismes
loxodromiques (c’est à dire avec λ1 ą 1), je démontre le résultat suivant

Théorème C. Soit X0 une surface affine normale sur C telle que CrX0s
ˆ “ Cˆ. Si f est un

automorphisme de X0 tel que λ1p f q ą 1, alors il existe une complétion X de X0 tel que

1. f admet un point fixe attractif p P XpCqzX0pCq à l’infini.

2. Un itéré de f contracte XzX0 sur p.

3. Il existe des coordonnées analytiques locales centrées sur p telles que f est localement

de la forme

1. Une variété quasi-abélienne est un groupe algébrique X tel qu’il existe un tore algébrique T et une variété
abélienne A satisfaisant la suite exacte 0Ñ T Ñ X Ñ AÑ 0 de groupes algébriques.
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(a)

f pz,wq “ pzawb,zcwd
q (1.13)

avec a,b,c,d des entiers ě 1, dans ce cas λ1p f q est le rayon spectral de

˜

a b

c d

¸

.

En particulier, λ1p f q P RzQ, c’est un entier algébrique de degré 2.

(b) ou bien

f pz,wq “ pza,λzcw`Ppzqq (1.14)

avec aě 2,cě 1 et Pı 0 un polynôme, dans ce cas λ1p f q “ a est un entier.

4. Les points fixes attractifs de f et f´1 sont distincts.

5. La forme normale de f´1 à son point fixe attractif est la même que celle de f .

Les cas (3)(a) et (3)(b) sont mutuellement exclusifs au sens suivant

Théorème D. Soit X0 une surface affine normale sur C telle que CrX0s
ˆ “ Cˆ et f P AutpX0q

un automorphisme loxodromique. On a la dichotomie suivante :

• Si λ1p f q P Zě0, alors pour tout automorphisme loxodromique g de X0, on a λ1pgq P Zě0

et la forme normale de g à son point attractif p est de la forme (1.14).

• Si λ1p f q R Zě0 alors c’est un entier algébrique de degré 2 et cela reste vrai pour tout

automorphisme loxodromique g de X0. En particulier, la forme normale de g à son point

fixe attractif est de la forme monomiale (2.13).

On donne deux exemples : le plan affine et la surface de Markov (voir §1.2.3.2). Les théo-
rèmes C et D montrent qu’il suffit de comprendre ces deux exemples pour comprendre la dyna-
mique d’un automorphisme d’une surface affine.

1.2.3.1 Le plan affine

Soit X0 “ A2
C, considérons l’automorphisme

f px,yq “ py` x2,xq. (1.15)

C’est un automorphisme de Hénon et on a λ1p f q “ 2. On considère la complétion X “ P2
C

avec les coordonnées homogènes X ,Y,Z telles que x “ X{Z et y “ Y{Z. La transformation
birationnelle induite par f possède un point fixe p` “ r1 : 0 : 0s et un point d’indétermination
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p´ “ r0 : 1 : 0s. La droite à l’infini tZ “ 0u est contractée par f sur p` et par f´1 sur p´.
Prenons les coordonnées locales pu,vq en p` données par u“ Y{X et v“ Z{X , on a

f pu,vq “
ˆ

v
1`uv

,
v2

1`uv

˙

. (1.16)

Et il existe un changement de coordonnées analytiques telle que f a la forme normale (1.14).
(Voir [Fav00] §2).

1.2.3.2 La surface de Markov

Considérons la surface de Markov M0 Ă A3
C donnée par l’équation

x2
` y2

` z2
“ xyz. (1.17)

C’est une surface normale avec une singularité quotient en p0,0,0q. On décrira plus en détail
ces propriétés dans le paragraphe 1.4. Une complétion naturelle de M0 est la surface projective
X Ă P3

C qui est définie comme l’adhérence de Zariski de M0 dans P3
C. L’équation de X est

T pX2
`Y 2

`Z2
q “ XY Z. (1.18)

On voit que XzM0 a pour équation

T “ 0,XY Z “ 0. (1.19)

C’est donc un triangle de 3 courbes rationnelles. Par le théorème 3.1 de [Can09], si f est un au-
tomorphisme loxodromique de M0 algébriquement stable sur X alors f possède un point fixe at-
tractif p` P XzM0 qui est un des sommets du triangle et un point d’indétermination p´ P XzM0

qui est un autre sommet du triangle. De plus, f admet une forme normale monomiale (i.e du
type (2.13)) en p`.

Remarque 1.2.1. On voit que pour toute complétion X du plan affine, le graphe dual de XzA2
C

est un arbre. En revanche, dans le cas de M0 le graphe dual de XzM0 se rétracte sur un cercle
pour toute complétion X . On montrera en fait que toute surface affine (possédant un automor-
phisme loxodromique) satisfait cette dichotomie. C’est cette dichotomie de la géométrie des
graphes duaux qui donnent la dichotomie de la dynamique (voir Théorème 4.4.4).
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1.3 Dynamique des automorphismes des surfaces affines

1.3.1 Dynamique des transformations de Hénon : Fonction de Green

Soit AutpA2
Cq le groupe des automorphismes polynomiaux du plan affine complexe. Les trans-

formations affines sont des exemples de tels automorphismes. En voici un autre : soit

f px,yq “ px,y`Ppxqq (1.20)

où P est un polynôme. L’automorphisme f préserve les droites d’équations x “ α et agit par
translation sur ces droites, le vecteur de translation est donnée par un polynôme en x à savoir
Ppxq. Un tel automorphisme est appelé élémentaire. On note E l’ensemble des automorphismes
élémentaires de A2

C, ces automorphismes forment un groupe isomorphe à pCrxs,`q. Le théo-
rème de Jung ([Jun42]) affirme que AutpC2q a une structure de produit amalgamé

AutpA2
Cq “ AffpA2

Cq ˚S E (1.21)

où S “ AffpA2
CqXE.

Un automorphisme de type Hénon est un automorphisme f qui n’est conjugué ni à un élé-
ment de AffpA2

Cq ni à un élément de E. Ils sont caractérisés par le fait qu’il vérifie λ1p f q ą 1.
Un exemple d’automorphisme de type Hénon que nous utiliserons dans la suite est le suivant

f px,yq “ py` x2,xq. (1.22)

L’extension de f à P2 a un point fixe à l’infini p` “ r1 : 0 : 0s et un point d’indétermination
p´ “ r0 : 1 : 0s. La droite à l’infini est contractée par f sur p`. De même p` est le seul point
d’indétermination de f´1 et p´ est un point fixe de f´1 sur lequel la droite à l’infini est contrac-
tée par f´1. Un automorphisme h sera dit régulier si les points d’indéterminations de h et de h´1

sont distincts. En particulier f est régulier et tout automorphisme de type Hénon est conjugué
à un automorphisme régulier [FM89]. Pour tout automorphisme de type Hénon h, λ1phq est un
entier que l’on notera d, en particulier λ1p f q “ 2.

On considère la norme ||px,yq|| “ maxp|x| , |y|q sur C2. Si h est un automorphisme régulier
de type Hénon, on peut définir les fonctions de Green de h (voir [FM89], [BS91a] et leurs
références)

G`ppq :“ lim
N

1
dN log`

ˇ

ˇ

ˇ

ˇhN
ppq

ˇ

ˇ

ˇ

ˇ , G´ppq :“ lim
N

1
dN log`

ˇ

ˇ

ˇ

ˇh´N
ppq

ˇ

ˇ

ˇ

ˇ (1.23)
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où log` “maxp0, logq. On a alors les propriétés suivantes (voir [BS91a]).

1. G` est bien définie, continue et plurisousharmonique sur C2

2. G` ˝h“ dG`

3. La fonction p ÞÑ G`ppq´ log`p||p||q s’étend en une fonction continue sur P2zp´.

4. G`ppq “ 0 si et seulement si l’orbite phNppqqNě0 est bornée.

La fonction G´ jouit de propriétés similaires. On peut alors définir les courants de Green
T` “ ddcG` et T´ “ ddcG´. Ce sont des p1,1q-courants positifs fermés. La mesure

µ :“ T`^T´ (1.24)

est alors bien définie car G`,G´ sont continues, elle est de masse totale finie et on peut supposer
que c’est une mesure de probabilité. On l’appelle la mesure d’équilibre de h. Elle est h-invariante
et son support est contenu dans l’ensemble de Julia de h.

On définit la fonction de Green suivante

G :“maxpG`,G´q (1.25)

qui satisfait les propriétés

1. G est une fonction continue, plurisousharmonique de C2 et est limite uniforme de

max
ˆ

1
dN log`p

ˇ

ˇ

ˇ

ˇ f N
ppq

ˇ

ˇ

ˇ

ˇq,
1

dN log`p
ˇ

ˇ

ˇ

ˇ f´N
ppq

ˇ

ˇ

ˇ

ˇq

˙

(1.26)

2. p ÞÑ Gppq´ log` ||p|| s’étend en une fonction continue sur P2.

3. Gppq “ 0 si et seulement si l’orbite p f NppqqNPZ est bornée.

1.3.2 Dynamique des automorphismes des surfaces affines

Grâce au théorème C, je démontre le résultat suivant :

Théorème E. Soit X0 une surface affine normale sur C, soit X une complétion de X0 qui vérifie

le théorème C. Soit X ãÑ PN un plongement de X qui induit un plongement X0 ãÑCN et soit ||¨||

23



Introduction

une norme sur CN . Si f est un automorphisme de X0 tel que λ1p f q ą 1, la fonction de Green

G`ppq :“ lim
N

1
λN

1
log`p

ˇ

ˇ

ˇ

ˇ f N
ppq

ˇ

ˇ

ˇ

ˇq (1.27)

vérifie les propriétés suivantes

1. G` est bien définie, continue et plurisousharmonique sur X0pCq.

2. G` ˝ f “ λ1G`

3. G` est à croissance logarithmique (voir Proposition 5.2.5).

4. G`ppq “ 0 si et seulement si l’orbite p f NppqqNě0 est bornée.

On peut alors considérer la fonction G“maxpG`,G´q qui va jouir de propriétés similaires
au cas Hénon. Il y a cependant une différence majeure. En général, le maximum de deux fonc-
tions à croissance logarithmique n’est pas à croissance logarithmique. Il y a donc une difficulté
supplémentaire ici. Il s’avère que nous avons deux comportements différents : si λ1p f q PZě0, G

est encore à croissance logarithmique et tout se passe comme dans le cas Hénon. Si λ1p f q RZě0,
alors G n’est pas à croissance logarithmique et donc ce n’est pas la bonne fonction à considérer,
il faut alors utiliser les travaux récents de Yuan et Zhang sur les fibrés en droite adéliques sur
les variétés quasiprojectives, Je serai plus précis dans la section suivante.

1.3.3 Dynamique aux places non-archimédiennes

Soit K un corps de nombre. Une valeur absolue |¨| sur K est une fonction |¨| : K Ñ R` qui
vérifie les axiomes suivants

• |x| “ 0ô x“ 0,

• @x,y PK, |xy| “ |x| ¨ |y|,

• @x,y PK, |x` y| ď |x|` |y|.

Deux valeurs absolues |¨|1 , |¨|2 sont équivalentes si |¨|1 “ |¨|
s
2 pour un certain s ą 0. Une place

est une classe d’équivalence de valeur absolue, on note M pKq l’ensemble des places de K. Si
|¨| est une valeur absolue de K, on peut considérer la complétion de K par rapport à |¨|. Cette
complétion ne dépend en fait que de la place v de |¨|, on la note Kv. La valeur absolue |¨| s’étend
alors à Kv et admet une extension naturelle à Kv. On note Cv le complété de Kv par rapport à
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|¨|. Cette construction ne dépend que de la place v. On dit que |¨| est non-archimédienne si elle
vérifie l’inégalité suivante

@x,y PK, |x` y| ďmaxp|x| , |y|q. (1.28)

Une place v est non-archimédienne si un de ses représentants l’est. Pour toute place archimé-
dienne v, on a Cv “ C. Les énoncés du paragraphe §1.3.1 ont des analogues lorsque C est
remplacé par un corps algébriquement clos complet non archimédien Cv. En effet, Kawaguchi
montre dans [Kaw09] que la fonction de Green d’un automorphisme de type Hénon est bien dé-
finie également dans le cas non-archimédien. Si Cv est non-archimédien, la fonction de Green
G “ maxpG`,G´q induit un fibré en droites métrisé semipositif sur l’analytifié de Berkovich
de P2

Cv
que l’on note pP2

Cv
qan (voir [Zha93] pour la définition). La mesure d’équilibre associée

est une mesure positive sur pP2
Cv
qan, elle est construite dans [Cha03]. Il est à noter que des

travaux plus récents de Chambert-Loir et Ducros [CD] permettent de construire les courants
T˘ “ ddcG˘ et de définir la mesure d’équilibre de la même manière que dans le cas complexe
µ“ T`^T´. De plus, Lee montre dans [Lee13] que l’orbite de Galois de toute suite 2générique
de points périodiques de f est équidistribuée par rapport à la mesure µ“ T`^T´ et ce à toutes
les places en utilisant le théorème d’équidistribution de Yuan dans [Yua08].

Je prouve également un analogue du théorème C dans le cas non archimédien. On définit
également les fonctions G`,G´,G dans ce contexte. Cependant les problèmes évoquées à la
fin du paragraphe 1.3.2 subsiste. Si λ1p f q P Zě0, alors la donnée des fonctions de Green pGvq

pour chaque place v de K induit un fibré en droites adélique semipositif (cf [Zha93]) sur une
complétion X de X0 et le théorème d’équidistribution arithétique de Yuan s’applique.

Maintenant si λ1p f q R Zě0, on ne peut pas appliquer la théorie des fibrés en droite adélique
sur la complétion X . Le bon point de vue est de considérer non pas une complétion de X0 mais
l’ensemble de toutes les complétions X de X0. C’est le point de vue développé par Yuan et Zhang
dans [YZ22]. Les auteurs définissent alors la notion de fibré en droites adélique associé à une
variété quasiprojective U comme une limite de fibrés en droites adéliques sur des complétions
de U . Ils démontrent dans ce contexte un théorème d’équidistribution arithmétique similaire au
théorème de Yuan. Je conjecture dans mon mémoire le fait suivant (voir Conjecture F) :

Conjecture F. La donnée de pG`v q et pG´v q pour toute place v de K induisent deux fibrés en

droites adéliques nef f -invariant sur la variété quasiprojective X0. En particulier, on peut définir

la mesure d’équilibre µv de f à toute place comme la mesure de probabilité proportionelle à

ddcG`v ^ ddcG´v et l’orbite de Galois de toute suite générique de points périodiques de f est

2. Une suite est générique si aucune sous suite n’est contenue dans une sous variété fermée stricte
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équidistribuée par rapport à µv pour toute place v.

Je pense que les travaux établis dans ce mémoire et les travaux de Yuan et Zhang permettront
de prouver cette conjecture à l’aide d’une construction similaire au §4 de [YZ17](voir §1.5.1).

1.3.4 Des automorphismes avec une infinité de points périodiques com-
muns

Si X0 une surface affine normale sur K, un corps de nombre, et f un automorphisme loxo-
dromique de X0, on peut mener l’étude de la section précédente aux places archimédiennes et
non-archimédiennes. On obtient ainsi une mesure d’équilibre µ f ,v pour f à toutes les places v

de K. Grâce aux techniques d’équidistributions arithmétiques mentionnées dans le paragraphe
précédent, je démontre le résultat suivant.

Théorème G. Soit X0 une surface affine normale défini sur un corps de nombres K. Si f ,g sont

deux automorphismes loxodromiques de X0 tels que λ1p f q P Zě0, les assertions suivantes sont

équivalentes

1. Perp f qXPerpgq est Zariski-dense.

2. @v PM pKq,µv, f “ µv,g

3. Perp f q “ Perpgq.

Dans le cas λ1p f q R Zě0, en admettant la conjecture F, on a que si Perp f q X Perpgq est

Zariski-dense, alors @v PM pKq,µ f ,v “ µg,v.

En utilisant des méthodes similaires, ce genre d’énoncé a d’abord été obtenu par Baker,
DeMarco dans [BD11a] pour les endomorphismes de P1 de degré ě 2 sur C puis a été généra-
lisé par Yuan et Zhang pour les endomorphismes polarisables de Pm sur un corps de nombres
dans [YZ17] et récemment dans [YZ21] sur n’importe quel corps de caractéristique nulle. Dans
[CD20], Cantat et Dujardin utilisent ces mêmes outils de dynamique arithmétique pour montrer
des résultats de rigidité sur les groupes d’automorphismes de surfaces projectives.

La conjecture F ne suffit pas à montrer l’égalité Perp f q “ Perpgq car la preuve utilise une
version arithmétique du théorème de l’indice de Hodge qui n’a pas encore été démontré pour
les fibrés en droites adéliques sur les variétés quasi-projectives (voir Théorème 5.1.20).
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1.4 Un résultat de rigidité pour la surface de Markov

Dans [DF17] Dujardin et Favre montrent un résultat plus fort que celui du théorème G. Ils
obtiennent que si deux automorphismes de Hénon vérifient une des assertions du théorème G,
alors f et g ont des itérés communs : il existe deux entiers M,N P Z tels que f N “ gM. Ce
résultat de rigidité ne peut pas être vrai pour toute surface affine. En effet, si X0 “ CˆˆCˆ.

Soit A“

˜

a b

c d

¸

P SL2pZq telle que pTrAq2 ą 4, alors on définit l’automorphisme

fApx,yq “ pxayb,xcyd
q (1.29)

Si S1 “ tz P C| |z| “ 1u, alors S1ˆS1 est un compact invariant par fA. C’est l’ensemble de Julia
de fA et les points périodiques de fA sont exactement les points pω1,ω2q P S1ˆS1 où ω1,ω2

sont des racines de l’unité. Ainsi, tous les automorphismes obtenus ainsi vérifie le théorème G
mais n’ont pas d’itérés communs.

Soit D P C, on définit la surface de Markov MD comme la surface dans C3 définie par

x2
` y2

` z2
“ xyz`D (1.30)

Cette famille de surfaces est à la frontière de plusieurs domaines (voir [Can09]). Notam-
ment, si T1 est le tore épointé, son groupe fondamental π :“ π1pT1q est un groupe libre à deux
générateurs que l’on note a et b. On peut s’intéresser à la variété de caractères

X :“ Hompπ,SL2pCqq{{SL2pCq (1.31)

où l’action de SL2pCq est donnée par la conjugaison et {{ est le quotient au sens de la théorie
géométrique des invariants (GIT). On note ra,bs :“ aba´1b´1 le commutateur de a et b. Soit
ρ P X , si on note x“ Trρpaq,y“ Trρpbq,z“ Trρpabq, alors on a que

X Ñ A3
C (1.32)

ρ ÞÑ px,y,zq (1.33)

est un isomorphisme. C’est un résultat de Fricke (voir [Gol09]). De plus on a l’égalité suivante

x2
` y2

` z2
“ xyz`Trpρpra,bsqq`2. (1.34)
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Autrement, dit la variété algébrique X est feuilleté par la famille des surfaces de Markov et la
surface MD représente une ligne de niveau pour la fonction régulière ρ ÞÑ Trpρpra,bsqq.

Théorème H. Soit D “ 0 ou bien D “ 2´ 2cosp2π{qq avec q ě 2. Si f ,g sont deux automor-

phismes loxodromiques de MD, alors en admettant la conjecture F, les assertions suivantes sont

équivalentes :

1. Perp f qXPerpgq est Zariski-dense.

2. Perp f q “ Perpgq.

3. f et g ont des itérés communs : il existe N,M P Z tels que f N “ gM.

La conjecture F et le théorème G donnent l’égalité des mesures d’équilibres de f et g. Pour
montrer le résultat on utilise la théorie des représentations fuchsiennes et quasi-fuchisiennes
pour construire un point fixe hyperbolique qp f q au bord de l’ouvert des représentations quasi-
fuchsiennes dans MDpCq. Cette construction utilise le théorème de paramétrisation de Bers
[Ber60], sa prolongation par Minsky [Min99] et le théorème d’hyperbolisation des variétés de
dimension 3 qui fibre sur un cercle de Thurston (voir [Ota96, McM96]). On démontre ensuite
grâce à des techniques de théorie des courants en géométrie complexe, notamment grâce au
courant d’Ahlfors-Nevanlinna, que ce point fixe hyperbolique doit appartenir au support de
µC, f “ µC,g qui est un compact invariant par le groupe x f ,gy. Enfin on montre que l’orbite
de qp f q sous g est non bornée si g n’a pas d’itérés communs avec f grâce à la théorie des
laminations mesurées ce qui donne une contradiction.

1.5 Questions et compléments

1.5.1 La conjecture F

Comme établi dans cette introduction, je pense que la conjecture F doit se démontrer avec les
travaux de ce mémoire. Notamment, je montre dans la proposition 5.2.5 que la fonction G`

s’obtient par un procédé itératif à partir d’une fonction de Green de n’importe quel diviseur. Ce
procédé itératif appliqué aux fibrés en droite adéliques sur X0 doit donner un fibré en droites
adéliques nef au sens [YZ22]. En effet, dans le cadre projectif si f est un endomorphisme
polarisé d’une variété projective X et L un fibré en droites ample sur X tel que f ˚L“ Lbd , alors
Yuan et Zhang montrent dans [YZ17] que pour n’importe quelle extension adélique L de L, la
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suite
1
dn p f n

q
˚L (1.35)

converge vers un fibré en droites adélique semipositif L f tel que f ˚L f “ dL f . Au niveau des
fonctions de Green ce processus itératif est le même que celui qui apparait dans la section 5.2
(voir les propositions 5.2.5 et 5.2.12), donc je m’attends à ce que tout passe dans ce cadre.

Pour obtenir le théorème G, il faudra ensuite démontrer le théorème de l’indice de Hodge
arithmétique dans le cas des surfaces affines. Il me suffit d’une version affaiblie qui semble
démontrable dans le cas précis qui m’intéresse.

1.5.2 les travaux de Danilov et Gizatullin

On dit qu’une surface affine X0 est complétable par un zigzag s’il existe une complétion X

de X0 tel que XzX0 est un zigzag, c’est à dire une chaîne de courbes rationnelles lisses. Le
plan affine est complétable par un zigzag mais pas la surface de Markov M0 par exemple.
Dans [GD75], Danilov et Gizatullin étudient le groupe d’automorphismes des surfaces affines
complétable par un zigzag. Ils montrent que ce groupe agit sur un arbre dont les sommets
sont les complétions dont le bord est un zigzag. Si X0 est complétable par un zigzag, alors
son espace des valuations centrées à l’infini xV8 est aussi un arbre sur lequel agit AutpX0q. Il
serait intéressant de comparer l’approche de Danilov et Gizatullin aux travaux de mon mémoire.
Il est à noter que les travaux de Gizatullin (voir [Giz71b, Giz70, Giz71c]) préliminaires aux
résultats de [GD75] sont également utilisé dans mon mémoire pour étudier la dynamique des
automorphismes loxodromiques (voir §4.4.1).

1.5.3 Complexité dynamique vs complexité algébrique de AutpX0q

J’ai démontré dans mon mémoire que l’étude de la dynamique d’un automorphisme loxodro-
mique sur une surface affine est similaire ou bien à la dynamique d’un automorphisme de type
Hénon, ou bien à un automorphisme de la surface de Markov. Cependant on sait qu’il existe
des surfaces affines avec un groupe d’automorphisme bien plus compliqué que celui du plan
affine par les travaux de Blanc et Dubouloz mentionnés précédemment. Prenons X0 une telle
surface, il serait intéressant d’appliquer les techniques valuatives de ce mémoire à tout un sous
groupe d’automorphismes de X0. Par exemple si f ,g sont deux automorphismes loxodromiques
tels que tout élément du sous groupe Γ “ x f ,gy qui n’est pas l’identité est loxodromique, que
peut on dire de l’ensemble tν˚phq : h P Γu Ă xV8 où v˚phq est la valuation propre de h? Peut on
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retrouver la complexité algébrique du groupe AutpX0q en utilisant des techniques valuatives?

1.5.4 Des résultats de dynamique arithmétique utilisant des techniques
valuatives

En utilisant les techniques valuatives de Favre et Jonsson pour le plan affine, Junyi Xie montrent
dans [Xie17b] la conjecture des orbites Zariski dense pour les endomorphismes polynomiaux
du plan affine complexe. Cette conjecture affirme qu’un endomorphisme f admet une orbite
Zariski dense si et seulement si f n’admet pas de fonctions rationnelles non constantes inva-
riantes. La preuve utilise la dynamique à l’infini provenant de l’existence de valuation propre.
L’auteur montre également dans [Xie17a] la conjecture dynamique de Mordell-Lang pour les
endomorphismes polynomiaux du plan affine : si x P A2pCq et C Ă A2

C est une courbe alors
tně 0 : f npxq PCu est une union d’un ensemble fini et d’une union finie de progressions arith-
métiques.

Pour ces deux conjectures, on peut établir leur analogue dans le cas de n’importe quelle
surface affine en utilisant les techniques valuatives de ce mémoire en supposant λ2

1 ą λ2. Pour
le cas d’égalité, Xie s’appuie sur la classification des endomorphismes vérifiant λ2

1 “ λ2 éta-
blie par Favre et Jonsson. Il est donc nécessaire d’établir une telle classification en général.
Pour l’instant les techniques développées dans ce mémoire ne permettent pas de traiter le cas
λ2

1 “ λ2. En particulier, je ne sais pas pour l’instant construire de valuations propres associées à
un endomorphisme f vérifiant λ1p f q2 “ λ2p f q.

1.5.5 Fonctions de Green et hauteurs canoniques pour les petits degrés
topologiques

Soit f un endomorphisme polynomial du plan affine défini sur un corps de nombre K tel que
λ1p f q ą λ2p f q. Dans [FJ11] et [JW12] Favre, Jonsson et Wulcan utilise l’existence d’une unique
valuation propre de f pour construire une fonction de Green pour f à toutes les places. Jonsson
et Wulcan construisent ensuite une hauteur canonique h f associé à f qui satisfait la propriété
suivante : p P A2pKq,h f ppq “ 0 si et seulement si pour toute place v, || f nppq||v croît au plus
comme µn avec 0ă µď λ2 ă λ1.

Il semble que cette construction doit se généraliser à toute surface affine avec les travaux
de ce mémoire. La construction de fonctions de Green et d’hauteurs canoniques permettrait
de prouver une version faible de l’alternative de Tits de la forme suivante : Si f ,g P EndpX0q
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satisfont λ1p f q ą λ2p f q, λ1pgq ą λ2pgq, alors si h f ‰ hg quitte à remplacer f et g par des itérés,
le semi groupe engendré par f et g est libre. Ce résultat a été établi pour les transformations
polynomiales de A1

C dans [BHPT21].

1.5.6 En dimension plus grande

Soit d ě 3 un entier, dans [DF21] §6, Dang et Favre montrent que le degré dynamique d’une
transformation polynomiale f : Ad

C Ñ Ad
C tel que λ1p f q2 ą λ2p f q est un nombre algébrique de

degré ď d. Pour se faire ils construisent une valuation propre de f centrée à l’infini à l’aide de
l’analyse spectral de l’opérateur f ˚ sur un espace N1

Σ
pX q qui est un analogue de l’espace de

Picard-Manin en dimension 2. Ils utilisent ensuite l’inégalité d’Abhyankhar (voir [Abh56]) de
la façon suivante : Si ν˚ est une valuation propre de f , i.e f˚ν˚ “ λ1ν˚, alors f˚ induit une ap-
plication linéaire sur Γν˚bQ où Γν˚ est le groupe des valeurs de ν˚. L’inégalité d’Abhyankhar
affirme que dimQ Γν˚ bQ ď d. Ainsi, λ1 est valeur propre d’une matrice dˆ d à coefficients
rationnels, donc un nombre algébrique de degré ď d.

J’affirme que la construction de la valeur propre dans le cas des surfaces affines que j’établis
dans ce mémoire se généralise en dimension plus grande. En particulier, les sections 3.6 et 3.7
s’appliquent directement en toute dimension. La construction de la valuation propre provient
alors d’un équivalent du théorème 4.1.16 où l’espace L2pX0q doit être remplacé par son ana-
logue N1

Σ
pX q. On peut alors appliquer l’inégalité d’Abhyankhar et énoncer le résultat suivant :

si X0 est une variété affine de dimension d ě 3 sur un corps k algébriquement clos de carac-
téristique nulle telle que

• krX0s
ˆ “ kˆ ;

• Pour toute complétion X de X0, Pic0pXq “ 0 ;

Si f : X0 Ñ X0 est un endomorphisme tel que λ1p f q2 ą λ2p f q, alors λ1p f q est un nombre algé-
brique de degré ď d.
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CHAPTER 2

INTRODUCTION

An affine variety X0 over an algebraically closed field k is a subspace of kN defined by polyno-
mial equations. A polynomial endomorphism of X0 is a polynomial transformation of kN that
preservers X0 in the sense that f pX0q Ă X0. When the dimension of X0 is 2, we say that X0 is
an affine surface. The goal of my thesis is to study the dynamical system given by an affine
surface X0 and f : X0 Ñ X0 a polynomial endomorphism of X0. The different questions one can
ask are: are there dense orbits or Zariski-dense orbits ? If the orbit of a point goes to infinity,
can we control the speed of divergence ? Is there a lot of periodic orbits ? Can we construct in-
teresting invariant probability measures ? To answer these questions, I use valuative techniques.
The dynamical system pX0, f q induces a dynamical system pV8, f˚q where V8 is the space of
valuations centered at infinity of X0. The study of this dynamical system is the main goal of this
memoir and it will allow to answer the questions mentioned above.

2.1 Endomorphisms

2.1.1 Dynamical degrees

2.1.1.1 Polynomial transformations of the complex affine plane

A polynomial transformation f of CN is given by N polynomials fi P Crx1, ¨ ¨ ¨ ,xNs such that
f “ p f1, ¨ ¨ ¨ , fNq. The degree of f is defined as the maximum of the degrees of the f 1i s; we denote
it by deg f . Let f k be the k-th iterate of f . When we iterate f , the degree of the formulas of f k

must typically grow exponentially. It is therefore natural to consider the following quantity:

λ1p f q :“ lim
k

´

deg f k
¯1{k

, (2.1)

introduced in [RS97], which we call the first dynamical degree of f . The authors show that this
quantity is well defined. We can define the first dynamical degree of any rational transformation
of the projective space PN

C with a similar definition.
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2.1.1.2 General definitions

Let X be a smooth projective variety over an algebraically closed field and let d be its dimension.
For d Cartier divisors D1, ¨ ¨ ¨ ,Dd of X we can define the intersection product D1 ¨ ¨ ¨Dd P Z (see
[Laz04]). If f : X 99K X is a dominant rational transformation of X , we define for 0ď l ď d the
l-th dynamical degree of f by

λkp f q :“ lim
nÑ8

´

p f n
q
˚Hk

¨Hd´k
¯1{n

, (2.2)

where H is an ample divisor over X . We can show that these quantities are well defined and do
not depend on the choice of H. In particular, λ0p f q “ 1. Furthermore, the dynamical degrees
are birational invariants: if ϕ : X 99K Y is a birational map, then

λlp f q “ λlpϕ˝ f ˝ϕ
´1
q, @0ď l ď d. (2.3)

We have that λdp f q is the topological degree of f . The Khovanskii-Teissier inequalities (see
[Gro90], [DN05]) imply that the sequence pλlq0ďlďd is log-concave; i.e

logλl´1` logλl`1

2
ď logλl, @1ď l ď d´1. (2.4)

In particular, one has @1ď l ď d,λ1p f ql ě λkp f q.

Let X0 be a smooth affine variety of dimension d and f : X0 Ñ X0 an endomorphism of X0.
We define the dynamical degrees of f as follows. A completion of X0 is a smooth projective
variety X equipped with an open immersion ι : X0 ãÑ X such that ιpX0q is dense in X . The
endomorphism f induces a dominant rational transformation of X via rf “ ι ˝ f ˝ ι´1 and we
define the dynamical degrees

λlp f q :“ λlprf q. (2.5)

As the dynamical degrees are birational invariants, these quantities do not depend on the choice
of the completion X . In particular, if X0 “ kN and X “ PN

k we recover the definition of the first
dynamical degree defined in the first paragraph.

The data of these dynamical degrees gives information on the dynamical system. For ex-
ample over C, Dinh and Sibony showed in [DS03] that for all dominant rational transformation
f : X 99K X

htopp f q ď max
0ďlďd

logpλlq (2.6)
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where htop is the topological entropy of f , Gromov showed this result for endomorphisms of
PN in [Gro03]. Yomdin showed in [Yom87] that we have an equality if f is an endomorphism.
Recently, Favre, Truong and Xie showed in [FTX22] that the inequality (2.6) still holds in the
non archimedean case; however the equality does not hold even for endomorphisms.

2.1.2 Dynamical degrees on projective surfaces

A natural question is to ask what numbers can appear as the first dynamical degree of a rational
transformation of a projective surface. We first mention the following result due to Bonifant
and Fornaess in [BF00] for PN

C and generalised by Urech

Théorème 2.1.4 ([Ure16]). The set

tλ1p f qu (2.7)

where f runs through the set of rational transformations over every projective variety over every

field, is countable.

In 2021, Bell, Diller and Jonsson showed in [BDJ20] that there exists a dominant rational
transformation σ : P2 99KP2 such that λ1pσq is transcendental. The authors with Krieger showed
in [BDJ20] this example can be generalised to give an example of a birational transformation
of PN ,N ě 3 with a transcendental first dynamical degree. However in dimension 2, there are
strong constraints on λ1p f q for f birational. In [DF01], Diller and Favre showed that the first
dynamical degree of a birational transformation of a projective surface is an algebraic integer.
More precisely, it is a Salem or a Pisot number. In [BC13], Blanc and Cantat obtained the
following results

Theorem 2.1.1. Let X be a smooth projective surface over an algebraically closed field.

(1) Let f : X 99K X be a birational transformation such that λ1p f q is a Salem number, then

there exists a birational map ϕ : X 99K Y such that ϕ˝ f ˝ϕ´1 is an automorphism of Y .

(2) If X is rational over a field k, then the set ΛpXq :“tλ1p f q| f P BirpXquĂR is well ordered.

It is closed if k is not countable.

In particular, ΛpXq is an ordinal and Bot shows in [Bot22] that this ordinal is exactly ωω

where ω is the ordinal of the natural integers. However, we cannot hope to get an information of
the degree of the algebraic numbers obtained. Indeed, Bedford, Kim and McMullen have given
in [BK06] and [McM07] examples of birational transformations of projective surfaces with
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first dynamical degree an algebraic integer of arbitrary large degree. In particular, Theorem
1.1 of [McM07] states that for all d ě 10 we can find a smooth projective surface with an
automorphism with first dynamical degree an algebraic integer of degree d.

2.1.3 Dynamical degrees of endomorphisms of affine surfaces

In my thesis, I consider endomorphisms of affine surfaces. The first example of an affine surface
is the complex affine plane C2. An endomorphism is then a polynomial transformation. Even
in that case, the first dynamical degree is not necessarily an integer. Indeed, let

A“

˜

a b

c d

¸

(2.8)

be a matrix with nonnegative integer coefficients such that ad´bc‰ 0. Consider the following
monomial transformation

f px,yq “
´

xayb,xcyd
¯

, (2.9)

then f N is the monomial transformation where the monomials are given by the coefficients of
AN and λ1p f q is equal to the spectral radius of A. Hence, λ1p f q is an algebraic integer of degree
2 because it satisfies the equation

λ1p f q2´TrpAqλ1p f q`detpAq “ 0. (2.10)

Thus, there exist polynomial transformations f of the affine plane with λ1p f q an integer or an
algebraic integer of degree 2. Favre and Jonsson showed that these are the only two possibilities.

Theorem 2.1.2. [FJ07] Let f : C2 ÑC2 be a dominant polynomial transformation, then λ1p f q

is an algebraic integer of degree ď 2.

The first result of my thesis is to extend this result to all affine surfaces, in any character-
istic. Even if there are affine surfaces for which the semigroup of endomorphism can change
drastically. For example, Blanc and Dubouloz, in [BD13], build smooth affine surfaces with
a big group of automorphisms, much bigger than the one of the affine plane. Bot used this
construction to show the existence of smooth complex rational affine surfaces with uncountably
many real forms (see [Bot23]). The result in my thesis show that even though structure wise,
these groups are a lot more complicated; from the point of view of the dynamics of a single
element, this is not the case.
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Theorem A. Let X0 be a normal affine surface over a field k. If f : X0 Ñ X0 is a dominant

endomorphism, then λ1p f q is an algebraic integer of degree ď 2.

The proof uses valuative techniques which I describe in the next section. If chark“ 0, I also
obtain results on the dynamics of f . I will give a precise statement in the case of automorphisms
(see Theorem C).

2.2 Valuations, Divisors at infinity and dynamics

2.2.1 Existence of an eigenvaluation

Let A be the ring of regular functions of a normal affine surface X0 over an algebraically closed
field k. A valuation is a map ν : AÑ RYt8u such that

1. νpPQq “ νpPq`νpQq;

2. νpP`Qq ěminpvpPq,νpQqq;

3. νp0q “ 8;

4. ν|kˆ “ 0

Two valuations ν are µ are equivalent if there exists t ą 0 such that ν “ tµ. For example, if
X is a completion of X0, for all irreducible curve E Ă X , the map ordE defined by ordEpPq

being the order of vanishing of P along E is a valuation. Any valuation of the form λordE with
λą 0 is called divisorial. If f is an endomorphism of X0, then f induces a ring homomorphism
f ˚ : AÑ A. We can then define the pushforward f˚ν of a valuation ν by

f˚νpPq “ νp f ˚Pq. (2.11)

We say that a valuation is centered at infinity if there exists P PA such that νpPq ă 0. If X is a
completion of X0, the divisorial valuations centered at infinity are exactly the one corresponding
to the irreducible components of XzX0. Let V8 the set of valuations centered at infinity and pV8
the set of valuations centered at infinity modulo equivalence. Suppose for the sake of simplicity
that f is an automorphism of X0, then f˚ induces a bijection of V8 and of pV8 which will in fact
be a homeomorphism for a topology that will be described in this memoir.

If X0 is the complex affine plane, then Favre and Jonsson proved the existence of a valuation
ν˚ P V8 such that f˚ν˚ “ λ1p f qν˚. Such a valuation is called an eigenvaluation of f . To
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do so, they show in [FJ04] that pV8 has a real tree structure and f˚ is compatible with this
structure. The existence of ν˚ follows from a fixed point theorem on trees. The existence of
this eigenvaluation has a big impact on the dynamics of f . In particular, it allows one to find a
good completion X of C2 which admits an attracting fixed point of f at infinity. Xie uses this
construction to prove the conjecture of Zariski-dense orbits and the dynamical Mordell-Lang
conjecture for polynomial endomorphisms of the complex affine plane ([Xie17b]). Jonsson and
Wulcan use these techniques to build canonical heights for polynomial endomorphisms of the
complex affine plane with small topological degree in [JW12].

Theorem B. Let X0 be a normal affine surface over an algebraically closed field k (of any

characteristic) and let f be a dominant endomorphism of X0. Suppose that

1. krX0s
ˆ “ kˆ.

2. For all completions X of X0, Pic0pXq “ 0.

3. λ1p f q2 ą λ2p f q.

Then, there exists an eigenvaluation ν˚, unique up to equivalence, of f such that

f˚pvq “ λ1p f qν˚. (2.12)

The techniques I use do not use the global geometry of pV8 because it not necessarily a
tree anymore. If X is a completion of X0, I show that for any valuation ν centered at infinity,
one can associate a unique divisor Zν,X of X supported outside of X0. Furthermore if Y is an-
other completion of X0, there is a compatibility relation between Zν,X and Zν,Y (see Proposition
3.6.6). This construction involves the space of Eicard-Manin of X0. The spectral analysis of the
operators f˚, f ˚ induced by f on this space (see [BFJ08, Can11]) allows one to construct the
eigenvaluation ν˚ and show its uniqueness. This process is similar to the techniques of [DF21]
§6.

2.2.2 Discussion of the assumptions of the Theorem

The assumptions of Theorem B may seem arbitrary but they are not restrictive. Indeed, if
assumption (1) or (2) is not satisfied, then one can show that f preserves a fibration over a
1quasi-abelian. We can decompose the dynamics of f with this fibration and it becomes easier

1. a quasi-abelian variety is an algebraic group such that there exists an algebraic torus T and an abelian variety
A such that the sequence of algebraic groups 0Ñ T Ñ X Ñ AÑ 0 is exact.
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to study.

If Assumption (3) is not satisfied, then we have λ1p f q2 “ λ2p f q. In that case, λ1p f q is
automatically an algebraic integer of degree ď 2 because λ2p f q is the topological degree of
f , hence an integer. In the case of the complex affine plane, Favre and Jonsson manage to
classify all polynomial transformations of the complex affine plane for which λ2

1 “ λ2: either
they preserve a rational fibration, or there exists a completion X of A2

C with at most quotient
singularities at infinity such that f extends to an endomorphism of X . I expect that such a
classification should exist in general, all the examples I have studied up until now satisfy this
dichotomy. One can notice that in the invertible case, such a classification exists: By [Giz69]
and [Can01], every birational transformation σ : X Ñ X of a smooth projective surface such that
λ1pσq “ 1 lifts to an automorphism or preserves a rational or elliptic fibration.

2.2.3 Statement of the theorem in the case of automorphisms

In characteristic zero, the existence of the eigenvaluation has an impact on the dynamics of f .
I show that for every endomorphism, there exists a completion X of X0 with an attracting fixed
point of f at infinity. In the case of loxodromic automorphism (i.e with λ1 ą 1) I show the
following

Theorem C. Let X0 be a normal affine surface over C such that CrX0s
ˆ “ Cˆ. If f is an

automorphism of X0 such that λ1p f q ą 1, then there exists a completion X of X0 such that

1. f admits an attracting fixed point p P XpCqzX0pCq at infinity.

2. An iterate of f contracts XzX0 to p.

3. There exists local analytic coordinates centered at p such that f is locally of the form

(a)

f pz,wq “ pzawb,zcwd
q (2.13)

with a,b,c,d integers ě 1, in that case λ1p f q is the spectral radius of

˜

a b

c d

¸

. In

particular, λ1p f q P RzQ, it is an algebraic integer of degree 2.

(b) or

f pz,wq “ pza,λzcw`Ppzqq (2.14)

with aě 2,cě 1 and Pı 0 a polynomial, in that case λ1p f q “ a is an integer.
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4. The attracting fixed points of f and f´1 are distinct.

5. The local normal form of f´1 at its attracting fixed point is the same as f .

The cases (3)(a) et (3)(b) are mutually exclusive in the following way

Theorem D. Let X0 be a normal affine surface over C such that CrX0s
ˆ “Cˆ and f PAutpX0q

a loxodromic automorphism. We have the following dichotomy

• If λ1p f q P Zě0, then for any loxodromic automorphism g of X0, we have λ1pgq P Zě0 and

the local normal form of g at its attracting fixed point is given by (2.14).

• If λ1p f q RZě0 then it is an algebraic integer of degree 2 and this holds for any loxodromic

automorphism g of X0. In particular, the local normal form of g at its attracting fixed point

is given by (2.13).

We give two examples: the affine plane and the Markov surface (see §2.2.3.2). Theorem C
and D show that it suffices to understand these two examples to understand the dynamics of a
single automorphism of an affine surface.

2.2.3.1 The affine plane

Suppose that X0 “ A2
C, consider the automorphism

f px,yq “ py` x2,xq. (2.15)

It is a Hénon automorphism and we have λ1p f q “ 2. Let X “ P2
C be a completion of Xq with

homogeneous coordinates X ,Y,Z such that x “ X{Z et y “ Y{Z. The birational transformation
induced by f has fixed point p`“ r1 : 0 : 0s and an indeterminacy point p´“ r0 : 1 : 0s. The line
at infinity tZ “ 0u is contracted by f to p` and by f´1 to p´. Let pu,vq be the local coordinates
at p` given by u“ Y{X et v“ Z{X , one has

f pu,vq “
ˆ

v
1`uv

,
v2

1`uv

˙

. (2.16)

And there exits a local analytic change of coordinates such that f has the normal form (2.14)
(see [Fav00] §2).

40



Introduction

2.2.3.2 The Markov surface

Consider the Markov surface M0 Ă A3
C given by the equation

x2
` y2

` z2
“ xyz. (2.17)

It is a normal affine surface with a quotient singularity at p0,0,0q. We will describe in detail its
properties in §2.4. A natural completion of M0 is the projective surface X Ă P3

C defined by the
Zariski closure of M0 in P3

C. The equation of X is

T pX2
`Y 2

`Z2
q “ XY Z. (2.18)

We see that XzM0 has equation
T “ 0,XY Z “ 0. (2.19)

Thus it is a triangle of 3 rational curves. By Theorem 3.1 of [Can09], if f is a loxodromic auto-
morphism of M0 algebraically stable over X then f admits an attracting fixed point p` P XzM0

which is one of the vertex of the triangle and one indeterminacy point p´ P XzM0 which is
another vertex of the triangle. Furthermore, f admits a local normal form of monomial type (i.e
given by (2.13)) at p`.

Remark 2.2.1. We see that for all completion X the affine plane, the dual graph of XzA2
C

is a tree. However, in the case of M0 the dual graph of XzM0 retracts to a circle for every
completion X . We will show in fact that every affine surface (with a loxodromic automorphism)
satisfies this dichotomy. It is the dichotomy of the geometry of these dual graphs that gives the
dichotomy on the dynamics (see Theorem 4.4.4).

2.3 Dynamics of automorphisms of affine surfaces

2.3.1 Dynamics of Hénon maps: Green functions

Let AutpA2
Cq be the group of polynomial automorphisms of the complex affine plane. The affine

transformations are examples of such automorphisms. Here is another example: let

f px,yq “ px,y`Ppxqq (2.20)
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where P is a polynomial. The automorphism f preserves the pencil of lines x “ α and acts by
translation on these lines, the vector of translation is given by Ppxq. Such an automorphism is
called elementary. We denote by E the set of all elementary automorphisms of A2

C, they form a
group isomorphic to pCrxs,`qq. Jung’s theorem ([Jun42]) states that AutpC2q has the structure
of an amalgamated product

AutpA2
Cq “ AffpA2

Cq ˚S E (2.21)

where S “ AffpA2
CqXE.

An automorphism of Henon type is an automorphism f which is not conjugated to an ele-
ment of AffpA2

C) nor to an element of E. They are characterised by the condition λ1p f q ą 1. An
example of automorphism of Henon type is the following which will use later on

f px,yq “ py` x2,xq. (2.22)

The extension of f to P2 has a fixed point at infinity p` “ r1 : 0 : 0s and an indeterminacy
point p´ “ r0 : 1 : 0s. The line at infinity is contracted by f to p`. Analogously, p` is the
only indeterminacy point of f´1 and p´ is a fixed point of f´1 to which the line at infinity is
contracted by f´1. An automorphism h is regular if the indeterminacy points of h and h´1 are
distinct. In particular f is regular and every automorphism of Henon type can be conjugated
to a regular one [FM89]. For all automorphism of Henon type h, λ1phq is an integer which we
denote by d, in particular λ1p f q “ 2.

Consider the norm ||px,yq|| “maxp|x| , |y|q on C2. If h is a regular automorphism of Henon
type, we can define the Green functions of h (see [FM89], [BS91a] and their references)

G`ppq :“ lim
N

1
dN log`

ˇ

ˇ

ˇ

ˇhN
ppq

ˇ

ˇ

ˇ

ˇ , G´ppq :“ lim
N

1
dN log`

ˇ

ˇ

ˇ

ˇh´N
ppq

ˇ

ˇ

ˇ

ˇ (2.23)

where log` “maxp0, logq. We have the following properties (see [BS91a]).

1. G` is well defined, continuous and plurisubharmonic over C2,

2. G` ˝h“ dG`,

3. the map p ÞÑ G`ppq´ log`p||p||q extends to a continuous function over P2zp´.

4. G`ppq “ 0 if and only if the forward orbit phNppqqNě0 is bounded.

The function G´ satisfies similar properties. We define the Green currents T` “ ddcG` and
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T´ “ ddcG´. These are positive closed p1,1q-currents. The measure

µ :“ T`^T´ (2.24)

is then well defined because G`,G´ are continuous. It is of finite total mass, thus we can
suppose that it is a probability measure. We call it the equilibrium measure of h. It is h-invariant
and its support is contained in the Julia set of h.

We define the following Green function

G :“maxpG`,G´q (2.25)

which satisfies the following properties

1. G is continuous, plurisubharmonic over C2 and the uniform limit of

max
ˆ

1
dN log`p

ˇ

ˇ

ˇ

ˇ f N
ppq

ˇ

ˇ

ˇ

ˇq,
1

dN log`p
ˇ

ˇ

ˇ

ˇ f´N
ppq

ˇ

ˇ

ˇ

ˇq

˙

(2.26)

2. p ÞÑ Gppq´ log` ||p|| extends to a continuous function over P2.

3. Gppq “ 0 if and only if the Z-orbit p f NppqqNPZ is bounded.

2.3.2 Dynamics of automorphisms of affine surfaces

Using theorem C, I show

Theorem E. Let X0 be a normal affine surface over C, let X be a completion of X0 that satisfy

Theorem C. Let X ãÑ PN be an embedding of X which induces an embedding of X0 into CN and

let ||¨|| be a norm over CN . Let f be an automorphism of X0 such that λ1p f q ą 1, the Green

function

G`ppq :“ lim
N

1
λN

1
log`p

ˇ

ˇ

ˇ

ˇ f N
ppq

ˇ

ˇ

ˇ

ˇq (2.27)

satisfies the following properties

1. G` is well defined, continuous and plurisubharmonic over X0pCq.

2. G` ˝ f “ λ1G`

3. G` has logarithmic growth (see Proposition 5.2.5).
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4. G`ppq “ 0 if and only if the forward orbit p f NppqqNě0 is bounded.

We can then consider the function G “ maxpG`,G´q which will satisfy similar properties
as in the Henon case. There is however one major difference. In general, the maximum of
two functions of logarithmic growth is not of logarithmic growth. There is a difficulty here. It
turns out we get two distinct behaviour: if λ1p f q P Zě0, G is again of logarithmic growth and
everything works as in the Henon case. If λ1p f q R Zě0, then G is not of logarithmic growth and
it is not the right function to consider. We then need to use the recent work of Yuan and Zhang
on adelic line bundles over quasiprojective varieties, I will be more precise in the following
section.

2.3.3 Dynamics at non archimedean places

Let K be a number field. An absolute value |¨| over K is a function |¨| : KÑR` which satisfies

• |x| “ 0ô x“ 0,

• @x,y PK, |xy| “ |x| ¨ |y|,

• @x,y PK, |x` y| ď |x|` |y|.

Two absolute values |¨|1 , |¨|2 are equivalent if |¨|1“ |¨|
s
2 for some są 0. A place is an equivalence

class of absolute values, we denote by M pkq the set of places of K. If |¨| is an absolute value of
K, we can consider the completion of K with respect to |¨|. This completion depend only on the
place v of |¨|, we denote it by Kv. The absolute value |¨| then extends to Kv and admits a natural
extension to Kv. We denote by Cv the completion of Kv with respect to |¨|. This construction
depends only on the place v. We say that |¨| is non archimedean if it satisfies the following
inequality

@x,y PK, |x` y| ďmaxp|x| , |y|q. (2.28)

A place v is non archimedean if one of its representatives is. For all archimedean place v, we
have Cv “ C. The results of §2.3.1 have analogues when C is replaced by an algebraically
closed complete field Cv. Indeed, Kawaguchi showed in [Kaw09] that the Green function of
an automorphism of Henon type is well defined also in the non archimedean case. If Cv is
non archimedean, the Green function G “ maxpG`,G´q induces a semipositive adelic line
bundle on the Berkovich analytification of P2

Cv
which we denote by pP2

Cv
qan (see [Zha93] for

the definition). The equilibrium measure is a positive measure over pP2
Cv
qan, it is constructed in

[Cha03]. It is worth noting that recent work of Chambert-Loir and Ducros [CD] allows one to

44



Introduction

construct the currents T˘ “ ddcG˘ and to define the equilibrium measure in the same way as in
the complex case µ“ T`^T´. Furthermore, Lee shows in [Lee13] that the Galois orbits of any
2generic sequence of periodic points equidistributes with respect to the measure µ “ T`^T´

at every place. This uses the equidistributes theorem of Yuan in [Yua08].
I also show an analogue of Theorem C in the non archimedean case. We define also the

functions G`,G´,G in that case. However, the difficulties mentioned at the end of §2.3.2
remain. If λ1p f q PZě0, then the data of the Green functions pGvq for every place v of K induces
a semipositive adelic line bundle (cf [Zha93]) over a completion X of X0 and the arithmetic
equidistribution theorem of Yuan applies.

Now, if λ1p f q R Zě0, we cannot apply the theory of adelic line bundles over the completion
X . The right point of view is to consider not just one completion of X0 but all of them. This
is the point of view developed by Yuan and Zhang in [YZ22]. The authors define the notion
of adelic line bundles over a quasiprojective variety U as a limit of adelic line bundles over
completions of U . They show in this context an arithmetic equidistribution theorem similar to
the theorem of Yuan. In my memoir, I state the following conjecture (see Conjecture F):

Conjecture F. The data of pG`v q and pG´v q at every place v of K induces two nef f -invariant

adelic line bundles over the quasiprojective variety X0. In particular, we can define the equilib-

rium measure µv of f at every place as the probability measure proportional to ddcG`v ^ddcG´v
and the Galois orbits of any generic sequence of periodic points of f equidistributes with respect

to µv at every place v.

I believe that the results established in this memoir and the work of Yuan and Zhang will
allow one to prove this conjecture using similar techniques as in §4 of [YZ17](see §2.5.1).

2.3.4 Automorphisms sharing infinitely many periodic points

If X0 is a normal affine surface over K a number field, and f a loxodromic automorphism of
X0, we can apply the results of the previous section at both archimedean and non archimedean
places. We then get an equilibrium measure µ f ,v for f at every place v of K. Using the tech-
niques of arithmetic equidistribution mentioned in the previous paragraph, I show the following
result.

Theorem G. Let X0 be a normal affine surface defined over a number field K. If f ,g are two

loxodromic automorphisms of X0 such that λ1p f q P Zě0, the following are equivalent

2. A sequence is generic if no subsequence is contained in strict closed subvariety.
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1. Perp f qXPerpgq est Zariski-dense.

2. @v PM pKq,µv, f “ µv,g

3. Perp f q “ Perpgq.

In the case λ1p f q R Zě0, admitting Conjecture F, we have that if Perp f qX Perpgq is Zariski-

dense, then @v PM pKq,µ f ,v “ µg,v.

Using similar methods, these kind of results were first obtained by Baker, DeMarco in
[BD11a] for endomorphisms of P1 of degree ě 2 over C and then generalised by Yuan and
Zhang for all polarisable endomorphisms of Pm over a number field in [YZ17] and recently in
[YZ21] over any field of characteristic zero. In [CD20], Cantat and Dujardin use these same
tools of arithmetic dynamics to show rigidity results on groups of automorphisms of projective
surfaces.

Conjecture F is not enough to show the equality Perp f q “ Perpgq because the proof uses an
arithmetic version of the Hodge index theorem which has not been shown yet for adelic line
bundles over quasiprojective varieties (see Theorem 5.1.20).

2.4 A rigidity result for Markov surfaces

In [DF17] Dujardin and Favre show a stronger result than Theorem G. They obtain that if two
automorphisms of Henon type satisfy one of the assertions of Theorem G, then f and g share
common iterates: there exist integers M,N P Z such that f N “ gM. This rigidity result cannot

be true for any affine surface. Indeed, if X0 “ CˆˆCˆ. Let A “

˜

a b

c d

¸

P SL2pZq be such

that pTrAq2 ą 4, we define the automorphism

fApx,yq “ pxayb,xcyd
q (2.29)

If S1 “ tz P C| |z| “ 1u, then S1ˆS1 is an fA-invariant compact subset. Ii is the Julia set of fA

and the periodic points of fA are exactly of the formpω1,ω2q P S1ˆS1 where ω1,ω2 are roots
of unity. Hence, every automorphism of this form satisfies Theorem G but they don’t share
common iterates.

Let D P C, we define the Markov surface MD as a surface in C3 defined by

x2
` y2

` z2
“ xyz`D (2.30)
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This family of surfaces appears in different fields of mathematics (see [Can09]). If T1 is the
punctured torus, its fundamental group π :“ π1pT1q is a free group with two generators that we
denote by a and b. We can look at the character variety

X :“ Hompπ,SL2pCqq{{SL2pCq (2.31)

where the action of SL2pCq is via conjugation and {{ is the quotient from Geometric Invariant
Theory (GIT). Denote by ra,bs :“ aba´1b´1 the commutator of a and b. Let ρ P X , if we define
x“ Trρpaq,y“ Trρpbq,z“ Trρpabq, then we get that

X Ñ A3
C (2.32)

ρ ÞÑ px,y,zq (2.33)

is an isomorphism. This is a result of Fricke (see [Gol09]). Furthermore, we have

x2
` y2

` z2
“ xyz`Trpρpra,bsqq`2. (2.34)

Thus, the algebraic variety X has a foliation of surfaces given by the family of the Markov
surfaces and the surface MD is a fiber of the regular function ρ ÞÑ Trpρpra,bsqq.

Theorem H. Let D“ 0 or D“ 2´2cosp2π{qq with qě 2. If f ,g are two loxodromic automor-

phisms of MD, then admitting Conjecture F, the following are equivalent:

1. Perp f qXPerpgq is Zariski-dense.

2. Perp f q “ Perpgq.

3. f and g share common iterates: there exist N,M P Z such that f N “ gM.

Conjecture F and Theorem G give the equality of the equilibrium measure of f and g. To
show the result we use the theory of Fuchsian and quasi-Fuchsian representations to construct
a saddle fixed point qp f q at the boundary of the open subset of MDpCq consisting of quasi-
Fuchsian representations. This construction uses the double parametrisation theorem of Bers
in [Ber60], its extension by Minsky in [Min99] and Thurston’s theorem of hyperbolisation of
3-manifolds fibering over a circle (see [Ota96, McM96]). We then use techniques of currents
in complex geometry, in particular the current of Ahlfors-Nevanlinna, to show that this saddle
fixed point must belong to the support of µC, f “ µC,g which is a compact subset invariant by the
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group x f ,gy. Finally, we show that if f ,g do not share common iterates, then the g-orbit of qp f q

must be unbounded using measured laminations theory and this is a contradiction.

2.5 Questions and future projects

2.5.1 Conjecture F

As mentioned in this introduction, I believe that Conjecture F can be shown using the results
of this memoir. Namely, I show in Proposition 5.2.5 that the function G` is obtained via an
iterating process starting from the Green function of any divisor. This iterating process applied
to the theory of adelic line bundles over X0 must yield a nef adelic line bundle in the sense
of [YZ22]. Indeed, in the projective setting if f is a polarised endomorphism of a projective
variety X and L an ample line bundle over X such that f ˚L “ Lbd , Yuan and Zhang show in
[YZ17] that for any adelic extension L of L, the sequence

1
dn p f n

q
˚L (2.35)

converges to a semipositive adelic line bundle L f such that f ˚L f “ dL f . At the level of Green
functions, this iterating process is the same as the one in Section 5.2 (see Propositions 5.2.5 and
5.2.12). Hence, I expect everything to work as well in this setting.

To obtain Theorem G, we will then need to show the arithmetic Hodge index theorem in the
case of affine surfaces. I only need a weaker version of this theorem that I believe should be not
too hard to show.

2.5.2 The work of Danilov and Gizatullin

We say that an affine surface X0 is completable by a zigzag if there exists a completion X

of X0 such that XzX0 is a zigzag, that is a chain of smooth rational curves. The affine plane is
completable by a zigzag but the Markov surface M0 is not for example. In [GD75], Danilov and
Gizatullin study the group of automorphisms of an affine surface completable by a zigzag. They
show that it acts on a tree which vertices are the completions where the boundary is a zigzag. If
X0 is completable by a zigzag, then the space of valuations centered at infinity xV8 is also a tree
on which AutpX0q acts. It will be interesting to compare the approach of Danilov and Gizatullin
to the approach in my memoir. Note that the work of Gizatullin (see [Giz71b, Giz70, Giz71c])
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prior to [GD75] are used in my memoir to study the dynamics of loxodromic automorphisms
(see §4.4.1).

2.5.3 Dynamic complexity vs algebraic complexity of AutpX0q

I showed in my thesis that the study of the dynamics of a loxodromic automorphism on an affine
surface is similar either to the dynamics of an automorphism of Henon type, or to the dynamics
of a loxodromic automorphism of the Markov surface. However, there exists affine surfaces
with a much more complicated group of automorphism as shown by Blanc and Dubouloz in
[BD13]. If X0 is such a surface it will be interesting to apply the valuative techniques of this
memoir tout a subgroup of automorphism of X0. For example, if f and g are two loxodromic
automorphisms such that every element of the subgroup Γ “ x f ,gy which is not the identity is
loxodromic, what can we say about the set tν˚phq : h P Γu Ă xV8 where v˚phq is the eigenval-
uation of h ? Can we recover the algebraic complexity of AutpX0q using valuative techniques
?

2.5.4 Arithmetic dynamics result using valuative techniques

Using the valuative techniques of Favre and Jonsson for the affine plane, Junyi Xie shows in
[Xie17b] the Zariski dense orbit conjecture for polynomial endomorphism of the complex affine
plane. This conjecture states that any endomorphism f admits a Zariski dense orbit if and only
if it does not admit a non-constant invariant rational function. The proof uses the dynamics
of f at infinity using the existence of an eigenvaluation. The author also shows in [Xie17a]
the dynamical Mordell-Lang conjecture for polynomial endomorphism of the affine plane: if
x P A2pCq and C Ă A2

C is a curve, then tně 0 : f npxq PCu is a union of a finite set and a finite
union of arithmetic progressions.

For these two conjectures, we can establish their analogues for any affine surface using the
valuative techniques of this memoir if λ2

1 ą λ2. For the equality case, Xie uses the classifica-
tion of polynomial endomorphism satisfying λ2

1 “ λ2 established by Favre and Jonsson. It is
therefore necessary to establish such a classification in general. For now, the techniques in this
memoir do not allow to treat the case λ2

1 “ λ2. In particular, I do not know how to construct an
eigenvaluation for an endomorphism f satisfying λ1p f q2 “ λ2p f q.
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2.5.5 Green functions and canonical heights for small topological degrees

Let f be a polynomial endomorphism of the affine plane defined over a number field K such
that λ1p f q ą λ2p f q. In [FJ11] and [JW12] Favre, Jonsson and Wulcan use the existence of a
unique eigenvaluation of f to construct a Green function for f at every place. Jonsson and
Wulcan construct a canonical height h f associated to f which satisfies the following property:
p P A2pKq,h f ppq “ 0 if and only if for every place v, || f nppq||v grows at most like µn with
0ă µď λ2 ă λ1.

I believe that this construction can be generalised to every affine surface using the results of
this memoir. The construction of such canonical heights would allow one to show the following
weak version of the Tits alternative: If f ,g P EndpX0q satisfy λ1p f q ą λ2p f q, λ1pgq ą λ2pgq,
then if h f ‰ hg up to replacing f and g by some iterates, the semigroup generated by f and g is
free. This result has been established pour the polynomial transformations of A1

C in [BHPT21].

2.5.6 In higher dimension

Let d ě 3 be an integer, in [DF21] §6, Dang and Favre show that any polynomial transformation
f : Ad

C Ñ Ad
C such that λ1p f q2 ą λ2p f q is an algebraic number of degree ď d. To do so, they

build an eigenvaluation of f centered at infinity using the spectral analysis of f ˚ on the space
N1

Σ
pX q which is an analogue of the Picard Manin space in dimension 2. They use Abhyankhar’s

inequality (see [Abh56]) in the following way: If ν˚ is an eigenvaluation of f , i.e f˚ν˚ “ λ1ν˚,
then f˚ induces a linear map over Γν˚ bQ where Γν˚ is the value group of ν˚. Abhyankhar’s
inequality states that dimQ Γν˚bQď d. Thus, λ1 is an eigenvalue of a dˆd matrix with rational
coefficients, it is therefore an algebraic number of degree ď d.

I assert that the construction of the eigenvalue in the case of affine surfaces that I establish
in this memoir can be generalised in higher dimensions. In particular, Sections 3.6 and 3.7 do
not use dimension 2. The construction of the eigenvaluation comes from an analog of Theorem
4.1.16 where L2pX0q should be replace by its analog N1

Σ
pX q. We then can use Abhyankhar’s

inequality to obtain the following result:

if X0 is an affine surface of dimension d ě 3 over an algebraically closed field k of charac-
teristic zero, such that

• krX0s
ˆ “ kˆ;

• For all completion X of X0, Pic0pXq “ 0;
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If f : X0Ñ X0 is an endomorphism such that λ1p f q2 ą λ2p f q, then λ1p f q is an algebraic number
of degree ď d.
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CHAPTER 3

VALUATIONS AND ALGEBRAIC

GEOMETRY

3.1 Results from algebraic geometry

Let k be an algebraically closed field. A variety is an integral scheme of finite type over k. A
surface is a variety of dimension 2. An affine variety over k is a variety X0 “ SpecA with A a
finitely generated k-algebra. We will denote by krX0s the ring of regular functions of the affine
variety X0.

3.1.1 Bertini

Theorem 3.1.1 (Bertini’s Theorem, [Har77]). Let X Ă PN be a smooth quasi-projective variety

over an algebraically closed field k. The set of hyperplanes H of PN such that the intersection

HXX is a smooth irreducible subvariety of X is a dense open subset of PΓpPN ,Op1qq.

3.1.2 Local power series and local coordinates

Let X be a variety and x P X a closed point. We will write OX ,x for the ring of germs of regular
functions at x. A regular sequence of OX ,x is a sequence t1, ¨ ¨ ¨ , tr P OX ,x such that t1 is not a
zero divisor in OX ,x and for all i ě 2, ti is not a zero divisor in OX ,x{pt1, ¨ ¨ ¨ , ti´1q (see [Har77]
p.184). The point x is regular if the local ring OX ,x is regular, i.e there exists a regular sequence
of length dimOX ,x.

Theorem 3.1.2 ([Har77], Theorem 5.5A). Let R be a regular local k-algebra of dimension n

with maximal ideal m, then the completion of R with respect to the m-adic topology is isomor-

phic to k rrt1, ¨ ¨ ¨ , tnss where pt1, ¨ ¨ ¨ , tnq is a regular sequence of R.

Let X be a surface and x a regular point of X . Then, we will say that pz,wq are local

coordinates at x if pz,wq is a regular sequence of OX ,x. If pz,wq is a regular sequence of the
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completion yOX ,x we will say that they are local formal coordinates. By Theorem 3.1.2, yOX ,x is
isomorphic to krrz,wss. Finally, If k“Cv, is a complete algebraically closed field (archimedean
or not), we consider the local ring of germs of holomorphic functions at x, this is the subring of
yOX ,x of power series with a positive radius of convergence. We denote it by Ohol

X ,x it is also a local
ring of dimension 2, if pz,wq is a regular sequence of Ohol

X ,x, we say that pz,wq are local analytic

coordinates. If E,F are two germs of reduced irreducible curves at x (algebraic, analytic of
formal) we will say that pz,wq are associated to pE,Fq if z “ 0 is a local equation of E and
w“ 0 is a local equation of F .

3.1.3 Boundary

Proposition 3.1.3 ([Goo69], Proposition 1 and 2). Let X0 be an affine variety and let ι : X0 ãÑ X

be an open embedding into a projective variety, then the subvariety XzX0 is of pure codimension

1. Furthermore, there exists a regular function P on X0 that has poles along every component

of XzX0.

Set
BX X0 :“ XzX0, (3.1)

we call it the boundary of X0 in X ; by Proposition 3.1.3 it is a curve when X0 is a surface.

Theorem 3.1.4 ([Goo69]). Let X be a normal proper surface and U an open dense affine subset

of X (that is an open dense subset of X that is also an affine variety) such that V :“ XzU is

locally factorial (each local ring is a unique factorization domain), then there exists an ample

divisor H on X such that SuppH “V .

In fact, Goodman shows that Theorem 3.1.4 holds in higher dimension with the only differ-
ence that you may need to do some blow-ups at infinity to find an ample divisor.

3.1.4 Surfaces

Theorem 3.1.5 ([Har77] Proposition 5.3). Let g : S1 Ñ S2 be a birational morphism between

smooth projective surfaces. Then, g is a composition of blow-ups of points and of an automor-

phism of S2. Furthermore, if h : S1 99K S2 is a birational map, then there exists a sequence of

blow-ups π : S3 Ñ S1 such that h˝π : S3 Ñ S2 is regular and S3 can be chosen minimal for this

property.
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Proposition 3.1.6. Let g : S1 99K S2 be a birational map. Let π : S3Ñ S1 be a minimal resolution

of indeterminacies of g such that the lift h : S3 Ñ S2 of g is regular. Then, the first curve

contracted by h must be the strict transform of a curve in S1.

Recall the Castelnuovo criterion

Theorem 3.1.7 ([Har77] Theorem V.5.7). Let C be a curve in a projective surface S such that

C » P1 and C2 “´1, then there exists a projective surface S1, a birational morphism π : SÑ S1

and a point p P S1 such that S is isomorphic via π to the blow up of p and C is the exceptional

divisor under this isomorphism.

We will use these results for the study of automorphisms of affine surfaces as they induce
birational maps. Understanding the combinatorics of the blow ups and contractions induced by
the automorphism will allow us to understand their dynamics.

Our work relies heavily on the elimination of indeterminacies for rational morphism. Since
we are in dimension 2, it exists in any characteristic.

Theorem 3.1.8. Let f : S1 99K S2 be a dominant rational morphism between projective varieties

over an algebraically closed field of any characteristic, then there exists a sequence of blow-ups

π : SÑ S1 such that f ˝π : SÑ S2 is regular.

Theorem 3.1.9 ([Cut02]). Suppose chark “ 0. Let f : SÑ S1 be a dominant rational map be-

tween normal projective surfaces over k. There exists blow ups S1Ñ S and S11Ñ S1 such that the

lift pf : S1Ñ S11 is monomial at every point. Meaning that for every closed point p P S1 there exists

local coordinates px,yq at p and local coordinates pu,vq at f ppq such that f px,yq “ pxayb,xcydq.

3.1.5 Rigid contracting germs in dimension 2 and local normal forms

Let f : pC2,0q Ñ pC2,0q be the germ of a holomorphic function fixing the origin. The critical

set Critp f q of f is the set where the Jacobian of f vanishes. A germ is said to be rigid if
the generalized critical set Yně0 f´npCritp f qq “ Yně1 Critp f nq is a divisor with simple normal
crossings (see [Fav00]).

A germ is contracting if there exists an open neighbourhood U of 0 such that f pUq ŤU . In
[Fav00], Favre classified all the rigid contracting germs in dimension 2 up to holomorphic con-
jugacy. There are 7 possible possibilities which we call local normal forms. We are interested
in 3 of them that will appear in this memoir.

The first one is
f px,yq “ pxa,λxcy`Ppxqq (3.2)
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with a ě 2,c ě 1,λ P Cˆ and P is a polynomial such that Pp0q “ 0. Here the germ of curve
x “ 0 is contracted by f to the origin and f does not admit any invariant germ of curves if and
only if P ‰ 0. We have Critp f nq “ tx“ 0u. This local normal form corresponds to Class 2 of
Table II in [Fav00]. This is the local normal form of a Hénon map at its attracting fixed point in
P2 (see [Fav00] §2). It will appear in the following way in this memoir. Suppose that there are
local coordinates pz,wq at the origin such that f contracts tz“ 0u with an index of ramification
a ě 2, f admits no invariant curves and no other curves is contracted to the origin, then f is of
the form

f pz,wq “ pza
ϕpz,wq,zcwψ2pz,wq`ψ1pzqq (3.3)

with ϕ invertible, ψ1pzq ‰ 0 and ψ2p0,wq ‰ 0. This is true even over any field k of characteristic
0. If k “ C, then the classification of Favre shows that (3.3) can be analytically conjugated to
(3.2).

The second one is the monomial normal form

f px,yq “ pxa11ya12,xa21ya22q (3.4)

with ai j P Zě1,a11a22´a12a21 ‰ 0; The germ of curves tx“ 0u ,ty“ 0u are contracted to the
origin. We have Critp f nq “ txy“ 0u. We can characterize the matrix A given by pai jq in the
following way. The local fundamental group of pC2,0qztxy“ 0u is isomorphic to Z2. The
action of f˚ on Z2 is given by the matrix A and we have that |det|A is equal to the topological
degree of f . This corresponds to Class 6 of Table II of [Fav00]. It will arise in the following
context, if f is a germ of holomorphic functions such that there exists local coordinates pz,wq
at the origin such that both axis tz“ 0u and tw“ 0u are contracted and they are the only two
germs of curves contracted. Then, f is of the following pseudomonomial form

f pz,wq “ pza11wa12ϕpz,wq,za21wa22ψpz,wqq (3.5)

with ϕ,ψ invertible. Then, the classification of Favre asserts that (3.5) is analytically conjugated
to (3.4).

The third one is
f px,yq “ pxayb

p1`ϕq,λyp1`ψqq (3.6)

with aě 2,bě 1,λ PCˆ and ϕ,ψ are germs of holomorphic function vanishing at the origin. We
have that ty“ 0u is contracted to the origin. The germ tx“ 0u is f -invariant with a ramification
index equal to a. We have Critp f nq “ txy“ 0u and the origin is a noncritical fixed point of
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f|tx“0u. Notice that this germ is rigid but not necessarily contracting. It is contracting if and
only if |λ| ă 1. If the germ is contracting then the germ is conjugated to this normal form

f pz,wq “
´

zawb,λw
¯

(3.7)

with the same numbers a,b,λ as in Equation 3.6. This corresponds to Class 5 of Table II in
[Fav00].
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3.2 Definitions

Let k be an algebraically closed field of any characteristic and let X0 be a normal affine surface
over k. We will denote by A the ring of regular functions on X0.

3.2.1 Completions and divisors at infinity

A completion of X0 is the data of a projective surface X with an open embedding ι : X0 ãÑX such
that ιpX0q is an open dense subset of X and such that there exists an open smooth neighbourhood
of BX X0 in X . We will say that a completion is good if BX X0 is an effective divisor with simple
normal crossings, From any completion of X , one obtains a good one by a finite number of blow
ups at infinity (i.e on BX X0) see for example [Har77] Theorem 3.9 p.391.

Let X be a completion of X0 with the embedding ιX : X0 Ñ X , we will still denote ιXpX0q by
X0 and we will denote by OXpX0q the subring of kpXq of functions f P kpXqwhich are regular on
X0. By Proposition 3.1.3, the boundary BX X0 is a possibly reducible connected curve. We denote
by DivpXq the group of divisors of X and by Div8pXq the subgroup of divisors of X supported
on BX X0. For A “ Z,Q,R, we set DivpXqA :“ DivpXq bA and Div8pXqA “ Div8pXq bA.
Let E1, ¨ ¨ ¨ ,Em be the irreducible components of BX X0 (we will call them the prime divisors

at infinity). Any element of Div8pXqA is of the form D “
ř

i aipDqEi with aipDq P A. We will
write ordEipDq for aipDq of D at Ei. For a family pD jq jPJ of elements of Div8pXq the coefficients
aipDq are integers; so, using the natural order on Z, we define the supremum

Ž

jPJ D j and the
infimum

Ź

jPJ D j by

ł

j

D j “
ÿ

i

suppordEipD jqqEi and
ľ

j

D j “
ÿ

i

infpordEipD jqqEi (3.8)

It only exists if each pordEipD jqq jPJ is bounded respectively from above or from below. If
Ź

j D j (respectively
Ž

j D j) is well defined we say that the family pD jq is bounded from below

(from above). Notice that we only define supremum and infimum for family of divisors with
coefficients in Z.

3.2.2 Morphisms between completions, Weil, Cartier divisors

Some notations If π : Y Ñ X is a projective birational morphism between smooth projective
surfaces and DX is a divisor on X , we will denote by π˚DX the pull-back of DX under π and
if DX is effective, then π1pDXq will be the strict transform of DX under π. For any projective
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surface Z, if DZ is a divisor on Z, we will denote by OZpDZq the invertible sheaf on Z associated
to DZ .

Let X1,X2 be two completions of X0 with their embeddings ι1, ι2. There exists a unique
birational map π : X1 99K X2 such that the diagram

X1 X2

X0 X0

π

ι1

id

ι2 (3.9)

commutes. If π is a morphism, we call it a morphism of completions. In that case we say that X1

is above X2. By Theorem 3.1.5, π´1 is a composition of blow-ups; since π is an isomorphism
over X0, the centers of these blowups are above BX2X0. Conversely, let X be a completion of X0

with an embedding ι : X0 ãÑ X , let π : Y Ñ X be the blowup of X at a point p P BX X0 , then Y

with the embedding π´1 ˝ ι : X0 ÑY is a completion of X0 and π is a morphism of completions.
For a morphism of completions π : Y Ñ X , we will write Excpπq Ă Y for the exceptional locus
of π.

Lemma 3.2.1. The system of completions of X0 is a projective system: For any two completions

X1,X2 of X0 there exists a completion X3 above X1 and X2.

Proof. Let X1, X2 be two completions of X0, let π : X1 99K X2 be the birational map from Di-
agram 3.9. By Theorem 3.1.5, there exists a sequence of blow-ups π1 : X3 Ñ X1 such that
g“ π1 ˝π : X3 Ñ X2 is regular. It is clear that π1 is a morphism of completions since by defini-
tion ιX3 “: ι3 “ ι1 ˝π

´1
1 . The map g is also a morphism of completion because by construction

g“ π˝π1 and ι2 “ π˝ ι1, therefore ι3 “ π
´1
1 ˝ ι1 “ g´1 ˝π˝ ι1 “ g´1 ˝ ι2

If π : X1 Ñ X2 is a morphism of completions. We can define (see [Ful98], Section 1.4) the
pushforward π˚ : DivpX1qA Ñ DivpX2qA and pullback π˚ : DivpX2qA Ñ DivpX1qA of divisors.
They define group homomorphisms

π˚ : Div8pX1qA� Div8pX2qA and π
˚ : Div8pX2qA ãÑ Div8pX1qA; (3.10)

the map π˚ is often called the total transform. Recall that ([Har77] Proposition 3.2 p.386)

π˚π
˚
“ idDivpX2qA . (3.11)

Let X be a completion of X0 and P P A, then pι´1
X q˚pPq P kpXq. We set pιXq˚ :“ pι´1

X q˚ and
we denote by divXpPq :“ divppιXq˚Pq the divisor of the rational function P in X . In particular, if
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π : Y Ñ X is a morphism of completions above X0, then by Diagram (3.9), one has ιY “ π´1˝ ιX .
Therefore divY pPq “ divppπ´1 ˝ ιXq˚pPqq “ divpπ˚ ppιXq˚pPqqq “ π˚ divXpPq. We will write
div8,XpPq P Div8pXq the divisor on X supported at infinity such that

divXpPq “ D`div8,XpPq

where D is an effective divisor and no components of its support is in BX X0.

Example 3.2.2. Let X0 “ A2 “ Speckrx,ys and let P“ xy. Take the completion P2 of A2 with
homogeneous coordinates X ,Y,Z such that x“ X{Y and y“ Y{Z. Then,

divP2pPq “ tX “ 0u`tY “ 0u´2tZ “ 0u (3.12)

and div8,P2pPq “ ´2tZ “ 0u. Let π : X Ñ P2 be the blow-up of r1 : 0 : 0s, we can take X to be
the subscheme of P2ˆP1 given by the equation

UZ “VY (3.13)

where U,V are the homogeneous coordinates of P1. Then π is the projection onto the first
factor. We take the affine chart X “ 1 in P2 with affine coordinates y1 “ Y{X and z1 “ Z{X .
Take the chart U “ 1 with affine coordinate v in P1, then X XtX “ 1uˆ tU “ 1u is an affine
chart of XX with coordinates v,y1 and we have the relation z1 “ vy1; y1 “ 0 is a local equation of
the exceptional divisor and v“ 0 is a local equation of the strict transform of z1 “ 0.

π
˚
pPq “ π

˚
p

y1

pz1q2
q “

y1

v2py1q2
“

1
v2y1

(3.14)

Therefore,

divXpPq “ π
1
tX “ 0u`π

1
tY “ 0u´2π

1
tZ “ 0u´ rE “ π

˚
pdivP2pPqq (3.15)

and
div8,XpPq “ ´2π

1
tZ “ 0u´ rE (3.16)

The system of completions of X0 is a projective system by Lemma 3.2.1. Consider the
system of groups pDiv8pXqqA for X a completion of X0 with compatibility morphisms

π˚ : Div8pXq Ñ Div8pY q (3.17)
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for any morphism of completions π : X ÑY . This is also a projective system of groups. We de-
note by Weil8pX0qA the projective limit of this system. Analogously, the same system of groups
with π˚ as compatibility morphisms is an inductive system and we denote by Cartier8pX0qA
the inductive limit. Concretely, an element D PWeil8pX0qA is a collection D“ pDXq such that
DX is an element of Div8pXqA for every completion X of X0 and such that for any morphism
of completions π : X Ñ Y , π˚DX “ DY ; DX is called the incarnation of D in X . An element of
Cartier8pX0qA is the data of a completion X and a divisor D PDiv8pXq where two pairs pX ,Dq

and pX 1,D1q are equivalent if there exists a completion Z above X and X 1 with morphisms of
completion π : ZÑ X ,π1 : ZÑ X 1 such that π˚D“ pπ1q˚D1. We will say that D PCartier8pX0qA
is defined over a completion X if D is the equivalence class of pX ,DXq for some DX PDiv8pXqA.
We have a natural inclusion

ϕ : Cartier8pX0qA ãÑWeil8pX0qA (3.18)

defined as follows. If pX ,Dq P Cartier8pX0qA, then we need to define the incarnation ϕpDqY for
any completion Y . First of all, set ϕpDqX “ D. Then, for any completion Y , by Lemma 3.2.1,
there exists a completion Z above Y and X ; denote by πY : Z ÑY and πZ : Z Ñ X the respective
morphism of completions. We define ϕpDqY :“ pπY q˚π

˚
X D. This does not depend on the choice

of Z because of Equation (3.11). In the rest of the paper, we will drop the notation ϕpDq and
denote by D the image of pX ,Dq in Weil8pX0qA. We equip Weil8pX0qA with the projective
limit topology.

In the same manner we define CartierpX0qA :“ lim
ÝÑ

DivpXqA and WeilpX0qA :“ lim
ÐÝ

DivpXqA
and we have the following commutative diagram

Cartier8pX0qA Weil8pX0qA

CartierpX0qA WeilpX0qA

(3.19)

Remark 3.2.3. We have that Cartier8pX0qA “ Cartier8pX0qbA but Weil8pX0qA is strictly
larger than Weil8pX0qbA when A “ Q,R. Indeed, let W1, . . . ,Wr PWeil8pX0q,λ1, . . . ,λr P A
and set W :“

ř

i λiWi. Then, for every completion X and for every prime divisor E at infinity in
X we have

ordEpWXq “ ordEp
ÿ

i

λiWi,Xq “
ÿ

i

λi ordEpWi,Xq P Zλ1`¨¨ ¨`Zλr (3.20)
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In particular, the group GpW q generated by pordEpWXqqpX ,Eq for all completions X and all prime
divisor E at infinity in X is a finitely generated subgroup of R. Now pick a completion X1 and
consider a sequence of blow ups πn : Xn`1 Ñ Xn starting with X1. Let En be the exceptional
divisor of πn. We still denote by En the strict transform of En in every Xm,m ě n` 1. Define
the Weil divisor W PWeil8pX0qA such that its incarnation in Xn`1 is WXn`1 “

řn
k“1

1
k Ek. Then,

GpW q is not finitely generated, therefore W RWeil8pX0qbA.

An element D of Weil8pX0qA with A“ Z,Q,R is called effective (denoted by Dě 0) if its
incarnation in every completion X is effective; if D belongs to Cartier8pX0qR this is equivalent
to DX ě 0 for one completion X where D is defined. If D1,D2 P Weil8pX0qA, we will write
W1 ěW2 for W1´W2 ě 0.

3.2.3 A canonical basis

Let X be a completion of X0, we define DX as follows. Elements of DX are equivalence classes
of prime divisors exceptional above X at infinity in completions πY : Y Ñ X above X where two
prime divisors E and E 1 belonging respectively to Y and Y 1 are equivalent if the birational map
π
´1
Y 1 ˝ πY : Y 99K Y 1 induces an isomorphism π

´1
Y 1 ˝ πY : E Ñ E 1. We call DX the set of prime

divisors above X . We also define D8pX0q as the set of equivalence classes of prime divisors at
infinity modulo the same equivalence relation. We write ADX for the set of functions DX Ñ A
and ApDX q for the subset of functions with finite support.

Proposition 3.2.4. If X is a completion of X0, then

Cartier8pX0qA “ Div8pXqA‘ApDX q, and Weil8pX0qA “ Div8pXqA‘ADX . (3.21)

This is a homeomorphism with respect to the product topology of ADX .

Proof. Following [BFJ08] Proposition 1.4, for any E P DX there exists a minimal completion
XE above X such that E is a prime divisor in XE . We denote by αE P Cartier8pX0q the element
αE :“ pXE ,Eq. Let E1, . . . ,Er be the prime divisor at infinity in X , then

pE0, . . . ,ErqYtαE : E PDXu (3.22)

is a A-basis of Cartier8pX0qA. In the same fashion we obtain the second homeomorphism.

Remark 3.2.5. Since for any completion X , one can find a good completion Y above X and
the blow up of a good completion is still a good completion, the projective system of good
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completions is cofinal in the projective system of completions, so in the rest of the paper any
completion that we take will be a good completion.

If f : X0 Ñ X0 is a dominant endomorphism, then we can define

f ˚ : Cartier8pX0qA Ñ Cartier8pX0qA and f˚ : Weil8pX0qA ÑWeil8pX0qA (3.23)

as follows. Let D “ pX ,DXq P Cartier8pX0qA. Let Y be a completion of X0 such that the lift
F : Y Ñ X of f is regular, then we define

f ˚D :“ pY,F˚DXq P Cartier8pX0qA . (3.24)

This does not depend on the choice of Y . If D PWeil8pX0q, let X ,Y be completions of X0 such
that the lift F : Y Ñ X is regular, then

p f˚DqX :“ F̊ DY . (3.25)

Again, this does not depend on the choice of Y .

3.2.4 Local version of the canonical basis

Let X be a completion and let p P X be a closed point at infinity i.e on BX X0. We denote by
WeilpX , pqA the subspace of Weil8pX0qA defined as follows: D P WeilpX , pqA if and only if
DX “ 0 and for every completion π : Y Ñ X above X and every prime divisor E at infinity in Y ,
one has E P SuppDY if and only if πpEq “ p. We define

CartierpX , pqA “WeilpX , pqAXCartier8pX0qA . (3.26)

We can define the set DX ,p of prime divisors above p as follows. We will say that a completion
π : Y Ñ X is exceptional above p if πpExcpπqq “ p. We will write π : pY,Excpπqq Ñ pX , pq for
such a completion. Elements of DX ,p are equivalence classes of prime divisors E P Excpπq for
all completions π : pY,Excpπqq Ñ pX , pq.

Proposition 3.2.6. If X is a completion of X0, then DX “
Ů

pPBX X0
DX ,p and

CartierpX , pqA “ pAqpDX ,pq (3.27)

WeilpX , pqA “ pAqDX ,p (3.28)
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3.2.5 Supremum and infimum of divisors

Let pDiqiPI be a family of elements of Weil8pX0q such that for all completions X , the family
pDi,Xq is bounded from below, we define

Ź

iPI Di with its incarnation in X being

´

ľ

Di

¯

X
“
ľ

i

Di,X . (3.29)

We have an analogous definition for
Ž

i Di when each pDi,Xq is bounded from above.

Lemma 3.2.7. If D,D1 P Cartier8pX0q, then D^D1,D_D1 P Cartier8pX0q.

Proof. It suffices to show that D^D1 P Cartier8pX0q because D_D1 “´p´D^´D1q. So take
D,D1 P Cartier8pX0q, we have to show that D^D1 belongs to Cartier8pX0q.

Now, it suffices to show this for D,D1 effective, indeed let X be a completion such that D

and D1 are defined over X . Then, there exists D2 P Div8pXq such that D´D2 and D1´D2 are
effective. Indeed, take D2 as the Cartier class determined by D^D1 in X , Then

D^D1 “ pD´D2q^pD1´D2q`D2. (3.30)

Therefore, suppose D,D1 are effective. Then a “ OXp´Dq`OXp´D1q is a coherent sheaf
of ideals such that a|X0 “ OX0 , let π : Y Ñ X be the blow-up along a. Since a|X0 is trivial, π

is an isomorphism over X0, therefore Y is a completion of X0 with respect to the embedding
ιY :“ π´1 ˝ ιX and π is a morphism of completions. Then, b :“ π˚a ¨OY is an invertible sheaf
over Y trivial over X0, so there exists a divisor DY P Div8pY q such that b“ OY p´DY q.

Claim 3.2.8. The Cartier class in Cartier8pX0q induced by DY is D^D1.

We postpone the proof of this claim to the end of Section 3.3.

Example 3.2.9. Let X be a completion that contains two prime divisors E,E 1 at infinity in X

such that they intersect (transversely) at a point p. The sheaf of ideals a“OXp´Eq`OXp´E 1q is
the ideal of regular functions vanishing at p. The blow up of a is exactly the blow up π : Y Ñ X

at p since by universal property of the blow-up π˚a “ OY p´rEq where rE is the exceptional
divisor above p. If we still denote by E,E 1, rE the elements they define in Cartier8pX0q, then
E^E 1 “ rE.

Let X be a good completion of X0. Let D1,D2 P Div8pXq. Let E,F be two prime divisors
at infinity that intersect. We say that pD1,D2q is well ordered at EXF if

ordEpD1q ă ordEpD2q ô ordFpD1q ă ordFpD2q. (3.31)
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We say that pD1,D2q is a well ordered pair if it is well ordered at EXF for every prime divisor
E,F at infinity that intersect.

Lemma 3.2.10. If D1^D2 or D1_D2 is defined in X, then pD1,D2q is a well ordered pair.

Proof. Suppose for example that D1_D2 is defined in X and that D1,D2 is not a well ordered
pair and let E,F be two prime divisors at infinity that intersect such that at EXF,Di“αiE`βiF

with α1 ă α2 and β1 ą β2. Then, D1_D2 “ α2E`β1F . Let rE be the exceptional divisor above
EXF , then we have ord

rEpD1_D2q “ α2`β1. But

ord
rE Di “ αi`βi ă α2`β1 “ ord

rEpD1_D2q. (3.32)

This is a contradiction.

Remark 3.2.11. This is actually an equivalence, if D1,D2 is a well ordered pair, then D1^D2

and D1_D2 is defined in X . This gives an algorithmic procedure by successive blow ups to
find the minimum and maximum of two Cartier divisors.

Definition 3.2.12. Let S8pX0q be the semigroup of Weil8pX0q of elements D PWeil8pX0q such
that there exists a (potentially uncountable) family pDiqiPI Ă Cartier8pX0q such that

D“
ł

I

Di (3.33)

Proposition 3.2.13. (1) Cartier8pX0q Ă S8pX0q.

(2) For a,bě 0 and D,D1 P S8pX0q, one has aD`bD1 P S8pX0q.

(3) If Di P S8pX0q for each i P I and pDiq is bounded from above then
Ž

iPI Di P S8pX0q.

(4) If D,D1 P S8pX0q, then D^D1 P S8pX0q.

Proof. The first assertion is trivial as for D P Cartier8pX0q,D “
Ž

D. For Property (2), let
X be a completion of X0 then

Ž

i aDi,X `
Ž

j bD1j,X “
Ž

i, jpaDi` bD1jqX . For Property (3), if
Di “

Ž

j Di, j, then
Ž

i Di “
Ž

pi, jqDi, j. Finally, the fourth assertion is a corollary of Lemma
3.2.7.

Example 3.2.14. We have S8pX0q ĘWeil8pX0q. Let X0 “ A2 and X “ P2. Let E0 denote the
line at infinity, a canonical divisor in P2 is given by KP2 “ ´3E0. We can define an element
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K PWeil8pX0q by taking for any completion Y of A2 the canonical divisor supported at infin-
ity. More precisely, let Y is any completion of A2 above P2. We still denote by E0 the strict
transform of E0 in Y . Then, KY is of the form

KY “´3E0`
ÿ

EĂBX X0,E‰E0

E. (3.34)

Suppose that K “ supipDiq for some Di P Cartier8pX0q. Let D P pDiq such that D is de-
fined over some completion Y and for some prime divisor E ‰ E0 at infinity, ordEpDq “ 1.
Then, we must have K ě D meaning that for any completion Z, KZ ě DZ . Consider the fol-
lowing blow ups. Let π1 : Y1 Ñ Y be the blow-up of a point p of E that does not belong to
any other divisor at infinity. Let rE be the exceptional divisor of π. Now let π2 : Y2 Ñ Y1 be
the blow-up at π11E X rE and let rF be the exceptional divisor of π2. Then, ord

rFpKY2q “ 1 but
ord

rFpDY2q “ ord
rFppπ2 ˝π1q

˚Dq “ 2 and this is a contradiction.
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3.2.6 Picard-Manin Space at infinity and its completion

Let X be a completion of X0 and let NSpXq be the Néron-Severi group of X . We have a perfect
pairing given by the intersection form

NSpXqRˆNSpXqR Ñ R. (3.35)

Recall the Hodge index theorem

Theorem 3.2.15 (Hodge Index Theorem, [Har77] Theorem 1.9 p.364). Let X be a projective

surface over a smooth projective surface over an algebraically closed field. Let α PNSpXq and

let H be an ample divisor on X. If α ¨H “ 0, then

α
2
ă 0. (3.36)

In particular, the signature of the quadratic form induced by the intersection form is p1,ρ´1q
where ρ is the rank of NSpXq.

A class α P NSpXq is nef if for all irreducible curve C Ă X ,α ¨ rCs ě 0. If π : Y Ñ X is a
morphism of completions we have two group homomorphisms

π˚ : NSpY qA Ñ NSpXqA,π˚ : NSpXqA Ñ NSpY qA (3.37)

with the following properties

1. π˚ ˝π˚ “ idNSpXqA

2. π˚α ¨π˚β“ α ¨β

3. π˚α ¨β“ α ¨π˚β (Projection Formula)

Furthermore, if π : Y Ñ X is the blow up of one point, let rE be the exceptional divisor, then

rrEs2 “´1, and NSpY qA “ π
˚NSpXqAkA ¨ rrEs (3.38)

Therefore, the system of groups pNSpXqq with compatibility morphisms π˚ is a projective sys-
tem of groups and pNSpXqq with compatibility morphisms π˚ is an inductive system of groups.

Definition 3.2.16. The Picard-Manin spaces of X0 are defined as
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Cartier-NSpX0qA :“ lim
ÝÑ

X0ãÑX
NSpXqA, Weil-NSpX0qA “ lim

ÐÝ
X0ãÑX

NSpXqA (3.39)

We equip Weil-NSpX0qA with the topology of the projective limit. We have the same
description as for Weil8pX0q and Cartier8pX0q. An element of Weil-NSpX0q is a family
α“ pαXqX where αX P NSpXq such that for all π : Y Ñ X , we have

π˚αY “ αX .

We call αX the incarnation of α in X .
An element of Cartier-NSpX0q is the data of a completion X of X0 and a class α P NSpXq

with the following equivalence relation: pX ,αq » pY,βq if there exists a completion Z with a
morphism of completion

πY : Z Ñ Y, πX : Z Ñ X

such that π˚Y β “ π˚X α. We say that the Cartier class is defined (by α) in X . We have a natural
embedding

Cartier-NSpX0q ãÑWeil-NSpX0q . (3.40)

We have a pairing

Weil-NSpX0qRˆCartier-NSpX0qR Ñ R (3.41)

given by the following: let α PWeil-NSpX0qR and β P Cartier-NSpX0qR; let X be a completion
where β is defined i.e β“ pX ,βXq; then

α ¨β :“ αX ¨βX . (3.42)

This is well defined because if π : Y Ñ X then

αY ¨βY “ αY ¨π
˚
βX “ π˚αY ¨βX “ αX ¨βX (3.43)

by the projection formula.
An element α PWeil-NSpX0qR is nef if for all completion X , αX is nef.

Proposition 3.2.17 ([BFJ08] Proposition 1.7). The intersection pairing

Weil-NSpX0qRˆCartier-NSpX0qR Ñ R (3.44)
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is a perfect pairing and it induces a homeomorphism Weil-NSpX0qR » Cartier-NSpX0q
˚
R en-

dowed with the weak-˚ topology.

Using the canonical basis of divisors introduced in §3.2.3 we have a more explicit descrip-
tion of the Picard Manin spaces of X0.

Proposition 3.2.18. Let X be a completion of X0, then

Cartier-NSpX0qA “ NSpXqAkApDX q, Weil-NSpX0qA “ NSpXqkADX . (3.45)

Moreover, the intersection product is negative definite over ApDX q and tαE : E PDXu is an

orthonormal basis for the quadratic form α P ApDX q ÞÑ ´α2.

Proof. The decomposition follows from Equation (3.38). The fact that the intersection form is
negative definite follows from the existence of an ample divisor on X , the Hodge Index theorem
and the projection formula. The fact that tαE : E PDXu is an orthonormal basis is again a
consequence of the projection formula and Equation (3.38).

3.2.6.1 The local Picard-Manin space

Let X be a completion of X0 and let p be a point at infinity. Then, by Proposition 3.2.18 we
have the canonical embeddings

CartierpX , pqA ãÑ Cartier-NSpX0qA, WeilpX , pqA ãÑWeil-NSpX0q (3.46)

Proposition 3.2.19. If A “ R, the space CartierpX , pqR is an infinite dimensional R-vector

space and the intersection product defines a negative definite quadratic form over it. The set

tαE : E PDX ,pu is an orthonormal basis for the scalar product α ÞÑ ´α2. Furthermore, the

pairing

WeilpX , pqRˆCartierpX , pqR Ñ R (3.47)

is perfect.

3.2.6.2 The divisors supported at infinity

Fix a completion X of X0, we have a natural linear map τ : Div8pXqR Ñ NSpXqR.

Proposition 3.2.20. The intersection pairing restricted to τpDiv8pXqRq is non degenerate.
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Proof. Let D P τpDiv8pXqRq, suppose that D ¨D1 “ 0 for all D1 P τpDiv8pXqRq . Then, by
Theorem 3.1.4, there exists H P Div8pXq ample. We have D ¨H “ 0. By the Hodge index
theorem, if D is not numerically equivalent to zero, then D2 ă 0 and this is a contradiction.

Let V Ă NSpXq be the orthogonal subspace of τpDiv8pXqRq. Then,

NSpXqR “V k τpDiv8pXqRq. (3.48)

For example if X0 “ A2 and X “ P2, then V “ 0. Since we only blow up at infinity we get

Proposition 3.2.21. Let X0 be an affine surface , then

Cartier-NSpX0qR “V k τpCartier8pX0qRq , Weil-NSpX0qR “V k τpWeil8pX0qRq (3.49)

3.2.6.3 Functoriality

Let f : X0 Ñ X0 be a dominant endomorphism of X0. We define f ˚, f˚ on the Picard-Manin
spaces as follows. We first define

f ˚ : Cartier-NSpX0qR Ñ Cartier-NSpX0qR . (3.50)

Let β P Cartier-NSpX0qR and let X be a completion where β is defined. Let Y be a completion
of X0 such that the lift F : Y Ñ X is regular, then we define f ˚β as the Cartier class defined in Y

by
f ˚β :“ pY,F˚βXq (3.51)

this does not depend on the choice of Y . Indeed, if Y 1 is another completion such that F 1 :Y 1ÑX

is well defined, then there exists a completion Z such that we have the following diagram.

Z

Y 1 Y

X X X

πY 1 πY

π1F 1 π F

f f

(3.52)

Then, the lift of f : Z 99K X is F ˝πY “ F 1 ˝πY 1 , hence we get

π
˚
Y ˝F˚ “ π

˚
Y 1 ˝ pF

1
q
˚ (3.53)
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and the pull back of Cartier classes is well defined.

Next, we define f˚ : Weil-NSpX0qR ÑWeil-NSpX0qR. Let α PWeil-NSpX0qR. Let X ,Y be
completions of X0 such that the lift F : Y Ñ X is regular, then the incarnation of f˚α in X is

p f˚αqX :“ F̊ αY . (3.54)

Again, this does not depend on the choice of Y by a similar argument as for the pullback. We
have the following proposition

Proposition 3.2.22 ([BFJ08] Section 2). We have the following properties.

• The operator f ˚ extends to an operator

f ˚ : Weil-NSpX0qR ÑWeil-NSpX0qR . (3.55)

• the operator f˚ restricts to an operator

f˚ : Cartier-NSpX0qR Ñ Cartier-NSpX0qR (3.56)

• Let α PWeil-NSpX0q, let X ,Y be completions of X0 such that the lift f : X 99KY does not

contract any curves, then

p f ˚αqX “ p f ˚αY qX (3.57)

Remark 3.2.23. For a completion X , we can also define the restriction of f ˚ and f˚ to NSpXq.
We denote them respectively by f ˚X and p fXq˚. They are defined by

@β P NSpXq, f ˚X β“ p f ˚βqX , p fXq˚β“ p f˚βqX (3.58)

3.2.6.4 Spectral property of the first dynamical degree

Consider a completion X of X0 and ω P NSpXq an ample class. By the Hodge index theo-
rem, the intersection form on Cartier-NSpX0qˆCartier-NSpX0q is negative definite on ωK. If
α P Cartier-NSpX0q, the projection of α on ωK is α´pα ¨ωqω. Consider the quadratic form on
Cartier-NSpX0q given by

@α P Cartier-NSpX0q, ||α||
2 :“ pω ¨αq2´

1
ω2 pα´pα ¨ωqωq

2. (3.59)
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This defines a norm on Cartier-NSpX0qR and Cartier-NSpX0qR is not complete for this norm.
We denote by L2pX0q the completion of Cartier-NSpX0qR with respect to this norm; Had we
chosen a different ample class, we would have gotten an equivalent norm so the space L2pX0q

is independent of the choice of ω. This is a Hilbert space and we have

Proposition 3.2.24 ([BFJ08] Proposition 1.10). There is a continuous injection

L2
pX0q ãÑWeil-NSpX0q (3.60)

and the topology on L2pX0q induced by Weil-NSpX0q coincides with its weak topology as a

Hilbert space. If α P Weil-NSpX0q then α belongs to L2pX0q if and only if infXpα
2
Xq ą ´8,

in which case α2 “ infXpα
2
Xq. Furthermore, the intersection product ¨ defines a continuous

bilinear form on L2pX0q.

Remark 3.2.25. In particular, any nef class belongs to L2pX0q. Recall that α PWeil-NSpX0qR
is nef if for every completion X ,αX is nef. The cone theorem ([Laz04] Theorem 1.4.23) states
that αX is a limit of ample classes in NSpXqR, therefore pαXq

2 ě 0 and α P L2pX0q.

Using the canonical basis of exceptional divisors we can have an explicit description of
L2pX0q. Let α P Cartier-NSpX0q and let αX be the incarnation of α in X . Then, since α is a
Cartier class, we have for all but finitely many E PDX that α ¨αE “ 0 and

α“ αX `
ÿ

EPDX

pα ¨αEqαE . (3.61)

Therefore,
||α||

2
“ ||αX ||

2
`

ÿ

EPDX

pα ¨αEq
2, (3.62)

and
α

2
“ α

2
X ´

ÿ

EPDX

pα ¨αEq
2 (3.63)

Therefore, L2pX0q is isomorphic to the Hilbert space

L2
pX0q “ NSpXqk `2

pDXq. (3.64)

We also have the local version of this statement
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Proposition 3.2.26. Let X be a completion of X0 and p P X be a point at infinity. Then,

L2
pX0qXWeilpX , pq “ `2

pDX ,pq (3.65)

and tαE : E PDX ,pu is a Hilbert basis of this space.

Proposition 3.2.27 ([BFJ08]). Let f be a dominant endomorphism of X0. The linear maps

f ˚, f˚ : Weil-NSpX0q ÑWeil-NSpX0q (3.66)

induce continuous operators

f ˚, f˚ : L2
pX0q Ñ L2

pX0q (3.67)

Furthermore, we have the following properties in L2pX0q.

(1) p f nq˚ “ p f ˚qn;

(2) @α,β P L2pX0q, f ˚α ¨β“ α ¨ f˚β.

(3) @α P L2pX0q, f ˚α ¨ f ˚α“ ep f qα ¨α where ep f q is the topological degree of f .

In particular, if f P AutpX0q then f ˚ is an isometry of L2pX0q viewed as an infinite dimen-
sional hyperbolic space (see [CLC13]).

Theorem 3.2.28 ([BFJ08, DF21]). Suppose that λ1p f q2 ą λ2p f q, then there exist nef classes

θ˚,θ˚ P L2pX0q unique up to multiplication by a positive constant such that

(1) f ˚θ˚ “ λ1θ˚.

(2) f˚θ˚ “ λ1θ˚.

(3) For all α P L2pX0q,

1
λn

1
p f n
q
˚
α“ pα ¨θ˚qθ

˚
` 1Oα

˜

ˆ

λ2

λ2
1

˙n{2
¸

, (3.68)

1
λn

1
p f n
q˚α“ pα ¨θ

˚
qθ˚`Oα

˜

ˆ

λ2

λ2
1

˙n{2
¸

. (3.69)

1. A“ OαpBq means that there exists a constant Cpαq ą 0 such that AďCpαqB.
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In particular, for all α,β P L2pX0q,

lim
n

1
λn

1
p f n
q
˚
α ¨β“ pα ¨θ˚qpβ ¨θ

˚
q. (3.70)

Furthermore, θ˚ and θ˚ satisfy

pθ
˚
q

2
“ 0, θ˚ ¨θ

˚
ą 0 (3.71)

We call θ˚ and θ˚ the eigenclasses of f .

Sketch of proof. We sketch here the proof for θ˚. Let X be a completion of X0. The pull back
f ˚ induces a linear map f ˚X : NSpXq Ñ NSpXq. Let ρX be the spectral radius of this map. We
have for any ample class w PNSpXq that ρX “ limnÑ8 pp f ˚Xq

nw ¨wq1{n. Now, f ˚X the cone CX of
nef classes in NSpXqR. This is a closed convex cone with compact basis and non-empty interior.
By a Perron-Frobenius type argument, there exists θX PCX such that f ˚X θX “ ρX θX .

Now, Let pXNq be a sequence of completions of X0 such that X1 “ X and XN`1 is a com-
position of blowups of XN at infinity such that the lift of f to FN : XN`1 Ñ XN is regular,
we denote by πN : XN`1 Ñ XN the induced morphism of completions. Let ρN :“ ρXN and
θN :“ θXN . One can show that limN ρN “ λ1. By construction, we have that for all N ě 1, the
element f ˚θN ´ ρNθN P Weil-NSpX0qR has incarnation zero in XN , hence it tends to zero in
Weil-NSpX0qR. We can normalize all θN such that θN ¨w “ 1 where w is an ample class of
NSpXq. Now, the set tW PWeil-NSpX0qR |W ¨w“ 1u is a compact subset of Weil-NSpX0q so
the sequence pθNq has an accumulation point θ˚ PWeil-NSpX0q that is nef, effective and we get
f ˚θ˚ “ λ1θ˚.

3.3 Valuations

3.3.1 Valuations and completions

Our general reference for the theory of valuations is [Vaq00]. Let R be a commutative k-algebra
that is also an integral domain, a valuation on R is a function ν : RÑ RYt8u such that

(i) νpk˚q “ 0;

(ii) For all P,Q P R,νpPQq “ νpPq`νpQq;

(iii) For all P,Q P R,νpP`Qq ěminpνpPq,νpQqq;
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(iv) νp0q “ `8.

If I is an ideal of R, we set νpIq :“miniPI νpiq. If S Ă I is a set of generators, then

νpIq “min
sPS

νpsq. (3.72)

Remark 3.3.1. In [Abh56] A valuation can take the value `8 only at 0 but we do not require
such a property. Let pν “ ta P R : νpaq “ 8u then pν is a prime ideal of R that we call the bad

ideal of ν. If ν is a valuation on R, it defines naturally a valuation in the sense of [Abh56] on
the quotient field R{pν. Furthermore ν can be naturally extended to a valuation on the ring Rpν

via the formula νpp{qq “ νppq´νpqq. In particular, if pν “ t0u, then ν defines a valuation over
FracR.

Let X be a completion of X0 and let ν be a valuation over B :“ OXpX0q. Let pν be the bad
ideal of ν. Consider Bpν

the localization of B at pν. Set

Oν :“ tx P Bpν
: νpxq ě 0u . (3.73)

This is a subring of Bpν
. If pν “ t0u, then this is the classical valuation ring of ν.

Lemma 3.3.2. The subring Oν is a local ring, its maximal ideal is

mν :“ tx P Oν : νpxq ą 0u . (3.74)

Proof. It suffices to show that if νpxq “ 0, then x is invertible in Oν but this is obvious since
νpx´1q “ ´νpxq “ 0.

One defines naturally a valuation ν on C :“ B{pν, let L be the fraction field of C and O be
the valuation ring of L with respect to ν. Then, we have the natural isomorphisms

L» Bpν
{pν and Oν{pν » O (3.75)

Geometrically, the Zariski closure of pν inside X defines an irreducible closed subscheme Y of
X and L is isomorphic to the field of rational functions on Y .

Two valuations ν1,ν2 are equivalent if there exists a real number λą 0 such that ν1 “ λν2.
Let R,R1 be two integral domains with a homomorphism of schemes ϕ : SpecR1 Ñ SpecR;
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it induces a ring homomorphism ϕ˚ : R Ñ R1. If ν is a valuation on R1 we define ϕ˚ν the
pushforward by ϕ of ν by

@P P R,ϕ˚νpPq “ νpϕ
˚
pPqq. (3.76)

Let X0 “ SpecA as in Section 3.2.2. Denote by V the set of valuations on A. We equip
this space with the topology of weak convergence, that is the coarsest topology such that the
evaluation map ν P V ÞÑ νpPq is continuous for all P P A. If f is an endomorphism of X0, then
f induces a continuous map f˚ : V Ñ V .

Via the natural isomorphism ι˚X : OXpX0q Ñ A, every ν P V induces a valuation pιXq˚ν on
OXpX0q, namely

@P P OXpX0q, pιXq˚νpPq :“ νpι
˚
X Pq. (3.77)

We will denote pιXq˚ν by νX for every valuation ν on A.

Remark 3.3.3. Take a morphism of completions π : X1 Ñ X2 and ν a valuation on A. Then,
pιX2q˚ν“ pπ

´1 ˝ ιX1q˚ν. In particular π˚νX2 “ νX1 .

Remark 3.3.4. In the language of Berkovich theory, the set V is the Berkovich analytification
of X0 over k where we have endowed k with the trivial valuation (see [Ber12]).

Example 3.3.5 (Divisorial valuations). Let X be a completion of X0 and E be a prime divisor
of X . Let ordE be the valuation on kpXq such that for any f P kpXq,ordEp f q is the order of
vanishing of f along E. Any valuation ν on A such that νX is equivalent to ordE for some
prime divisor E in some completion X is called a divisorial valuation. In that case pν “ t0u
and ν extends uniquely to a valuation on FracA. For example if X0 “ A2 and X “ P2, then let
L8 be the line at infinity, we have @P P krx,ys,ordL8pPq “ ´degpPq. If instead we take the
completion P1ˆP1, decompose A2 “ A1ˆA1 and let x,y be the affine coordinate of A2 each
being an affine coordinate of A1. Let Lx “ t8uˆP1 and Ly “ P1ˆt8u, then

@P P krx,ys,ordLxpPq “ ´degxpPq, ordLypPq “ ´degypPq (3.78)

where degx (respectively degy) is the degree with respect to the variable x (respectively y).

Example 3.3.6 (Curve valuations). Let X be a completion of X0, let p P BX X0 C be the germ
of a (formal) curve at p. This means that C is defined as ϕ “ 0 for ϕ in the completion pOX ,p

of the local ring OX ,p at p. If ψ P pOX ,p is another germ of a formal curve at p, we define the
intersection number at p by

tϕ“ 0u ¨p tψ“ 0u :“ dimk pOX ,p{xϕ,ψy. (3.79)
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This number is equal to 8 exactly when one of the germs divides the other. We first define a
valuation νC,p on pOX ,p by

νC,ppψq “ tψ“ 0u ¨p C (3.80)

Suppose ϕ is not divisible by the local equation of any component of BX X0. For any P POXpX0q,
P can be written as P“ ψ

α1
1 ¨ ¨ ¨ψ

αr
r with ψi P pOX ,p irreducible and αi P Z. We define

νC,ppPq :“
ÿ

i

αiνC,ppψiq P RYt8u (3.81)

Then νC,p is a valuation on OXpX0q. Any valuation on A such that νX is equivalent to νC,p is
called a curve valuation. If ν is a valuation such that pν ‰ t0u, then ν is a curve valuation (see
[FJ04] and Proposition 3.3.9 below). We will make the following distinction, if C is defined by
ϕ P OX ,p we will say that νC,p is an algebraic curve valuation. Otherwise, we will say that it is
a formal curve valuation.

If ϕ was divisible by the local equation of a component of BX X0, then νC,p would not define
a valuation on A as some regular functions P P A would have a pole along C and νpPq would be
equal to ´8.

3.3.2 Valuations over krrx,yss

We recall some results about valuations from [FJ04] and [FJ07]. Let R be a regular local ring
with maximal ideal m. We say that a valuation on R is centered if v ě 0 and v|m ą 0. Here
we set R :“ krrx,yss for our local ring. Its maximal ideal is m :“ px,yq we will study the set of
centered valuations on R.

Proposition 3.3.7 (Proposition 2.10 [FJ04], [Spi90]). Any valuation on krx,ys centered at the

origin extends uniquely to a centered valuation on R as follows. Let ϕ P R and let ϕn be the

polynomial of degree n such that ϕ“ limϕn. Then,

νpϕq “ lim
nÑ8

minpνpϕnq,nq. (3.82)

Corollary 3.3.8. Let R1 be regular local ring of dimension 2 over k, then the mR1-adic comple-

tion pR1 of R1 is isomorphic to R. Any centered valuation on R1 extends uniquely to a centered

valuation on pR1.

Proof. Let px,yq be a regular sequence of R1, that is mR1 “ px,yq. It exists because R1 is a regular
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local ring of dimension 2. Then, pR1 is isomorphic to krrx,yss. Let v be a centered valuation on
R1. We have that krx,ys Ă R1, so v induces a valuation on krx,ys that is centered at the origin
and we can apply the previous proposition to conclude.

Let p be a regular point on a surface X and let R“ yOX ,p we define 4 types of valuations over
R.

3.3.2.1 Divisorial valuations

A valuation ν over R is divisorial if there exists a sequence of blow-up π : pY,Excpπqq Ñ pX ,xq

such that ν is equivalent to π˚ ordE for some prime divisor E Ă Excpπq.

3.3.2.2 Quasimonomial valuations

Let π : pY,Excpπqq Ñ pX ,xq be a sequence of blow-ups and let q P Excpπq. A monomial valua-
tion at q is a valuation ν on yOY,q such that there exists s, t ą 0,

ν

˜

ÿ

i, j

ai jxiy j

¸

“min
 

si` t j : ai j ‰ 0
(

(3.83)

for some local coordinates at q. We write ν“ νs,t .

A valuation over yOX ,p is called quasimonomial if there exists a sequence of blow-ups
π : pY,Excpπqq Ñ pX , pq such that ν “ π˚νs,t . Quasimonomial valuations split into two cate-
gories: if s{t P Q, one can show actually that ν is divisorial. Otherwise s{t P RzQ, ν is not
divisorial and we say that it is irrational.

3.3.2.3 Curve valuations

Let ϕ P xmp be irreducible, we define νϕ by

@ψ P yOX ,p, νϕpψq “
tϕ“ 0u ¨ tψ“ 0u

mpϕq
(3.84)

where mpϕq is the order of vanishing of ϕ at the origin. A curve valuation is a valuation equiv-
alent to νϕ for some ϕ P xmp irreducible.
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3.3.2.4 Infinitely singular valuations

These are all the remaining valuations. They have a nice description in term of Puiseux se-
ries (see [FJ04] Section 4.1 for more details). Briefly, to any valuation ν of krrx,yss, one can
associated a generalized power series

pϕ“
ÿ

j

a jxβ j (3.85)

with a j P k and β j P Q. The infinitely singular valuations are exactly the valuations such that
lim j β j ‰`8.

Proposition 3.3.9 ([FJ04]). There are four types of centered valuations on R: divisorial, irra-

tional, curve valuations and infinitely singular valuations. The only type of valuation ν such

that pν “ tν“`8u ‰ 0 are curve valuations

Remark 3.3.10. Instead of looking at valuations over R with values in R, we can look at val-
uations with values in a totally ordered abelian group Γ, these are called Krull valuations (see
[FJ04], section 1.3) and they have the advantage to always extend to FracR. We can make any
curve valuation into a Krull valuation by the following procedure (see [FJ04], section 1.5.5):
Let ϕ P m and consider the curve valuation νϕ. Let Γ “ ZˆQ with the lexicographical order,
we define pνϕ : RÑ Γ as follows. For any ψ P R, there exists an integer k P N such that

ψ“ ϕ
k
pψ (3.86)

where pψ is not divisible by ϕ. Set

pνpψq :“ pk,νϕppψqq (3.87)

Notice that νϕpψq “ 8ô p1ppνϕpψqq ą 0 where p1 : ΓÑ Z is the projection to the first coordi-
nate and if νϕpψq ă `8, then pνϕpψq “ p0,νϕpψqq. We will not need Krull valuations in the rest
of the text. But this argument comes in handy for the proof of Proposition 3.3.18 so we state it
here.

3.3.3 The center of a valuation

Let X be a completion of X0 and let ν be a valuation on OXpX0q. A center of ν on X is a scheme-
theoretic point p P X such that Oν dominates the local ring OX ,p (i.e OX ,p Ă Oν and mp Ă mν).

79



Chapter 3 – Valuations and Algebraic geometry

If such a p exists then ν induces a centered valuation on OX ,p (cf 3.3.2) and in particular for
any open affine subset U Ă X that contains p, ν induces a valuation on OXpUq via the inclusion
OXpUq Ă OX ,p.

Lemma 3.3.11. The center of ν on X always exists and is unique.

Proof. Let Oν be the subring of kpXq where ν is ě 0; it contains k˚. Let L “ Bpν
{pν and

O “ Oν{pν. If p is a center of ν on X then we have the following commutative diagram of ring
homomorphism

OX ,p Oν O L Bpν
; (3.88)

inducing the following commutative diagram of scheme morphisms

SpecL X

SpecO SpecOν SpecOX ,p Speck

(3.89)

Since X is proper over k (it’s a projective variety), the valuative criterion of properness
([Har77]) shows that if the center exists, then it is unique. For the existence, Let x P X be the
image of the maximal ideal of O, then x is the center of ν on X . Indeed, the image of SpecL is
the prime ideal pν of OXpX0q and x belongs to its closure, therefore OX ,xĂBpν

and the morphism
of local rings OX ,x Ñ O shows that Oν dominates OX ,x.

The center of ν on X is the center of νX we will denote it by cXpνq.

Example 3.3.12. Let ν be a divisorial valuation over A and let X be a completion of X0 such
that νX » ordE for some prime divisor E of X , then the center of ν on X is the generic point xE

of E. Indeed, the ring of regular function at the generic point of E is a discrete valuation ring
since E is of codimension 1. In that case, we will identify the center with its closure and say
that the center of ν on X is the prime divisor E. In fact a valuation is divisorial if and only if
its center on some completion of X0 is a prime divisor because if cXpνq “ xE , then ν and ordE

defines the same valuation ring which is a discrete valuation ring, therefore they are equivalent.

Example 3.3.13. If ν is a curve valuation and X is a completion of X0 such that pιXq˚ν» νC,p,
then the center of ν on X is the closed point p.
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A valuation over A “ krX0s is centered at infinity if there exists a completion X such that
cXpνq R X0.

Corollary 3.3.14. Let X0 “ SpecA be a smooth affine surface, there are exactly four types

of valuations centered at infinity over A: divisorial valuations, irrational valuations, curve

valuations and infinitely singular valuations. If ν is a valuation such that pν ‰ t0u, then ν is a

curve valuation.

Proof. let ν be a valuation over A and let cXpνq be its center on some completion X . If cXpνq is
a prime divisor at infinity then ν is divisorial. Otherwise, cXpνq is a regular point at infinity and
ν induces a centered valuation over yOX ,p. The result follows from the classification of centered
valuations over krrx,yss from Proposition 3.3.9.

Definition 3.3.15. • Let X be a good completion of X0 and p P BX X0 a point at infinity.
Following [FJ04], we say that p is a free point if it belongs to a unique prime divisor at
infinity and we say that it is a satellite point otherwise, i.e it is the intersection point of
two prime divisors at infinity.

• Let ν be a valuation over A centered at infinity. Let p1 “ cXpνq be its center on X and
X1 :“ X . We define the following sequence: If pn is a prime divisor, then the sequence
stops, else pn is a closed point of Xn and we define Xn`1 as the blow up of pn, then define
pn`1 :“ cXn`1pνq. This is the sequence of centers of ν with respect to X .

We adopt the following convention: When we write "let p P E be a free point (at infinity)"
this means that E is the unique prime divisor at infinity on which p lies. If we write "let
p “ E XF be a satellite point", this means that E and F are the two prime divisors at infinity
such that p“ EXF (Recall that we only work with good completions).

Proposition 3.3.16 ([FJ04], Section 6.2 ). Let ν be a valuation centered at infinity. Let X be a

completion of X0 and ppnq the sequence of centers (above X) associated to ν. Then,

(1) ν is divisorial if and only if the sequence ppnq is finite.

(2) If ν is irrational, then ppnq contains finitely many free points.

(3) if ν is a curve valuation, then ppnq contains finitely many satellite points.

(4) If ν is infinitely singular, then ppnq contains infinitely many free points.

Proof. Assertion 1 is clear since the sequence ppnq stops if and only if pn is a prime divisor
at infinity. Assertion 2 and 4 follows from [FJ04] Theorem 6.10 and Assertion 3 follows from
[FJ04] Proposition 6.12.
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3.3.4 Image of a valuation via an endomorphism

Let f : X0 Ñ X0 be a endomorphism of X0, it induces a map f˚ on the space of valuation
f˚ : V Ñ V via the formula

@P P A,@ν P V , f˚νpϕq. (3.90)

We will denote by f‚ the induced map f‚ : pV Ñ pV .

Proposition 3.3.17 (Proposition 2.4 of [FJ07]). Suppose that f is dominant, the map f˚ pre-

serves the sets of divisorial, of irrational and of infinitely singular valuations. If νC is a curve

valuation such that f does not contract C, then f˚νC is a curve valuation. If f contracts C, then

f˚νC is a divisorial valuation.

We will use this proposition in the following context. Let X ,Y be two completions of
X0 such that the lift F : X Ñ Y of f is regular. For any point p P XzX0, we have a map
F̊ : VXppq Ñ VY pFppqq that preserves the type of the valuations. The only curve that might be
contracted by F to q are the divisors at infinity; but the curve valuation that they define do not
define valuations on A.

Proposition 3.3.18. Let f : X0 Ñ X0 be a dominant endomorphism of topological degree λ2.

Then, every valuation v on A has at most λ2 preimages under f˚.

Proof. Suppose first that the valuation ν takes the value `8 only for 0. Therefore, it extends
to a valuation on K “ FracA. The extension f ˚K ãÑ K is a finite extension of degree λ2. The
valuation v induces a valuation on f ˚K and every valuation w such that f˚w“ v is an extension
of v| f˚K to K. By [ZS60] Theorem 19 p.55, there are at most λ2 extension of v| f˚K .

If now pν “ tv“`8u ‰ 0, then we know that ν is a curve valuation. By Remark 3.3.10, ν

can be made into a Krull valuation pν. Since pν is a Krull valuation, it extends to a Krull valuation
over K and f˚v extends to a Krull valuation over f ˚K. The same argument as above still works
as [ZS60] deals with Krull valuations.

3.4 Tree structure on the space of valuations

3.4.1 Trees

For this section, we refer to [FJ04] Section 3.1. Let pT ,ďq be a partially ordered set, a subset
S Ă T is full if for every σ,σ1 P S ,τ P T ,σď τď σ1ñ τ P S .

82



3.4. Tree structure on the space of valuations

Definition 3.4.1. Let Λ“N,Q,R. An interval in Λ is a subset I Ă Λ such that for all x,y,z P Λ,
if x ď y ď z and x,z P I, then y P I. If pT ,ďq be a partially ordered set, then pT ,ďq is a rooted
Λ-tree if

(i) T has a unique minimal element τ0 called the root of T .

(ii) If τ P T , the set tσ P T : σď τu is 2isomorphic to an interval in Λ.

(iii) Every full, totally ordered subset of T is isomorphic to an interval in Λ.

A parametrized-Λ tree is a rooted Λ-tree T with a map α : T Ñ ΛYt8u such that the
restriction of α to any full totally ordered subset of T induces a bijection with an interval in Λ.
The map α is called the parametrisation.

A rooted R-tree is called complete if every increasing sequence has an upper bound.

A subtree S of a Λ-tree T is a subset such that pS ,ď|S q is a Λ-tree. An inclusion of Λ-trees
is an order preserving injection ι : S Ñ T . In particular, ιpSq is a subtree of T .

If T is an R-tree and τ1,τ2 P T , then the minimum τ1^τ2 P T exists by completeness of R.
We define the set

rτ1,τ2s :“ tτ P T : τ1^ τ2 ď τď τ1 or τ1^ τ2 ď τď τ2u (3.91)

and we call it a segment. The segments rτ1,τ2q,pτ1,τ2s and pτ1,τ2q are defined similarly. A
finite subtree of T is a subtree that consists of a finite union of segments in T .

If T is an R-tree, a tangent vector ÝÑv at τ P T is an equivalence class where

τ
1
„ τ

2
ô rτ,τ1sX rτ,τ2s ‰H. (3.92)

We define the weak topology on T by the topology generated by the sets

UpÝÑv q :“
 

τ
1
P T : τ

1 represents ÝÑv
(

. (3.93)

Theorem 3.4.2 ([FJ04] Proposition 3.12). We have the following

• Every rooted R-tree T admits a completion T that is a complete rooted R-tree.

• Every rooted Q-tree TQ admits a completion TR into a rooted R-tree, i.e there exists an

order preserving injection ι : TQ ãÑ TR such that

2. isomorphic here means that there exists an order preserving bijection.
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(1) If τ0 is the root of TQ, ιpτ0q is the root of TR.

(2) ιpTQq is weakly dense in TR

(3) TR is minimal for this property.

• If αQ : TQ Ñ Q` is a parametrisation of TQ, then there exists a unique parametrisation

αR of TR such that αQ “ αR ˝ ι.

3.4.2 The local tree structure of the space of valuations

We denote by V0 the set of centered valuations on R where R “ krrx,yss. Define the multiplic-

ity valuation νm by νmpϕq “ maxtně 0 : ϕ Pmnu. We will sometimes write mpϕq instead of
νmpϕq. Let Vm Ă V0 be the set of centered valuations on R such that νpmq “ 1 and consider
the following order relation on Vm: ν ď w ðñ @ϕ P R,νpϕq ď wpϕq. With this order relation
V becomes a complete rooted R-tree called the valuative tree ([FJ04] Theorem 3.14) rooted in
νm. The ends of Vm consist of the curve valuations and the infinitely singular ones. The interior
points are all quasimonomial valuations, all divisorial valuations are branching points whereas
all the irrational valuations are regular points (i.e admit only two tangent vectors). Define on
Vm the following function

αpνq :“ sup
"

νpϕq

mpϕq
: ϕ Pm,νϕ ě ν

*

. (3.94)

It is called the skewness function (see [FJ04] §3.3)

Proposition 3.4.3 (Proposition 3.25 of [FJ04]). The skewness function α : Vm Ñ r1,`8s de-

fines a parametrisation of Vm. We have the following properties.

• αpνq “ 1ô ν“ νm.

• Let ϕ Pm be irreducible and let ν P Vm, then

@ϕ Pm,νpϕq “ αpν^νϕqmpϕq (3.95)

• If ν is divisorial, then αpνq PQ

• if ν is irrational, then αpνq P RzQ.

• If Vm,div is the subset of Vm consisting of the divisorial valuations, then pVm,div,αq is a

parametrized Q-tree.
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We can define two topologies over Vm. The first one is the weak topology being the coarsest
topology such that for all ϕ P R, the evaluations map ν P Vm ÞÑ νpϕq is continuous. The second
is the weak topology given by the R-tree structure on Vm.

Proposition 3.4.4 ([FJ04], Theorem 5.1). The weak topology over Vm given by the evaluation

maps ν P Vm ÞÑ νpϕq and the weak topology induced by the tree structure of Vm are the same.

Let X be a good completion of X0 “ SpecA and let p be a smooth point of X . Take local
coordinates z,w at p, then the completion of the local ring OX ,p with respect the maximal ideal
mp is isomorphic to krrz,wss. Let VXppq be the set of valuations ν on A centered at p. We
will denote by VXpp;mpq the subset of VXppq of valuations ν such that νpmpq “ 1. The space
VXpp;mpq is an R-tree isomorphic rooted in νmp . We make its structure precise.

Proposition 3.4.5. The R-tree VXpp;mpq is not complete.

(1) If p P E is a free point then VXpp;mpq is isomorphic to Vmztνzu where z is a local

equation of E.

(2) If p“ EXF is a satellite point, then VXpp;mpq is isomorphic to Vmztνz,νwu where z,w

are local coordinates at p with z a local equation of E and w a local equation of F.

Proof. If p P E is a free point, let z,w be local coordinates at p such that z is a local equation
of E. Then, the completion of the local ring at p is isomorphic to krrz,wss by Theorem 3.1.2.
Every P P A is of the form P “ ϕ

za with a ě 0 and ϕ P OX ,p. Hence, a centered valuation on
krrz,wss defines a valuation over A if and only if it is not the curve valuation νz. Hence we have
an isomorphism VXpp;mpq » Vmztνzu.

If p “ E X F is a satellite point, then let z,w be local coordinates at p such that z is a
local equation of E and w is a local equation of F . Every P P A is of the form P “ ϕ

zawb

where a,b ě 0 and ϕ P OX ,p. Therefore a centered valuation on krrz,wss defines a valuation
over A if and only if it is not the curve valuation νz or νw. Hence we have an isomorphism
VXpp;mpq Ñ Vmztνz,νwu.

3.4.3 The relative tree with respect to a curve z“ 0

Let R “ k rrx,yss and let m be the maximal ideal of R. Let z P m be irreducible such that
νmpzq “ 1. One can consider the set Vz of centered valuations on R such that νpzq “ 1; we also
add the valuation ordz to Vz defined by ordzpϕq “ maxtně 0 : zn|ϕu. (notice that ordz is not

centered, because for example if x‰ z,ordzpxq “ 0). This is also a tree rooted in ordz called the
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relative tree (see [FJ04] Proposition 3.61) with the order relation νďz µô@ϕ P R,νpϕq ď µpϕq.
We can define the weak topology on Vz being the coarsest topology such that the for all ϕ P R,
the evaluation map ν P Vz ÞÑ νpϕq is continuous. There is also the weak topology given by the
tree structure of Vz.

Proposition 3.4.6 (Relative version of 3.4.4). The weak topology over Vz given by the evalu-

ation maps ν P Vz ÞÑ νpϕq and the weak topology induced by the tree structure of Vz are the

same.

Proposition 3.4.7 ([FJ04] Lemma 3.59). We have an onto map Nz : V0 Ñ Vz defined by

Nzpνq “ ν{νpzq if ν‰ νz

Nzpνzq “ ordz .

This map restricts to a homeomorphism Nz : Vm Ñ Vz with respect to the weak topology. If

w P m is irreducible, then the map Nz,w :“ Nw ˝N´1
w : Vz Ñ Vw is a homeomorphism for the

weak topology.

The tree Vz comes with a skewness function αz : Vz Ñ r0,`8s and a multiplicity function
mzpϕq “ νzpϕq. The skewness is defined by

αzpνq :“ sup
"

νpψq

mzpψq
|ψ Pm,νψ ě ν

*

(3.96)

Proposition 3.4.8 (Relative version of Proposition 3.4.3). The function αz : Vz Ñ r0,`8s de-

fines a parametrisation of the tree Vz. We have the following properties.

• αzpνq “ 0ô ν“ ordz.

• Let ϕ Pm be irreducible and let ν P Vz, then

νpϕq “ αzpν^Npνϕqqmzpϕq. (3.97)

• If ν is divisorial or ν“ ordz, then αzpνq PQ

• If ν is irrational, then αzpνq P RzQ.

• If Vz,div is the subset of Vz consisting of ordz and divisorial valuations, then
`

Vz,div,αz
˘

is a parametrised Q-tree.
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Proposition 3.4.9 ([FJ04], Proposition 3.65). We have the following relation

@ν P V0, νpzq2αz

ˆ

ν

νpzq

˙

“minpνpxq,νpyqq2 α

ˆ

ν

minpνpxq,νpyqq

˙

(3.98)

If w Pm is another irreducible element with mpwq “ 1, then

@ν P V0,νpzq2αz

ˆ

ν

νpzq

˙

“ νpwq2αw

ˆ

ν

νpwq

˙

. (3.99)

Proposition 3.4.10 ([FJ04], Lemma 3.60 and 6.47). The map N : Vm Ñ Vz is not an isomor-

phism of trees. The two orders on Vm and Vz are compatible except on the segments rνm,νzs

and rordz,Npνmqs where they are reversed. More precisely,

(1) @ν,µ P rνm,νzs Ă Vm,νďm µô Npνq ěz Npµq.

(2) @ν1,ν2 P Vzztordzu ,ν1 ďz ν2 ô rN´1pν1q,νzs Ă rN´1pν2q,νxs.

The situation is summed up in Figure 3.1 where we have put arrows on the branches of the
tree to indicate the order.

Figure 3.1: The homeomorphism between Vm and Vz

We will use the relative tree in the following context. Let E be a prime divisor at infinity
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of some good completion X , let p be a point of E and let z,w be local coordinates at p such
that E “ tz“ 0u. The completion of the local ring at p is isomorphic to krrz,wss. We define
VXpp;Eq as follows; an element of VXpp;Eq is either a valuation ν on A centered at p such
that νpzq “ 1 or the divisorial valuation ordE . Notice that the definition of VXpp;Eq does not
depend on the local equation z“ 0 of E because the quotient of two local equations is a regular
invertible function.

Proposition 3.4.11. Let X be a completion and let p P X be a closed point at infinity.

(1) If p P E is a free point, then VXpp;Eq is isomorphic to Vz.

(2) If p “ EXF is a satellite point. Let z,w be local coordinates at p such that z is a local

equation of E and w a local equation of F then VXpp;Eq is isomorphic to Vzztνwu and

VXpp;Fq is isomorphic to Vwztνzu.

The map Nz : VmÑ Vz induces a homeomorphism

Np,E : VXpp;mpq Ñ VXpp;EqztordEu . (3.100)

Furthermore, if p“ EXF, then the map

Np,F ˝N´1
p,E : VXpp;EqztordEu Ñ VXpp;FqztordFu (3.101)

is a homeomorphism.

Proof. If p P E is a free point. Let z,w be local coordinates at p such that z is a local equation of
E. The completion of the local ring at p is isomorphic to krrz,wss by Theorem 3.1.2. For every
P P A, P is of the form P “ ϕ

za where a ě 0 and ϕ P OX ,p. Therefore, a centered valuation on
krrz,wss defines a valuation over A if and only if it is not the curve valuation νz. Since νz RVz we
have that VXpp;Eq » Vz. Call σ : VXpp;Eq Ñ Vz the isomorphism. We define Np,E as follows.
Recall by Proposition 3.4.7 that there is a homeomorphism N : Vm Ñ Vz where in particular
Npνzq “ ordz. Here we have that ordz is canonically identified with ordE and VXpp;mpq is
isomorphic to Vmztνzu, call ι : VXpp;mpq Ñ Vmztνzu the isomorphism. Define

Np,E :“ σ
´1
˝N ˝ τ : VXpp;mpq Ñ VXpp;EqztordEu , (3.102)

it is a homeomorphism.
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If p “ E XF is a satellite point. Let pz,wq be local coordinates at p such that z is a local
equation of E and w is a local equation of F . The completion of the local ring at p is isomor-
phic to krrz,wss by Theorem 3.1.2. Every P P A is of the form P “ ϕ

zawb where a,b ě 0 and
ϕ P OX ,p. Therefore a centered valuation on krrz,wss defines a valuation over A if and only
if it is not the curve valuation associated to z or w. Or νz does not belong to Vz but νw does.
Therefore, VXpp;Eq is isomorphic to Vzztνwu. If Nz : Vm Ñ Vz is the map from Proposition
3.4.7, then Npνzq “ ordz and Npνwq “ νw. Therefore, Nw ˝N´1

z : Vz Ñ Vw is a homeomor-
phism that sends ordz to νz and νw to ordw. Fix an isomorphism τE : VXpp;Eq Ñ Vz tνwu and
τF : VXpp;Fq Ñ VwzVz. We have that the map

Np,F ˝N´1
p,E “ τ

´1
F ˝Nw ˝N´1

z ˝ τE : VXpp;EqztordEu Ñ VXpp;FqztordFu (3.103)

is a homeomorphism.

Proposition 3.4.12. Let X be a completion of X0 and let E be a prime divisor at infinity. If

p1, p2 P E are closed points with p1 ‰ p2, then VXpp1;EqXVXpp2;Eq “ tordEu. Define the set

VXpE;Eq of valuations ν such that cXpνq P E and νpzq “ 1 where z is a local equation of E at

cXpνq. Then

VXpE;Eq “
ď

pPE

VXpp;Eq (3.104)

and it has a natural structure of a rooted R-tree rooted in ordE . The skewness functions αE glue

together to give VXpE;Eq the structure of a parametrized rooted tree. Every point p P E defines

a tangent vector at ordE given by VXpp;EqztordEu.

Furthermore, Let Y be a completion of X0 and q PY a closed point at infinity. Let π : Z ÑY

be the blow up of q and let rE be the exceptional divisor of π. Then, for every rq P rE, the map

π‚ : VZprq; rEq Ñ VY pq;mqq is actually equal to π˚ and they glue together to give a map

π˚ : VZprE; rEq Ñ VY pq;mqq, (3.105)

which is an isomorphism of trees. We have the relation αmq ˝π˚ “ 1`αE and bmq ˝π˚ “ bE .

We postpone the proof to the next section. If E » P1, this tree is isomorphic to the tree of
normalized valuations centered at infinity over A2 constructed in [FJ07], Appendix.
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3.4.4 The monomial valuations centered at an intersection point at infin-
ity

Let X be a good completion of X0 and let E,F be two divisors at infinity that intersect at a point
p. Let px,yq be local coordinates at p such that E “ tx“ 0u and F “ ty“ 0u. There are three
spaces to consider: VXpp,mpq,VXpp;Eq and VXpp;Fq. We explain here how they are related.
For ps, tq P r0,`8s2ztp0,0q,p8,8qu, we denote by νs,t the monomial valuation defined by

νs,t

´

ÿ

ai jxiy j
¯

“min
 

si` t j|ai j ‰ 0
(

. (3.106)

Notice that ν0,1 “ ordF ,ν1,0 “ ordE ,ν1,8 “ νy,ν8,1 “ νx. We will denote the set of such val-
uation by rordE ,ordF s. We use this notation because of the following: rordE ,ordF sXVXpp;Eq

consists of the valuations ν1,t for t P r0,`8s and rordE ,ordF sXVXpp;Fq consists of the val-
uations νs,1 for s P r0,`8s. So they define segments in the respective trees. In particular we
have

Np,F ˝N´1
p,Epν1,tq “ ν1{t,1, @t P r0,`8s (3.107)

One can show with the definition of the level function α that αEpν1,tq “ t. Therefore we
show

Lemma 3.4.13. Let ν be a monomial valuation centered at p“ EXF. One has

αE

ˆ

ν

νpxq

˙

“
νpyq
νpxq

“
s
t

if ν“ νs,t

αF

ˆ

ν

νpyq

˙

“
νpxq
νpyq

“
t
s

if ν“ νs,t

In particular we have that αE

´

ν

νpxq

¯

“ αF

´

ν

νpyq

¯´1
on sordE ,ordF r.

3.4.5 Geometric interpretations of the valuative tree

Let X be a completion of X0 and let p P X be a closed point at infinity. We consider in this
section only completions above X that are exceptional above p. If π : pY,Excpπqq Ñ pX , pq is
such a completion, then we call Γπ the dual graph which vertices consist of the exceptional
divisors of π. Two exceptional divisors are linked by an edge if they intersect. The graph Γπ is
connected without cycles, it is therefore an N-tree. We set the root of Γπ to be the exceptional
divisor rE that appears after blowing up p.
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3.4. Tree structure on the space of valuations

If E is a prime divisor at infinity of X such that p P E. We define the dual graph

Γπ,E :“ ΓπYtEu. (3.108)

It is also a N-tree. We set the root of Γπ,E to be E.

Lemma 3.4.14 ([FJ04], Proposition 6.2). Let π : Y Ñ pX , pq be a completion exceptional above

p. if τ : Z Ñ Y is the blow up of a point in the exceptional locus of π, then there are natural

inclusions of N-trees

Γπ ãÑ Γπ˝τ, Γπ,E ãÑ Γπ˝τ,E . (3.109)

Therefore, the direct limits Γ :“ lim
ÝÑπ

Γπ, ΓE :“ lim
ÝÑπ

Γπ,E are well defined. The points of Γ are

in bijection with DX ,p and ΓE “ ΓYtEu and they have a structure of Q-trees.

Lemma 3.4.15 ([FJ04] Theorem 6.9). We have a map π‚ : Γπ ãÑ VXpp;mpqdiv defined by

π‚pFq “ νF (3.110)

where νF is the valuation equivalent to π˚ ordF that belongs to VXpp;mpq. These maps are

compatible with the direct limit and give a map Γ ãÑ VXpp;mpq.

Lemma 3.4.16. We have a map π‚ : Γπ,E ãÑ VE,div defined by

π‚pFq “ νF (3.111)

where νF is the valuation equivalent to π˚ ordF that belongs to VXpp;Eq. These maps are

compatible with the direct limit and give a map ΓE ãÑ VXpp;Eq.

Proposition 3.4.17 ([FJ04], Lemma 6.28). Let π : pY,Excpπqq Ñ pX , pq be a completion excep-

tional above p. Let q P Y be a closed point that belongs to the exceptional component of π. Let
rF be the exceptional divisor above q.

(1) If q P F with F P Γπ, then ν
rF ą νF .

(2) If q“ F1XF2 with F1,F2 P Γπ, suppose that νF1 ă νF2 , then νF1 ă ν
rF ă νF2 .

Proposition 3.4.18 (Relative version of Proposition 3.4.17). Let π : pY,Excpπqq Ñ pX , pq be a

completion exceptional above p. Let q P Excpπq. Let rF be the exceptional divisor above q.

(1) If q P F is a free point with F P Γπ,E , then ν
rF ą νF .
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(2) If q“ F1XF2 is a satellite point with F1,F2 P Γπ,E , if νF1 ă νF2 , then νF1 ă ν
rF ă νF2 .

(3) In particular, if q“ EXF, then ordE ă ν
rF ă νF .

Theorem 3.4.19 ([FJ04], Theorem 6.22). We have an isomorphism of Q-trees

Γ» VXpp;mpqdiv, ΓE » VXpp;Eqdiv (3.112)

given by F » νF . We can take the completion of the Q-trees to get the isomorphism

Γ» VXpp;mpq, ΓE » VXpp;Eq (3.113)

Proposition 3.4.20. Let X be a completion of X0 and let p P X be a closed point at infinity. Let

V˚ be either VXpp;mpq or VXpp;Eq for some prime divisor E at infinity such that p P E. Let

Γ˚ be either Γ or ΓE . Let π : pY,Excpπqq Ñ pX , pq be a completion exceptional above p. Let

q P Excpπq be a closed point. The map π induces a map π˚ : VY pqq Ñ VXppq.

(1) If q P Eq is a free point with Eq P Γ˚, then we have an inclusion map π‚ : VY pq;Eqq ãÑV˚.
The order relation in VY pq;Eqq and V˚ are compatible and π‚ is an inclusion of trees.

(2) If q “ EqXFq is a satellite point with Eq,Fq P Γ˚, then, if νEq ă˚ νFq , the order relations

on V˚ and VY pq;Eqq are compatible and π‚ : VY pq;Eqq ãÑ V˚ is an inclusion of trees.

Proof. We only need to show that the orders are compatible on the divisorial valuations of
VY pq;Eqq. Therefore we show the following,

Claim 3.4.21. For every completion τ : pZ,Excpτqq Ñ pY,qq exceptional above q, we have the

following

1. For all F1,F2 P Γτ,Eq,

νF1 ă˚ νF2 ô νF1 ăEq νF2 (3.114)

2. If F P Γτ,Eq satisfies FXFq ‰H, then

νF ă νFq (3.115)

Here there is a slight abuse of notation as we denote by νFi the image of Fi both in VY pq;Eqq

and V˚. This is done to lighten notations, we believe that it does not provide any confusion.
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3.4. Tree structure on the space of valuations

We prove this by induction on the number of blow ups above q. If τ “ id, then ordEq is the
root of VY pq;Eqq and νEq ă νFq by assumption so there is nothing to do.

Let τ : pZ,Excpτqq Ñ pY,qq be a completion exceptional above q such that Claim (3.4.21)
is true. Let q1 P Excpτq be a closed point, let τ1 : Z1Ñ Z be the blow up of q1 and let rF be the
exceptional divisor above q1.

• If q1 P F is a free point with F P Γτ,Eq , then by Proposition 3.4.18 we have

νF ăEq ν
rF (3.116)

Now we have two possibilities.

– If q1 is also a free point with respect to Γ˚, then by Proposition 3.4.17 and 3.4.18 we
also get

νF ă˚ ν
rF . (3.117)

Since rFXFq “H, Claim 3.4.21 is shown for Γτ˝τ1,Eq .

– If q1 is the satellite point F XFq, then by induction hypothesis we have νF ă˚ νFq

and therefore rFXFq ‰H and by Proposition 3.4.17 and 3.4.18 we get

νF ă˚ ν
rF ă˚ νFq (3.118)

So Claim 3.4.21 is shown for Γτ˝τ1,Eq .

• If q1 is a satellite point. Let F1,F2 P Γτ,Eq such that q “ F1XF2. Suppose without loss of
generality that νF1 ăEq νF2 , then by the induction hypothesis we have νF1 ă˚ νF2 and by
Proposition 3.4.17 and 3.4.18, we get

νF1 ăEq ν
rF ăEq νF2 and νF1 ă˚ ν

rF ă˚ νF2. (3.119)

Since rFXFq “H we have proven Claim 3.4.21 for Γτ˝τ1,Eq .

Proof of Proposition 3.4.12. Let Y be a completion of X0 and let q PY be a closed point at infin-
ity. Let π : Z ÑY be the blow up of q. Let rE be the exceptional divisor and let rq P rE be a closed
point. Apply Proposition 3.4.20 with V˚“VY pq;mqq. The map π‚ : VZprq; rEqÑVY pq;mqq is an
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inclusion of trees. There exists local coordinates z,w at q and x,y at p such that πpz,wq “ pz,zwq

where z is a local equation of rE. We therefore get

νpzq “ 1ôminpπ˚νpxq,π˚νpyqq “ 1. (3.120)

Hence, π‚ “ π˚ and π˚pord
rEq “ νmq . Therefore we can glue these maps to obtain an iso-

morphism of trees
π˚ : VZprE; rEq Ñ VY pq;mqq (3.121)

We get the relation on the skewness functions by Proposition 3.4.28 which will be proven in the
next section.

3.4.6 Properties of skewness

We have two valuative tree structures. We describe some properties of the skewness function
for these two structures and how they behave after blowing up. Fix a completion X , let p P X

be a closed point at infinity and let E be a prime divisor at infinity in X such that p P E. In
accordance with the notations of the previous section, set Γ“DX ,p and ΓE “DX ,pYtEu.

Definition 3.4.22. If F P Γ is a prime divisor above p, we define the generic multiplicity bpFq

inductively as follows.

• bprEq “ 1 where rE is the exceptional divisor above p.

• If q P F is a free point with F P Γ, then bprFq “ bpFq where rF is the exceptional divisor
above q.

• If q“ F1XF2 is a satellite point with F1,F2 P Γ, then bprFq “ bpF1q`bpF2q.

If ν P VXpp;mpq is divisorial then we define bpνq :“ bpEq where E is the center of ν in some
completion above X .

Definition 3.4.23. If F P ΓE , we define the relative generic multiplicity bEpFq inductively as
follows.

• bEpEq “ 1.

• If q P F is a free point with F P ΓE , then bEprFq “ bEpFq.

• If q“ F1XF2 is a satellite point with F1,F2 P ΓE , then bEprFq “ bEpF1q`bEpF2q.
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If ν P VXpp;Ezq is divisorial, then we set bEpνq :“ bEpFq where F is the center of ν in some
completion above X .

Figure 3.2 sums up the definition of the generic multiplicity.

Figure 3.2: Algorithm for computing the generic multiplicity

The term generic multiplicity is justified by the following proposition.

Proposition 3.4.24 ([FJ04] Proposition 6.26). Let ν P VXpp;mpq be divisorial, let E P Γ be the

center of ν over some completion π : Y Ñ X above X. Then,

π˚ ordEpmpq “ bpνq (3.122)

Proposition 3.4.25 (Relative version of Proposition 3.4.24). If ν P VXpp;Eq is divisorial, let F

be the center of ν over some completion π : Y Ñ X above X. Then,

π˚ ordFpzq “ bEpFq (3.123)

where z P OX ,p is a local equation of E. This means that ordFpπ
˚Eq “ bEpFq.
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From now on we write V˚ for either VXpp;mpq and VXpp;Eq and we write α˚,b˚ for the
skewness function and the generic multiplicity function associated to the tree structure.

For a valuation ν P V˚, we define the approximating sequence of ν as follows, set ν0 “ ν˚

the root of V˚ and let pn be the sequence of centers above X associated to ν. Let En be the
exceptional divisor above pn. Set νn “

1
b˚pEnq

ordEn , if ν is quasimonomial pνnq is the approxi-
mating sequence of ν. If ν is a curve valuation or infinitely singular we define the approximating
sequence of ν as the subsequence of νn where cXnpνq is a free point (at infinity).

Proposition 3.4.26 ([FJ04] Theorem 6.9, Theorem 6.10 and Lemma 3.32). Let ν P V˚ and let

νn be its approximating sequence

• the sequence νn :“ 1
bn

ordEn converges weakly towards ν.

• α˚pνq “ limn α˚pνnq.

We will say that two divisorial valuations ν,ν1 are adjacent if there exists a completion Y

above X such that the centers of ν and ν1 are both prime divisors and they intersect.

Proposition 3.4.27 ([FJ04], Corollary 6.39). Let ν,ν1 P V˚. Assume ν ă ν1 and that they are

adjacent, then

α˚pν
1
q´α˚pνq “

1
b˚pνqb˚pν1q

(3.124)

Proposition 3.4.28 ([FJ04], Theorem 6.51). Let π : Y Ñ X be a completion above X and let

q P Eq be a free point of Y such that πpEqq “ p. By Proposition 3.4.20, π‚ : VY pq;Eqq Ñ V˚ is

an inclusion of trees.

(1) The normalization of π˚ ordEq (to get a valuation in V˚) is

νEq “
1

b˚pEqq
π˚ ordEq . (3.125)

(2)

@ν P VY pp;Eq, α˚pπ‚νq “ α˚pνEqq`
1

b˚pEqq2
αEqpνq (3.126)

b˚pπ‚νq “ b˚pEqqbE1pνq (3.127)

Proof. It suffices to show this formula for every divisorial valuation ν P VY pq;Eqq by Proposi-
tion 3.4.26. We prove the result by induction on the number of blow-ups above q. Namely we
show the following
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Claim 3.4.29. For every completion τ : pZ,Excpτqq Ñ pY,qq exceptional above q, for every

F P Γτ,Eq ,

b˚pFq “ bEqpFqb˚pEqq (3.128)

α˚pνFq “ α˚pνEqq`
1

b˚pEqq
αEqpνFq (3.129)

If τ“ id : Y ÑY , then Γτ,Eq “
 

Eq
(

. We have by definition that bEqpEqq “ 1,αEqpordEqq “ 0.
Therefore Equations (3.128) and (3.129) holds.

Suppose the claim to be true for a completion τ : pZ,Excpτqq Ñ pY,qq exceptional above q.
Let τ1 : Z1Ñ Z be the blow up of a closed point q1 P Excpτq. Let rE be the exceptional divisor
above q1.

If q1 P F is a free point with F P Γτ,E , then q1 is also a free point with respect to Γ˚,π˝τ

because q P Y is a free point. Therefore by definition

b˚prEq “ b˚pFq, bEqp
rEq “ bEqpFq (3.130)

So Equation (3.128) is true for rE by induction. Now, by Proposition 3.4.27

α˚pν
rEq “ α˚pνFq`

1
b˚pFqb˚pEqq

, αEqpνrEq “ αEqpνFq`
1

bEqp
rEqbEqpFq

(3.131)

By induction, Equation (3.129) is true for rE.
If q1 “ F1XF2 is a satellite point with F1,F2 P Γτ,Eq , then

b˚prEq “ b˚pF1q`b˚pF2q, bEqp
rEq “ bEqpF1q`bEqpF2q (3.132)

So by induction Equation (3.128) holds for rE. Suppose without loss of generality that νF1 ă νF2

both in V˚ and VY pq;Eqq. This is possible by Proposition 3.4.20. By Proposition 3.4.27

α˚pν
rEq “ α˚pνF1q`

1

b˚pF1qb˚prEq
, αEqpνrEq “ αEqpνF1q`

1

bEqpF1qbEqp
rEq

. (3.133)

Therefore, Equation (3.129) holds for rE. And the claim is shown by induction.

Proposition 3.4.30. Let ν be a valuation over A centered at infinity. Let X be a completion of

X0 and let E be a prime divisor of X at infinity such that rν P VXpE;Eq for some valuation rv

equivalent to ν. If αEprνq ă `8, then for every completion Y of X0 if rν P VY pF,Fq for some
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prime divisor F at infinity in Y , then αFprνq ă `8.

Proof. If ν is quasimonomial, this is immediate as for any prime divisor E at infinity and any
closed point p P E, we have that αEpνq ă `8 for ν “ ordE or ν quasimonomial centered at p.
If ν is a curve valuation, then αEpνq “ `8 for any prime divisor E of any completion X such
that cXpνq P E. So it remains to show the result for ν an infinitely singular valuation.

We show that if π : Y Ñ X is a completion above X , then αE1pνq ă `8 ô αEpνq ă `8

where E 1 is a prime divisor of Y at infinity such that some multiple of ν belongs to VY pE 1,E 1q.
Let p“ cXpνq and q“ cY pνq. Since ν is infinitely singular, by Proposition 3.3.16 there exists a
completion τ : pZ,Excpτqq Ñ pY,qq exceptional above q such that cZpνq is a free point q1 lying
over a unique prime divisor F at infinity. We apply Proposition 3.4.28. We have that

αEpνq “ αEpνFq`
1

bEpFq2
αFpνq (3.134)

αE1pνq “ αE1pνFq`
1

bE1pFq2
αFpνq (3.135)

Thus αEpνq ă `8ô αFpνq ă `8ô αE1pνq ă `8.

Proposition 3.4.31 ([FJ04] Proposition 6.35). Let π : pY,Excpπqq Ñ pX , pq be a completion

exceptional above p. Let q “ E X F P Excpπq be a satellite point with E,F P Γ˚,π. Define

νE “
1

b˚pEq
π˚ ordE and νF “

1
b˚pFq

π˚ ordF . Let z,w be local coordinates at q associated to

(E, F). Let νs,t be the monomial valuation centered at q such that νpzq “ s and νpwq “ t.

Then, the map π˚ induces a homeomorphism from the set tνs,t |s, t ě 0,sb˚pEq` tb˚pFq “ 1u
and rνE ,νF s Ă V˚ for the weak topology.

Furthermore, the skewness function is given by

α˚pπ˚νs,tq “ αpνEq`
t

bpEq
(3.136)
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3.5 Different topologies over the space of valuations

3.5.1 The weak topology

Let X0 be an affine surface and let V8 be the space of valuations centered at infinity. We define
xV8 to be the space of valuations centered at infinity modulo equivalence and η : V8Ñ xV8 the
quotient map. We define the weak topology over V8 as follows. A basis for the topology is
given by

 

ν P V8 : t ă νpPq ă t 1
(

(3.137)

for some t, t 1 P R,P P A. A sequence νn of V8 converges towards ν if and only if for every
P P A, the sequence νnpPq converges towards νpPq. We define the weak topology over xV8 to be
the thinnest topology such that η : V8Ñ xV8 is continuous with respect to the weak topology.

Proposition 3.5.1. Let X be a completion of X0. Let ν PV8 and pνnq a sequence of elements of

V8. Suppose that νn Ñ ν with respect to the weak topology. Then,

• If cXpνq “ p is a closed point at infinity, then for all n large enough cXpνnq “ p.

• If cXpνq “ E is a prime divisor at infinity, then for all n large enough cXpνnq P E.

Proof. Suppose first that cXpνq “ p is a closed point at infinity. Let px,yq be local coordinates
at p. By definition of the center we have νpxq,νpyq ą 0. We can find P1,P2,Q1,Q2 P OXpX0q

such that x “ P1{Q1,y “ P2{Q2 and such that νpQ1q,νpQ2q ‰ 8. Indeed by Lemma 3.3.11,
OX ,p is a subring of OXpX0qpν

where pν “ tν “ `8u. Now, we have that νnpPiq Ñ νpPiq and
νnpQiq Ñ νpQiq as nÑ8, therefore for all n large enough

νnpxq,νnpyq ą 0. (3.138)

Thus, for all n large enough cXpνnq “ p.

If cXpνq “ E, then ν “ λordE for some λ ą 0. Let U be an open affine subset of X such
that U XE ‰H. Let z be a local equation of E over U . Similarly, we can write z “ P{Q with
νpQq ‰ 8. Since νnpPq Ñ νpQq and νnpQq Ñ νpQq, we get that νnpzq Ñ νpzq ą 0. Therefore
for n large enough, νnpzq ą 0 and therefore cXpνnq P E.

Proposition 3.5.2. Let X be a completion and let p P X be a closed point at infinity. Let

ν PVXppq and νn PVXppq. Then, νnÑ ν weakly if and only if for every ϕ POX ,p,νnpϕqÑ νpϕq.
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Proof. Indeed, every ϕ P OX ,p can be written as ϕ “ P
Q with νpQq ‰ 8. This shows one impli-

cation. Conversely, every P P A is of the form ϕ

ψ
where ϕ,ψ P OX ,p. Furthermore, if p P E is a

free point then ψ “ ua where a P Zě0 and u is a local equation of E. If p “ EXF is a satellite
point, then ψ “ uavb where uv is a local equation of EYF . Now since νn and ν are valuations
over A, they cannot be the curve valuations associated to a prime divisor at infinity. Therefore,
for all n,νnpψq ‰ 8 and νpψq ‰ 8. This shows the other implication.

Proposition 3.5.3. Let X be a completion of X0 and let p P X be a closed point. Let E be a

prime divisor at infinity in X such that p P X. Let ηp : VXppq Ñ VXpp;Eq be the natural map

defined by ηppνq “
ν

νpzq where z POX ,p is a local equation of E. Let pνnq be a sequence of VXppq

and let ν P VXppq. If νn Ñ ν for the weak topology of V8, then ηppνnq Ñ ηppνq for the weak

topology of VXpp;Eq.

Proof. If νn Ñ ν for the weak topology, then, νnpzq Ñ νpzq by Proposition 3.5.2. Therefore
ηppνnq Ñ ηppνq, again by Proposition 3.5.2. This shows the first implication.

Theorem 3.5.4. Let X be a completion of X0. The weak topology on xV8 is the topology induced

by the open subsets VXpE;Eq for all prime divisor E at infinity.

Proof. Let X be a completion at infinity and let E be a prime divisor at infinity. Let VXpEq be
the set of valuations ν over A such that cXpνq P E (this includes cXpνq “ E, i.e ν “ ordE). We
have that

VXpEq “ tordEuY
ď

pPE

VXppq. (3.139)

Let U1, ¨ ¨ ¨ ,Ur be a finite open affine cover of E such that for every i “ 1, ¨ ¨ ¨ ,r there exists
zi P OXpUiq a local equation of E. Then, every zi is of the form zi “ Pi{Qi with Pi,Qi P A. Then,

VXpEq “
ď

i

tνpQiq ă `8,νpPiq´νpQiq ą 0u (3.140)

and, it follows that VXpEq is an open subset of V8. Set xV8ppq :“ ηpVXppqq. Define a map
σp : xV8ppq Ñ VXpp;EqztordEu Ă VXppq by

σpprνsq “ ηppνq (3.141)

where ηp is the map from Proposition 3.5.3 and rνs is the class of ν in xV8. By Proposition
3.5.3, σp is a continuous section of η|VX ppq : VXppq Ñ xV8ppq. Still by Proposition 3.5.3, the

map σp : rordEs Y
xV8ppq Ñ VXpp;Eq extended by σpprordEsq “ ordE is also a continuous
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section of η : tλordE : λą 0uYVXppq Ñ trordEsuY
xV8ppq. These maps σp glue together to

give a continuous section σE : xV8pEq Ñ VXpE;Eq Ă VXpEq of η : VXpEq Ñ xV8pEq.
To finish the proof we need to understand the behaviour of σF ,σE on

xV8pEqX xV8pFq “ xV8ppq (3.142)

for p“ EXF where E,F are two prime divisors at infinity. By Proposition 3.4.11, we have that
the map Np,F ˝N´1

p,E : VXpp;EqztordEu Ñ VXpp;FqztordFu is a homeomorphism and we have

pσFq
|yV8ppq

“ pNp,F ˝N´1
p,Eq ˝ pσEq

|yV8ppq
(3.143)

3.5.2 The strong topology

Let R “ krrx,yss and let m “ px,yq. Let V˚ be the valuative tree with either the normalization
by m or with respect to a curve z. We will write α˚ for the skewness function over V˚. We
consider a stronger topology on V˚. Let V qm

˚ be the subset of quasimonomial valuations. We
define the following distance

dpν1,ν2q “ αpν1q´αpν1^ν2q`αpν2q´αpν1^ν2q. (3.144)

The topology induced by this distance is called the strong topology.

Proposition 3.5.5 ([FJ04] Proposition 5.12). We have the following

• The strong topology is stronger than the weak topology.

• The closure of V qm
˚ with respect to the strong topology is the subspace of V˚ consisting

of valuations of finite skewness.

Proposition 3.5.6. Let R “ krrz,wss and let Vm,Vz,Vw be the three valuation trees. Let

V 1
m,V 1

z ,V 1
w be the three subtrees of valuations of finite skewness. Then, the maps

Nz : V 1
mÑ V 1

z ztordzu , Nw ˝N´1
z : V 1

z Ñ V 1
w (3.145)

are homeomorphisms with respect to the strong topology.
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This follows from Proposition 3.4.9.
Let V 1

8 be the subset of V8 of valuations of finite skewness, this set is well defined thanks
to Proposition 3.4.30. We define the strong topology on V 1

8 as follows. First define the strong
topology on xV8

1

:“ ηpV 1
8q using the notations from the proof of Theorem 3.5.4. Consider the

map σE : xV8
1

X xV8pEq Ñ VXpE;Eq1. We define the strong topology on xV8
1

X xV8pEq as the
coarsest topology such that σE is continuous for the strong topology on VXpE;Eq1. This defines
a topology on xV8

1

thanks to Proposition 3.5.6.

Corollary 3.5.7. Let ν be a valuation centered at infinity, let X be a completion of X0 and

let pνnq be the approximating sequence of ν from Proposition 3.4.26. If ν P V 1
8, then ηpνnq

converges towards ηpνq with respect to the strong topology.

Proof. Let p “ cXpνq and we can suppose that νn,ν P VXpp;Eq for some prime divisor E at
infinity with p P E. Then, we have νn ď ν for all n and αpνnq Ñ αpνq. Therefore

dpνn,νq “ αpνq´αpνnq ÝÝÝÑ
nÑ8

0 (3.146)
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3.6 Valuations as Linear forms

As done in [JM12], we can view valuations on X0 as

• linear forms with values in R over the space of integral Cartier Divisors over X supported
at infinity

• as real-valued functions over the set of coherent fractional ideal sheaves of X co-supported
at infinity.

We recall how to do so. For a divisor D, we denote by H0pX ,OXpDqq the set of global sections
of the line bundle OXpDq and

ΓpX ,OXpDqq “
 

h P kpXqˆ : D`divphq ě 0
(

. (3.147)

3.6.1 Valuations as linear forms over Div8pXq

Lemma 3.6.1. Let D P DivpXq such that the negative part (if any) of D is supported in BX X0.

For any point p P X, there exists an open neighbourhood U of p such that a local equation of D

on U is of the form ϕ“ P ¨ψ with P P OXpX0q and ψ P OXpUq.

Proof. Let ϕ P kpU 1q˚ “ kpXq˚ be a local equation of D where U 1 is an open subset of X

containing p.
Let H be an effective divisor such that the linear system |H| is base point free and such

that SupppHq “ BX X0. There exists an integer n ě 1 such that D` nH ě 0. Pick P general in
ΓpX ,OXpnHqq Ă OXpX0q, then divP“ ZP´nH with ZP ě 0 and p R SuppZP because we chose
P general and |nH| is basepoint free, in particular P restricts to a regular function over X0. Set
ψ :“ ϕ{P, one has

div
`

ψ|U
˘

“ D|U `nH|U ´ZP|U . (3.148)

Set U “U 1zSuppZP, then divpψq|U 1 ě 0, i.e ψ P OXpUq and we are done.

Corollary 3.6.2. If D is a divisor such that the negative part (if any) of D is at infinity and ν is

a valuation on A, then for all small enough affine open subsets U Ă X containing cXpνq,

ΓpU,OXp´Dqq Ă OXpX0qpνX
(3.149)

and νX can be extended to ΓpU,OXp´Dqq.
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Proof. If U is small enough, then ΓpU,OXp´Dqq is the OXpUq-module generated by ϕ where ϕ

is a local equation of D. Now, by Lemma 3.6.1, ϕ is of the form ϕ“ P ¨ψ where P POXpX0q and
ψ P OXpUq. By definition we have OXpX0q Ă OXpX0qpvX

and for all affine open neighbourhood
U of cXpνq,OXpUq Ă OXpX0qpwX

by the proof of Lemma 3.3.11.

Let D be divisor of X supported at infinity and let ϕ P kpXq be a local equation of D at cXpνq.
Then we set

Lν,XpDq :“ νXpϕq. (3.150)

This is well defined because by Corollary 3.6.2 because by definition there exists an open affine
neighbourhood U of cXpνq such that ϕ P ΓpU,OXp´Dqq. This does not depend on the choice
of the local equation because if ψ is another local equation of D, then ϕ

ψ
is a regular invertible

function near cXpνq and νXpϕ{ψq “ 0.

Lemma 3.6.3. Let ν be a valuation over A and let X be a completion of X0, then for all

D P Div8pXqR, Lν,XpDq ă 8.

Proof. It suffices to show Lemma 3.6.3 for D an integral divisor supported at infinity in X . We
can apply corollary 3.6.2 to D and ´D, therefore if ϕ is a local equation of D, we have that both
ι˚Xpϕq and ι˚Xp1{ϕq belong to Apν

and this means that νXpϕq ă 8.

Remark 3.6.4. We can in fact define Lν,X at any divisor D on X such that the negative part
of D is supported at infinity but it could happen that Lν,XpDq is infinite. For example, let
X0 “ A2,X “ P2. Let ν be the curve valuation centered at r1 : 0 : 0s associated to the curve
y“ 0, then

Lν,P2ptY “ 0u´tZ “ 0uq “ νpY{Zq “ `8. (3.151)

Example 3.6.5. If X is a completion of X0, let E be a prime divisor at infinity. Let D PDiv8pXq.
Recall that we have defined in Section 3.2.1 that ordEpDq is the weight of D along E, then

LordE pDq “ ordEpDq. (3.152)

Indeed, at the generic point of E, a local equation of D is zordEpDqϕ where z is a local equation
of E and ϕ is regular not divisible by z.

Proposition 3.6.6. If ν is a valuation over A, and X is a completion of X0 then

(1) Lν,Xp0Div8pXqq “ 0.
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(2) For any D,D1 PDiv8pXq,Lν,XpD`D1q “ Lν,XpDq`Lν,XpD1q, and Lv,XpmDq “mLv,XpDq

for all m P Z.

(3) If D ě 0, then Lν,XpDq ě 0 and Lν,XpDq ą 0ô cXpνq P SuppD. In particular, if ν is not

centered at infinity then Lν “ 0.

(4) If P P OXpX0q, then νXpPq “ Lν,XpdivPq.

(5) If Y is another completion of X0 above X, and π : Y Ñ X is the morphism of completions

over X0, then Lν,XpDq “ Lν,Y pπ
˚Dq.

Thus, we can extend Lν,X to Div8pXqR by linearity:

Lν,X : Div8pXqR Ñ R. (3.153)

Proof. The first assertion is trivial as 1 is a local equation of the trivial divisor. The second
assertion follows from the fact that if ϕ,ψ are local equations of D and D1 respectively, then ϕψ

is a local equation of D`D1 and 1{ϕ is a local equation of ´D. For the third one, suppose D is
an integral divisor. If D is effective and f is a local equation at cXpνq, then f is regular at p and
by definition of the center νp f q ě 0, now if cXpνq belongs to SuppD, then f vanishes at cXpνq;
thus, νp f q ą 0. If on the other hand cXpνq R SuppD, then f is invertible at the center of νX and
νXp f q “ 0. The fourth assertion follows from f being a local equation of divp f q and the fact
that f has no pole over X0. Finally, if f P kpXq is a local equation of D at cXpνq, then π˚ f is a
local equation of π˚D at cY pνq and by Remark 3.3.3, one has νXp f q “ νY pπ

˚ f q.

Proposition 3.6.7. Let f : X0 Ñ X0 be a dominant endomorphism of X0. Let Y,X be two com-

pletions of X0 such that the lift F : Y Ñ X of f is regular. Then,

FpcY pvqq “ cXp f˚vq and @D P Div8pXq,L f˚v,XpDq “ Lv,Y pF˚Dq (3.154)

Proof. Let p“ cY pνq and q“ cXp f˚νq. Then, F induces a local ring homomorphism

F˚ : OX ,q Ñ OY,p

Now, for any ϕ P OX ,q, there exists P,Q P A such that ϕ“ P
Q . Therefore,

F˚ϕ“
f ˚P
f ˚Q
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and therefore f˚νpϕq “ νpF˚ϕq ą 0. Therefore, q“ cXp f˚vq.

Now, to show the second result. If g is a local equation of D at the center of νX , then F˚g is
a local equation of F˚D at the center of νY . Since π˚νY “ νX , one has

νY pF˚gq “ νXppF ˝π
´1
q
˚gq “ νXp f ˚gq “ p f˚νqXpgq (3.155)

and this shows the result.

3.6.2 Valuations as real-valued functions over the set of fractional ideals
co-supported at infinity in X

An ideal of X is a sheaf of ideals of OX and a fractional ideal is a coherent sub-OX -module
of the constant sheaf kpXq. Let a be a fractional ideal of X , we say that a is co-supported at
infinity if a|X0 “ OX0 . For example, for any divisor D PDivpXq, OXpDq is a fractional ideal of X

and if D P Div8pXq then OXpDq is co-supported at infinity.

Proposition 3.6.8. Let a be a fractional ideal of X co-supported at infinity and let p P X, for

any finite system p f1, ¨ ¨ ¨ , frq of local generators of a at p there exists an open neighbourhood

U of p such that fi|U is of the form

fi “ Figi (3.156)

with Fi P OXpX0q and gi P OXpUq.

Proof. Pick U 1 an open neighbourhood containing p. Since fi is regular over X0, we have
div fi “D`´D´1 ´D´2 where D`,D´1 and D´2 are effective divisors such that SuppD´1 Ă BX X0

and D´2 |U 1 “ 0. By Lemma 3.6.1 there exists an open neighbourhood Ui ĂU 1 of p such that
pD`´D´1 q|Ui “ divFig1i with Fi P OXpX0q and g1i P OXpUiq. Therefore, there exists g2i P OXpUiq

such that fi “ Fig1ig
2
i . Set U “XUi and gi “ g1ig

2
i .

Corollary 3.6.9. Let a be a fractional ideal co-supported at infinity and let ν be a valuation

over A, then for all affine open neighbourhood of cXpνq,ΓpU,aq Ă OXpX0qpνX
and νX is defined

over ΓpU,aq.

If ν is a valuation over A, then we define Lν,Xpaq as

Lν,Xpaq :“min
f

νXp f q. (3.157)
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where the f runs over the germs of sections of a at cXpνq. This makes sense by Corollary 3.6.9.

Proposition 3.6.10. If ν is a valuation over A, then

(1) Lν,XpOXq “ 0.

(2) If a,b are two fractional ideals of X co-supported at infinity, then

Lν,Xpa ¨bq “ Lν,Xpaq`Lν,Xpbq and Lν,Xpa`bq “minpLν,Xpaq,Lν,Xpbqq (3.158)

(3) If f1, ¨ ¨ ¨ , fr P kpXq is a set of local generators of a at cXpνq, then

Lν,Xpaq “minpνXp f1q, ¨ ¨ ¨ ,νXp frqq. (3.159)

(4) If D P DivpXq is a divisor, then Lν,XpDq “ Lν,XpOXp´Dqq.

(5) If Y is another completion of X0 above X, and π : Y Ñ X is the morphism of completions

over X0, then ra :“ π˚a ¨OY is a fractional ideal over Y and Lν,Xpaq “ Lν,Y praq.

Proof. The first assertion is trivial since 1 is a local generator of the trivial sheaf. For As-
sertion (2), notice that if p f1, . . . , frq are local generators of a at cXpνq and pg1, . . . ,gsq lo-
cal generators of b at cXpνq then p fig jqi, j is a set of local generators of a ¨ b at cXpνq and
p f1, . . . , fr,g1, . . . ,gsq is a set of local generators of a` b at cXpνq, so Assertion (2) follows
from Assertion (3). To show Assertion (3), let f1, ¨ ¨ ¨ , fr be local generators of a at cXpνq. This
implies that acX pνq “ f1OcX pνq` f2OcX pνq`¨¨ ¨` frOcX pνq. Since ν is nonnegative on OcX pνq by
definition of the center, the assertion follows. For assertion 5, if f1, ¨ ¨ ¨ , fr are local genera-
tors of a, then π˚ f1, ¨ ¨ ¨ ,π

˚ fr are local generators of ra at cY pνq and the result follows since
π˚νY “ νX . Assertion (4) follows from the fact OXp´Dq is locally generated by an equation of
D and Assertion (5) follows from the fact that if p f1, ¨ ¨ ¨ , frq are local generators of a at cXpνq

then pπ˚ f1, ¨ ¨ ¨ ,π
˚ frq are local generators of ra at cY pνq.

Proposition 3.6.11. If ν is a valuation over A and a is a fractional ideal co-supported at infinity,

then Lν,Xpaq ă 8.

Proof. Take f1, ¨ ¨ ¨ , fr local generators of a at p the center of ν on X . The proof of Lemma
3.6.1 shows that there exists an affine open neighbourhood U of p such that fi|U “ higi with
hi P A and gi P OXpUq and such that f´1

i can be put into the same form. This shows that for all
i, νp fiq ă 8.
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Remark 3.6.12. The same definition would allow one to define Lν,Xpaq for any fractional ideal
such that a is a sheaf of ideals of X0 but we have to allow infinite values. In particular, Lν,Xpaq

is defined for any sheaf of ideals over X .

3.6.3 Valuations centered at infinity

Recall that a valuation ν over A is centered at infinity, if ν does not admit a center on X0. We
denote by V8 the set of valuations over A centered at infinity.

Lemma 3.6.13. Let ν be valuation over A. The following assertions are equivalent.

(1) ν is centered at infinity.

(2) There exists P P A such that νpPq ă 0.

(3) For any completion X of X0 and any effective divisor H in X such that SuppH “ BX X0,

one has Lν,XpHq ą 0.

(4) There exists a completion X of X0 and an effective divisor H P X with SuppH “ BX X0

such that Lν,XpHq ą 0.

Proof. We will show the following implications 2ñ 1ñ 3ñ 4. Then, we will show that 1ñ 2
and finally that 4ñ 2.

2ñ 1ñ 3ñ 4 If there exists a regular function P over X0 such that νpPq ă 0 then the center
of ν cannot be a point of X0 because P is regular at every point of X0. This shows 2ñ 1, then if
ν is centered at infinity, take a completion X of X0, let E be a prime divisor at infinity in X such
that cXpνq P E. Then, since H is effective and E P SuppH, Lν,XpHq ě νpEq ą 0 by Proposition
3.6.6 (1). This shows 1ñ 3 and 3ñ 4 is clear.

1 ñ 2 Conversely, suppose ν is centered at infinity and fix a closed embedding X0 ãÑ AN

for some integer N. Let X be the Zariski closure of X0 in PN with homogeneous coordinates
x0, ¨ ¨ ¨ ,xN such that tx0 “ 0u is the hyperplane at infinity. The surface X might not be smooth
so it is not necessarily a completion of X0 but it still is proper and the center p of ν on X belongs
to tx0 “ 0uXX . Let 1 ď i ď N be an integer such that p belongs to the open subset txi ‰ 0u.
Then, the rational function P :“ xi

x0
is a regular function on X0 and 1{P vanishes at p. Therefore,

νpPq ă 0.
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4ñ 1 Suppose that ν is not centered at infinity, i.e the center of ν belongs to X0. Then, for
any completion X and for any divisor D P Div8pXq, one has Lν,XpDq “ 0 by Proposition 3.6.6
(1) since cXpνq R SuppD.

This lemma shows that being centered at infinity is a property that can be tested on only one
completion X0.

Corollary 3.6.14. The space V8 is an open subset of V .

Proof. We have by Lemma 3.6.13 that

V8 “
ď

PPA

tνpPq ă 0u . (3.160)

Therefore, it is a union of open subsets.

3.6.3.1 Topologies over the set of valuations centered at infinity

Let X be a completion of X0. Call σ the coarsest topology such that the evaluation maps
ϕ f : ν P V8 ÞÑ νp f q are continuous for all f P A and τ the coarsest topology such that the
evaluation maps ψA : ν P V8 ÞÑ LνpAq are continuous for all fractional ideals A of X such that
A|X0 is a sheaf of ideals over X0. Recall that we allow in both cases infinite values.

Proposition 3.6.15. [JM12] These two topologies on V are the same.

Proof. First if f P A, then νp f q “ Lνpp f qq where p f q is the fractional ideal generated by f .
So σ is finer than τ. For the other way, Let H be an ample divisor supported at infinity and
let A be a fractional ideal co-supported at infinity. There exists an integer n ą 0 such that
AbOXpnHq and OXpnHq are generated by global sections p f1, ¨ ¨ ¨ , frq and pg1, ¨ ¨ ¨ ,gsq respec-
tively. Notice that for all i, j, the rational functions fi,g j belong to OXpX0q. Now, we have that
LνpAq “ LνpAbOXpnHqbOXp´nHqq, therefore

LνpAq “min
i, j

ˆ

ν

ˆ

fi

g j

˙˙

“min
i, j

`

νp fiq´νpg jq
˘

Therefore, τ is finer than σ and the result is shown.
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3.6.3.2 Valuations centered at infinity as linear forms over Cartier8pX0q

Definition 3.6.16. Let ν be a valuation over A. Let D P Cartier8pX0q and X be a completion of
X0 such that D is defined by DX . We define

LνpDq :“ Lν,XpDXq. (3.161)

This does not depend on the choice X and defines a linear map on Cartier8pX0q by Proposition
3.6.6 and LνpDq ă `8 by Lemma 3.6.3. Notice that Lν “ 0 if and only if ν is not centered at
infinity.

Proposition 3.6.17. If ν is a valuation on A centered at infinity then Lν is a linear form

Cartier8pX0q Ñ R and satisfies

(1) If Dě 0, then LνpDq ě 0.

(2) For D,D1 P Cartier8pX0q,LνpD^D1q “minpLνpDq,LνpD1qq.

We will say that an element of HompCartier8pX0q,Rq that satisfies these 2 properties satisfies

property (+).

Proof. Assertion 1 follows from Proposition 3.6.6 (3). We show the second assertion. Take
D,D1 P Cartier8pX0q and X a completion of X0 such that D,D1 are defined by their incarnation
DX ,D1X . By Claim 3.2.8 (that we prove in the next section), we know that there exists a com-
pletion Y along with a morphism of completions π : Y Ñ X such that D^D1 is the Cartier class
determined by some divisor DY in Y such that π˚pOXp´DXq `OXp´D1Xqq ¨OY “ OY p´DY q.
Using Proposition 3.6.10, it follows that

LνpD^D1q “ Lν,Y pDY q

“ Lν,Y pOY p´DY qq 3.6.10p4q

“ Lν,XpOXp´DXq`OXp´D1Xqq 3.2.8

“minpLν,XpOXp´DXqq,Lν,XpOXp´D1Xqqq 3.6.10p2q

“minpLνpDq,LνpD1qq 3.6.10p4q

For the third assertion, let X be a completion of X0, by Theorem 3.1.4 there exists an ample
divisor H PDiv8pXq such that H ě 0 and SuppH “ BX X0. We get that cXpνq P SuppH (whether
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it is a prime divisor or a closed point) and therefore by Proposition 3.6.6 item (3), we get
LνpHq ą 0.

Proposition 3.6.18. Let ν be a valuation over A and f : X0 Ñ X0 a dominant endomorphism,

then for all D P Cartier8pX0q,

L f˚νpDq “ Lνp f ˚Dq “ p f˚LνqpDq (3.162)

Proof. Let X be a completion of X0 where D is defined, then f induces a dominant rational map
f : X Ñ X . Let π : Y Ñ X be a projective birational morphism such that the lift F : Y Ñ X is
regular. Since f is an endomorphism of X0 we can suppose that π is the identity over X0, hence
Y is a completion of X0 and π is a morphism of completions. Now, if ϕ is a local equation
of D near the center of νX , then F˚ϕ is a local equation of F˚D near the center of νY . Since
π˚νY “ νX , one has

νY pF˚gq “ νXppF ˝π
´1
q
˚gq “ νXp f ˚gq “ p f˚νqXpgq (3.163)

We equip HompCartier8pX0q,Rq with the weak-‹ topology, that is the coarsest topology
such that the map L P HompCartier8pX0q,Rq ÞÑ LpDq is continuous for all D P Cartier8pX0q.
We extend Lν to Cartier8pX0qR by linearity.

Proposition 3.6.19. The map ν P V8 ÞÑ Lν P HompCartier8pX0q,Rq is a continuous embed-

ding.

Proof. For the injectivity, let ν,ω P V8 such that ν ‰ ω. First, if w “ tν with t ą 0, then since
Lν ‰ 0, we have Lν ‰ Lw. Otherwise, there exists a completion X such that cXpνq ‰ cXpωq. If
the centers are both prime divisors at infinity then it is clear that Lν ‰ Lw. If cXpνq is a point, let
rE be the exceptional divisor above it. Then, by Proposition 3.6.6, LνprEq ą 0, but LwprEq “ 0.

By definition, to show continuity we have to show that for all D P Cartier8pX0q, the map
ν P V8 ÞÑ LνpDq is continuous. Let X be a completion where D is defined, then by Proposi-
tion 3.6.6 LνpDq “ LνpOXp´Dqq and by Proposition 3.6.15 the map ν P V8 ÞÑ LνpOXp´Dqq is
continuous.

Proposition 3.6.20. Let X be a completion of X0 and p P X a closed point at infinity. Let

ν P VXpp;mpq. If E is a prime divisor of X at infinity such that p P E, then

1ď LνpEq ď αpνq (3.164)
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Proof. Let z P OX ,p be a local equation of E, z is irreducible and we have LνpEq “ νpzq. We
have that z P mp, therefore νpzq ě νpmpq “ 1. This shows the first inequality. For the second
one, let νz be the curve valuation associated to z. It does not define a valuation over krX0s but it
defines a valuation over OX ,p by Proposition 3.4.3, we get

νpzq “ αpνz^νq ď αpνq (3.165)

3.6.3.3 Special look at divisorial valuations centered at infinity

Lemma 3.6.21. Let X be a completion of X0 and let E be a prime divisor at infinity. One has

LordE pEq “ 1 and for any prime divisor F ‰ E in X, LordE pFq “ 0.

Furthermore, if π : Y Ñ X is some blow-up of X, and π1pEq the strict transform of E by π,

then

π˚ ordπ1pEq “ ordE . (3.166)

Proof. The first assertion follows from Proposition 3.6.6 (3). We show the second assertion. It
suffices to show it when π is the blow-up of one point of X . Let D “ aE `

ř

F‰E ordFpDqF ,
then π˚D is of the form

π
˚D“ aπ

1
pEq`brE`

ÿ

F‰E

aFpDqπ1pFq (3.167)

where rE is the exceptional divisor of π. Therefore ordπ1pEqpπ
˚pDqq “ a“ ordEpDq.

Proposition 3.6.22. Let ν be a divisorial valuation, then Lν can be extended naturally to

Weil8pX0q in a compatible way with the definition of Lν over Cartier8pX0q.

Proof. Take W PWeil8pX0q. Since ν is divisorial, there exists a completion X of X0 that con-
tains a prime divisor E at infinity such that pιXq˚ν“ λordE . We set

LνpW q :“ Lν,XpWXq (3.168)

This does not depend on the completion X . To show this, it suffices to show that we get the
same result if we blow up one point of X . So, let π : Y Ñ X be the blow up of one point of X0 at
infinity. Then, by Lemma 3.6.21, νY “ λordπ1pEq and ordπ1pEqpWY q “ ordEpπ˚WY q “ ordEpWXq.
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If D P Cartier8pX0q, then this is compatible with the previous definition of LνpDq because if D

is defined over X , there exists a completion π : Y Ñ X such that the center of ν on Y is a prime
divisor at infinity and by Proposition 3.6.6 (5) Lν,Y pπ

˚Dq “ Lν,XpDq.

Remark 3.6.23. Recall that we have defined in Section 3.2.1 the set D8pX0q as the set of
equivalence classes of prime divisors at infinity modulo the following equivalence relations :
pX1,E1q „ pX2,E2q if π“ ι2 ˝ ι

´1
1 : X1 99K X2 satisfies πpE1q “ E2. Lemma 3.6.21 shows that it

makes sense to define ordE for E PD8pX0q and that ordE is defined over Weil8pX0q.

Proposition 3.6.24. Let W,W 1 PWeil8pX0q, then W 2 “W ^W 1 if and only if for any divisorial

valuation E PD8pX0q,

ordEpW 2
q “minpordEpW q,ordEpW 1

qq. (3.169)

Proof. This is immediate as for any completion X ,

WX “
ÿ

EPBX X0

ordEpW q ¨E. (3.170)

We can now show that the minimum of two Cartier divisors is still a Cartier divisor.

Proposition 3.6.25. Let X be a completion of X0, let D,D1 P Div8pXq be two effective divisor

and let a be the sheaf of ideals a “ OXp´Dq`OXp´D1q. Then, D^D1 is the Cartier divisor

defined by π˚a where π is the blow up of a.

Notice that a is not locally principle only at satellite points, so π is a sequence of blow-ups
of satellite points. This shows the Claim 3.2.8.

Proof of Claim 3.2.8. Define the sheaf of ideals a “ OXp´Dq`OXp´D1q and let π : Y Ñ X be
the blow up of a. There exists a Cartier divisor DY on Y such that b “ OY p´DY q “ π˚a ¨OY .
We show that DY “ D^D1 in Cartier8pX0q. By Proposition 3.6.24, we only need to show that
for any divisorial valuation ν,Lν,Y pDY q “minpLν,XpDq,Lν,XpD1qq, but by Proposition 3.6.10 we
have the following equalities

Lν,Y pDY q “ Lν,Y pbq “ Lν,Xpaq “minpLν,XpDq,Lν,XpD1qq (3.171)
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3.6.4 Local divisor associated to a valuation

Let X be a completion of X0 and let p P X be a closed point at infinity. Let ν be a valuation
centered at p. We know by Section 3.6.3.2 that ν induces a linear form Lv on Cartier8pX0qR.
By restriction, it induces a linear form Lν,X ,p on CartierpX , pqR. Now by Proposition 3.2.19, the
pairing

WeilpX , pqRˆCartierpX , pqR Ñ R (3.172)

induced by the intersection product is perfect. Thus, there is a unique Zν,X ,p PWeilpX , pqR such
that

@D P CartierpX , pqR, Zν,X ,p ¨D“ Lν,X ,ppDq (3.173)

Example 3.6.26. If rE is the exceptional divisor above p, then Zord
rE ,X ,p “´rE.

Proposition 3.6.27. For any valuation ν P VXppq, we have Zν,X ,p P CartierpX , pq if and only if

ν is divisorial. Furthermore, Zν,X ,p is defined over any completion such that the center of ν is a

prime divisor at infinity. Furthermore, for any E PDpX , pq,ZordE ,X ,p P CartierpX , pqQ.

Proof. Let E PDX ,p, for every W PWeilpX , pq,ordEpW q “ ordEpWY q where Y is a completion
exceptional above p by Proposition 3.6.22. Let E,E1, ¨ ¨ ¨ ,Er be the component of BY X0 that are
exceptional above p. The intersection form is non degenerate on

V :“QE‘

˜

à

i
QEi

¸

. (3.174)

Let L be the restriction of ordE to V , by duality there exists a unique Z P V such that for all
W PV,W ¨Z “ LpW q “ ordEpW q. This implies that Z “ ZordE ,X ,p. Conversely, if ν is a valuation
such that Zν,X ,p P CartierpX , pq then let Y be a completion where Zν,X ,p is defined. If cY pνq

is a point at infinity, then let rE be the exceptional divisor above cY pνq. Then, we must have
Zν,X ,p ¨ rE ą 0 but it is equal to 0, this is a contradiction.

Proposition 3.6.28. The embedding VXpp;mpq ãÑ WeilpX , pqR is continuous with respect to

the weak topology.

Proof. This is a direct consequence of Proposition 3.6.19 and Proposition 3.5.2.

Thus, For all completion π : Y Ñ X , for all E P Γπ, we can consider ZordE ,X ,p as an element
of Div8pY qR.
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Proposition 3.6.29. Let π : pY,ExcpπqqÑ pX , pq be a completion exceptional above p. Let ν be

a valuation such that cXpνq “ p. Suppose that cY pνq is a point at infinity. Consider VXpp;mpq

with its generic multiplicity function b.

(1) If cY pνq P E is a free point with E P Γπ, then the incarnation of Zν,X ,p in Y is

pZν,X ,pqY “ LνpEqZordE ,X ,p (3.175)

Moreover if ν P VXpp;mpq, then LνpEq “ 1
bpEq .

(2) If cY pνq “ EXF is a satellite point with E,F P Γπ, then

pZν,X ,pqY “ LνpEqZordE ,ν,p`LνpFqZordF ,X ,p (3.176)

Moreover if ν P VXpp;mpq, then LνpEqbpEq`LνpFqbpFq “ 1.

Furthermore, if q‰ cY pνq and τ : Z Ñ Y is the blow up of q then

pZν,X ,pqZ “ τ
˚
pZν,X ,pqY (3.177)

Proof. For any prime divisor E at infinity of Y , LνpEqą 0ô cY pνq PE by item (3) ofProposition
3.6.6. Therefore, if cY pνq P E is a free point with E P Γπ, then for F P Γπ,LνpFq ‰ 0ô F “ E,
hence

pLνq|Div8pY qR “ pLνpEqqpLordE q|Div8pY qR. (3.178)

by definition (see Equation (3.152)). This shows the result if cY pνq is a free point. Now, if
cY pνq “ EXF is a satellite point with E,F P Γπ, then for all prime divisors F 1 of Y at infinity
LνpF 1q ą 0ô F 1 “ E or F 1 “ F . We therefore have

pLνq|Div8pY qR “ pLν ¨EqpLordE q|Div8pY qR`pLν ¨FqpLordF q|Div8pY qR. (3.179)

This shows the result in the satellite case.

If ν P VXpp;mpq. Let τ : Z Ñ X be the blow up of p. We know then that LνprEq “ 1
where rE is the exceptional divisor above p by Proposition 3.4.12. Let b

rE be the generic
multiplicity function of the tree VZprE; rEq. We have for every prime divisor F exceptional
above p that ordFprEq “ b

rEpFq again by Proposition 3.4.12. In the free point case, we get
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1“ LνprEq “ Lνpb
rEpEqEq by Proposition 3.6.6 (3) and (5). In the satellite point case, we get

1“ LνprEq “ Lνpb
rEpEqE`b

rEpFqFq (3.180)

again by Proposition 3.6.6 (3) and (5).

For the last assertion, if rF is the exceptional divisor above q, we have

pZν,X ,pqZ “ τ
˚
pZν,X ,pqY ´pZν,X ,p ¨ rFqrF . (3.181)

Since cZpνq R rF , we have LνprFq “ 0 by Proposition 3.6.6 (3).

From now on let b be the generic multiplicity function of VXpp;mpq and for any prime
divisor E PDX ,p “ Γ, set νE “

1
bpEq ordE .

Proposition 3.6.30. Let π : pY,Excpπqq Ñ pX , pq be a completion exceptional above p. Let

q P Excpπq be a closed point. Let τ : Z Ñ Y be the blow up of q and let rE be the exceptional

divisor above q.

(1) If q P E is a free point with E P Γπ, then

Zν
rE ,X ,p “ τ

˚
pZνE ,X ,pq´

1

bprEq
rE P Div8pZqQ (3.182)

(2) If q“ EXF is a satellite point with E,F P Γπ, then

Zν
rE ,X ,p “

bpEq
bpEq`bpFq

τ
˚ZνE ,X ,p`

bpFq
bpEq`bpFq

τ
˚ZνF ,X ,p´

1

bprEq
rE PDiv8pZqQ (3.183)

Proof. If q P E is a free point with E P Γπ, we have by Proposition 3.6.29 that the incarnation
of Zord

rE ,X ,p in Y is
τ˚pZord

rE ,X ,pq “ ZordE ,X ,p (3.184)

because ord
rEpEq “ 1. Therefore

Zord
rE ,X ,pτ

˚ZordE ,X ,p`λrE (3.185)

with λ P R. Since Zord
rE ,X ,p ¨ rE “ 1, we get λ “ ´1. Now, by the definition of the generic
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multiplicity, we have bprEq “ bpEq. Therefore,

Zν
rE ,X ,p “ τ

˚ZνE ,X ,p´
1

bprEq
rE (3.186)

If q “ E X F is a satellite point with E,F P Γπ, then bprEq “ bpEq ` bpFq. Note that
ord

rEpEq “ ord
rEpFq “ 1. We have by Proposition 3.6.29

τ˚Zord
rE ,X ,p “ ZordE ,X ,p`ZordF ,X ,p (3.187)

and since ord
rEp
rEq “ 1, we get

Zord
rE ,X ,p “ τ

˚ZordE ,X ,p` τ
˚ZordF ,X ,p´ rE. (3.188)

Therefore,

Zν
rE ,X ,p “

bpEq
bpEq`bpFq

τ
˚ZordE ,X ,p`

bpFq
bpEq`bpFq

τ
˚ZordF ,X ,p´

1

bprEqq
rE. (3.189)

Theorem 3.6.31. Let ν,ν1 P VXpp;mpq, then

Zν,X ,p ¨Zν1,X ,p “´αpν^ν
1
q (3.190)

Proof. We show by induction the

Claim 3.6.32. For every completion π : pY,ExcpπqqÑ pX , pq exceptional above p, for all E PΓπ,

for all ν P VXpp;mpq,

ZνE ,X ,p ¨Zν,X ,p “´αpνE ^νq (3.191)

First if π : Y Ñ X is the blow up of p with exceptional divisor rE. Recall that π˚ ord
rE “ νmp

then Zord
rE ,X ,p “´E and

Zord
rE ,X ,p ¨Zν,X ,p “ Zν,X ,p ¨ p´rEq “ ¨Lνp´rEq. (3.192)

By definition, νpmpq “ 1 and π˚mp “ OY p´rEq. Therefore, by Proposition 3.6.10, we get
Zord

rE ,X ,p ¨Zν,X ,p “´1“´αpνmp^νq.

Suppose that π : pY,Excpπqq Ñ pX , pq is a completion exceptional above p for which the
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claim holds. Let q P Y be a closed point at infinity, let τ : Z Ñ Y be the blow up of q and let rE
be the exceptional divisor. Let ν P VXpp;mpq, we show that Zν,X ,p ¨Zν

rE ,X ,p “ ´αpν^ν
rEq. We

divide the proof in 2 different cases.

Case 1: q P E is a free point with E P Γπ In that case ν
rE ą νE by Proposition 3.4.17. We

also have bprEq “ bpEq and Zν
rE ,X ,p “ ZνE ,X ,p´

1
bprEq

rE by Proposition 3.6.30. If cY pνq ‰ pqq (this
includes the case where cY pνq is a prime divisor at infinity. Then, ν^ν

rE “ ν^νE . We have by
Proposition 3.6.30 that Zν

rE ,X ,p “ τ˚pZνE ,X ,pq´
1

bprEq
rE. Since Zν,X ,p ¨ rE “ 0, we get

Zν,X ,p ¨Zν
rE ,X ,p “ Zν,X ,p ¨ZνE ,X ,p. (3.193)

This is equal to ´αpν^νEq by induction and therefore it is equal to ´αpν^ν
rEq.

If cY pνq “ q, then cZpνq P rE. We either have ν
rE ď ν or νE ă ν^ν

rE ă ν
rE .

1. If ν ě ν
rE , then ν^ν

rE “ ν
rE and cZpνq is either rE or a free point on rE. In both cases by

Proposition 3.6.29, the incarnation of Zν,X ,p in Z is Zν
rE ,X ,p. Therefore

Zν,X ,p ¨Zν
rE,X ,p

“ pZν
rE ,X ,pq

2
“ pZνE ,X ,pq

2
´

1

bprEq2
. (3.194)

By induction pZνE ,X ,pq
2 “ ´αpνEq and αpν

rEq “ αpνEq`
1

bprEq2
by Proposition 3.4.27, so

the claim is shown in that case.

2. If νE ă ν^ ν
rE ă ν

rE . Then, ν^ νE is a monomial valuation centered at E X rE (we still
denote by E the strict transform of E in Z). Therefore, by Proposition 3.4.31 there ex-
ists s, t ą 0 such that sbpEq ` tbprEq “ 1 and ν^ ν

rE “ νs,t is the monomial valuation
with weight s, t with respect to local coordinates associated to E and rE respectively. By
Proposition 3.6.29, we have

pZν,X ,pqZ “ sZordE ,X ,p` tZord
rE ,X ,p “ sbEZνE ,X ,p` tb

rEZν
rE ,X ,p. (3.195)

Therefore,
Zν,X ,p ¨Zν

rE ,X ,p “ sbpEqZνE ,X ,p ¨Zν
rE ,X ,p` tbprEqpZν

rE ,X ,pq
2. (3.196)

By induction and the previous case this is equal to ´bpEqpsαpνEq` tαpν
rEqq. By Propo-
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sition 3.4.27, we have αpν
rEq “ αpνEq`

1
bpEq2 . Therefore, we get

´bpEq
`

sαpνEq` tαpν
rEq
˘

“´αpνEq´
t

bpEq
(3.197)

and this is equal to ´αpπ˚νs,tq by Proposition 3.4.31.

Case 2: q “ E1 X E2 is a satellite point We can suppose without loss of generality that
νE1 ă νE2 . In that case we get νE1 ă ν

rE ă νE2,bprEq “ bpE1q`bpE2q and

Zν
rE ,X ,p “

bpE1q

bpE1q`bpE2q
ZνE1 ,X ,p`

bpE2q

bpE1q`bpE2q
ZνE2 ,X ,p´

1

bprEq
rE (3.198)

by Proposition 3.6.30.

If cY pνq ‰ q, then ν^ν
rE ď νE1 or ν^ν

rE ě νE2 and we get

Zν,X ,p ¨Zν
rE ,X ,p “

bpE1q

bpE1q`bpE2q
pZν,X ,p ¨ZνE1 ,X ,pq`

bpE2q

bpE1q`bpE2q
pZν,X ,p ¨ZνE2 ,X ,pq. (3.199)

By induction, this is equal to ´ bpE1q
bpE1q`bpE2q

αpνE1^νq´
bpE2q

bpE1q`bpE2q
αpνE2^νq.

If ν^ν
rE ď νE1 , then ν^νE2 “ ν^ν

rEν^νE1 and the quantity in Equation (3.199) is equal
to ´αpν^ν

rEq.

If ν^ν
rE ě νE2 , then ν ą ν

rE and ν^ν
rE “ ν

rE . In that case ν^νE1 “ νE1 and ν^νE2νE2 .
Therefore, the quantity in Equation (3.199) is equal to

´
bpE1q

bpE1q`bpE2q
αpνE1q´

bpE2q

bpE1q`bpE2q
αpνE2q. (3.200)

By Proposition 3.4.27, αpνE2q “ αpνE1q`
1

bpE1qbpE2q
, so we get

Zν,X ,p ¨Zν
rE ,X ,p “´αpνE1q´

1
bpE1qpbpE1q`bpE2qq

“ ´αpνE1q´
1

bpE1qbprEq
(3.201)

and this is equal to ´αpν
rEq again by Proposition 3.4.27.

If cY pνq “ q, then cZpνq P rE. We have that νE1 ă ν^ν
rE ă νE2 . Therefore either ν “ ν

rE or
cZpνqnrE is a free point and ν^ν

rE is a monomial valuation centered at E1X rE or E2X rE. We
show again the claim by induction in an analogous way as in Case 1. We have thus shown the
claim by induction.
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To show the Proposition, let ν,ν1 P VXpp;mpq. If ν ‰ ν1, then there exists a completion
π : pY,Excppiqq Ñ pX , pq exceptional above p such that cY pνq ‰ cY pν

1q. Then, we have that

Zν,X ,p ¨Zν1,X ,p “ pZν,X ,pqY ¨ pZν1,X ,pqY (3.202)

If ν1 is infinitely singular or a curve valuation, we can suppose that cY pν
1q is a free point lying

over a unique prime divisor E at infinity. Then, ν1 ą νE and ν1^ν“ ν1^νE . Furthermore, the
incarnation of Zν,X ,p in Y is exactly ZνE ,X ,p by Proposition 3.6.29. Therefore,

Zν,X ,p ¨Zν1,X ,p “ Zν,X ,p ¨ZνE ,X ,p. (3.203)

This is equal to ´αpν^νEq “ ´αpν^ν1q by the Claim.

If ν1 is irrational, then we can suppose that cY pν
1q “ E1XE2 for E1,E2 two prime divisors

at infinity. Suppose without loss of generality that vE1 ă νE2 . By Proposition 3.4.31, we have
that ν1 “ π˚νs,t for some s, t ą 0 such that sbpE1q ` tbpE2q “ 1 and αpν1q “ αpνE1q `

t
bpE1q

.
Furthermore, by Proposition 3.6.29, the incarnation of Zν1,X ,p in Y is

pZν1,X ,pqY “ sbpE1qZνE1 ,X ,p` tbpE2qZνE2 ,X ,p. (3.204)

And we have

Zν,X ,p ¨Zν1,X ,p “ sbpE1qpZν,X ,p ¨ZνE1 ,X ,pq` tbpE2qpZν,X ,p ¨ZνE2 ,X ,pq. (3.205)

Either ν^ν1“ ν^νE1 or ν^ν1“ ν1. If ν^ν1“ ν^νE1 , then we also have ν^νE2 “ ν^νE1 .
The quantity in Equation (3.205) is then equal to

´ sbpE1qαpν^νE1q´ tbpE2qαpν^νE2q “ αpν^νE1q “ ´αpν^ν
1
q. (3.206)

If ν^ ν1 “ ν1, then ν^ νE1 “ νE1 and ν^ νE2 “ νE2 . The quantity in Equation (3.205) is
then equal to

´ sbpE1qαpνE1q´ tbpE2qαpνE2q “ ´αpνE1q´
t

bpE1q
“ ´αpν

1
q. (3.207)

To get the last two equalities we use Proposition 3.4.27 and 3.4.31.

Finally, if ν “ ν1, we need to show that pZν,X ,pq
2 “ ´αpνq. We know the result if ν is

divisorial. We use approximating sequence to conclude in general. If ν is infinitely singular or
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a curve valuation. Let pXn, pnq be the sequence of infinitely near points associated to ν. The
approximating sequence of ν (Proposition 3.4.26) is the subsequence νn “

1
bpEnq

ordEn where pn

is a free point lying over a unique prime divisor En at infinity. We have that αpνnq Ñ αpνq and
the incarnation of Zν,X ,p in Xn is Zνn,X ,p. Therefore,

pZν,X ,pq
2
“ lim

n
pZνn,X ,pq

2
“´ lim

n
αpνnq “ ´αpνq (3.208)

If ν is irrational, then let pXn, pnq be the sequence of infinitely near points associated to
ν. For every n large enough, pn “ EnXFn for En,Fn two prime divisors at infinity. Suppose
that for all n,νEn ă νFn . Then, we have νEn ă ν ă νFn , αpνEnq Ñ αpνq,αpνFnq Ñ αpνq and
bpEnq Ñ `8,bpFnq Ñ `8. We have by Proposition 3.6.29 that the incarnation of Zν,X ,p in Xn

is
snbpEnqZνEn ,X ,p` tnbpFnqZνFn ,X ,p (3.209)

for some sn, tn ą 0 such that snbpEnq` tnbpFnq “ 1. We have

pZν,X ,pq
2
“ lim

n
psnbpEnqZνn,X ,p` tnbpFnqZνFn,X ,pq

2 (3.210)

“ lim
n
´s2

nbpEnq
2
αpνEnq´2sntnbpEnqbpFnqαpνEnq´ t2

n bpFnq
2
αpνFnq (3.211)

Therefore we get
lim

n
´αpνEnq ď pZν,X ,pq

2
ď lim

n
´αpνFnq. (3.212)

Hence pZν,X ,pq
2 “´αpνq.

Corollary 3.6.33. If ν P VXpp;mpq, then Zν,X ,p RWeilpX , pqQ if and only if ν is irrational.

Proof. If ν is divisorial, let E PDX ,p such that ν is equivalent to ordE . Then,

Zν,X ,p “
1

bpEq
ZordE ,X ,p PWeilpX , pqQ (3.213)

by Proposition 3.6.27. If ν is infinitely singular or a curve valuation, let µ be any divisorial
valuation. We have that µ^ν must be a divisorial valuation, therefore by Theorem 3.6.31 we
have

Zµ ¨Zν “´αpν^µq PQ. (3.214)

Hence Zν,X ,p PWeilpX , pqQ.
If ν is irrational, then for all µ ě ν divisorial we have αpµ^νq “ αpνq P RzQ. Therefore,

Zν,X ,p RWeilpX , pq.
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Proposition 3.6.34. Let X be a completion, let p P X be a closed point at infinity. If pνnq is a

sequence of VXpp;mpq such that αpνnq ă `8 for all n and ν P VXpp;mpq, then νn Ñ ν for the

strong topology if and only if Zνn,X ,p Ñ Zν,X ,p for the strong topology of L2pX0q.

Proof. This all comes from Theorem 3.6.31 as

ˇ

ˇ

ˇ
pZν,X ,p´Zνn,X ,pq

2
ˇ

ˇ

ˇ
“ |´αpνq`2αpν^νnq´αpνnq| (3.215)

“ |αpνq´αpν^νnq`αpνnq´αpν^νnq| . (3.216)
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3.7 From linear forms to valuations

Suppose now that we have an element L of HompCartier8pX0q,Rq satisfying property (+), we
want to construct a valuation νL : AÑ RYt8u centered at infinity such that LνL “ L.

First we extend L to S8pX0q (see Definition 3.2.12) by setting

If D“
ł

i

Di with Di P Cartier8pX0q, LpDq :“ sup
i

LpDiq. (3.217)

Proposition 3.7.1. This definition does not depend on the representation of D as a supremum

D“
Ž

i Di with Di P Cartier8pX0q.

Proof. If D “
Ž

iPI Di “
Ž

jPJ D1j. Let j P J be an index and X a completion such that D1j is
defined on X . Let ε ą 0 and let H be an effective divisor such that SupppHq “ BX X0. There
exists an index i P I such that Di` εH ě D1j, since otherwise we would get D` εH ď D1j ď D.
Therefore we have by property p`q item (1)

LpD1jq ď LpDiq` εLpHq ď sup
k

LpDkq` εLpHq. (3.218)

Letting ε go to 0, we get sup j LpD1jq ď supk LpDkq and the result holds by symmetry.

Proposition 3.7.2. We have the following properties: for D,D1 P S8pX0q

(1) LpD`D1q “ LpDq`LpD1q.

(2) LpD^D1q “minpLpDq,LpD1qq.

(3) If Dě 0, then LpDq ě 0.

Proof. For (1), write

LpD`D1q “ sup
pi, jqPIˆJ

LpDi`D1jq

“ sup
iPI

LpDiq` sup
jPJ

LpD1jq “ LpDq`LpD1q

For (2), let D“
Ž

i Di and D1 “
Ž

j D1j be two elements of S8pX0q. Then,

D^D1 “
ł

i, j

Di^D1j (3.219)
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and

LpD^D1q “ sup
i, j

minpLpDiq,LpD1jqq (3.220)

“minpsup
i

LpDiq,sup
j

LpD1jqq (3.221)

“minpLpDq,LpD1qq. (3.222)

For (3), if D “ 0, then LpDq “ 0. Otherwise, D ą 0 and there exists a Cartier divisor Di

defined in some completion X of X0 such that DX ě Di ě 0 and therefore

LpDq ě LpDiq ě 0. (3.223)

Recall the notations of Section 3.2.2. Define

wpPq :“ pdiv8,XpPqqX . (3.224)

Proposition 3.7.3. For P P A, wpPq defines an element of Weil8pX0q, moreover if one identifies

for any completion X the divisor div8,XpPq P Div8pXq with its image in Cartier8pX0q, then

wpPq “
ł

X

div8,XpPq. (3.225)

Thus, wpPq defines an element of S8pX0q.

Proof. To prove both assertions it suffices to show that if X is a completion of X0 and Y is the
blow up of some point at infinity, then π˚ div8,Y pPq “ div8,XpPq and π˚ div8,XpPq ď div8,Y pPq.
Let rE be the exceptional divisor of π and let E1, . . . ,Er be the prime divisors in BX X0. Since P

is regular over X0, divXpPq is of the form

divXpPq “ D`
r
ÿ

i“1

aiEi (3.226)

where D is an effective divisor such that no irreducible component of its support is one of the
Ei’s; by definition div8,XpPq “

řr
i“1 aiEi. Then, divY pPq is of the form
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divY pPq “ divY pP˝πq “ π
˚ divXpPq “ π

1
pDq`brE`

r
ÿ

i“1

aiπ
1
pEiq (3.227)

for some b P Z. So div8,Y pPq “ brE`
řr

i“1 aiπ
1pEiq and we get π˚pdiv8,Y pPqq “ div8,XpPq as

π˚prEq “ 0, This shows that wpPq is an element of Weil8pX0q.

To show that π˚ div8,XpPq ď div8,Y pPq we have to be more precise about the coefficient b.
We can write b“ c`d, where π˚D“ π1pDq`d rE and π˚ div8,XpPq “ crE`

ř

i aiπ
1pEiq. Since,

D is effective, we have d ě 0 and the result follows.

We define
νLpPq :“ LpwpPqq. (3.228)

Remark 3.7.4. The class wpPq is not in general a Cartier class. Indeed, take X0 “ A2,X “ P2

with homogeneous coordinates rx : y : zs such that tz“ 0u is the line at infinity. Consider
P“ y{z P kpP2q. Define a sequence of blow ups Xi by X0“P2,E0“tz“ 0u and πi`1 : Xi`1ÑXi

the blow up of the intersection point of the strict transform of ty“ 0u in Xi and Ei, where Ei is
the exceptional divisor in Xi. Let Cy be the strict transform of ty“ 0u in any the Xi. We still
denote by Ei its strict transform in every X j, j ě i. Then,

divP2pPq “Cy´E0

divX1pPq “Cy´E0

divX2pPq “Cy`E2´E0

divX3pPq “Cy`2E3`E2´E0

and by induction, we get for all k ě 2

divXkpPq “Cy`

k
ÿ

j“2

p j´1qE j´E0. (3.229)
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Therefore, for all k ě 2

π
˚
k`1 div8,XkpPq “ pk´1qEk`1`

k
ÿ

j“2

p j´1qE j´E0

‰ kEk`1`

k
ÿ

j“2

p j´1qE j´E0 “ div8,Xk`1pPq.

Thus, wpPq is not a Cartier class.

Proposition 3.7.5. The function νL is a valuation on A centered at infinity.

Proof. We first show that νL is in fact a valuation

1. For any λ P k˚ and for any completion X of X0, divXpλq “ 0 so νLpλq “ 0.

2. If f ,g P A, then divXp f gq “ divXp f q`divXpgq. So, wp f gq “ wp f q`wpgq and by Propo-
sition 3.7.2 νLp f gq “ νLp f q`νLpgq.

3. Let f ,g P A, f ‰´g, then divXp f `gq ě divXp f q^divXpgq, therefore

wp f `gq ě wp f q^wpgq (3.230)

and by Proposition 3.7.2 νLp f `gq ěminpνLp f q,νLpgqq.

If L ‰ 0, there exists a completion X and a prime divisor E at infinity such that LpEq ą 0.
By Theorem 3.1.4, there exists H P Div8pXq ample such that H ě 0,SuppH “ BX X0. We have
by item (1) of (+) that LpHq ě LpEq ą 0. To show that νL is centered at infinity, it suffices to
show that LνLpHq ą 0. Up to replacing H by one of its multiples (which does not change the
hypothesis LpHq ą 0), we can suppose that H is very ample and that it induces an embedding
τ : X ãÑ PN such that τpHq is the intersection of τpXqwith the hyperplane tx0 “ 0u. By Bertini’s
theorem, we can find a hyperplane M“t

ř

i λixi “ 0u‰ tx0 “ 0u such that MXτpXq is a smooth
irreducible subvariety C in X satisfying

1. The intersection of C with any divisor at infinity of X is transverse.

2. If νL is not divisorial, the center of νL is not contained in C.

Indeed, by Bertini theorem, the set UX of hyperplanes H such that HXX is a smooth irreducible
curve is an open dense subset. Let E1, ¨ ¨ ¨ ,En be the primes at infinity in X . Applying Bertini
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theorem to Ei yields an open subset Ui of hyperplanes that meet Ei transversally. Finally, if
the center of νL is a subvariety Y of codimension ě 2, then the set of hyperplanes that contain
Y is a closed nowhere dense subset of PpΓpPn,Op1qqq because |H| is base point free, so its
complementary is a non-empty open subset UY . Now, U1X¨¨ ¨XUnXUY is an open subset that
intersects UX since it is dense, we then choose M in the intersection. Define

P“
N
ÿ

i“0

λi
xi

x0
(3.231)

Then, P is a regular function over X0 such that divXpPq “C´H and 1{P is a local equation of
H at the center of νL (even if νL is divisorial). Hence,

LνLpHq “ νLp1{Pq “ sup
Y
pLpdiv8,Y p1{Pqq ě LpHq ą 0. (3.232)

In Section 3.6, we have constructed a map

L : V8Ñ HompCartier8pX0q,Rqp`q; (3.233)

here, we have constructed a map

ν : HompCartier8pX0q,Rqp`qÑ V8 (3.234)

where HompCartier8pX0q,Rqp`q are the linear forms over Cartier8pX0q that satisfy property
(+). We shall prove that they are mutual inverse in Section 3.8 (this result is not needed in this
memoir).
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3.8 Proof that ν and L are mutual inverses

Set M :“HompCartier8pX0q,Rqp`q. In Section 3.6, we have defined L : ν PV8 ÞÑ Lν PM and
v : L PM ÞÑ νL P V8. The goal is to show that these two maps are inverse of each other.

Proposition 3.8.1. For all valuation ν P V8 and for all P P OXpX0q,νpPq “ LνpwpPqq.

Proof. Let X be a completion of X0. We have seen that div8,XpPq “ divXpPq´D where D is an
effective divisor not supported in BX X0. Therefore,

Lν,Xpdiv8,XpPqq “ νpPq´Lν,XpDq ď νpPq (3.235)

Taking the supremum over X , we get LνpwpPqq ď νpPq.
To show the other inequality, take a valuation ν centered at infinity and let X be a completion

of X0. Up to further blow ups of point at infinity, we can suppose that D :“ divXpPq is a divisor
in X with simple normal crossing on BX X0. Let E1, ¨ ¨ ¨ ,Er be the prime divisors at infinity of X .
Then, D is of the form

D“
r
ÿ

i“1

aiEi`
ÿ

jPJ

b jFj (3.236)

for some prime divisors Fj not supported at infinity. Let p be the center of ν on X , there are two
cases.

1. For all j P J, p R Fj, in that case for all j P J,Lν,XpFjq “ 0 and νpPq “ Lν,Xpdiv8,XpPqq.
Therefore, νpPq ď LνpwpPqq and they are equal.

2. There exist a unique j P J and a unique i such that p “ EiXFj. The uniqueness comes
from the fact that D is a divisor with simple normal crossing. We denote them respectively
by E and F . Then, we construct a sequence of blow up of points πi : Xi`1 Ñ Xi such that
πi is the blow-up of the center of ν in Xi and X0 “ X . We still denote by F the strict
transform of F in any of these blow-ups. There are two possibilities:

(a) Either there exists a number k such that the center of ν in Xk does not belong to F

(This includes the case where ν is divisorial, in that case the center becomes a prime
divisor and there are no more blow-ups to be done). In that case, we are back in case
1 and νpPq “ νXkpdiv8,XkpPqq ď LνpwpPqq and we get the desired equality.

(b) Or for all kě 0, the center of ν in Xk belongs to F , in that case ν is the curve valuation
associated to F at p and νpPq “ `8. We show that νXkpdiv8,XkpPqq Ñ `8 using
the following result.
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Lemma 3.8.2. In case 2.(b), set E0 “ E and for k ě 1, rEk the exceptional divisor in Xk

above cXk´1pνq, then Lν,X0pEq “ Lν,XkpEkq for all k and the divisor divXkpPq is of the form

divXkpPq “ pa` kbqrEk`bF`D1k (3.237)

where a “ ordEpPq ą 0, b “ ordFpPq ą 0 and cXk`1pνq does not belong to the support of

D1k.

Proof. First, since we are in case 2b and we have supposed that SuppdivXpPq is with
simple normal crossings, we have that for all kě 0 the center of ν in Xk is the intersection
point pk :“ rEkXF .

We proceed by induction on k. If k“ 0 then the result is true as X0“X and cXpνq “EXF .
Suppose the result true for a given index kě 0, then when we blow up pk, pk`1 is the inter-
section point of rEk`1 and F so it does not belong to π1kp

rEkq therefore Lν,Xk`1pπ
1
kp
rEkqq “ 0.

By induction we have νXkp
rEkq “ Lν,X0pEq, and we know that

Lν,Xkp
rEkq “ Lν,Xk`1pπ

˚
k
rEkq “ Lν,Xk`1pπ

1
kp
rEkq` rEk`1q “ Lν,Xk`1p

rEk`1q (3.238)

so this shows the first assertion. Now, by induction divXkpPq is of the form

divXkpPq “ pa` kbqrEk`bF`D1k (3.239)

Now, since pk “ rEkXF and pk R SuppD1k, one has

divXk`1pPq “ π
˚
k divXkpPq “ pa`pk`1qbqrEk`1`bF`pa`kbqπ1kprEkq`π

1
kpD

1
kq. (3.240)

Since pk`1 R π1kp
rEkq, the support of the divisor D1k`1 :“ π1kpD

1
kq`pa`kbqπ1kprEkq does not

contain pk`1 and we are done.

Using this lemma we see that

Lν,Xkpdiv8,XkpPqq “ pa` kbqLν,X0pEq ÝÝÝÑkÑ8
`8 (3.241)

Therefore LνpwpPqq “ `8 and since νpPq ě LνpwpPqq we have that νpPq “ `8
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To show that L˝ν“ idM we need some technical lemmas.

Proposition 3.8.3. Let L PM and X be a completion of X0. If there exists two divisors E,E 1 at

infinity in X such that LpEq,LpE 1q ą 0, then E and E 1 must intersect.

Proof. Suppose that E and E 1 do not intersect, then the sheaf of ideals a“ OXp´Eq‘OXp´E 1q

is trivial, a “ OX . From Proposition 3.6.25, we get E ^E 1 “ 0. Thus LpE ^E 1q “ 0. But
LpE^E 1q “minpLpEq,LpE 1qq ą 0 and this is a contradiction.

Corollary 3.8.4. Let X be a completion of X0, suppose there exists two prime divisors at infinity

E,F such that LpEq,LpFq ą 0. Then, let rE be the exceptional divisor above p“ EXF, one has

LprEq ą 0.

Proof. Let π : Y Ñ X be the blow up of p and suppose that LprEq “ 0. Since π˚E “ π1pEq` rE

and π˚F “ π1pFq` rE, one has Lpπ1pEqq ą 0 and Lpπ1pFqq ą 0 but the two divisors no longer
meet and this is a contradiction.

Proposition 3.8.5. Let X be a completion of X0, there are two possibilities

(1) There exist a unique closed point p in X at infinity such that if rE is the exceptional divisor

above p, one has LprEq ą 0. We call this point the center of L in X.

(2) If no point satisfy this property, then there exists a unique divisor at infinity E in X such

that LpEq ą 0. In that case we call E the center of L in X.

and we have the following properties

(a) Let E be a prime divisor at infinity in X. If the center of L on X is a point p, then

p P E ô LpEq ą 0.

(b) If Y is a completion of X0 above X, then the center of L in Y belongs to the inverse image

of the center of X.

Proof. Suppose there are two points p1, p2 satisfying this property on X . Let πi be the blow up
of pi in X , we have commutative diagram

Y

X1 X2

X

τ1 τ2

π1 π2
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where on the left side we first blow up p1 then we blow up the strict transform of p2 and the other
way around on the right. Now let rE1, rE2 be the exceptional divisors above p1 and p2 respectively
in X1 and in X2 and suppose that LprE1q,LprE2q ą 0. Then, since p1 does not belong to rE2 and
p2 does not belong to rE1, we have that LprE1q “ Lpτ˚1 rE1q “ Lpτ11prE1qq ą 0 and Lpτ12prE2qq ą 0.
But in Y the prime divisors τ11p

rE1q and τ12p
rE2q do not intersect and that contradicts Proposition

3.8.3.
Now, if E,F are two divisors at infinity such that LpEq,LpFq ą 0, Lemma 3.8.4 shows that

EXF must be the center of L on X . Hence if no point of X is the center of L there is only one
prime divisor at infinity E such that LpEq ą 0.

To show assertion (a), suppose that the center of L on X is a point p and let π be the blow
up of p. If p P E, then π˚pEq “ π1pEq` rE and LpEq “ Lpπ˚Eq ě LprEq ą 0. If LpEq ą 0 then p

must belong to E otherwise rE and E would not intersect and this contradicts Proposition 3.8.3.
We now assertion (b), we only need to show it for the blow up of a point π : Y Ñ X . Suppose

first that the center of L on X is a (closed) point p. If we blow up another point than p, then it is
clear that the center of L on Y is the point π´1 p as the order of the blow ups does not matter in
that case.

Suppose now that we blow up p, then the exceptional divisor rE verifies LprEq ą 0, if the
center of L on Y is a prime divisor then it must be rE. If it is a point then it must belong to rE by
assertion (a).

If the center of L on X is a prime divisor E, then for any blow up π : Y Ñ X of a point of
X , we show that the center of L on Y is π1pEq. The exceptional divisor rE verifies LprEq “ 0 and
π1pEq is the only prime divisor of Y such that Lpπ1pEqq ą 0. Thus, if the center of L on Y is not
a point, it must be π1pEq. If the center of L on Y is a point q, then it must belong to π1pEq by
assertion (a). If q is not the intersection point π1pEqX rE, then it is the strict transform of a point
p P E and in that case p was the center of L in X this is a contradiction. If q “ rEXπ1pEq, then
LprEq ą 0 by assertion (a) and this is also a contradiction. Therefore, the center of L on Y cannot
be a point, it is π1pEq.

We say that L is divisorial if there exists a completion X of X0 such that the center of L on
X is a prime divisor at infinity.

Proposition 3.8.6. The map ν sends divisorial valuations to divisorial elements of M and the

map L sends divisorial functions to divisorial valuations.

Proof. The fact that divisorial valuations induce divisorial functions on Cartier divisors is clear.
Suppose that L is a divisorial function and let X be a completion such that the center of L in
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X is a prime divisor E at infinity. Then, for all completion π : Y Ñ X above X , the center of L

on Y is the strict transform of E by Proposition 3.8.5 and LpEq “ Lpπ1pEqq. Therefore, let ν be
the divisorial valuation on A such that νX “ ordE and let P P OX0pX0q, then for all completion Y

above X , we have by Proposition 3.8.5

Lpdiv8,Y pPqq “ Lpπ1pEqqordEpdivY pPqq “ LpEqνpPq. (3.242)

Therefore νLpPq “ LpEqνpPq and it is a divisorial valuation.

Proposition 3.8.7. One has L˝ν“ idM .

Proof. We can assume that L and νL are not divisorial. Let X be a completion of X0, we
will show first that if H P Div8pXq is an effective divisor such that |H| is base point free
and SuppH “ BX X0, then νLpHq “ LpHq. Pick f generic in H0pX ,OXpHqq. We have that
div f “ Z f ´H with Z f effective, SuppZ f does not contain any divisor at infinity and the center
of νL and the center of L do not belong to SuppZ f . Thus, f defines a regular function over X0,
1{ f is a local equation of H at the center of νL and we have

νLp f q “ sup
Y

Lpdiv8,Y p f qq (3.243)

Now, by our assumptions on f we have

Lemma 3.8.8. For all Y above X, divY p f q is of the form Z f ,Y `div8,Y p f q where Z f ,Y is effec-

tive, supported on X0 and SuppZ f ,Y does not contain the center of L. Furthermore, we have

Lpdiv8,Y p f qq “ Lpdiv8,Xp f qq.

Proof. This is true for Y “ X . We proceed by induction. Let Y be a completion above Y where
the lemma is true and let π : Y1 Ñ Y be a blow up of Y at a point p. If p is not the center of L

then the lemma is clearly true over Y1, if p is the center of L over Y then since p does not belong
to SuppZ f ,Y we have

div f ,Y1 “ π
1
pZ f ,Y q`π

˚
pdiv8,Y p f qq (3.244)

and the lemma is true since Z f ,Y1 “ π1pZ f ,Y q and div8,Y1p f q “ π˚pdiv8,Y p f qq.

Using this lemma we conclude that νLp f q “ Lpdiv8,Xp f qq “ ´LpHq. Therefore,

νLpHq “ νLp1{ f q “ LpHq. (3.245)
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3.8. Proof that ν and L are mutual inverses

Now take any divisor D P Div8pXq. There exists an integer n ě 1 such that D` nH is
effective and |D`nH| is base-point free. Therefore,

νLpDq “ νLpD`nHq´νLpnHq “ LpD`nHq´LpnHq “ LpDq. (3.246)
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CHAPTER 4

EIGENVALUATIONS AND DYNAMICS AT

INFINITY

4.1 Dynamics when Aˆ “ kˆ and Pic0
pX0q “ 0

4.1.1 The structure of the Picard-Manin space of X0

From Section 3.2.6 we have linear maps

τ : Cartier8pX0qR Ñ Cartier-NSpX0qR, τ : Weil8pX0qR ÑWeil-NSpX0qR . (4.1)

For this section we suppose that X0 “ SpecA is a normal affine surface over an algebraically
closed field k such that

1. Aˆ “ kˆ;

2. For all completion X of X0,Pic0pXq “ 0.

It suffices to test the second condition on one completion of X0 as the Albanese variety of
a projective variety is a birational invariant. We will make an abuse of notations and write
Pic0pX0q “ 0 for the second hypothesis.

If these two conditions are satisfied, the finite dimensional subspace Div8pXq embeds into
NSpXq. Indeed, consider the composition

Div8pXq Ñ PicpXq Ñ NSpXq, (4.2)

the first map is injective since Aˆ “ kˆ and the second is an isomorphism because Pic0pXq “ 0.
Therefore the maps τ are injective and we have the orthogonal decomposition

Weil-NSpX0qR “Weil8pX0qRk V (4.3)
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where V is a finite-dimensional vector space(this decomposition also holds over Q); in fact let
X be a completion of X0, then V is the orthogonal of Div8pXq in NSpXq.

4.1.1.1 The intersection form at infinity

Proposition 4.1.1. Let X be a completion of X0, then

• Div8pXq embeds into NSpXq and the intersection form is non degenerate on Div8pXq.

• The perfect pairing Cartier-NSpX0qˆWeil-NSpX0q Ñ R induces a pairing

Cartier8pX0qˆWeil8pX0q Ñ R (4.4)

that is also perfect.

• Weil8pX0q is isomorphic, as a linear topological vector space, to Cartier8pX0q
˚ en-

dowed with the weak-˚ topology.

Proof. Everything follows from Propositions 3.2.20 and 3.2.17 and that τ : Div8pXq ãÑNSpXq
is injective.

Corollary 4.1.2. The subspace HompCartier8pX0q,Rqp`q is a closed subspace of Weil8pX0q

with the weak-‹ topology.

Proof. All the conditions that elements of HompCartier8pX0q,Rqp`q have to satisfy are closed
conditions. Indeed, we have

HompCartier8pX0q,Rqp`q “C1XC2 (4.5)

where

C1 “
č

Dě0

tLpDq ě 0u (4.6)

C2 “
č

D,D1PCartier8pX0q

 

LpD^D1q “minpLpDq,LpD1qq
(

. (4.7)
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4.1.1.2 A continuous embedding of V8 into Weil8pX0q

From Proposition 4.1.1, we get the immediate corollary.

Corollary 4.1.3. For any valuation ν centered at infinity, there exists a unique Zν PWeil8pX0q

such that for all D P Cartier8pX0q,LνpDq “ Zν ¨D.

Corollary 4.1.4. A valuation ν is divisorial if and only if Zν belongs to Cartier8pX0q. In

particular, for any prime divisor E at infinity, ZordE P Cartier8pX0qQ. The embedding

ν P V8 ÞÑ Zν PWeil8pX0q (4.8)

is a continuous map for the weak topology.

Proof. If ν is divisorial, then there exists a completion X such that the center of ν is a prime
divisor E at infinity. For every W PWeil8pX0q,LordE pW q “ LordE ,XpWXq, by Proposition 3.6.22.
By non-degeneracy of the intersection pairing on Div8pXqQ, there exists Z P Div8pXqQ such
that for all D P Div8pXqQ,LordE ,XpDq “ Z ¨D. It follows that ZordE is the Cartier class defined
by Z, hence it is an element of Cartier8pX0qQ.

Conversely, if Zν P Cartier8pX0q, let X be a completion where Zν is defined. The center of
ν over X cannot be a closed point p; otherwise let rE be the exceptional divisor above p, we
would have LνprEq ą 0, but Zν ¨ rE “ 0.

Now to show the continuity of the map of the Corollary, it suffices by Proposition 4.1.1 to
show that for any D P Cartier8pX0q, the map ν P V8 ÞÑ Zν ¨D is continuous, but this follows
immediately from Zν ¨D“ LνpDq and Proposition 3.6.19.

Proposition 4.1.5. Let ν be a valuation centered at infinity and X a completion of X0 such that

cXpνq P E is a free point. Then, the incarnation of Zν in X is

Zν,X “ pZν ¨EqZordE . (4.9)

If cXpνq “ EXF is a satellite point, then

Zν,X “ pZν ¨EqZordE `pZν ¨FqZordF . (4.10)

Furthermore, if π : Y Ñ X is the blow up of a point at infinity p‰ cXpνq, then

Zν,Y “ π
˚Zν,X . (4.11)
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Proof. If cXpνq P E is a free point. For any D PDiv8pXq, one has D“
ř

F LordF pDqF , therefore
by Proposition 3.6.6 (2) and (3) LνpDq “ LordE pDqLνpEq . Since pZν ¨Eq “ LνpEq, we get the
result. The proof is similar for the case cXpνq “ EXF .

For the last assertion, if rE is the exceptional divisor of π : Y Ñ X , then by definition

Zν,Y “ π
˚Zν,X ´pZν ¨ rEqrE (4.12)

However, since cXpνq ‰ p, we have that cY pνq R rE and therefore Zν ¨ rE “ 0 by Proposition
3.6.6.

Recall that in §3.6.4, we have defined for a point p at infinity in a completion X the local
divisor Zν,X ,p for every valuation ν centered at p. The divisor is defined by duality via the
following property

@D P CartierpX , pq, LνpDq “ Zν,p,X ¨D. (4.13)

Corollary 4.1.6. Let X be a completion of X0 and let ν be a valuation centered at infinity.

• If p :“ cXpνq P E, then

Zν “ pZν ¨EqZordE `Zν,X ,p (4.14)

• If p :“ cXpνq “ EXF is a satellite point, then

Zν “ pZν ¨EqZordE `pZν ¨ZordF qZordF `Zν,X ,p (4.15)

In particular, Zν P L2pX0q if and only if ν is quasimonomial or there exists a completion X

and a closed point p P X at infinity such that cXpνq “ p and αprνq ă`8 where rν is the valuation

equivalent to ν such that rν P VXpp;mpq.

Proof. We have that
Zν “ Zν,X `Z1 (4.16)

where Z1 PWeil8pX0q is exceptional above X . Now, for every divisor D exceptional above X ,
we have

LνpDq “ Zν ¨D“ Z1 ¨D. (4.17)

If D is exceptional above a point q ‰ p, then LνpDq “ 0 by Proposition 3.6.6 as q ‰ cXpνq.
Therefore, we get that Z1 “ Zν,X ,p.
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Now, we have Zv P L2pX0q ô pZνq
2 ă´8. Replace ν by the equivalent valuation such that

ν P VXpp;mpq, then by Theorem 3.6.31 pZν,X ,pq
2 “´αpνq and therefore

pZνq
2
“ pZν,Xq

2
´αpνq. (4.18)

This shows the result.

Corollary 4.1.7. Let ν P V8, then up to normalisation Zν P Weil8pX0qQ if and only ν is not

irrational.

Proof. First, if ν is divisorial, the result follows from Corollary 4.1.4. Then, if ν is infinitely
singular or a curve valuation. Then, there exists a completion X such that cXpνq is a free point
p P E. Then, replace ν by its equivalent valuation such that ν P VXpp;mpq. Let pz,wq be local
coordinates at p such that z “ 0 is a local equation of E. Then, ZνpEq “ νpzq “ αpν^νzq P Q
because ν^νz has to be a divisorial valuation. Therefore, by Corollary 3.6.33 and Proposition
4.1.5, we get that Zν PWeil8pX0qQ.

Finally, if ν is irrational then let X be a completion such that cXpνq “ E XF is a satellite
point. Then, Zν,X “ sZordE ` tZordF with s{t RQ by Proposition 4.1.5. It is clear that no multiple
of Zν,X can be in Div8pXqQ.

Corollary 4.1.8. Let V 1
8 be the subspace of V8 consisting of ν P V8 such that Zν P L2pX0q,

then

V 1
8 ãÑ L2

pX0q (4.19)

is a continuous embedding for the strong topology. Furthermore, it is a homeomorphism onto

its image.

Proof. Let X be a completion of X0. Let νn be a sequence of V 1
8 converging towards ν P V 1

8

for the strong topology. We treat two cases, whether ν is associated to a prime divisor of X or ν

is centered at a closed point p P X at infinity.

If ν is centered at a closed point p at infinity, then since νn converges strongly towards ν

then it converges also weakly, therefore for n big enough, νn is centered at p by Proposition
3.5.1. We can replace each νn and ν by their representative such that νn,ν P VXpp;mpq. Then

• If p P E is a free point,
Zνn “ pZνn ¨EqZordE `Zνn,X ,p (4.20)
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• If p“ EXF is a satellite point, then

Zνn “ pZνn ¨EqZordE `pZνn ¨FqZordF `Zνn,X ,p (4.21)

and we have similar formulas for Zν. Now the incarnation of Zνn in X converges towards the
incarnation of Zν in X in both the free and the satellite case by weak convergence. Let ||¨|| be
any norm over NSpXqR, then

||Zν´Zνn ||
2
L2pX0q

— ||Zν,X ´Zνn,X ||
2
´pZν,X ,p´Zνn,X ,pq

2 (4.22)

where f — g means that there exists constants A,B ą 0 such that Ag ď f ď Bg. By Proposition
3.6.34, we have that ||Zν´Zνn ||

2
L2pX0q

Ñ 0.

If ν» ordE for some prime divisor E at infinity in X , then for all n large enough, cXpνnq P E.
We can suppose that ν “ ordE and for all n νnpEq ą 0, i.e ν,νn P VXpEq and Zνn ¨E Ñ 1 as
nÑ8. We show that

Zνn

Zνn ¨E
ÝÝÝÝÑ
nÑ`8

ZordE (4.23)

in L2pX0q. We can replace νn by its equivalent valuation such that νn P VXppn,mpnq where
pn “ cXpνnq. Then, we have that Zνn,X{Zνn ¨E converges towards ZordE in NSpXqR by weak
convergence. It suffices to show

pZνn,X ,pq
2

pZνn ¨Eq2
Ñ 0 (4.24)

but this is equal to

´
αmpn

pνnq

vnpEq2
“´

αEpνnq

νpEq2
ÝÝÝÝÑ
nÑ`8

0 (4.25)

by Theorem 3.6.31 and Proposition 3.4.9 so we are done.

Finally, to show the homeomorphism, we have to show that if Zνn Ñ Zν in L2pX0q, then νn

converges strongly towards ν. Let X be a completion of X0. Suppose first that cXpνq is a point
at infinity. Let rE be the exceptional divisor above cXpνq, we have Zν ¨ rE ą 0, therefore for all n
large enough Zνn ¨

rE ą 0 and cXpνnq “ cXpνq “: p. Now, we can suppose that νn,ν PVXpp;mpq,
it suffices to show that νn Ñ ν for the strong topology of VXpp;mpq and this is a direct conse-
quence of Proposition 3.6.34.

If cXpνq “ E a prime divisor at infinity, then for all n large enough, Zνn ¨E ą 0. Suppose that
ν“ ordE and νn P VXpEq. We have that Zνn,X{Zν ¨E Ñ ZordE in NSpXqR. We need to show that
αEp

νn
νnpEq

q Ñ 0. We can suppose that νn P VXppn,mpnq where pn “ cXpνnq, then by Proposition
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3.4.9,

αE

ˆ

νn

νnpEq

˙

“
αmpn

pνnq

νnpEq2
. (4.26)

Thus, by Proposition 3.4.9 and Theorem 3.6.31

αE

ˆ

νn

νnpEq

˙

“

ˇ

ˇ

ˇ

ˇ

ˇ

Z2
νn,X ,pn

pZνn ¨Eq2

ˇ

ˇ

ˇ

ˇ

ˇ

ÝÝÝÝÑ
nÑ`8

0. (4.27)

Corollary 4.1.9. If ν is a curve valuation, then Zν is a Weil class satisfying Z2
ν “´8.

Proof. Let X be a completion of X0, let p “ cXpνq and replace ν by the valuation equivalent to
ν such that ν P VXpp;mpq. We have by Corollary 4.1.6 that

Zν “ Zν,X `Zν,X ,p. (4.28)

Therefore, by Theorem 3.6.31

pZνq
2
“ Z2

ν,X `pZν,X ,pq
2
“ Z2

ν,X ´αpνq “ ´8 (4.29)

because αpνq “ ´8 for any curve valuation ν (see [FJ04] Lemma 3.32).

4.1.2 Endomorphisms

Proposition 4.1.10. Let f be an endomorphism of X0 and let X ,Y be completions of X0 such

that the lift F : X Ñ Y of f is regular. Let p P X be a closed point and q :“ Fppq P Y . Then,

• f˚VXppq Ă VY pqq.

• f˚ preserves the set of divisorial, irrational and infinitely singular valuations.

• If νC is a curve valuation centered at infinity and such that f˚νC is still centered at infinity,

then f˚νC is also a curve valuation.

Proof. The map F induces a local ring homomorphism F˚ : {OY pqq Ñ {OXppq. Let ν be a valua-
tion centered at p. For ϕ POY pqq, f˚νpϕq “ νpF˚ϕq ě 0 and for ψ PmY,q, f˚νpψq “ νpF˚ψq ą 0.
Therefore f˚ν is centered at q. The fact that f˚ preserves the type of valuations is shown in
Proposition 3.3.17. It only remains to show the statement for curve valuations. Let p“ cXpνCq
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and q“ cY p f˚νCq. We have that Fppq “ q. By Proposition 3.3.17 f˚νC is not a curve valuation
only if it is contracted by F . But the only germ of holomorphic curve at p that can be con-
tracted by F is the germ of a prime divisor E at infinity on which p lies, and the curve valuation
associated to E does not define a valuation on A. So, f˚νC is a curve valuation.

Example 4.1.11. It might happen that f˚ν is not centered at infinity even though ν is; if this
is the case then f is not proper. For example, let X0 “ A2 with affine coordinates px,yq and
consider the completion P2 with homogeneous coordinates rX : Y : Zs. We have the relation
x “ X{Z,y “ Y{Z. Consider the chart X ‰ 0 with affine coordinates y1 “ Y{X and z1 “ Z{X .
Define vt to be the monomial valuation centered at r1 : 0 : 0s such that νtpy1q “ 1 and νtpz1q “ t

with t ą 0. Let P “
ř

i, j ai jxiy j P krx,ys, we have that νtpPq “min
 

j`p j´ iqt|ai j ‰ 0
(

. Now
take the map f : px,yq P A2 ÞÑ pxy,yq, f contracts the curve ty“ 0u to the point p0,0q in A2,
hence it is not proper. For any polynomial P“

ř

i, j ai jxiy j, f ˚P“
ř

i, j ai jxiyi` j. We get

ν1,tp f ˚Pq “min
i, j

 

i` jpt`1q|ai j ‰ 0
(

. (4.30)

The center of f˚νt is r0 : 0 : 1s and f˚νt is the monomial valuation centered at r0 : 0 : 1s such
that νtpxq “ 1,νtpyq “ t`1.

Lemma 4.1.12 (Proposition 3.2 of [FJ07]). Let f : X0 Ñ X0 be a dominant endomorphism and

let X ,Y be completions of X0. Let F : X Ñ Y be the lift of f , let p be a closed point of X at

infinity and VXppq be the set of valuations on A centered at p. Then, F is defined at p if and

only if f˚VXppq does not contain any divisorial valuation associated to a prime divisor (not

necessarily at infinity) of Y . If F is defined at p, then Fppq is the unique point q such that

f˚VXppq Ă VY pqq.

Proof. If pf is defined at p, then let q “ pf ppq, we have that f˚VXppq Ă VY pqq by Proposition
4.1.10.

Conversely, If p is an indeterminacy point of pf . Let π : ZÑ X be a completion above X such
that the lift F : Z Ñ Y is regular. Then, Fpπ´1ppqq contains a prime divisor E 1 of Y . Let E be a
prime divisor at infinity in Z above p such that FpEq “ E 1, then F̊ ordE “ f˚pπ˚ ordEq “ λordE1

for some constant λą 0 and ordE1 P f˚VXppq.

Proposition 4.1.13. Let ν be a valuation over A and let f : X0 Ñ X0 be a dominant endomor-

phism, then

• f˚Zν “ Z f˚ν mod Cartier8pX0q
K.
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• If f is proper then f˚ preserves Weil8pX0q and f˚Zν “ Z f˚ν.

Proof. Indeed, let D P Cartier8pX0q, then

f˚Zν ¨D“ Zν ¨ f ˚D“ Lνp f ˚Dq “ L f˚νpDq “ Z f˚ν ¨D. (4.31)

Therefore, we get that Z f˚ν´ f˚Zν belongs to Cartier8pX0q
K. If f is proper, then Weil8pX0q

is f˚-stable and f˚Zν PWeil8pX0q, thus Z f˚ν “ f˚Zν.

Example 4.1.14. Suppose that Ppxq and Qpxq are two rational fractions of degree two and E in
P1ˆP1 defined by the equation

y2
´Ppxqy`Qpxq “ 0. (4.32)

if P,Q are general, then E is smooth and irreducible and it is an elliptic curve in P2. Let
X “ P1ˆP1 and X0 “ XzE. We have Pic0pX0q “ 0 because it is a rational surface and Aˆ “ kˆ

because XzX0 consists of a single irreducible curve. We have ZordE “
1
8E. Consider the projec-

tion pr1 : X Ñ P1 to the first coordinates. Each fiber of π1 is isomorphic to P1 and generically
it has two intersection points with E. Let x0,x1,x2,x3 be the four roots of the discriminant
δ“ Ppxq2´4Qpxq. Then, pr´1

1 pxiq has only one intersection point with E. Consider the follow-
ing selfmap of X0

f px,yq “
ˆ

x,
y2´Qpxq
2y´Ppxq

˙

. (4.33)

It preserves the fibers of pr1 and it acts as z ÞÑ z2 in each fiber where the points 0 and 8 of P1

are the intersection point of the fiber with E. See Figure 4.1. There are exactly 4 indeterminacy
points on X , they are the points pxi,yiq where xi is one of the roots of ∆ and yi P P1 is such that
pxi,yiq P E.

Let C0 “ tx0uˆP1. Then, Cartier8pX0q
K
“ R ¨ p4C0´Eq because C0 ¨E “ 2 and E2 “ 8

and ρpXq “ 2.

The endomorphism f is not proper, indeed we have in NSpXq, f˚E “ E`4C0. Since f ˚E is
of the form f ˚E “ 2E` . . ., we have f˚ ordE “ 2ordE . And we get

f˚ZordE “
1
8

E`
1
2

C0 (4.34)

“
1
8

E`
1
8
p4C0´Eq`

1
8

E (4.35)

“ 2ZordE `
1
8
p4C0´Eq (4.36)
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Figure 4.1: The endomorphism f on X0

4.1.3 Existence of Eigenvaluations

Recall from Theorem 3.2.28 that there exists unique nef classes θ˚,θ˚ P L2pX0q up to normal-
ization such that f ˚θ˚ “ λ1θ˚ and f˚θ˚ “ λ1θ˚.

Proposition 4.1.15. If Aˆ “ kˆ and Pic0pX0q “ 0, then θ˚ PWeil8pX0qXL2pX0q and is effec-

tive.

Proof. We have that Weil-NSpX0q “ V kWeil8pX0q where V is a finite dimensional vector
space. Furthermore, Weil8pX0q is f ˚-invariant as f is an endomorphism of X0. In the proof of
Theorem 3.2.28, for every completion X we can consider the cone C1X Ă Div8pXqR of nef, ef-
fective divisors supported at infinity. By Theorem 3.1.4, there exists an ample effective divisor
H PDiv8pXq such that SuppH “BX X0. Therefore, C1X is a closed convex cone with compact ba-
sis and non-empty interior, the Perron-Frobenius type argument shows that there exists θX PC1X
such that f ˚X θ˚X “ ρX θX and the rest of the proof is unchanged.

Theorem 4.1.16. Let X0 “ SpecA be an irreducible normal affine surface such that Aˆ “ kˆ

and Pic0pX0q “ 0. Let f be a dominant endomorphism such that λ1p f q2 ą λ2p f q, then there
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exists a unique valuation ν˚ centered at infinity up to equivalence satisfying

@P P A,ν˚pPq ď 0 (4.37)

f˚ν˚ “ λ1p f qν˚ (4.38)

Z2
ν˚
ą´8 (4.39)

In particular, there exists w P Cartier8pX0q
K such that θ˚ “ w`Zν˚ . Furthermore, ν˚ is not a

curve valuation.

We call ν˚ the eigenvaluation of f .

Proof. By Theorem 3.2.28, there exists nef classes θ˚,θ
˚ P L2pX0q that satisfy

1. f ˚θ˚ “ λ1θ˚

2. f˚θ˚ “ λ1θ˚

3. @α P L2pX0q,
1
λn

1
p f nq˚αÑ pθ˚ ¨αqθ

˚

Let X be a completion of X0. Write the decomposition θ˚ “ w` Z with w P Div8pXqK and
Z P Weil8pX0qRXL2pX0q. Let E be a prime divisor at infinity in X such that ZordE ¨ θ

˚ ą 0,
it exists because θ˚ is effective and nef. Then, Item (3) and the continuity of the intersection
product in L2pX0q imply that for all D P Cartier8pX0q,

ZordE ¨

ˆ

1
λn

1
p f n
q
˚D

˙

Ñ pZordE ¨θ
˚
qpθ˚ ¨Dq “ pZordE ¨θ

˚
qpZ ¨Dq (4.40)

Now, set νn :“ 1
λn

1
p f nq˚ ordE . Equation (4.40) shows that Zνn converges towards Z in Weil8pX0q.

But, for all n, Zνn belongs to HompCartier8pX0q,Rqp`q which is a closed set of Weil8pX0q

by Corollary 4.1.2. Therefore, Z P HompCartier8pX0q,Rqp`q and it defines a valuation ν˚ by
Proposition 3.7.5. From the relation f˚θ˚ “ λ1θ˚ we get that f˚ν˚ “ λ1ν˚.

Using the decomposition θ˚ “ w`Zν˚ we have

0ď θ
2
˚ “ ω

2
`Z2

ν˚
(4.41)

Therefore we get Z2
ν˚
‰´8 and by Corollary 4.1.9, ν˚ is not a curve valuation.
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Chapter 4 – Eigenvaluations and dynamics at infinity

Now to show the uniqueness of ν˚, if ν is another valuation satisfying Equations (4.37),
(4.38), (4.39), then for all D P Cartier8pX0q, Item (3) implies

Zν ¨D“
1
λn

1
Zν ¨ p f n

q
˚DÝÝÝÑ

nÑ8
pZν ¨θ

˚
qpθ˚ ¨Dq (4.42)

Since ν‰ 0, we get Zν ¨θ
˚ ą 0. And then ν“ ν˚ up to a scalar factor.

Corollary 4.1.17. With the hypothesis of Theorem 4.1.16. The dynamical degree λ1p f q is an

algebraic integer of degree ď 2. More precisely,

• If ν˚ is divisorial or infinitely singular, then λ1 P Zą1.

• If ν˚ is irrational, then λ1 is an algebraic integer of degree 2, in particular λ1 RQ.

Proof. By Theorem 4.1.16 f admits an eigenvaluation ν˚ satisfying Equations (4.37), (4.38),
(4.39). We know that ν˚ cannot be a curve valuation, so there are three cases. It can either be a
divisorial valuation, an irrational one or an infinitely singular one. Hence, ν˚pPq “ 8ô P“ 0
and it defines a valuation over K “ FracA. Let G“ νpKˆq be the value group of ν˚. The value
group of f˚ν˚ is a subgroup of G, hence f˚ induces a Z-linear map f˚ : GÑ G.

1. If ν˚ is divisorial, then G is isomorphic to Z. Since f˚ν˚ “ λ1v˚ we get that λ1 is an
integer.

2. If ν˚ is irrational, then G is isomorphic to Z2. Since f˚ν˚ “ λ1ν˚, λ1 is an eigenvalue of
a 2ˆ2 matrix with integer coefficients. Therefore, it is a quadratic integer.

3. If ν˚ is infinitely singular. We will show in Proposition 4.2.3 below, the following.

Claim 4.1.18. There exists a completion X of X0 such that p :“ cXpνq P E is a free point

at infinity , the lift f : X Ñ X is defined at p, f ppq “ p and f contracts E to p.

Suppose the claim is true. Let pz,wq be local coordinates at p such that z “ 0 is a local
equation of E, f ˚z is of the form zaΦpz,wq where Φ is a unit. Then,

λ1Lν˚pEq “ L f˚ν˚pEq “ Lν˚p f ˚Eq “ aLν˚pEq. (4.43)

Since Lν˚pEq ą 0 we get λ1 “ a and it is an integer.
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4.2. Local normal forms

4.2 Local normal forms

From now on we suppose chark“ 0 and that X0 is an affine surface. Since everything is defined
over a finitely generated field over Q, we can suppose that k is a subfield of Cv, which is a
complete algebraically closed field. We show that the existence of this eigenvaluation allows
one to find an attracting fixed point at infinity and a local normal form at this fixed point.

Theorem 4.2.1. Let X0 “ SpecA be an irreducible normal affine surface over a complete alge-

braically closed field Cv. Let f be a dominant endomorphism of X0 such that λ2
1 ą λ2. Suppose

that Pic0pX0q “ 0 and Aˆ “ kˆ then

(1) If ν˚ is infinitely singular or irrational, there exists a completion X such that the lift

f : X Ñ X is defined at cXpν˚q, f pcXpν˚qq “ cXpν˚q and f defines a rigid contracting

germ of holomorphic function at cXpν˚q with no f -invariant germ of curves at cXpν˚q.

Furthermore, there exists an open (euclidian) f -invariant neighbourhood U˚ of cXpν˚q

such that f pU˚q ŤU˚. We have the following local normal form:

(a) If ν˚ is infinitely singular, cXpν˚q P E is a free point and f has the local normal form

(3.3) and (3.2) if Cv “ C with tx“ 0u a local equation of E λ1 “ a P Zě2.

(b) If ν˚ is irrational, cXpν˚q “ E XF is a satellite point. The local normal form is

pseudomonomial (3.5) with px,yq associated to pE,Fq. If Cv “ C it is monomial

(3.4) The dynamical degree λ1 is the spectral radius of the matrix
`

ai j
˘

. It is an

algebraic integer of degree 2; in particular λ1 RQ.

(2) If ν˚ is divisorial, then there exists a completion such that cXpν˚q is a prime divisor E at

infinity. In that case, E is f -invariant and λ1 P Zě2 is such that f ˚X E “ λ1E `D where

D P Div8pXq and E R SuppD.

(a) Up to replacing f by some iterate, there exists a noncritical fixed point p P E of f|E ,

p“ EXE0 is a satellite point, f : X 99K X is defined at p, f ppq “ p and f is a rigid

germ (not necessarily contracting) at p with E the only f -invariant germ of curves

at p. The local normal form of f at p is (3.6) with px,yq associated to pE,E0q and

λ1 “ a.

(b) The curve E is an elliptic curve and f|E is a translation by a non-torsion element.

In particular, the dynamical degree of f is an algebraic number of degree ď 2, and if it is

not an integer then the eigenvaluation ν˚ of f is irrational and the normal form is monomial.
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Chapter 4 – Eigenvaluations and dynamics at infinity

We will call (2)b the elliptic case. The rest of this section is devoted to the proof of Theorem
4.2.1, we will prove the Theorem page 163.

To prove the theorem we need to understand the dynamics of f˚ on the space of valuations.

Proposition 4.2.2. Let ν P V8 such that Zν P L2pX0q. If Zν ¨θ
˚ ą 0, then 1

λn
1

f n
˚ν strongly con-

verges towards pZν ¨θ
˚qν˚.

Proof. This is a direct consequence of Equation (3.69) and Corollary 4.1.8.

We will use this to show that f admits a fixed point at infinity on some completion and that
f contracts a divisor at infinity there.

For the rest of Section 4.2, we suppose that we are in the conditions of Theorem 4.1.16.

4.2.1 Attractingness of ν˚, the infinitely singular case

In this section we show the following

Proposition 4.2.3. Let k be an algebraically closed field (of any characteristic). If the eigen-

valuation ν˚ is infinitely singular, then there exists a completion X of X0 such that

(1) p :“ cXpν˚q P E is a free point at infinity.

(2) f˚VXppq Ă VXppq;

(3) f contracts E to p.

(4) Let f‚ : VXpp;mpq Ñ VXpp;mpq, then for all ν P VXpp;mpq, f n
‚νÑ ν˚.

Furthermore, the set of completions Y above X that satisfy these 3 properties is cofinal in the

set of all completions above X.

Let X be a completion of X0 such that cXpν˚q is a free point pX P EX . Such a completion
X exists and there are infinitely many of them above X by Proposition 3.3.16. Let Y be a
completion above X such that cY pν˚q on Y is a free point pY P EY such that the diagram

Y

X X

π F

f
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4.2. Local normal forms

commutes, where F is regular and FppY q “ pX , such a completion Y exists by Proposition
3.3.16. Let x,y be coordinates at pX such that x “ 0 is a local equation of EX and z,w be coor-
dinates at pY such that z“ 0 is a local equation for EY . We use the notations of Section 3.4. We
have that f˚VY ppY q Ă VXppXq by Lemma 4.1.12. We define F‚ : VY ppY ;EY q ÞÑ VXppX ,mpX q

as follows:
@ν P VY ppY ;EY q, F‚pνq :“

F̊ ν

minpνpF˚xq,νpF˚yqq
. (4.44)

Similarly, we define

@ν P VY ppY ;EY q, π‚pνq :“
π˚ν

minpνpπ˚xq,νpπ˚yqq
. (4.45)

By Proposition 3.4.20 item (1), the map π‚ : VY ppY ;EY qÑVXppX ;mpX q is an inclusion of trees
and allows one to view VY ppY ;EY q as a subtree of VXppX ;mpX q.

See Figure 4.2. The tree VXppX ,mpX q is in black with its root νmpX
in blue, the tree

VY ppY ;EY q is in orange with its root ordEY in red. One can see how π‚ maps homeomorphically
VY ppY ;EY q to a subtree of VXppX ,mpX q.

Figure 4.2: The embedding π‚
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Chapter 4 – Eigenvaluations and dynamics at infinity

Remark 4.2.4. Since the ordersďmpX
andďEY are compatible on VY ppY ;EY q and π‚VY ppY ;EY q

we will not write π‚ or ďEY when no confusion is possible to avoid heavy notations.

By Proposition 3.4.28, we have the following relation

αmpX
pπ‚µq “ αmpX

pπ‚ ordEY q`bpEY q
´2

αEY pµq (4.46)

where b is the generic multiplicity function of the tree VXpp;mpq and α is the skewness function
defined in §3.4. Indeed, with the notation of Proposition 3.4.28, νEY “ π‚ ordEY .

Lemma 4.2.5. There exists ν P VY ppY ;EY q such that νă ν˚ and for all µě ν,

minpµpF˚xq,µpF˚yqq “ λ1. (4.47)

I.e set U “ tµě νu, we have F‚ “ F̊
λ1

over U. In particular, F‚ is order preserving over U and

F‚prν,ν˚sq Ă
”

νmpX
,ν˚

ı

.

Proof. Using Proposition 3.4.3, we see that the map ν ÞÑ minpνp f ˚x, f ˚yqq is locally constant
outside a finite subtree of VY ppY ;EpY q. Indeed, one has f ˚x “

ś

i ψi with ψi irreducible and
therefore

νp f ˚xq “
ÿ

i

νpψiq (4.48)

“
ÿ

i

αEY pν^νψiqmEY pψiq by Proposition 3.4.3. (4.49)

Let Sx be the finite subtree consisting of the segments rordEY ,νψis, then the map µ ÞÑ µp f ˚xqq

is locally constant outside of Sx. Let S be the maximal finite subtree of VY ppY ;EpY q such
that the evaluation maps on f ˚x, f ˚y and z are locally constant outside of S. Since ν˚ is an
infinitely singular valuation it does not belong to S and these three evaluation maps are constant
on the open connected component V of VY ppY ;EpY qzS containing ν˚. Since f˚ν˚ “ λ1ν˚, we
have f‚|V “

f˚
λ1

and the map F‚ is order preserving on V . Following Remark 4.2.4, the two
orders ďmpX

and ďEY agree on V . Let ν P rordEY ,ν˚s XV be a divisorial valuation, F‚ sends
the segment rν,ν˚s Ă VY ppY ;EY q inside the segment rνmpX

,ν˚s Ă VXppX ;mpX q. Notice that
U :“ tµě νu ĂV so the valuation ν satisfies Lemma 4.2.5.

Proposition 4.2.6 ([FJ07], Theorem 3.1). Let ν be as in Lemma 4.2.5. For t P rαEY pνq,αEY pν˚qs,

let νt be the unique valuation in rν,ν˚s such that αEY pνtq “ t. Then, there exists a divisorial

valuation ν1 P rν,ν˚s such that the map
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t P rαEY pν
1
q,αEY pν˚qs ÞÑ αmpX

pF‚νtq (4.50)

is an affine function of t with nonnegative coefficients.

Proof. Let ν1,ν2 P VY ppY ;EY q be such that ν ă ν1 ă ν2 ă ν˚. Since F‚ is order preserving on
U “ tµě νu one has that F‚ maps rν1,ν2s homeomorphically to rF‚ν1,F‚ν2s. Let ψ P{OX ,pX be
irreducible such that νψ ą F‚ν2, then by Proposition 3.4.3, for all µ P rν1,ν2s one has

αmpX
pF‚µq “

F‚µpψq
mpX pψq

“
µp f ˚ψq

mpX pψqλ1
(4.51)

Now let ψ1, ¨ ¨ ¨ ,ψr P zOY,pY be irreducible (not necessarily distinct) such that f ˚ψ “ ψ1 ¨ ¨ ¨ψr.
One has,

µp f ˚ψq “
ÿ

i

µpψiq “
ÿ

i

αEY pµ^νψiqmEY pψiq. (4.52)

Take one of the ψi and call it ψ0, we shall study the map µ P rν1,ν2s ÞÑ αEY pµ^νψ0q. Let
µ0 “ ν2^ νψ0 , this map is equal to αEY on rν1,µ0s and constant equal to αEY pµ0q on rµ0,ν2s.
Therefore, the map µ P rν1,ν2s ÞÑ µp f ˚ψq is a piecewise affine function with nonnegative coeffi-
cients of αEY pµq. The points on rν1,ν2s where this map is not smooth are exactly the valuations
ν˚^νψi and there are at most λ2 of them by Proposition 3.3.18. Therefore the map µ ÞÑ νp f ˚ψq

is an affine function of αEY with nonnegative coefficients on the segment rµ1,ν˚s for any µ1 ă ν˚

close enough to ν˚.

As a corollary of the proof, we get the following proposition.

Proposition 4.2.7. Let ν PVY ppY ;EY q be as in Proposition 4.2.6, let ν0 P rν,ν˚s and let ψ P pOX ,p

be irreducible such that νψ ą f‚ν0. Then, for all ϕ P zOY,pY such that f‚νϕ “ νψ, one has two

possibilities:

(1) Either νϕ ą ν0.

(2) or ν0^νϕ “ ν˚^νϕ ď ν.

I.e the configuration of Figure 4.3 cannot occur.

Proof. The map µ P rν,ν0s ÞÑ αmpX
pF‚µq is a smooth affine function of αEY pµq. If (1) and (2)

were not satisfied, then we would get νϕ^ν˚ P rν,ν˚s and this would contradict the smoothness
of the map µ P rν,ν˚s ÞÑ αmpX

pF‚µq
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Chapter 4 – Eigenvaluations and dynamics at infinity

Figure 4.3: Configuration which is not possible

Lemma 4.2.8. Let ν be as in Proposition 4.2.6. If µ P rν,ν˚s is sufficiently close to ν˚, then

F‚µą µ and F‚ptµ1 ě µuq ŤUpÝÑv q where ÝÑv is the tangent vector at µ defined by ν˚ and UpÝÑv q

is its associated open subset.

We sum up Lemma 4.2.8 in Figure 4.4

Proof. Let U “ tµě νu. Recall that F‚ is order preserving over U . We first notice that if every
µ P rν,ν˚s close enough to ν˚ satisfies F‚µ ą µ, it is clear that F‚ tµ1 ě µu ŤUpÝÑv q. Indeed, let
µ1 ě µ and set µ0 :“ µ1^ν˚ ě µ. Then, F‚µ1 ě F‚µ0 ą µ0. In particular, F‚µ1^ν˚ ą µ1^ν˚ ě µ.

Secondly, by Proposition 4.2.6, the map t P rαEY pνq,αEY pν˚qs ÞÑ αmpX
pνtq is affine and we

know that it is non decreasing.

Lemma 4.2.9. Let a : R Ñ R be a non-decreasing non constant affine function that admits a

fixed point t0. If there exists să t0, apsq ą s then the slope of a is ă 1 and for all t ă t0, aptq ą t.

Proof of Lemma 4.2.9. We can suppose that t0 “ 0 by a linear change of coordinate. Then, aptq

is of the form
aptq “ αt (4.53)

with αą 0. Now, if să 0 satisfies apsq ą s, this means that 0ă αă 1 and therefore for all t ă 0,
aptq ą t.

We show that there exists µ P rν,ν˚s such that F‚µą µ. If not, then for all µ P rν,ν˚r,F‚µď µ.
Under such an assumption, we show the following

Claim For all µ1 ě ν we have F‚µ1^ν˚ ď µ1^ν˚.
Suppose that the claim is false and let µ1 be a valuation that contradicts this statement. It is

clear that µ1 does not belong to rν,ν˚s. Pick ν0 P rν,ν˚s such that νď µ1^ν˚ ă ν0 ă F‚µ1^ν˚.
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4.2. Local normal forms

Figure 4.4: An f‚-invariant open subset of V8, infinitely singular case

Let ϕ P pOY,pY be such that νϕ ą µ1 and let ψ P pOX ,p be such that f‚νϕ “ νψ. Since f is order
preserving we get that νψ ą F‚µ1 ě F‚µ1^ν˚ ą ν0, therefore νψ ą F‚ν0. But then ϕ contradicts
Proposition 4.2.7 since νϕ^ν0 “ µ1^ν0 P rν,ν0s. So the claim is shown.

Now, pick ω divisorial such that Zω ¨θ
˚ ą 0 by Proposition 4.2.2 the sequence 1

λn
1

f n
˚ω con-

verges towards pZω ¨ θ
˚qν˚. Hence, there exists an integer N0 ą 0 such that for all N ě N0,

f N
˚ ν P VY ppY q, replace ω by f N0

˚ ω and normalize it such that ω P VY ppY ,EY q. We can suppose
up to choosing a larger N0 that ωą ν. In that case FN

‚ ω converges towards ν˚ but by the claim,
@N ě 0,FN

‚ ω^ν˚ ď ω^ν˚ which is a contradiction.

Therefore, there exists a valuation µ P rν,ν˚r such that F‚µą µ.

Proposition 4.2.10. With the notations from Lemma 4.2.8, we have F‚pUpÝÑv qq ŤUpÝÑv q and for

all µ1 PUpÝÑv q,

Fn
‚ µ1 ÝÝÝÝÑ

nÑ`8
ν˚ (4.54)
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for the weak topology.

Proof. For every µ1 in UpÝÑv q, write rµ1 “ µ1^ν˚. By the proof of Lemma 4.2.8, Fn
‚ pµ

1q Ñ ν˚ for
the strong topology. Therefore, Fn

‚ µ1^ν˚ ě Fn
‚ p

rµ1q Ñ ν˚ and Fn
‚ µ1 converges weakly towards

ν˚ because for all ϕ P OY,p irreducible, we have

Fn
‚ pµ

1
qpϕq “ αEY pF

n
‚ µ1^νϕqmEY pϕq. (4.55)

For n large enough we have Fn
‚ µ1^ν˚ ě ν˚^νϕ, hence Fn

‚ µ1^νϕ “ ν˚^νϕ and

Fn
‚ pµ

1
qpϕq “ αEY pν˚^νϕqmEY pϕq “ ν˚pϕq (4.56)

Proof of Proposition 4.2.3. Let ν be as in Proposition 4.2.6. Let νn be the approximating se-
quence of ν˚ (see Proposition 3.4.26). We have for n large enough νn P rν,ν˚s and νn satis-
fies Lemma 4.2.8. Set µ “ νn for some n large enough and let Z be a completion such that
cZpµq “ E and cZpν˚q “: p P E is a free point. The open subset UpÝÑv q associated to the tan-
gent vector at µ defined by ν˚ is exactly the image of VZppq in VY ppY ;EY q. By Proposition
4.2.10, F‚UpÝÑv q Ť UpÝÑv q, this means that f˚VY ppq Ă VY ppq. By Lemma 4.1.12, f is de-
fined at p, f ppq “ p and since F‚µ ą µ, we get f contracts E to p. We have that for every
µ P VZpp;mpq, f n

‚ µÑ ν˚ also by Proposition 4.2.10.

The statement about cofinalness follows from the fact that the sequence of infinitely near
points associated to ν˚ contains infinitely many free points, so for every completion X of X0,
there exists a completion above it where the center of ν˚ is a free point at infinity.

4.2.2 Attractingness of ν˚, the irrational case

Suppose now that chark “ 0, this is necessary as we will use Theorem 3.1.9 in this paragraph.
Suppose now that ν˚ is an irrational valuation. There exists a completion X such that the center
of ν˚ on X and on any completion above X is the intersection of two divisors at infinity E,F .
We still write f : X 99K X for the lift of f .

Let X1 “ X and for all n ě 1, let Xn`1 be the blow up of Xn at cXnpν˚q. (The center of ν˚ is
always a point since ν˚ is not divisorial). Let pn “ cXnpν˚q and En,Fn be the divisors at infinity
in Xn such that pn “ EnXFn. A consequence of Theorem 3.1.9 is
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Proposition 4.2.11. There exist integers N ě M such that the lift pf : XN Ñ XM is regular at

pN :“ cXN pν˚q and such that pf is monomial at pN in the coordinates that have EN ,FN and

EM,FM for axis respectively.

Proof. Apply Theorem 3.1.9 to f : X 99K X . There exist completions Y,Z above X such that the
lift F : Y Ñ Z of f is regular and monomial at every point. Let NY “ maxtN : Y is above XNu

and define NZ in the same way. By construction, the morphism of completions π : Y Ñ XNY

consists of blow up of points that are not pNY . The same holds for τ : Z Ñ XNZ . This shows
that the lift f : XNY 99K XNZ is defined at pNY . We therefore have that f ppNY q “ pNZ because
f˚pν˚q “ λ1ν˚ and f is monomial at pNY in the coordinates that have ENY ,FMY

and ENZ ,FNZ for
axis respectively by Theorem 3.1.9. We set M “ NZ . If NY ăM, we keep blowing up pNY until
NY ěM. This does not change the result because in local coordinates the blow up is given by a
monomial map πpu,vq “ puv,vq where u and v are local equation of the prime divisors at infinity
to which the center of ν˚ belong.

Using this we show

Proposition 4.2.12. There exists a completion Y such that

(1) The lift pf : Y Ñ Y is defined at p“ cY pν˚q;

(2) pf ppq “ p;

(3) If E,F are the two divisors at infinity such that p “ E XF, then E and F are both con-

tracted to p by pf .

(4) Define f‚ : VY pp;mpq Ñ VY pp;mpq. For all µ P VY pp;mpq, f n
‚mu Ñ ν˚ for the weak

topology of VY pp;mpq.

Furthermore, If Z is a completion above Y , then (1)-(4) remain true.

Proof. Let N ě M given by Proposition 4.2.11. We still write f : XN 99K XM for the lift of f

and π : XN Ñ XM for the composition of blow ups. Let x,y be local coordinates at pN such that
EN “ tx“ 0u and FN “ ty“ 0u and let z,w be local coordinates at pM such that EM “ tz“ 0u
and FM “ tw“ 0u. Both maps f and π are monomial at pN with respect to these coordinates.
Write

f px,yq “ pxayb,xcyd
q. (4.57)

Consider the tree VXMppM ;EMq with its order ăM, its skewness function αM and the generic
multiplicity function bM. This tree is rooted in ordEM and FM defines the end νw that we denote

155



Chapter 4 – Eigenvaluations and dynamics at infinity

by νFM . Let νEN “
1

bMpENq
ordEN ,νFN “

1
bMpFNq

ordFN . Suppose without loss of generality that
νEN ăM νFN . Consider the tree VXN ppN ;ENq with its order ăN and skewness function αN . We
have by Proposition 3.4.20 item (2) that the map π‚ : VXN ppN ;ENq ÑVXMppM;EMq is an inclu-
sion of trees. Hence, the orders ăM,ăN are compatible and VXN ppN ;ENq is naturally a subtree
of VXMppM;EMq via the map π‚. We also have the map f‚ : VXN ppN ;ENq Ñ VXMppM;EMq. The
root of VXN ppN ;ENq is ordEN and FN defines the end νy in VXN ppN ;ENq that we also denote by
νFN . We have that ordEN ăN ν˚ ăN νFN . Using Equation (4.57), we can write

@ν P VXN ppN ;ENq, f‚pνq “
f˚ν

a`bνpyq
. (4.58)

Now, both maps f‚ and π‚ send the segment rordEN ,νFN s into the segment rordEM ,νFM s via
a Möbius transformation. Indeed, if ν1,t P VXN ppN ;ENq is a monomial valuation at pN , then
f˚ν1,t “ νa`bt,c`td and one has by Lemma 3.4.13 and Equation (4.58)

αMp f‚ν1,tq “ αM

´

ν1, c`td
a`tb

¯

“
c`αNpν1,tqd
a`αNpν1,tqb

“M f pαNpν1,tqq (4.59)

Where M f is the Möbius transformation associated to the matrix

˜

d c

b a

¸

. We can do the same

process with the map π‚ to get a Möbius transformation represented by a matrix Mπ. Set M to
be the Möbius transformation M f ˝M´1

π .

Lemma 4.2.13. The Möbius map M is loxodromic with an attracting fixed point t˚ “ αMpπ‚ν˚q

and the multiplier of M at t˚ is ď
b

λ2
λ2

1
ă 1.

In particular, for every ν1,ν2 P VXN ppN ;ENq close enough to ν˚ such that ν1 ă ν˚ ă ν2,

f‚prν1,ν2sq Ť rπ‚ν1,π‚ν2s.

Proof of Lemma 4.2.13. First of all, M cannot be of finite order. Indeed, for every ν P rνEN ,νEM s

sufficiently close to ν˚, we have Zν ¨θ
˚ ą 0 since θ˚ ¨θ˚ “ 1. So f n

‚νÑ ν˚ by Proposition 4.2.2.

We know that Mpt˚q “ t˚ and we want to show that |M1pt˚q| ă 1. The only way that the
proposition is not true is if t˚ is a parabolic fixed point of M. This means up to reversing
the orientation that t˚ is attracting for t ă t˚ sufficiently close to t˚ and t˚ is repelling for
t ą t˚ sufficiently close to t. In particular, there exists t 1 such that the segment rt 1, t˚s is sent
strictly into itself, so we can iterate M on it, and there exist two constant c1,c2 ą 0 such that
c1
n ď |M

npsq´ t˚| ď c2
n . We will show that we have actually an exponential speed of convergence

and this leads to a contradiction. Let ν be the valuation centered at pN such that αMpπ‚νq “ t 1,
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4.2. Local normal forms

we can suppose that ν is divisorial up to shrinking rt 1, t˚s. Since f n
‚νÑ ν˚, we have Zν ¨θ

˚ ą 0.
We have by Equation (3.68)

1
λk

1
p f k
˚Zνq ¨EM “ pθ˚ ¨EMqpZν ¨θ

˚
q`O

˜

ˆ

λ2

λ2
1

˙k{2
¸

(4.60)

1
λk

1
p f k
˚Zνq ¨FM “ pθ˚ ¨FMqpZν ¨θ

˚
q`O

˜

ˆ

λ2

λ2
1

˙k{2
¸

. (4.61)

Using Lemma 3.4.13 we get that

ˇ

ˇ

ˇ
Mk
pαMpπ‚νqq´ t˚

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

f k
˚Zν ¨FM

f k
˚Zν ¨EM

´
θ˚pFMq

θ˚pEMq

ˇ

ˇ

ˇ

ˇ

“ O

˜

ˆ

λ2

λ2
1

˙k{2
¸

. (4.62)

Therefore the speed of convergence is exponential and this shows that |M1pt˚q| ă 1.

End of Proof of Proposition 4.2.12. By Lemma 4.2.13, pick ν1,ν2 P VXN ppN ;ENq divisorial
sufficiently close to ν˚ such that

ordEN ăN ν1 ăN ν˚ ăN ν2 ăN νFN (4.63)

and
f‚prν1,ν2sq Ť rπ‚ν1,π‚ν2s. (4.64)

Let UN “ tν : ν1 ă ν^νFN ă ν2u Ă VXN ppN ;ENq. It is clear that νFN RUN . Let ψ P {OXM ,pM be
such that νψ ąM f‚prν1,ν2sq. Let ψ1, ¨ ¨ ¨ ,ψr P {OXN ,pN be irreducible such that f ˚ψ“ ψ1 ¨ ¨ ¨ψr.
We can shrink the segment rν1,ν2s to make sure that none of the ψi belong to UN (see Figure
4.5). If this is the case, then for all µ PUN , set rµ“ µ^ν2, then for all i

µ^νψi “ rµ^νψi (4.65)

and
µ^νFN “ rµ^νFN . (4.66)

Now, for all µ PUN , by Equation (4.58) and Proposition 3.4.3

p f‚µqpψq “
µp f ˚ψq

a`bµpyq
“

ř

k αNpµ^νψkmpψkqq

a`bµpyq
. (4.67)
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Chapter 4 – Eigenvaluations and dynamics at infinity

By Equations (4.65) and (4.66), we get

p f‚µqpψq “ p f‚rµqpψq. (4.68)

This means that
@µ PUN , αMpp f‚µq^νψq “ αMpp f‚rµq^νψq. (4.69)

In particular, f‚pUNq Ť π‚pUNq. So we can iterate f‚ on UN .

Figure 4.5: An f‚-invariant open subset of V8, irrational case

Proposition 4.2.14. For every µ PUN , f n
‚ µÑ ν˚ for the weak topology.

Proof. Let µ PUN and let rµ :“ µ^ ν2. We have f n
‚rµÑ ν˚ for the strong topology by Lemma

4.2.13. By equation (4.66), we have f n
‚ µ^ν2 “ f n

‚rµ^ν2. Therefore for ϕ P OXN ,pN irreducible
and for n large enough, F n

‚ µ^νϕ “ f n
‚rµ^νϕ. Therefore,

f n
‚ µpϕq “ αNp f n

‚ µ^νϕqmNpϕq (4.70)

“ αNp f n
‚rµ^νϕqmNpϕq (4.71)

“ f n
‚rµpϕq ÝÝÝÝÑnÑ`8

ν˚pϕq. (4.72)
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Now pick a completion X above XN such that for i“ 1,2, the center of νi is a prime divisor
Ei at infinity such that E1 and E2 intersect at a unique point p. We have cXpν˚q “ p. The
open set UN P VXnppN ,ENq is the image of VXppq. Since f‚UN Ť π‚pUNq, this shows that
f˚VXppq Ă VXppq. Therefore by Lemma 4.1.12 the lift f : X 99K X is defined at p, f ppq “ p

and since f‚ contracts the segment rν1,ν2s we have that f contracts E1 and E2 to p. We have
for every µ P VXpp;mpq, f n

‚ µÑ ν˚ by Proposition 4.2.14.
If Y is a completion above X , then cY pν˚q “ F1XF2 where Fi is a prime divisor at infinity

because ν˚ is irrational. The segment rνF1,νF2s is a subsegment of rνE1 ,νE2s and the same proof
applies. This shows that Y satisfies also Proposition 4.2.12.

4.2.3 Attractingness of ν˚, the divisorial case

Suppose that ν˚ is divisorial and let X be a completion such that the center of ν˚ on X is a prime
divisor E at infinity. Since f˚ ordE “ λ1 ordE we have that f induces a rational selfmap of E.

Lemma 4.2.15. Either there exists an integer N ą 0 such that f N admits a noncritical fixed

point on E, or E is an elliptic curve and f|E is a translation by a non-torsion element of E.

Proof. The rational transformation f induces a rational selfmap on E. If E is rational, then
E » P1 and it admits a noncritical fixed point. If E is of general type, then some iterate of f

induces the identity on E. Finally, if E is an elliptic curve, then E is isomorphic to C{Λ for
some lattice Λ, f lifts to a map F : z P C ÞÑ az`b. If a “ 1, then F is a translation. Otherwise
F and hence f|E admits a noncritical fixed point.

Suppose chark “ 0 and k “ C. In the case where f|E is not a translation by a non-torsion
element on an elliptic curve, f defines a holomorphic fixed point germ at p and we can proceed
as in [FJ07] §5.2 to show that there exists a completion X that contains a prime divisor E0 at
infinity such that p“ EXE0 and f‚ maps the segment of monomial valuations rνE ,νE0s strictly
into itself. Here is how to proceed.

Set X0 “ X , p0 “ p. Define the sequence of completions pXnq as follows: πn : Xn`1 Ñ Xn

is the blow up of Xn at pn and pn`1 is the intersection point of the strict transform of E with
the exceptional divisor of πn`1. We still denote by E its strict transform in every Xn. For every
n, we have f|Eppnq “ pn and if f : Xn 99K X is defined at pn, we have f ppnq “ p. We apply
Theorem 3.1.9 to get

Proposition 4.2.16. There exists integers N ě M such that the lift f : XN 99K XM is defined

at pN , f ppNq “ pM. Furthermore, there exists local coordinates px,yq,pz,wq respectively at
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pN , pM such that x“ 0 and z“ 0 are local equations of the strict transform of E in XN and XM

respectively and f is monomial in these coordinates.

The proof is the same as in Proposition 4.2.11.

Proposition 4.2.17. If ν˚ is divisorial, there exists a completion X such that

(1) cXpν˚q is a prime divisor E at infinity.

(2) E intersects another prime divisor E0 at infinity.

(3) Up to replacing f by an iterate, f : X 99K X is defined at p, f ppq “ p.

(4) p is a noncritical fixed point of f|E .

(5) f leaves E invariant and contracts E0 to p.

(6) Define f‚ : VXpp;Eq Ñ VXpp;Eq, then for all µ P cVXpp;Eq, f n
‚ µ Ñ ordE for the weak

topology.

If π : pY,Excpπqq Ñ pX , pq is a completion exceptional above p, then all the item above remain

true in Y .

Proof. Let N ě M be as in Proposition 4.2.16. Let F : XN 99K XM be the lift of f . We can
suppose that N ě M and denote by π : XN Ñ XM the morphism of completions. We therefore
have a map f‚ : VY ppN ,Eq ÑVXppM,Eq. Again, the tree VY ppN ,Eq is a subtree via the map π‚

and they are both rooted at the divisorial valuation ordE .

Let px,yq,pz,wq be the local coordinates at pN and pM respectively given by Proposition
4.2.16. We have that x “ 0 is a local equation of E in XN and z “ 0 is a local equation of E in
XM.

f px,yq “
´

xayb,xcyd
¯

. (4.73)

Since we know that E is not contracted by f we actually have c“ 0. We can therefore write

@ν P VXN ppN ;Eq, f‚pνq “
f˚ν

a`bνpyq
. (4.74)

(Recall from §3.4 that VXN ppn;Eq is defined by the normalization νpEq “ 1). We have

f‚rordE ,νys Ă rordE ,νws (4.75)
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and the map is given by the following formula

f‚ν1,s “ ν1, sd
a`sb

. (4.76)

As in the irrational case, we can consider the matrix M f and Mπ and study the type of the
Möbius transformation induced by M´1

π ˝M f . Since ordE is a fixed point, we show that it is not
repelling on the segment rordE ,νys.

Let ν0 P rordE ,νws be a divisorial valuation. We have f‚prordE ,ν0sq Ă rordE ,νws. Let
UN “ tµ : ordE ď µ^νy ă ν0u Ă VXN ppN ;Eq. It is clear that νy R UN . Let ψ P {OXM ,pM be
irreducible such that νψ ą f‚prordE ,ν0sq. Let ψ1, ¨ ¨ ¨ ,ψr,P pOXN ,pN be irreducible such that
f ˚ψ “ ψ1 ¨ ¨ ¨ψr. Up to shrinking the segment rordE ,ν0s we can suppose that none of the νψi

belong to UN (See Figure 4.6). If this is the case, then for all µ PUN , set rµ“ µ^ν0, then for all
i

µ^νψi “ rµ^νψi, µ^νy “ rµ^νy. (4.77)

Now, for all µ PUN , by Equation (4.74) and Proposition 3.4.3

p f‚µqpψq “
µp f ˚ψq

a`bµpyq
“

ř

k αNpµ^νψkqmpψkq

a`bµpyq
. (4.78)

By Equation (4.77), we get
p f‚µqpψq “ p f‚rµqpψq. (4.79)

This means that
@µ PUN , αMpp f‚µq^νψq “ αMpp f‚rµq^νψq. (4.80)

If ν P V8 is divisorial such that Zν ¨θ
˚ ą 0, then 1

λn
1

f n
˚νÑ ν˚ by Proposition 4.2.2. Then, there

exists N0 ě 1 such that for něN0, 1
λn

1
f n
˚ν PUN . Replace ν by 1

λ
N0
1

f N0
˚ pνq. If ordE was a repelling

fixed point, then we could not have f n
‚νÑ ν˚ by Equation (4.77) and (4.80). Therefore, we can

pick ν0 such that f‚rordE ,ν0s Ť π‚rordE ,ν0s. In that case f‚pUNq Ť π‚pUNq. So we can iterate
f‚ on UN .

Proposition 4.2.18. For all µ PUN , f n
‚ µÑ ordE for the weak topology.

Proof. The proof is similar to the proof of Proposition 4.2.14. Let µ PUN and set rµ “ µ^ν0.
Since ordE is an attracting fixed point for f‚ and f‚rordE ,ν0s Ť rordE ,ν0s, we have f n

‚rµÑ ordE

for the strong topology. Then, by Equation (4.80), f n
‚ µ^ν0“ f n

‚rµ. Let ϕ POXN ,pN be irreducible
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Figure 4.6: An f‚-invariant open subset of V8, divisorial case

such that ϕ is not a local equation of E, then for n large enough

f n
‚ µpϕq “ αEp f n

‚ µ^νϕqmEpϕq (4.81)

“ αEp f n
‚rµ^νϕqmEpϕq (4.82)

“ αEp f n
‚rµqmEpϕq ÝÝÝÝÑ

nÑ`8
0 (4.83)

Let E0 be the divisor associated to the divisorial valuation ν0 and let Z be a completion
such that cZpν0q is the divisor E0 and such that E0XE is a point p. Then, the open subset UN

corresponds to VZppq and we have f˚VZppq Ă VZppq. By Lemma 4.1.12, we have that the lift
pf : Z Ñ Z is regular at p, pf ppq “ p and since we know that f‚ν0 ă ν0 and f˚ ordE “ λ1p f qordE

we have that pf contracts E0 at p, E is f -invariant and for all µ P VZpp;Eq, f n
‚ µÑ ν˚ by Propo-

sition 4.2.18.
If π : pZ1,Excpπqq Ñ pZ, pq is a completion exceptional above p, then Excpπq is a tree of

rational curves, let E 10 be the irreducible component of Excpπq that intersect the strict transform
of E. Then E 10 corresponds to a divisorial valuation ν10 such that ordE “ ν˚ ă ν10 ă ν0 and all
the proofs above apply so Proposition 4.2.17 holds also for Z1.

Lemma 4.2.19. When ν˚ is divisorial, λ1 ď λ2, with equality if and only if f|E : E Ñ E has

degree 1.

Proof. Let X be a completion such that the center of ν˚ is a prime divisor E at infinity. Since

162



4.2. Local normal forms

f˚ν˚ “ λ1ν˚, we have that f ˚E “ λ1E `R where R denotes an effective divisor supported at
infinity. Now, we also have f˚E “ dE `R1. From the equality f˚ ˝ f ˚ “ λ2 id, we get that
λ1d ď λ2. In particular, λ1 ď λ2.

4.2.4 Local normal form of f

We are now ready to proof Theorem 4.2.1.

Proof of Theorem 4.2.1. Suppose ν˚ is infinitely singular. From Proposition 4.2.3, there exists
a completion X such that cXpν˚q “: p P E is a free point, f : X 99K X is defined at p and
f˚pVXppqq Ť VXppq. We need to show that the germ of holomorphic functions induced by f

at p is contracting and rigid. It is clear that E P Critp f q (Recall the notations from §3.1.5). If
Critp f q admits another irreducible component, it induces a curve valuation in VXppq, we can
blow up p to get another completion above X satisfying Proposition 4.2.3 such that Critp f q

does not admit any other component than E. Thus, f is rigid at p it remains to show that it is
contracting. Let px,yq be local coordinates at p such that x “ 0 is a local equation of E. Since
ν˚pEq ą 0 and f˚ν˚ “ λ1ν˚ we get that f ˚x “ xλ1ϕ with ϕ P OˆX ,p and λ1 ě 2. Now, since E is
contracted by f , we get that f ˚y “ xψ with ψ P OX ,p but since f is dominant we have ψ P mp.
Hence, we get that

f px,yq “ pxλ1ϕ,xψq (4.84)

with ϕ P OˆX ,p and ψ Pmp. Consider the norm ||px,yq|| “maxp|x| , |y|q associated to the coordi-
nates x,y and let U˚ be the ball of center p and radius ε ą 0. If ε ą 0 is small enough, then U˚

is f -invariant and f pU˚q ŤU˚, so f is contracting at p. Finally, there are no f -invariant germ
of curves at p. Indeed, if ϕ P yOX ,p is f -invariant, then f‚νϕ “ νϕ. But we have by Proposition
4.2.3 that f n

‚νϕ Ñ ν˚ and this is a contradiction. Thus, we get that f has the local normal form
of (3.3) with a “ λ1. If k “ C, Looking at the classification of the rigid contracting germs in
dimension 2, we see that f is in Class 4 of Table 1 in [Fav00] hence of type (3.2) thus there
exists local analytic coordinates pz,wq at p

pf pz,wq “ pza,λzcw`Ppzqq (4.85)

where aě 2,cě 1,λ P Cˆ and P is a polynomial such that Pp0q “ 0. Since E is the only germ
of curve contracted by f (all the other germs of analytic curves are contained in X0 they cannot
be contracted to p by f since f is an endomorphism of X0), we have that z“ 0 is a local equation
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of E. We infer ν˚pzq “ ν˚pEq ą 0 and therefore

λ1ν˚pzq “ f˚ν˚pzq “ ν˚pza
q “ a ¨ν˚pzq; (4.86)

thus λ1 “ a P Zě0. Furthermore, since f does not have any invariant germ of analytic curve, we
get that Pı 0.

Suppose now that ν˚ is irrational, by Proposition 4.2.12, there exists a completion X of X0

such that the lift f : X 99K X is defined at p “ cXpν˚q, X contains two divisors at infinity E,F

such that p“ EXF and pf contracts both E and F at p. It remains to show that f is contracting
and rigid at p. First we can suppose up to further blow ups that Critp f qXX0“H. Therefore f is
rigid, now since both E,F are contracted to p, f is contracting. Finally, there are no f -invariant
germs of curves at p since for all µ P VXpp;mpq, f n

‚ µÑ ν˚ by Proposition 4.2.12. Let pz,wq be
local coordinates at p associated to pE,Fq. We have that f is of the pseudomonomial form

f pz,wq “
´

zawb
ϕ,zcwd

ψ

¯

. (4.87)

with ϕ,ψ P OˆX ,p and a,b,c,d ě 1 since E,F are contracted to p. Notice that f˚ ordE “ νa,b and
f˚ ordF “ νc,d . Consider the segment of monomial valuations I centered at p inside VXpp;mpq

we have that f‚ : I Ñ I is injective, therefore pa,bq is not proportional to pc,dq. Furthermore
the open subset U˚ corresponding to the ball of radius ε ą 0 is f -invariant for ε ą 0 small
enough and f pU˚q ŤU˚. In that case, we show that λ1p f q is the spectral radius of the matrix

A“

˜

a b

c d

¸

, hence an algebraic integer of degree 2. Indeed, ν˚ “ νs,t where ps, tq is an eigen-

vector of A for the eigenvalue λ1. Since ν˚ is irrational, we have s{t RQ and therefore λ1 RQ.
Now, when we iterate f , we get that f n is pseudomonomial with monomials given by the matrix
An, hence we get

λ
n
1

˜

ν˚pzq

ν˚pwq

¸

“ An

˜

s

t

¸

(4.88)

If k“C, then f is in the class 6 of Table 1 of [Fav00]. Hence it can be made monomial and
there exists local analytic coordinates x,y at p such that

f px,yq “ pxayb,xcyd
q (4.89)

It is clear that px,yq is associated to pE,Fq since these are the only two germs of curves con-
tracted by f .
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Now finally, suppose that ν˚ is divisorial. Take a completion X as in Proposition 4.2.17. Let
p “ E XE0 with ν˚ “ ordE . The lift f : X 99K X is defined at p. Up to further blow-ups we
can suppose that Critp f qXX0 “H. Therefore, Critp f q Ă E YE0 which is totally invariant as
f˚VXppq ŤVXppq so f is rigid at p. There are no f -invariant germs of curves apart from E at p

since for all µ P VXpp;Eq, f n
‚ µÑ ordE by Proposition 4.2.17. Let px,yq be local coordinates at

p associated to pE,E0q. Since f˚ ordE “ λ1 ordE with λ1 ě 2 we have f ˚x“ xλ1ϕ with ϕ POX ,p.
Since no germ of curve is sent to E apart from E0, we have that up to multiplying x by a constant
that f ˚x“ xλ1ybp1`ϕq with ϕ P OX ,p. Then, E0 is contracted to p so f ˚y“ ycψ with ψ P OˆX ,p

and c“ 1 since p is a noncritical fixed point of f|E . Hence, in these coordinates the local normal
form of f is (3.6):

pf px,yq “
´

xayb
p1`ϕq,λyp1`ψq

¯

(4.90)

with a“ λ1 ě 2,bě 1,λ P Cˆ and ϕp0q “ ψp0q “ 0.
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4.3 General case

In this section, we extend Theorem A to the general case, without assuming Aˆ “ kˆ or
Pic0pX0q “ 0. We rely on the universal property of the quasi-Albanese variety (see [Ser01]),
as well as on the geometric properties of subvarieties of quasi-abelian varieties (see [Abr94]).

4.3.1 Quasi-Albanese variety and morphism

Let G be an algebraic group over k with k algebraically closed. We say that G is a quasi-abelian

variety if there exists an algebraic torus T “Gr
m, an abelian variety A, and an exact sequence of

k-algebraic groups
0Ñ T Ñ GÑ AÑ 0. (4.91)

Theorem 4.3.1 (see [Ser01], Théorème 7). Let X be a variety over k, then there exists a quasi-

abelian variety G and a morphism q : X Ñ G such that for any quasi-abelian variety G1 and

any morphism ϕ : X Ñ G1 there exists a unique morphism g : GÑ G1 and a unique b P G1 such

that

ϕ“ g˝q.

Moreover, g is the composition of a homomorphism Lg : G Ñ G1 of algebraic groups and a

translation Tg : G1Ñ G1 by some element b P G1.

Such a G is unique up to (a unique) isomorphism. It is called the quasi-Albanese variety

of X and it will be denoted by QAlbpXq; the universal morphism q : X Ñ QAlbpXq is “the”
quasi-Albanese morphism (it is unique up to post-composition with an isomorphism of G).

Proposition 4.3.2. Let X0 be an affine variety. Then krX0s
ˆ “ kˆ and Pic0pX0q “ 0 if and only

if QAlbpX0q “ 0.

Proof. Let G“ QAlbpX0q and q : X0 Ñ G be a quasi-Albanese morphism. Let

0Ñ T Ñ G π
ÝÑ AÑ 0. (4.92)

be an exact sequence, as in Equation (4.91). Let X be a completion of X0 such that π˝q extends
to a regular map π˝q : X Ñ A.

Assume krX0s
ˆ “ kˆ and Pic0pX0q “ 0. Then, π ˝ qpX0q is a point in A, and composing

q with a translation of G, we can assume that this point is the neutral element of A. Then,
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qpX0q Ă T , so q is a regular map from X0 to an algebraic torus, and krX0s
ˆ “ kˆ implies that

qpX0q is a point. This shows that QAlbpX0q is a point.
Now, suppose that krX0s

ˆ ‰ kˆ, then any non-constant invertible function X0 Ñ kˆ pro-
vides a dominant morphism to a 1-dimensional torus, so dimpQAlbpX0qq ě 1 by the universal
property. And if Pic0pX0q ‰ 0, the Albanese morphism also shows that dimpQAlbpX0qq ě 1.
This concludes the proof.

In the following, we show that if X0 is an irreducible normal affine surface with non-trivial
quasi-Albanese variety and f is a dominant endomorphism of X0, then λ1p f q is a quadratic
integer. See Proposition 4.3.6 below. We will rely on the following result.

Theorem 4.3.3 (Theorem 3 of [Abr94]). Let Q be a quasi-abelian variety and let V be a closed

subvariety of Q. Let K be the maximal closed subgroup of Q such that V `K “ V . Then, the

variety V{K is of general type.

4.3.2 Dynamical degree in presence of an invariant fibration

Proposition 4.3.4 (Stein Factorization). Let X, S be projective varieties and let f : X Ñ X be

a rational transformation. Suppose that there exists ϕ : X Ñ S and g : S Ñ S such that the

following diagram commutes,

X X

S S

f

ϕ ϕ

g

Then there exists a variety rS and morphisms ψ : X Ñ rS, π : rSÑ S such that

• ϕ“ π˝ψ,

• π is finite and ψ has connected fibers

• there exists a rational transformation rg : rS 99K rS such that the diagram

X X

rS rS

S S

f

ψ ψ

rg

π π

g
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commutes.

Proof. The existence of rS along with π and ψ is due to Stein Factorization theorem: It is known
that one can take rS“ SpecS ϕ˚OX where SpecS is the relative Spec; that is for every affine open
subset U of S, one has

π
´1
pUq » SpecOXpϕ

´1
pUqq. (4.93)

Now to construct rg, take affine open subsets U and V of S such that U Ă g´1pV q. Suppose also
that ϕ´1pUq and ϕ´1pV q do not contain any indeterminacy of f . To construct

rg|π´1pUq : π
´1
pUq Ñ π

´1
pV q (4.94)

we use the map f ˚ : OXpϕ
´1pV qq Ñ OXpϕ

´1pUqq induced by f ; this is well defined since
ϕ´1pUq Ă f´1pϕ´1pV qq. It is clear that ψ˝ f “ rg˝ψ.

Proposition 4.3.5. Let S be a quasiprojective surface and f be a dominant endomorphism of

S. Suppose there exists a quasiprojective curve C with a dominant morphism π : SÑC and an

endomorphism g : C Ñ C such that π ˝ f “ g ˝π. Then, the first dynamical degree of f is an

integer.

Proof. Let X be a completion of S; f extends to a rational transformation of X . We can also
suppose that C is a projective curve, and then we apply Theorem 4.3.4 to suppose also that π

has connected fibers.

Let P be a general point of C and H an ample divisor of X . We have by [DN11, Tru15] that

λ1p f q “max
`

λ1pgq,λ1p f|πqq
˘

(4.95)

where λ1pgq is the integer given by the topological degree of g and

λ1p f|πq :“ lim
n

`

H ¨ p f n
q˚π

´1
pPq

˘1{n
. (4.96)

Since C is a curve and π is dominant we have that π is flat ([Har77] Proposition III.9.7) so for
any point P PC,

• π´1pPq is an irreducible curve CP and the topological degree of f : CP Ñ CgpPq is an
integer d that does not depend on P

• d ¨dtoppgq “ λ2p f q.
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4.3. General case

Indeed, consider the following 0-cycle in SˆS:

αpPq “ pπ˚1CPq ¨ pπ
˚
2Hq ¨Γ f (4.97)

where π1,π2 : SˆSÑ S are the two projections and Γ f is the graph of f . The degree of αpPq is

degα“ pH ¨CgpPqq ¨degp f : CP ÑCgppqq. (4.98)

Now, since C is a curve the morphism π ˝π1 : Sˆ S ÑC is flat, therefore degpαpPqq does not
depend on P ([Ful98] §20.3) and since π is flat, the intersection number pH ¨CPq does not depend
on P either. Therefore, degp f : CP ÑCgpPqq is an integer d independent of P. Hence, we infer

λ1p f|πq “ lim
n

`

H ¨ p f n
q˚π

´1P
˘

“ d ¨ lim
n

`

H ¨π´1P
˘1{n

“ d (4.99)

and we get that λ1p f q is the integer maxpd,λ1pgqq.

4.3.3 Dynamical degree when the quasi-Albanese variety is non-trivial

The goal of this section is to show the following proposition.

Proposition 4.3.6. Let X0 be an irreducible normal affine surface and f a dominant endomor-

phism of X0. Suppose that QAlbpX0q is non-trivial, then λ1p f q is an integer or a quadratic

integer.

Set Q0 “ QAlbpX0q and let q : X0 Ñ Q0 be a quasi-Albanese morphism. Let V “ qpX0q be
the closure of the image of X0 in Q0. By the universal property, there exists an endomorphism
g of Q0 such that

q˝ f “ g˝q (4.100)

gpzq “ Lgpzq`bg (4.101)

for some algebraic homomorphism Lg : Q0 Ñ Q0 and some translation z ÞÑ z` bg (here, we
denote the group law by addition). In particular g|V defines a regular endomorphism of qpX0q

and since f is dominant, so is g|V . As in Theorem 4.3.3, set K “ tx P Q0 ; x`V “ Vu. Then,
denote by πV : V ÑV{K the canonical projection onto the quotient.

Proposition 4.3.7. There exists an endomorphism g1 : V{K ÑV{K such that g1 ˝πV “ πV ˝g|V .
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Proof. We have to show that g|V is compatible with the quotient map. Take v P V and k P K.
Since v` k PV , gpv` kq PV . Now,

gpv` kq “ Lgpv` kq`bg “ Lgpvq`Lgpkq`bg “ gpvq`Lgpkq. (4.102)

Thus, Lgpkq ` gpV q Ă V . Taking the closure and knowing that g|V is dominant, we have
Lgpkq`V “V . Therefore, Lgpkq P K and g|V is compatible with the quotient modulo K.

Case dimV{K “ 2 – In that case, the map πV ˝q : X ÑV{K is generically finite. Since V{K

is of general type, g1 has finite order: there is some positive integer n such that pg1qn “ IdV{K .
Thus, f is also a finite order automorphism, and λ1p f q “ 1.

Case dimV{K “ 1 – In that case πV ˝q induces a fibration of X0 over a curve of general type
and we conclude that λ1p f q is an integer by Proposition 4.3.5 .

Case dimV{K “ 0 – This means that V is equal to K up to translation. Therefore, by the
universal property of the quasi-Albanese variety, K “V “ Q0 and q : X0 Ñ Q0 is dominant.

If dimQ0 “ 1, then f preserves a fibration over a curve and Proposition 4.3.5 implies again
that λ1p f q is an integer.

Suppose now that dimQ0 “ 2. Then q is generically finite, so that λ1p f q “ λ1pgq. A priori,
there are three possibilities.

The first case is when Q0 is a 2-dimensional multiplicative torus. In that case, g is a mono-
mial endomorphism: in coordinates, gpx,yq “ pαxayb,βxcydq for some α, β in kˆ and some
integers pa,b,c,dq with ad´bc‰ 0; then, λ1pgq is the spectral radius of the 2ˆ2 matrix

˜

a b

c d

¸

. (4.103)

Thus, it is the maximum of the moduli |λ|, |λ1| of the eigenvalues of this matrix and, as such, it
is an algebraic integer of degree ď 1.

The second possibility is that Q0 is an extension of an elliptic curve A by a one dimensional
torus Gm; then, the projection Q0 Ñ A is g-equivariant, and Proposition 4.3.5 implies that λ1pgq

is an integer.
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The third and last possibility is that Q0 is an abelian surface. Let X be a (good) completion
of X0 such that q extends to a regular morphism qX : X Ñ Q0. Pulling back a regular 2-form
by q, we see that the Kodaira dimension of X is non-negative. If it is equal to 2, a positive
iterate of f is the identity, so λ1p f q “ 1. If it is equal to 1, the Kodaira-Iitaka fibration gives
an f -invariant fibration and Proposition 4.3.5 implies that λ1pgq is an integer. Thus, we may
assume that the Kodaira dimension of X vanishes. Since the dimension of the Albanese variety
of X is 2, the classification of surfaces implies that X is a blow-up of its Albanese variety Q0,
and qX is the inverse of this blow-up. In particular, qX is a birational morphism, it is one-to-one
on the complement of its exceptional locus ExcpqXq.

Set B “ qXpBX X0q. Since BX X0 supports an ample divisor, B is a curve (BX X0 cannot be
contracted by qX ).

Let p be an indeterminacy point of f : X 99K X and C be the total transform of p by f . Since
C is a union of rational curves and abelian surfaces do not contain rational curves, qXpCq is a
point. Moreover, this point must be contained in B. Thus, gpBq “ qXp f pBX X0qq is contained in
B, and B is g-invariant. Also, since X0 does not contain any complete curve, each component of
ExcpqXq must intersect BX X0, and qXpExcpqXqq Ă B.

Composing q by a translation we may assume that B contains the neutral element o of Q0.
Let B0 be an irreducible component of B containing o. Then, some positive iterate gn of g

preserves B0. If the genus of B0 is ě 2, gn
B0

has finite order and B0 generates the group Q0, so
g has finite order, so does f , and λ1p f q “ 1. Thus, we can now assume that the genus of each
component of B is 1, each component being a translate of some elliptic curve.

If B is irreducible, the quotient map Q0 Ñ Q0{B is g-equivariant and we conclude again by
Proposition 4.3.5. If there is an irreducible component B0 of B with gpB0q “ B0` b for some
b P Q0, we conclude in the same way.

Now, we can assume that B is reducible and gpB0q is not a translate of B0. There is an integer
ně 1 such that the curve B0 is periodic of period n, i.e. B0, B1 :“ gpB0q, ..., Bn´1“ gn´1pB0q are
pairwise distinct, and gnpB0q “ B0. Taking some further iterate gnm, and changing the position
of the neutral element, we can suppose that o is a point of intersection of B0 and B1 and that
gnmpoq “ o. Let d denote the degree of gn along B0; since g maps B0 to B1, d is also the degree
of gn along B1. If d “ 1, then f and g have λ1 “ λ2 “ 1.

Let us now assume d ě 2 and derive a contradiction. On B0, the pre-images pgnm
|B0
q´kpzq

form a dense subset of B0; the same is true for B1. The homomorphism B0ˆB1 Ñ Q0 given by
addition is an isogeny, so the preimages of any point of Q0 under the action of g form a dense
subset of Q0. Let z be a point in ExcpqXq, then its preimages should be dense, but this would
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imply that f maps some point in the interior of X0 into the boundary BX X0. This contraction
concludes the proof.
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4.4. The automorphism case

4.4 The automorphism case

Here we suppose that X0 is an irreducible normal affine surface that admits a loxodromic au-
tomorphism over a field of characteristic zero. In this situation, we can actually deduce a lot
more from the result of Section 4.1. In particular one can first check that X0 has to be rational,
see [DF01] Table 1 Class 5. So the condition Pic0pX0q is automatically satisfied. We change
the notation for this section, we will denote θ˚ and θ˚ by θ` and θ´ respectively. So that
p f˘1q˚θ˘ “ λ1θ˘. By Proposition 4.1.15 and Theorem 4.1.16, we get that

• θ`,θ´ PWeil8pX0qXL2pX0q and they are both effective.

• θ` “ Zν´ and θ´ “ Zν` where ν` is the eigenvaluation of f and v´ the eigenvaluation
of f´1.

Proposition 4.4.1. Let X0 “ SpecA be a rational affine surface such that Aˆ “ kˆ and let f be

a loxodromic automorphism of X0, then

(1) The eigenvaluations ν`, ν´ of f and f´1 respectively are of the same type.

(2) If λ1 P Zě0, then ν` and ν´ are infinitely singular.

(3) If λ1 P RzZě0 then ν` and ν´ are irrational.

Proof. If the eigenvaluation was divisorial, then we would get by Lemma 4.2.19 that λ1 ď λ2

and this is absurd because λ1 ą 1, f being loxodromic. The dichotomy of the type of eigenval-
uation follows from Theorem 4.2.1 and the fact that λ1p f q “ λ1p f´1q.

Corollary 4.4.2. In that case, the nef eigenclasses θ´ and θ` verify

pθ
´
q

2
“ pθ

`
q

2
“ 0

and in any completion X of X0 one has pθ˘X q
2 ą 0.

Proof. The equalities pθ´q2 “ pθ`q2 “ 0 come from Theorem 3.2.28 (3.71). Since the eigen-
valuations are not divisorial, θ´ and θ` are not Cartier divisors by Corollary 4.1.4 therefore for
any completion X of X0, pθ˘X q

2 ą 0. Indeed, if pθ˘X q
2 “ 0 then since θ˘ is nef, we would get

θ
˘
X “ θ˘.

Let X be a completion of X0. We have a simple criterion to check whether a divisor at
infinity is contracted thanks to Proposition 4.2.2.

Proposition 4.4.3. Let E be a prime divisor at infinity in a completion X of X0. If ZordE ¨θ
´ ą 0

then there exists N ą 0 such that f N contracts E to the point cX pν`q .
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4.4.1 Gizatullin’s work on the boundary and applications

In [Giz71a], Gizatullin considers minimal completions of affine surface. That is a completion
X of X0 minimal with respect to the following property:

• The boundary BX X0 does not have three prime divisors that intersect at the same point.

• If BX X0 has a singular irreducible component then BX X0 consists only of one irreducible
curve with at most one nodal singularity.

For such a completion ι : X0 ãÑ X , Gizatullin defines the curve Epιq as the union of the irre-
ducible components E of BX X0 that are contracted by an automorphism of X0 (the automorphism
depends on E).

We call a zigzag a chain of rational curves. That is a sequence pE1, ¨ ¨ ¨ ,Erq of rational curves
such that Ei ¨Ei`1“ 1, i“ 1, ¨ ¨ ¨ ,r´1 and for all i, j such that |i´ j| ě 2,Ei ¨E j “ 0. In particular
the dual graph with respect to the Ei’s is of the form

‚
E1

‚
E2

‚
Er´1

‚
Er

¨ ¨ ¨

We will write E1 Ź E2 Ź ¨¨ ¨ Ź Er for the zigzag defined by pE1, ¨ ¨ ¨ ,Erq.
A cycle of rational curves is a sequence pE1, ¨ ¨ ¨ ,Erq of rational curves such that Ei ¨Ei`1 “ 1

and E1 ¨Er “ 1. The dual graph with respect to the Ei’s is of the form

‚E1

‚
E2‚

. .
.

. . . ‚
Er´1

‚Er

Theorem 4.4.4. Let X0 “ SpecA be an irreducible normal affine surface such that Aˆ “ kˆ

and Pic0pX0q “ 0. Suppose that X0 admits an automorphism f with λ1p f q ą 1. If X is a minimal

completion of X0, one has Epιq “ BX X0. Furthermore we have two mutually excluding cases

(1) λ1p f q is an integer and in that case Epιq is a zigzag.

(2) λ1p f q is irrational and Epιq is a cycle of rational curves.

Furthermore, there exists a completion Y with two distinct points p`, p´ P BY X0 and an integer

N ą 0 such that
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• f˘1pp˘q “ p˘.

• f˘N contracts BY X0 to p˘.

• f˘N has a normal form at p˘ given by Theorem 4.2.1, it pseudomonomial or monomial

in the cycle case and of type (3.2) or (3.3) in the zigzag case.

• In the cycle case, this set of properties remains true if we blow up p` or p´.

• In the zigzag case, the set of completions above Y that satisfy these properties is cofinal

in the set of all completions above Y .

The normal form of f at p˘ is monomial in the cycle case and of the form of Theorem 4.2.1

case (3) in the zigzag case.

This shows Theorem C. We will prove Theorem 4.4.4 in §4.4.2 and 4.4.3. We end this
section with some technical result that will be useful in the proof of Theorem 4.4.4.

Lemma 4.4.5. Let X be a completion of X0 and let E be a prime divisor at infinity such that

ZordE ¨θ
` “ 0 and E intersects some prime divisor in the support of θ

`
X , then cXpν`q belongs

to E.

Proof. Since θ` is effective and ordEpθ
`q “ 0 we get θ` ¨E ą 0 since E intersects the support

of θ`. This implies by Proposition 3.6.6 that cXpν`q belongs to E.

Lemma 4.4.6. Let Y be a completion of X0 and E a prime divisor at infinity of Y such that

ZordE ¨θ
` ą 0. If p P EztcXpν`qu, then for any divisorial valuation ν such that cXpνq “ p, one

has Zν ¨θ
` ą 0.

Proof. Let Z be the blow up of Y at p. Then, θ
`
Z “ pπ

˚θ
`
Y q` crE for some c P R. Since the

center of ν` is not on rE, one has θ
`
Z ¨

rE “ 0, hence c “ 0. Now whether p is a free point on E

or a satellite point, we have Zord
rE
¨θ` ě ZordE ¨θ

` ą 0.

Lemma 4.4.7. Let Y be a completion of X0 such that the center of ν` is the intersection of two

prime divisors at infinity F1,F2. Then, ZordF1
¨θ` ą 0 or ZordF2

¨θ` ą 0.

Proof. Recall that θ` is nef and effective. Suppose that ZordFi
¨θ` “ 0 for i “ 1,2 and let rE be

the exceptional divisor above p`. Let π : Z Ñ Y be the blow-up at p`. Then we have

θ
`
Z “ π

˚
pθ
`
Y q` crE
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for some c P R. This implies θ` ¨ rE “´cą 0 because p` was the center of ν` on Y , therefore
c ă 0. But Zord

rE
¨ θ
`
Z “ pZordF1

`ZordF2
qθ
`
Y ` c “ c ă 0 and this contradicts the fact that θ` is

effective.

Proposition 4.4.8. For any completion Y such that cY pν`q is a free point, we have

Suppθ
`
Y “ BY X0. (4.104)

Hence, if ν˘ is an infinitely singular valuation, then for any completion Z, there exists an integer

N ą 0 such that f˘NpBZX0q “ p˘.

Proof. Let E be the unique prime divisor at infinity such that cY pν`q P E. If Suppθ
`
Y ‰ BY X0,

there a prime divisor F at infinity such that ZordF ¨θ
` “ 0 and F XSuppθ

`
Y ‰H. By Lemma

4.4.5, we have F “ E; therefore ZordE ¨θ
` “ 0. But we have that θ

`
Y “ λZordE for some λ ą 0

by Proposition 4.1.5. So pθ`Y q
2 “ 0, but this is absurd by Corollary 4.4.2.

For the second assertion, assume that ν˘ is an infinitely singular valuation. Let Z be a
completion of X0. Then, by Proposition 3.3.16, there exists a completion Y above Z such that
cY pν˘q is a free point. The first assertion shows that Suppθ

˘
Y “ BY X0 and so the same is true

for Suppθ
˘
Z . The fact that some iterate of f˘1 contracts the boundary on p˘ follows from

Proposition 4.4.3.

4.4.2 Proof of Theorem 4.4.4, the cycle case

In that case it was already proven by Gizatullin that BX X0 “ Epιq.

Proposition 4.4.9 ([ÈH74, CdC19]). Let X be projective surface and U an open subset of X

such that XzU is a cycle of rational curves. Assume that XzU is not an irreducible curve with

one nodal singularity. Let g be an automorphism of U, then the indeterminacy points of g can

only be intersection points of two components of the cycle.

Corollary 4.4.10. In the cycle case, the eigenvaluation of a loxodromic automorphism must be

irrational and therefore λ1 is an algebraic integer of degree 2, in particular it is irrational.

Proof. Proposition 4.4.9 shows that for any completion X of X0, p` “ cXpν`q is a satellite
point at infinity. Indeed, since θ` is nef, its incarnation in X cannot be 0. Therefore, there
exists a prime divisor E at infinity such that ZordE ¨θ

` ą 0 because θ` is effective. Therefore,
by Proposition 4.4.3, E must be contracted by f N to p` so it must be an indeterminacy point of
f´N . Proposition 3.3.16 shows that the eigenvaluations ν˘ are irrational.
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Proof of Theorem 4.4.4. Corollary 4.4.10 shows the first part of the theorem. We get the normal
form at p˘ by blowing up the center of ν˘ enough times. Since these are always intersection
points of two prime divisors at infinity we can suppose that BY X0 is still a cycle.

It remains to show that BY X0 is contracted by some iterate of f and f´1. Suppose that
there exists a prime divisor E that is not contracted to p` by any iterate of f . In particular
ZordE ¨ θ

` “ 0 by Proposition 4.4.3. By Lemma 4.4.5, we have that E contains cY pν´q and
f´1 contracts E to p´. And by Lemma 4.4.7 and Corollary 4.4.10 we have that E is the unique
prime divisor at infinity that satisfy this property. Either f contracts E to a satellite point p‰ p`
of the boundary or f is sent to a prime divisor at infinity. Indeed, we cannot have f pEq “ E,
otherwise E is f -invariant but this contradicts that f´1 contracts E. If E is contracted, it cannot
be contracted to p´ because it is not an indeterminacy point of f´1. Therefore, we have that
the center of f˚ ordE is either another prime divisor at infinity or a satellite point at infinity that
is not the center of ν`. In both case, we get f˚ZordE ¨ θ

` ą 0 by Lemma 4.4.6 and this is a
contradiction.

4.4.3 Proof of Theorem 4.4.4, the zigzag case

4.4.3.1 Some technical lemmas about zigzags

We will say following [GD75, BD11b] that a zigzag Z is standard if it is of the form

Z “ F Ź E Ź Z1 (4.105)

where F2 “ 0,E2 ď ´1 and Z is a negative zigzag meaning that every component of Z1 has
self-intersection ď ´2. Any zigzag can be put to a standard form via blow-up of points and
contractions of (-1)-curves (see [GD75], §1.7)

Following [BD11b], an almost standard zigzag is a zigzag Z “ B1 Ź B2 Ź ¨¨ ¨ Ź Br such that

1. There exists a unique irreducible component Bk such that pBkq
2 ě 0.

2. There exists at most one component Bl such that pBlq
2 “ ´1 and in that case we must

have l “ k˘1.

We need to state some technical results for the proof of Theorem 4.4.4, we will need to apply
them to a quasiprojective surface which is not necessarily affine. If U is a quasiprojective
surface, a completion of U is defined in the same way as the completion of an affine surface.
All the results in this Section rely heavily on Proposition 3.1.6 and the Castelnuovo criterion.
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Lemma 4.4.11 (Proposition 3.1.3 of [BD11b]). Let U be a quasiprojective surface and X a

completion of U such that XzU is an almost standard zigzag that has no component of self

intersection ´1. Let Bk be the unique irreducible component of nonnegative self-intersection of

XzU. Let g be an automorphism of U, then

(1) g has at most one indeterminacy point q on X.

(2) q has to be on Bk (if it exists).

(3) If Bk is not on the boundary of the zigzag then q must be the intersection point of Bk with

Bk`1 or Bk´1.

Proof. Suppose that g has an indeterminacy point, then g´1 also has one and g has to contract
a curve of the zigzag. Let π : Y Ñ X be the minimal resolution of indeterminacies of g and let
rg be the lift of g. Then, the first curve contracted by rg has to be the strict transform of Bk. So g

has at least one indeterminacy point on Bk.
There cannot be any indeterminacy point q outside of Bk because otherwise it belongs to

components that have self-intersection ď´2 and since the zigzag XzU contains no p´1q-curve
any exceptional divisor above q has to be contracted by g so q is not an indeterminacy point.

Suppose that Bk is not on the boundary and that the indeterminacy point p of g is not an
intersection point. Then, the map π factorizes through the blow-up of p and after contracting
the strict transform of Bk, we get at infinity three prime divisors that intersect at the same point.
But this is a contradiction because rg consists only of blow ups of point at infinity and XzU does
not have three divisors that intersects at the same point.

Finally, there cannot be more than one indeterminacy point on X . Suppose the contrary and
let p1, p2 be two indeterminacy points, they both belong to Bk. Let E1,E2 be two exceptional
divisor above p1 and p2 in Y respectively. They cannot be contracted by rg because Y is the
minimal resolution of singularities of g. Therefore, their strict transform is either a p´1q-curve
or a curve with nonnegative self intersection. But this is absurd because XzU does not contain
any p´1q-curve and has only one curve of nonnegative self-intersection.

Corollary 4.4.12. Let X be a completion of U such that XzU is an almost standard zigzag Z

and let f be an automorphism of U. Suppose that f has an indeterminacy point that is a free

point on Bk, then one of the two sides of Z can be contracted so that Bk becomes a boundary

component of the zigzag.

Proof. Suppose that Bk is not a boundary component of the zigzag and that f has an indeter-
minacy point that is a free point on Bk. Then, by Lemma 4.4.11, Bk´1 or Bk`1 has to be a
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p´1q-curve, suppose it is Bk`1. We contract it and we obtain an almost standard zigzag and f

still has an indeterminacy point that is a free point on Bk. If Bk is on the boundary we are done,
otherwise the only p´1q-curve is the strict transform of Bk`2 and we keep contracting until Bk

becomes a boundary component of the zigzag.

Lemma 4.4.13. Let U be a quasiprojective variety and X a completion of U such that XzU

is a zigzag of type p´m1, ¨ ¨ ¨ ,´mk,´1,´1,´mk`1, ¨ ¨ ¨ ,´mrq such that for all i,mi ě 2. Let f

be an automorphism of U. Then the intersection point of the two p´1q-curves cannot be an

indeterminacy point of f .

If the zigzag is of type p´1,´2, . . . , ´2
ljhn

F

, ´1
ljhn

E

,´mk`1, ¨ ¨ ¨ ,´mrq with mi ě 2, then F XE

cannot be an indeterminacy point of f .

Proof. Let π : Z Ñ X be a minimal resolution of indeterminacy of f : X Ñ X and let rf : Z Ñ X

be the lift of f . The first curve contracted by rf must be the strict transform of one of the prime
divisors at infinity of X . But if the intersection of the p´1q-curves is an indeterminacy point
of f , then all the strict transforms of the prime divisors at infinity of X have self-intersections
ď´2 and this is a contradiction.

If XzU is a zigzag Z of type p´1,´2, ¨ ¨ ¨ ,´2,´1,´mk`1, ¨ ¨ ¨ ,´mrq, suppose that F XE is
an indeterminacy point of f , then the first curve contracted by rf must be the strict transform
of the p´1q-curve on the left of the zigzag. So we can start by contracting it and we get a
zigzag Z1 of type p´1,´2, ¨ ¨ ¨ , ´2

ljhn

F

, ´1
ljhn

E

,´mk`1, ¨ ¨ ¨ ,´mrq and of size #Z´1. We can repeat

this process until we get a zigzag of the form p ´1
ljhn

F

, ´1
ljhn

E

,´mk`1, ¨ ¨ ¨ ,´mrq and we have that

FXE cannot be an indeterminacy point of f by the previous case, this is a contradiction.

Lemma 4.4.14. Let f be an automorphism of X0 and let X be a minimal completion of X0 in

the sense of Gizatullin. Then, f defines an automorphism of U “ pEpιqqc Ă X, the complement

of Epιq, i.e the birational map f : X 99K X does not have any indeterminacy point on U.

Proof. Suppose that f admits an indeterminacy point p on some component E1 of BX X0 with
p R Epιq. Let π : Y Ñ X be a minimal resolution of indeterminacies for f and let F : Y Ñ X be
the lift of f . The fiber π´1ppq contains at least one p´1q-curve and we claim that none of the
irreducible components of π´1ppq can be contracted by F , indeed since E1 is not contracted,
one can only contract p´1q-curves of π´1ppq but that would contradict the minimality of Y .
Therefore, the fiber π´1ppq is not affected by F and neither are the self-intersections in the
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fiber. This would imply that BX X0 contains some p´1q-curves that can be contracted and this
contradicts the minimality of X .

Corollary 4.4.15. Let Xmin be a minimal completion of the affine surface X0. The centers

cXminpν˘q must belong to Epιq.

We will apply all the results of this section with U “ pEpιqqc Ă Xmin where Xmin is a minimal
completion of X0.

4.4.3.2 Elementary links between almost standard zigzags

From now on U “ pEpιqqc Ă Xmin where Xmin is a minimal completion of the affine surface
X0. All the results of §4.4.3.1 will be applied to the following situation. If X is a completion
of U (hence of X0) and f is a loxodromic automorphism of X0, then some positive iterate of
f contracts a component of XzU to cXpν`q. Thus, cXpν`q is an indeterminacy point of some
positive iterate of f´1 on X .

Proposition 4.4.16. Let X be a completion of U such that XzU is an almost standard zigzag,

then one can find a completion Y of U with a birational map ϕ : X Ñ Y that is an isomorphism

above U such that

(1) YzU is also an almost standard zigzag.

(2) Let rX be the blow up of X at cXpν`q, then the lift ϕ : rX 99K Y is defined at c
rXpν`q and is

a local isomorphism there.

Proof. Let B the unique irreducible component of XzU of nonnegative self intersection.

Case: B is on the boundary XzU is a zigzag of the form BŹEŹZ where B2 ě 0,E2 ď ´1
and Z is a negative zigzag.

• cXpν`q is a free point on B If E2 “ ´1, we blow up cXpν`q and then contract the strict
transform of E. Let Y be the new projective surface obtained, it satisfies the proposition.

Suppose E2 ă´1, If B2 ą 0 we blow up BXE to obtain a new zigzag BŹE 1ŹZ1 which is
still almost standard. We keep blowing up the strict transform of B with the second com-
ponent of the zigzag until B2 “ 0. After all these blowups, let X 1 be the newly obtained
projective surface, we have that X 1zU is an almost standard zigzag of the form BŹEŹZ
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where B2 “ 0,E2 “´1 and Z is a negative zigzag. We blow up cX 1pν`q and let rE be the
exceptional divisor, by Lemma 4.4.13, the center of ν` cannot be the intersection point
of rE and the strict transform of B, therefore it is a free point of rE and we can contract the
strict transform of B. We call Y the new obtained surface it satisfies the proposition.

• cXpν`q is the satellite point BXE We blow up BXE and call rE the exceptional divisor.
If B2ą 0 in X , then we still have an almost standard zigzag and we call Y the new obtained
surface. If B2 “ 0 in X , then by Lemma 4.4.13 is a free point of rE and we can contract
the strict transform of B, we call Y the newly obtained surface.

Case: B is not on the boundary

• cXpν`q is a free point of B By Corollary 4.4.12, one of the two sides of XzU is con-
tractible, so we contract it and call X1 the newly obtained surface, we can now apply the
proof of the boundary case to find Y .

• cXpν`q is the satellite point BXE We can suppose up to contraction that if XzU con-
tains a p´1q-component, it must be E. We start by blowing up cXpν`q and let rE be the
exceptional divisor.

– If B2 ą 0 in X , then we still have an almost standard zigzag and we call Y the newly
obtained surface.

– If B2 “ 0 in X , then by Lemma 4.4.13 the center of ν` cannot be the intersection
of rE and the strict transform of B where rE is the exceptional divisor. So we can
contract the strict transform of B and we get an almost standard zigzag and we call
Y the newly obtained surface.

Corollary 4.4.17. If BX X0 is a zigzag, the eigenvaluation ν` cannot be irrational, hence it is

infinitely singular and λ1 is an integer. Furthermore, U “ X0.

Proof. It suffices to show that the sequence of centers of ν` contains infinitely many free points.
If not, we can apply Proposition 4.4.16 finitely many times so that we get a completion X of X0

such that XzU is an almost standard zigzag and the center of ν` is always a satellite point. We
show that this leads to a contradiction.
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Case 1: cXpν`q “ BXE with E a component of XzU We can suppose after contractions and
blow ups that B2 “ 0. We will show that we can suppose that B is a boundary component of the
zigzag. The zigzag XzU is of the form Z1ŸBŹEŹZ. Denote by pm1, ¨ ¨ ¨ ,mrq the type of Z1.

• Case m1 ě 2 Blow up BXE and call rE the exceptional divisor. The center of ν` has
to be BX rE or rE XE, but it cannot be BX rE by Lemma 4.4.13. So we can contract the
strict transform of B. We get a new zigzag of the form Z11ŸB1ŹZ1 with m11 “m1´1 and
#Z11 “ #Z1.

• Case m1 “ 1 call E1 the first component of Z1. Blow up BXE. The center of ν` is either
BX rE or rEXE. Either way, we can contract the strict transform of E1. We get a zigzag
of the form Z11ŸBŹ rEŹEŹZ where #Z11 “ #Z1´1.

We can apply this procedure recursively, it stops because the sequence p#Z1,m1q is strictly
decreasing for the lexicographical order. And we never blow down a curve that contains the
center of ν` nor do we blow down a curve to the center of ν`.

Now that we have that B is a boundary component, we can suppose that XzU is a 1-standard
zigzag. Call E the p´1q-component of XzU , we will show that Zν` ¨E “ `8. Indeed, blow
up BXE and let rE be the exceptional divisor. By Lemma 4.4.13, the center of ν` has to be
rEXE. If we blow up the center of ν` again we can still apply Lemma 4.4.13, so the center of
ν` is always the intersection point of the strict transform of E with the exceptional divisor. This
implies that ν` is the curve valuation associated to the curve E and this is absurd.

Case 2: cXpν`q “ BXC with C a component of BX X0 but CXU ‰ H. This means that
cXpν`q belongs to no other component of XzU than B. Using Lemma 4.4.11 we can contract
one of the two sides of the zigzag so that B is a boundary component of the zigzag XzU , we
can furthermore suppose that XzU has no p´1q-component. Call m the self intersection of the
component next to B in the zigzag, we have by assumption mď´2.

• Case B2 ą 0 let X 1 be the blow up of BXC and let rE be the exceptional divisor. Then,
since the strict transform of B has nonnegative self intersection X 1zU is an almost standard
zigzag. We must have that cX 1pν`q P rE and by Lemma 4.4.11 cX 1pν`q must be BX rE and
we are back in Case 1. This leads to a contradiction.

• Case B2 “ 0 Let E be the component on XzU next to B (if it exists). Let X 1 be the blow up
of BXC and let rE be the exceptional divisor. By Lemma 4.4.13, cX 1pν`q cannot be BX rE
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so it has to be rE XC. Let X2 be the blow down of the strict transform of B. The strict
transform of rE has nonnegative self-intersection and X2zU is an almost standard zigzag
and cX2pν`q “ rE XC. Rename rE by B in X2. If E2 “ m in X , then the strict transform
of E in X2 satisfies E2 “ m`1. We repeat this procedure until E2 “ ´1. We then blow
down E and we end up back in the case B2 ą 0 and this leads to a contradiction.

The last case to treat is if XzU is a zigzag containing only B with B2 “ 0. We will show
in that case that ν`pCq “ `8 which is a contradiction. Indeed, let X 1 be the blow up of
BXC and let rE be the exceptional divisor. Then, by Lemma 4.4.13, cX 1 cannot be BX rE

so it must be rEXC. Let X2 be the blow up of rEXC and let rEp2q be the exceptional divisor.
Again, by Lemma 4.4.13, cX2pν`q “ rEp2qXC. By induction, we see that the centers of
ν` must always belong to the strict transform of C in every blow up, this implies that ν`

is the curve valuation associated to C and this is absurd.

Thus, ν` is not irrational. Hence, by Proposition 4.4.1 ν` is an infinitely singular valuation, so
we get that U “ X0 by Proposition 4.4.8.
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4.4.4 A summary and applications

We sum up the content of Theorem 4.4.18 in Figure 4.7 and 4.8

Figure 4.7: Dynamics at infinity of f when λ1p f q P Zě0

Theorem 4.4.18. Let X0 “ SpecA be a normal affine surface defined over an algebraically

closed complete field Cv such that Aˆ “Cˆv and Pic0pX0q “ 0. Let f be a loxodromic automor-

phism of X0. Then, there exists two unique (up to normalization) distinct valuations centered at

ν`,ν´ such that f˘1
˚ pν˘q “ λ1ν˘. Let θ´ “ Zν` and θ` “ Zν´ . We have that θ`,θ´ are nef,

effective and satisfy the following relations

f ˚θ` “ λ1θ
`, f ˚θ´ “

1
λ1

θ
´ (4.106)

f˚θ` “
1
λ1

θ
`, f˚θ´ “ λ1θ

´. (4.107)

Furthermore we have the following intersection relations: pθ`q2 “
`

θ´
˘2
“ 0 and θ` ¨θ´ “ 1.

We can find a completion X of X0 such that if p` :“ cXpν`q, p´ :“ cXpν´q, then

(1) p` ‰ p´.

(2) some positive iterate of f˘1 contracts BX X0 to p˘.

(3) f˘ is defined at p˘, f˘ “ p˘ and p¯ is the unique indeterminacy point of f˘.
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Figure 4.8: Dynamics at infinity of f when λ1p f q P RzQ

(4) There exists an open neighbourhood U˘ of p˘ in XpCvq and local coordinates at p˘ such

that f˘
|U˘ has a local normal form of (pseudo)monomial type (3.4) or ((3.5)) if λ1p f q RZě0

or of type (3.2) or (3.3) if λ1p f q P Zě0.

(5) For all prime divisor E` of X at infinity such that p` P E`,

ordE`pθ
`
q ą ordE`pθ

´
q (4.108)

(6) For all prime divisor E´ of X at infinity such that p´ P E´,

ordE´pθ
´
q ą ordE´pθ

`
q (4.109)

(7) If λ1 P Zě0, then pθ`X ,θ
´
X q P Div8pXqQ is a well ordered pair (cf §3.2.5).

Proof. Any completion provided by Theorem 4.4.4 satisfies item (1)-(4). Fix X such a comple-
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tion, we show that there exists a completion above X that satisfy (1)-(6) by successively blowing
up the centers of ν` and ν´.

Lemma 4.4.19. There exists a completion Y above X such that for all completion Y 1 above Y ,

for all prime divisor E` of Y 1 at infinity such that cY 1pν`q P E`,

ordE`pθ
`
q ą ordE`pθ

´
q (4.110)

Proof of Lemma 4.4.19. Recall that θ` “ Zν´ and θ´ “ Zν` . Let p` “ cXpν`q and replace
ν` (and θ`) by their multiple such that ν` P VXpp`;mp`q. Let Xn be the sequence of com-
pletions defined by X0 “ X and πn : Xn`1 Ñ Xn is the blow up of Xn at cXnpν`q. Define also
the morphism of completions τn :“ π0 ˝π1 ˝ ¨ ¨ ¨ ˝πn : Xn`1 Ñ X . Since cXpν`q ‰ cXpν´q, we
have that for all n,cXnpν`q ‰ cXnpν´q. By Proposition 4.1.5 Equation (4.11), we have that for
all n,θ`Xn`1

“ π˚nθ
`
Xn

since cXnpν`q ‰ cXnpν´q, hence θ
`
Xn`1

“ τ˚nθ
`
X . Let En be the exceptional

divisor of πn : Xn`1 Ñ Xn. Notice that

@ně 0, cXppτnq˚ ordEnq “ cXpν`q. (4.111)

We have by Proposition 3.4.26 that the sequence νn :“ 1
bpEnq

ordEn converges strongly towards
ν`. Therefore, by Corollary 4.1.8, we have

Zνn Ñ λθ
´ (4.112)

where λą 0 such that λν` PVXpp;mpq. This convergence is with respect to the strong topology
of L2pX0q, therefore we can intersect both sides with θ´, to get

Zνn ¨θ
´
Ñ 0. (4.113)

This means that ordEnpθ
´q “ opbpEnqq when nÑ8. Now, we evaluate Zνn ¨θ

`. Since for all
n, θ

`
Xn`1

“ τ˚nθ
`
X , we get

Zνn ¨θ
`
“ Zνn,Xn`1 ¨θ

`
Xn`1

“ pτnq˚Zνn,Xn`1 ¨θ
`
X “ Zνn,X ¨θ

`
X . (4.114)

If cXpν`q P E is a free point, then by Equation (4.111) and Proposition 4.1.5

Zνn,X “ pZνn ¨EqZordE . (4.115)
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By Proposition 3.6.20, we have that LνnpEq ě 1. Hence, we get 1
bpEnq

ordEnpθ
`q ě ordEpθ

`q ą 0.
If cXpν`q is a satellite point, i.e cXpν`q “ EXF where E,F are two prime divisors of X at

infinity, then we get by Equation (4.111), Proposition 4.1.5 and Proposition 3.6.20 that

1
bpEnq

ordEnpθ
`
q ě ordEpθ

`
q`ordFpθ

`
q (4.116)

and the lemma is proven.

Let Y be a completion above X given by Lemma 4.4.19. By the last assertion of Theorem
4.4.4, there exists a completion Y 1 above Y that satisfy conditions (1)-(4) and Lemma 4.4.19
shows that Y 1 satisfies also conditions (5) and (6). Suppose now that λ1 P Zě0, then the eigen-
valuations ν` and ν´ are infinitely singular, therefore up to normalisation θ`,θ´ PWeil8pX0qQ
by Corollary 4.1.7 and cXpν`q,cXpν´q are free points at infinity. Let Y be a completion above
X such that θ

`
X _ θ

´
X is defined in Y . By Proposition 3.6.25 ,the morphism of completions

π : Y Ñ X is a composition of blow ups of satellite points. Therefore, by Proposition 4.1.5,
θ
˘
Y “ π˚θ

˘
X and conditions (1)-(6) still holds in Y .

Proposition 4.4.20. Let X0 be a normal affine surface defined over Cv. If f is a loxodromic

automorphism of X0, then, there are no f -invariant algebraic curves in X0.

Proof. If dimQAlbpX0q “ 2, then X0 is a finite ramified cover of G2
m. It suffices to show the

result for the loxodromic automorphisms of G2
m. Any monomial automorphism of G2

m does not
admit invariant curves, so the result follows.

If dimQAlbpX0q “ 1, then every automorphism of X0 preserves a fibration over a curve,
hence it cannot be loxodromic.

Finally, if dimQAlbpX0q “ 0, let X be a completion of X0 given by Theorem 4.4.18. Suppose
that C Ă X0 is an algebraic curve invariant by f . Let C be the closure of C in X . We must
have tp`, p´uX pCXBX X0q ‰ H. Indeed, CXBX X0 is not empty so let p be a point in it. If
p R tp`, p´u, then f is defined at p and f ppq “ p`. Since C is f -invariant, we get p` P C.
This means that C defines a germ of an analytic curve at p` that is invariant by f but this is not
possible by Theorem 4.2.1.

Corollary 4.4.21. If X0 is a normal affine surface defined over a number field K and f is a

loxodromic automorphism of X0, then all periodic points of f are defined over K.

Proof. Suppose there exists p P X0pCqzX0pKq such that f Nppq “ p. Let G :“ GalpC{Qq, then
for all q P G ¨ p, we have f Npqq “ q. Since p R X0pKq, the orbit G ¨ p is infinite and its Zariski
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closure G ¨ p Ă X0 ˆ SpecC has dimension ą 0. If dimG ¨ p “ 2, then f N “ id and this is
impossible because f is loxodromic. If dimG ¨ p“ 1, then C “G ¨ p is an f N-invariant curve of
X0ˆSpecC. This is impossible by Proposition 4.4.20.

Corollary 4.4.22. Let X0 be a normal affine surface defined over Cv such that QAlbpX0q “ 0.

Let f be a loxodromic automorphism of X0 and let X be a completion of X0 from Theorem

4.4.18. If p P X0pCvq, we have two possibilities.

1. The forward f -orbit of p is bounded.

2. p f nppqqně0 converges towards p`.

Proof. Suppose that p f nppqqn is not bounded. Since XpCvq is compact, p f nppqq has an accumu-
lation point q P BX X0. Let U` be the open neighbourhood of p` given by Theorem 4.4.18. We
must have q P tp`, p´u. Otherwise, since f pqq “ p`, if f N0ppq is sufficiently close to q, then
for all N ě N0` 1, f Nppq PU` and q cannot be an accumulation point. Suppose that q “ p´.
Let px,yq be the local coordinates at p´ over U´ given by Theorem 4.4.18. Consider the norm
maxp|x| , |y|q over U´. Looking at the normal form of f , for any ε ą 0 small enough, the ball
Bpp´,εq of center p´ and radius ε, with respect to this norm, is f´1-invariant and we have
f´1Bpp´,εq Ť Bpp´,εq. Therefore if f N0ppq P Bpp´,εq, we have p P Bpp´,εq. Letting εÑ 0
we get p“ p´ and this is a contradiction. Therefore, the only accumulation point of p f NppqqN
is p` and it is the limit of this sequence.
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CHAPTER 5

GREEN FUNCTIONS AND DYNAMICS OF

LOXODROMIC AUTOMORPHISMS OF

AFFINE SURFACES

5.1 Berkovich spaces, Adelic divisors and line bundles

5.1.1 Berkovich spaces

Let k be a complete field with a multiplicative norm |¨|. We recall the definition and main
properties of Berkovich spaces, for a reference see [Ber12]. If X is scheme over k, we will
write Xan or pX{kqan the Berkovich analytification of X .

Definition 5.1.1. (i) If X “ SpecA where A is a k-algebra, then Xan is the set of multiplica-
tive seminorms on A extending the norm on k. For every x P Xan we have a seminorm
|¨|x : AÑ R`. We will write |P|x as |Ppxq|. The topology on Xan is the coarsest topology
such that the evaluation maps | f | : Xan ÑR are continuous. This is the weak topology of
simple convergence.

(ii) If X is covered by an open affine cover tSpecAiu, then Xan is defined to be the union of
the pSpecAiq

an glued in a canonical way. Xan has a locally ringed space structure.

If X “ SpecA, for any x P Xan, the seminorm |¨|x induces a norm over A{ker |¨|x. We can
take the fraction field of A{ker |¨|x and complete it with respect to the norm induced by |¨|x. This
defines the residue field of x which we denote by Hx.

We have a functoriality property, If f : X Ñ Y is a morphism of k-schemes, then it induces
a continuous map f an : Xan Ñ Y an

Proposition 5.1.2 (Topological properties of the Berkovich space). (1) If X is separated and

of finite type over k, then Xan is Hausdorff.
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(2) If X is of finite type over k, then Xan is locally compact.

(3) If X is projective over k, then Xan is compact.

If k “ C equipped with the usual norm, then if X is a scheme of finite type over C,
Xan “ XpCq.

Contraction map There is a natural contraction map c : XanÑ X defined as follows. Suppose
X “ SpecA, then if x P Xan the kernel of |¨|x : AÑ Hx Ñ R is a prime ideal of A, we let cpxq be
this prime ideal. If p P X is a closed point, then c´1ppq consists of a unique point and we have
a natural embedding Xpkq ãÑ Xan. Indeed, let x P c´1ppq, then x induces a norm on the field
κppq :“ OX ,p{mp, but κppq is a finite extension of k so there exists a unique extension of the
norm of k to κppq.

The reduction map Suppose that k is a complete valued non-archimedean field. We write k˝

for its valuation ring and k˝˝ for the maximal ideal of k˝. Let X be a projective scheme over
k and let X be a model of X . That is a projective k˝-scheme X such that the generic fiber
Xη is isomorphic to X . We denote by Xo the special fiber of X . There exists a canonical
reduction map rX : Xan Ñ Xo defined as follows. Recall that we have the contraction map
c : Xan Ñ X » Xη. For every x P Xan, let ξ :“ cpxq, we have a non-archimedean norm on
the residue field kpξq induced by x. Let Rξ be the valuation ring of kpξq with respect to the
norm x. There is a map SpecRξ Ñ Speck˝ induced by k˝Ñ Rξ. By the valuative criterion for
properness, there exists a unique lift in the following diagram

Speckpξq, X

SpecRξ Speck˝
. (5.1)

We define rX pxq as the image of the closed point of SpecRξ in X˝.

5.1.2 Green functions

Now until the end of this memoir, Cv will be an algebraically closed complete field. If X is a
scheme over Cv, then Xan will be the Berkovich analytification of Cv.
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Definition 5.1.3. Let X be a completion of X0 and D “
ř

i aiEi P DivpXqR. A (continuous)
Green function of D is a continuous function g : XanzpSuppDqan Ñ R such that for any finite
open affine cover X “

Ť

j U j if h j
i is a local equation of Ei over U j, the function

g`
ÿ

i

ai log
ˇ

ˇ

ˇ
h j

i

ˇ

ˇ

ˇ
(5.2)

extends to a continuous function over Uan
j .

Proposition 5.1.4. Two Green functions of the same R-divisor D differ by a bounded continuous

function

Proof. If g1,g2 are two Green functions of D, g1´g2 can be extended to a continuous function
over Xan. Since X is projective, Xan is compact and the function g1´g2 is bounded.

Proposition 5.1.5. Let D P DivpXqR be an effective divisor, then any Green function of D is

bounded from below.

Proof. Let g be any Green function of D. Write D “
ř

i aiEi where ai P R and Ei is a prime
divisor. Let x P pSuppDqan and let hi be a local equation of Ei at cpxq. By definition, the
function g`

ř

i ai log |h|i extends to a continuous function at x. Since D is effective, ai ą 0@i

and
ř

i ai log |h|i Ñ ´8 at x. This means that there exists an open neighbourhood Ux Ă Xan

of x such that g|UxzpSuppDqan ě 0. Since SuppD is a closed curve, pSuppDqan is compact so we
can cover it by a finite number of such open subset Ux. We have therefore constructed an open
neighbourhood V of the curve pSuppDqan over which g is ě 0. Now, the complement of V is
a closed compact subset of XanzpSuppDqan, therefore g is bounded over it. We get that g is
bounded from below over XanzpSuppDqan.

Proposition 5.1.6. Let X ,Y be two projective varieties and let ϕ : Y Ñ X be a surjective mor-

phism. Let D P DivpXqR, let gD be a Green function of D and let gϕ˚D be a Green function of

ϕ˚D, then

gD ˝ϕ
an
´gϕ˚D (5.3)

defines a continuous (bounded) function over Y an.

Proposition 5.1.7. Let X be a completion of X0. Let D1,D2 P Div8pXqR and let g1,g2 be

Green functions of D1 and D2 respectively. Suppose that pD1,D2q is a well ordered pair. Then,

maxpg1,g2q is a Green function of maxpD1,D2q.
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Proof. Let D “ maxpD1,D2q and x P SupppDqan. We have that cpxq is either a closed point on
SuppD or the generic point of one of the irreducible components of SuppD.

If cpxq “ ηE is the generic point of an irreducible component of SuppD or if cpxq P E is a
free point. Set αi “ ordEpDiq, i “ 1,2. Then, if z is a local equation of E at cpxq there exists a
continuous function ψi defined locally at x such that gi`αi log |z| “ ψi. If α1 “ α2 “ α, then

maxpg1,g2q`α log |z| “maxpψ1,ψ2q (5.4)

which is continuous. If α1 ă α2, then

maxpg1,g2q`α1 log |z| “maxpψ1,ψ2`pα1´α2q log |z|q. (5.5)

Since α1´α2 ą 0, this is equal to ψ1 on the open neighbourhood
!

log |z| ă max|ψ2|
α1´α2

)

of x, so it
extends to a continuous function at x.

If cpxq“EXF is a satellite point where E,F P SuppD, set αi“ ordEpDiq,βi“ ordFpDiq. Let
z,w be local equations of E,F at cpxq respectively. There exist two continuous functions ψ1,ψ2

locally defined at x such that gi`αi log |z|`βi log |w| “ ψi. If α1 “ α2 “ α and β1 “ β2 “ β,
then

maxpg1,g2q`α log |z|`β log |w| “maxpψ1,ψ2q (5.6)

which is continuous.

If α1 ą α2, since pD1,D2q is a well ordered pair, we have β1 ě β2. Therefore,

maxpg1,g2q`α1 log |z|`β1 log |w| “maxpψ1,ψ2`pα1´α2q log |z|`pβ1´β2q log |w|q (5.7)

Since α1´α2 ą 0 and β1´β2 ě 0, the right hand side is equal to ψ1 on the open neighbourhood
tpα1´α2q log |z| ămax |ψ2|u of x, so it extends to a continuous function at x.

Suppose Cv is non-archimedean. A model Green function of D is any Green function of the
following form. Let X be a projective variety over SpecOv such that X “X bOv SpecCv and
let D be a Cartier divisor of X such that DbOv SpecCv “D. We say that pX ,Dq is a model of
pX ,Dq. We define the function gpX ,Dq : pXzSuppDqpCvq as follows. Let rX : XpCvq ÑXo be
the reduction map defined in Section 5.1. Let x PXanzpSuppDqan. Let h be a local equation of D

at rpxq. By definition, we have a local ring homomorphism OX ,rX pxqÑ Rcpxq where Rcpxq is the
valuation ring of the residue field κpcpxqq equipped with the non-archimedean norm induced by
x, in particular we can define |hpxq|. We define gpX ,Dqpxq “ ´ log |hpxq|. This does not depend
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on the choice of h because the quotient of two local equations of D is an invertible element of
OX ,rX pxq hence it has norm 1. If D “

ř

i aiDi is an R-divisor of X with Di Cartier divisors,
then a model Green function is a function gpX ,Dq “

ř

i aigpX ,Diq where pX ,Diq is a model of
pX ,Diq.

A model Green function gpX ,Dq is said to be semipositive if D is nef over X .

Example 5.1.8. Let h P CvpXqˆ be a rational function, then log |h| is a model Green function
of divphq. Indeed, let X be a model of X and consider the principal divisor divphq on X as h

defines a rational function on X .

Proposition 5.1.9. Let X “ PN
Cv

with homogeneous coordinates T0, ¨ ¨ ¨ ,TN . Consider the affine

chart tT0 ‰ 0u with affine coordinates t1, ¨ ¨ ¨ , tn. Then the function

gpxq “ log`maxp|t1pxq| , ¨ ¨ ¨ , |tnpxq|q (5.8)

If Cv is non-archimedean, g is a semipositive model Green function for the divisor tT0 “ 0u. If

Cv “ C, then g is a psh Green function of tT0 “ 0u.

Proof. Take X “ PN
Ov

with homogeneous coordinates T0, ¨ ¨ ¨ ,TN and set D “ tT0 “ 0u, then
pX ,Dq is a model of X ,D where D“ tT0 “ 0u P DivpXq.

Proposition 5.1.10. Let X ,Y be Cv-projective scheme with a morphism ϕ : Y Ñ X. Let D be a

R-divisor on X. Let pX ,Dq be a model of pX ,Dq and suppose that there is a model Y of Y and

a morphism Φ : Y ÑX extending ϕ. Then,

gpY ,Φ˚Dq “ gpX ,Dq ˝ϕ (5.9)

and it is a model Green function of ϕ˚D. Furthermore, gpX ,Dq is semipositive, then gX ,D ˝ϕ

also is.

Corollary 5.1.11. Let X be a projective variety and let D be an integral effective divisor on X

such that OXpDq is generated by global sections. Let sD be the global section defining D and

let s1, ¨ ¨ ¨ ,sn be global sections of OXpDq such that psD,s1, ¨ ¨ ¨ ,snq generates OXpDq. Then, the

function

@x P pXzSuppDqpCvq, gs1,¨¨¨ ,snpxq :“ log`max
ˆˇ

ˇ

ˇ

ˇ

s1

sD
pxq

ˇ

ˇ

ˇ

ˇ

, ¨ ¨ ¨ ,

ˇ

ˇ

ˇ

ˇ

sn

sD
pxq

ˇ

ˇ

ˇ

ˇ

˙

(5.10)

is a semipositive model Green function of D, If Cv “ C, then it is a psh Green function of D.
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Proof. If Cv “ C the statement is clear, so we treat only the non-archimedean case. Consider
the morphism ϕ : X Ñ PN induced by the sections sD,s1, ¨ ¨ ¨ ,sn such that ϕ˚X0 “ sD. Then,
gs1,¨¨¨ ,sn is the pull back of the model Green function defined in 5.1.9 which is semipositive. By
Proposition 5.1.10 it is a semipositive model Green function of D.

Proposition 5.1.12. Every R-divisor D P DivpXqR admits a Green function.

Proof. We can suppose that D is effective. Let H be an ample divisor on X . Let m be a large
enough integer such that OXpmH`Dq and OXpmHq are both generated by global sections. Let
g1 be a Green function of mH`D and g2 be a Green function of mH both provided by Corollary
5.1.11. Then, g1´g2 is a Green function of D.

5.1.3 Adelic divisors

Definition 5.1.13. Let X be a projective variety over a number field K. An adelic R-divisor

over X is the data
´

D,pgvqvPM pKq

¯

where D is an R-divisor over X and for each place v of K,
gv is a Green function of the divisor DCv :“DbSpecCv over XCv such that there exists an open
subset U of SpecOK such that there is a model pXU ,DUq of pX ,Dq over U and for all v PU , gv

is the model Green function induced by

pXU ˆSpecU Ov,DU ˆU SpecOvq (coherence condition) (5.11)

An adelic R-divisor is semipositive if

• For every archimedean place, gv is a plurisubharmonic function and c1pDC,gvq is a posi-
tive current.

• For every non-archimedean place v, pDCv,gvq is semipositive.

To an adelic R-divisor D“ pD,pgvqvq we can associate a height function defined as follows

@p P pXzSuppDqpKq, hDppq :“
1

degq

ÿ

v

ÿ

qPGalpK{Kq¨p

nvgvpqq (5.12)

where nv is an integer that depend only on the place v.

5.1.4 Metrics over line bundles

Let X be a projective variety over Cv and let Xan be its Berkovich analytification. Since Xan is
a locally ringed space, we can define line bundles on Xan. If L is a line bundle over X we define
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Lan :“ c˚L the analytification of L where c : Xan Ñ X is the contraction map. Let L be a line
bundle over Xan a metric over L is the data for every x P Xan of a Cv-norm over the stalk Lx of
L at x.

Let L be a line bundle over X . A model metric of Lan is a metric defined as follows. Let
pX ,L q be a model of pX ,Lq over Cv. That is X is a model of X and L is a line bundle over
X such that L bSpecCv » Ln for some integer ně 1. Let x P Xan and let s P Lan

x . Then, there
exists s1 P Lcpxq such that s “ c˚s1. Now, let rs be a local generator of L at cpxq P X ĂX . We
have that there exists a germ of regular function ϕ at cpxq such that ps1qn “ ϕrs. We set

||spxq|| “ |ϕpxq|1{n . (5.13)

Example 5.1.14. Let X “ PN
Cv

with homogeneous coordinates T0, ¨ ¨ ¨ ,TN and let L “ Op1q.
Consider the model X “ PN

Ov
with the same homogeneous and the line bundle L “ Op1qX

over X . The line bundle L (and L ) is generated by the global sections induced by the T 1i s. Let
x P Xan, suppose that rX pxq P tTi ‰ 0u this means that cpxq P tTi ‰ 0u and max j‰i

ˇ

ˇ

ˇ

Tj
Ti
pxq

ˇ

ˇ

ˇ
ď 1

(indeed, Tj
Ti

defines a germ of regular function at rX pxq). Consider si the global section of L

induced by Ti. Then, it is also a section of L , therefore

||Tipxq|| “ 1 (5.14)

“
1

max
´ˇ

ˇ

ˇ

T0
Ti
pxq

ˇ

ˇ

ˇ
, ¨ ¨ ¨ ,

ˇ

ˇ

ˇ

Ti´1
Tipxq

ˇ

ˇ

ˇ
,1,

ˇ

ˇ

ˇ

Ti`1
Ti
pxq

ˇ

ˇ

ˇ
, ¨ ¨ ¨ ,

ˇ

ˇ

ˇ

Tn
Ti
pxq

ˇ

ˇ

ˇ

¯ (5.15)

“
|Tipxq|

maxp|T0pxq| , ¨ ¨ ¨ , |Tnpxq|q
(5.16)

In particular, consider the global section T0 and consider the affine space tT0 ‰ 0u » an with
homogeneous coordinates t1, ¨ ¨ ¨ , tn. Then, we have the Green function of tT0 “ 0u given by

gpxq “ ´ log ||T0pxq|| “ log`maxp|t1pxq| , ¨ ¨ ¨ , |tnpxq|q (5.17)

Which is the model Green function from Proposition 5.1.9.

A model metric is said to be semipositive if for every vertical curve C in X , degC L ě 0.

Proposition 5.1.15. Let L be a line bundle over X and let s P H0pX ,Lq. Then, the function

x ÞÑ ´ log ||pc˚sqpxqq|| is a Green function of divpsq. Conversely, if D PDivpXq and g is a Green
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function of D. Then, we can define a metric on OXpDqan by setting

@x P Xan
zpSuppDqan, ||pc˚sDqpxq|| “ e´gpxq (5.18)

5.1.5 Adelic line bundles

Let X be a projective variety over a number field K, an adelic line bundle L is the data of a
line bundle L over X and a collection of metrics t||¨||vuv PM pKq such that there exists an open
subset U Ă SpecOK and a model pXU ,LUq of pX ,Lq over U such that for every place v PU ,
the metric ||¨||v is the metric induced by the model pXU ˆSpecOν,LU ˆSpecOνq.

An adelic line bundle is semipositive if

• For every archimedean place v, c1pLC, ||¨||vq is a positive current.

• For every non archimedean place v, the metric ||¨||v on Lv is a uniform limit of semiposi-
tive model metric on Lv.

It is integrable if it is the difference of two semipositive adelic line bundles.

To an adelic line bundle L, we can associate a height function hL defined for all closed
subvarieties of X defined by the following formula

hLpZq “
pLZq

dimZ`1

degZpL|Zq
. (5.19)

In particular, if s P H0pX ,Lq is a global section of L, then for all p P pXzSuppdivpsqqpKq,

hLpxq “
1

degx

ÿ

v

ÿ

yPGalpK{Kq¨x

´nv log ||spyq||Lv
(5.20)

which is exactly the height function associated to the adelic divisor pdivpsq,´ log ||s||Lv
q (see

(5.12)).

5.1.6 Chambert-Loir measure

Let X be a projective variety over Cv of dimension d, let L1, ¨ ¨ ¨ ,Ld be integrable metrized line
bundles, then Chambert-Loir constructed in [Cha03] a measure

c1pL1q ¨ ¨ ¨c1pLdq (5.21)
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defined over Xan. Here are the main properties of this measure:

Proposition 5.1.16. If for every i, there exists ei such that Li
ei is induced by a model pX ,Liq.

Then, let X1, ¨ ¨ ¨ ,Xl be the irreducible components of the special fiber X of X and let Li be the

restriction of Li to the special fiber of X . For each j, there exists a unique point ξ j P Xan such

that rpξ jq is the generic point of X j, we have

c1pL1q ¨ ¨ ¨c1pLdq “
1

e1 ¨ ¨ ¨ed

ÿ

j

`

c1pL1q ¨ ¨ ¨c1pLdq|X j
˘

δξ j (5.22)

This is in fact how the measure is defined for the model case.

Proposition 5.1.17 ([Cha03]). Let X be a projective variety over Cv of dimension d. Let

L1, ¨ ¨ ¨ ,Ld be semipositive metrized line bundles, then for any sequences pLi,nqn of semiposi-

tive model metrics of Li converging to Li one has that the measures

c1pL1,nq ¨ ¨ ¨c1pLn,dq (5.23)

converges to a measure independent of the choices of the sequences. We denote this measure

c1pL1q ¨ ¨ ¨cdpLdq. Furthermore, it has total mass

ż

Xan
c1pL1q ¨ ¨ ¨cdpLdq “ c1pL1q ¨ ¨ ¨c1pLdq (5.24)

In particular, we write µL :“ 1
c1pLqd

c1pLq ¨ ¨ ¨c1pLq, we call it the equilibrium measure of L,
it is a probability measure by Proposition 5.1.17. If L is an adelic line bundle over a projective
variety X over a number field K, we write µL,ν for the equilibrium measure of Lv.

5.1.7 Equidistribution

Let pxnq be a sequence of XpKq Ă XpCvq and let µv be a measure on pXCvq
an. We say that the

Galois orbit of pxnq is equidistributed with respect to µv if the sequence of measures

δpxnq :“
1

degpxnq

ÿ

xPGalpK{Kq¨xn

δx (5.25)

weakly converges towards µ, where δx is the Dirac measure at x.
We say that a sequence of points pxnq of XpKq is generic if no subsequence of pxnq is

contained in a strict subvariety of X . In particular, a generic sequence is Zariski dense.
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Lemma 5.1.18. Let X be a projective variety over a number field K and let pxnq be a Zariski

dense sequence of XpKq, then one can extract a generic subsequence of pxnq.

Proof. The set of strict irreducible subvarieties of X is countable because K is a number field.
Let pYqqqPN be the set of strict irreducible subvarieties of X . We construct a generic subsequence
px1qqqPN as follows. Set Y 1q “

Ť

kďqYk. This is a strict subvariety of X , since pxnq is Zariski
dense, there exists an integer npqq such that xnpqq R Y 1q. We set x1q “ xnpqq. The sequence px1qq is
a subsequence of pxnq which is clearly generic.

Theorem 5.1.19 (Yuan-Zhang equidistribution theorem, [YZ22]). Let X be a projective variety

and let L be a semipositive adelic line bundle over X such that degXpLq ą 0. Let pxnq P XpKq
be a generic sequence such that limn hLpxnq Ñ hLpXq, then at every place v the Galois orbit of

the sequence pxnq is equidistributed with respect to the equilibrium measure µL,v.

5.1.8 Intersection of line bundles

Let X be a projective variety over Cv of dimension d and let L0, ¨ ¨ ¨ ,Ld be integrable line bundles
over X . Then, there exists an intersection number

L0 ¨ ¨ ¨ ¨Ld (5.26)

with the following properties:

1. It is multilinear.

2. If s is a global rational section of L0, then

L0 ¨ ¨ ¨Ld “
`

L1 ¨ ¨ ¨Ld|divpsq
˘

´

ż

Xan
log ||s||c1pL1q ¨ ¨ ¨c1pLdq (5.27)

Theorem 5.1.20 (Arithmetic Hodge index theorem, [YZ17]). Let X be a projective surface over

some complete algebraically closed field Cv. Let D be a big, nef and effective divisor on X and

let L be a semipositive metrized line bundle such that L “ OXpDq. If pM, ||¨||q is an integrable

metrized line bundle such that M “ OX , then

M2
¨Lď 0. (5.28)

Furthermore, if M is L bounded, we have equality if and only if ||¨|| is constant.
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As in [YZ17], we get the following corollary

Corollary 5.1.21 (Calabi Theorem). Let D be a big, nef and effective divisor over a pro-

jective surface X over Cv. Let g1,g2 be two semipositive Green functions of D such that

c1pD,g1q
2 “ c1pD,g2q

2, then g1´g2 is constant over X.

Proof. Let Li be the metrized line bundle such that Li “ OXpDq and the metric on Li is induced
by gi. Consider M “ L1´L2. Let f “ g1´g2, then

M ¨L1
2
“´

ż

Xan
f c1pL1q

2
“´

ż

Xan
f c1pL2q

2
“M ¨L2

2
. (5.29)

Hence we get
M2
¨ pL1`L2q “ 0 (5.30)

Now, M is pL1`L2q-bounded so by the equality case in the Arithmetic hodge index theorem
we get that g1´g2 is constant.

Proof of Arithmetic Hodge index theorem. The only part not shown by Yuan and Zhang is the
equality part in the case where we only suppose that D is big, nef and effective and not ample.
So we prove only the second assertion. Suppose that M2

¨L“ 0. Following the proof of [YZ17],
We have the following result

Lemma 5.1.22 ([YZ17], Lemma 2.5). For any integrable line bundle M1 such that M1 “ OX ,

we have

M2
¨M1 “ 0 (5.31)

In particular, it implies that c1pMq2 “ 0. Indeed, since M2
¨M1

“ 0, this means that

ż

Xan
g1c1pMq2 “ 0 (5.32)

where g1 “ log ||1||M1 . So this holds for any model metric of the trivial line bundle. Now, by
a result of Gubler or [Mor16] Theorem 3.3.3, the set of model metric of the trivial line bundle
is dense in the set of all real-valued continuous function over Xan for the topology of uniform
convergence so we get c1pMq2 “ 0.

Lemma 5.1.23. For all curve C Ă X,

M2
|C “ 0 (5.33)
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Proof. We first show that there exists an integer m ě 1 such that OXpmDq has a section that
vanishes along C. Indeed, if C is not in the support of D, since D is big , by [Laz04] Proposition
2.2.6, there exists an integer mě 1 such that H0pX ,OXpmD´Cq ‰H. Therefore, we can find a
section s PH0pX ,mDq such that s vanishes along C. If C is in the support of D, there is a global
section s P H0pX ,OXpDqq such that divpsq “ D, in particular it vanishes along C.

Write divpsq “
ř

i aiCi with ai ą 0. We get

0“M2
¨D“

ÿ

i

aiM
2
|Ci
´

ż

Xan
log ||s||L c1pMq2. (5.34)

By Lemma 5.1.22, we get 0“
ř

i aipM|Ciq
2. By the arithmetic Hodge index theorem in the case

of curves, every term in the sum is nonpositive, hence there are all equal to 0. Since C is one of
the Ci we get the result.

Now, the equality case when X is a curve is shown in [YZ17] and therefore we get that
for every curve C Ă X , g|Can is constant where g “ log ||1||M. We are going to show that g is
constant. The set of rational points XpCvq is Zariski dense in Xan so it suffices to show that g

is constant on this subset. Let p,q P XpCvq be two closed point, it suffices to show that there
exists a connected curve of X containing p and q. If we embed X in some projective space PN

we get by [Har77] Chapter III Corollary 7.9 that for every hyperplane H,HXX is connected.
Therefore, if H is a hyperplane containing p and q, HXX is connected curve C that contains p

and q and we get the result.
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5.2 Definition of the Green functions

Definition 5.2.1. Fix a completion X of X0 that satisfy Theorem 4.4.18. Let D PDiv8pXqR and
let GpDq be a Green function of D. Recall that f is a fixed loxodromic automorphism of X0. We
define the sequence of continuous functions over X0pCvq

G`n,D :“
1
λn

1
GpDq ˝ p f qn (5.35)

G´n,D :“
1
λn

1
GpDq ˝ p f q´n (5.36)

In the following we are going to state all the results for the sequence G`n,‚ as everything is
analogous for G´n,‚.

Remark 5.2.2. The choice of the Green function GpDq is not canonical but by Proposition
5.1.4, the limit process we are going to apply will not depend on this choice.

Proposition 5.2.3. For any effective R-divisor R P Div8pXqR. The function

GpRq ˝ f an
´Gp f ˚X Rq (5.37)

extends to a continuous function over Xanzp´.

Proof. Let π : Y Ñ X be a completion above p´ P X such that the lift F : Y Ñ X is regular. By
definition, f ˚X R “ π˚F˚R. Now, by Proposition 5.1.6, we have that GpRq ˝Fan is a Green func-
tion of F˚R over Y an. Now, π induces an isomorphism π : YzExcpπqÑXzp´. Let q P BX X0zp´,
let ψ be a local equation of f ˚X R at q. By definition, F˚R´π˚ f ˚X R is π-exceptional, therefore
π˚ψ is a local equation of F˚R at π´1q. Thus, the function

GpRq ˝F` log |π˚ψ| (5.38)

extends to a continuous function at π´1pqq and therefore GpRq ˝ f ` log |ψ| extends to a contin-
uous function at q.

5.2.1 The Green function of θ
`
X

Start with the following lemma
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Lemma 5.2.4. Let π : Y Ñ X be a birational morphism between smooth projective surfaces.

Let D P DivpY qR, suppose that D is effective and nef, then

π
˚
π˚Dě D (5.39)

Proof. If π “ id then the lemma is true. Suppose π “ π1 ˝ τ where τ : Y Ñ X 1 is the blow up of
a point. Let D P DivpY qR be nef and effective, then

π
˚
π˚D“ τ

˚
pπ
1
q
˚
π
1
˚τ˚D. (5.40)

By induction, we get pπ1q˚π1˚pτ˚Dqě τ˚D because τ˚D is nef and effective. Therefore, it suffices
to show that τ˚τ˚DěD. Let p P X 1 be the center of τ, write D1 “ τ˚D“

ř

i aiCi`R with p PCi

and p R SuppR. Let rE be the exceptional divisor above p, then

τ
˚D1 “ τ

1R`
ÿ

i

aiτ
1
pCiq`p

ÿ

i

aimiqrE (5.41)

where mi is the multiplicity of Ci at p and

D“ τ
1R`

ÿ

i

aiτ
1
pCiq`δrE. (5.42)

Since D is nef, we have D ¨ rE ě 0. Hence,

D ¨ rE “´δ`
ÿ

i

aimi ě 0 (5.43)

and δď
ř

i aimi which shows the result.

Proposition 5.2.5. The sequence pG`
n,θ`X

q converges uniformly over any compact of X0pCvq to

a continuous function G`
θ
`
X

that satisfy the following properties

(1) G`
θ
`
X
˝ f “ λ1G`

θ
`
X

.

(2)
!

G`
θ
`
X
ą 0

)

“
Ť

ně0 f´npU`zBX X0q.

(3) @p P X0pCvq,G`
θ
`
X
ppq ě 0 and G`

θ
`
X
ppq “ 0 if and only if the forward f -orbit of p is

bounded.
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(4) If Cv “C, then G` is a plurisubharmonic function over X0pCq, it is pluriharmonic on the

set tG` ą 0u.

(5) The function G`´Gpθ`X q extends to a continuous function h over pXzp´qpCvq which is

bounded from above.

(6) The sequence
´

G`
n,θ`X

´Gpθ`X q
¯

converges uniformly to h over any compact subset of

XpCvqzp´.

Proof. By Proposition 5.2.3, the function

Ψ :“
1
λ1

Gpθ`X q ˝ f ´Gpθ`X q (5.44)

extends to a continuous function over XpCvqzp´. We first show that Ψ is bounded from above.
Let π : Y Ñ X be a morphism of completions such that the lift F : Y Ñ X is regular. We
have λ1θ

`
X “ f ˚X θ

`
X “ π˚F˚θ`X . By Lemma 5.2.4, we get that there exists an effective divisor

R P Div8pY q such that λ1π˚θ
`
X “ F˚θ`X `R. By Proposition 5.1.6, we get that

Ψ“´GpRq`Op1q. (5.45)

And by Proposition 5.1.5, we get that Ψ is bounded from above. Set G :“Gpθ`X q,G
`
n :“G`

n,θ`X
.

In particular, G`0 “ G. We have

G`n “
1
λn

1
G˝ f n

“
1

λ
n´1
1

ˆ

1
λ1

G˝ f
˙

˝ f n´1 (5.46)

“
1

λ
n´1
1

pΨ`Gq ˝ f n´1 (5.47)

“
1

λ
n´1
1

Ψ˝ f n´1
`G`n´1 (5.48)

By induction we get

G`n “ G`0 `
n´1
ÿ

k“0

1
λk

1
Ψ˝ f k (5.49)

So, for all n ě 0,G`n ´G`0 “ G`n ´G extends to a continuous function over Xzp´ which is
bounded from above since ψ is. Now, let U´ be a small open neighbourhood of p´. Since p´
is a super attracting fixed point of f´1 we can suppose that f´1U´ ĂU´ so that W :“ XzU´ is

203



Chapter 5 – Green functions and dynamics of loxodromic automorphisms of affine surfaces

f -invariant. The function |ψ| is bounded by a constant M and therefore

sup
W

1
λn ψ˝ f n

ď
M
λn

1
(5.50)

In particular, G`n converges uniformly over W X X0pCvq to a continuous function G`
θ
`
X

and

G`
θ
`
X
´G`0 “ G`

θ
`
X
´G extends to continuous bounded from above function over Xzp´. This

shows (5) and (6).

Proof of (1): This follows from G`
n,θ`X

˝ f “ λ1Gn`1,θ`X
.

Proof of (2) and (3): Since Gpθ`X qppq Ñ`8 when pÑ p` we can replace U` by a smaller
f -invariant subset such that pG`

θ
`
X
q|U`XBX X0 ą 0. By (1), we get

ď

ně0

f´n
pU`

zBX X0q Ă
!

G`
θ
`
X
ą 0

)

(5.51)

. To get the other inclusion, we use Corollary 4.4.22. Let p P X0pCvq. If p f nppqqně0 is bounded,
then G`

θ
`
X
ppq “ 0. If not, then by Corollary 4.4.22 we have that f nppq ÝÝÝÝÑ

nÑ`8
p` so for n large

enough f nppq PU` and by (1), G`ppq “ 1
λn

1
G`p f nppqq ą 0.

Proof of (4): We will show in Proposition 5.2.12 that G` is locally the uniform limit of
a sequence of psh functions, so G` is plurisubharmonic. We show the pluriharmonicity over
!

G`
θ
`
X
ą 0

)

we only need to show by (1) and (2) that G`
θ
`
X

is pluriharmonic over U`XBX X0. We

have that U` is f -invariant. Let pu,vq be local analytic coordinates at p´ such that if p` P E is
a free point, then u “ 0 is a local equation of the E; and if p` “ EXF is a satellite point then
uv“ 0 is a local equation of EYF at p`.

In the free case, we have that Gpθ`X q “ α log |u|` log |ϕ| where ϕ is an invertible holomor-
phic function over U`, then p f nq˚u “ uλn

1ψn where ψn is an invertible holomorphic function
over U` and p f nq˚ ˝ϕ is still an invertible holomorphic function over U`, therefore

1
λn

1
Gpθ`X q ˝ f n

“ α log |u|`
α

λn
1

log |ψn|`
1
λn

1
log |p f n

q
˚
ϕ| (5.52)

over U`XX0. Since u does not vanish on U`XX0 we have that G` is a uniform limit of
pluriharmonic functions over U`XX0 so it is pluriharmonic.
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5.2. Definition of the Green functions

5.2.2 The Green function for any divisor not supported on E` and F̀

Let R P Div8pXqR be an effective divisor such that SuppRX
 

E`,F`
(

“H where E`, F̀ are
the prime divisor at infinity on which cXpν`) lies. If it is a free point, we use the convention
that E` “ F̀ .

Proposition 5.2.6. For any such R-divisor R, the function

GpRq ˝ f (5.53)

extends to a continuous function over XpCvqzp´.

Proof. For any E in the support of R, we have f ˚XpEq “ 0, therefore by Proposition 5.2.3, we
have that GpEq ˝ f extends to a continuous function over XpCvqzp´.

Corollary 5.2.7. For any such R-divisor, the sequence G`n,R converges uniformly to the zero

function over any compact subset of Xzp´.

Proof. Any compact subspace of X0 is a subset of XzU´ for some open neighbourhood U´ of
p´. We can shrink U´ such that f´1pU´q ŤU´. Therefore, W :“ XzU´ is f -invariant. The
function GpRq ˝ f is continuous over W by Proposition 5.2.6. Now W is compact, therefore
|GpRq ˝ f | is bounded over W . We get

sup
W

ˇ

ˇ

ˇ

ˇ

1
λn

1
GpRq ˝ f n

ˇ

ˇ

ˇ

ˇ

ď
1
λn

1
sup
W
|GpRq ˝ f | Ñ 0 (5.54)

5.2.3 The Green function for D´

Proposition 5.2.8. If we are in the cycle case, there exists D´ P Div8pXqR such that

f ˚X D´ “
1
λ1

D´. (5.55)

Proof. Write θ
`
X “ α`E` ` β`F̀ ` ¨¨ ¨ . Let M “

˜

a b

c d

¸

be the matrix associated to the

normal form of f at p`. From f ˚X θ
`
X “ λ1θ

`
X we get that the vector pα`,β`q is an eigenvector

of tM for the eigenvalue λ1. Since detM “ λ2p f q “ 1 there exists α´,β´ PR such that pα´,β´q

205



Chapter 5 – Green functions and dynamics of loxodromic automorphisms of affine surfaces

is an eigenvector of tM for the eigenvalue 1{λ1. Define D :“ α´E``β´F̀ . We have

f ˚X D“
1
λ1

D`R (5.56)

with E`, F̀ R SuppR, therefore f ˚X R“ 0. Set D´ :“ D`λ1R, then

f ˚X D´ “ f ˚X D“
1
λ1

D`R“
1
λ1
pD`λ1Rq “

1
λ1

D´ (5.57)

Lemma 5.2.9. One has θ´ ¨D´ “ 0.

Proof. We have θ´ ¨ f ˚X D´ “ λ1θ´ ¨D´ because θ´ is associated to the eigenvaluation of f . On
the other hand,

θ
´
¨ f ˚X D´ “

1
λ1

θ
´
¨D´. (5.58)

Since λ1 ą 1, we get θ´ ¨D´ “ 0.

Lemma 5.2.10. The family pθ`X ,D
´qYpE;E R tE`, F̀ uq is a basis of Div8pXqR.

Proof. Since the length of the family is the dimension of Div8pXq, we only need to show that
the family is free. Suppose that

λθ
`
X `µD´`R“ 0 (5.59)

with λ,µ P R and R P Div8pXqR,E`, F̀ R SuppR. Since θ
´
X ¨θ

`
X “ θ` ¨θ´ “ 1 and θ´ ¨R“ 0,

by intersecting Equation (5.59) with θ
´
X we get

λ“ 0 (5.60)

Now, write D´ “ α´E` ` β´F̀ . From the proof of Proposition 5.2.8, we have either
α´ ‰ 0 or β´ ‰ 0 since the vector pα´,β´q is an eigenvector for an invertible 2ˆ 2 matrix.
Suppose for example that α´ ‰ 0, then intersecting Equation (5.59) with ZordE`

, we get

µα
´
“ 0 (5.61)

and therefore µ“ 0. It remains that R“ 0 and the result is proven.
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Proposition 5.2.11. The sequence
´

G`n,D´
¯

converges uniformly to zero over any compact sub-

set of X0pCvq. Moreover the sequence
´

G`n,D´´
1

λ2n
1

GpD´q
¯

converges uniformly to the zero

function over any compact subspace of XpCvqzp´.

Proof. Set G :“ GpD´q and G`n :“ G`n,D´ . From f ˚X D´ “ 1
λ1

D´ and Proposition 5.2.3 we get
that the function

Ψ“ GpD´q ˝ f ´
1
λ1

GpD´q (5.62)

extends to a continuous function over Xzp´. By an analogous computation as before we get

G`n “
1
λn

1

`

GpD´q ˝ f
˘

˝ f n´1 (5.63)

“
1
λn

1

ˆ

Ψ`
1
λ1

GpD´q
˙

˝ f n´1 (5.64)

“
1
λn

1
Ψ˝ f n´1

`
1
λ2

1
G`n´1 (5.65)

By induction, we get

G`n “
n
ÿ

k“0

˜

1
λ

n`k
1

Ψ˝ f n´k`1

¸

`
1

λ2n
1

GpD´q (5.66)

Take a small open neighbourhood U´ of p´ such that W :“ XzU´ is f -invariant. For any
compact subset K Ă X0pCvqXW , we get

sup
K

ˇ

ˇG`n
ˇ

ˇď
1
λn

1
¨ sup

W
|Ψ| ¨

ˆ

λ1

λ1´1

˙

`
1

λ2n
1

sup
K

ˇ

ˇGpD´q
ˇ

ˇÑ 0 (5.67)

5.2.4 The Green function for any divisor

Proposition 5.2.12. Let H be an R-divisor supported at infinity, then the sequence pG`n,Hq of

continuous function over X0pCvq converges uniformly locally to the function pH ¨θ´qG`
θ
`
X

. More-

over, there exists a real number t such that the sequence

ˆ

G`n,H ´pH ¨θ
´
qGpθ`X q`

t
λ2n

1
GpD´q

˙

n
(5.68)
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converges to a continuous function over pXzp´qpCvq uniformly over any compact subspace of

XpCvqzp´.

Proof. If we are in the cycle case, let D´ be the divisor from Proposition 5.2.8. If we are in the
zigzag case, set D´ “ 0. By Lemma 5.2.10, we can write

H “ pH ¨θ´qθ`X `µD´`R. (5.69)

with E`, F̀ R SuppR. Therefore, we get that for all ně 0

G`n,H “ pH ¨θ
´
qG`

n,θ`X
`µG`n,D´`G`n,RX

(5.70)

By Propositions 5.2.5, 5.2.7 and 5.2.11, G`n,H converges uniformly locally to pH ¨θ´qG`
θ
`
X

and
we also get the result on the uniform convergence over any compact subset of Xzp´

Corollary 5.2.13. The function G
θ
`
X

is plurisubharmonic over X0pCq.

Proof. Let H be a very ample divisor supported at infinity, then H ¨θ´ ą 0 and by Proposition
5.2.12 pH ¨θ´qG

θ
`
X

is uniformly locally the limit of 1
λn

1
GpHq ˝ f n, now since H is very ample,

it is globally generated so by Corollary 5.1.11 we can suppose that GpHq is plurisubharmonic
over X0pCq. Then, for all ně 0, 1

λn
1
GpHq ˝ f n is plurisubharmonic, so G

θ
`
X

also is.

5.2.5 An invariant adelic divisor

Lemma 5.2.14. The R-divisor D“maxpθ`X ,θ
´
X q is big, nef and effective.

Proof. It is obvious that D is effective since θ
`
X and θ

´
X both are. For every prime divisor E

at infinity, set a˘pEq “ ordEpθ
˘
X q. Let E be a prime divisor at infinity, then since X is a good

completion
θ
˘
X ¨E “ a˘pEqE2

`
ÿ

|FXE|“1

a˘pFq. (5.71)

And,
D ¨E “maxpa`pEq,a´pEqqE2

`
ÿ

F‰E

maxpa`pFq,a´pFqq (5.72)

If for example a`pEq ě a´pEq, we get

D ¨E ě a`pEqE2
`

ÿ

F‰E

a`pFq ě θ
`
X ¨E ě 0 (5.73)
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Therefore, D is nef. Since the intersection form is non-degenerate over Div8pXq there must
exist a prime divisor E at infinity such that D ¨E ą 0, therefore D2 ą 0 and D is big.

Set G` :“ G`
θ
`
X

and G´ :“ G´
θ
´
X

.

Proposition 5.2.15. Suppose that λ1p f q is an integer. Let G :“maxpG`,G´q, then

(1) G is a continuous function over X0pCvq.

(2) If k“ C, then G is plurisubharmonic on X0pCq, it is pluriharmonic on tGą 0u.

(3) Gppq “ 0 if and only if the orbit of p under f Z is bounded. In particular, tG“ 0u is a

compact subset of X0pCvq.

(4) The function G´Gpmaxpθ`X ,θ
´
X qq extends to a continuous function Ψ over X.

(5) Set Gn “max
´

G`
n,θ`X

,G´
n,θ´X

¯

, then the sequence of continuous functions

`

Gn´max
`

Gpθ`X q,Gpθ
´
X q
˘˘

n (5.74)

converges uniformly to Ψ over Xan.

Proof. (1) is immediate as both G` and G´ are continuous over X0pCvq.

(2) is also direct as the maximum of two plurisubharmonic (resp. pluriharmonic) is plurisub-
harmonic (resp. pluriharmonic)

(3): Gppq “ 0ô G`ppq “ G´ppq “ 0 so the forward and backward orbit of p under f has
to be bounded.

(4)-(5): On a small open neighbourhood U´ of p´ we have Gpθ`X q ď Gpθ´X q because, by
our assumption, if cXpv´q P E, then ordEpθ

´q ą ordEpθ
`q. Now, by Proposition 5.2.5, there

exists a constant M ą 0 such that over U´XX0,

G`ppq ď Gpθ`X qppq`M (5.75)

G´ppq ě Gpθ´X qppq´M. (5.76)

We can shrink U´ even more such that on U´,Gpθ´X q ąGpθ`X q`10M because of the weights of
θ
`
X ,θ

´
X at the prime divisor at infinity on which p´ lies. Therefore, G´ ąG` over U´XX0 and

G “ G´ on U´XX0. Therefore, G´Gpmaxpθ`X ,θ
´
X qq extends to a continuous function at p´.

The same assertion holds at p`. This shows (4). Now to show (5), set W “ Xz
`

U`YU´
˘

. We
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have by Proposition 5.2.5 that G`
n,θ`X

´Gpθ`X q converges uniformly to G`´Gpθ`X q over WYU`

and that G´n,θ´X ´Gpθ´X q converges uniformly to G´´Gpθ´X q over W YU´. We therefore get
that maxpG`

n,θ`X
,G´

n,θ´X
q converges uniformly towards G over W . Now since G` ą G´ over

U`XX0 and G´ ą G` over U´XX0 the convergence is uniform over XpCvq “W YU`YU´.
This shows (5).

Proposition 5.2.16. Let X0 be an affine surface over a number field K, let f be a loxodromic

automorphism of X0 with λ1p f q PZě0 and let X be as in Theorem 4.4.18. If Gv“maxpG`v ,G
´
v q,

then
´

maxpθ`X ,θ
´
X q,pGvqvPM pKq

¯

is a semipositive Q-adelic divisor over X. In particular, the

corresponding adelic line bundle L satisfies the hypothesis of Theorem 5.1.19.

Proof. We show the semipositivity. Let v be a place of K, replace X by Xv and set D˘ “ θ
˘
X

and D :“ maxpD`,D´q. Since θ
`
X and θ

´
X are both big and nef and their support supports

an ample divisor there exists an integer m such that OXpmθ
`
X q and OXpmθ

´
X q are generated by

global sections. Set smD`,s
`
1 , ¨ ¨ ¨ ,s

`
r and smD´ ,s

´
1 , ¨ ¨ ¨ ,s

´
t be a set of global sections generating

OXpmD`q,OXpmD´q and let Pi “
s`i

sD`
,Qi “

s´i
sD´

be the induced regular functions over X0. Then
by Corollary 5.1.11, the function

GpD`Cv
q :“

1
m

log`maxp|P1|v , ¨ ¨ ¨ , |Pr|vq (5.77)

is a semipositive model Green function of D`Cv
. The same holds for D´Cv

with the Qi’s instead
of the Pi’s.

Claim 5.2.17. For every ně 0, the line bundle OXpmλn
1 maxpD`,D´qq is globally generated by

`

p f n
q
˚P1, ¨ ¨ ¨ ,p f n

q
˚Pr,p f´n

q
˚Q1, ¨ ¨ ¨ ,p f´n

q
˚Qs

˘

(5.78)

viewed as elements of ΓpX ,OXpmλn
1Dqq.

The claim along with Corollary 5.1.11 shows that for every ně 0,

max
´

GpD`Cv
qv ˝ p f an

q
n,GpD´Cv

qv ˝ p f an
q
´n
¯

(5.79)

is a semipositive model Green function of DCv which converges uniformly to Gv, so Gv is
semipositive.

Proof. Proof of the Claim First of all, since OXpD`q|X0 “ OX0 we have that XiP´1
i p0q “H and

this remains true for Pi ˝ f n since f is an automorphism. So it is clear that this set of global
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sections generate OXpmλn
1Dq|X0 . Now, take a point at infinity q P BX X0, we want to show that

this set of global sections generates OXpmλn
1Dq at q. First suppose that q ‰ cXpν`q,cXpv´q.

We are going to suppose that q is a satellite point because this is the harder case. So, suppose
q“ EXF with E,F two prime divisors at infinity. Let pz,wq be local coordinates at p associated
to E and F . Both f and f´1 are defined at q. Since p f n

Xq
˚θ
`
X “ λ1θ

`
X , the fractional ideal

xp f nq˚P1, . . . ,p f nq˚Pry is locally generated at q by

z´mλn
1 ordEpD`q ¨w´mλn

1 ordF pD`q. (5.80)

In the same way,
@

p f´nq˚Q1, ¨ ¨ ¨ ,p f´nq˚Qsq
D

is locally generated at q by

z´mλn
1 ordEpD´q ¨w´mλn

1 ordF pD´q. (5.81)

Now, OXpmλn
1Dq is locally generated at q by

z´mλn
1 maxpordEpD`q,ordF pD`qq ¨w´mλn

1 maxpordF pD`q,ordF pD´qq (5.82)

Since D`,D´ is a well ordered pair we have that

`

p f n
q
˚P1, ¨ ¨ ¨ ,p f n

q
˚Pr,p f´nq˚Q1, ¨ ¨ ¨ ,p f´n

q
˚Qs

˘

(5.83)

generates OXpmλn
1Dq at q.

Now suppose for example that q “ cXpν´q “ p´ the indeterminacy point of f . Since we
have supposed that λ1p f q P Z, we have that p´ is a free point at infinity. Let E be the unique
prime divisor at infinity over which p´ lies and let z be a local equation of E. Then for ev-
ery i , we have locally at p´ p f nq˚Pi “ z´mλn

1 ordEpD`qϕi where ϕi is a regular non invertible
function because f is not defined at p´. However, f´1 is defined at p´, therefore the frac-
tional ideal

`

p f´nq˚Q1, ¨ ¨ ¨ ,p f´nq˚Qr
˘

is locally generated by z´mλn ordEpD´q. Since we have
ordEpD´q ą ordEpD`q we get that the fractional ideal

@

p f n
q
˚P1, ¨ ¨ ¨ p f n

q
˚Pr,p f´n

q
˚Q1, ¨ ¨ ¨ ,p f´n

q
˚Qs

D

(5.84)

is locally generated by z´mλn
1 ordEpD´q so it is equal to OXpmλn

1Dqp´ at p´.

We show that the coherence condition is satisfied. Let X be a model of X over SpecOK,
f and f´1 induce birational transformations on X . There exists an open subset U of SpecOK
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such that if we set XU “X ˆOK U .

1. The indeterminacy locus of fU : XU 99KXU does not contain vertical components.

2. We have tp`u|U Xtp´u|U “H.

3. The horizontal divisors D`U and D´U induced by D` and D´ over XU are big and nef.

For every v PU set Xv “ XU ˆU SpecOv,D˘
v “ D˘U and f˘v “ fU ˆSpecOv.

Claim 5.2.18. For every v PU, we have @x P pXCvq
anzpSuppD˘v q, if rXν

pxq ‰ rXν
pp¯q, then

1
λ1

g
pXv,D

˘
v q
pp f˘v q

an
pxqq “ g

pXv,D
˘
ν q
pxq (5.85)

Proof of the claim. We have that f˘v defines a regular endomorphism of Xνztp¯,rXvpp¯qu by
condition (1) and (2). Recall that rXν

is anti continuous so the set V´ :“ trXν
“ rXν

pp´qu is an
open subset of pXCvq

an. Since p´ is fixed by f´1
v , rXν

pp´q also is and therefore V´ is p f´1
v qan-

invariant. Therefore, the complement of V´ is f an
v -invariant. Let x P XanzV´, Let ξ be a local

equation of D`
v at rXν

p f an
v pxqq and ψ a local equation of D`

v at rXν
pxq. From f ˚v D`

v “ λ1D
`
ν

over Xvztp´,rXvpp´qu we get that there exists an invertible regular function at rXvpxq such
that

f ˚v ξ“ u ¨ψλ1 (5.86)

Since u is invertible, we have |upxq| “ 1 and the claim is shown.

To show the coherence condition we show that on the open subset V´,g
pXv,D

`
ν q
ď g

pXν,D
´
ν q

and this is immediate as p´ P E´ is a free point and therefore the only irreducible component of
D˘

ν on which rXvpp´q lies is the closure of E´ in Xν, since ordE´pθ
´
X q ą ordE´pθ

`
X q the result

is proven.
Finally, let L be the associated semipositive adelic line bundle. To show that L satisfies the

hypothesis of Theorem 5.1.19 it suffices to show that degXpLq ą 0 but this is equal to D2 with
D“maxpθ`X ,θ

´
X q. By Lemma 5.2.14, D is big and nef therefore D2 ą 0 (see [Laz04] Theorem

2.2.16).

Remark 5.2.19. If λ1p f q PRzQ, then we can still define G“maxpG`,G´q, however since θ
`
X

and θ
´
X are R-divisors, in general they are not a well ordered pair and G is not the Green function

of any R-divisor. In fact, the right way to look at G` and G´ is to consider adelic line bundles

over the quasi-projective variety X0 (see [YZ22]). Roughly speaking an adelic line bundle over
a quasi-projective variety U is a limit of model adelic line bundles over completions X of U
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that satisfy a compatibility condition over U . The process is very similar to the construction of
Weil8pX0q or L2pX0q. In particular, Yuan and Zhang showed the equidistribution theorem for
this generalized class of adelic line bundles. We conjecture the following result.

Conjecture 5.2.20. Suppose f is a loxodromic automorphism of X0 and λ1p f q R Zě0. The

Green functions G` and G´ induce two nef adelic line bundles L` and L´ on the quasiprojec-

tive variety X0 in the sense of [YZ22] such that

1. f ˚L` “ λ1L`

2. p f´1q˚L´ “ λ1L´

3. If L :“ 1
2pL

``L´q, then L satisfies the hypothesis of Theorem 5.1.19.

4. At the archimedean places, the equilibrium measure of 1
2pL

``L´q is ddcG`^ddcG´.

As explained in the previous remark, I believe that the work done in this memoir and the
work of Yuan and Zhang will be sufficient to prove this Conjecture, with a construction similar
to [YZ17] Section 4.

Using Proposition 5.2.16 or assuming Conjecture 5.2.20 we can consider the canonical
height hL associated to f . From Proposition 5.2.15 (3) and Proposition 5.2.5 (3) it follows
that if p P X0pKq is periodic, then hLppq “ 0.

For the last two propositions of this section, we assume λ1p f q PZ. We assume that they will
be true for λ1p f q R Zě0 once Conjecture 5.2.20 is established.

Proposition 5.2.21 (Northcott property for heights for affine surfaces). Let d,Bą 0, the set

!

p P X0pKq|deg pď d,hL f
ppq ď B

)

(5.87)

is finite.

Proof. Let D “ maxpθ`X ,θ
´
X q, then D is big, nef and effective by Lemma 5.2.14 and we know

that SuppD“ BX X0. Let H PDiv8pXq be an ample divisor such that SuppH “ BX X0. Then, for
mě 1 large enough, there exists an effective Q-divisor N such that

D“
1
m

H`N. (5.88)

Now we have by the well known properties of heights [Sil86] that

hD “ hL f
“ p1{mqhH `hN`Op1q (5.89)
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and since N is effective, we have hN ě Op1q over X0pKq (see [Sil86]), therefore

hL f
ě p1{mqhH `Op1q (5.90)

and the result follows from Northcott Theorem [Sil86] which states that since H is ample, for
all d,Bą 0 the set

 

p P XpKq|deg pď d,hHppq ď B
(

(5.91)

is finite.

Proposition 5.2.22. For any p P X0pKq we have

hL f
ppq “ 0ô p is periodic (5.92)

Proof. We look at the sequence
´

hL f
p f nppqq

¯

. We have hL f
ppq “ 0 if and only if for every

place v,Gvpqq “ 0 for all points q in the Galois orbit of p, this is equivalent to saying that f Zpqq

is bounded for all places v. This means that hL f
p f nppqq “ 0 for all n, since the points p f nqppq

all have the same degree, we get that this sequence is finite by Proposition 5.2.21
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5.3 Periodic points and equilibrium measure

5.3.1 Equidistribution of periodic points

Let X0 be a normal affine surface defined over a number field K and let f P AutpX0q be a loxo-
dromic automorphism. Let X be a completion as in Theorem 4.4.18. For any place v PM pKq,
let G`v ,G

´
v ,Gv be the Green functions of f defined in Section 5.2. Let L f be the adelic line

bundle induced by these Green functions. If λ1p f q P Zě0, then this comes from Proposition
5.2.16 and if λ1p f q R Z, then we use Conjecture 5.2.20. We have for every place the equilibrium
measure µL f ,v.

If v is archimedean, then we can apply the ddc operator to our plurisubharmonic functions.
Namely the equilibrium measure is proportional to

pddcGq2 “ ddcG`^ddcG´ (5.93)

which is well-defined via the work of Bedford and Diller in [BD05], indeed the condition of
Bedford and Diller is satisfied because every iterate of f has indeterminacy point either p` or
p´. The measure µ is f -invariant thanks to Proposition 5.2.5. In addition, Dujardin showed in
[Duj04] that over X0pCq the periodic points of f equidistributes with respect to µ.

Theorem 5.3.1. If ppnq is a generic sequence of X0pKq of periodic points of f , then for every

place v of K the Galois orbit of ppnq is equidistributed with respect to the measure µL f ,v.

Proof. We apply Yuan-Zhang’s equidistribution theorem to the adelic line bundle L f . We need
to show that the sequence hL f

ppnq converges to hL f
pXq. Since the points pn are periodic, this

bounds to show that hL f
pXq “ 0. To do that we apply Theorem 5.3.3 of [YZ22]. Namely, let

epX ,pD,Gqq :“ sup
UĂX

inf
pPU

hL f
ppq (5.94)

this quantity is called the essential minimum of pD,Gq. Here, since we suppose that we have a
generic sequence of periodic points, we get epX ,pD,Gqq “ 0. Theorem 5.3.3 of [YZ22] states
that

epX ,pD,Gqq ě h f pXq (5.95)

Therefore we get h f pXq “ 0 and Yuan’s equidistribution theorem gives the desired result.
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For any place v (archimedean or not), we have that

Suppµ f ,v Ă tGv “ 0u “ Kv. (5.96)

If λ1p f q P Z, we characterize the set tGv “ 0u with the measure µv.

Theorem 5.3.2 (Extension of [DF17] Lemma 6.3). If λ1p f q P Z, then for any P P OpX0q, one

has

sup
Suppµv

|P|v “ sup
Kv

|P|v (5.97)

In analogy with the case of the affine plane, we can say that Kv is the polynomial convex
hull of Suppµv.

Proof. Let D“maxpθ`X ,θ
´
X q, let a be an integer such that aDě div8,XpPq and let C0 be a con-

stant such that log |P|vC0
ď 0 over Suppµv. Then, the functions aGv and rGv “maxpaGv, log |P|v

C0`ε
q

are both semipositive (or psh if v is archimedean) Green functions of the divisor aD. Now, on
an open neighbourhood V of Suppµv we have rGv “ aGv and we get that

pc1paD, rGvq|V q
2
“ pc1paD,aGvq|V q

2 (5.98)

by [DF17] Appendix A.2 (in loc. cit. the result is stated for ample divisors but the proof works
for big and nef divisors). Since the two measures c1paD, rGq2 and c1paD,aGνq

2 are positive and
have total mass a2D2 ą 0 we conclude that they are equal. Therefore, by the arithmetic Hodge
index theorem we get that aGv´ rG is a constant, since they coincide on Suppµv we get rG“ aG

and therefore log |P|v
C0`ε

ď 0 over Kv. Letting εÑ 0 yields the result.

5.3.2 A rigidity theorem

Theorem 5.3.3. Let X0 be a normal affine surface over a number field K such that KrX0s
ˆ“Kˆ

and let f ,g be two loxodromic automorphisms of X0 such that λ1p f q P Zě1, then the following

assertions are equivalent

(1) Perp f qXPerpgq is Zariski dense.

(2) µ f ,v “ µg,v,@v PM pKq.

(3) K f ,v “ Kg,v,@v PM pKq.
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(4) Perp f q “ Perpgq.

If λ1p f q R Z, assuming Conjecture 5.2.20, we have that if Perp f qXPerpgq is Zariski dense, then

for every place v PM pKq,µ f ,v “ µg,v.

Proof. We apply the results of Section 5.3.1. Let µ f ,v, µg,v be the equilibrium measure of f and
g at every place. Let ppnq be a Zariski dense sequence of Perp f qXPerpgq. By Lemma 5.1.18
We can suppose that ppnq is generic. We can apply Theorem 5.3.1 to f and g with the sequence
ppnq. Therefore, we get for all places v PM pKq that µ f ,v “ µg,v. If λ1p f q R Z we are done.

Otherwise, let Gv, f and Gv,g be the Green functions of f and g respectively at every place
v of K, Kv, f :“

 

Gv, f “ 0
(

,Kv,g :“ tGv,g “ 0u and let h f ,hg be the respective canonical height
of f and g. by Theorem 5.3.2 we get that Kv, f “ Kv,g for any place v. Therefore, the canonical
heights h f ,hg have the same set of points of height 0. By Proposition 5.2.22, we get that
Perp f q “ Perpgq.

5.3.3 A stronger rigidity result for the Markov Surface

Assuming Conjecture 5.2.20 we show the following result.

Theorem 5.3.4. Let MD be the Markov surface of parameter D. Suppose that D “ 0 or

D “ ´2` 2cos
´

2π

q

¯

with q P Zě1. Let f ,g be two loxodromic automorphism of MD defined

over a number field K. Then, the following assertions are equivalent

(1) Perp f qXPerpgq is Zariski dense.

(2) DN,M P Z, f N “ gM.

The proof relies on the following proposition.

Proposition 5.3.5. Suppose D “ 0 or D “ ´2` 2cos
´

2π

q

¯

and let f P AutpMDq be a loxo-

dromic automorphism. If v is an archimedean place, then f admits a periodic saddle fixed point

qp f q PMDpCq such that

(1) qp f q P Supppµ f ,vq

(2) If g P AutpMDq is loxodromic such that f and g do not share a common iterate, then

pgnpqp f qqq is unbounded.
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Assuming the proposition, suppose that f ,g share a Zariski dense subset of periodic points,
then by Theorem 5.3.3 we have equality of the equilibrium measures of f and g at every
place so in particular at every archimedean place. Fix v one of them. Suppose that f and g

do not share a common iterate, then pgnpqp f qqqn is unbounded. Let µ “ µ f ,v “ µg,v. Since
Suppµ“ Suppµ f ,v “ Suppg,v, we have that Suppµ is a compact subset of MDpCq invariant by f

and g. Since qp f q P Suppµ f ,v“ Suppµ we get that pgnpqp f qqq Ă Suppµ which is a contradiction.

To construct qp f q we use Quasi-Fuchsian representation theory.

5.3.4 Character varieties and the Markov surface

Let T1 be the once punctured torus. The fundamental group π1pT1q is a free group generated
by two elements a and b. The commutator ra,bs :“ aba´1b´1 is represented by a simple loop
around the puncture that follows the orientation of the surface. One can study the representation
of π1pT1q into SL2pCq. It is clear that

Hompπ1pT1q,SL2pCqq » SL2pCqˆSL2pCq (5.99)

as π1pT1q is a free group on two generators, therefore it is an algebraic variety. We are interested
in the Character variety,

X :“ Hompπ1pT1q,SL2pCqq{{SL2pCq (5.100)

where the action of SL2pCq is diagonal and given by conjugation and {{ is the Geometric Invari-
ant Theory (GIT) quotient. This is also an algebraic variety and we have the following result of
Fricke and Klein.

Theorem 5.3.6 (Fricke, Klein, [Gol09]). The algebraic variety X is isomorphic to a3
C. The

isomorphism is given by

rρs P X ÞÑ pTrpρpaqq,Trpρpbqq,Trpρpabqqq. (5.101)

We will denote by px,y,zq “ pTrpρpaqq,Trpρpbqq,Trpρpabqqq these are the Frick-Klein coor-
dinates.

Let K “ ra,bs and let κ : X Ñ C be the regular function

κpρq “ TrpρpKqq. (5.102)
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One can show that
κ“ x2

` y2
` z2

´ xyz´2 (5.103)

Therefore, if Xt “ κ´1ptq is the relative character variety, we have

Xt “Mt`2 (5.104)

where MD is the Markov surface of parameter D.

The generalized mapping class group MCG˚pT1q is the group of homotopy class of home-
omorphism of T1 not necessarily orientation preserving. It contains MCGpT1q as an index 2
subgroup and it acts on π1pT1q, we have the following isomorphism:

MCG˚ » Outpπ1pT1qq (5.105)

Furthermore,
Outpπ1pT1qq » GL2pZq (5.106)

and the action on F2 is as follows, if M “

˜

m11 m12

m21 m22

¸

, then

M ¨a“ am11bm12 (5.107)

M ¨b“ am21bm22 . (5.108)

For any element ϕ POutpπ1 pT1qq,ϕpra,bsq is conjugated to ra,bs˘. This implies, that the action
of MCG˚pT1q on X preserves every Xt . Now, the matrix id acts trivially, because in SL2pCq we
have that TrA“ TrA´1, so for all D P C we get a group homomorphism

PGL2pZq Ñ AutpMDq (5.109)

Theorem 5.3.7 ([CL07] Theorem A, [ÈH74]). Let Γ˚ Ă PGL2pZq be the subgroup of element

congruent to id mod 2, then for any D P C,

Γ
˚
Ñ AutpMDq (5.110)

is injective and its image is of index at most 8.
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We can describe the group homomorphism. Let σx P AutpMDq be the automorphism

σxpx,y,zq “ pyz´ x,y,zq, (5.111)

If we fix the coordinates y,z, then the equation defining MD becomes a polynomial equation of
degree 2 with respect to x, σx permutes the 2 roots of this equation. We can define σy,σz in
the same way. Then, σx,σy,σz generate a free group isomorphic to pZ{2Zq ˚ pZ{2Zq ˚ pZ{2Zq
which is of finite index in AutpMDq (see [ÈH74]). The subgroup Γ˚ is the free group on the
three generators

˜

´1 ´2
0 1

¸

,

˜

1 0
´2 ´1

¸

,

˜

1 0
0 ´1

¸

(5.112)

which correspond respectively to σx,σy,σz.

5.3.5 Fuchsian and Quasi-Fuchsian representation

A Fuchsian group is a discrete subgroup Γ of PSL2pRq. A Quasi-Fuchsian group is a discrete
subgroup Γ of PSL2pCq such that its limit set in pC :“ P1pCq is a Jordan curve. Let S be a com-
pact surface of negative Euler characteristic. We say that a representation ρ : π1pSq Ñ SL2pCq
is Fuchsian (resp, Quasi-Fuchsian) if ρpSq Ă PSL2pCq is Fuchsian (resp. Quasi-Fuchsian).

Let TeichpSq be the Teichmuller space of S, that is the set of complete finite hyperbolic
metrics over S. Every point of TeichpSq induces a Fuchsian representation of S. We can actu-
ally parametrize the set of Quasi-Fuchsian representations of S using TeichpSq by the double
uniformization theorem of Bers.

Theorem 5.3.8 ([Ber60]). There is a biholomorphic map

Bers : TeichpSqˆTeichpSq Ñ QFpSq (5.113)

where TeichpSq is the Teichmuller space with its reversed orientation.

Using this theorem, one can apply an iterative process to find a fixed point in the character
variety of S.

Theorem 5.3.9 ([McM96]). Let S be a compact surface of negative Euler characteristic. Let

pX ,Y q P TeichpSqˆTeichpSq, let ϕ PModpSq be pseudo-Anosov, then the sequence

Berspϕn
pXq,ϕ´n

pY qq (5.114)
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has an accumulation point ρ8 : π1pSq Ñ PSL2pCq. Furthermore,

(1) ρ8 is discrete and faithful.

(2) The limit set of ρ8pπ1pSqq is the whole boundary S2 of H3.

(3) ρ8 is a fixed point of ϕ and ϕ is conjugated to an isometry α of rMϕ “H3{ρ8pπ1pSqq.

(4) The group of isometries of M8 is discrete and α is of infinite order.

(5) The mapping torus Mϕ is isomorphic as an hyperbolic manifold to rMϕ{ ă αą.

(6) The subgroup generated by α of the group of isometries of rMϕ is of finite index.

5.3.6 The surface M0 and a Theorem of Minsky

We are interested in this section with the Markov surface M0 that is when TrpKq “´2, therefore
ρpKq is a parabolic Möbius transformation. The real points M0pRq consist of an isolated point
p0,0,0q and four diffeomorphic connected components that are given by the signs of x and
y. We will denote by M0pRq` the connected component such that x,y ą 0. It is known that
TeichpT1q (T1 the punctured torus) is isomorphic to the upper half plane H` and we make this
identification from now on. The action of ModpT1q on TeichpT1q is conjugated to the usual
action of PSL2pZq by isometries on D.

Any point in TeichpT1q gives rise to a representation ρ : π1pT1q Ñ PSL2pRq which can be
lifted to four distinct representations ρ : π1pT1q Ñ SL2pRq. The cusp condition gives the condi-
tion Trpρpa,bqq “ ´2 (because Tr“ 2 corresponds to reducible representations). Therefore, we
get an embedding of TeichpT1q into the 4 different connected component of M0pRqzp0,0,0q.
We will restrict our attention to the embedding TeichpT1q ãÑM0pRq`. The set M0pRq` is made
of (conjugacy class of) Fuchsian representations. Let DF0 Ă M0pCq be the subset of discrete
and faithful representation of π1pT1q. Then DF0 has four different connected components, one
of them contains M0pRq`. We denote it by DF`0 and we denote by QF`0 the set of Quasi-
Fuchsian representation inside DF`0 . In fact, QF`0 is the interior of DF`0 (see [Min02]). We can
identify TeichpT1q with the upper half plane H` and TeichpT1q with the lower half plane H´.
The group PSL2pZq acts on P1pCq via Möbius transformation. It preserves H`,H´ and P1pRq.
In particular, the mapping class group MCGpT1q “ SL2pZq acts on P1pCq and we can conjugate
this action to the action on M0pRq` via the Bers mapping. Namely, let Φ PMCGpT1q and let
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fΦ P AutpM0q induced by the map from Equation (5.109). We have for every ps, tq PH`ˆH´,

BerspΦps, tqq “ fΦpBersps, tqq (5.115)

Theorem 5.3.9 is not applicable directly as T1 is not compact. However, Minsky showed
that the Bers mapping can be extended to almost all the boundary of TeichpT1qˆTeichpT1q.
The boundary of H` is P1pRq. We denote by ∆ the diagonal in BTeichpT1qˆBTeichpT1q.

Theorem 5.3.10 ([Min99]). The Bers mapping extend to a continuous bijection

Bers : TeichpT1qˆTeichpT1qz∆Ñ DF` (5.116)

In particular, let Φ P SL2pZq “MCGpT1q be a loxodromic element and let fΦ be its associ-
ated automorphism over M0. The isometry Φ has a repulsive fixed point αpΦq on P1pRq and an
attractive one ωpΦq. By Minsky’s theorem, this gives two unique fixed point

ppΦq “ BersppαpΦq,ωpΦqqq, qpΦq “ BersppωpΦq,αpΦqqq (5.117)

of fΦ in DF` zQF`.

5.3.7 Construction of the saddle fixed point qp f q

Suppose first that D “ 0. Up to taking an iterate of f we can suppose that there exists a loxo-
dromic element Φ f P SL2pZq such that f “ fΦ f . Denote by pp f q “ pp fΦ f q and qp f q “ qp fΦ f q

the fixed point constructed using Minsky theorem. These two fixed point are saddle fixed
points by [McM96] Corollary 3.19. The fixed point qp f q corresponds to a representation
ρ8 : F2 Ñ PSL2pCq, one can show that ρ8 also satisfies Theorem 5.3.9 even though the punc-
tured torus is not compact.

Suppose now that D“ 2´2cos 2π

q . Following [McM96] §3.7, let S be the orbifold obtained
from a genus 1 torus with a singular point of index q. The fundamental group of S is

π1pSq “ 〈a,b|ra,bsq “ 1〉 (5.118)

The modular class group ModpSq of S is also SL2pZq. Let Φ f P SL2pZq be an element of ModpSq
associated to f .

There exists a smooth (real) surface rS with a map rS Ñ S which is a finite characteris-
tic covering. In particular, Φ f lifts to rS and defines an element of ModprSq that we denote
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by rΦ f . Apply Theorem 5.3.9 to prS, rΦ f q, there exists a faithful and discrete representation
rρ8 : π1prSq Ñ PSL2pCq. Let rM8 “H3{rρ8pπ1prSqq, the group of isometries of rM8 contains the
subgroup generated by rΦ f . The quotient rM8{ ă rΦ f ą is the mapping torus M

rΦ f
of rΦ f which

is a finite cover of the mapping torus MΦ f . By Mostow rigidity theorem, the covering group can
be realized by isometries, therefore the hyperbolic structure on M

rΦ f
descends to a hyperbolic

structure on the mapping torus MΦ f , which yields a fixed point ρ8 of f in MD that we denote
by qp f q. By [McM96] Corollary 3.19, qp f q is a saddle fixed point.

5.3.8 Saddle periodic points are in the support of the equilibrium measure

Theorem 5.3.11. Let f be a loxodromic automorphism of the Markov surface. Every periodic

saddle point of f is in the support of the measure µ f .

This shows item (1) of Proposition 5.3.5. This theorem, stated in [Can01], follows directly
from the work of Dinh and Sibony in [DS13], which extends [BS91b], and an argument of
[BLS93] for Hénon type automorphisms of the complex affine plane. We do not provide a
detailed proof, our goal in this section is only to describe the type of techniques and arguments
used in [BLS93, DS13].

5.3.8.1 Green functions and bounded orbits

First, let us summarize some of the properties of the function G`f : X0pCq Ñ Rě0

(a) tG`f “ 0u coincides with the set K`p f q of points with a bounded forward orbit;

(b) G`f is plurisubharmonic, and is pluriharmonic on the set tG`f ą 0u;

(c) the set K`p f q is closed in X0pCq, its closure in XpCq coincides with K`p f qY p´;

(d) locally, near every point q‰ p´ of BX X0,

G`f pxq “ ´
ÿ

i

ai logp|sipxq|q`upxq (5.119)

where the functions sipxq are holomorphic equations of the boundary components con-
taining q, the real numbers ai ě 0 are the weight of θ

`
X , and upxq is a continuous (pluri-

harmonic) function.
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(e) there is an open neighborhood U´ of p´ in XpCq such that f´1pU´q ŤU´ and U´ is
contained in the basin of attraction of p´ for the backward dynamics; there is an open
neighborhood U` of p` with similar properties for f instead of f´1;

(f) If q is a saddle periodic point, its stable manifold W spqq is contained in K`p f q; in fact,
the proof of Proposition 5.1 in [BS91a] shows that W spqq is contained in the boundary of
K`p f q;

(g) f does not preserve any algebraic curve C0 Ă X0pCq.

In particular, if S is a closed positive current supported by Kp f q “ K`p f qXK´p f q, then its
support does not intersect the open set U´.

5.3.8.2 Rigidity of K`p f q and equidistribution of stable manifolds

The properties (a) to (g) are sufficient to apply the arguments of Sections 4, 5, 6 of [DS13].
More precisely, one first obtains Theorem 6.6 of [DS13], because its proof relies only on the
above properties and general results concerning closed positive currents (in particular Corollary
3.13 of [DS13]). 1

Then, one gets directly the following fact (which corresponds to a weak version of Theorem
6.5 of [DS13], with the same proof):

Theorem 5.3.12. The set K`p f q (resp. K´p f q) supports a unique closed positive current,

namely T`f “ ddcG`f (resp. T´f ) up to multiplication by a positive constant.

This rigidity results provides automatic equidistribution theorems for p1,1q positive cur-
rents. We shall need the following specific application.

If q is a saddle periodic point of f , then its stable manifold W spqq is biholomorphic to the
complex line 2. Denote by ξ : CÑW spqq Ă X0pCq a one to one holomorphic parametrization of
W spqq; ξ is an entire holomorphic curve. To such a curve, one can associate a family of currents
of mass 1, constructed as follows. One fixes a Kähler form κ on XpCq and one measures
lengths, areas and volumes with respect to this form. For instance, if Dr Ă C is the disk of

1. The only changes in this proof are that (1) P2pCq should be replaced by XpCq and the line at infinity by
BX X0; and (2) the function logp1` ‖ z ‖2q1{2 should be replaced by a smooth Green function associated to the
R-divisor θ

`
X , as in Definition 5.1.3.

2. Indeed, it is a Riemann surface, it is homeomorphic to R2, and f acts on it as a contraction fixing q, so W spqq
cannot be a disk and Riemann uniformization theorem says that it is a copy of C
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radius r centered at the origin, then

AreapξpDrqq “

ż

ξpDrq

κ“

ż

Dr

ξ
˚
κ (5.120)

is the area of the image of Dr by ξ. Averaging with respect to dr{r, one introduces the function

NpRq “
ż R

t“0
AreapξpDtqq

dt
t
. (5.121)

Now, for each disk Dr, one can consider the current of integration over ξpDrq: to a smooth form
α of type p1,1q, this current tξpDrqu associates the number

xtξpDrqu|αy “

ż

ξpDrq

α“

ż

Dr

ξ
˚
α. (5.122)

Taking averages with respect to the weight dr{r one obtains the following family of currents,
parametrized by a radius Rą 0:

xNξpRq|αy “
1

NpRq

ż R

t“0
xtξpDrqu|αy

dt
t

(5.123)

“
1

NpRq

ż R

t“0

ż

ξpDRq

α
dt
t
. (5.124)

The normalization by 1{NpRq assures that the mass xNξpRq|κy is equal to 1 for every R ą 0.
From an inequality of Ahlfors, and from the compactness of the space of positive currents of
mass 1, there are sequences of radii pRnq such that NξpRnq converges to a closed positive current
S. A priori, such a closed positive current S depends on the choice of the sequence Rn; if there
is a unique closed positive current S that can be obtained as such a limit, one says that there is
a unique Ahlfors-Nevanlinna current (namely S) associated to ξ.

Corollary 5.3.13 (Proposition 4.10, Corollary 4.11 [DS13]). Let q be a saddle periodic point

of f . Let ξ : CÑ X0pCq be a holomorphic parametrization of the stable manifold of f . Then,

there is a unique Ahlfors-Nevanlinna current associated to ξ, and this current is equal to T`f .

Here is another similar consequence of [DS13]: Given any algebraic curve C0 Ă X0, the
sequence of currents λp f q´ntp f nq˚C0u converges towards a positive multiple of T`f as n goes
to `8 (see Corollary 6.7 of [DS13]). Thus, T`f can be approximated by a sequence of currents
of integration on algebraic curves of a fixed genus (properly renormalized); in this context,
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one can apply the theory of strongly approximable laminar currents, as developed by Dujardin
(see [Can14, Duj04] for an introduction).

5.3.8.3 Laminarity, Pesin theory and consequence

The measure µ f “ T`f ^ T´f is an ergodic measure of positive (and maximal) entropy for f ,
and tools from Pesin theory can be used to describe the dynamics of f with respect to this
measure. In particular, in our setting, one can apply the work of Bedford, Lyubich, and Smillie
in [BLS93] or the work of Dujardin in [Duj04].

First, the laminar structure of T`f is compatible with Pesin theory; the second one is that µ f

has a local product structure. Taken together, these facts imply that one can find holomorphic
bi-disks V »DˆD in X0pCq and transverse laminations Ls and Lu of V , the leaves of Ls being
horizontal graphs, the leaves of Lu being vertical graphs, such that

(a) it makes sense to restrict T`f (resp. T´f ) to the support SupppLsq of Ls (resp. on
SupppLuq);

(b) the restriction is given by the current of integration on the leaves of Ls (resp. Lu) averaged
by a transversal measure µ`V (resp. µ´V ); in other words, if Lupwq is a leaf of Lu, µ`V
induces a positive measure on SupppLsqXLupwq and if α is a smooth form supported by
a compact subset of V , then

xT`f |αy “
ż

zPLupwq
xtLs

pzqu|αy dµ`V pzq.

(c) in restriction to SupppL`q X SupppL´q, the measure µ f is given by the product of the
currents, i.e. by the Dirac masses at the points of intersection of the leaves, weighted by
dµ`V bdµ`V ;

(d) for µ f almost every point x P SupppL`qXSupppL´q, the leaf Lspxq is a piece of stable
manifold, and Lupxq is a piece of unstable manifold.

Then, one can apply the following argument, taken from Section 9 of [BLS93]. Pick a sad-
dle periodic point q of f , take a small neighborhood W of q, and consider its stable manifold,
parametrized by ξ : CÑW spqq. Since the Ahlfors-Nevanlinna current of ξ coincides with T`f ,
each disk of Ls is a limit of disks ξpDiq, for some topological disks Di Ă C. Since the lamina-
tions Lu and Ls intersect transversally, one finds a disk ξpDiq that intersects Lu transversally.
Then, if one applies f N with N large, the preimages of ξpDiqXLu approach the point q, and
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the inclination lemma implies that the images of the leaves of Lu are (very large) disks which,
in the neighborhood W of q, converge towards W upqq (in the C1 topology). Doing the same
with the unstable manifold W upqq and the dynamics of f´N , one pull back Ls near q. On the
other hand, T`f and T´f are eigencurrents for f . Thus, one sees that T`f and T´f give mass to
two transversal laminations of W . And this implies that µ f gives a positive mass to W . Since
this work for any neighborhood of q, this point is in the support of µ f . Thus, Theorem 5.3.11 is
proven.

5.3.9 The sequence pgnpqp f qqq is unbounded

Suppose D “ 0 we can consider S as the flat torus T “ R2{Z2 with a puncture at the origin,
i.e. S “ Tztou, or as a complete hyperbolic surface X of finite area (we fix such a hyperbolic
structure, it corresponds to some point X in the Teichmuller space TeichpSq » D).

An element f of Out`pF2q is pseudo-Anosov if the corresponding matrix A f P SL2pZq has
TrpA f q

2 ě 4. In that case, the matrix has two eigenvalues λp f q ą 1 and 1{λp f q ă 1 and the
mapping class is represented by a linear automorphism of the torus T (fixing the origin o) with
stable and unstable linear foliations. In the hyperbolic surface X , these foliations give rise to
two measured laminations F́ and F̀ (by geodesic lines). If C Ă S is a closed curve (repre-
sented by some geodesic in X), one can define two intersection numbers ipC, F̀ q and ipC, F́ q;
they depend only on the free homotopy class of C. The product jpCq “ ipC, F̀ qipC, F́ q is f -
invariant, because f stretches F̀ by a dilatation factor λp f q ą 1, and contracts F́ by 1{λp f q; if
C is not homotopic to a loop around the puncture jpCq is strictly positive (any closed geodesic
is transverse to F̀ and F́ ).

If D “ 2´ 2cosp2π{qq, let S be the genus one torus with an orbifold singularity of order
q. We have seen that there exists a characteristic finite covering rS Ñ S with rS a compact sur-
face of negative Euler characteristic. We let X “H2{Γ be a hyperbolic surface homeomorphic
to rS (i.e X P TeichprSq). If f P Out`pF2q is pseudo-Anosov then it lifts to a pseudo-Anosov
rf PModpXq “ Out`pF2q pseudo-Anosov also. In that case, there exist two measured lamina-
tions F̀ and F́ over rS (the stable and the unstable one) and by Proposition 1.5.1 of [Ota96].
We have that for any geodesic γ P rS,

prf q˘ipγq

`prf q˘ipγq
ÝÝÝÝÑ
iÑ`8

F̆ (5.125)

in the sense of measured laminations. (This also holds in the case D “ 0). Here ` is the length
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induced by the hyperbolic structure from the quotient H2{Γ so `prf q˘i
˚ pγq grows like λprf qi. We

also have that jpγq “ ipγ, F̀ qipγ, F́ q is f -invariant as iprf˚pγq, F̆ q “ λprf q¯1ipγ, F̆ q and if γ is a
geodesic, then jpγq ą 0. To unify the notations we will still denote by f the lift rf of f to X .

Lemma 5.3.14. If f and g are two loxodromic elements of Out`pF2q » SL2pZq generating a

non-elementary subgroup of SL2pZq, then given any geodesic γĂ X, jpgnpγqq goes to `8 as n

goes to `8.

Proof. Let G` and G´ be the unstable and stable laminations associated to g in X . Since
f and g generate a non-elementary subgroup of GL2pZq, G` is transverse to both F̀ and
F́ (equivalently, the four fixed points of A f and Ag on P1pRq are distinct). Thus, by Equa-
tion (5.125) jpgnpCqq » λpgqnipG`, F̀ qipG´, F́ q by continuity of the intersection number (see
[Ota96] p.151).

Lemma 5.3.15. Let f and g be two loxodromic elements of Out`pF2q » SL2pZq generating a

non-elementary subgroup of SL2pZq. Let γ Ă X be a geodesic, and let rγs be its free homotopy

class. Then the sequence gnrγs intersects each orbit of f only finitely many times.

Proof. This follows from the previous lemma and the fact that jp¨q is f -invariant so it is constant
in each orbit of f .

Recall the definition of MΦ f , rMΦ f , ρ8 and α f from Theorem 5.3.9 (here we consider
f P ModprSq if we are in the orbifold case). In MΦ f , the number of simple closed geodesics
of length ď L is finite (for every L ą 0); thus, in rMΦ f , given any upper bound L, there are only
finitely many homotopy classes of simple closed curves up to the action of f Z (Note that, since
α f acts by isometry, each closed geodesic CĂ rM f gives rise to infinitely many geodesics αn

f pCq

with the exact same length).

Proof of Proposition 5.3.5 item (2) Fix a generator a in π1pSq where S is either the punctured
torus or the genus 1 torus with an orbifold singularity of index q. Set k to be the degree of
the finite cover rS Ñ S in the orbifold case and k “ 1 otherwise. The element ak gives rise to
a closed geodesic A in rMΦ f . From these preliminaries and the previous lemma, the sequence
of homotopy classes gnpakq correspond to a sequence of closed geodesics in rMΦ f , with length
going to infinity because f acts by isometry on rMΦ f .

Now, gnpakq corresponds to a (conjugacy class of a) matrix ρ8pgnpakqq P SL2pCq, and the
trace of this matrix is related to the length of the geodesic by a simple formula; in particular, the
fact that the length goes to infinity implies that the modulus of the trace goes to `8. Since for
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any matrix A P SL2pCq,TrAk is a polynomial in TrA we get that Trpρ8pgnpaqqq goes to infinity.
This implies that the orbit of qp f q under the action of g on MDpCq is discrete, going to infinity.
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Titre : Sur la dynamique des endomorphismes des surfaces affines

Mot clés : Système dynamique, dynamique arithmétique, valuations, géométrie algébrique

Résumé : Une variété affine X0 sur un
corps algébriquement clos k est un sous-
espace de kN défini par des équations po-
lynomiales. Un endomorphisme polynomial f
de X0 est alors une transformation polyno-
miale de kN qui préserve X0 au sens où
f pX0q Ă X0. Lorsque la dimension de X0 vaut
2, on dira que X0 est une surface affine. Le
but de ma thèse est d’étudier le système dy-
namique donné par X0 une surface affine et
f : X0 Ñ X0 un endomorphisme polynomial
de X0. Les différentes questions que j’abor-
derai sont les suivantes : y’a-t-il des orbites

denses ou Zariski-denses? Si l’orbite d’un
point part à l’infini, peut-on contrôler sa vi-
tesse de fuite? Y’a-t-il beaucoup d’orbites pé-
riodiques? Comment construire des mesures
invariantes qui sont dynamiquement intéres-
santes? Pour répondre à ces questions, j’uti-
lise des techniques valuatives. Le système dy-
namique pX0, f q induit un système dynamique
pV8, f˚q où V8 est l’espace des valuations
centrées à l’infini de X0. C’est l’étude de cette
action qui sera au coeur de ce mémoire et per-
mettra d’aborder ensuite les questions évo-
quées ci-dessus.

Title: On the dynamics of endomorphisms of affine surfaces

Keywords: Dynamical systems, arithmetic dynamics, valuations, algebraic geometry

Abstract: An affine variety X0 over an alge-
braically closed field k is a subspace of kN de-
fined by polynomial equations. A polynomial
endomorphism of X0 is a polynomial transfor-
mation of kN that preservers X0 in the sense
that f pX0q Ă X0. When the dimension of X0 is
2, we say that X0 is an affine surface. The goal
of my thesis is to study the dynamical system
given by an affine surface X0 and f : X0 Ñ X0 a
polynomial endomorphism of X0. The different
questions one can ask are: are there dense
orbits or Zariski-dense orbits ? If the orbit of a

point goes to infinity, can we control the speed
of divergence ? Is there a lot of periodic or-
bits ? Can we construct interesting invariant
probability measures ? To answer these ques-
tions, I use valuative techniques. The yynami-
cal system pX0, f q induces a dynamical system
pV8, f˚q where V8 is the space of valuations
centered at infinity of X0. The study of this dy-
namical system is the main goal of this memoir
and it will allow to answer the questions men-
tionned above.
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