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CHAPITRE 1

INTRODUCTION

Une variété affine X, sur un corps algébriquement clos k est un sous espace de k' défini par
des équations polynomiales. Un endomorphisme polynomial de X est alors une transforma-
tion polynomiale de k" qui préserve Xj au sens ot f(Xp) < Xo. Lorsque la dimension de X
vaut 2, on dira que X est une surface affine. Le but de ma these est d’étudier le systeme dy-
namique donné par X une surface affine et f : Xy — Xy un endomorphisme polynomial de
Xo. Les différentes questions que j’aborderai sont les suivantes : y a-t-il des orbites denses ou
Zariski-denses ? Si I’orbite d’un point part a I’infini, peut on controdler sa vitesse de fuite ? Y
a-t-11 beaucoup d’orbites périodiques ? Comment construire des mesures invariantes qui sont
dynamiquement intéressantes ? Pour répondre a ces questions, j’utilise des techniques valua-
tives. Le systeme dynamique (Xo, f) induit un systeéme dynamique (¥, fi) ol Vy, est I’espace
des valuations centrées a I’infini de Xy. C’est I’étude de cette action qui sera au cceur de ce

mémoire et permettra d’aborder ensuite les questions évoquées ci-dessus.

1.1 Endomorphismes

1.1.1 Degrés dynamiques
1.1.1.1 Transformations polynomiales de I’espace affine complexe

Une transformation polynomiale f de CV est la donnée de N polynomes f; € C[x1, - ,xy] tels
que f = (f1,--, fn). On définit le degré de f comme le maximum des degrés des f;; on le note
deg f. On note f* pour le k-ieme itéré de f. Lorsqu’on itere f le degré des formules de f* croit

typiquement de facon exponentielle. Il est donc naturel de considérer la quantité suivante :

1k
M(f) i=tim (deg f*) (1.1)

introduite dans [RS97]], que I’on appellera le premier degré dynamique de f dans la suite. Les

auteurs montrent que cette quantité est bien définie. On peut définir le premier degré dyna-
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Introduction

mique de n’importe quelle transformation rationnelle de I’espace projectif PV avec un procédé

similaire.

1.1.1.2 Définitions générales

Soit X une variété projective lisse sur un corps algébriquement clos et soit d sa dimension. Pour
d diviseurs de Cartier D1, ---,D; de X on peut définir le produit d’intersection Dy ---Dg € Z
(voir [Laz04]]). Si f : X --» X est une transformation rationnelle dominante, on définit pour
0 <[ <dlel-ieme degré dynamique de f par

M(f) := lim ((f”)*lfk-ffd‘k)]/", (1.2)

n—aoo

ou H est un diviseur ample de X. On peut montrer que ces quantités sont bien définies, indé-
pendantes du choix de H. En particulier, Ao(f) = 1. De plus, les degrés dynamiques sont des

invariants birationnels : si @ : X --» Y est une application birationnelle, alors
M(f) =N(gofoe"), VO<I<d. (1.3)

On a que Ay4(f) est le degré topologique de f ou le degré topologique est définie comme le
degré de I’extension induit par f* sur le corps des fonctions rationnelles de X. Les inégalités de
Khovanskii-Teissier (voir [Gro90]], [DNO3]) impliquent que la suite (A;)o<;<g est log-concave ;
c’est a dire
logA;_1 +loghA; 1
2
En particulier, on a V1 <1 < d, A (f)! = M(f).

Soit Xy une variété affine lisse de dimension d et f : Xy — Xo un endomorphisme de Xy. On

<logh;, VIi<I<d-1. (1.4)

définit les degrés dynamiques de f de la facon suivante. Une complétion de X est une variété
projective lisse X munie d’une immersion ouverte 1 : Xy < X telle que 1(Xp) est dense dans X.

1

L’endomorphisme f induit une transformation rationnelle de X par f =10 fol ' et on définit

les degrés dynamiques

M(f) =M ). (1.5)

Comme les degrés dynamiques sont des invariants birationnels, cette quantité ne dépend pas
du choix de la complétion X. En particulier, si Xo = k¥ et X = P{g on retrouve la définition du
premier degré dynamique donnée au premier paragraphe.

La connaissance de ces degrés dynamiques donne des informations sur le systéme dyna-
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Introduction

mique. Par exemple sur C, Dinh et Sibony ont montré dans [DS03]] que pour toute transforma-
tion rationnelle f: X --+» X
hiop(f) < max log(A) (1.6)

0<I<d
ou hyop est I’entropie topologique de f, Gromov avait au préalable montré ce résultat pour les en-
domorphismes de PY dans [Gro03]. Yomdin a montré dans [Yom87]] I’égalité des deux membres
si f est un endomorphisme. Récemment, Favre, Truong et Xie ont montré dans [FTX22] que
I’inégalité était encore valable dans le cadre non-archimédien; cependant 1’égalité n’est

pas vérifiée méme pour des endomorphismes.

1.1.2 Degrés dynamiques sur les surfaces projectives

Une question naturelle est de se demander quels nombres peuvent apparaitre comme le premier
degré dynamique d’une transformation rationnelle d’une surface projective. On peut d’abord
mentionner le résultat suivant dii a Bonifant et Fornaess dans [BEOO] pour Pj(\:’ et généralisé par
Urech

Théoréme 1.1.1 ([Urel6)])). L’ensemble

M)} (1.7)

ou f parcourt ’ensemble des transformations rationnelles de toute variété projective lisse sur

n’importe quel corps, est dénombrable.

En 2021, Bell, Diller et Jonsson ont montré dans [BDJ20] I’existence d’une transformation
rationnelle 6 : P2 --» P? telle que A (G) est transcendant. Les trois auteurs et Krieger ont montré
dans [BDJ20] que cet exemple peut se généraliser pour donner un exemple de transformation
birationnelle de PV, N > 3 avec un premier degré dynamique transcendant. Mais en dimension
2, il y a de fortes contraintes sur A;(f) pour f birationnelle. Dans [DFO01]], Diller et Favre
ont montré que le premier degré dynamique d’une transformation birationnelle d’une surface
projective est un entier algébrique. Plus précisément c’est un nombre de Pisot ou de Salem.

Dans [BC13|], Blanc et Cantat ont obtenu les résultats suivants
Théoreme 1.1.2. Soit X une surface projective sur un corps algébriquement clos.

1. Soit f : X --+ X une transformation birationnelle telle que A (f) est un nombre de Sa-
lem, alors il existe une application birationnelle ¢ : X --» Y telle que @o fo@~! est un

automorphisme de Y .
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2. Si X est rationnelle sur un corps K, alors I’ensemble A(X) := {A(f)|f € Bir(X)} < Rest

bien ordonné. Il est fermé si k n’est pas dénombrable.

En particulier, A(X) est un ordinal et Bot montre dans [Bot22] que cet ordinal est exacte-
ment ®® oll ® est ’ordinal des entiers naturels. On ne peut cependant pas espérer obtenir une
information sur les degrés des entiers algébriques obtenus. En effet Bedford, Kim et McMul-
len construisent dans [BKO6] et [McMO7|| des exemples de transformations birationnelles de
surfaces projectives dont le premier degré dynamique est un entier algébrique de degré arbi-
trairement grand. En particulier le théoreme 1.1 de [McMO7] établit que pour tout d > 10 on
peut trouver une surface projective avec un automorphisme de premier degré dynamique entier

algébrique de degré d.

1.1.3 Degrés dynamiques des endomorphismes des surfaces affines

Dans ma these je considere des endomorphismes de surfaces affines. Le premier exemple de
surface affine est le plan complexe C2. Un endomorphisme est alors une transformation poly-

nomiale. Méme dans ce cas, le premier degré dynamique n’est pas nécessairement un entier. En

A= (@ P (1.8)
_cd '

une matrice a coefficients entiers positifs tels que ad — bc # 0. Considérons la transformation

effet, soit

monomiale suivante
Fley) = (¥47xy)) (1.9)

alors fV est la transformation monomiale dont les mondmes sont donnés par les coefficients de
AN et A1 (f) est égal au rayon spectral de A. Ainsi, A (f) est un entier algébrique de degré 2 car
il vérifie I’équation

M (f)? = Tr(A)A (f) + det(A) = 0. (1.10)

Ainsi, il existe des transformation polynomiales f du plan avec A (f) entier ou entier algébrique

de degré 2. Favre et Jonsson ont montré qu’il n’y a pas d’autres possibilités.

Théoreme 1.1.3. [FJ07] Soit f : C> — C? une transformation polynomiale dominante, alors
A1 (f) est un entier algébrique de degré < 2.

Le premier résultat de ma these est d’étendre ce résultat a toutes les surfaces affines et en
toute caractéristique. Méme si on peut trouver des surfaces affines ot le monoide des endo-

morphismes peut changer de facon drastique. Par exemple, Blanc et Dubouloz, dans [BD13]],
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construisent des surfaces affines lisses avec un gros groupe d’automorphismes, bien plus riche
que celui du plan affine. Bot a utilisé cette construction pour montrer 1’existence de surfaces
affines rationnelles lisses avec une infinité non dénombrable de formes réelles (voir [Bot23]]).
Le travail établi dans ma thése montre que méme si du point de vue de la structure algébrique,
ces groupes sont bien plus riche ; du point de vue de la dynamique individuelle de chaque auto-

morphisme, ce n’est pas le cas.

Théoreme A. Soit Xy une surface affine normale sur un corps k algébriquement clos. Si
f: Xo — Xo est un endomorphisme dominant, alors M (f) est un entier algébrique de degré
<2

La preuve utilise des techniques valuatives que je décris dans la section suivante. Si la ca-
ractéristique de k est nulle, j’obtiens des résultats sur la dynamique de I’endomorphisme f. Je

donnerai un énoncé précis dans le cas des automorphismes (voir Théoreme [C).

1.2 Valuations, Diviseurs a I’infini et dynamique

1.2.1 Existence d’une valuation propre

Soit A ’anneau des fonctions régulieres d’une surface affine normale Xy sur un corps algébri-

quement clos k. Une valuation est une fonction v : A — R u {0} telle que
1. v(PQ) =v(P)+Vv(Q);
2. v(P+ Q) = min(v(P),v(Q));
3. v(0) = 0;
4. Vix =0

Deux valuations v et u sont équivalentes s’il existe t > 0 tel que v = ru. Par exemple, si X est une
complétion de Xy, pour toute courbe irréductible E — X, la fonction ordg telle que ordg (P) est
I’ordre d’annulation de P le long de E est une valuation. Toute valuation de la forme Aordg avec
A > 0 est dite divisorielle. Si f est un endomorphisme de X, alors f induit un homomorphisme

d’anneaux f*:A — A. On peut alors définir le poussé en avant f,v d’une valuation v par

f«V(P) =v(f*P). (1.11)
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On dit qu’une valuation est centrée a I’infini s’il existe P € A tel que V(P) < 0. Si X est une
complétion de X les valuations divisorielles centrées a I’infini sont exactement celles qui cor-
respondent aux composantes irréductibles de X\ Xp. Soit 7, I’ensemble des valuations centrées
a I’infini et ‘IA/OO celui des valuations centrées a 1’infini modulo équivalence. Supposons pour
simplifier que f est un automorphisme de Xy, alors f; induit une bijection de V., et de ‘IA/OO qui
sera en fait un homéomorphisme pour une topologie que 1’on décrira dans le mémoire.

Si Xy est le plan affine complexe, alors Favre et Jonsson prouvent I’existence d’une valuation
V. € Vi, telle que fi Vi = A1 (f)V«. Une telle valuation est appelée valuation propre de f. Pour ce
faire, ils montrent dans [EJO4] que ’IA/OO a une structure d’arbre réel et f, est compatible avec cette
structure. L’ existence de v, provient alors d’un théoreme de point fixe sur les arbres. L’existence
de cette valuation propre a un grand impact sur la dynamique de f. Elle permet notamment de
trouver une bonne complétion X de C? qui admet un point fixe attractif de f a I'infini. Xie
utilise cette construction de valuation propre pour démontrer la conjecture des orbites Zariski-
denses et la conjecture de Mordell-Lang dynamique pour les endomorphismes du plan affine
([Xiel7bl]). Jonsson et Wulcan utilisent ces techniques pour construire une hauteur canonique

pour les endomorphismes du plan affine complexe avec petit degré topologique dans [JW12].

Théoreme B. Soit Xy une surface affine normale sur un corps K algébriquement clos (de carac-

téristique quelconque) et f un endomorphisme dominant de Xo. Sous les hypotheses suivantes
1. K[Xp]* =k*.

2. Pour toute complétion X de X, Pic’(X) = 0.

3. M) > Ma(f).

11 existe une valuation centrée a l’infini V., unique a équivalence pres, de f telle que

Je(v) =M (f)Ve. (1.12)

Les techniques que j’emploie n’exploite pas la géométrie globale de ‘IA/OO au sens ou cet es-
pace n’est plus nécessairement un arbre. Soit X une complétion de Xy, je montre qu’a toute
valuation v centrée a 'infini on peut associer un unique diviseur Zy x de X supporté en de-
hors de X, de plus si Y est une autre complétion de Xo, il y a une compatibilité entre Zy x et
Zy.y (voir Proposition @ Cette construction fait intervenir I’espace de Picard-Manin de Xj.
L’analyse spectrale des opérateurs f, f* définit par f sur cet espace (voir [BFJO8, |(Can11]]) per-
met de construire la valuation propre V.. et de prouver son unicité. Ce procédé est similaire aux
techniques de [DEF21] §6.
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1.2.2 Discussion des hypotheses du théoreme

Les hypotheses du théoreme [B| peuvent paraitre arbitraires mais elles ne sont pas restrictives.
En effet, si les hypotheses (1) ou (2) ne sont pas vérifiées, alors on peut montrer que 1’endo-
morphisme f préserve une fibration vers une variété ﬂquasi-abélienne. On peut décomposer la
dynamique de f par cette fibration et elle devient plus simple a étudier.

Si I’hypothése (3) n’est pas satisfaite alors on a A;(f)> = A2(f). Notons que dans ce cas
A1(f) est automatiquement un entier algébrique de degré < 2 car A,(f) est le degré topolo-
gique de f, donc un entier. Dans le cas du plan affine complexe, Favre et Jonsson arrivent a une
classification des endomorphismes polynomiaux satisfaisant A7 = A, : ou bien ils préservent
une fibration rationnelle, ou bien il existe une complétion X de A% avec au plus des singu-
larités quotients a I'infini telle que f s’étende en un endomorphisme de X. Je m’attends a ce
qu’une classification similaire existe dans le cas général, tous les exemples que j’ai étudié jus-
qu’a présent satisfont cette dichotomie. On peut remarquer que dans le cas inversible, une telle
classification existe déja : Par [[Gi1z69] et [CanOl1l], toute transformation birationnelle 6 : X — X
d’une surface projective lisse telle que A;(c) = 1 est un automorphisme de X ou préserve une

fibration rationnelle ou elliptique.

1.2.3 Enoncé du résultat dans le cas des automorphismes

En caractéristique nulle, I’existence de cette valuation propre a des conséquences sur la dyna-
mique de f. Je prouve également pour n’importe quel endomorphisme I’existence d’'une com-
plétion X de Xy qui admet un point fixe attractif de f a I’infini et dans le cas des automorphismes

loxodromiques (c’est a dire avec A; > 1), je démontre le résultat suivant

Théoréme C. Soit Xy une surface affine normale sur C telle que C[Xp|* = C*. Si f est un

automorphisme de X tel que M\ (f) > 1, alors il existe une complétion X de Xy tel que
1. f admet un point fixe attractif p € X(C)\Xo(C) a Uinfini.
2. Unitéré de f contracte X\Xo sur p.

3. 1l existe des coordonnées analytiques locales centrées sur p telles que f est localement

de la forme

1. Une variété quasi-abélienne est un groupe algébrique X tel qu’il existe un tore algébrique T et une variété
abélienne A satisfaisant la suite exacte 0 - 7 — X — A — 0 de groupes algébriques.
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(a)
flz,w) = (WP, zwY) (1.13)

a b
avec a,b,c,d des entiers = 1, dans ce cas A (f) est le rayon spectral de < )
c

En particulier, My (f) € R\Q, ¢’est un entier algébrique de degré 2.

(b) ou bien
flz,w) = (2% AW+ P(z)) (1.14)

avec a >2,c = 1 et P £ 0 un polyndéme, dans ce cas M (f) = a est un entier.
4. Les points fixes attractifs de f et f~' sont distincts.
5. La forme normale de f~' a son point fixe attractif est la méme que celle de f.
Les cas (3)(a) et (3)(b) sont mutuellement exclusifs au sens suivant

Théoreme D. Soit Xy une surface affine normale sur C telle que C[Xp]* = C* et f € Aut(Xp)

un automorphisme loxodromique. On a la dichotomie suivante :

o Si M (f) € Zxo, alors pour tout automorphisme loxodromique g de Xy, on a Mi(g) € Z>o

et la forme normale de g a son point attractif p est de la forme (1.14).

o Si Mi(f) ¢ Z=¢ alors c’est un entier algébrique de degré 2 et cela reste vrai pour tout
automorphisme loxodromique g de Xo. En particulier, la forme normale de g a son point
fixe attractif est de la forme monomiale (2.13).

On donne deux exemples : le plan affine et la surface de Markov (voir §1.2.3.2). Les théo-
remes [C| et [D]montrent qu’il suffit de comprendre ces deux exemples pour comprendre la dyna-

mique d’un automorphisme d’une surface affine.

1.2.3.1 Le plan affine

Soit Xy = AQC, considérons 1’automorphisme

fxy) = (y+x%,x). (1.15)

C’est un automorphisme de Hénon et on a A;(f) = 2. On considére la complétion X = P§
avec les coordonnées homogenes X,Y,Z telles que x = X/Z et y = Y/Z. La transformation

birationnelle induite par f posséde un point fixe p = [1:0: 0] et un point d’indétermination
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p_ =[0:1:0]. La droite a I'infini {Z = 0} est contractée par f sur p et par f~' sur p_.

Prenons les coordonnées locales (u,v) en p; données paru =Y /X etv=Z/X,ona

2

f(w)=( ’ ’ ) (1.16)

1+uv’ 14+uv

Et il existe un changement de coordonnées analytiques telle que f a la forme normale (I.14).
(Voir [Fav00] §2).

1.2.3.2 La surface de Markov

Considérons la surface de Markov My A3C donnée par 1’équation
x2+y2+z2=xyz. (1.17)

C’est une surface normale avec une singularité quotient en (0,0,0). On décrira plus en détail
ces propriétés dans le paragraphe Une complétion naturelle de M est la surface projective
X c P3C qui est définie comme 1’adhérence de Zariski de M, dans P3C. L’équation de X est

T(X?+Y*+27%) =XYZ. (1.18)
On voit que X\ M) a pour équation
T =0XYZ=0. (1.19)

C’est donc un triangle de 3 courbes rationnelles. Par le théoreme 3.1 de [Can09]], si f est un au-
tomorphisme loxodromique de M algébriquement stable sur X alors f posséde un point fixe at-
tractif p4 € X\ My qui est un des sommets du triangle et un point d’indétermination p_ € X\ My

qui est un autre sommet du triangle. De plus, f admet une forme normale monomiale (i.e du

type (2.13)) en p-.

Remarque 1.2.1. On voit que pour toute complétion X du plan affine, le graphe dual de X \A%
est un arbre. En revanche, dans le cas de 9 le graphe dual de X\ M, se rétracte sur un cercle
pour toute complétion X. On montrera en fait que toute surface affine (possédant un automor-
phisme loxodromique) satisfait cette dichotomie. C’est cette dichotomie de la géométrie des

graphes duaux qui donnent la dichotomie de la dynamique (voir Théoreme [4.4.4)).
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1.3 Dynamique des automorphismes des surfaces affines

1.3.1 Dynamique des transformations de Hénon : Fonction de Green

Soit Aut(A%) le groupe des automorphismes polynomiaux du plan affine complexe. Les trans-

formations affines sont des exemples de tels automorphismes. En voici un autre : soit

fx,y) = (x,y+P(x)) (1.20)

ou P est un polyndme. L’automorphisme f préserve les droites d’équations x = o et agit par
translation sur ces droites, le vecteur de translation est donnée par un polyndme en x a savoir
P(x). Un tel automorphisme est appelé élémentaire. On note E 1’ensemble des automorphismes
élémentaires de A%, ces automorphismes forment un groupe isomorphe a (C[x],+). Le théo-

réme de Jung ([Tun42])) affirme que Aut(C?) a une structure de produit amalgamé
Aut(A%) = Aff(AZ) «s E (1.21)

ol S = Aff(AZ) NE.
Un automorphisme de type Hénon est un automorphisme f qui n’est conjugué ni a un élé-
ment de Aff(AZ) ni & un élément de E. IIs sont caractérisés par le fait qu’il vérifie A;(f) > 1.

Un exemple d’automorphisme de type Hénon que nous utiliserons dans la suite est le suivant

fxy) = (y+x%,x). (1.22)

L’extension de f 2 P? a un point fixe & I'infini p, = [1:0: 0] et un point d’indétermination
p— =[0:1:0]. La droite a I’infini est contractée par f sur p;. De méme p est le seul point
d’indétermination de f~! et p_ est un point fixe de f~! sur lequel la droite 2 I’infini est contrac-
tée par f~!. Un automorphisme  sera dit régulier si les points d’indéterminations de / et de /!
sont distincts. En particulier f est régulier et tout automorphisme de type Hénon est conjugué
a un automorphisme régulier [FM89]. Pour tout automorphisme de type Hénon 4, A;(h) est un
entier que I’on notera d, en particulier A (f) = 2.

On considere la norme ||(x,y)|| = max (|x|,[y|) sur C?. Si & est un automorphisme régulier
de type Hénon, on peut définir les fonctions de Green de & (voir [EM89]], [BS91a] et leurs

références)

.1 _ .1 _
G (p):=lim—xlog" [[""(p)||, G (p):=lim 5 log" ||n"" (p)]] (1.23)
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ot log* = max(0,log). On a alors les propriétés suivantes (voir [BS91a]).
1. G* est bien définie, continue et plurisousharmonique sur C?
2. Gtoh=dG™*
3. La fonction p — G*(p) —log™ (||p||) s’étend en une fonction continue sur P?\p_.
4. G*(p) = 0 si et seulement si I’orbite (A" (p))n=o est bornée.

La fonction G~ jouit de propriétés similaires. On peut alors définir les courants de Green

Tt =dd°G" etT~ =dd°G. Ce sont des (1, 1)-courants positifs fermés. La mesure
u=T " AT~ (1.24)

est alors bien définie car G, G~ sont continues, elle est de masse totale finie et on peut supposer
que c’est une mesure de probabilité. On I’appelle la mesure d’équilibre de h. Elle est h-invariante
et son support est contenu dans 1’ensemble de Julia de A.

On définit la fonction de Green suivante
G:=max(G",G") (1.25)

qui satisfait les propriétés

1. G est une fonction continue, plurisousharmonique de C? et est limite uniforme de
! (|| L+l p=N
max | —xlog™ (|| (P)]]), 7 log™ (|| £ (p)]]) (1.26)

2. p— G(p) —log"||p|| s’étend en une fonction continue sur P2,

3. G(p) = O si et seulement si 1’orbite (™ (p))nez est bornée.

1.3.2 Dynamique des automorphismes des surfaces affines

Grace au théoreme[C| je démontre le résultat suivant :

Théoreme E. Soit Xy une surface affine normale sur C, soit X une complétion de Xy qui vérifie

le théoréme@ Soit X < PN un plongement de X qui induit un plongement Xy — CN et soit ||-||
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une norme sur CN. Si f est un automorphisme de X tel que A (f) > 1, la fonction de Green
1
G*(p) = lim s log™ (|| (p)]) (127)
1

vérifie les propriétés suivantes
1. G est bien définie, continue et plurisousharmonique sur Xo(C).
2. Gtof=MG"
3. G est a croissance logarithmique (voir Proposition m)
4. G*(p) = 0 si et seulement si I'orbite (fN(p))n=o est bornée.

On peut alors considérer la fonction G = max(G™,G ™) qui va jouir de propriétés similaires
au cas Hénon. Il y a cependant une différence majeure. En général, le maximum de deux fonc-
tions a croissance logarithmique n’est pas a croissance logarithmique. Il y a donc une difficulté
supplémentaire ici. Il s’avere que nous avons deux comportements différents : si A; (f) € Z>o, G
est encore a croissance logarithmique et tout se passe comme dans le cas Hénon. Si A (f) ¢ Z=o,
alors G n’est pas a croissance logarithmique et donc ce n’est pas la bonne fonction a considérer,
il faut alors utiliser les travaux récents de Yuan et Zhang sur les fibrés en droite adéliques sur

les variétés quasiprojectives, Je serai plus précis dans la section suivante.

1.3.3 Dynamique aux places non-archimédiennes

Soit K un corps de nombre. Une valeur absolue |-| sur K est une fonction |-| : K — Ry qui

vérifie les axiomes suivants
* x| =0<x=0,
* Vxye K [yl = |x] -y,
o Vx,ye K, [x+y| < |x|+ |yl

Deux valeurs absolues ||, ,|-|, sont équivalentes si |-|; = |-|5 pour un certain s > 0. Une place
est une classe d’équivalence de valeur absolue, on note M (K) I’ensemble des places de K. Si
|-| est une valeur absolue de K, on peut considérer la complétion de K par rapport a |-|. Cette
complétion ne dépend en fait que de la place v de ||, on la note K,. La valeur absolue |-| s’étend

alors a K, et admet une extension naturelle 3 K,. On note C, le complété de K, par rapport 4
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|-|. Cette construction ne dépend que de la place v. On dit que |-| est non-archimédienne si elle
vérifie I’inégalité suivante
Vx,y € K, [x +y| <max(|x],[y]). (1.28)

Une place v est non-archimédienne si un de ses représentants 1’est. Pour toute place archimé-
dienne v, on a C, = C. Les énoncés du paragraphe §1.3.1| ont des analogues lorsque C est
remplacé par un corps algébriquement clos complet non archimédien C,. En effet, Kawaguchi
montre dans [Kaw(09] que la fonction de Green d’un automorphisme de type Hénon est bien dé-
finie également dans le cas non-archimédien. Si C, est non-archimédien, la fonction de Green
G = max(G™',G7) induit un fibré en droites métrisé semipositif sur I’analytifié de Berkovich
de P%:v que I’on note (P%v)“” (voir [Zha93] pour la définition). La mesure d’équilibre associée
est une mesure positive sur (PZCV)C’”, elle est construite dans [ChaO3]]. Il est a noter que des
travaux plus récents de Chambert-Loir et Ducros [[CD] permettent de construire les courants
T* = dd°G™ et de définir la mesure d’équilibre de la méme maniére que dans le cas complexe
u=T7" AT~ .De plus, Lee montre dans [Leel3] que I’orbite de Galois de toute suite @énérique
de points périodiques de f est équidistribuée par rapport 2 lamesure u =T+ A T~ et ce a toutes
les places en utilisant le théoreme d’équidistribution de Yuan dans [YuaOS]].

Je prouve également un analogue du théoreme |C| dans le cas non archimédien. On définit
également les fonctions G*,G~,G dans ce contexte. Cependant les problemes évoquées a la
fin du paragraphe subsiste. Si A (f) € Z=o, alors la donnée des fonctions de Green (G,)
pour chaque place v de K induit un fibré en droites adélique semipositif (cf [Zha93]) sur une
complétion X de Xj et le théoreme d’équidistribution arithétique de Yuan s’applique.

Maintenant si A;(f) ¢ Z=0, on ne peut pas appliquer la théorie des fibrés en droite adélique
sur la complétion X. Le bon point de vue est de considérer non pas une complétion de Xy mais
I’ensemble de toutes les complétions X de Xj. C’est le point de vue développé par Yuan et Zhang
dans [YZ22]. Les auteurs définissent alors la notion de fibré en droites adélique associé a une
variété quasiprojective U comme une limite de fibrés en droites adéliques sur des complétions
de U. Ils démontrent dans ce contexte un théoreme d’équidistribution arithmétique similaire au

théoreme de Yuan. Je conjecture dans mon mémoire le fait suivant (voir Conjecture [F) :

Conjecture F. La donnée de (G}) et (G,’) pour toute place v de K induisent deux fibrés en
droites adéliques nef f-invariant sur la variété quasiprojective Xy. En particulier, on peut définir
la mesure d’équilibre u, de f a toute place comme la mesure de probabilité proportionelle a

dd°G} A dd°G, et I'orbite de Galois de toute suite générique de points périodiques de f est

2. Une suite est générique si aucune sous suite n’est contenue dans une sous variété fermée stricte
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équidistribuée par rapport a p, pour toute place v.

Je pense que les travaux établis dans ce mémoire et les travaux de Yuan et Zhang permettront

de prouver cette conjecture a I’aide d’une construction similaire au §4 de [YZ17]|(voir §1.5.1).

1.3.4 Des automorphismes avec une infinité de points périodiques com-

muns

Si Xp une surface affine normale sur K, un corps de nombre, et f un automorphisme loxo-
dromique de Xp, on peut mener 1’étude de la section précédente aux places archimédiennes et
non-archimédiennes. On obtient ainsi une mesure d’équilibre uy, pour f a toutes les places v
de K. Gréce aux techniques d’équidistributions arithmétiques mentionnées dans le paragraphe

précédent, je démontre le résultat suivant.

Théoreme G. Soit Xy une surface affine normale défini sur un corps de nombres K. Si f, g sont
deux automorphismes loxodromiques de X tels que M1 (f) € Zxo, les assertions suivantes sont

équivalentes
1. Per(f) nPer(g) est Zariski-dense.
2. VWwe M(K),uyr = tyg
3. Per(f) = Per(g).

Dans le cas M (f) ¢ Zxo, en admettant la conjecture [F| on a que si Per(f) n Per(g) est
Zariski-dense, alors Vv e M(K),ur, = g .

En utilisant des méthodes similaires, ce genre d’énoncé a d’abord été obtenu par Baker,
DeMarco dans [BD11al] pour les endomorphismes de P! de degré > 2 sur C puis a été généra-
lisé par Yuan et Zhang pour les endomorphismes polarisables de P sur un corps de nombres
dans [YZ17] et récemment dans [YZ21] sur n’importe quel corps de caractéristique nulle. Dans
[CD20]], Cantat et Dujardin utilisent ces mé€mes outils de dynamique arithmétique pour montrer
des résultats de rigidité sur les groupes d’automorphismes de surfaces projectives.

La conjecture [F| ne suffit pas a montrer 1’égalité Per(f) = Per(g) car la preuve utilise une
version arithmétique du théoreme de I’indice de Hodge qui n’a pas encore ét€ démontré pour

les fibrés en droites adéliques sur les variétés quasi-projectives (voir Théoreme [5.1.20).
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1.4 Un résultat de rigidité pour la surface de Markov

Dans [DF17] Dujardin et Favre montrent un résultat plus fort que celui du théoreme [G] Ils
obtiennent que si deux automorphismes de Hénon vérifient une des assertions du théoreme [G]
alors f et g ont des itérés communs : il existe deux entiers M,N € Z tels que fN = gM. Ce

résultat de rigidité ne peut pas étre vrai pour toute surface affine. En effet, si X = C* x C*.

b
SoitA = [ J € SLy(Z) telle que (TrA)? > 4, alors on définit I’automorphisme
¢

Falx,y) = (x4, xy7) (1.29)

SiS! = {ze C||z| = 1}, alors S! x S! est un compact invariant par fy. C’est I’ensemble de Julia
de f4 et les points périodiques de f4 sont exactement les points (1,0;) € S! x S! ot 1, 0
sont des racines de I’unité. Ainsi, tous les automorphismes obtenus ainsi vérifie le théoreme [G|

mais n’ont pas d’itérés communs.

Soit D € C, on définit la surface de Markov Mp comme la surface dans C3 définie par

x2+y2+z2:xyz+D (1.30)

Cette famille de surfaces est a la frontiere de plusieurs domaines (voir [Can09]). Notam-
ment, si T! est le tore épointé, son groupe fondamental 7t := 7 (Tl) est un groupe libre a deux

générateurs que 1’on note a et b. On peut s’intéresser a la variété de caracteres
X :=Hom(x,SL,(C))//SL,(C) (1.31)

ol I’action de SL;(C) est donnée par la conjugaison et // est le quotient au sens de la théorie
géométrique des invariants (GIT). On note [a,b] := aba~'b~! le commutateur de a et b. Soit
p € X, sionnote x =Trp(a),y = Trp(b),z = Trp(ab), alors on a que

X — A} (1.32)
p— (x,3,2) (1.33)

est un isomorphisme. C’est un résultat de Fricke (voir [[Gol09]). De plus on a I’égalité suivante
K +y* 422 = xyz + Tr(p([a, b])) +2. (1.34)
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Autrement, dit la variété algébrique X est feuilleté par la famille des surfaces de Markov et la

surface Mp représente une ligne de niveau pour la fonction réguliere p — Tr(p([a,b])).

Théoréme H. Soit D = 0 ou bien D =2 —2cos(2n/q) avec g = 2. Si f,g sont deux automor-
phismes loxodromiques de Mp, alors en admettant la conjecture @ les assertions suivantes sont

équivalentes :
1. Per(f) nPer(g) est Zariski-dense.

2. Per(f) = Per(g).

3. f et g ontdes itérés communs : il existe N,M € Z tels que fN = gM.

La conjecture [ et le théoreme |G| donnent 1’égalité des mesures d’équilibres de f et g. Pour
montrer le résultat on utilise la théorie des représentations fuchsiennes et quasi-fuchisiennes
pour construire un point fixe hyperbolique ¢(f) au bord de 1’ouvert des représentations quasi-
fuchsiennes dans Mp(C). Cette construction utilise le théoreme de paramétrisation de Bers
[Ber60], sa prolongation par Minsky [Min99] et le théoreme d’hyperbolisation des variétés de
dimension 3 qui fibre sur un cercle de Thurston (voir [Ota96, McM96]). On démontre ensuite
grace a des techniques de théorie des courants en géométrie complexe, notamment grace au
courant d’Ahlfors-Nevanlinna, que ce point fixe hyperbolique doit appartenir au support de
HC,f = MC,g qui est un compact invariant par le groupe (f,g). Enfin on montre que I’orbite
de g(f) sous g est non bornée si g n’a pas d’itérés communs avec f grice a la théorie des

laminations mesurées ce qui donne une contradiction.

1.5 Questions et compléments

1.5.1 La conjecture

Comme établi dans cette introduction, je pense que la conjecture [F] doit se démontrer avec les
travaux de ce mémoire. Notamment, je montre dans la proposition que la fonction G*
s’obtient par un procédé itératif a partir d’'une fonction de Green de n’importe quel diviseur. Ce
procédé itératif appliqué aux fibrés en droite adéliques sur Xp doit donner un fibré en droites
adéliques nef au sens [YZ22]. En effet, dans le cadre projectif si f est un endomorphisme
polarisé d’une variété projective X et L un fibré en droites ample sur X tel que f*L = L%, alors

Yuan et Zhang montrent dans [YZ17] que pour n’importe quelle extension adélique L de L, la
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suite .
(ML (1.35)

converge vers un fibré en droites adélique semipositif L 7 tel que f *L_f = dL_f. Au niveau des
fonctions de Green ce processus itératif est le méme que celui qui apparait dans la section [5.2]
(voir les propositions [5.2.5]et[5.2.12)), donc je m’attends a ce que tout passe dans ce cadre.
Pour obtenir le théoreme [G] il faudra ensuite démontrer le théoreme de 1’indice de Hodge
arithmétique dans le cas des surfaces affines. Il me suffit d’une version affaiblie qui semble

démontrable dans le cas précis qui m’intéresse.

1.5.2 les travaux de Danilov et Gizatullin

On dit qu’une surface affine Xo est complétable par un zigzag s’il existe une complétion X
de Xy tel que X\Xo est un zigzag, c’est a dire une chaine de courbes rationnelles lisses. Le
plan affine est complétable par un zigzag mais pas la surface de Markov M par exemple.
Dans [GD75], Danilov et Gizatullin étudient le groupe d’automorphismes des surfaces affines
complétable par un zigzag. Ils montrent que ce groupe agit sur un arbre dont les sommets
sont les complétions dont le bord est un zigzag. Si Xy est complétable par un zigzag, alors
son espace des valuations centrées a I’infini ‘I//O\O est aussi un arbre sur lequel agit Aut(Xp). 11
serait intéressant de comparer 1I’approche de Danilov et Gizatullin aux travaux de mon mémoire.
Il est a noter que les travaux de Gizatullin (voir [Giz71b) (Giz70, |Giz71c]) préliminaires aux
résultats de [GD75] sont également utilis€ dans mon mémoire pour étudier la dynamique des
automorphismes loxodromiques (voir §4.4.1).

1.5.3 Complexité dynamique vs complexité algébrique de Aut(Xj)

J’ai démontré dans mon mémoire que 1’étude de la dynamique d’un automorphisme loxodro-
mique sur une surface affine est similaire ou bien a la dynamique d’un automorphisme de type
Hénon, ou bien a un automorphisme de la surface de Markov. Cependant on sait qu’il existe
des surfaces affines avec un groupe d’automorphisme bien plus compliqué que celui du plan
affine par les travaux de Blanc et Dubouloz mentionnés précédemment. Prenons Xy une telle
surface, il serait intéressant d’appliquer les techniques valuatives de ce mémoire a tout un sous
groupe d’automorphismes de Xy. Par exemple si f, g sont deux automorphismes loxodromiques
tels que tout élément du sous groupe I' = {f, /g\> qui n’est pas I'identité est loxodromique, que

peut on dire de I’ensemble {v.(h): he '} = V), ou v, (h) est la valuation propre de 4 ? Peut on
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retrouver la complexité algébrique du groupe Aut(Xp) en utilisant des techniques valuatives ?

1.5.4 Des résultats de dynamique arithmétique utilisant des techniques

valuatives

En utilisant les techniques valuatives de Favre et Jonsson pour le plan affine, Junyi Xie montrent
dans [Xiel7b] la conjecture des orbites Zariski dense pour les endomorphismes polynomiaux
du plan affine complexe. Cette conjecture affirme qu’un endomorphisme f admet une orbite
Zariski dense si et seulement si f n’admet pas de fonctions rationnelles non constantes inva-
riantes. La preuve utilise la dynamique a 1’infini provenant de 1’existence de valuation propre.
[auteur montre également dans [Xiel7a] la conjecture dynamique de Mordell-Lang pour les
endomorphismes polynomiaux du plan affine : si x € A*(C) et C A% est une courbe alors
{n>=0: f"(x) € C} est une union d’un ensemble fini et d’une union finie de progressions arith-
métiques.

Pour ces deux conjectures, on peut établir leur analogue dans le cas de n’importe quelle
surface affine en utilisant les techniques valuatives de ce mémoire en supposant 7»% > A,. Pour
le cas d’égalité, Xie s appuie sur la classification des endomorphismes vérifiant A2 = A, éta-
blie par Favre et Jonsson. Il est donc nécessaire d’établir une telle classification en général.
Pour I’instant les techniques développées dans ce mémoire ne permettent pas de traiter le cas
7»% = A,. En particulier, je ne sais pas pour I’instant construire de valuations propres associées a
un endomorphisme f vérifiant A; ()% = Ay (f).

1.5.5 Fonctions de Green et hauteurs canoniques pour les petits degrés

topologiques

Soit f un endomorphisme polynomial du plan affine défini sur un corps de nombre K tel que
A (f) > A2(f). Dans [FI11] et [JW12] Favre, Jonsson et Wulcan utilise 1’existence d’une unique
valuation propre de f pour construire une fonction de Green pour f a toutes les places. Jonsson
et Wulcan construisent ensuite une hauteur canonique 4y associ€ a f qui satisfait la propriété
suivante : p € A%(K),hs(p) = 0 si et seulement si pour toute place v, ||f"(p)||, croit au plus
comme y" avec 0 < u < Ay < Ay.

Il semble que cette construction doit se généraliser a toute surface affine avec les travaux
de ce mémoire. La construction de fonctions de Green et d’hauteurs canoniques permettrait

de prouver une version faible de I’alternative de Tits de la forme suivante : Si f,g € End(Xp)
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satisfont A1 (f) > A2(f), M(g) > Aa2(g), alors si iy # he quitte a remplacer f et g par des itérés,
le semi groupe engendré par f et g est libre. Ce résultat a été établi pour les transformations
polynomiales de AlC dans [BHPT21]].

1.5.6 En dimension plus grande

Soit d = 3 un entier, dans [DE21] §6, Dang et Favre montrent que le degré dynamique d’une
transformation polynomiale f : Al — AZ tel que Ai(f)? > A2(f) est un nombre algébrique de
degré < d. Pour se faire ils construisent une valuation propre de f centrée a ’infini a I’aide de
I’analyse spectral de I’opérateur f* sur un espace N{ (X) qui est un analogue de I’espace de
Picard-Manin en dimension 2. Ils utilisent ensuite I’'inégalité d’ Abhyankhar (voir [Abh56]) de
la facon suivante : Si v, est une valuation propre de f, i.e fyVi = A1V, alors f, induit une ap-
plication linéaire sur Iy, ® Q ou I'y, est le groupe des valeurs de V... L’inégalité d’ Abhyankhar
affirme que dimgI'y, ® Q < d. Ainsi, A; est valeur propre d’une matrice d x d a coefficients
rationnels, donc un nombre algébrique de degré < d.

J’affirme que la construction de la valeur propre dans le cas des surfaces affines que j’établis
dans ce mémoire se généralise en dimension plus grande. En particulier, les sections [3.6] et
s’appliquent directement en toute dimension. La construction de la valuation propre provient
alors d’un équivalent du théoreme ol I’espace L?(Xj) doit étre remplacé par son ana-
logue N)% (X). On peut alors appliquer I’inégalité d’ Abhyankhar et énoncer le résultat suivant :

si Xo est une variété affine de dimension d > 3 sur un corps k algébriquement clos de carac-

téristique nulle telle que
e k[Xo]* =k*;
» Pour toute complétion X de X, Pic’(X) = 0;

Si f : Xo — Xo est un endomorphisme tel que A (f)?> > Ay (f). alors A{(f) est un nombre algé-
brique de degré < d.
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CHAPTER 2

INTRODUCTION

An affine variety X over an algebraically closed field k is a subspace of k¥ defined by polyno-
mial equations. A polynomial endomorphism of Xy is a polynomial transformation of k¥ that
preservers Xy in the sense that f(Xp) < Xo. When the dimension of Xj is 2, we say that Xj is
an affine surface. The goal of my thesis is to study the dynamical system given by an affine
surface Xy and f : X9 — Xy a polynomial endomorphism of Xy. The different questions one can
ask are: are there dense orbits or Zariski-dense orbits ? If the orbit of a point goes to infinity,
can we control the speed of divergence ? Is there a lot of periodic orbits ? Can we construct in-
teresting invariant probability measures ? To answer these questions, I use valuative techniques.
The dynamical system (X, f) induces a dynamical system (V,, fi) where ¥, is the space of
valuations centered at infinity of Xy. The study of this dynamical system is the main goal of this

memoir and it will allow to answer the questions mentioned above.

2.1 Endomorphisms

2.1.1 Dynamical degrees
2.1.1.1 Polynomial transformations of the complex affine plane

A polynomial transformation f of CV is given by N polynomials f; € C[xy,- - ,xy] such that
f={(f1,"--,fn). The degree of f is defined as the maximum of the degrees of the fs; we denote
it by deg f. Let f* be the k-th iterate of f. When we iterate f, the degree of the formulas of f*

must typically grow exponentially. It is therefore natural to consider the following quantity:

1/k
M(f) i=tim (deg fF) @.1)

introduced in [RS97], which we call the first dynamical degree of f. The authors show that this
quantity is well defined. We can define the first dynamical degree of any rational transformation

of the projective space P{. with a similar definition.
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2.1.1.2 General definitions

Let X be a smooth projective variety over an algebraically closed field and let d be its dimension.
For d Cartier divisors D1, ---,D; of X we can define the intersection product Dy ---D, € Z (see
[LazO4]). If f : X --» X is a dominant rational transformation of X, we define for 0 <[ < d the

[-th dynamical degree of f by

M(f) = lim (") HE B " (2.2)

n—ao

where H is an ample divisor over X. We can show that these quantities are well defined and do
not depend on the choice of H. In particular, Ag(f) = 1. Furthermore, the dynamical degrees

are birational invariants: if @ : X --+ Y is a birational map, then
M(f) =M(@ofoe), VO<I<d. (2.3)

We have that A;(f) is the topological degree of f. The Khovanskii-Teissier inequalities (see
[Gro90], [DNO3]) imply that the sequence (A;)o<;<q is log-concave; i.e

logh; 1 +loghs 1
2

<logh, Vi<l<d-—l. (2.4)

In particular, one has V1 <1 < d, A (f)! = M(f).

Let Xo be a smooth affine variety of dimension d and f : Xy — Xo an endomorphism of Xj.
We define the dynamical degrees of f as follows. A completion of Xy 1s a smooth projective
variety X equipped with an open immersion 1 : Xy < X such that 1(Xp) is dense in X. The

1

endomorphism f induces a dominant rational transformation of X via f =10 fol1™' and we

define the dynamical degrees

M(f) = M(f). (2.5)

As the dynamical degrees are birational invariants, these quantities do not depend on the choice
of the completion X. In particular, if Xo = k" and X = P} we recover the definition of the first

dynamical degree defined in the first paragraph.

The data of these dynamical degrees gives information on the dynamical system. For ex-
ample over C, Dinh and Sibony showed in [DS03] that for all dominant rational transformation
f:X--2X

hiop(f) < max log(A;) (2.6)

o<i<d
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where hyop is the topological entropy of f, Gromov showed this result for endomorphisms of
PV in [Gro03]]. Yomdin showed in [Yom87] that we have an equality if f is an endomorphism.
Recently, Favre, Truong and Xie showed in [FTX22] that the inequality still holds in the

non archimedean case; however the equality does not hold even for endomorphisms.

2.1.2 Dynamical degrees on projective surfaces

A natural question is to ask what numbers can appear as the first dynamical degree of a rational
transformation of a projective surface. We first mention the following result due to Bonifant
and Fornaess in [BFOO] for P%’ and generalised by Urech

Théoreme 2.1.4 ([Urel6)]). The set
M)} 2.7

where f runs through the set of rational transformations over every projective variety over every

field, is countable.

In 2021, Bell, Diller and Jonsson showed in [[BDJ20] that there exists a dominant rational
transformation & : P? -—» P2 such that A () is transcendental. The authors with Krieger showed
in [BDJ20] this example can be generalised to give an example of a birational transformation
of PV N > 3 with a transcendental first dynamical degree. However in dimension 2, there are
strong constraints on A;(f) for f birational. In [DFO1], Diller and Favre showed that the first
dynamical degree of a birational transformation of a projective surface is an algebraic integer.
More precisely, it is a Salem or a Pisot number. In [BC13]], Blanc and Cantat obtained the

following results
Theorem 2.1.1. Let X be a smooth projective surface over an algebraically closed field.

(1) Let f : X --» X be a birational transformation such that M (f) is a Salem number, then

there exists a birational map @ : X --» Y such that @ o f o ¢~ is an automorphism of Y.

(2) IfX is rational over a field Kk, then the set A(X) := {\(f)|f € Bir(X)}  Ris well ordered.

It is closed if k is not countable.

In particular, A(X) is an ordinal and Bot shows in [Bot22] that this ordinal is exactly @®
where ® is the ordinal of the natural integers. However, we cannot hope to get an information of
the degree of the algebraic numbers obtained. Indeed, Bedford, Kim and McMullen have given

in [BKO6] and [McMOQ7] examples of birational transformations of projective surfaces with
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first dynamical degree an algebraic integer of arbitrary large degree. In particular, Theorem
1.1 of [McMQ7] states that for all d > 10 we can find a smooth projective surface with an

automorphism with first dynamical degree an algebraic integer of degree d.

2.1.3 Dynamical degrees of endomorphisms of affine surfaces

In my thesis, I consider endomorphisms of affine surfaces. The first example of an affine surface
is the complex affine plane C2. An endomorphism is then a polynomial transformation. Even

in that case, the first dynamical degree is not necessarily an integer. Indeed, let

A (@ P (2.8)
_cd '

be a matrix with nonnegative integer coefficients such that ad — bc # 0. Consider the following

monomial transformation
flx,y) = (xayb ,xcyd), (2.9)

then £V is the monomial transformation where the monomials are given by the coefficients of
AN and A (f) is equal to the spectral radius of A. Hence, A1 (f) is an algebraic integer of degree

2 because it satisfies the equation
M (f)? = Tr(A)A (f) +det(A) = 0. (2.10)

Thus, there exist polynomial transformations f of the affine plane with A;(f) an integer or an

algebraic integer of degree 2. Favre and Jonsson showed that these are the only two possibilities.

Theorem 2.1.2. [FJ07] Let f : C*> — C? be a dominant polynomial transformation, then A (f)

is an algebraic integer of degree < 2.

The first result of my thesis is to extend this result to all affine surfaces, in any character-
istic. Even if there are affine surfaces for which the semigroup of endomorphism can change
drastically. For example, Blanc and Dubouloz, in [BD13]], build smooth affine surfaces with
a big group of automorphisms, much bigger than the one of the affine plane. Bot used this
construction to show the existence of smooth complex rational affine surfaces with uncountably
many real forms (see [Bot23]). The result in my thesis show that even though structure wise,
these groups are a lot more complicated; from the point of view of the dynamics of a single

element, this is not the case.
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Theorem A. Let Xy be a normal affine surface over a field k. If f : Xo — Xo is a dominant

endomorphism, then A1 (f) is an algebraic integer of degree < 2.

The proof uses valuative techniques which I describe in the next section. If chark = 0, I also
obtain results on the dynamics of f. I will give a precise statement in the case of automorphisms
(see Theorem [C).

2.2 Valuations, Divisors at infinity and dynamics

2.2.1 Existence of an eigenvaluation

Let A be the ring of regular functions of a normal affine surface Xy over an algebraically closed

field k. A valuation is amap v : A — Ru {0} such that
1. v(PQ) =v(P) +V(0Q);
2. v(P+ Q) = min(v(P),v(Q));
3. v(0) = wo;
4. Vgx =0

Two valuations v are u are equivalent if there exists ¢ > 0 such that v = ru. For example, if
X is a completion of X, for all irreducible curve E < X, the map ordg defined by ordg(P)
being the order of vanishing of P along E is a valuation. Any valuation of the form Aordg with
A > 0 is called divisorial. If f is an endomorphism of X, then f induces a ring homomorphism

f*:A — A. We can then define the pushforward f,v of a valuation v by
fxV(P) =Vv(f*P). (2.11)

We say that a valuation is centered at infinity if there exists P€ A such that v(P) < 0. If X isa
completion of Xy, the divisorial valuations centered at infinity are exactly the one corresponding
to the irreducible components of X\Xy. Let ¥, the set of valuations centered at infinity and ’IA/OO
the set of valuations centered at infinity modulo equivalence. Suppose for the sake of simplicity
that f is an automorphism of Xy, then f; induces a bijection of 7, and of ‘IA/OO which will in fact
be a homeomorphism for a topology that will be described in this memaoir.

If Xy is the complex affine plane, then Favre and Jonsson proved the existence of a valuation

V. € Vi, such that f,v. = A;(f)V«. Such a valuation is called an eigenvaluation of f. To
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do so, they show in [FJO4] that ‘IA/OO has a real tree structure and f, is compatible with this
structure. The existence of v, follows from a fixed point theorem on trees. The existence of
this eigenvaluation has a big impact on the dynamics of f. In particular, it allows one to find a
good completion X of C? which admits an attracting fixed point of f at infinity. Xie uses this
construction to prove the conjecture of Zariski-dense orbits and the dynamical Mordell-Lang
conjecture for polynomial endomorphisms of the complex affine plane ([Xiel7b]). Jonsson and
Waulcan use these techniques to build canonical heights for polynomial endomorphisms of the

complex affine plane with small topological degree in [JW12].

Theorem B. Let Xy be a normal affine surface over an algebraically closed field k (of any

characteristic) and let f be a dominant endomorphism of Xy. Suppose that
1. k[Xp]* =k*.
2. For all completions X of Xo, Pic’(X) = 0.

3. M) > ha(f).

Then, there exists an eigenvaluation V., unique up to equivalence, of f such that

Je(v) =M (f)Ve. (2.12)

The techniques I use do not use the global geometry of ‘IA/OO because it not necessarily a
tree anymore. If X is a completion of Xy, I show that for any valuation v centered at infinity,
one can associate a unique divisor Zy x of X supported outside of Xy. Furthermore if Y is an-
other completion of Xj, there is a compatibility relation between Zy x and Zy y (see Proposition
[3.6.6). This construction involves the space of Eicard-Manin of Xy. The spectral analysis of the
operators f,, f* induced by f on this space (see [BFEJOS8| (Canl11]]) allows one to construct the
eigenvaluation v,, and show its uniqueness. This process is similar to the techniques of [DE21]]
§6.

2.2.2 Discussion of the assumptions of the Theorem

The assumptions of Theorem [B] may seem arbitrary but they are not restrictive. Indeed, if
assumption (1) or (2) is not satisfied, then one can show that f preserves a fibration over a

ﬂ]uasi—abelian. We can decompose the dynamics of f with this fibration and it becomes easier

1. aquasi-abelian variety is an algebraic group such that there exists an algebraic torus 7" and an abelian variety
A such that the sequence of algebraic groups 0 - 7 — X — A — 0 is exact.
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to study.

If Assumption (3) is not satisfied, then we have A;(f)> = A2(f). In that case, Ai(f) is
automatically an algebraic integer of degree < 2 because A, (f) is the topological degree of
f, hence an integer. In the case of the complex affine plane, Favre and Jonsson manage to
classify all polynomial transformations of the complex affine plane for which 7»% = Ay: either
they preserve a rational fibration, or there exists a completion X of A% with at most quotient
singularities at infinity such that f extends to an endomorphism of X. I expect that such a
classification should exist in general, all the examples I have studied up until now satisfy this
dichotomy. One can notice that in the invertible case, such a classification exists: By [Gi1z69]
and [[CanO1], every birational transformation ¢ : X — X of a smooth projective surface such that

A1(o) = 1 lifts to an automorphism or preserves a rational or elliptic fibration.

2.2.3 Statement of the theorem in the case of automorphisms

In characteristic zero, the existence of the eigenvaluation has an impact on the dynamics of f.
I show that for every endomorphism, there exists a completion X of Xy with an attracting fixed
point of f at infinity. In the case of loxodromic automorphism (i.e with A; > 1) I show the

following

Theorem C. Let Xy be a normal affine surface over C such that C[Xp]* = C*. If f is an
automorphism of Xo such that My (f) > 1, then there exists a completion X of Xy such that

1. f admits an attracting fixed point p € X (C)\Xo(C) at infinity.
2. An iterate of f contracts X\Xy to p.

3. There exists local analytic coordinates centered at p such that f is locally of the form

(a)
flzw) = (WP, zwY) (2.13)
. . . . ) a b
with a,b,c,d integers > 1, in that case i (f) is the spectral radius of ( d>' In
c

particular, My (f) € R\Q, it is an algebraic integer of degree 2.

(b) or
flz,w) = (% AW+ P(2)) (2.14)

witha >2,c > 1 and P # 0 a polynomial, in that case M (f) = a is an integer.
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4. The attracting fixed points of f and f~" are distinct.
5. The local normal form of £~ at its attracting fixed point is the same as f.
The cases (3)(a) et (3)(b) are mutually exclusive in the following way

Theorem D. Let Xy be a normal affine surface over C such that C[Xo|* = C* and f € Aut(Xp)

a loxodromic automorphism. We have the following dichotomy

o If M (f) € Zxo, then for any loxodromic automorphism g of Xo, we have A1 (g) € Z>o and
the local normal form of g at its attracting fixed point is given by (2.14).

o Ifhi(f) ¢ Zxo then it is an algebraic integer of degree 2 and this holds for any loxodromic

automorphism g of Xo. In particular, the local normal form of g at its attracting fixed point

is given by (2.13).

We give two examples: the affine plane and the Markov surface (see §2.2.3.2)). Theorem|[C|
and [D| show that it suffices to understand these two examples to understand the dynamics of a

single automorphism of an affine surface.

2.2.3.1 The affine plane

Suppose that Xy = A%, consider the automorphism

fxy) = (y+x%,x). (2.15)

It is a Hénon automorphism and we have A;(f) = 2. Let X = P2C be a completion of X) with
homogeneous coordinates X,Y,Z such that x = X/Z et y = Y /Z. The birational transformation
induced by f has fixed point p = [1:0:0] and an indeterminacy point p_ = [0: 1:0]. The line
at infinity {Z = 0} is contracted by f to p; and by £~ ! to p_. Let (u,v) be the local coordinates
at p; givenby u =Y /X etv=Z/X, one has

2

f(u,v)z( L ) (2.16)

1+uv’ 14+uv

And there exits a local analytic change of coordinates such that f has the normal form (2.14)
(see [Fav00] §2).
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2.2.3.2 The Markov surface

Consider the Markov surface My A% given by the equation
X +y +722 = xyz. (2.17)

It is a normal affine surface with a quotient singularity at (0,0,0). We will describe in detail its
properties in A natural completion of M is the projective surface X c P3C defined by the
Zariski closure of M in P3C. The equation of X is

T(X>+Y>+27%) =XYZ. (2.18)

We see that X\ M) has equation
T —0,XYZ=0. (2.19)

Thus it is a triangle of 3 rational curves. By Theorem 3.1 of [CanQ9], if f is a loxodromic auto-
morphism of M algebraically stable over X then f admits an attracting fixed point p; € X\ M
which is one of the vertex of the triangle and one indeterminacy point p_ € X\ My which is

another vertex of the triangle. Furthermore, f admits a local normal form of monomial type (i.e
given by (2.13)) at p.

Remark 2.2.1. We see that for all completion X the affine plane, the dual graph of X\A%
is a tree. However, in the case of My the dual graph of X\ retracts to a circle for every
completion X. We will show in fact that every affine surface (with a loxodromic automorphism)
satisfies this dichotomy. It is the dichotomy of the geometry of these dual graphs that gives the

dichotomy on the dynamics (see Theorem 4.4.4]).

2.3 Dynamics of automorphisms of affine surfaces

2.3.1 Dynamics of Hénon maps: Green functions

Let Aut(AZ) be the group of polynomial automorphisms of the complex affine plane. The affine

transformations are examples of such automorphisms. Here is another example: let

f(xvy) = (x7y+P(x)) (2.20)
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where P is a polynomial. The automorphism f preserves the pencil of lines x = o and acts by
translation on these lines, the vector of translation is given by P(x). Such an automorphism is
called elementary. We denote by E the set of all elementary automorphisms of AZ, they form a
group isomorphic to (C[x],+)). Jung’s theorem ([Jun42]) states that Aut(C?) has the structure
of an amalgamated product

Aut(AZ) = Aff(AZ) «s E (2.21)

where S = Aff(AZ) NE.
An automorphism of Henon type is an automorphism f which is not conjugated to an ele-
ment of Aff (A%) nor to an element of E. They are characterised by the condition A;(f) > 1. An

example of automorphism of Henon type is the following which will use later on

flxy) = (v+x*,x). (2.22)

The extension of f to P? has a fixed point at infinity p, = [1: 0 : 0] and an indeterminacy
point p_ =[0:1:0]. The line at infinity is contracted by f to p,. Analogously, p, is the
only indeterminacy point of f~! and p_ is a fixed point of f~! to which the line at infinity is
contracted by f~!'. An automorphism # is regular if the indeterminacy points of 4 and A~! are
distinct. In particular f is regular and every automorphism of Henon type can be conjugated
to a regular one [FM89]. For all automorphism of Henon type A, A; (k) is an integer which we
denote by d, in particular A; (f) = 2.

Consider the norm ||(x,y)|| = max (|x|, [y|) on C2. If & is a regular automorphism of Henon

type, we can define the Green functions of 4 (see [EM8&9], [BS91a] and their references)
G*(p) = lim e log® WV (p)]|, G~ (p) = limwlog™ [ ¥p)|  223)
where log™ = max(0,log). We have the following properties (see [BS91al).
1. G* is well defined, continuous and plurisubharmonic over 2,
2. Gtoh=dGT,
3. the map p — G*(p) —log™(||p||) extends to a continuous function over P?\p_.
4. G*(p) = 0if and only if the forward orbit (2" (p))n=o is bounded.

The function G~ satisfies similar properties. We define the Green currents T = dd°G* and
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T~ =dd°G~. These are positive closed (1, 1)-currents. The measure
w=T " AT~ (2.24)

is then well defined because G*,G~ are continuous. It is of finite total mass, thus we can
suppose that it is a probability measure. We call it the equilibrium measure of h. It is h-invariant
and its support is contained in the Julia set of 4.

We define the following Green function
G:=max(G",G") (2.25)

which satisfies the following properties

1. G is continuous, plurisubharmonic over C? and the uniform limit of

1
max ( g loe (17 (2)

) getoe" (I ) 2.26)

2. p— G(p)—log™"||p|| extends to a continuous function over P2,

3. G(p) = 0 if and only if the Z-orbit (" (p))nez is bounded.

2.3.2 Dynamics of automorphisms of affine surfaces

Using theorem|[C] I show

Theorem E. Let Xo be a normal affine surface over C, let X be a completion of Xy that satisfy
Theorem @ Let X < PN be an embedding of X which induces an embedding of Xy into CN and
let ||-|| be a norm over CN. Let f be an automorphism of Xo such that M (f) > 1, the Green

function

G* (p) = tip e tog™ (7)) @27
satisfies the following properties
1. G* is well defined, continuous and plurisubharmonic over Xo(C).
2. GTof=MG*
3. G has logarithmic growth (see Proposition .
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4. G*(p) = 0 if and only if the forward orbit (N (p))n=o is bounded.

We can then consider the function G = max(G™,G~) which will satisfy similar properties
as in the Henon case. There is however one major difference. In general, the maximum of
two functions of logarithmic growth is not of logarithmic growth. There is a difficulty here. It
turns out we get two distinct behaviour: if A;(f) € Z>, G is again of logarithmic growth and
everything works as in the Henon case. If A (f) ¢ Z=0, then G is not of logarithmic growth and
it is not the right function to consider. We then need to use the recent work of Yuan and Zhang
on adelic line bundles over quasiprojective varieties, I will be more precise in the following

section.

2.3.3 Dynamics at non archimedean places

Let K be a number field. An absolute value |-| over K is a function |-| : K — R which satisfies
* x| =0<x=0,
* Yx,ye K oyl = [xf-[y],
» Vx,ye K, |x+y| < |x| +1yl.

Two absolute values ||, ,|-|, are equivalent if |-|; = |-|3 for some s > 0. A place is an equivalence
class of absolute values, we denote by M (k) the set of places of K. If |-| is an absolute value of

K, we can consider the completion of K with respect to |-|. This completion depend only on the

place v of |-|, we denote it by K,. The absolute value |-| then extends to K,, and admits a natural
extension to K,. We denote by C, the completion of K, with respect to |-|. This construction
depends only on the place v. We say that |-| is non archimedean if it satisfies the following
inequality

Vx,y € K, |x +y| < max(|x|,|y])- (2.28)

A place v is non archimedean if one of its representatives is. For all archimedean place v, we
have C, = C. The results of have analogues when C is replaced by an algebraically
closed complete field C,. Indeed, Kawaguchi showed in [Kaw(09] that the Green function of
an automorphism of Henon type is well defined also in the non archimedean case. If C, is
non archimedean, the Green function G = max(G™,G~) induces a semipositive adelic line
bundle on the Berkovich analytification of P%V which we denote by (P%:v)“” (see [Zha93] for

an

the definition). The equilibrium measure is a positive measure over (P%v) , 1t is constructed in

[Cha03]]. It is worth noting that recent work of Chambert-Loir and Ducros [CD] allows one to
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construct the currents 7+ = dd°G* and to define the equilibrium measure in the same way as in
the complex case u =T+ A T ™. Furthermore, Lee shows in [Leel3] that the Galois orbits of any
@eneric sequence of periodic points equidistributes with respect to the measure u =T+ AT~
at every place. This uses the equidistributes theorem of Yuan in [YuaOS]].

I also show an analogue of Theorem [C] in the non archimedean case. We define also the
functions G*,G~,G in that case. However, the difficulties mentioned at the end of
remain. If A (f) € Z>, then the data of the Green functions (G,) for every place v of K induces
a semipositive adelic line bundle (cf [Zha93]]) over a completion X of X and the arithmetic
equidistribution theorem of Yuan applies.

Now, if A1 (f) ¢ Z=0, we cannot apply the theory of adelic line bundles over the completion
X. The right point of view is to consider not just one completion of Xy but all of them. This
is the point of view developed by Yuan and Zhang in [YZ22]. The authors define the notion
of adelic line bundles over a quasiprojective variety U as a limit of adelic line bundles over
completions of U. They show in this context an arithmetic equidistribution theorem similar to

the theorem of Yuan. In my memoir, I state the following conjecture (see Conjecture [F)):

Conjecture F. The data of (G) and (G,) at every place v of K induces two nef f-invariant
adelic line bundles over the quasiprojective variety Xo. In particular, we can define the equilib-
rium measure p, of f at every place as the probability measure proportional to dd°G;" A dd°G,;;
and the Galois orbits of any generic sequence of periodic points of f equidistributes with respect

to uy, at every place v.

I believe that the results established in this memoir and the work of Yuan and Zhang will

allow one to prove this conjecture using similar techniques as in §4 of [YZ17](see §2.5.1).

2.3.4 Automorphisms sharing infinitely many periodic points

If X is a normal affine surface over K a number field, and f a loxodromic automorphism of
Xo, we can apply the results of the previous section at both archimedean and non archimedean
places. We then get an equilibrium measure uy,, for f at every place v of K. Using the tech-
niques of arithmetic equidistribution mentioned in the previous paragraph, I show the following

result.

Theorem G. Let X be a normal affine surface defined over a number field K. If f,g are two

loxodromic automorphisms of Xy such that My (f) € Zxy, the following are equivalent

2. A sequence is generic if no subsequence is contained in strict closed subvariety.
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1. Per(f) nPer(g) est Zariski-dense.
2. Wwe M(K),uyr = g
3. Per(f) =Per(g).

In the case Mi(f) ¢ Zxo, admitting Conjecture [F| we have that if Per(f) nPer(g) is Zariski-
dense, then Yv e M (K),us = g .

Using similar methods, these kind of results were first obtained by Baker, DeMarco in
[BDI11a] for endomorphisms of P! of degree > 2 over C and then generalised by Yuan and
Zhang for all polarisable endomorphisms of P” over a number field in [YZ17] and recently in
[YZ21] over any field of characteristic zero. In [CD20], Cantat and Dujardin use these same
tools of arithmetic dynamics to show rigidity results on groups of automorphisms of projective
surfaces.

Conjecture [F|is not enough to show the equality Per(f) = Per(g) because the proof uses an
arithmetic version of the Hodge index theorem which has not been shown yet for adelic line

bundles over quasiprojective varieties (see Theorem [5.1.20).

2.4 A rigidity result for Markov surfaces

In [DF17] Dujardin and Favre show a stronger result than Theorem [G] They obtain that if two
automorphisms of Henon type satisfy one of the assertions of Theorem |G} then f and g share

common iterates: there exist integers M, N € Z such that f¥ = ¢™. This rigidity result cannot

b
be true for any affine surface. Indeed, if Xo = C* x C*. Let A = . y € SL,(Z) be such
c

that (TrA)? > 4, we define the automorphism

falx,y) = (x5, xy7) (2.29)

If S' = {ze C||z| = 1}, then S! x S! is an f4-invariant compact subset. Ti is the Julia set of f4
and the periodic points of f4 are exactly of the form(w;, ) € S! x S! where , ) are roots
of unity. Hence, every automorphism of this form satisfies Theorem |G| but they don’t share
common iterates.

Let D € C, we define the Markov surface M as a surface in C> defined by

4y 4 =xyz+D (2.30)
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This family of surfaces appears in different fields of mathematics (see [Can09]). If T! is the
punctured torus, its fundamental group 7 := 7t;(T!) is a free group with two generators that we

denote by a and b. We can look at the character variety
X :=Hom(x,SL,(C))//SL,(C) (2.31)

where the action of SLy(C) is via conjugation and // is the quotient from Geometric Invariant
Theory (GIT). Denote by [a,b] := aba™'b~! the commutator of a and b. Let p € X, if we define
x="Trp(a),y =Trp(b),z = Trp(ab), then we get that

X — AL (2.32)
p— (x,9,2) (2.33)

is an isomorphism. This is a result of Fricke (see [Gol09]). Furthermore, we have
X+ 32+ 22 = xyz+ Tr(p([a,b])) +2. (2.34)

Thus, the algebraic variety X has a foliation of surfaces given by the family of the Markov

surfaces and the surface M), is a fiber of the regular function p — Tr(p([a,b])).

Theorem H. Let D =0 or D =2—2cos(2n/q) with g = 2. If f, g are two loxodromic automor-
phisms of Mp, then admitting Conjecture @ the following are equivalent:

1. Per(f) nPer(g) is Zariski-dense.
2. Per(f) = Per(g).
3. f and g share common iterates: there exist N,M € Z such that fN = g¥.

Conjecture [F] and Theorem [G] give the equality of the equilibrium measure of f and g. To
show the result we use the theory of Fuchsian and quasi-Fuchsian representations to construct
a saddle fixed point g(f) at the boundary of the open subset of Mp(C) consisting of quasi-
Fuchsian representations. This construction uses the double parametrisation theorem of Bers
in [Ber60], its extension by Minsky in [Min99] and Thurston’s theorem of hyperbolisation of
3-manifolds fibering over a circle (see [Ota96, McM96]). We then use techniques of currents
in complex geometry, in particular the current of Ahlfors-Nevanlinna, to show that this saddle

fixed point must belong to the support of uc s = uc,, which is a compact subset invariant by the
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group (f, g). Finally, we show that if f, g do not share common iterates, then the g-orbit of ¢( f)

must be unbounded using measured laminations theory and this is a contradiction.

2.5 Questions and future projects

2.5.1 Conjecture

As mentioned in this introduction, I believe that Conjecture [F can be shown using the results
of this memoir. Namely, I show in Proposition that the function G™ is obtained via an
iterating process starting from the Green function of any divisor. This iterating process applied
to the theory of adelic line bundles over Xy must yield a nef adelic line bundle in the sense
of [YZ22]. Indeed, in the projective setting if f is a polarised endomorphism of a projective
variety X and L an ample line bundle over X such that f*L = L%, Yuan and Zhang show in
[YZ17] that for any adelic extension L of L, the sequence

1 _
ML (2.35)

converges to a semipositive adelic line bundle Ly such that f*L; = dLy. At the level of Green
functions, this iterating process is the same as the one in Section|5.2|(see Propositions and
[5.2.12)). Hence, I expect everything to work as well in this setting.

To obtain Theorem |G| we will then need to show the arithmetic Hodge index theorem in the
case of affine surfaces. I only need a weaker version of this theorem that I believe should be not

too hard to show.

2.5.2 The work of Danilov and Gizatullin

We say that an affine surface Xy is completable by a zigzag if there exists a completion X
of Xp such that X\X is a zigzag, that is a chain of smooth rational curves. The affine plane is
completable by a zigzag but the Markov surface 94 is not for example. In [GD73]], Danilov and
Gizatullin study the group of automorphisms of an affine surface completable by a zigzag. They
show that it acts on a tree which vertices are the completions where the boundary is a zigzag. If
Xp 1s completable by a zigzag, then the space of valuations centered at infinity ’I//;C is also a tree
on which Aut(Xp) acts. It will be interesting to compare the approach of Danilov and Gizatullin

to the approach in my memoir. Note that the work of Gizatullin (see [Giz71b, |Giz70, \Giz71cl])
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prior to [GD75] are used in my memoir to study the dynamics of loxodromic automorphisms

(see ).

2.5.3 Dynamic complexity vs algebraic complexity of Aut(Xj)

I showed in my thesis that the study of the dynamics of a loxodromic automorphism on an affine
surface is similar either to the dynamics of an automorphism of Henon type, or to the dynamics
of a loxodromic automorphism of the Markov surface. However, there exists affine surfaces
with a much more complicated group of automorphism as shown by Blanc and Dubouloz in
[BD13]. If Xy is such a surface it will be interesting to apply the valuative techniques of this
memoir tout a subgroup of automorphism of Xy. For example, if f and g are two loxodromic
automorphisms such that every element of the subgroup I' = (f, g) which is not the identity is
loxodromic, what can we say about the set {v.(h):hel'} /;o where v, (h) is the eigenval-

uation of 4 ? Can we recover the algebraic complexity of Aut(Xp) using valuative techniques
?

2.5.4 Arithmetic dynamics result using valuative techniques

Using the valuative techniques of Favre and Jonsson for the affine plane, Junyi Xie shows in
[Xie17b] the Zariski dense orbit conjecture for polynomial endomorphism of the complex affine
plane. This conjecture states that any endomorphism f admits a Zariski dense orbit if and only
if it does not admit a non-constant invariant rational function. The proof uses the dynamics
of f at infinity using the existence of an eigenvaluation. The author also shows in [Xiel7a]
the dynamical Mordell-Lang conjecture for polynomial endomorphism of the affine plane: if
x€A%(C) and C = A% is a curve, then {n > 0: f"(x) € C} is a union of a finite set and a finite

union of arithmetic progressions.

For these two conjectures, we can establish their analogues for any affine surface using the
valuative techniques of this memoir if 7»% > A,. For the equality case, Xie uses the classifica-
tion of polynomial endomorphism satisfying 7»% = A, established by Favre and Jonsson. It is
therefore necessary to establish such a classification in general. For now, the techniques in this
memoir do not allow to treat the case k% = Ay. In particular, I do not know how to construct an

eigenvaluation for an endomorphism f satisfying A1 ()% = A (f).
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2.5.5 Green functions and canonical heights for small topological degrees

Let f be a polynomial endomorphism of the affine plane defined over a number field K such
that A1 (f) > A2(f). In [FI11] and [JW12] Favre, Jonsson and Wulcan use the existence of a
unique eigenvaluation of f to construct a Green function for f at every place. Jonsson and
Waulcan construct a canonical height /¢ associated to f which satisfies the following property:
p e A%(K),hs(p) = 0 if and only if for every place v, ||f"(p)||, grows at most like /' with
0<u<y <A

I believe that this construction can be generalised to every affine surface using the results of
this memoir. The construction of such canonical heights would allow one to show the following
weak version of the Tits alternative: If f,g € End(Xp) satisfy A1 (f) > Aa2(f), Ai(g) > Aa2(g),
then if iy # hg up to replacing f and g by some iterates, the semigroup generated by f and g is
free. This result has been established pour the polynomial transformations of AlC in [BHPT21].

2.5.6 In higher dimension

Let d > 3 be an integer, in [DEF21] §6, Dang and Favre show that any polynomial transformation
[ AL — A{ such that A (f)? > Ao(f) is an algebraic number of degree < d. To do so, they
build an eigenvaluation of f centered at infinity using the spectral analysis of f* on the space
NZ'(X ) which is an analogue of the Picard Manin space in dimension 2. They use Abhyankhar’s
inequality (see [Abh56]) in the following way: If v, is an eigenvaluation of f, i.e fuVi = A Vs,
then f induces a linear map over I'y, ® Q where Iy, is the value group of v,. Abhyankhar’s
inequality states that dimgI'y, ® Q <d. Thus, A, is an eigenvalue of a d x d matrix with rational
coefficients, it is therefore an algebraic number of degree < d.

I assert that the construction of the eigenvalue in the case of affine surfaces that I establish
in this memoir can be generalised in higher dimensions. In particular, Sections [3.6| and [3.7] do
not use dimension 2. The construction of the eigenvaluation comes from an analog of Theorem
where L?(Xp) should be replace by its analog Ny (X). We then can use Abhyankhar’s
inequality to obtain the following result:

if Xo is an affine surface of dimension d > 3 over an algebraically closed field k of charac-

teristic zero, such that
i k[X()]>< = kX,'
e For all completion X of Xy, Pic (X)=0;
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If f : Xo — Xo is an endomorphism such that M (f)? > Ay (f), then A (f) is an algebraic number
of degree < d.
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CHAPTER 3

VALUATIONS AND ALGEBRAIC
GEOMETRY

3.1 Results from algebraic geometry

Let k be an algebraically closed field. A variety is an integral scheme of finite type over k. A
surface is a variety of dimension 2. An affine variety over K is a variety Xo = SpecA with A a
finitely generated k-algebra. We will denote by k|[Xp] the ring of regular functions of the affine
variety Xp.

3.1.1 Bertini

Theorem 3.1.1 (Bertini’s Theorem, [Har77]). Let X < PN be a smooth quasi-projective variety
over an algebraically closed field K. The set of hyperplanes H of PN such that the intersection
H N X is a smooth irreducible subvariety of X is a dense open subset of PT(PY, O(1)).

3.1.2 Local power series and local coordinates

Let X be a variety and x € X a closed point. We will write Ox , for the ring of germs of regular
functions at x. A regular sequence of Ox . is a sequence t1,---,t, € Ox » such that 7; is not a
zero divisor in Oy , and for all i > 2, is not a zero divisor in Ox ,/(t1,--- ,ti—1) (see [Har77]
p.184). The point x is regular if the local ring Ox  is regular, i.e there exists a regular sequence

of length dim Oy .

Theorem 3.1.2 ([Har77], Theorem 5.5A). Let R be a regular local k-algebra of dimension n
with maximal ideal wm, then the completion of R with respect to the m-adic topology is isomor-

phic toK[[t1,--- ,ty]| where (t1,--- ,1,) is a regular sequence of R.

Let X be a surface and x a regular point of X. Then, we will say that (z,w) are local

coordinates at x if (z,w) is a regular sequence of Ox . If (z,w) is a regular sequence of the
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completion 5X\x we will say that they are local formal coordinates. By Theorem 5;(\x is
isomorphic to k[[z,w]]. Finally, If k = C,, is a complete algebraically closed field (archimedean
or not), we consider the local ring of germs of holomorphic functions at x, this is the subring of
6;;5 of power series with a positive radius of convergence. We denote it by O)}}"fc itis also a local
ring of dimension 2, if (z,w) is a regular sequence of Ofé‘fi, we say that (z,w) are local analytic
coordinates. If E F are two germs of reduced irreducible curves at x (algebraic, analytic of
formal) we will say that (z,w) are associated to (E,F) if z =0 is a local equation of E and

w = 0 1is a local equation of F.

3.1.3 Boundary

Proposition 3.1.3 ([Goo69], Proposition 1 and 2). Let X be an affine variety and let1: Xy — X
be an open embedding into a projective variety, then the subvariety X\Xy is of pure codimension

1. Furthermore, there exists a regular function P on X that has poles along every component
OfX \X().

Set
axXo ZZX\X(), (3.1)

we call it the boundary of Xy in X; by Proposition [3.1.3]it is a curve when X is a surface.

Theorem 3.1.4 ([Goo69|)). Let X be a normal proper surface and U an open dense affine subset
of X (that is an open dense subset of X that is also an affine variety) such that V := X\U is
locally factorial (each local ring is a unique factorization domain), then there exists an ample

divisor H on X such that SuppH =V.

In fact, Goodman shows that Theorem [3.1.4]holds in higher dimension with the only differ-

ence that you may need to do some blow-ups at infinity to find an ample divisor.

3.1.4 Surfaces

Theorem 3.1.5 ([Har77] Proposition 5.3). Let g : S1 — S» be a birational morphism between
smooth projective surfaces. Then, g is a composition of blow-ups of points and of an automor-
phism of Sy. Furthermore, if h : S1 --+ S3 is a birational map, then there exists a sequence of

blow-ups T : S3 — S| such that hon : S3 — S; is regular and S3 can be chosen minimal for this
property.
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Proposition 3.1.6. Let g : S| --+ S be a birational map. Let t: S3 — S| be a minimal resolution
of indeterminacies of g such that the lift h : S3 — S> of g is regular. Then, the first curve

contracted by h must be the strict transform of a curve in Sy.
Recall the Castelnuovo criterion

Theorem 3.1.7 ([Har77] Theorem V.5.7). Let C be a curve in a projective surface S such that
C ~ P! and C* = —1, then there exists a projective surface S', a birational morphism @ : S — S’
and a point p € S’ such that S is isomorphic via T to the blow up of p and C is the exceptional

divisor under this isomorphism.

We will use these results for the study of automorphisms of affine surfaces as they induce
birational maps. Understanding the combinatorics of the blow ups and contractions induced by
the automorphism will allow us to understand their dynamics.

Our work relies heavily on the elimination of indeterminacies for rational morphism. Since

we are in dimension 2, it exists in any characteristic.

Theorem 3.1.8. Let f : S| --+ 82 be a dominant rational morphism between projective varieties
over an algebraically closed field of any characteristic, then there exists a sequence of blow-ups

T:S — Sy such that fom:S — S, is regular.

Theorem 3.1.9 ([Cut02]). Suppose chark = 0. Let f : S — S’ be a dominant rational map be-
tween normal projective surfaces over K. There exists blow ups S1 — S and S| — S’ such that the
lift fA: S1 — S is monomial at every point. Meaning that for every closed point p € S| there exists
local coordinates (x,y) at p and local coordinates (u,v) at f(p) such that f(x,y) = (x%y?,xy%).

3.1.5 Rigid contracting germs in dimension 2 and local normal forms

Let f: (C2,0) — (C?,0) be the germ of a holomorphic function fixing the origin. The critical
set Crit(f) of f is the set where the Jacobian of f vanishes. A germ is said to be rigid if
the generalized critical set U, f " (Crit(f)) = U,>1 Crit(f") is a divisor with simple normal
crossings (see [Fav00l]).

A germ is contracting if there exists an open neighbourhood U of 0 such that f(U) € U. In
[Fav0O0], Favre classified all the rigid contracting germs in dimension 2 up to holomorphic con-
jugacy. There are 7 possible possibilities which we call local normal forms. We are interested
in 3 of them that will appear in this memoir.

The first one is

flxy) = (0 + P(x)) (3.2)
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with a > 2,¢ > 1,A € C* and P is a polynomial such that P(0) = 0. Here the germ of curve
x = 0 is contracted by f to the origin and f does not admit any invariant germ of curves if and
only if P # 0. We have Crit(f") = {x = 0}. This local normal form corresponds to Class 2 of
Table II in [Fav00]. This is the local normal form of a Hénon map at its attracting fixed point in
P? (see [Fav00] §2). It will appear in the following way in this memoir. Suppose that there are
local coordinates (z,w) at the origin such that f contracts {z = 0} with an index of ramification
a > 2, f admits no invariant curves and no other curves is contracted to the origin, then f is of

the form
flz,w) = (Z%Q(z,w), 2wV (z,w) + Y1 (z)) (3.3)

with @ invertible, y;(z) # 0 and y,(0,w) # 0. This is true even over any field k of characteristic
0. If k = C, then the classification of Favre shows that (3.3)) can be analytically conjugated to
B-2).

The second one is the monomial normal form

flax,y) = (xMty®2 xo21ya2) (3.4)

with a;j € Z>1,a11a20 — ajpaz; # 0; The germ of curves {x = 0}, {y = 0} are contracted to the
origin. We have Crit(f") = {xy = 0}. We can characterize the matrix A given by (g;;) in the
following way. The local fundamental group of (C2,0)\ {xy = 0} is isomorphic to Z?. The
action of f, on Z? is given by the matrix A and we have that |det| A is equal to the topological
degree of f. This corresponds to Class 6 of Table II of [Fav00]. It will arise in the following
context, if f is a germ of holomorphic functions such that there exists local coordinates (z,w)
at the origin such that both axis {z = 0} and {w = 0} are contracted and they are the only two
germs of curves contracted. Then, f is of the following pseudomonomial form

flzyw) = ("W @(z,w), 22 w2 y(z,w)) (3.5)

with @,y invertible. Then, the classification of Favre asserts that (3.5)) is analytically conjugated
to (3.4).
The third one is
Fley) = (" (1+9), (1 + ) (3.6)

witha >2,b>1,Ae C* and @,y are germs of holomorphic function vanishing at the origin. We
have that {y = 0} is contracted to the origin. The germ {x = 0} is f-invariant with a ramification

index equal to a. We have Crit(f") = {xy = 0} and the origin is a noncritical fixed point of
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Jix=0}. Notice that this germ is rigid but not necessarily contracting. It is contracting if and

only if |A| < 1. If the germ is contracting then the germ is conjugated to this normal form
flzw) = (2", 0) (3.7)

with the same numbers a,b, A as in Equation This corresponds to Class 5 of Table II in
[Fav00].
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3.2 Definitions

Let k be an algebraically closed field of any characteristic and let Xy be a normal affine surface

over k. We will denote by A the ring of regular functions on Xj.

3.2.1 Completions and divisors at infinity

A completion of X is the data of a projective surface X with an open embedding 1 : Xo < X such
that 1(Xp) is an open dense subset of X and such that there exists an open smooth neighbourhood
of 0xXo in X. We will say that a completion is good if dxXj is an effective divisor with simple
normal crossings, From any completion of X, one obtains a good one by a finite number of blow
ups at infinity (i.e on dxXy) see for example [Har77] Theorem 3.9 p.391.

Let X be a completion of Xy with the embedding 1x : Xo — X, we will still denote 1x(Xp) by
Xo and we will denote by Ox (Xo) the subring of k(X) of functions f € k(X) which are regular on
Xo. By Proposition[3.1.3] the boundary dx Xy is a possibly reducible connected curve. We denote
by Div(X) the group of divisors of X and by Divy,(X) the subgroup of divisors of X supported
on dxXo. For A =Z,Q,R, we set Div(X)a := Div(X) ® A and Divy(X)a = Dive (X) ® A.
Let Ey,---,E, be the irreducible components of dyXy (we will call them the prime divisors
at infinity). Any element of Div,(X)4 is of the form D = };a;(D)E; with a;(D) € A. We will
write ordg, (D) for a;(D) of D at E;. For a family (D)) je; of elements of Div,, (X) the coefficients
a;(D) are integers; so, using the natural order on Z, we define the supremum \/ jel D; and the
infimum A\ ;c; D; by

\/D Zsup ordg, (D)) /\D Zinf(ordEi(Dj))Ei (3.8)

It only exists if each (ordg, (D)) jes is bounded respectively from above or from below. If
/\ D (respectively \/ D) is well defined we say that the family (D;) is bounded from below
(from above). Notice that we only define supremum and infimum for family of divisors with

coefficients in Z.

3.2.2 Morphisms between completions, Weil, Cartier divisors

Some notations If m:Y — X is a projective birational morphism between smooth projective
surfaces and Dy is a divisor on X, we will denote by n*Dy the pull-back of Dy under ® and
if Dy is effective, then T'(Dy) will be the strict transform of Dy under m. For any projective
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surface Z, if Dy is a divisor on Z, we will denote by Oz(Dz) the invertible sheaf on Z associated
to Dy.

Let X1,X> be two completions of Xy with their embeddings 11,1,. There exists a unique
birational map 7 : X; --+ X such that the diagram

X ----- > Xp
1] 15) (39)
T
Xo Xo

commutes. If 7 is a morphism, we call it a morphism of completions. In that case we say that X
is above X>. By Theorem n~! is a composition of blow-ups; since T is an isomorphism
over Xo, the centers of these blowups are above 0x,Xy. Conversely, let X be a completion of X
with an embedding 1: Xyp — X, let t: Y — X be the blowup of X at a point p € dxXy , then Y

1

with the embedding ™" o1: Xo — Y is a completion of X and 7 is a morphism of completions.

For a morphism of completions 7 : ¥ — X, we will write Exc(nt) = Y for the exceptional locus

of .

Lemma 3.2.1. The system of completions of Xy is a projective system: For any two completions

X1,X3 of Xo there exists a completion X3 above X1 and X;.

Proof. Let X1, X, be two completions of Xy, let w: X; --» X3 be the birational map from Di-
agram [3.9] By Theorem [3.1.5] there exists a sequence of blow-ups 7; : X3 — X; such that
g =T om: X3 — X; is regular. It is clear that 71 is a morphism of completions since by defini-
tionly, =:13 =14 onl_l. The map g is also a morphism of completion because by construction

g =mom; and 1, = o1y, therefore 13 = Ttl_l oy =g lomoy =g lon, O

If ©: X; — X5 is a morphism of completions. We can define (see [Ful98]], Section 1.4) the
pushforward 7, : Div(X;)s — Div(X;)a and pullback ©* : Div(X;)a — Div(Xj)a of divisors.
They define group homomorphisms

T : Divep (X1)a — Dives (X2)a  and ¥ : Divey (X2)a < Dives (X1)aA; (3.10)
the map m* is often called the rotal transform. Recall that ([Har77] Proposition 3.2 p.386)
TC*TC* = idDiV(Xz)A . 3.11)

Let X be a completion of Xy and P € A, then (1;')*(P) € k(X). We set (1x). := (1;')* and
we denote by divy (P) := div((1x)«P) the divisor of the rational function P in X. In particular, if
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7:Y — X is a morphism of completions above Xp, then by Diagram (3.9), one has iy = ™!

Therefore divy(P) = div((n~! o1y)«(P)) = div(n* ((ix)«(P))) = n*divx (P). We will write
diveo x (P) € Dive, (X) the divisor on X supported at infinity such that

Oly.

divy (P) =D+ diVoo7X (P)

where D is an effective divisor and no components of its support is in Jx Xj.

Example 3.2.2. Let Xo = A = Speck|x, y] and let P = xy. Take the completion P? of A with
homogeneous coordinates X,Y,Z such that x = X /Y and y = Y /Z. Then,

divpz (P) = {X =0} +{¥ =0} —2{Z =0} (3.12)

and div, p2(P) = —2{Z =0}. Lett: X — P? be the blow-up of [1: 0: 0], we can take X to be

the subscheme of P? x P! given by the equation
UzZ=VY (3.13)

where U,V are the homogeneous coordinates of P'. Then 7 is the projection onto the first
factor. We take the affine chart X = 1 in P? with affine coordinates y/ = ¥/X and 7/ = Z/X.
Take the chart U = 1 with affine coordinate v in P!, then X n {X = 1} x {U = 1} is an affine
chart of XX with coordinates v,y and we have the relation 7/ = vy’; y/ = 0 is a local equation of

the exceptional divisor and v = 0 is a local equation of the strict transform of 7’ = 0.

. s Y Y 1
T(P)=m ((Z/)2> - V2(y')2 - 2y (3.14)
Therefore,
divy (P) = W' {X = 0} + ' {Y = 0} — 27 {Z = 0} — E = w*(divp2(P)) (3.15)
and
diveo x (P) = -2 {Z = 0} — E (3.16)

The system of completions of Xo is a projective system by Lemma [3.2.1] Consider the
system of groups (Divy, (X)) for X a completion of Xy with compatibility morphisms

T, : Dive (X) — Divg (V) (3.17)
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for any morphism of completions 7 : X — Y. This is also a projective system of groups. We de-
note by Weil,; (Xo) 5 the projective limit of this system. Analogously, the same system of groups
with T* as compatibility morphisms is an inductive system and we denote by Cartiere (Xo)
the inductive limit. Concretely, an element D € Weil,(Xo), is a collection D = (Dy) such that
Dy is an element of Div,,(X)a for every completion X of Xy and such that for any morphism
of completions ©: X — Y, m.Dyx = Dy; Dy is called the incarnation of D in X. An element of
Cartier,,(Xo), is the data of a completion X and a divisor D € Div, (X ) where two pairs (X, D)
and (X’,D’) are equivalent if there exists a completion Z above X and X’ with morphisms of
completionm:Z — X, n' : Z — X’ such that t*D = (n')*D’. We will say that D € Cartiero, (Xo) o
is defined over a completion X if D is the equivalence class of (X, Dy ) for some Dy € Divy, (X )a.-

We have a natural inclusion
@ : Cartiery, (Xo), — Weil(Xo) 5 (3.18)

defined as follows. If (X, D) e Cartier,(Xo) ,, then we need to define the incarnation ¢(D)y for
any completion Y. First of all, set @(D)x = D. Then, for any completion Y, by Lemma
there exists a completion Z above Y and X; denote by ty : Z — Y and nz : Z — X the respective
morphism of completions. We define ¢(D)y := (my ).y D. This does not depend on the choice
of Z because of Equation (3.11). In the rest of the paper, we will drop the notation @(D) and
denote by D the image of (X,D) in Weil,(Xo),. We equip Weil,,(Xo), with the projective
limit topology.

In the same manner we define Cartier(Xp), := limDiv(X)a and Weil(X), := limDiv(X)a

and we have the following commutative diagram

Cartiery, (Xo), — Weily(Xo) 4

l { (3.19)

Cartier(Xo), — Weil(Xo),

Remark 3.2.3. We have that Cartier,,(Xo), = Cartiery,(Xo) ®A but Weil,,(Xp), is strictly
larger than Weil,, (Xo) ®A when A = Q,R. Indeed, let Wy, ..., W, € Weily,(Xo),A1,...,Ar € A
and set W := >, A;W;. Then, for every completion X and for every prime divisor E at infinity in

X we have

ordg (Wy) = ordg (Y \MiWix) = > Ajordg(Wix) € ZAy + -+ + ZA, (3.20)
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In particular, the group G(W) generated by (ordg (Wx)) x ) for all completions X and all prime
divisor E at infinity in X is a finitely generated subgroup of R. Now pick a completion X; and
consider a sequence of blow ups &, : X;,+1 — X, starting with X;. Let E, be the exceptional
divisor of m,. We still denote by E,, the strict transform of E,, in every X,,,m > n+ 1. Define
the Weil divisor W € Weily, (Xo), such that its incarnation in X,,41 is Wx,,, = >y, %Ek. Then,
G(W) is not finitely generated, therefore W ¢ Weily, (Xo) ®A.

An element D of Weily, (Xg), with A = Z,Q, R is called effective (denoted by D > 0) if its
incarnation in every completion X is effective; if D belongs to Cartier,, (Xo)g this is equivalent
to Dy > 0 for one completion X where D is defined. If Dy, D, € Weily,(Xo),, we will write
Wi = W, for W1 — W5 > 0.

3.2.3 A canonical basis

Let X be a completion of Xy, we define Dy as follows. Elements of Dy are equivalence classes
of prime divisors exceptional above X at infinity in completions Ty : ¥ — X above X where two
prime divisors E and E’ belonging respectively to Y and Y’ are equivalent if the birational map
Tc;,l ofty : Y --» Y’ induces an isomorphism TC;,l omy : E — E’. We call Dy the set of prime
divisors above X. We also define D,,(Xp) as the set of equivalence classes of prime divisors at
infinity modulo the same equivalence relation. We write A?x for the set of functions Dy — A

and A(?%) for the subset of functions with finite support.

Proposition 3.2.4. If X is a completion of Xy, then
Cartiery, (Xo) 4 = Diveo (X)a @AY and Weily,(Xo), = Diveo (X)a @AY, (3.21)

This is a homeomorphism with respect to the product topology of ATX.

Proof. Following [BFJOS] Proposition 1.4, for any E € Dy there exists a minimal completion
Xg above X such that E is a prime divisor in Xg. We denote by o € Cartiery, (Xp) the element
og := (Xg,E). Let Ey,...,E, be the prime divisor at infinity in X, then

(E(),...,Er)U{OCE :Ee ﬂx} (3.22)

is a A-basis of Cartier,(Xp), . In the same fashion we obtain the second homeomorphism. [

Remark 3.2.5. Since for any completion X, one can find a good completion Y above X and

the blow up of a good completion is still a good completion, the projective system of good
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completions is cofinal in the projective system of completions, so in the rest of the paper any

completion that we take will be a good completion.

If f: Xo — Xp is a dominant endomorphism, then we can define
f* ¢ Cartiery, (Xo) , — Cartiery (Xo), and fi @ Weil, (Xo) , — Weilo (Xo) o (3.23)

as follows. Let D = (X,Dyx) € Cartier,,(Xg),. Let Y be a completion of Xp such that the lift
F :Y — X of f is regular, then we define

f*D:= (Y,F*Dx) € Cartiers(Xo) 5 - (3.24)

This does not depend on the choice of Y. If D € Weil,,(Xp), let X, Y be completions of Xy such
that the lift /' : Y — X is regular, then

(f«D)x := F.Dy. (3.25)

Again, this does not depend on the choice of Y.

3.2.4 Local version of the canonical basis

Let X be a completion and let p € X be a closed point at infinity i.e on dxXy. We denote by
Weil(X, p)a the subspace of Weil,,(Xp), defined as follows: D € Weil(X, p), if and only if
Dx = 0 and for every completion T : ¥ — X above X and every prime divisor E at infinity in ¥,

one has E € Supp Dy if and only if T(E) = p. We define
Cartier(X, p)a = Weil(X, p)a n Cartiery, (Xo) - (3.26)

We can define the set Dy ;, of prime divisors above p as follows. We will say that a completion
7 :Y — X is exceptional above p if w(Exc(n)) = p. We will write  : (Y,Exc(n)) — (X, p) for
such a completion. Elements of Dy , are equivalence classes of prime divisors E € Exc(r) for

all completions 7 : (Y,Exc(w)) — (X, p).

Proposition 3.2.6. If X is a completion of Xy, then Dx =| | peoxx, Px.p and

Cartier(X, p)a = (A)(Px») (3.27)
Weil(X, p)a = (A)Px» (3.28)
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3.2.5 Supremum and infimum of divisors

Let (D;);er be a family of elements of Weil,,(Xo) such that for all completions X, the family
(D; x) is bounded from below, we define /\,_; D; with its incarnation in X being

( /\D,~>X - /i\Dl-,X. (3.29)

We have an analogous definition for \/, D; when each (D; x ) is bounded from above.
Lemma 3.2.7. If D, D’ € Cartiery,(Xy), then D A D',D v D' € Cartiery, (Xo).

Proof. Tt suffices to show that D A D' € Cartiery, (Xo) because D v D' = —(—D A —D’). So take
D, D’ € Cartiery, (Xp), we have to show that D A D’ belongs to Cartierq, (Xg).

Now, it suffices to show this for D, D’ effective, indeed let X be a completion such that D
and D’ are defined over X. Then, there exists D; € Divy, (X) such that D — D, and D' — D, are
effective. Indeed, take D, as the Cartier class determined by D A D’ in X, Then

DAD' = (D—D;) A (D' —D))+D;. (3.30)

Therefore, suppose D, D’ are effective. Then a = Ox(—D) + Ox(—D’) is a coherent sheaf
of ideals such that ajy, = Oy, let m: Y — X be the blow-up along a. Since ax, is trivial, T
is an isomorphism over Xy, therefore Y is a completion of Xy with respect to the embedding

1

ly := T~ ' olyx and 7 is a morphism of completions. Then, b := w*a- Oy is an invertible sheaf

over Y trivial over Xp, so there exists a divisor Dy € Div,(Y) such that b = Oy(—Dy).
Claim 3.2.8. The Cartier class in Cartier, (Xo) induced by Dy is D A D'.
We postpone the proof of this claim to the end of Section[3.3] [

Example 3.2.9. Let X be a completion that contains two prime divisors E,E’ at infinity in X
such that they intersect (transversely) at a point p. The sheaf of ideals a = Ox(—E) + Ox(—E’) is
the ideal of regular functions vanishing at p. The blow up of a is exactly the blowupw: Y — X
at p since by universal property of the blow-up w*a = Oy(—E ) where E is the exceptional
divisor above p. If we still denote by E,E’,E the elements they define in Cartier,, (Xp), then
EAE =E.

Let X be a good completion of Xy. Let Dj,D; € Divy,(X). Let E, F be two prime divisors
at infinity that intersect. We say that (D, D,) is well ordered at E N F if

Ol‘dE(Dl) < OI‘dE(Dz) S Ol‘dF(Dl) < Ol‘dF(Dz). (331)
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We say that (Dy,D,) is a well ordered pair if it is well ordered at E N F for every prime divisor

E . F at infinity that intersect.
Lemma 3.2.10. If D; A D, or Dy v D; is defined in X, then (D1,D;) is a well ordered pair.

Proof. Suppose for example that D; v D5 is defined in X and that Dy, D5 is not a well ordered
pair and let E, F be two prime divisors at infinity that intersect such that at E N F, D; = o,E + B;F
with oy < o and B > B,. Then, D; v Dy = 0 E + B F. Let E be the exceptional divisor above
E NF, then we have ordz(D v D) = 02 + 1. But

ordzD; = a; + Bi<on+P = OrdE(Dl v D). (3.32)
This is a contradiction. L]

Remark 3.2.11. This is actually an equivalence, if D, D5 is a well ordered pair, then D; A D;
and D v D; is defined in X. This gives an algorithmic procedure by successive blow ups to

find the minimum and maximum of two Cartier divisors.

Definition 3.2.12. Let S, (Xp) be the semigroup of Weily, (Xg) of elements D € Weily, (Xo) such
that there exists a (potentially uncountable) family (D;);e; < Cartiery, (Xo) such that

D= \/D,- (3.33)
1

Proposition 3.2.13. (1) Cartiery,(Xo) < S0 (Xo)-
(2) Fora,b>=0and D,D' € S5 (Xo), one has aD + bD' € S,(Xp).
(3) If D; € S5(Xo) for each i € I and (D;) is bounded from above then \/ .; D; € Sx(Xo).
(4) IfD,D' € S (Xo), then D A D' € S (Xo).

Proof. The first assertion is trivial as for D € Cartier,, (Xo),D = \/ D. For Property (2), let
X be a completion of Xy then \/;aD; x + \/j bD’j’X = \/i’j(aD,' + bD’j)X. For Property (3), if
D;=\/ ;iDi j, then \V;Di = \/(i’ »Dij- Finally, the fourth assertion is a corollary of Lemma
B.27 O

Example 3.2.14. We have S (Xo) & Weil,(Xp). Let Xo = A2 and X = P2. Let Ey denote the

line at infinity, a canonical divisor in P? is given by Kp2 = —3Ey. We can define an element
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K € Weil,, (Xo) by taking for any completion ¥ of A? the canonical divisor supported at infin-
ity. More precisely, let Y is any completion of A% above P>. We still denote by Ey the strict

transform of Ey in Y. Then, Ky is of the form

Ky =-3E+ Y, E. (3.34)
EcdxXo,E+Eo

Suppose that K = sup;(D;) for some D; € Cartier,,(Xo). Let D € (D;) such that D is de-
fined over some completion Y and for some prime divisor E # Ey at infinity, ordg(D) = 1.
Then, we must have K > D meaning that for any completion Z, Kz > Dz. Consider the fol-
lowing blow ups. Let ; : Y1 — Y be the blow-up of a point p of E that does not belong to
any other divisor at infinity. Let E be the exceptional divisor of ®. Now let T, : Yo — Y be
the blow-up at T E N E and let F be the exceptional divisor of . Then, ordi(Ky,) = 1 but

ordz(Dy,) = ord((m2 07 )*D) = 2 and this is a contradiction.
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3.2.6 Picard-Manin Space at infinity and its completion

Let X be a completion of Xy and let NS(X) be the Néron-Severi group of X. We have a perfect

pairing given by the intersection form
NS(X)r x NS(X)r — R. (3.35)

Recall the Hodge index theorem

Theorem 3.2.15 (Hodge Index Theorem, [Har77] Theorem 1.9 p.364). Let X be a projective
surface over a smooth projective surface over an algebraically closed field. Let a.€ NS(X) and
let H be an ample divisor on X. If a.-H = 0, then

o? < 0. (3.36)

In particular, the signature of the quadratic form induced by the intersection form is (1,p — 1)
where p is the rank of NS(X).

A class a € NS(X) is nef if for all irreducible curve C < X, .- [C] > 0. If t:Y - X is a

morphism of completions we have two group homomorphisms
T, : NS(Y)a — NS(X)a, " : NS(X)A — NS(Y)a (3.37)
with the following properties
1., om* = idng(x),
2. T R=o-B
3. m*a- B = o m B (Projection Formula)
Furthermore, if T :Y — X is the blow up of one point, let E be the exceptional divisor, then
[E]> = —1, and NS(Y)s = T*NS(X)A OA - [E] (3.38)

Therefore, the system of groups (NS(X)) with compatibility morphisms 7, is a projective sys-

tem of groups and (NS(X)) with compatibility morphisms 7* is an inductive system of groups.
Definition 3.2.16. The Picard-Manin spaces of Xy are defined as
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Cartier-NS(Xo), := lim NS(X)s, Weil-NS(Xg), = lim NS(X)a (3.39)
X0<—>X X0<—>X

We equip Weil-NS(X), with the topology of the projective limit. We have the same
description as for Weily (Xg) and Cartier,(Xo). An element of Weil-NS(Xp) is a family
o = (o )x where oy € NS(X) such that forall w: ¥ — X, we have

Oy = Oly.

We call oy the incarnation of o in X.

An element of Cartier-NS(Xj) is the data of a completion X of Xy and a class o € NS(X)
with the following equivalence relation: (X, o) ~ (Y,f) if there exists a completion Z with a
morphism of completion

y:Z—Y, 7nx:Z—-X

such that w3 = 0. We say that the Cartier class is defined (by o) in X. We have a natural
embedding
Cartier-NS(Xo) < Weil-NS(Xj) . (3.40)

We have a pairing

Weil-NS(Xo)g x Cartier-NS(Xo)g — R (3.41)

given by the following: let o € Weil-NS(Xp)g and B € Cartier-NS(Xo)g; let X be a completion
where B is defined i.e B = (X,Bx); then

OC-Blzax-Bx. (3.42)
This is well defined because if T : Y — X then
oy - By = oy - T Px = W0y - Px = ox - Px (3.43)

by the projection formula.

An element o € Weil-NS(Xg) is nef if for all completion X, oy is nef.
Proposition 3.2.17 ([BEJOS|| Proposition 1.7). The intersection pairing
Weil-NS(X)g x Cartier-NS(Xo)g — R (3.44)
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is a perfect pairing and it induces a homeomorphism Weil-NS(X¢)g ~ Cartier-NS(Xo)g en-
dowed with the weak-+ topology.

Using the canonical basis of divisors introduced in §3.2.3] we have a more explicit descrip-

tion of the Picard Manin spaces of Xj.

Proposition 3.2.18. Let X be a completion of X, then
Cartier-NS(Xg),, = NS(X), ©AP¥) | Weil-NS(Xg), = NS(X) @ AT, (3.45)

Moreover, the intersection product is negative definite over APY) and {og : E € Dx} is an

orthonormal basis for the quadratic form o€ AP¥) — —o2.

Proof. The decomposition follows from Equation (3.38)). The fact that the intersection form is
negative definite follows from the existence of an ample divisor on X, the Hodge Index theorem
and the projection formula. The fact that {ag : E € Dy} is an orthonormal basis is again a

consequence of the projection formula and Equation (3.38)). O

3.2.6.1 The local Picard-Manin space

Let X be a completion of Xp and let p be a point at infinity. Then, by Proposition [3.2.18| we
have the canonical embeddings

Cartier(X, p)a — Cartier-NS(Xp),, Weil(X, p)a — Weil-NS(X)) (3.46)

Proposition 3.2.19. If A = R, the space Cartier(X, p)r is an infinite dimensional R-vector
space and the intersection product defines a negative definite quadratic form over it. The set
{ag : E € Dx p} is an orthonormal basis for the scalar product o — —02. Furthermore, the
pairing

Weil(X, p)r x Cartier(X,p)r — R (3.47)

is perfect.
3.2.6.2 The divisors supported at infinity
Fix a completion X of Xy, we have a natural linear map 7 : Divy, (X)r — NS(X)R.

Proposition 3.2.20. The intersection pairing restricted to T(Divey, (X)R) is non degenerate.
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Proof. Let D € T(Divy,(X)R), suppose that D- D’ = 0 for all D' € T(Divy,(X)R). Then, by
Theorem there exists H € Divy(X) ample. We have D-H = 0. By the Hodge index

theorem, if D is not numerically equivalent to zero, then D? < 0 and this is a contradiction. [

Let V < NS(X) be the orthogonal subspace of T(Dive, (X)r). Then,
NS(X)r =V O 1(Dive (X)R)- (3.48)
For example if Xy = A2 and X = P?, then V = 0. Since we only blow up at infinity we get
Proposition 3.2.21. Let X be an affine surface , then

Cartier-NS(Xo)g = VOt (Cartier(Xo)g), Weil-NS(Xo)g = VO 1(Weiln(Xo)g) (3.49)

3.2.6.3 Functoriality

Let f: Xo — Xo be a dominant endomorphism of Xy. We define f*, f. on the Picard-Manin

spaces as follows. We first define
f* : Cartier-NS(Xg)g — Cartier-NS(Xo)g - (3.50)

Let B € Cartier-NS(Xo)g and let X be a completion where B is defined. Let Y be a completion
of Xy such that the lift F : Y — X is regular, then we define f*[ as the Cartier class defined in Y
by

fB:=(Y,F*Bx) (3.51)

this does not depend on the choice of Y. Indeed, if Y’ is another completion such that F/: Y’ — X

is well defined, then there exists a completion Z such that we have the following diagram.

v (3.52)

Then, the lift of f: Z --» X is F oy = F’ o {ys, hence we get
Ty oF* =m0 (F')* (3.53)
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and the pull back of Cartier classes is well defined.
Next, we define f : Weil-NS(Xo)g — Weil-NS(Xp)g. Let o € Weil-NS(Xg)g. Let X,Y be
completions of Xy such that the lift F : Y — X is regular, then the incarnation of f,0ol in X is

(fet)x := Fi0ly. (3.54)

Again, this does not depend on the choice of Y by a similar argument as for the pullback. We

have the following proposition
Proposition 3.2.22 ([BEJOS|] Section 2). We have the following properties.

e The operator f* extends to an operator

f* Weil-NS(Xo)g — Weil-NS(Xo)g (3.55)

e the operator f, restricts to an operator

f+ ¢ Cartier-NS(Xp)g — Cartier-NS(Xo)g (3.56)

o Let o€ Weil-NS(X), let X, Y be completions of Xy such that the lift f : X --»Y does not

contract any curves, then
(ffo)x = (ffoy)x (3.57)

Remark 3.2.23. For a completion X, we can also define the restriction of f* and f, to NS(X).

We denote them respectively by fy and (fx).. They are defined by
VBeNS(X), fxB=(/"B)x, (fx):B=(fiB)x (3.58)

3.2.6.4 Spectral property of the first dynamical degree

Consider a completion X of Xp and ® € NS(X) an ample class. By the Hodge index theo-
rem, the intersection form on Cartier-NS(Xy) x Cartier-NS(X) is negative definite on o*. If
a € Cartier-NS(Xg), the projection of o on

Cartier-NS(Xp) given by

is o — (a- @)®. Consider the quadratic form on

1
Vo e Cartier-NS(Xo), || |* := (@~ o)% — (o= (a 0)0)2. (3.59)
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This defines a norm on Cartier-NS(X)g and Cartier-NS(Xg)g is not complete for this norm.
We denote by 1.?(X() the completion of Cartier-NS(Xo)g with respect to this norm; Had we
chosen a different ample class, we would have gotten an equivalent norm so the space L?(Xy)

is independent of the choice of ®. This is a Hilbert space and we have
Proposition 3.2.24 ([BEJOS|| Proposition 1.10). There is a continuous injection
L2(Xg) — Weil-NS(Xy) (3.60)

and the topology on 12(Xy) induced by Weil-NS(Xo) coincides with its weak topology as a
Hilbert space. If o€ Weil-NS(Xo) then o belongs to L*(Xo) if and only if infx (0%) > —c0,
in which case o = infx(ocg(). Furthermore, the intersection product - defines a continuous
bilinear form on L2(Xy).

Remark 3.2.25. In particular, any nef class belongs to L?(Xp). Recall that o € Weil-NS(Xp)g
is nef if for every completion X, oy is nef. The cone theorem ([Laz04|] Theorem 1.4.23) states

that oy is a limit of ample classes in NS(X )R, therefore (0tx)? = 0 and o € L?(Xo).

Using the canonical basis of exceptional divisors we can have an explicit description of
L2(Xp). Let o € Cartier-NS(X) and let oy be the incarnation of o in X. Then, since o is a
Cartier class, we have for all but finitely many E € Dy that o.- oz = 0 and

o= oy + Z (o ag)og. (3.61)
EeDyx
Therefore,
o[> = llow |[* + > (o ag)?, (3.62)
EeDyx
and
of =g — > (o-op)’ (3.63)
EE@X

Therefore, L?(Xy) is isomorphic to the Hilbert space
L*(Xo) = NS(X) ©*(Dy). (3.64)

We also have the local version of this statement
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Proposition 3.2.26. Let X be a completion of Xo and p € X be a point at infinity. Then,
L%(Xo) N Weil(X, p) = £*(Dx ) (3.65)

and {0 : E € Dx ,} is a Hilbert basis of this space.

Proposition 3.2.27 ([BFJOS]). Let f be a dominant endomorphism of Xo. The linear maps
I, fe : Weil-NS(Xp) — Weil-NS(Xj) (3.66)

induce continuous operators

f*,f - L2(Xo) — L*(Xo) (3.67)
Furthermore, we have the following properties in L2 (Xo).
(1) (f") = ()"
(2) Yo,Bel?(Xo), fro-f = £.B.
(3) Yae L?(Xo), f*a- f*o = e(f)ou- o where e(f) is the topological degree of f.

In particular, if f € Aut(Xp) then f* is an isometry of L?(X) viewed as an infinite dimen-

sional hyperbolic space (see [CLC13]).

Theorem 3.2.28 ([BEJ0S, DF21]]). Suppose that Ai(f)?> > Ay(f), then there exist nef classes

0*,0, € L2(X) unique up to multiplication by a positive constant such that
(1) f*6* =L 6%

(3) For all a.e L*(Xy),

n/2
%(f")*a — (o0u-0,)0" +oc <<%) ) , (3.68)
1 1

L ) 7»2>"/2
)= (00 ((x% )

1. A = Oy (B) means that there exists a constant C(o) > 0 such that A < C(a)B.
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In particular, for all o, € L?(Xy),

1211%(]‘")*0(-[3: (o 0,)(B-6"). (3.70)
1

Furthermore, 0% and 0, satisfy
(6")>=0, 6.-6*>0 (3.71)

We call 6* and 0. the eigenclasses of f.

Sketch of proof. We sketch here the proof for 6*. Let X be a completion of Xy. The pull back
f* induces a linear map f5 : NS(X) — NS(X). Let px be the spectral radius of this map. We
have for any ample class w € NS(X) that px = lim,—o ((fx)"w- w)l/ ". Now, f5 the cone Cx of
nef classes in NS(X)R. This is a closed convex cone with compact basis and non-empty interior.
By a Perron-Frobenius type argument, there exists Oy € Cx such that fy0x = px0y.

Now, Let (Xy) be a sequence of completions of Xy such that X; = X and Xy is a com-
position of blowups of Xy at infinity such that the lift of f to Fy : Xy+1 — Xy is regular,
we denote by Ty : Xy41 — Xy the induced morphism of completions. Let py := px, and
Oy := 0x,. One can show that limy py = A;. By construction, we have that for all N > 1, the
element f*Oy — pyOy € Weil—NS(XO)R has incarnation zero in Xy, hence it tends to zero in
Weil-NS(X()g. We can normalize all 6y such that 8y - w = 1 where w is an ample class of
NS(X). Now, the set {W € Weil-NS(Xo)g |[W -w = 1} is a compact subset of Weil-NS(Xp) so
the sequence (6y) has an accumulation point 0% € Weil-NS(X) that is nef, effective and we get
0" =A106%. [

3.3 Valuations

3.3.1 Valuations and completions

Our general reference for the theory of valuations is [Vaq00]. Let R be a commutative k-algebra

that is also an integral domain, a valuation on R is a function v : R — R U {0} such that
(i) v(k*) =0;
(ii) Forall P,Q € R,v(PQ) = V(P) +Vv(Q);
(iii) For all P,Q € R,v(P+ Q) = min(v(P),v(Q));

74



3.3. Valuations

(iv) v(0) = +oo.

If 7 is an ideal of R, we set v(I) := minje; v(i). If S < I is a set of generators, then

v(I) = minVv(s). (3.72)

seS

Remark 3.3.1. In [AbhS56]| A valuation can take the value +co0 only at 0 but we do not require
such a property. Let py = {a € R : v(a) = o0} then py is a prime ideal of R that we call the bad
ideal of v. If v is a valuation on R, it defines naturally a valuation in the sense of [Abh56] on
the quotient field R/py. Furthermore v can be naturally extended to a valuation on the ring Ry,
via the formula v(p/q) = v(p) — v(g). In particular, if py, = {0}, then v defines a valuation over
FracR.

Let X be a completion of Xy and let v be a valuation over B := Ox(Xp). Let py be the bad
ideal of v. Consider By, the localization of B at py. Set

Oy := {xeBy, : v(x) = 0}. (3.73)

This is a subring of By,. If py = {0}, then this is the classical valuation ring of v.

Lemma 3.3.2. The subring Oy is a local ring, its maximal ideal is

my = {xe Oy :v(x) > 0}. (3.74)

Proof. 1t suffices to show that if v(x) = 0, then x is invertible in O, but this is obvious since
v(x~!) = —v(x)=0. O

One defines naturally a valuation v on C := B/py, let L be the fraction field of C and O be

the valuation ring of L with respect to v. Then, we have the natural isomorphisms

Geometrically, the Zariski closure of py inside X defines an irreducible closed subscheme Y of
X and L is isomorphic to the field of rational functions on Y.
Two valuations Vi, Vv, are equivalent if there exists a real number A > 0 such that vi = Av,.

Let R,R’ be two integral domains with a homomorphism of schemes @ : SpecR’ — SpecR;
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it induces a ring homomorphism @* : R — R’. If v is a valuation on R’ we define @,V the
pushforward by ¢ of v by
VP eR,9.v(P) =Vv(¢*(P)). (3.76)

Let Xop = SpecA as in Section Denote by ¥ the set of valuations on A. We equip
this space with the topology of weak convergence, that is the coarsest topology such that the
evaluation map v € V — v(P) is continuous for all P € A. If f is an endomorphism of X, then
f induces a continuous map fx : V — V.

Via the natural isomorphism 1} : Ox(Xo) — A, every v € ¥ induces a valuation (tx).V on
Ox (Xo), namely

VP e Ox(Xo), (ix)«V(P):=Vv(xP). (3.77)

We will denote (1x).V by vx for every valuation v on A.

Remark 3.3.3. Take a morphism of completions 7 : X; — X, and v a valuation on A. Then,
(1x,)«V = (T~ o1y, )«V. In particular 7T, vy, = Vx,.

Remark 3.3.4. In the language of Berkovich theory, the set ¥ is the Berkovich analytification
of Xy over k where we have endowed k with the trivial valuation (see [Ber12]).

Example 3.3.5 (Divisorial valuations). Let X be a completion of Xy and E be a prime divisor
of X. Let ordg be the valuation on k(X) such that for any f € k(X),ordg(f) is the order of
vanishing of f along E. Any valuation v on A such that vy is equivalent to ordg for some
prime divisor E in some completion X is called a divisorial valuation. In that case py = {0}
and v extends uniquely to a valuation on FracA. For example if Xy = A? and X = P2, then let
L, be the line at infinity, we have VP € k|x,y|,ord;  (P) = —deg(P). If instead we take the
completion P! x P!, decompose A> = A! x A! and let x,y be the affine coordinate of A% each
being an affine coordinate of A!. Let L, = {c0} x P! and L, = P! x {o0}, then

VP eklx,y],ordy, (P) = —deg,(P), ord., (P) = —deg,(P) (3.78)

where deg, (respectively deg,) is the degree with respect to the variable x (respectively y).

Example 3.3.6 (Curve valuations). Let X be a completion of Xy, let p € dxXo C be the germ
of a (formal) curve at p. This means that C is defined as ¢ = O for ¢ in the completion 5X7 P
of the local ring Ox , at p. If y € 5X p 18 another germ of a formal curve at p, we define the

intersection number at p by

{9 =0}, {y = 0} := dimi Ox /@, W) (3.79)
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This number is equal to oo exactly when one of the germs divides the other. We first define a
valuation v¢ , on 6;( » by

vep(W) ={w=0},C (3.80)

Suppose @ is not divisible by the local equation of any component of dxXy. For any P € Ox (Xp),
P can be written as P = \p(lxl oy with y; e 5X p irreducible and o; € Z. We define

vep(P) =Y aive » (i) e RU {0} (3.81)

Then v, is a valuation on Ox(Xp). Any valuation on A such that vy is equivalent to vc j is
called a curve valuation. If v is a valuation such that py, # {0}, then v is a curve valuation (see
[EJO4] and Proposition [3.3.9below). We will make the following distinction, if C is defined by
¢ € Ox,, we will say that V¢, is an algebraic curve valuation. Otherwise, we will say that it is
a formal curve valuation.

If ¢ was divisible by the local equation of a component of dyXjy, then vc, , would not define
a valuation on A as some regular functions P € A would have a pole along C and v(P) would be

equal to —oo.

3.3.2 Valuations over k|[[x,y]]

We recall some results about valuations from [EJO4] and [FJO7]]. Let R be a regular local ring
with maximal ideal m. We say that a valuation on R is centered if v > 0 and v}, > 0. Here
we set R := k[[x,y]] for our local ring. Its maximal ideal is m := (x,y) we will study the set of

centered valuations on R.

Proposition 3.3.7 (Proposition 2.10 [FI04], [Spi90]). Any valuation on K|x,y] centered at the
origin extends uniquely to a centered valuation on R as follows. Let @ € R and let ¢, be the

polynomial of degree n such that @ = lim@,,. Then,

V(@) = lim min(v(¢,),n). (3.82)

n—ao

Corollary 3.3.8. Let R’ be regular local ring of dimension 2 over K, then the my-adic comple-
tion R’ of R’ is isomorphic to R. Any centered valuation on R’ extends uniquely to a centered

valuation on R'.

Proof. Let (x,y) be aregular sequence of R’, that is mg = (x,y). It exists because R’ is a regular
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local ring of dimension 2. Then, R’ is isomorphic to k[[x,y]]. Let v be a centered valuation on
R’. We have that k[x,y] < R’, so v induces a valuation on k[x,y] that is centered at the origin

and we can apply the previous proposition to conclude. 0

Let p be a regular point on a surface X and let R = O/;;D we define 4 types of valuations over
R.

3.3.2.1 Divisorial valuations

A valuation v over R is divisorial if there exists a sequence of blow-up 7 : (Y,Exc(n)) — (X,x)

such that v is equivalent to T, ordg for some prime divisor E < Exc(m).

3.3.2.2 Quasimonomial valuations

Let w: (Y,Exc(m)) — (X,x) be a sequence of blow-ups and let g € Exc(rt). A monomial valua-

tion at ¢ is a valuation v on Oy 4 such that there exists s,z > 0,

v (Zaijxiyj> =min{si+1j:a;#0} (3.83)
i,j
for some local coordinates at g. We write v = V.

A valuation over Ox ) is called quasimonomial if there exists a sequence of blow-ups
n: (Y,Exc(m)) — (X, p) such that v = w,v,,. Quasimonomial valuations split into two cate-
gories: if s/t € Q, one can show actually that v is divisorial. Otherwise s/t € R\Q, V is not

divisorial and we say that it is irrational.

3.3.2.3 Curve valuations

Let @ € m,, be irreducible, we define Ve by

_{9=0}-{y=0}
m(9)

Yye Oxp,  VolW) (3.84)

where m(@) is the order of vanishing of ¢ at the origin. A curve valuation is a valuation equiv-

alent to v, for some @ € m,, irreducible.
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3.3.2.4 Infinitely singular valuations

These are all the remaining valuations. They have a nice description in term of Puiseux se-
ries (see [FJO4] Section 4.1 for more details). Briefly, to any valuation v of K[|x,y]], one can

associated a generalized power series

¢=> apb (3.85)
J
with a; € k and B; € Q. The infinitely singular valuations are exactly the valuations such that
lim j B j 7 +%0.

Proposition 3.3.9 ([E]JO4]). There are four types of centered valuations on R: divisorial, irra-
tional, curve valuations and infinitely singular valuations. The only type of valuation v such

that py = {v = +0} # 0 are curve valuations

Remark 3.3.10. Instead of looking at valuations over R with values in R, we can look at val-
uations with values in a totally ordered abelian group I', these are called Krull valuations (see
[EJO4]], section 1.3) and they have the advantage to always extend to Frac R. We can make any
curve valuation into a Krull valuation by the following procedure (see [EJO4], section 1.5.5):
Let @ € m and consider the curve valuation vy. Let I' = Z x Q with the lexicographical order,

we define Gq, : R — I' as follows. For any y € R, there exists an integer k € N such that
v =0y (3.86)

where  is not divisible by @. Set

A~ A~

Yy = (k. vol(§)) (3.87)

Notice that Vo(Y) = 0 < p(Ve(V)) > 0 where p; : I’ — Z is the projection to the first coordi-
nate and if vy () < +00, then Vo (y) = (0,Ve(y)). We will not need Krull valuations in the rest
of the text. But this argument comes in handy for the proof of Proposition [3.3.18|so we state it

here.

3.3.3 The center of a valuation

Let X be a completion of X and let v be a valuation on Ox (Xp). A center of v on X is a scheme-

theoretic point p € X such that Oy dominates the local ring Ox , (i.e Ox , < Oy and m, < my).
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If such a p exists then v induces a centered valuation on Oy, (cf[3.3.2) and in particular for
any open affine subset U — X that contains p, v induces a valuation on Ox(U) via the inclusion
Ox(U ) [ OX’ D

Lemma 3.3.11. The center of v on X always exists and is unique.

Proof. Let Oy be the subring of k(X) where v is > 0; it contains k*. Let L = By, /py and
O = Oy/py. If pis a center of v on X then we have the following commutative diagram of ring

homomorphism

Ox,p ¢ > Oy » < > L 4 By, (3.88)

inducing the following commutative diagram of scheme morphisms

SpecL

l / 1( (3.89)

Spec O —— Spec Oy —— Spec Ox , — Speck

Since X is proper over K (it’s a projective variety), the valuative criterion of properness
([Har77]]) shows that if the center exists, then it is unique. For the existence, Let x € X be the
image of the maximal ideal of O, then x is the center of v on X. Indeed, the image of SpecL is
the prime ideal py of Ox (Xp) and x belongs to its closure, therefore Ox » < By, and the morphism
of local rings Ox x — O shows that O, dominates Oy .

]

The center of v on X is the center of vy we will denote it by cx (V).

Example 3.3.12. Let v be a divisorial valuation over A and let X be a completion of Xy such
that vy ~ ordg for some prime divisor E of X, then the center of v on X is the generic point xg
of E. Indeed, the ring of regular function at the generic point of E is a discrete valuation ring
since E is of codimension 1. In that case, we will identify the center with its closure and say
that the center of v on X is the prime divisor E. In fact a valuation is divisorial if and only if
its center on some completion of Xj is a prime divisor because if cx (V) = xg, then v and ordg

defines the same valuation ring which is a discrete valuation ring, therefore they are equivalent.

Example 3.3.13. If v is a curve valuation and X is a completion of Xy such that (1x ).V ~ Ve, ps
then the center of v on X is the closed point p.
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A valuation over A = K[Xy] is centered at infinity if there exists a completion X such that
cx (V) ¢ Xo.
Corollary 3.3.14. Let Xo = SpecA be a smooth affine surface, there are exactly four types
of valuations centered at infinity over A: divisorial valuations, irrational valuations, curve
valuations and infinitely singular valuations. If v is a valuation such that py # {0}, then v is a

curve valuation.

Proof. letv be a valuation over A and let cx (V) be its center on some completion X. If cx (V) is
a prime divisor at infinity then v is divisorial. Otherwise, cx (V) is a regular point at infinity and
v induces a centered valuation over 5;(\1, The result follows from the classification of centered
valuations over K[[x, y]] from Proposition[3.3.9] O

Definition 3.3.15. * Let X be a good completion of Xy and p € dxXp a point at infinity.
Following [EJO4], we say that p is a free point if it belongs to a unique prime divisor at
infinity and we say that it is a satellite point otherwise, i.e it is the intersection point of

two prime divisors at infinity.

* Let v be a valuation over A centered at infinity. Let p; = cx(v) be its center on X and
X1 := X. We define the following sequence: If p, is a prime divisor, then the sequence
stops, else p, is a closed point of X, and we define X),; as the blow up of p,, then define

Pn+1:= ¢x,,, (V). This is the sequence of centers of v with respect to X.

We adopt the following convention: When we write "let p € E be a free point (at infinity)"
this means that £ is the unique prime divisor at infinity on which p lies. If we write "let
p = E N F be a satellite point", this means that E and F are the two prime divisors at infinity

such that p = E n F' (Recall that we only work with good completions).

Proposition 3.3.16 ([FJO4]], Section 6.2 ). Let vV be a valuation centered at infinity. Let X be a

completion of Xy and (p,) the sequence of centers (above X ) associated to v. Then,

(1) v is divisorial if and only if the sequence (py) is finite.
(2) If v is irrational, then (p,) contains finitely many free points.
(3) if v is a curve valuation, then (p,) contains finitely many satellite points.

(4) If v is infinitely singular, then (py,) contains infinitely many free points.

Proof. Assertion 1 is clear since the sequence (p,) stops if and only if p, is a prime divisor
at infinity. Assertion 2 and 4 follows from [EJO4] Theorem 6.10 and Assertion 3 follows from
[EJO4] Proposition 6.12. ]
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3.3.4 Image of a valuation via an endomorphism

Let f: Xo — Xo be a endomorphism of X, it induces a map f. on the space of valuation
f« : V — ¥V via the formula
VPeA VeV, fV(9). (3.90)

~ ~

We will denote by f, the induced map f, : ¥V — V.

Proposition 3.3.17 (Proposition 2.4 of [EJO7]). Suppose that f is dominant, the map f. pre-
serves the sets of divisorial, of irrational and of infinitely singular valuations. If V¢ is a curve
valuation such that f does not contract C, then f.Vc is a curve valuation. If f contracts C, then

f«Vc is a divisorial valuation.

We will use this proposition in the following context. Let X,Y be two completions of
Xo such that the lift F : X — Y of f is regular. For any point p € X\Xp, we have a map
F.: Vx(p) — V¥ (F(p)) that preserves the type of the valuations. The only curve that might be
contracted by F to g are the divisors at infinity; but the curve valuation that they define do not

define valuations on A.

Proposition 3.3.18. Let f : Xo — X be a dominant endomorphism of topological degree ;.

Then, every valuation v on A has at most Ay preimages under f.

Proof. Suppose first that the valuation Vv takes the value 400 only for 0. Therefore, it extends
to a valuation on K = FracA. The extension f*K — K is a finite extension of degree A,. The
valuation v induces a valuation on f*K and every valuation w such that f,w = v is an extension
of v|pxk to K. By [ZS60] Theorem 19 p.55, there are at most A, extension of V|fEK-

If now py = {v = +o0} # 0, then we know that v is a curve valuation. By Remark [3.3.10] v
can be made into a Krull valuation V. Since V is a Krull valuation, it extends to a Krull valuation
over K and f,v extends to a Krull valuation over f*K. The same argument as above still works
as [ZS60] deals with Krull valuations. OJ

3.4 Tree structure on the space of valuations

3.4.1 Trees

For this section, we refer to [FJ0O4] Section 3.1. Let (7, <) be a partially ordered set, a subset
S < T is full if for every 6,6’ € §,1€ 7,6 <T< 0 = 1T€ .
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3.4. Tree structure on the space of valuations

Definition 3.4.1. Let A = N,Q,R. An interval in A is a subset I — A such that for all x,y,z € A,
ifx<y<zandx,zel, thenyel. If (7,<) be a partially ordered set, then (7, <) is a rooted
A-tree if

(i) 7 has a unique minimal element Ty called the root of T
(ii) Ifte 7, theset {ce T :0 < 1}is E|isomorphic to an interval in A.
(iii) Every full, totally ordered subset of 7 is isomorphic to an interval in A.

A parametrized-A tree is a rooted A-tree 7 with a map o : 7 — A u {0} such that the
restriction of ¢ to any full totally ordered subset of 7" induces a bijection with an interval in A.
The map a is called the parametrisation.

A rooted R-tree is called complete if every increasing sequence has an upper bound.

A subtree S of a A-tree 7 is a subset such that (§, <) is a A-tree. An inclusion of A-trees
is an order preserving injection 1 : § — 7. In particular, 1(.§) is a subtree of 7.

If 7 is an R-tree and T, 7, € 7, then the minimum T A Tp € T exists by completeness of R.
We define the set

[T1, 2] ={Te T AT <TSTIOr T AT < T T} (3.91)

and we call it a segment. The segments [T1,72),(T1,T2] and (t1,T2) are defined similarly. A
finite subtree of T is a subtree that consists of a finite union of segments in 7.

If 7 is an R-tree, a tangent vector V' at T € 7 is an equivalence class where
7~ =17 0[] %D (3.92)
We define the weak topology on 7 by the topology generated by the sets
U(V):={t' €T :7 represents v}. (3.93)

Theorem 3.4.2 ([FJO4]] Proposition 3.12). We have the following
o Every rooted R-tree T admits a completion T that is a complete rooted R-tree.

* Every rooted Q-tree Iy admits a completion ‘IR into a rooted R-tree, i.e there exists an

order preserving injection \ : Io — ‘Ig such that

2. isomorphic here means that there exists an order preserving bijection.
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(1) If To is the root of Ig,1(To) is the root of ‘Ir.
(2) (1q) is weakly dense in Iy
(3) ‘IR is minimal for this property.

» If aq : Ig — Q4 is a parametrisation of ‘I, then there exists a unique parametrisation

OR of IR such that 0,y = 0RO 1.

3.4.2 The local tree structure of the space of valuations

We denote by 1 the set of centered valuations on R where R = K[[x,y]]. Define the multiplic-
ity valuation Vi, by Vin (@) = max{n >0: @ e m”}. We will sometimes write m(¢) instead of
Vi (0). Let Vi < U be the set of centered valuations on R such that v(m) = 1 and consider
the following order relation on ¥: V< w <= V@€ R,v(9) < w(¢). With this order relation
v becomes a complete rooted R-tree called the valuative tree ([FI04] Theorem 3.14) rooted in
Vm. The ends of 1V, consist of the curve valuations and the infinitely singular ones. The interior
points are all quasimonomial valuations, all divisorial valuations are branching points whereas
all the irrational valuations are regular points (i.e admit only two tangent vectors). Define on
Vi the following function
v(9)

o(v) = sup{m:(pem,v(;))V}. (3.94)

It is called the skewness function (see [FJO4] §3.3)

Proposition 3.4.3 (Proposition 3.25 of [FJO4]). The skewness function a.: Vi — [1,+0] de-

fines a parametrisation of Vy,. We have the following properties.
ca(V)=1<vVv=vy

e Let @ € m be irreducible and let v € Vy, then

Voem,v(Q) = a(vAve)m(Q) (3.95)

o Ifv is divisorial, then o(V) € Q
* if v is irrational, then o(v) € R\Q.

* If Vin giv is the subset of Vi, consisting of the divisorial valuations, then (Vi giv, Q) is a

parametrized Q-tree.
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3.4. Tree structure on the space of valuations

We can define two topologies over Vy,. The first one is the weak topology being the coarsest
topology such that for all @ € R, the evaluations map v € ¥}, — V(@) is continuous. The second

is the weak topology given by the R-tree structure on ¥},.

Proposition 3.4.4 ([EJ04]], Theorem 5.1). The weak topology over Vy given by the evaluation
maps V € Vi — V(@) and the weak topology induced by the tree structure of Vi, are the same.

Let X be a good completion of Xy = SpecA and let p be a smooth point of X. Take local
coordinates z,w at p, then the completion of the local ring Ox , with respect the maximal ideal
m,, is isomorphic to k[[z,w]]. Let ¥x(p) be the set of valuations v on A centered at p. We
will denote by 7y (p;m,) the subset of Vx(p) of valuations v such that v(m,) = 1. The space

Vx (p;mp) is an R-tree isomorphic rooted in vy, ,. We make its structure precise.
Proposition 3.4.5. The R-tree Vx(p;m,) is not complete.

(1) If p € E is a free point then Vx(p;m,) is isomorphic to Vy\{v;} where z is a local
equation of E.

(2) If p = E N F is a satellite point, then Vx(p;my) is isomorphic to Vu\{V;,V\,} where z,w

are local coordinates at p with z a local equation of E and w a local equation of F.

Proof. If p € E is a free point, let z,w be local coordinates at p such that z is a local equation
of E. Then, the completion of the local ring at p is isomorphic to k[[z, w]] by Theorem 3.1.2]
Every P € A is of the form P = z% with a > 0 and ¢ € Ox ;. Hence, a centered valuation on
Kk[[z,w]] defines a valuation over A if and only if it is not the curve valuation v,. Hence we have
an isomorphism Yy (p;m,) ~ Vi {v.}.

If p=FEnF is a satellite point, then let z,w be local coordinates at p such that z is a

local equation of E and w is a local equation of F. Every P € A is of the form P = z“(fvb
where a,b > 0 and ¢ € Ox,,. Therefore a centered valuation on k[[z,w]] defines a valuation
over A if and only if it is not the curve valuation v, or v,,. Hence we have an isomorphism

Vx(psmp) — Vi {Vz, Vi) L

3.4.3 The relative tree with respect to a curve z =0

Let R = k[[x,y]] and let m be the maximal ideal of R. Let z € m be irreducible such that
Vin(z) = 1. One can consider the set V. of centered valuations on R such that v(z) = 1; we also
add the valuation ord; to ¥, defined by ord,(®) = max{n > 0:7"|¢}. (notice that ord, is not
centered, because for example if x # z,ord;(x) = 0). This is also a tree rooted in ord, called the
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relative tree (see [F104] Proposition 3.61) with the order relation v <, u < Y@ € R,v(9) < u(9).
We can define the weak topology on ;, being the coarsest topology such that the for all @ € R,
the evaluation map v € V; — V(@) is continuous. There is also the weak topology given by the

tree structure of 7.

Proposition 3.4.6 (Relative version of [3.4.4). The weak topology over V, given by the evalu-
ation maps v € V, — V() and the weak topology induced by the tree structure of V, are the

same.

Proposition 3.4.7 ([FJ04] Lemma 3.59). We have an onto map N, : Yy — V, defined by

No(V) =V/V(z) if v # v,
N;(v;) = ord;.

This map restricts to a homeomorphism N, : Vi, — V. with respect to the weak topology. If
w € m is irreducible, then the map N,,, := N,,oN,, U 9. — 9, is a homeomorphism for the

weak topology.

The tree V., comes with a skewness function o : V. — [0, +c0] and a multiplicity function

m; (@) = v;(¢). The skewness is defined by

o (V) = sup{n\;z(y\%hpem,vw >v} (3.96)

Proposition 3.4.8 (Relative version of Proposition [3.4.3). The function a : V, — [0,40] de-

fines a parametrisation of the tree ‘V,. We have the following properties.
* a,(v) =0< v =ord,

 Let ¢ € m be irreducible and let v € V., then
V(@) = 0z (V A N(Vo))me (). (3.97)

e If v is divisorial or v = ord,, then a,;(v) € Q

o If v is irrational, then o (V) € R\Q.

If V. giv is the subset of V; consisting of ord, and divisorial valuations, then ({Vz,diw OLZ)

is a parametrised Q-tree.
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3.4. Tree structure on the space of valuations

Proposition 3.4.9 ([FJO4]], Proposition 3.65). We have the following relation

v
V()

If w e muis another irreducible element with m(w) = 1, then

W e U, V(z)zocz< )zmin(v(x),v(y))zoc( VY ) (3.98)

min (v(x),v(y))

Vv e U, v(z)ay <\%) = v(w)?ay, (\ﬁ) . (3.99)

Proposition 3.4.10 ([FJ04], Lemma 3.60 and 6.47). The map N : Vin — V, is not an isomor-
phism of trees. The two orders on Vi and V. are compatible except on the segments [V, V]

and [ord;,N(vy)]| where they are reversed. More precisely,
(1) YV, € [Vi,Ve] © Vi,V <= N(V) =, N(u).
(2) ¥Yvi,vo € V\{ord,},vi <, va = [N~1(vy),v,] < [N71(v2),V,].

The situation is summed up in Figure [3.1) where we have put arrows on the branches of the

tree to indicate the order.

ord,

Figure 3.1: The homeomorphism between 1}, and V,

We will use the relative tree in the following context. Let E be a prime divisor at infinity
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of some good completion X, let p be a point of E and let z,w be local coordinates at p such
that £ = {z = 0}. The completion of the local ring at p is isomorphic to K[[z,w]]. We define
Vx (p;E) as follows; an element of Vx(p;E) is either a valuation v on A centered at p such
that v(z) = 1 or the divisorial valuation ordg. Notice that the definition of %% (p;E) does not
depend on the local equation z = 0 of E because the quotient of two local equations is a regular

invertible function.
Proposition 3.4.11. Let X be a completion and let p € X be a closed point at infinity.
(1) If p € E is a free point, then Vx(p;E) is isomorphic to V..

(2) If p = E N F is a satellite point. Let z,w be local coordinates at p such that 7 is a local
equation of E and w a local equation of F then Vx(p;E) is isomorphic to V.\{v,} and
Vx (p; F) is isomorphic to ‘V,\ {V.}.

The map N, : Vin — V, induces a homeomorphism
Npe: Vx(pimy,) — Vx(p;E)\ {ordg} . (3.100)
Furthermore, if p = E N F, then the map
NproN, i Vx(p:E)\{ordg} — Vx(p; F)\{ordr} (3.101)
is a homeomorphism.

Proof. 1If p € E is a free point. Let z,w be local coordinates at p such that z is a local equation of
E. The completion of the local ring at p is isomorphic to k[[z, w]] by Theorem[3.1.2] For every
PeA, P is of the form P = Z% where a > 0 and @ € Ox ;. Therefore, a centered valuation on
Kk[[z,w]] defines a valuation over A if and only if it is not the curve valuation v,. Since v, ¢ V, we
have that 75 (p;E) ~ V.. Call 6 : Vx(p;E) — V. the isomorphism. We define N, ¢ as follows.
Recall by Proposition that there is a homeomorphism N : ¥, — ‘¥, where in particular
N(v;) = ord,. Here we have that ord, is canonically identified with ordg and Vx(p;m,) is
isomorphic to Y\ {v;}, call 1: Vx(p;m,) — Y\ {v;} the isomorphism. Define

Nyg:=0c'oNot: Vk(p;m,) — Vx(p;E)\{ordg}, (3.102)

it is a homeomorphism.
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3.4. Tree structure on the space of valuations

If p=ENF is a satellite point. Let (z,w) be local coordinates at p such that z is a local
equation of £ and w is a local equation of F. The completion of the local ring at p is isomor-
phic to k[[z,w]] by Theorem Every P € A is of the form P = z“% where a,b > 0 and
¢ € Ox,p. Therefore a centered valuation on k[[z,w]] defines a valuation over A if and only
if it is not the curve valuation associated to z or w. Or Vv, does not belong to ¥, but v,, does.
Therefore, Vx(p;E) is isomorphic to ¥\ {v,,}. If N; : ¥V — 7V, is the map from Proposition
then N(v;) = ord, and N(v,,) = v,,. Therefore, N,,oN; ! : ¥, — 1), is a homeomor-
phism that sends ord, to v, and v,, to ord,,. Fix an isomorphism tg : Vx(p;E) — V,{v,,} and
1 Vx(p; F) — N\ Vs. We have that the map

Np.F ONp_,}E = 1! oNyoN; ' otg : Vy(p;E)\{ordg} — Vk(p;F)\{ordr} (3.103)

is a homeomorphism. 0

Proposition 3.4.12. Let X be a completion of Xy and let E be a prime divisor at infinity. If
p1, p2 € E are closed points with py # pa, then Vx(p1;E) n Vx(pa2; E) = {ordg}. Define the set
Vx(E;E) of valuations Vv such that cx (V) € E and v(z) = 1 where z is a local equation of E at
cx (V). Then

Vx(E;E) = | ] %k (p:E) (3.104)

pEE

and it has a natural structure of a rooted R-tree rooted in ordg. The skewness functions Og glue
together to give Vx (E;E) the structure of a parametrized rooted tree. Every point p € E defines
a tangent vector at ordg given by Vx(p;E)\ {ordg}.

Furthermore, Let Y be a completion of Xo and q €Y a closed point at infinity. Letn:Z —Y
be the blow up of q and let E be the exceptional divisor of T. Then, for every q € E, the map
Te: Vo(G.E) — Yy (q;my) is actually equal to T, and they glue together to give a map

T Vo(E;E) — Y (g;my), (3.105)

which is an isomorphism of trees. We have the relation Olm,, O Ty = 1+ og and bmq oTy = bg.

We postpone the proof to the next section. If E ~ P!, this tree is isomorphic to the tree of

normalized valuations centered at infinity over A constructed in [FI07], Appendix.
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3.4.4 The monomial valuations centered at an intersection point at infin-
ity

Let X be a good completion of X and let E, F be two divisors at infinity that intersect at a point

p. Let (x,y) be local coordinates at p such that E = {x = 0} and F = {y = 0}. There are three

spaces to consider: Vx(p,m,), Vx(p;E) and Vx(p;F). We explain here how they are related.
For (s,t) € [0, +20]%\ {(0,0), (20, 00)}, we denote by Vv, the monomial valuation defined by

Vir (Daip'y’) = min {si +1lay; # 0} (3.106)

Notice that v ; = ordr, Vi = ordg, V1,0 = Vy,Ve,1 = V. We will denote the set of such val-
uation by [ordg,ordr]. We use this notation because of the following: [ordg,ordr] N Vx (p; E)
consists of the valuations v, for ¢ € [0,+00] and [ordg,ordr| N Vx(p; F) consists of the val-
uations Vv, 1 for s € [0,+20]. So they define segments in the respective trees. In particular we
have

NproN, g(Vig) =Vij1, Vie[0,+o] (3.107)

One can show with the definition of the level function « that oz (V) = t. Therefore we

show

Lemma 3.4.13. Let v be a monomial valuation centered at p = E N F. One has

VW) v
RIS
“F(vw) V) "5 TV

—1
In particular we have that Oug (\%) = O (L> on |ordg,ordp|.

3.4.5 Geometric interpretations of the valuative tree

Let X be a completion of Xy and let p € X be a closed point at infinity. We consider in this
section only completions above X that are exceptional above p. If m: (Y,Exc(n)) — (X, p) is
such a completion, then we call I'; the dual graph which vertices consist of the exceptional
divisors of . Two exceptional divisors are linked by an edge if they intersect. The graph I'; is
connected without cycles, it is therefore an N-tree. We set the root of I'; to be the exceptional

divisor E that appears after blowing up p.
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3.4. Tree structure on the space of valuations

If E is a prime divisor at infinity of X such that p € E. We define the dual graph
Inp:=Tru{E}. (3.108)

It is also a N-tree. We set the root of I'y g to be E.

Lemma 3.4.14 ([FJ04], Proposition 6.2). Letn:Y — (X, p) be a completion exceptional above
p. if t:Z — Y is the blow up of a point in the exceptional locus of &, then there are natural
inclusions of N-trees

I’y = Dror, 1—‘n,E - FTCO’C,E- (3.109)

Therefore, the direct limits I" :=1lim _I'z, I'g := lim_DI'x g are well defined. The points of I are
in bijection with D , and Ty = I U {E} and they have a structure of Q-trees.

Lemma 3.4.15 ([FJ04] Theorem 6.9). We have a map ®s : I'y — Vx(p;my,)giv defined by
T(F) = vp (3.110)

where VE is the valuation equivalent to T, ordr that belongs to Vx(p;m,). These maps are

compatible with the direct limit and give a map T — Vx(p;m,).

Lemma 3.4.16. We have a map Te : I'y g — ‘VE,diV defined by
Te(F) =Vp (3.111)

where Vg is the valuation equivalent to T, ordg that belongs to Vx(p;E). These maps are
compatible with the direct limit and give a map T'r — Vx(p;E).

Proposition 3.4.17 ([F]04]], Lemma 6.28). Let w: (Y,Exc(n)) — (X, p) be a completion excep-
tional above p. Let g € Y be a closed point that belongs to the exceptional component of . Let

F be the exceptional divisor above gq.
(1) If g€ F with F € Iy, then Vi > Vp.
(2) If g = F1 0 F> with Fy,F € Iy, suppose that Vg, < Vp,, then Vg, <V < Vp,.

Proposition 3.4.18 (Relative version of Proposition [3.4.17). Let n: (Y,Exc(n)) — (X,p) be a

completion exceptional above p. Let q € Exc(n). Let F be the exceptional divisor above gq.
(1) If g€ F is a free point with F € I'y g, then Vi > Vp.
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(2) If g = F1 0 Fy is a satellite point with F\,F> € Un g, if Vi, < Vp,, then Vi, < Vi < Vp,.
(3) In particular, if g = E N F, then ordg < Vi < Vp.

Theorem 3.4.19 ([FJO4], Theorem 6.22). We have an isomorphism of Q-trees
I~ %% (pimp)av, Te >~ Yx(p:E)aiv (3.112)

given by F ~Vvg. We can take the completion of the Q-trees to get the isomorphism

I~ %(p;m,), Tg=~T%(p;E) (3.113)

Proposition 3.4.20. Let X be a completion of Xy and let p € X be a closed point at infinity. Let
Vi be either Vx(p;my,) or Vx(p;E) for some prime divisor E at infinity such that p € E. Let
I, be either " or T'g. Let m: (Y,Exc(n)) — (X, p) be a completion exceptional above p. Let
q € Exc(m) be a closed point. The map T induces a map T : Vy(q) — Vx(p).

(1) If g€ E, is a free point with E, € Ty, then we have an inclusion map T : Vy (q¢;Ey) — V.

The order relation in Vy (q;E,) and ‘V; are compatible and T, is an inclusion of trees.

(2) If g = E; N Fy is a satellite point with E,, F, € Iy, then, ifvK <« VE,, the order relations
on V. and Vy(q;E,) are compatible and T, : Vy(q;Eq) — Vs is an inclusion of trees.

Proof. We only need to show that the orders are compatible on the divisorial valuations of

V¥ (q; Eg). Therefore we show the following,

Claim 3.4.21. For every completion ©: (Z,Exc(t)) — (Y,q) exceptional above q, we have the
following

1. Forall F1,F> € FT’Eq,
VE <« VR, < VF <E,, VE, (3.114)

2. If F € 'y g, satisfies F N Fy # &, then

VF < VE, (3.115)

Here there is a slight abuse of notation as we denote by vg; the image of F; both in 14 (q; E,)
and V. This is done to lighten notations, we believe that it does not provide any confusion.
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We prove this by induction on the number of blow ups above g. If T = id, then ordg, is the
root of V¥ (q;Eq) and VE, <VF, by assumption so there is nothing to do.

Let t: (Z,Exc(t)) — (Y,q) be a completion exceptional above g such that Claim (3.4.21)
is true. Let ¢’ € Exc(t) be a closed point, let T : Z’ — Z be the blow up of ¢’ and let F be the

exceptional divisor above ¢’
* If ¢’ € F is a free point with F € I'y, E,> then by Proposition |3.4.18 we have
VF <Eq Vﬁ (3.116)

Now we have two possibilities.

— If ¢’ is also a free point with respect to I, then by Proposition|3.4.17|and 3.4.18| we

also get

VE < Vi (3.117)

Since F' n Fy = &, Claim 3.4.21|is shown for [ .

- If 4’ is the satellite point F N F,, then by induction hypothesis we have Vi <, VE,
and therefore F N F, # & and by Proposition |3.4.17| and |3.4.18| we get

VF <« Vi <« VE, (3.118)
So Claim is shown for I’y f, .

e If ¢ is a satellite point. Let Fj,F, € I E, such that g = F; n F>. Suppose without loss of
generality that Vi, <g, Vp,, then by the induction hypothesis we have Vg, <. Vr, and by

Proposition [3.4.17|and [3.4.18] we get

VF <Eq Vf <Eq VF, and VE <x Vﬁ <« VF,- (3.119)

Since F N Fy = & we have proven Claim 3.4.21{for I'tor g, -

]

Proof of Proposition Let Y be a completion of X and let ¢ € Y be a closed point at infin-
ity. Let ®t: Z — Y be the blow up of g. Let E be the exceptional divisor and let g € E be a closed

point. Apply Proposition3.4.20|with V; = 1% (q; m,). The map T, : Vo (G:E) — Vy (g;my) is an
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inclusion of trees. There exists local coordinates z, w at ¢ and x,y at p such that n(z,w) = (z,zw)

where z is a local equation of E. We therefore get
V(z) = 1 & min(m.v(x),T.v(y)) = 1. (3.120)

Hence, Tte = . and T, (ordz) = Vi,. Therefore we can glue these maps to obtain an iso-
morphism of trees
Tt V4(E;E) — Y (g;my) (3.121)

We get the relation on the skewness functions by Proposition [3.4.28| which will be proven in the
next section. L

3.4.6 Properties of skewness

We have two valuative tree structures. We describe some properties of the skewness function
for these two structures and how they behave after blowing up. Fix a completion X, let p € X
be a closed point at infinity and let E be a prime divisor at infinity in X such that p € E. In

accordance with the notations of the previous section, setI' = Dx , and I'r = Dx , U {E}.

Definition 3.4.22. If F € I is a prime divisor above p, we define the generic multiplicity b(F)

inductively as follows.
* b(E) = 1 where E is the exceptional divisor above p.

« If g € F is a free point with F € T, then b(F) = b(F) where F is the exceptional divisor

above g.
« If g = Fi n F, is a satellite point with F1, F> € T, then b(F) = b(F}) + b(F).

If ve Vx(p;m,) is divisorial then we define b(v) := b(E) where E is the center of v in some

completion above X.

Definition 3.4.23. If F € I'g, we define the relative generic multiplicity bg(F) inductively as
follows.

® bE(E) =1.
« If g € F is a free point with F € I'g, then bg(F) = bg(F).
e If g = F| n F; is a satellite point with F}, F> € I'g, then bE(ﬁ) =bg(F1) +bg(F,).
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If ve Vx(p;E;) is divisorial, then we set bg(V) := bg(F) where F is the center of v in some

completion above X.

Figure [3.2] sums up the definition of the generic multiplicity.

(Fb=b)  (Fore)

Figure 3.2: Algorithm for computing the generic multiplicity

The term generic multiplicity is justified by the following proposition.

Proposition 3.4.24 ([FJ04] Proposition 6.26). Let v € Vx(p;m),) be divisorial, let E € T be the

center of V over some completion w:Y — X above X. Then,
ntordg (my) = b(v) (3.122)

Proposition 3.4.25 (Relative version of Proposition [3.4.24). If v € Vx(p;E) is divisorial, let F

be the center of v over some completion .Y — X above X. Then,
T, ordp(z) = bg(F) (3.123)

where z € Ox j, is a local equation of E. This means that ordp (T*E) = bg(F).
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From now on we write V; for either Vx(p;m,) and Vx(p;E) and we write o, b, for the
skewness function and the generic multiplicity function associated to the tree structure.

For a valuation v € V,, we define the approximating sequence of v as follows, set Vo = V,
the root of 7, and let p, be the sequence of centers above X associated to v. Let E, be the
exceptional divisor above p,. Setv, = @ ordg,, if v is quasimonomial (v,,) is the approxi-
mating sequence of v. If v is a curve valuation or infinitely singular we define the approximating

sequence of v as the subsequence of v, where cx, (V) is a free point (at infinity).

Proposition 3.4.26 ([FJ04] Theorem 6.9, Theorem 6.10 and Lemma 3.32). Let v € V. and let

V,, be its approximating sequence

* the sequence v, := bi ordg, converges weakly towards V.
n
o o (Vv) = lim, ol (Vp)-

We will say that two divisorial valuations v,V’ are adjacent if there exists a completion Y

above X such that the centers of v and v’ are both prime divisors and they intersect.

Proposition 3.4.27 ([FI04], Corollary 6.39). Let v,V' € V.. Assume v < V' and that they are

adjacent, then
1

bi(V)bs (V)
Proposition 3.4.28 ([FJO4], Theorem 6.51). Let w:Y — X be a completion above X and let
q € E, be a free point of Y such that n(E;) = p. By Proposition Tt V(g Eg) = Vi is

an inclusion of trees.

o (V) — 0 (V) = (3.124)

(1) The normalization of T, ordg, (to get a valuation in Vi) is

1
VE, = b*(Eq)n* ordg,, . (3.125)
(2)
1
YWe W (pE), 0ux(TeV)=0s(VE,) + bo(E )zocEq(v) (3.126)
(g
b (V) = ba(Eg)bE, (V (3.127)

Proof. 1t suffices to show this formula for every divisorial valuation v € 7% (g; E,) by Proposi-
tion We prove the result by induction on the number of blow-ups above g. Namely we

show the following
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Claim 3.4.29. For every completion t : (Z,Exc(t)) — (Y,q) exceptional above q, for every
F € FT7Eq,

b.(F) = bg, (F)b.(E,) (3.128)

o (VF) = 0 (VE,) + og, (VF) (3.129)

1
b(Ey)

Ift=id:Y —Y,thenI'y g, = {E,}. We have by definition that bg, (E,;) = 1,0, (ordg, ) = 0.
Therefore Equations (3.128)]) and (3.129)) holds.

Suppose the claim to be true for a completion T : (Z,Exc(t)) — (Y,q) exceptional above q.
Let v : Z' — Z be the blow up of a closed point ¢’ € Exc(t). Let E be the exceptional divisor
above ¢'.

If ¢’ € F is a free point with F € 'y g, then ¢’ is also a free point with respect to I'y zoz

because g € Y is a free point. Therefore by definition
bi(E) = b.(F), bg,(E)=bg,(F) (3.130)

So Equation (3.128) is true for E by induction. Now, by Proposition [3.4.27

! 1
b (B, e VE) =0, (VE) + e s (3.131)

Oc*(VE) = 0 (VF) + be, (E)bg, (F)

By induction, Equation (3.129)) is true for E.
If ¢ = F| N F; is a satellite point with Fy,F € It g,, then

by(E) = by(F) +bi(F), bg,(E) =bg,(F)+ b, (F) (3.132)

So by induction Equation (3.128) holds for E. Suppose without loss of generality that v F <VP
both in ¥, and 1% (q;E,). This is possible by Proposition [3.4.20| By Proposition 3.4.27

1 1
0 (Vz) = 0 (VR ) + ——————=, og (V) =0g (VF)+ ————=. (3.133)
T b (Fba(B) T Y b (R )b, (E)
Therefore, Equation (3.129) holds for E. And the claim is shown by induction. L]

Proposition 3.4.30. Let v be a valuation over A centered at infinity. Let X be a completion of
Xo and let E be a prime divisor of X at infinity such that V € Vx(E;E) for some valuation v
equivalent to v. If 0g(V) < 400, then for every completion Y of Xo if V € Vi (F,F) for some
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prime divisor F at infinity in Y, then op (V) < +00.

Proof. If v is quasimonomial, this is immediate as for any prime divisor E at infinity and any
closed point p € E, we have that ag(v) < +o for v = ordg or v quasimonomial centered at p.
If v is a curve valuation, then ag(v) = +co for any prime divisor E of any completion X such
that cx (v) € E. So it remains to show the result for v an infinitely singular valuation.

We show that if ©:Y — X is a completion above X, then 0z/(V) < 400 < 0g(V) < +00
where E’ is a prime divisor of Y at infinity such that some multiple of v belongs to 14 (E’,E’).
Let p = cx(v) and ¢ = cy (V). Since v is infinitely singular, by Proposition there exists a
completion T : (Z,Exc(t)) — (Y,q) exceptional above g such that cz(V) is a free point ¢’ lying
over a unique prime divisor F at infinity. We apply Proposition [3.4.28] We have that

1
oz (V) =og(vr) + bE(F)ZOCF(V) (3.134)
1
og (V) =0g (VF) + b (F)zocp(v) (3.135)
Thus 0g (V) < +0 < ap(V) < +00 < 0g (V) < +o0. N

Proposition 3.4.31 ([FJ04] Proposition 6.35). Let n: (Y,Exc(n)) — (X,p) be a completion
exceptional above p. Let q = E N F € Exc(n) be a satellite point with E,F € I'y x. Define
Vg = b*#(E)TE* ordg and Vg = b*#(F)TE* ordr. Let z,w be local coordinates at q associated to
(E, F). Let vs; be the monomial valuation centered at q such that v(z) = s and V(w) = t.
Then, the map T induces a homeomorphism from the set {Vy;|s,t > 0,sb,(E) +tb(F) = 1}
and |[Vg,Vg| © Vi for the weak topology.

Furthermore, the skewness function is given by

t
0L (T4 V) = OU(VE) + b(E) (3.136)

98



3.5. Different topologies over the space of valuations

3.5 Different topologies over the space of valuations

3.5.1 The weak topology

Let Xy be an affine surface and let ¥, be the space of valuations centered at infinity. We define
’I//O\O to be the space of valuations centered at infinity modulo equivalence and 1 : Vo — ‘1//; the
quotient map. We define the weak topology over V., as follows. A basis for the topology is
given by

{veVy:t<v(P) <t} (3.137)

for some 7,t' € R,P € A. A sequence v, of V,, converges towards v if and only if for every
P € A, the sequence Vv, (P) converges towards v(P). We define the weak topology over V., to be
the thinnest topology such that 1 : V., — Vs, is continuous with respect to the weak topology.

Proposition 3.5.1. Let X be a completion of Xo. Let v € Vs, and (V) a sequence of elements of
Vip. Suppose that v, — V with respect to the weak topology. Then,

 If cx(v) = p is a closed point at infinity, then for all n large enough cx (v,) = p.
» If cx(v) = E is a prime divisor at infinity, then for all n large enough cx(v,) € E.

Proof. Suppose first that cx (V) = p is a closed point at infinity. Let (x,y) be local coordinates
at p. By definition of the center we have v(x),v(y) > 0. We can find P;,P»,Q1,0> € Ox(Xo)

such that x = P;/Q;,y = P,/Q» and such that v(Q;),v(Q2) # cc. Indeed by Lemma 3.3.11]
Ox p is a subring of Ox(Xp)p, Where py = {v = +oo}. Now, we have that v,(P;) — v(P;) and

v (Qi) — v(0Q;) as n — o, therefore for all n large enough
Vi (%), Va(y) > 0. (3.138)

Thus, for all n large enough cx (v,,) = p.

If cx(v) = E, then v = Aordg for some A > 0. Let U be an open affine subset of X such
that U n E # . Let z be a local equation of E over U. Similarly, we can write z = P/Q with
v(Q) # oo. Since v,(P) — v(Q) and v, (Q) — v(Q), we get that v,(z) — V(z) > 0. Therefore
for n large enough, v, (z) > 0 and therefore cx(v,) € E. O

Proposition 3.5.2. Let X be a completion and let p € X be a closed point at infinity. Let
ve Vx(p) and v, € Vx(p). Then, v, — v weakly if and only if for every @ € Ox p, Va(®) — V(@)
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Proof. Indeed, every @ € Ox ), can be written as ¢ = 5 with v(Q) # co. This shows one impli-
cation. Conversely, every P € A is of the form % where @,y € Ox . Furthermore, if pe E'is a
free point then ¥ = u® where a € Z~¢ and u is a local equation of E. If p = E n F is a satellite
point, then y = u®v” where uv is a local equation of E U F. Now since v, and v are valuations
over A, they cannot be the curve valuations associated to a prime divisor at infinity. Therefore,
for all n,v,(y) # o and v(y) 5 co. This shows the other implication. O

Proposition 3.5.3. Let X be a completion of Xy and let p € X be a closed point. Let E be a
prime divisor at infinity in X such that p € X. Letm, : Vx(p) — Vx(p;E) be the natural map
defined by, (v) = % where z€ Ox ,, is a local equation of E. Let (v,,) be a sequence of Vx(p)
and let v € Vx(p). If vp — V for the weak topology of Vi, then M,(Vy) — Np(V) for the weak
topology of Vx(p;E).

Proof. If v, — v for the weak topology, then, v,(z) — v(z) by Proposition Therefore
Np(Va) — Mp(V), again by Proposition [3.5.2] This shows the first implication. O

Theorem 3.5.4. Let X be a completion of Xy. The weak topology on Vi, is the topology induced
by the open subsets Vx (E;E) for all prime divisor E at infinity.

Proof. Let X be a completion at infinity and let E be a prime divisor at infinity. Let Vx (E) be
the set of valuations v over A such that cx(v) € E (this includes cx(v) = E, i.e v = ordg). We
have that

Yk (E) = {ordg} U | ] % (p). (3.139)
PEE
Let Uy,---,U, be a finite open affine cover of E such that for every i = 1,---,r there exists

zi € Ox (U;) alocal equation of E. Then, every z; is of the form z; = P;/Q; with P;, Q; € A. Then,

Y (E) = U (V(Q)) < +20,V(P) —V(Q;) > 0} (3.140)

and, it follows that 7% (E) is an open subset of 7. Set rI//;o(p) :=n(V(p)). Define a map
Gp: Voo(p) = Vx(p; E)\{ordg} = Vx(p) by

op([V]) =mp(v) (3.141)

where M, is the map from Proposition [3.5.3| and [v] is the class of v in ‘I//;O. By Proposition

3.5.3, ©) is a continuous section of M4y (,) : Vx(p) — Vio(p). Still by Proposition [3.5.3] the

map G, : [ordg| U ‘1//;0(p) — Vx(p;E) extended by 6,([ordg]) = ordg is also a continuous

100



3.5. Different topologies over the space of valuations

section of 1 : {Aordg : A > 0} U Vx(p) — {[ordg]} U ‘1//;(19) These maps 6, glue together to
give a continuous section o : Vo (E) — Vx (E;E) < Vx(E) of n: V% (E) — Vi (E).

To finish the proof we need to understand the behaviour of 6r,Gg on
Voo (E) N Vo (F) = Vo (p) (3.142)

for p = EnF where E, F are two prime divisors at infinity. By Proposition[3.4.11] we have that
the map N, r ONP_,}Y : Vx(p;E)\{ordg} — Vx(p;F)\ {ordr} is a homeomorphism and we have

(08), 37y = N oN, £) 0 (O8) 7 (3.143)

]

3.5.2 The strong topology

Let R = K[[x,y]] and let m = (x,y). Let ¥ be the valuative tree with either the normalization
by m or with respect to a curve z. We will write o, for the skewness function over V,. We
consider a stronger topology on V,. Let V" be the subset of quasimonomial valuations. We

define the following distance
d(vi,v2) = a(vi) —a(vi Avz) +a(va) — oV AVa). (3.144)
The topology induced by this distance is called the strong topology.
Proposition 3.5.5 ([FJ04]] Proposition 5.12). We have the following
» The strong topology is stronger than the weak topology.

e The closure of V"™ with respect to the strong topology is the subspace of Vy consisting

of valuations of finite skewness.

Proposition 3.5.6. Let R = K[[z,w]] and let Vi, V,, V), be the three valuation trees. Let

Vi, V., V,, be the three subtrees of valuations of finite skewness. Then, the maps
N,: Vi — Y\ {ord,}, NyoN': 9 -4 (3.145)
are homeomorphisms with respect to the strong topology.
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This follows from Proposition [3.4.9]

Let V), be the subset of 7, of valuations of finite skewness, this set is well defined thanks
to Proposition We define the strong topology on V, as follows. First define the strong
topology on ‘V = n(‘V’ ) using the notations from the proof of Theorem 3. 5 4l Consider the
map Og : ‘VOO N ‘V (E) — Vx(E;E)'. We define the strong topology on ‘Voo N ’V (E) as the
coarsest topologzl /such that o is continuous for the strong topology on Vx (E;E)’. This defines

a topology on v, thanks to Proposition [3.5.6

Corollary 3.5.7. Let v be a valuation centered at infinity, let X be a completion of Xy and
let (v,) be the approximating sequence of V from Proposition Ifve vV, then n(vy)

converges towards (V) with respect to the strong topology.

Proof. Let p = cx(v) and we can suppose that v,,,v € Vx(p;E) for some prime divisor E at
infinity with p € E. Then, we have v, < v for all n and a(v,) — (V). Therefore

d(vp,v) =o(v)—a(v,) ——0 (3.146)

n—0o0

O
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3.6 Valuations as Linear forms

As done in [JM12]], we can view valuations on Xy as

* linear forms with values in R over the space of integral Cartier Divisors over X supported

at infinity
* asreal-valued functions over the set of coherent fractional ideal sheaves of X co-supported
at infinity.

We recall how to do so. For a divisor D, we denote by H’(X, Ox (D)) the set of global sections
of the line bundle Ox (D) and

['(X,0x(D)) = {hek(X)* : D+div(h) > 0}. (3.147)

3.6.1 Valuations as linear forms over Div(X)

Lemma 3.6.1. Let D € Div(X) such that the negative part (if any) of D is supported in 0xXo.
For any point p € X, there exists an open neighbourhood U of p such that a local equation of D
on U is of the form @ = P -y with P € Ox(Xo) and y € Ox (U).

Proof. Let ¢ € k(U')* = k(X)* be a local equation of D where U’ is an open subset of X
containing p.

Let H be an effective divisor such that the linear system |H| is base point free and such
that Supp(H) = 0dxXo. There exists an integer n > 1 such that D + nH > 0. Pick P general in
I'(X,Ox(nH)) < Ox(Xop), then divP = Zp — nH with Zp > 0 and p ¢ Supp Zp because we chose
P general and |nH | is basepoint free, in particular P restricts to a regular function over Xp. Set
Yy := @/P, one has

div (yy) = Dy +nHjy — Zpy- (3.148)

Set U = U"\ SuppZp, then div(y)|y» = 0, i.e W € Ox(U) and we are done. O

Corollary 3.6.2. If D is a divisor such that the negative part (if any) of D is at infinity and v is

a valuation on A, then for all small enough affine open subsets U — X containing cx(V),

(U, Ox(—D)) = Ox (Xo) (3.149)

Pyy
and Vx can be extended to T'(U, Ox(—D)).
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Proof. Tf U is small enough, then I'(U, Ox (—D)) is the Ox (U )-module generated by ¢ where ¢
is a local equation of D. Now, by Lemma(3.6.1}, ¢ is of the form ¢ = P-y where P € Ox(Xp) and
Y € Ox(U). By definition we have Ox(Xo) = Ox(Xo)p,, and for all affine open neighbourhood

U of cx(v), Ox(U) = Ox(Xo)y,, by the proof of Lemma|3.3.11 O

Let D be divisor of X supported at infinity and let @ € k(X) be a local equation of D at cx (V).
Then we set

Ly x(D) :=vx(9). (3.150)

This is well defined because by Corollary [3.6.2]because by definition there exists an open affine

neighbourhood U of c¢x(v) such that ¢ € I'(U, Ox(—D)). This does not depend on the choice

¢

of the local equation because if y is another local equation of D, then v

is a regular invertible

function near cx (v) and vy (@/y) = 0.

Lemma 3.6.3. Let vV be a valuation over A and let X be a completion of Xo, then for all
D e Divy (X)R, Ly x(D) < 0.

Proof. Tt suffices to show Lemma [3.6.3|for D an integral divisor supported at infinity in X. We
can apply corollary to D and —D, therefore if @ is a local equation of D, we have that both
1% (¢) and 13 (1/¢) belong to Ay, and this means that vx (@) < co. O

Remark 3.6.4. We can in fact define Ly x at any divisor D on X such that the negative part
of D is supported at infinity but it could happen that Ly x(D) is infinite. For example, let
Xo = A%, X = P?. Let v be the curve valuation centered at [1 : 0 : 0] associated to the curve
y =0, then

Lyp2({Y =0} —{Z=0}) =v(Y/Z) = +o0. (3.151)

Example 3.6.5. If X is a completion of Xj, let E be a prime divisor at infinity. Let D € Divy, (X).
Recall that we have defined in Section that ordg (D) is the weight of D along E, then

Lorg, (D) = ordg(D). (3.152)

ordg (D)

Indeed, at the generic point of E, a local equation of D is z ¢ where z is a local equation

of E and ¢ is regular not divisible by z.
Proposition 3.6.6. IfVv is a valuation over A, and X is a completion of Xy then
(1) Lyx(Opiy, (x)) = 0.
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(2) Forany D,D' € Divy,(X),Ly x(D+D') = Ly x(D) + Ly x (D), and L, x(mD) = mL,x (D)
forallme Z.

(3) If D=0, then Ly x(D) = 0 and Ly x(D) > 0 < cx(v) € SuppD. In particular, if v is not
centered at infinity then Ly = 0.

(4) IfP € Ox(X()), then Vx(P) = ijx(diVP).

(5) If Y is another completion of Xo above X, and ™ : Y — X is the morphism of completions
over Xo, then Ly x (D) = Ly y (n*D).

Thus, we can extend Ly x to Dive, (X)R by linearity:
Lyx : Divoo(X)r — R. (3.153)

Proof. The first assertion is trivial as 1 is a local equation of the trivial divisor. The second
assertion follows from the fact that if @,y are local equations of D and D’ respectively, then @y
is a local equation of D + D’ and 1/@ is a local equation of —D. For the third one, suppose D is
an integral divisor. If D is effective and f is a local equation at cx (V), then f is regular at p and
by definition of the center v(f) = 0, now if cx (V) belongs to Supp D, then f vanishes at cx(V);
thus, v(f) > 0. If on the other hand cx(v) ¢ Supp D, then f is invertible at the center of vy and
vx(f) = 0. The fourth assertion follows from f being a local equation of div(f) and the fact
that f has no pole over Xy. Finally, if f € k(X) is a local equation of D at cx(Vv), then 7*f is a
local equation of T*D at ¢y (V) and by Remark [3.3.3] one has vx(f) = vy (7* ). O

Proposition 3.6.7. Let f : Xo — Xo be a dominant endomorphism of Xo. Let Y,X be two com-
pletions of Xo such that the lift F : Y — X of f is regular. Then,

F(cy(v)) = ex(f«v) and YD € Dives (X ), Ly, x (D) = L,y (F*D) (3.154)
Proof. Let p =cy(v) and ¢ = cx(f:V). Then, F induces a local ring homomorphism
F*:0xq4— Oyp
Now, for any @ € Oy 4, there exists P,Q € A such that ¢ = g. Therefore,

_ [P
- f*0

105

F*¢




Chapter 3 — Valuations and Algebraic geometry

and therefore f,v(@) = V(F*¢) > 0. Therefore, ¢ = cx (fxv).
Now, to show the second result. If g is a local equation of D at the center of vy, then F*g is

a local equation of F*D at the center of vy. Since T, Vy = Vx, one has

vy (F*g) =vx((Fom™')*g) = vx(f*g) = (fiV)x(g) (3.155)

and this shows the result. O]

3.6.2 Valuations as real-valued functions over the set of fractional ideals

co-supported at infinity in X

An ideal of X is a sheaf of ideals of Oy and a fractional ideal is a coherent sub-Oy-module
of the constant sheaf k(X). Let a be a fractional ideal of X, we say that a is co-supported at
infinity if ax, = Ox,. For example, for any divisor D € Div(X), Ox(D) is a fractional ideal of X
and if D € Divy,(X) then Ox (D) is co-supported at infinity.

Proposition 3.6.8. Let a be a fractional ideal of X co-supported at infinity and let p € X, for
any finite system (f1,---, fr) of local generators of a at p there exists an open neighbourhood
U of p such that f;y is of the form

fi=Figi (3.156)

with F; € Ox(Xo) and g; € Ox (U).

Proof. Pick U’ an open neighbourhood containing p. Since f; is regular over Xy, we have
div f; = D™ — D — D5 where D", D and D, are effective divisors such that SuppD; < dxXo
and D, v = 0. By Lemma [3.6.1| there exists an open neighbourhood U; = U’ of p such that
(D* = D))y, = div Fig; with F; € Ox(Xo) and g} € Ox (U;). Therefore, there exists gi € Ox (U;)
such that f; = Figlg!. SetU = nU; and g; = glg”.

O]

Corollary 3.6.9. Let a be a fractional ideal co-supported at infinity and let v be a valuation
over A, then for all affine open neighbourhood of cx (v),I'(U,a) = Ox(Xo)p,, and vx is defined
over I'(U, a).

If v is a valuation over A, then we define Ly x (a) as
Lyx(a):= m}nVX(f)- (3.157)
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where the f runs over the germs of sections of a at cx(v). This makes sense by Corollary

Proposition 3.6.10. IfV is a valuation over A, then
(1) Lyx(Ox) = 0.

(2) If a,b are two fractional ideals of X co-supported at infinity, then

Lv7x(a~ b) = Lv7x(a) +Lv7x(b) and Lv7x(a+ b) = min(LV7x(a),LV7x(b)) (3.158)

(3) If f1,---, fr € K(X) is a set of local generators of a at cx(V), then

Ly x(a) = min(vx(fi),---,Vx(fr))- (3.159)
(4) If D € Div(X) is a divisor, then Ly x (D) = Ly x (Ox (—D)).

(5) If Y is another completion of Xo above X, and mt : Y — X is the morphism of completions
over Xo, then a := w*a- Oy is a fractional ideal over Y and Ly x(a) = Ly y ().

Proof. The first assertion is trivial since 1 is a local generator of the trivial sheaf. For As-
sertion (2), notice that if (f1,...,f;) are local generators of a at c¢x(v) and (gi,...,gs) lo-
cal generators of b at cx(v) then (figj);; is a set of local generators of a-b at cx(v) and
(fis---y frs81,---,8s) is a set of local generators of a + b at cx(Vv), so Assertion (2) follows
from Assertion (3). To show Assertion (3), let fi,- -, f, be local generators of a at cx (V). This
implies that a., (v) = f1 0 (v) + /204 (v) T+ + frOcy(v)- Since v is nonnegative on O, (y) by
definition of the center, the assertion follows. For assertion 5, if fi,---, f, are local genera-
tors of a, then T*fy, -+, f, are local generators of @ at cy(V) and the result follows since
T.Vy = Vx. Assertion (4) follows from the fact Ox(—D) is locally generated by an equation of
D and Assertion (5) follows from the fact that if (fi,-- -, f,) are local generators of a at cx (V)

then (* f1,--- ,m* f,) are local generators of @ at cy (V). O

Proposition 3.6.11. IfVv is a valuation over A and a is a fractional ideal co-supported at infinity,
then Ly x(a) < 0.

Proof. Take f1,---, f, local generators of a at p the center of v on X. The proof of Lemma
shows that there exists an affine open neighbourhood U of p such that f;; = hig; with
hi€ A and g; € Ox(U) and such that ffl can be put into the same form. This shows that for all
i, V(fi) < 0. O
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Remark 3.6.12. The same definition would allow one to define Ly x (a) for any fractional ideal
such that a is a sheaf of ideals of X but we have to allow infinite values. In particular, Ly x (a)

is defined for any sheaf of ideals over X.

3.6.3 Valuations centered at infinity

Recall that a valuation v over A is centered at infinity, if v does not admit a center on Xy. We

denote by ¥, the set of valuations over A centered at infinity.

Lemma 3.6.13. Let v be valuation over A. The following assertions are equivalent.

(1) Vv is centered at infinity.
(2) There exists P € A such that v(P) < 0.

(3) For any completion X of Xy and any effective divisor H in X such that Supp H = 0xXo,
one has Ly x(H) > 0.

(4) There exists a completion X of Xo and an effective divisor H € X with SuppH = 0xXo
such that Ly x (H) > 0.

Proof. We will show the following implications 2 = 1 = 3 = 4. Then, we will show that 1 = 2
and finally that 4 = 2.

2=1=3=4 If there exists a regular function P over X such that v(P) < O then the center
of v cannot be a point of X because P is regular at every point of Xy. This shows 2 = 1, then if
v is centered at infinity, take a completion X of X, let E be a prime divisor at infinity in X such
that cx (V) € E. Then, since H is effective and E € SuppH, Ly x(H) > V(E) > 0 by Proposition
[3.6.6/(1). This shows 1 = 3 and 3 = 4 is clear.

1 =2 Conversely, suppose V is centered at infinity and fix a closed embedding Xy < AV
for some integer N. Let X be the Zariski closure of Xy in PV with homogeneous coordinates
X0, -+ ,xn such that {xo = 0} is the hyperplane at infinity. The surface X might not be smooth
so it is not necessarily a completion of Xy but it still is proper and the center p of v on X belongs
to {xo =0} nX. Let 1 <i < N be an integer such that p belongs to the open subset {x; # 0}.
Then, the rational function P := ;C—(‘) is a regular function on Xy and 1/P vanishes at p. Therefore,
v(P) <0.
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4 =1 Suppose that v is not centered at infinity, i.e the center of v belongs to Xy. Then, for
any completion X and for any divisor D € Divy(X), one has Ly x (D) = 0 by Proposition [3.6.6|
(1) since cx (V) ¢ SuppD. O

This lemma shows that being centered at infinity is a property that can be tested on only one

completion X.
Corollary 3.6.14. The space V., is an open subset of V.

Proof. We have by Lemma that

Vy = | J{v(P) <0}. (3.160)

PeA

Therefore, it is a union of open subsets.

3.6.3.1 Topologies over the set of valuations centered at infinity

Let X be a completion of Xy. Call ¢ the coarsest topology such that the evaluation maps
Qs : Ve Vy — V(f) are continuous for all f € A and 7T the coarsest topology such that the
evaluation maps Y : v € Vs, — Ly(A) are continuous for all fractional ideals A of X such that

A|x, 1s a sheaf of ideals over Xp. Recall that we allow in both cases infinite values.
Proposition 3.6.15. [JMI2|] These two topologies on ‘V are the same.

Proof. First if f € A, then v(f) = Ly((f)) where (f) is the fractional ideal generated by f.
So ¢ is finer than T. For the other way, Let H be an ample divisor supported at infinity and
let A be a fractional ideal co-supported at infinity. There exists an integer n > 0 such that
A® Ox(nH) and Ox(nH) are generated by global sections (f1,---, fr) and (g1,-- - ,gs) respec-
tively. Notice that for all i, j, the rational functions f;, g; belong to Ox(Xp). Now, we have that

Ly(A) = Ly(A® Ox (nH) ® Ox(—nH)), therefore
(&) =min (v (£} ) = min (v0) V()

Therefore, T is finer than ¢ and the result is shown.
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3.6.3.2 Valuations centered at infinity as linear forms over Cartiery, (Xo)

Definition 3.6.16. Let v be a valuation over A. Let D € Cartiery, (Xo) and X be a completion of
Xo such that D is defined by Dx. We define

Ly(D) := Ly x(Dx). (3.161)

This does not depend on the choice X and defines a linear map on Cartiero, (Xo) by Proposition
and Ly(D) < +oo by Lemma Notice that Ly = 0 if and only if v is not centered at
infinity.

Proposition 3.6.17. If v is a valuation on A centered at infinity then Ly is a linear form
Cartier,, (Xo) — R and satisfies

(1) If D >0, then Ly(D) = 0.
(2) For D,D' € Cattiers (Xo), Ly(D A D) = min(Ly(D), Ly(D')).

We will say that an element of Hom(Cartier,,(Xo),R) that satisfies these 2 properties satisfies
property (+).

Proof. Assertion 1 follows from Proposition (3). We show the second assertion. Take
D, D’ € Cartiery,(Xp) and X a completion of Xy such that D, D’ are defined by their incarnation
Dx, D). By Claim (that we prove in the next section), we know that there exists a com-
pletion Y along with a morphism of completions 7 : ¥ — X such that D A D' is the Cartier class
determined by some divisor Dy in ¥ such that ©*(Ox(—Dx) + Ox(—DY)) - Oy = Oy(—Dy).
Using Proposition[3.6.10], it follows that

= Lyx(Ox(—Dx) + Ox(=Dx)) [3.2.8
= min(Ly x (Ox (—Dx)),Lvx(Ox(=D¥))) 3.6.10(2)
= min(Ly(D),Ly(D")) [3.6.10(4)

For the third assertion, let X be a completion of Xy, by Theorem there exists an ample
divisor H € Divy,(X) such that H > 0 and Supp H = dxXo. We get that cx (V) € Supp H (whether
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it is a prime divisor or a closed point) and therefore by Proposition [3.6.6] item (3), we get
Ly(H) > 0. O

Proposition 3.6.18. Let v be a valuation over A and f : Xo — Xo a dominant endomorphism,
then for all D € Cartiero, (Xo),

Ly (D) = Ly(f*D) = (fuLy)(D) (3.162)

Proof. Let X be a completion of Xy where D is defined, then f induces a dominant rational map
f:X —X. Lett:Y — X be a projective birational morphism such that the lift F : Y — X is
regular. Since f is an endomorphism of Xy we can suppose that 7 is the identity over Xy, hence
Y is a completion of X and 7 is a morphism of completions. Now, if @ is a local equation
of D near the center of vy, then F*@ is a local equation of F*D near the center of vy. Since

T+«Vy = Vx, one has

vy (F*g) =vx((Fom ")*g) = vx(f*g) = (fuV)x(g) (3.163)
]

We equip Hom(Cartier,,(Xp),R) with the weak-* topology, that is the coarsest topology
such that the map L € Hom(Cartier, (Xo),R) — L(D) is continuous for all D € Cartiery, (Xo).
We extend Ly to Cartiery, (Xo)g by linearity.

Proposition 3.6.19. The map v € V., — Ly € Hom(Cartier,,(Xo),R) is a continuous embed-
ding.

Proof. For the injectivity, let v, € V., such that v # . First, if w = rv with 7 > 0, then since
Ly # 0, we have Ly # L,,. Otherwise, there exists a completion X such that cx (V) # cx(®). If
the centers are both prime divisors at infinity then it is clear that Ly # L,,. If cx (V) is a point, let
E be the exceptional divisor above it. Then, by Proposition Ly(E) > 0, but L, (E) = 0.
By definition, to show continuity we have to show that for all D € Cartier,(Xo), the map
Vv € Vy, — Ly(D) is continuous. Let X be a completion where D is defined, then by Proposi-

tion Ly(D) = Ly(Ox(—D)) and by Proposition [3.6.15|the map v € V., — Ly(Ox(—D)) is

continuous. L]

Proposition 3.6.20. Let X be a completion of Xo and p € X a closed point at infinity. Let
ve Vx(pim,). If E is a prime divisor of X at infinity such that p € E, then

1 <Ly(E) < a(v) (3.164)
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Proof. Let z € Ox,p be a local equation of E, z is irreducible and we have Ly(E) = v(z). We
have that z € m,, therefore v(z) > v(m,) = 1. This shows the first inequality. For the second
one, let v, be the curve valuation associated to z. It does not define a valuation over k[Xp]| but it

defines a valuation over Oy , by Proposition[3.4.3] we get
Vv(z) = o(v; A V) < a(v) (3.165)

]

3.6.3.3 Special look at divisorial valuations centered at infinity

Lemma 3.6.21. Let X be a completion of Xy and let E be a prime divisor at infinity. One has
Lorag (E) = 1 and for any prime divisor F # E in X, Lo, (F) = 0.

Furthermore, if 1 : Y — X is some blow-up of X, and &' (E) the strict transform of E by T,
then

T, ordn/(E) =ordg. (3.166)

Proof. The first assertion follows from Proposition (3). We show the second assertion. It
suffices to show it when 7 is the blow-up of one point of X. Let D = aE + > . pordp(D)F,
then ©*D is of the form

n*D = an'(E) +bE + ). ap(D)W'(F) (3.167)
F#E
where E is the exceptional divisor of . Therefore ord,, ) (T*(D)) = a = ordg(D). O

Proposition 3.6.22. Let v be a divisorial valuation, then Ly can be extended naturally to
Weily, (Xo) in a compatible way with the definition of Ly over Cartiery, (Xp).

Proof. Take W € Weily, (Xp). Since v is divisorial, there exists a completion X of Xy that con-
tains a prime divisor E at infinity such that (1x).v = Aordg. We set
Ly(W) := Ly x(Wx) (3.168)

This does not depend on the completion X. To show this, it suffices to show that we get the
same result if we blow up one point of X. So, let w: ¥ — X be the blow up of one point of Xy at
infinity. Then, by Lemma|3.6.21} vy = Lordy g) and ordy g) (Wy) = ordg (m, Wy ) = ordg (Wx).
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If D € Cartiery, (Xp), then this is compatible with the previous definition of Ly (D) because if D
is defined over X, there exists a completion 7 : ¥ — X such that the center of v on Y is a prime
divisor at infinity and by Proposition (5) Lyy(n*D) = Ly x (D). O

Remark 3.6.23. Recall that we have defined in Section the set D, (Xp) as the set of
equivalence classes of prime divisors at infinity modulo the following equivalence relations :
(X1,E1) ~ (Xo,Ep) ifm=1, 011_1 : X1 --» X, satisfies T(E}) = E». Lemmashows that it
makes sense to define ordg for E € D,,(Xp) and that ordg is defined over Weily, (Xp).

Proposition 3.6.24. Let W, W’ € Weily, (Xo), then W =W A W' if and only if for any divisorial
valuation E € D, (Xp),

ordg (W") = min(ordg (W), ordg (W')). (3.169)
Proof. This is immediate as for any completion X,

Wy = >, ordg(W)-E. (3.170)
Ecox Xy

]

We can now show that the minimum of two Cartier divisors is still a Cartier divisor.

Proposition 3.6.25. Let X be a completion of Xo, let D,D’ € Divy,(X) be two effective divisor
and let a be the sheaf of ideals a = Ox(—D) + Ox(—D'). Then, D A D' is the Cartier divisor
defined by w*a where T is the blow up of a.

Notice that a is not locally principle only at satellite points, so T is a sequence of blow-ups
of satellite points. This shows the Claim (3.2.8

Proof of Claim[3.2.8} Define the sheaf of ideals a = Ox(—D) + Ox(—D') andlett: Y — X be
the blow up of a. There exists a Cartier divisor Dy on Y such that b = Oy(—Dy) = n*a- Oy.
We show that Dy = D A D’ in Cartiery, (Xo). By Proposition we only need to show that
for any divisorial valuation v, Ly y (Dy) = min(Ly x (D), Ly x (D')), but by Proposition we
have the following equalities

Lyy(Dy) = Lyy(b) = Ly x(a) = min(Ly x (D), Ly x (D')) (3.171)
[
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3.6.4 Local divisor associated to a valuation

Let X be a completion of Xj and let p € X be a closed point at infinity. Let v be a valuation
centered at p. We know by Section that v induces a linear form L, on Cartier (Xo)g-
By restriction, it induces a linear form Ly x ,, on Cartier(X, p)gr. Now by Proposition|3.2.19] the
pairing

Weil(X, p)r x Cartier(X,p)r — R (3.172)
induced by the intersection product is perfect. Thus, there is a unique Zy x , € Weil(X, p)r such

that
VD € Cartier(X,p)r, Zvxp-D=Lyx (D) (3.173)

~

Example 3.6.26. If E is the exceptional divisor above p, then Zordzx,p = —E.

Proposition 3.6.27. For any valuation v € Vx(p), we have Zy x , € Cartier(X, p) if and only if
Vv is divisorial. Furthermore, Zy x p is defined over any completion such that the center of V is a

prime divisor at infinity. Furthermore, for any E € D(X, p), Zora; xp € Cartier(X, p)q.

Proof. Let E € Dy p,, for every W € Weil(X, p),ordg (W) = ordg(Wy) where Y is a completion
exceptional above p by Proposition[3.6.22] Let E,Ey, - - - , E, be the component of dyX that are

exceptional above p. The intersection form is non degenerate on

V:=QE® ((-BQE,-) ) (3.174)

Let L be the restriction of ordg to V, by duality there exists a unique Z € V such that for all
WeV,W-Z=L(W)=ordg(W). This implies that Z = Zq, x ,. Conversely, if v is a valuation
such that Zy x , € Cartier(X, p) then let Y be a completion where Zy x , is defined. If cy(v)
is a point at infinity, then let E be the exceptional divisor above cy (V). Then, we must have

Zyxp- E > 0 but it is equal to 0, this is a contradiction. O]

Proposition 3.6.28. The embedding Vx(p;m,) — Weil(X, p)Rr is continuous with respect to
the weak topology.

Proof. This is a direct consequence of Proposition [3.6.19]and Proposition [3.5.2] O

Thus, For all completion Tt : Y — X, for all E € I'y, we can consider Zyq, x,» as an element
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Proposition 3.6.29. Let nt: (Y,Exc(n)) — (X, p) be a completion exceptional above p. Let v be
a valuation such that cx (V) = p. Suppose that cy (V) is a point at infinity. Consider Vx(p;m,)

with its generic multiplicity function b.

(1) If cy(v) € E is a free point with E € I'y, then the incarnation of Zy x p inY is

(Zvx p)y = Ly(E)Zorap X p (3.175)

Moreover if v € ‘Vx(p;mp), then Ly(E) = b(E)"

(2) If cy (V) = E N F is a satellite point with E |F € I'y, then

(ZV,XJ?)Y =Ly (E)Zordg,wp + Ly (F)ZOI‘dF7X7p (3.176)

Moreover if v e Vx(p;my,), then Ly(E)b(E) + Ly(F)b(F) = 1.

Furthermore, if ¢ # cy (V) and T : Z — Y is the blow up of q then
<Zv,X,p)Z =1 (Zv,x,p)y (3.177)

Proof. For any prime divisor E at infinity of Y, Ly (E) > 0 < ¢y (V) € E by item (3) ofProposition
Therefore, if cy (V) € E is a free point with E € I'y, then for F € 'y, Ly(F) # 0 < F = E,

hence
(Lv) | Divee (1)r = (Lv(E)) (Lord ) | Divee (Vg (3.178)

by definition (see Equation (3.152)). This shows the result if cy(v) is a free point. Now, if
cy(V) = E N F is a satellite point with E, F € Ty, then for all prime divisors F’ of Y at infinity
Ly(F') > 0< F' =E or F' = F. We therefore have

(Lv) | Divep (v)g = (Lv - E)(Lordg ) | Dive, (¥)r + (Lv - F) (Lordr ) | Divey (¥ ) (3.179)

This shows the result in the satellite case.

If ve Vx(p;m,). Let T1:Z — X be the blow up of p. We know then that Ly(E) =1
where E is the exceptional divisor above p by Proposition Let by be the generic
multiplicity function of the tree ‘VZ(E E ). We have for every prime divisor F exceptional
above p that ordp(E) = bi(F) again by Proposition In the free point case, we get
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= E) = ~ y Proposition [3.6. an . In the satellite point case, we get
1 =Ly(E) = Ly(bs(E)E) by P 3.6.6/(3) and (5). In th 11

~

1 = Ly(E) = Ly(bz(E)E + b;(F)F) (3.180)

again by Proposition[3.6.6](3) and (5).

For the last assertion, if F is the exceptional divisor above g, we have

(Zvxp)z =" (Zvxp)y — (Zvxp F)F. (3.181)
Since ¢z (V) ¢ F, we have Ly(F) = 0 by Proposition ). O

From now on let b be the generic multiplicity function of %x(p;m,) and for any prime

divisor E€ Dy , =T, set Vg = ﬁordg.

Proposition 3.6.30. Let nt: (Y,Exc(n)) — (X, p) be a completion exceptional above p. Let
q € Exc(m) be a closed point. Let T :Z — Y be the blow up of q and let E be the exceptional

divisor above q.
(1) If g € E is a free point with E € Iy, then

% I~ .
ZVvavp =T (ZVE.,X,p) - _~E € Dle(Z)Q (3.182)

b(E)
(2) If g = E N F is a satellite point with E,F € I'y, then

b(F)

*Z R S
T X T ) 1 b(F)

1 ~
Ly = *Z ——=—FE €Di VA A
BN b(E) + b(F) £ b(E) r(Z)o G-183)

Proof. If g € E is a free point with E € I'y, we have by Proposition that the incarnation
of ZordE7X7p inY is
T(Zordz X ,p) = Zordg X p (3.184)

because ordz(E) = 1. Therefore

Zordy Xp¥ Zordy X p + AE (3.185)

~

with A € R. Since Zoraz x,p E =1, we get A = —1. Now, by the definition of the generic
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multiplicity, we have b(E) = b(E). Therefore,

ZVE’X7P = T*ZVE,X.,p — @E (3186)

If ¢ = EnF is a satellite point with E,F € I'y, then b(E) = b(E) + b(F). Note that
ordz(E) = ordx(F) = 1. We have by Proposition [3.6.29

TZordz,X,p = Zordg X,p + Zordp X,p (3.187)
and since ordE(E ) =1, we get
Zord, X.p = T Zorap x.p + T Zorar x,p — E.- (3.188)
Therefore,
Zyp k= %r*zﬂd&w + %r* oy X — @E. (3.189)
]

Theorem 3.6.31. Let v,V' € Vx(p;m,), then
Zyxp Zvxp=—0(VAV) (3.190)

Proof. We show by induction the

Claim 3.6.32. For every completionn: (Y,Exc(n)) — (X, p) exceptional above p, for all E € I'y,
forallv e Vx(p;m,),
Zyp Xp Zvx.p=—UVEAV) (3.191)

Firstif w: Y — X is the blow up of p with exceptional divisor E. Recall that T, ordg = Vi,

then ZordE7X, p=—E and
Zoaz X Zoxp = Zox,p (—E) = Ly(=E). (3.192)

By definition, v(m,) = 1 and ©*m, = Oy(—E). Therefore, by Proposition 3.6.10, we get
ZordE,X,p 'ZV,X,p =—1= —(X(Vmp /\V).
Suppose that 7 : (Y,Exc(m)) — (X, p) is a completion exceptional above p for which the
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claim holds. Let g € Y be a closed point at infinity, let T: Z — Y be the blow up of ¢ and let E
be the exceptional divisor. Let v e Vx(p;m,), we show that Zy x Ly Xp = —a(VAVy). We

divide the proof in 2 different cases.

Case 1: g € E is a free point with £ € I';  In that case Vi > Vg by Proposition 3.4.17, We
also have b(E) = b(E) and ZvXp=2ZvpXp— —L_E by Proposition(3.6.30| If cy (V) # (g) (this

b(E)
includes the case where cy (V) is a prime divisor at infinity. Then, v A Vi =V A Vg. We have by
Proposition (3.6.30| that Zy . x,, = T* (Zyg x.p) — b(l_g)g Since Zy x E =0, we get
ZV,XJ) ‘ZV57X7P = ZV,XJ) 'ZVE,XJ)' (3'193)

This is equal to —ai(v A Vg) by induction and therefore it is equal to —(V A V).

If cy (V) = g, then cz(v) € E. We either have VE SVOrvVe <VAVg <V

1. If v=>vg, then v A vz = Vi and cz(V) is either E or a free point on E. In both cases by
Proposition @, the incarnation of Zy x , in Z is Zy . x,. Therefore

1

_ 2 _ 2
Zoxp Zvgy, = Zopxp)” = Zoxp) = B (3.194)
By induction (Zy, x,)* = —a/(vg) and (V) = a(VE) + @ by Proposition [3.4.27} so

the claim is shown in that case.

2. If vg <V A Vg <Vg. Then, v A Vg is a monomial valuation centered at E N E (we still
denote by E the strict transform of E in Z). Therefore, by Proposition [3.4.31] there ex-
ists 5,¢ > 0 such that sb(E) +tb(E) = 1 and v A Vi = Vg, is the monomial valuation

with weight s,¢ with respect to local coordinates associated to E and E respectively. By

Proposition [3.6.29] we have
(ZV7X,p)Z = SZordE,X.,p +tzordE,X,p = SbEZVE7X7p + thZVE,Xp- (3.195)
Therefore,
Zyxp - Zuzxp = SB(E)Zys X p- Zu X.p +1D(E) (Zyp x ) (3.196)

By induction and the previous case this is equal to —b(E)(sa/(Vg) +t(Vz)). By Propo-
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sition [3.4.27, we have a(Vg) = a(Vg) + @. Therefore, we get

—b(E) (s(VE) +10(Vy)) = —0(VE) — b(E) (3.197)

and this is equal to —o((7, V) by Proposition (3.4.31

Case 2: g = E| n E, is a satellite point We can suppose without loss of generality that

VE, < VE,. In that case we get Vg, < Vi < Vg,,b(E) = b(E1) + b(E>) and

b(E) b(E») 1 ~
Ly =— 7 — 7 ——=F 3.198
by Proposition [3.6.30
If cy (V) # g, then v AVz < Vg, or V AV = Vg, and we get
b(Ey) b(E»)
Z AR =————(7Z -7 ———(Z -7 . (3.199
V,Xop T AV X p b(El)—l—b(Ez)( v.X,p vEl,X,p)+ b(E1)+b(E2)( v.X,p VE27X7P) ( )
By induction, this is equal to _%Q(V& AV)— %a(v@ AV).

If v AVE < Vg, thenV A VE, =V AVEV A VE, and the quantity in Equation (3.199) is equal
to —a(V A VE).
If vAVE > VE, thenv >V and V A Vi = V. In that case V A Vg, = Vg, and V A VE, V,.
Therefore, the quantity in Equation (3.199) is equal to
b(E\)

— ey MVE) —

b(E)) + b(E>) )OC(VEz)- (3.200)

By Proposition [3.4.27, o(VEg,) = &(VE, ) + m, so we get

! — ave) - —— (3201

Zvxop Bupop = ~UVE) = LS R ) b(E1)b(E)

and this is equal to —0(Vz) again by Proposition

If cy (V) = ¢, then cz(v) € E. We have that Vg, <V A Vi < VE,. Therefore either v = v or
cz(v)uE is a free point and v A Vj; is a monomial valuation centered at £} N E or E>n E. We
show again the claim by induction in an analogous way as in Case 1. We have thus shown the

claim by induction.
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To show the Proposition, let v,V € Vx(p;m,). If v # V', then there exists a completion
n: (Y,Exc(pi)) — (X, p) exceptional above p such that cy (V) s cy(V'). Then, we have that

ZvxpZuxp=Zvxp)y (Zvxp)y (3.202)

If v/ is infinitely singular or a curve valuation, we can suppose that cy (V') is a free point lying
over a unique prime divisor E at infinity. Then, V' > vg and V' A v = V' A vg. Furthermore, the

incarnation of Zy x ,, in Y is exactly Zy, x,, by Proposition [3.6.29] Therefore,

ZV.,X,p . ZV’7X,p == ZV,X,p . ZVE7X7P' (3203)

This is equal to —a(v A VE) = —a(V A V') by the Claim.

If v/ is irrational, then we can suppose that cy (V') = Ej n E, for Ey, E; two prime divisors
at infinity. Suppose without loss of generality that vg, < Vg,. By Proposition we have
that v/ = m,v,, for some s, > 0 such that sb(E;) + tb(E2) = 1 and o(V') = o(VE,) + @.
Furthermore, by Proposition [3.6.29] the incarnation of Zy x , inY is

(Zor x p)y = SD(E1)Zyg, X.p+ th(E2) Zuy, x . (3.204)

And we have
ZV,X,p . ZV/,X,p = Sb<E1)(ZV,X,p . ZVE] ,X,[J) + tb<E2)(ZV,X,p . ZVEZ,X,]?)' (3205)

Eitherv AV =V AVg or VAV =V . IfVAV =V A Vg, then we also have VA VE, =V A VE,.
The quantity in Equation (3.205)) is then equal to

—sb(E1)o(v A VE,) —th(E2)o(V AVE) = (VA VE ) = —a(V A V). (3.206)

IfvAv =V then v A Vg =Vg and vV A Vg, = Vg,. The quantity in Equation (3.209) is
then equal to

— sb(E1)a(VE,) — th(E2)oVE,) = —(VE, ) — @ Y (3.207)

To get the last two equalities we use Proposition [3.4.27and [3.4.31]

Finally, if v = v/, we need to show that (Z,x ,)?> = —a(v). We know the result if Vv is

divisorial. We use approximating sequence to conclude in general. If v is infinitely singular or

120



3.6. Valuations as Linear forms

a curve valuation. Let (X, p,) be the sequence of infinitely near points associated to v. The

approximating sequence of v (Proposition [3.4.26)) is the subsequence v,, = ﬁ ordg, where p,

is a free point lying over a unique prime divisor E, at infinity. We have that o((v,,) — o(Vv) and

the incarnation of Zy x , in X, is Zy, x . Therefore,
(Zy.x,p)* =1im(Zy, x.,p)* = ~Timo(v,) = —au(v) (3.208)

If v is irrational, then let (X,,p,) be the sequence of infinitely near points associated to
v. For every n large enough, p, = E, n F, for E,, F,, two prime divisors at infinity. Suppose
that for all n,vg, < vg,. Then, we have vg, <V < Vg, o(Vg,) — a(v),o(Vg,) — a(v) and
b(E,) — +0,b(F,) — +o0. We have by Proposition 3.6.29]that the incarnation of Zy x , in X,
is

sub(En)Zug, x.p+ 1ab(F)Zvp x.p (3.209)

for some sy,,#, > 0 such that s,b(E,) + t,b(F,) = 1. We have

(Zyx,p)* = lim(sub(En)Zu, x.p + a0 (F) Zup, x.,)° (3.210)

= lim —52b(Ep)*0U(VE,) — 25utub(E)b(F)a(vE,) — t2b(F,)? o VE,) (3.211)

Therefore we get
lim—a(vg,) < (Zyxp)? < lim—o(vg,). (3.212)
n n

Hence (Zy x p)* = —o(V). O
Corollary 3.6.33. If v e Vx(p;m,), then Zy x , ¢ Weil(X, p)q if and only if v is irrational.

Proof. If v is divisorial, let E € Dy , such that v is equivalent to ordg. Then,

1 .
Zyx.p = 7 Zordg x.,p € Weil(X, p)o (3.213)

b(E)
by Proposition If v is infinitely singular or a curve valuation, let u be any divisorial
valuation. We have that u A v must be a divisorial valuation, therefore by Theorem [3.6.31| we
have
Zy-Zy=—0(vAu)eQ. (3.214)

Hence Z, x , € Weil(X, p)q.
If v is irrational, then for all u > v divisorial we have ou A V) = a(v) € R\Q. Therefore,
ZV,XJ) ¢ Wel](X7p>' D
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Proposition 3.6.34. Let X be a completion, let p € X be a closed point at infinity. If (vy) is a
sequence of Vx(p;my,) such that a(v,) < +o for all n and v € Vx(p;my), then v,, — V for the
strong topology if and only if Zy, x , — Zy x p for the strong topology of Lz(Xo).

Proof. This all comes from Theorem [3.6.3T]as

(Zox.p—Zy, x.p)7| = |—0U(V) +20(V A V,) — (V)| (3.215)
= |o(V) = (VA VR) 4+ (V) — OV A V). (3.216)
[
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3.7 From linear forms to valuations

Suppose now that we have an element L of Hom(Cartier,,(Xp),R) satisfying property (+), we
want to construct a valuation v, : A — R U {0} centered at infinity such that Ly, = L.
First we extend L to S, (Xp) (see Definition [3.2.12)) by setting

IfD = \/D,- with D; € Cartiery, (Xo), L(D) := supL(D;). (3.217)

1

Proposition 3.7.1. This definition does not depend on the representation of D as a supremum
D = \/;D; with D; € Cartiery, (Xo).

Proof. 1t D = \/;¢;D; = \/ j¢; D). Let j€J be an index and X a completion such that D’ is
defined on X. Let € > 0 and let H be an effective divisor such that Supp(H) = 0xXo. There
exists an index i € I such that D; + eH > D;-, since otherwise we would get D + eH < D’j <D.

Therefore we have by property (+) item (1)

L(D)) < L(D;) +€L(H) < supL(Dy) +€L(H). (3.218)
’ k

Letting € go to 0, we get sup jL(D9-) < supy L(Dy) and the result holds by symmetry. 0
Proposition 3.7.2. We have the following properties: for D,D' € S, (Xo)
(1) L(D+D') = L(D)+L(D').
(2) L(D AD') =min(L(D),L(D)).
(3) If D =0, then L(D) > 0.
Proof. For (1), write

L(D+D')= sup L(D;+D))

(i,))elxJ
= supL(D;) +supL(D’;) = L(D) + L(D')
iel jeJ

For 2),let D =\/;D;and D' =\/ i D} be two elements of S, (Xp). Then,

D/\D'z\/D,-/\D’j (3.219)
i\j
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and

L(D A D') = supmin(L(D;),L(D})) (3.220)
l7j
= min(sup L(D;),supL(D")) (3.221)
i j
= min(L(D),L(D)). (3.222)

For (3), if D = 0, then L(D) = 0. Otherwise, D > 0 and there exists a Cartier divisor D,
defined in some completion X of Xy such that Dx > D; > 0 and therefore

L(D) > L(D;) > 0. (3.223)

L]
Recall the notations of Section[3.2.2] Define

w(P) := (dive x (P))x. (3.224)

Proposition 3.7.3. For P € A, w(P) defines an element of Weily,(Xo), moreover if one identifies
for any completion X the divisor divy, x (P) € Divy (X ) with its image in Cartiery, (Xo), then

w(P) = \/ dive, x (P). (3.225)
X
Thus, w(P) defines an element of Sy (Xo).

Proof. To prove both assertions it suffices to show that if X is a completion of Xy and Y is the
blow up of some point at infinity, then 7, dive, y (P) = dives x (P) and T dives x (P) < dives y (P).
Let E be the exceptional divisor of 7 and let Eq, ..., E, be the prime divisors in 0xXy. Since P
is regular over X, divy (P) is of the form

.
divk(P) =D+ ) aiE; (3.226)
i=1

where D is an effective divisor such that no irreducible component of its support is one of the
E;’s; by definition dive, x (P) = >.i_, a;E;. Then, divy (P) is of the form
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.
divy (P) = divy (Pomt) = " divy (P) = (D) + bE + ) | a; (E;) (3.227)

i=1
for some b € Z. So diveyy (P) = bE + Y, a;n' (E;) and we get T, (diveo y (P)) = dives x (P) as

~

7. (E) = 0, This shows that w(P) is an element of Weily, (Xo).

To show that T* divy, x (P) < dive, y (P) we have to be more precise about the coefficient b.
We can write b = ¢ +d, where n*D = 7'(D) + dE and n* divy, x (P) = cE + Y, a;7 (E;). Since,

D is effective, we have d > 0 and the result follows. O]

We define
vi(P) := L(w(P)). (3.228)

Remark 3.7.4. The class w(P) is not in general a Cartier class. Indeed, take Xy = A%, X = P?
with homogeneous coordinates [x : y : z| such that {z =0} is the line at infinity. Consider
P = y/ze k(P?). Define a sequence of blow ups X; by Xo = P2, Eg = {r =0} and ;1 | : X; 11 — X;
the blow up of the intersection point of the strict transform of {y = 0} in X; and E;, where E; is
the exceptional divisor in X;. Let C, be the strict transform of {y = 0} in any the X;. We still

denote by E; its strict transform in every X, j > i. Then,

and by induction, we get for all k > 2

k
divy, (P) = Cy+ > (j— 1)E; — Eo. (3.229)
j=2
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Therefore, for all k > 2

k
i1 divee x, (P) = (k= 1)Egs1 + Y (j— DE; — Eo
k "
# kEjp1 + Y (j— 1)Ej — Eo = dive, x,.,, (P).
j=2
Thus, w(P) is not a Cartier class.
Proposition 3.7.5. The function vy is a valuation on A centered at infinity.
Proof. We first show that v; is in fact a valuation

1. For any A € k* and for any completion X of Xp, divx(A) = 0 so vi(A) = 0.

2. If f,g € A, then divx(fg) = divx (f) +divx(g). So, w(fg) = w(f) +w(g) and by Propo-
sition[3.7.2] v (fg) = vi(f) +vi(g).

3. Let f,ge€ A, f # —g, thendivx(f + g) = divx (f) A divx(g), therefore
w(f+8) = w(f) rw(g) (3.230)

and by Proposition vi(f +g) = min(ve(f),vi(g))-

If L # 0, there exists a completion X and a prime divisor E at infinity such that L(E) > 0.
By Theorem [3.1.4] there exists H € Divy, (X) ample such that H > 0,SuppH = 0xXo. We have
by item (1) of (+) that L(H) > L(E) > 0. To show that v, is centered at infinity, it suffices to
show that Ly, (H) > 0. Up to replacing H by one of its multiples (which does not change the
hypothesis L(H) > 0), we can suppose that H is very ample and that it induces an embedding
T:X < PV such that T(H) is the intersection of T(X) with the hyperplane {xy = 0}. By Bertini’s
theorem, we can find a hyperplane M = {> . Aix; = 0} # {x9 = 0} such that M nt(X) is a smooth
irreducible subvariety C in X satisfying

1. The intersection of C with any divisor at infinity of X is transverse.
2. If vz, is not divisorial, the center of v, is not contained in C.

Indeed, by Bertini theorem, the set Ux of hyperplanes H such that H n X is a smooth irreducible
curve is an open dense subset. Let Ey,--- ,E, be the primes at infinity in X. Applying Bertini
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theorem to E; yields an open subset U; of hyperplanes that meet E; transversally. Finally, if
the center of vy is a subvariety Y of codimension > 2, then the set of hyperplanes that contain
Y is a closed nowhere dense subset of P(I'(P", O(1))) because |H| is base point free, so its
complementary is a non-empty open subset Uy. Now, U; n --- n U, n Uy is an open subset that
intersects Uy since it is dense, we then choose M in the intersection. Define

N
p= inﬁ (3.231)
i—o *0

Then, P is a regular function over Xy such that divyx (P) = C — H and 1/P is a local equation of

H at the center of v; (even if v is divisorial). Hence,

Ly, (H) =v(1/P) = SI;p(L(diVOQy(l /P)) = L(H) > 0. (3.232)
N

In Section [3.6] we have constructed a map
L: V., — Hom(Cartiero (Xo),R)(4); (3.233)
here, we have constructed a map
v : Hom(Cartiers (Xo),R) () — Vi (3.234)

where Hom(Cartiers (Xo),R) (4 are the linear forms over Cartiers, (Xo) that satisfy property
(+). We shall prove that they are mutual inverse in Section [3.§] (this result is not needed in this

memoir).
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3.8 Proof that v and L are mutual inverses

Set M := Hom(Cartier(Xo), R) (). In Section we have defined L:ve V., — Ly € M and
v:Le M — vy e V. The goal is to show that these two maps are inverse of each other.
Proposition 3.8.1. For all valuation v € Vs, and for all P € Ox(Xy),V(P) = Ly(w(P)).

Proof. Let X be a completion of X. We have seen that dive, x (P) = divx (P) — D where D is an

effective divisor not supported in dxXy. Therefore,

vax(diVoojx(P)) =V(P) —Lv7x(D) < V(P) (3.235)

Taking the supremum over X, we get Ly (w(P)) < V(P).
To show the other inequality, take a valuation v centered at infinity and let X be a completion

of Xo. Up to further blow ups of point at infinity, we can suppose that D := divy (P) is a divisor

in X with simple normal crossing on dxXy. Let Ey,--- , E, be the prime divisors at infinity of X.
Then, D is of the form
-
D= aiE;i+ ) bjF; (3.236)
i=1 jel

for some prime divisors F;; not supported at infinity. Let p be the center of v on X, there are two

cases.

1. For all j € J,p ¢ Fj, in that case for all j € J,Ly x(F;) = 0 and V(P) = Ly x(dive x (P)).
Therefore, v(P) < Ly(w(P)) and they are equal.

2. There exist a unique j € J and a unique i such that p = E; n F;. The uniqueness comes
from the fact that D is a divisor with simple normal crossing. We denote them respectively
by E and F. Then, we construct a sequence of blow up of points 7; : X;; | — X; such that
7; is the blow-up of the center of v in X; and Xy = X. We still denote by F the strict

transform of F in any of these blow-ups. There are two possibilities:

(a) Either there exists a number k such that the center of v in X; does not belong to F
(This includes the case where Vv is divisorial, in that case the center becomes a prime
divisor and there are no more blow-ups to be done). In that case, we are back in case
1 and v(P) = vx, (dive x, (P)) < Ly(w(P)) and we get the desired equality.

(b) Or forall k > 0, the center of v in X belongs to F', in that case V is the curve valuation
associated to F at p and v(P) = +00. We show that vy (divy x (P)) — 400 using

the following result.
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Lemma 3.8.2. In case 2.(b), set Ey = E and for k > 1, Ek the exceptional divisor in X,
above cx, | (V), then Ly x,(E) = Ly x, (Ex) for all k and the divisor div, (P) is of the form

divy, (P) = (a + kb)Ej + bF + D, (3.237)

where a = ordg(P) > 0, b = ordp(P) > 0 and cx, (V) does not belong to the support of
D.

Proof. First, since we are in case 2b| and we have supposed that Suppdivy (P) is with
simple normal crossings, we have that for all £ > O the center of v in X} is the intersection

point py 1= Ek NF.

We proceed by induction on k. If k = 0 then the result is true as Xo = X and cx (V) = ENF.
Suppose the result true for a given index k > 0, then when we blow up py, px+1 is the inter-
section point of Ez_ | and F so it does not belong to T, (Ey) therefore Lyx,. (m (Ey)) = 0.

By induction we have vy, (E;) = Ly x,(E), and we know that

Lyx (Ex) = Ly x,o, (WeE) = Ly x 0, (M(Ex) + Ex1) = Ly x4, (Ex1) (3.238)

so this shows the first assertion. Now, by induction divy, (P) is of the form

divy, (P) = (a + kb)Ey + bF + D}, (3.239)

Now, since p; = ExnF and Pk ¢ Supp Dy, one has

divy, ., (p) = T divy, (P) = (a+ (k+1)b)Es1 +bF + (a+ kb)m(Ex) + (D). (3.240)

Since pyy1 ¢ 7, (Ey), the support of the divisor D, 11 =T (DY) + (a+kb)m (E},) does not

contain py 1 and we are done. 0

Using this lemma we see that

Ly x,(dives x, (P)) = (a+kb)Ly x,(E) —— +0 (3.241)

k—0o0

Therefore Ly(w(P)) = +o0 and since V(P) = Ly(w(P)) we have that v(P) = +0o0
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To show that LoV = idg4, we need some technical lemmas.

Proposition 3.8.3. Let L€ M and X be a completion of Xy. If there exists two divisors E,E’ at
infinity in X such that L(E),L(E") > 0, then E and E' must intersect.

Proof. Suppose that E and E’ do not intersect, then the sheaf of ideals a = Ox(—E) @ Ox(—E’)
is trivial, @ = Ox. From Proposition [3.6.25] we get E A E’ = 0. Thus L(E A E') = 0. But
L(E AE') =min(L(E),L(E")) > 0 and this is a contradiction. O

Corollary 3.8.4. Let X be a completion of Xy, suppose there exists two prime divisors at infinity
E,F such that L(E),L(F) > 0. Then, let E be the exceptional divisor above p = E N F, one has
L(E) > 0.

Proof. Let T:Y — X be the blow up of p and suppose that L(E) = 0. Since T*E = ' (E) + E
and T°F = 7'(F) + E, one has L(t'(E)) > 0 and L(r'(F)) > 0 but the two divisors no longer

meet and this is a contradiction. [
Proposition 3.8.5. Let X be a completion of Xy, there are two possibilities

(1) There exist a unique closed point p in X at infinity such that if E is the exceptional divisor

~

above p, one has L(E) > 0. We call this point the center of L in X.

(2) If no point satisfy this property, then there exists a unique divisor at infinity E in X such
that L(E) > 0. In that case we call E the center of L in X.

and we have the following properties

(a) Let E be a prime divisor at infinity in X. If the center of L on X is a point p, then
peEE < L(E)>0.

(b) If'Y is a completion of Xy above X, then the center of Lin Y belongs to the inverse image
of the center of X.

Proof. Suppose there are two points p1, p; satisfying this property on X. Let ; be the blow up

of p; in X, we have commutative diagram
Y
2N
X X
R V
X
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where on the left side we first blow up p; then we blow up the strict transform of p, and the other
way around on the right. Now let E\,E, be the exceptional divisors above pp and p; respectively
in X and in X, and suppose that L(E 1),L(Ez) > 0. Then, since p; does not belong to E, and
pa does not belong to Ey, we have that L(E}) = L(tfE}) = L(t}(E1)) > 0 and L(t5(E3)) > 0.
But in Y the prime divisors T} (E1) and ) (E3) do not intersect and that contradicts Proposition
B.8.3

Now, if E, F are two divisors at infinity such that L(E),L(F) > 0, Lemma [3.8.4] shows that
E n F must be the center of L on X. Hence if no point of X is the center of L there is only one
prime divisor at infinity E such that L(E) > 0.

To show assertion (a), suppose that the center of L on X is a point p and let 7 be the blow
up of p. If pe E, then n*(E) = n'(E) + E and L(E) = L(m*E) = L(E) > 0. If L(E) > 0 then p
must belong to E otherwise £ and E would not intersect and this contradicts Propositionm

We now assertion (b), we only need to show it for the blow up of a point w: ¥ — X. Suppose
first that the center of L on X is a (closed) point p. If we blow up another point than p, then it is
clear that the center of L on Y is the point 7! p as the order of the blow ups does not matter in
that case.

Suppose now that we blow up p, then the exceptional divisor E verifies L(E ) > 0, if the
center of L on Y is a prime divisor then it must be E.Ifitisa point then it must belong to E by
assertion (a).

If the center of L on X is a prime divisor E, then for any blow up w: Y — X of a point of
X, we show that the center of L on Y is 7' (E). The exceptional divisor E verifies L(E) = 0 and
7' (E) is the only prime divisor of ¥ such that L(n/(E)) > 0. Thus, if the center of L on Y is not
a point, it must be 7' (E). If the center of L on Y is a point ¢, then it must belong to @' (E) by
assertion (a). If ¢ is not the intersection point ' (E) N E, then it is the strict transform of a point
p € E and in that case p was the center of L in X this is a contradiction. If ¢ = Enm (E), then
L(E ) > 0 by assertion (a) and this is also a contradiction. Therefore, the center of L on Y cannot
be a point, it is T'(E). O

We say that L is divisorial if there exists a completion X of Xy such that the center of L on

X is a prime divisor at infinity.

Proposition 3.8.6. The map v sends divisorial valuations to divisorial elements of ‘M and the

map L sends divisorial functions to divisorial valuations.

Proof. The fact that divisorial valuations induce divisorial functions on Cartier divisors is clear.

Suppose that L is a divisorial function and let X be a completion such that the center of L in
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X is a prime divisor E at infinity. Then, for all completion : Y — X above X, the center of L
on Y is the strict transform of E by Proposition and L(E) = L(m'(E)). Therefore, let v be
the divisorial valuation on A such that vy = ordg and let P € Oy, (Xo), then for all completion Y
above X, we have by Proposition[3.8.5]

L(dive y (P)) = L(T'(E)) ordg (divy (P)) = L(E)v(P). (3.242)
Therefore v, (P) = L(E)v(P) and it is a divisorial valuation. O
Proposition 3.8.7. One has Lov =idy,.

Proof. We can assume that L and vy are not divisorial. Let X be a completion of Xj, we
will show first that if H € Divy,(X) is an effective divisor such that |[H| is base point free
and SuppH = 0xXo, then v (H) = L(H). Pick f generic in H°(X,Ox(H)). We have that
div f = Zy — H with Zy effective, SuppZ does not contain any divisor at infinity and the center
of v, and the center of L do not belong to SuppZy. Thus, f defines a regular function over Xj,

1/f is a local equation of H at the center of v; and we have

vL(f) = Sl;pL(diVoo.,Y<f ) (3.243)

Now, by our assumptions on f we have

Lemma 3.8.8. For all Y above X, divy(f) is of the form Zyy + dive y (f) where Zy y is effec-

tive, supported on Xy and SuppZyy does not contain the center of L. Furthermore, we have
L(dive,y (f)) = L(diveo x (f))-

Proof. This is true for Y = X. We proceed by induction. Let Y be a completion above Y where
the lemma is true and let T : ¥; — Y be a blow up of Y at a point p. If p is not the center of L
then the lemma is clearly true over Y1, if p is the center of L over Y then since p does not belong

to SuppZyy we have

divyy, = ®'(Zpy) +* (divey (f)) (3.244)
and the lemma is true since Zry, = W' (Zsy) and divy, y, (f) = T (divee v (f))-
0
Using this lemma we conclude that v, (f) = L(dive x(f)) = —L(H). Therefore,
Vi(H) =vi(1/f) =L(H). (3.245)
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Now take any divisor D € Divy,(X). There exists an integer n > 1 such that D + nH is

effective and |D + nH| is base-point free. Therefore,

vi(D) = vi(D+nH) —v(nH) = L(D +nH) — L(nH) = L(D). (3.246)

]
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CHAPTER 4

EIGENVALUATIONS AND DYNAMICS AT
INFINITY

4.1 Dynamics when A* = k* and Pic’(X;) =0

4.1.1 The structure of the Picard-Manin space of X
From Section [3.2.6| we have linear maps

T : Cartier,, (Xo)g — Cartier-NS(Xo)g, 7T : Weily (Xo)g — Weil-NS(Xp)g - 4.1)

For this section we suppose that Xo = SpecA is a normal affine surface over an algebraically
closed field k such that

1. A =Kk*;
2. For all completion X of Xy, Pic’(X) = 0.

It suffices to test the second condition on one completion of Xy as the Albanese variety of
a projective variety is a birational invariant. We will make an abuse of notations and write
Pic’(Xp) = 0 for the second hypothesis.

If these two conditions are satisfied, the finite dimensional subspace Divy,(X) embeds into

NS(X). Indeed, consider the composition
Divos(X) — Pic(X) — NS(X), (4.2)

the first map is injective since A* = k* and the second is an isomorphism because Pic’ (X)=0.

Therefore the maps T are injective and we have the orthogonal decomposition

Weil-NS(Xo)g = Weily (Xo)g® V 4.3)
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where V is a finite-dimensional vector space(this decomposition also holds over Q); in fact let
X be a completion of Xp, then V is the orthogonal of Div,,(X) in NS(X).

4.1.1.1 The intersection form at infinity
Proposition 4.1.1. Let X be a completion of Xy, then
* Divy,(X) embeds into NS(X) and the intersection form is non degenerate on Divy,(X).
o The perfect pairing Cartier-NS(Xg) x Weil-NS(Xo) — R induces a pairing
Cartiery, (Xp) x Weily, (Xo) — R 4.4)
that is also perfect.

s Weily, (Xo) is isomorphic, as a linear topological vector space, to Cartiero(Xg)" en-

dowed with the weak-+ topology.

Proof. Everything follows from Propositions 3.2.20{and [3.2.17|and that T : Dive, (X) < NS(X)

is injective. L

Corollary 4.1.2. The subspace Hom(Cartiers (Xo),R) (1) is a closed subspace of Weily(Xo)
with the weak-x topology.

Proof. All the conditions that elements of Hom(Cartiere, (Xo), R)(4) have to satisfy are closed

conditions. Indeed, we have

Hom(Cartiery, (Xo),R)(+) =C1nC 4.5)
where
Ci = [ ) {L(D) =0} (4.6)
D=0
Cy = N {L(D AD') = min(L(D),L(D'))} . (4.7)

D,D’eCartiery, (Xo)
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4.1.1.2 A continuous embedding of 7, into Weil,,(Xo)

From Proposition we get the immediate corollary.

Corollary 4.1.3. For any valuation v centered at infinity, there exists a unique Zy € Weily, (Xo)
such that for all D € Cartier, (Xo),Ly(D) = Zy - D.

Corollary 4.1.4. A valuation Vv is divisorial if and only if Zy belongs to Cartiery,(Xg). In
particular, for any prime divisor E at infinity, Zoq, € Cartieroo(Xo)Q. The embedding

is a continuous map for the weak topology.

Proof. If v is divisorial, then there exists a completion X such that the center of v is a prime
divisor E at infinity. For every W € Weily (Xo), Lord; (W) = Lord; x (Wx ), by Proposition 3.6.22]
By non-degeneracy of the intersection pairing on Div, (X )q, there exists Z € Divy, (X)q such
that for all D € Dive, (X)qQ, Lordz x (D) = Z - D. It follows that Zq,, is the Cartier class defined
by Z, hence it is an element of Cartiers;(Xo)q-

Conversely, if Zy € Cartiery, (Xg), let X be a completion where Z is defined. The center of
v over X cannot be a closed point p; otherwise let E be the exceptional divisor above p, we
would have Ly(E) > 0, but Zy - E = 0.

Now to show the continuity of the map of the Corollary, it suffices by Proposition 4.1.1]to
show that for any D € Cartier,,(Xo), the map v € vV, — Zy - D is continuous, but this follows
immediately from Zy - D = Ly(D) and Proposition [3.6.19] O

Proposition 4.1.5. Let v be a valuation centered at infinity and X a completion of Xy such that

cx (V) € E is a free point. Then, the incarnation of Zy in X is

Zyx = (Zy-E)Zyqy - 4.9)
If cx(V) = E N F is a satellite point, then
Zyx = (Zy-E)Zody + (Zy - F)Zordy - (4.10)
Furthermore, if : Y — X is the blow up of a point at infinity p # cx(V), then
Zyy =T'Zyx. 4.11)
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Proof. 1If cx(v) € E is a free point. For any D € Divy, (X), one has D = > Loga, (D)F, therefore
by Proposition (2) and (3) Ly(D) = Lora, (D)Ly(E) . Since (Zy -E) = Ly(E), we get the
result. The proof is similar for the case cx (V) = ENF.

For the last assertion, if E is the exceptional divisor of T : Y — X, then by definition

~

Zyy =T Zyx — (Zy-E)E (4.12)

However, since cx(v) # p, we have that cy (V) ¢ E and therefore Z, - E = 0 by Proposition
3.6.6! [

Recall that in we have defined for a point p at infinity in a completion X the local
divisor Zy x , for every valuation v centered at p. The divisor is defined by duality via the
following property

VD € Cartier(X,p), Ly(D)=2Zy,x-D. (4.13)

Corollary 4.1.6. Let X be a completion of Xo and let v be a valuation centered at infinity.

e If p:=cx(V)€E, then
ZV = (Zv N E)ZOrdE +ZV,X7P (4.14)

o If p:=cx(v) = ENF is a satellite point, then

ZV = (ZV ’E)Zordg + (ZV ‘ZordF)ZordF + ZV,X,p (415)

In particular, Zy € L*(Xo) if and only if v is quasimonomial or there exists a completion X
and a closed point p € X at infinity such that cx (V) = p and (V) < +o0 where V is the valuation
equivalent to V such that V € Vx(p;m,).

Proof. We have that
ZV - ZV,X + Z/ (4.16)

where Z' € Weily, (Xp) is exceptional above X. Now, for every divisor D exceptional above X,
we have
Ly(D)=2y,-D=27"D. 4.17)

If D is exceptional above a point ¢ # p, then Ly(D) = 0 by Proposition as q # cx(Vv).
Therefore, we get that Z' = Zy x .
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Now, we have Z, € L?(Xy) < (Zy)? < —0. Replace v by the equivalent valuation such that
v e Vx(p;m,), then by Theorem[3.6.31|(Z, x »)* = —o(v) and therefore

(Zy)* = (Zvx)* — (V). (4.18)
This shows the result. O

Corollary 4.1.7. Let v € Vo, then up to normalisation Z, € Weily,(Xo)q if and only v is not

irrational.

Proof. First, if v is divisorial, the result follows from Corollary [4.1.4] Then, if v is infinitely
singular or a curve valuation. Then, there exists a completion X such that cx (V) is a free point
p € E. Then, replace v by its equivalent valuation such that v e ¥k (p;m,). Let (z,w) be local
coordinates at p such that z = 0 is a local equation of E. Then, Zy(E) = Vv(z) = a(v A V,) € Q
because V A Vv has to be a divisorial valuation. Therefore, by Corollary and Proposition
we get that Zy € Weily, (Xo) -

Finally, if v is irrational then let X be a completion such that cx(v) = E N F is a satellite
point. Then, Zy x = $Zod, +1Zora, With s/t ¢ Q by Proposition It is clear that no multiple
of Zy x can be in Divy (X)q. O

Corollary 4.1.8. Let V!, be the subspace of Vs, consisting of v € Vs, such that Z, € L*(Xy),
then
V! — L*(Xo) (4.19)

is a continuous embedding for the strong topology. Furthermore, it is a homeomorphism onto

its image.

Proof. Let X be a completion of Xj. Let v, be a sequence of 1/}, converging towards v € V),
for the strong topology. We treat two cases, whether Vv is associated to a prime divisor of X or v
is centered at a closed point p € X at infinity.

If v is centered at a closed point p at infinity, then since v,, converges strongly towards v
then it converges also weakly, therefore for n big enough, v, is centered at p by Proposition
We can replace each v, and v by their representative such that v,,v € Tx(p;m,). Then

* If p e E is a free point,
Zy, = (Zv, E)Zotay +Zy, X p (4.20)
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* If p = EnF is a satellite point, then

Zy, = (Zy, E)Zowy + (Zu, - F)Zordy + Zu, X (4.21)

and we have similar formulas for Z,. Now the incarnation of Z,, in X converges towards the
incarnation of Zy in X in both the free and the satellite case by weak convergence. Let ||-|| be

any norm over NS(X)R, then
|12y = Zy,] |52(X0) = |Zvx = Zo, x| = (Zox.p— Zo,x )’ (4.22)

where f = g means that there exists constants A, B > 0 such that Ag < f < Bg. By Proposition
3.6.34) we have that ||Z, — Z,, | \iz(xo) — 0.

If v ~ ordg for some prime divisor E at infinity in X, then for all n large enough, cx (v,,) € E.
We can suppose that v = ordg and for all n v,(E) > 0, i.e v,v, € T (E) and Zy, - E — 1 as
n — o0. We show that

Zy,
Zvn ] E m ZOI'dE (423)

in L?(Xp). We can replace v, by its equivalent valuation such that v, € Vx(p,,m,,) where
Pn = cx(vn). Then, we have that Zy, x/Zy, - E converges towards Z4, in NS(X)r by weak

convergence. It suffices to show

(ZV X.p)2
—r () 4.24
2, -EP @29
but this is equal to
vn(E) V(E)2 n—+00

by Theorem [3.6.31] and Proposition [3.4.9|so we are done.

Finally, to show the homeomorphism, we have to show that if Z, — Z in L?(Xp), then v,
converges strongly towards v. Let X be a completion of Xy. Suppose first that cx (V) is a point
at infinity. Let E be the exceptional divisor above cx (V), we have Z, E> 0, therefore for all n
large enough Z,, E>0and cy (Vn) = cx(v) =: p. Now, we can suppose that v,,v e Vx(p;m,),
it suffices to show that v, — Vv for the strong topology of %x(p;m,) and this is a direct conse-

quence of Proposition [3.6.34]
If cx (v) = E a prime divisor at infinity, then for all n large enough, Z,, - E > 0. Suppose that

v = ordg and v, € Vx(E). We have that Zy, x /Zy - E — Zyq, in NS(X)r. We need to show that

OCE(V,,V(%)) — 0. We can suppose that v, € Vx(p,,m,,) where p, = cx(V,), then by Proposition
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Vi O('m,7 (Vn)
o = . . 4.26
« (wiiy) = ey 20
Thus, by Proposition [3.4.9]and Theorem [3.6.31]
2
Vi Zv X,p
o = e 4.27
(i) ~ || == @20
O]
Corollary 4.1.9. If v is a curve valuation, then Z, is a Weil class satisfying Z3 = —co.

Proof. Let X be a completion of Xy, let p = cx(v) and replace v by the valuation equivalent to
v such that v e Vx(p;m,). We have by Corollary that

Zy=Zyx +2Zyxp- (4.28)

Therefore, by Theorem [3.6.31]
(T =Zyx +(Zuxp)* =Zgx — (V) = —0 (4.29)
because a(v) = —oo for any curve valuation v (see [FJO4] Lemma 3.32). [

4.1.2 Endomorphisms

Proposition 4.1.10. Let f be an endomorphism of Xo and let X,Y be completions of Xy such
that the lift F : X — Y of f is regular. Let p € X be a closed point and q := F(p) € Y. Then,

* [+ Vx(p) = W (q)
* f. preserves the set of divisorial, irrational and infinitely singular valuations.

* Ifvc is a curve valuation centered at infinity and such that f. V¢ is still centered at infinity,

then f.Vc is also a curve valuation.

Proof. The map F induces a local ring homomorphism F* : @ — 5;\@ Let v be a valua-
tion centered at p. For @ € Oy (q), fxv(¢) = V(F*¢@) > 0 and for y € my 4, £ V() = V(F*y) > 0.
Therefore f.v is centered at g. The fact that f, preserves the type of valuations is shown in
Proposition[3.3.17] It only remains to show the statement for curve valuations. Let p = cx(vc)
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and g = cy(f«vc). We have that F(p) = g. By Proposition|3.3.17| f,v¢ is not a curve valuation
only if it is contracted by F. But the only germ of holomorphic curve at p that can be con-
tracted by F' is the germ of a prime divisor E at infinity on which p lies, and the curve valuation

associated to E does not define a valuation on A. So, f.Vc is a curve valuation. O]

Example 4.1.11. It might happen that f.v is not centered at infinity even though v is; if this
is the case then f is not proper. For example, let Xy = A” with affine coordinates (x,y) and
consider the completion P? with homogeneous coordinates [X : ¥ : Z]. We have the relation
x=X/Z,y=Y/Z. Consider the chart X # 0 with affine coordinates y’ = Y/X and 7 = Z/X.
Define v; to be the monomial valuation centered at [1: 0 : 0] such that v,(y') = 1 and v,(Z') =¢
with# > 0. Let P =37, ; ajjx'y’ € K[x,y], we have that v;(P) = min {j + (j —i)t|a;; # 0}. Now
take the map f : (x,y) € A® — (xy,y), f contracts the curve {y = 0} to the point (0,0) in A2,
hence it is not proper. For any polynomial P = Zi’ jai jxiyj P = Zi, jai jxiy”j . We get

Vi (f*P) =min{i+ j(t +1)|a;; # 0}. (4.30)
L]

The center of f.v;is [0:0: 1] and f.v; is the monomial valuation centered at [0: 0 : 1] such
that v;(x) = L, v,(y) =t + 1.

Lemma 4.1.12 (Proposition 3.2 of [EJO7]). Let f : Xo — Xo be a dominant endomorphism and
let X,Y be completions of Xo. Let F : X — Y be the lift of f, let p be a closed point of X at
infinity and Vx (p) be the set of valuations on A centered at p. Then, F is defined at p if and
only if fVx(p) does not contain any divisorial valuation associated to a prime divisor (not

necessarily at infinity) of Y. If F is defined at p, then F(p) is the unique point q such that
[« Vx(p) = Y ().

Proof. If f is defined at p, then let g = f( p), we have that f, Vx(p) < V¥ (g) by Proposition
4. 1.101

Conversely, If p is an indeterminacy point of f Letm: Z — X be a completion above X such
that the lift F : Z — Y is regular. Then, F(n~!(p)) contains a prime divisor E’ of Y. Let E be a
prime divisor at infinity in Z above p such that F(E) = E’, then F, ordg = f(%, ordg) = Aordgs

for some constant A > 0 and ordg € f, Vx(p). O

Proposition 4.1.13. Let v be a valuation over A and let f : Xy — Xo be a dominant endomor-
phism, then

* fuZy = Zy,v mod Cartiery, (Xo)™.
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o If f is proper then f. preserves Weily (Xo) and fiZy = Zf,y.

Proof. Indeed, let D € Cartier,,(Xp), then

feZy-D =2y f*D = Ly(f*D) = Lsv(D) = Z,y - D. 4.31)

Therefore, we get that Zr,y — f..Zy belongs to Cartiery, (XO)L. If f is proper, then Weily, (Xo)
is fi-stable and f.Z, € Weily(Xp), thus Zy,y = fiZy. l

Example 4.1.14. Suppose that P(x) and Q(x) are two rational fractions of degree two and E in
P! x P! defined by the equation

y* = P(x)y+Q(x) = 0. (4.32)

if P,Q are general, then E is smooth and irreducible and it is an elliptic curve in P2. Let
X = P! x P! and Xy = X\E. We have Pic’(Xy) = 0 because it is a rational surface and A* = k*
because X\Xy consists of a single irreducible curve. We have Zyq, = %E . Consider the projec-
tion pr; : X — P! to the first coordinates. Each fiber of 7; is isomorphic to P! and generically
it has two intersection points with E. Let xg,x1,x2,x3 be the four roots of the discriminant

8 = P(x)> —4Q(x). Then, pr; ' (x;) has only one intersection point with £. Consider the follow-

ing selfmap of X
_ (V-0
fxy) = (x, 2y—P(x)> : (4.33)
2

It preserves the fibers of pr; and it acts as z — z> in each fiber where the points 0 and oo of P!
are the intersection point of the fiber with E. See Figure 4. 1] There are exactly 4 indeterminacy
points on X, they are the points (x;,y;) where x; is one of the roots of A and y; € P! is such that
(xi,yi) EE.

Let Co = {xo} x P!. Then, Cartier,,(Xo)" = R- (4Cy — E) because C - E = 2 and E? = 8
and p(X) = 2.

The endomorphism f is not proper, indeed we have in NS(X), f,E = E 4+ 4Cy. Since f*E is
of the form f*E =2E +..., we have f,ordg = 2ordg. And we get

11
feloray = E+5C0 (4.34)
11 1
= —E+(4Co—E) + -E 4.35
gEtgCo—E)+¢ (4.35)
1
= 2Zowa; + g (4Co — E) (4.36)
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(0, Yo)

(xiv yi) S [nd<f>

Figure 4.1: The endomorphism f on Xy

4.1.3 Existence of Eigenvaluations

Recall from Theorem [3.2.28| that there exists unique nef classes 8*,0, € L?(Xo) up to normal-
ization such that f*0* = A;0* and f,0, = A,0".

Proposition 4.1.15. I[f A* = k* and Pic®(Xy) = 0, then 0* € Weily, (Xo) nL2(Xo) and is effec-

tive.

Proof. We have that Weil-NS(X) = V & Weily,(Xo) where V is a finite dimensional vector
space. Furthermore, Weil,,(X) is f*-invariant as f is an endomorphism of Xp. In the proof of
Theorem for every completion X we can consider the cone Cy < Divy, (X)R of nef, ef-
fective divisors supported at infinity. By Theorem [3.1.4] there exists an ample effective divisor
H € Divy, (X)) such that Supp H = 0xXo. Therefore, C is a closed convex cone with compact ba-
sis and non-empty interior, the Perron-Frobenius type argument shows that there exists 6y € Cy

such that f¥0% = px0x and the rest of the proof is unchanged. ]

Theorem 4.1.16. Let Xy = SpecA be an irreducible normal affine surface such that A* = k>
and Pic®(Xy) = 0. Let f be a dominant endomorphism such that M (f)*> > Ay (f), then there
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exists a unique valuation Vv, centered at infinity up to equivalence satisfying

VPeA,v.(P) <0 (4.37)
faVa =M (f) Vs (4.38)
Zy, > -0 (4.39)

In particular, there exists w € Cartielrgo(Xo)L such that ©, = w + Zy,,. Furthermore, V. is not a

curve valuation.

We call v, the eigenvaluation of f.

Proof. By Theorem [3.2.28] there exists nef classes 8,,0* € L?(Xy) that satisfy
1. f*6* = A10*
2. fi0s = N0,
3. Yoe L?(Xp), xi,l,(f”)*oc — (0, -0)0*

Let X be a completion of Xo. Write the decomposition 8, = w + Z with w € Divy,(X)* and
Z € Weily, (Xg)g nL?(Xp). Let E be a prime divisor at infinity in X such that Zyq, - 6* > 0,
it exists because 0* is effective and nef. Then, Item and the continuity of the intersection
product in L?(Xy) imply that for all D € Cartier.,(Xo),

Zordg - <%(f”)*D) — (Zordy -0%)(04 D) = (Zoya, - 0*)(Z- D) (4.40)
1

Now, setv,, := %,11 (f")«ordg. Equation (4.40) shows that Z,,, converges towards Z in Weily (Xp).
But, for all n, Zy, belongs to Hom(Cartiero (Xo),R)(4) which is a closed set of Weily(Xo)
by Corollary Therefore, Z € Hom(Cartiers;(Xo),R) (4 and it defines a valuation v, by
Proposition [3.7.5] From the relation f,.0, = X0, we get that f,V, = AjV,.

Using the decomposition 0, = w + Z,, we have
0<0;=0"+27, (4.41)
Therefore we get Z\%* # —oo and by Corollary , V. is not a curve valuation.
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Now to show the uniqueness of v, if v is another valuation satisfying Equations (4.37),
(4.38), (4.39), then for all D € Cartier, (Xp), Item (3)) implies

1 « «
Zy:D =32y (f")*D > (Zy-6%)(8. D) (4.42)
1 n—0o0
Since v # 0, we get Zy - 0* > 0. And then v = v, up to a scalar factor. U]

Corollary 4.1.17. With the hypothesis of Theorem The dynamical degree A (f) is an

algebraic integer of degree < 2. More precisely,
* If v, is divisorial or infinitely singular, then Ay € Z-.,.
o If v, is irrational, then \| is an algebraic integer of degree 2, in particular A ¢ Q.

Proof. By Theorem [4.1.16] f admits an eigenvaluation v, satisfying Equations (4.37), (4.38),
(4.39). We know that v, cannot be a curve valuation, so there are three cases. It can either be a
divisorial valuation, an irrational one or an infinitely singular one. Hence, V.(P) = 00 < P =0
and it defines a valuation over K = FracA. Let G = V(K ™) be the value group of v... The value
group of f,.V. is a subgroup of G, hence f, induces a Z-linear map f : G — G.

1. If v, is divisorial, then G is isomorphic to Z. Since f,V. = Ajv. we get that A is an

integer.

2. If v, is irrational, then G is isomorphic to Z2. Since fiV. = A Vs, A is an eigenvalue of

a 2 x 2 matrix with integer coefficients. Therefore, it is a quadratic integer.
3. If v, is infinitely singular. We will show in Proposition 4.2.3| below, the following.

Claim 4.1.18. There exists a completion X of Xy such that p := cx(V) € E is a free point
at infinity , the lift f : X — X is defined at p, f(p) = p and f contracts E to p.

Suppose the claim is true. Let (z,w) be local coordinates at p such that z = 0 is a local

equation of E, f*z is of the form z?®(z,w) where @ is a unit. Then,

MLy, (E) = Lf,v, (E) = Ly, (f"E) = aLy, (E). (4.43)

Since Ly, (E) > 0 we get A; = a and it is an integer.
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4.2 Local normal forms

From now on we suppose chark = 0 and that X, is an affine surface. Since everything is defined
over a finitely generated field over Q, we can suppose that k is a subfield of C,, which is a
complete algebraically closed field. We show that the existence of this eigenvaluation allows

one to find an attracting fixed point at infinity and a local normal form at this fixed point.

Theorem 4.2.1. Let Xy = SpecA be an irreducible normal affine surface over a complete alge-
braically closed field C,. Let f be a dominant endomorphism of Xo such that 7»% > Ay. Suppose
that Pic®(Xo) = 0 and A = k* then

(1) If v, is infinitely singular or irrational, there exists a completion X such that the lift
f X — X is defined at cx(Vs), f(cx(Vi)) = cx(V«) and f defines a rigid contracting
germ of holomorphic function at cx (V) with no f-invariant germ of curves at cx (V).
Furthermore, there exists an open (euclidian) f-invariant neighbourhood U* of cx (V)
such that f(U*) € U*. We have the following local normal form:

(a) If v is infinitely singular, cx (V) € E is a free point and f has the local normal form
(B.3) and (3.2)) if C, = C with {x = 0} a local equation of E Ay = a € L>».

(b) If vy is irrational, cx (V) = E N F is a satellite point. The local normal form is
pseudomonomial (3.3) with (x,y) associated to (E,F). If C, = C it is monomial
(3.4) The dynamical degree A, is the spectral radius of the matrix (ai j). It is an
algebraic integer of degree 2; in particular A; ¢ Q.

(2) If vy is divisorial, then there exists a completion such that cx (V) is a prime divisor E at
infinity. In that case, E is f-invariant and h| € L is such that f{E = ME + D where
D e Divy,(X) and E ¢ SuppD.

(a) Up to replacing f by some iterate, there exists a noncritical fixed point p € E of f|E,
p = E N Ey is a satellite point, f : X --+ X is defined at p, f(p) = p and f is a rigid
germ (not necessarily contracting) at p with E the only f-invariant germ of curves
at p. The local normal form of f at p is (3.6) with (x,y) associated to (E,Ey) and
A =a.

(b) The curve E is an elliptic curve and f\g is a translation by a non-torsion element.

In particular, the dynamical degree of f is an algebraic number of degree < 2, and if it is

not an integer then the eigenvaluation v, of f is irrational and the normal form is monomial.
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We will call[(2)b]the elliptic case. The rest of this section is devoted to the proof of Theorem

4.2.1] we will prove the Theorem page[163]
To prove the theorem we need to understand the dynamics of f, on the space of valuations.

Proposition 4.2.2. Let v € V., such that Zy € L*(Xy). If Zy -0* > 0, then k_l'{ [ strongly con-

verges towards (Zy - 0%)V..
Proof. This is a direct consequence of Equation (3.69) and Corollary {.1.8] O

We will use this to show that f admits a fixed point at infinity on some completion and that
f contracts a divisor at infinity there.
For the rest of Section[4.2] we suppose that we are in the conditions of Theorem 4.1.16]

4.2.1 Attractingness of v., the infinitely singular case

In this section we show the following

Proposition 4.2.3. Let k be an algebraically closed field (of any characteristic). If the eigen-

valuation V. is infinitely singular, then there exists a completion X of Xo such that
(1) p:=cx(v«) € E is a free point at infinity.
(2) f«V(p) = Vx(p);
(3) f contracts E to p.

(4) Let fo : Vx(p;my) — Vx(p;my), then for allv e Vx(p;my), fiv — V..

Furthermore, the set of completions Y above X that satisfy these 3 properties is cofinal in the

set of all completions above X.

Let X be a completion of Xy such that cx(v,) is a free point px € Ex. Such a completion
X exists and there are infinitely many of them above X by Proposition [3.3.16] Let Y be a

completion above X such that cy (V) on Y is a free point py € Ey such that the diagram
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commutes, where F is regular and F(py) = px, such a completion Y exists by Proposition
[3.3.16 Let x,y be coordinates at py such that x = 0 is a local equation of Ex and z,w be coor-
dinates at py such that z = 0 is a local equation for Ey. We use the notations of Section We

have that f, V¥ (py) © Vx(px) by Lemma.1.12| We define F, : V¥ (py;Ey) — Vx(px,mpy)

as follows:
F*V

~ min (V(F*x),V(F*y))’

Ve W(pyiEy), Fe(V): (4.44)

Similarly, we define

WeH(priEy), mv) = (7::;;' S (4.45)

By Propositionitem (1), the map T, : V¥ (py;Ey) — Vx(px;m,y ) is an inclusion of trees
and allows one to view 1y (py;Ey) as a subtree of Vx (px;myy ).

See Figure The tree Tx (px,mpx) is in black with its root Vi, in blue, the tree
V¥ (py;Ey) is in orange with its root ordg, in red. One can see how T, maps homeomorphically

V¥ (py;Ey) to a subtree of Vx(px,m,, ).

Figure 4.2: The embedding T,
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Remark 4.2.4. Since the orders <, and <g, are compatible on Vy (py;Ey) and e Vy (py; Ey)

we will not write T, or <g, when no confusion is possible to avoid heavy notations.

By Proposition [3.4.28] we have the following relation

Oy, (Tept) = Ol (Te OXdE, ) + b(Ey) o, (u) (4.46)

where b is the generic multiplicity function of the tree 7y (p;m,) and o is the skewness function
defined in §3.4] Indeed, with the notation of Proposition [3.4.28| vg, = 7, ordg, .

Lemma 4.2.5. There exists v € Vy(py;Ey) such that v <V, and for all u >,
min (u(F*x),u(F*y)) = A. (4.47)

Le set U = {u >V}, we have F, = %‘ over U. In particular, F, is order preserving over U and
F.([V,V*]) - [Vmpx 7V*:|-

Proof. Using Proposition [3.4.3) we see that the map v — min(v(f*x, f*y)) is locally constant
outside a finite subtree of 1y (py;E,,). Indeed, one has f*x = [ [, y; with y; irreducible and

therefore

V() = 2 ov(wi) (4.48)

= Z 0y (V A Vy, )mg, (W;) by Proposition [3.4.3] (4.49)

1

Let S, be the finite subtree consisting of the segments [ordg, , Vy,|, then the map p — u(f*x))
is locally constant outside of Sy. Let S be the maximal finite subtree of 7% (py;E,,) such
that the evaluation maps on f*x, f*y and z are locally constant outside of S. Since v, is an
infinitely singular valuation it does not belong to S and these three evaluation maps are constant

on the open connected component V of 1% (py;Ep,)\S containing v.. Since fiV. = AV, we

have f,y = {—T and the map F, is order preserving on V. Following Remark |4.2.4, the two

orders Sy, and <g, agreeon V. Letve [ordEy,V*] NV be a divisorial valuation, F, sends
the segment [v,v.] = U (py;Ey) inside the segment [Vi, ,Vi] = Vx(px;myy). Notice that
U := {u = v} <V so the valuation v satisfies Lemma[4.2.3] O

Proposition 4.2.6 ([EJ07], Theorem 3.1). Let v be as in Lemmal.2.5] Fort € [0g, (V), 0, (V4)],
let V; be the unique valuation in [V, V.| such that og, (v;) = t. Then, there exists a divisorial

valuation V' € [v,v,] such that the map
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t € [ogy (V), 0Ey (Vi) | > O, (FoVy) (4.50)
is an affine function of t with nonnegative coefficients.

Proof. Let vi,vs € Yy (py;Ey) be such that v < v| < vy < V,. Since F, is order preserving on
U = {u > v} one has that F, maps [V, V2] homeomorphically to [FoV;,FeV2]. Let ye 5;(‘; be
irreducible such that vy, > F, V5, then by Proposition 3.4.3| for all u € [v1, V2] one has

Fou(y) _ u(f*y)
Mpy (W) Mpx (\V)kl

Ot (Fopt) = 4.51)

Now let yy,---,y, € O/y-;, be irreducible (not necessarily distinct) such that f*y =y ---y,.
One has,

u(f y) = Z#(\I’i) = ZG‘EY (1 AV )mEy (i) (4.52)

Take one of the y; and call it o, we shall study the map u € [Vi,V2] — Oy (1 A Vyy,). Let
Ho = V2 A Vyy,, this map is equal to 0z, on [Vi,up] and constant equal to Og, (o) on [, V2].
Therefore, the map u € [vy, V2] — u(f*v) is a piecewise affine function with nonnegative coeffi-
cients of oz, (). The points on [Vy, V2] where this map is not smooth are exactly the valuations
Vi A Vyy; and there are at most A, of them by Proposition Therefore the map u— v(f*y)
is an affine function of oz, with nonnegative coefficients on the segment [/, v, ] for any i/ < v,

close enough to v... L]
As a corollary of the proof, we get the following proposition.

Proposition 4.2.7. Letv e Vy (py;Ey) be as in Proposition letvo € [v,v,] and let y e 6X P
be irreducible such that Vy > feVo. Then, for all ¢ € O/y;y such that foVe = Vy, one has two

possibilities:
(1) Either V¢ > Vo.
(2) OrvVo AVe =V AVp <.
Le the configuration of Figure 4.3]| cannot occur.

Proof. The map u € [v,Vo| — (- (Fou) is a smooth affine function of o, (1). If (1) and (2)
were not satisfied, then we would getvp AV € [V, V.] and this would contradict the smoothness

of the map € [V, V.] — Oy, (Fopt) O
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Figure 4.3: Configuration which is not possible

Lemma 4.2.8. Let v be as in Proposition If ue [v,v.] is sufficiently close to V., then
Fou> pand Fo({¢ = u}) €U (V') where V is the tangent vector at u defined by v, and U (V)

is its associated open subset.
We sum up Lemma [4.2.8]in Figure {.4]

Proof. Let U = {u > v}. Recall that F, is order preserving over U. We first notice that if every
u € [v,v.] close enough to v, satisfies Fou > p, it is clear that F, {¢/ > u} € U(7V). Indeed, let
¢ > uand set yy := ' AV, > u. Then, Foi > Foug > uo. In particular, Fou/ AV, >t/ AV, > .

Secondly, by Proposition the map 7 € [0, (V), Ogy (Vs)] — Oy, (V¢) is affine and we

know that it is non decreasing.

Lemma 4.2.9. Let a : R — R be a non-decreasing non constant affine function that admits a

fixed point ty. If there exists s < to, a(s) > s then the slope of a is < 1 and for all t < to, a(t) > t.

Proof of Lemma We can suppose that 7y = 0 by a linear change of coordinate. Then, a(t)
is of the form
alt) = at (4.53)

with o0 > 0. Now, if s < 0 satisfies a(s) > s, this means that 0 < a < 1 and therefore for all # < 0,
a(t) >t. O

We show that there exists u € [v, V] such that Fou > p. If not, then for all u € [v, v, [, Fou < p.

Under such an assumption, we show the following

Claim Forall ¢/ > v we have Fou/ AV, <t/ AV
Suppose that the claim is false and let ¢/ be a valuation that contradicts this statement. It is

clear that ¢/ does not belong to [V,V.]. Pick vg € [v,v.] such that v < ¢/ A v, <vo < Foi/ A V..
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\\];.

p U

folt

Figure 4.4: An f,-invariant open subset of 7, infinitely singular case

Let ¢ e 5y py be such that vy > ¢/ and let y € (A)X7 p be such that fevy = vy. Since f is order
preserving we get that vy > Fou' = Foti' AV, > Vo, therefore vy > F,vo. But then ¢ contradicts
Proposition since Vo A Vo = t' AV € [V, Vo]. So the claim is shown.

Now, pick ® divisorial such that Z, - 6* > 0 by Proposition 4.2.2| the sequence % Jfio con-
1

verges towards (Zg, - 0*)v.. Hence, there exists an integer Ny > 0 such that for all N > Ny,
fNv e Yy (py), replace @ by M@ and normalize it such that w € 7y (py,Ey). We can suppose
up to choosing a larger Ny that ® > v. In that case F o converges towards v, but by the claim,
VN > 0,FN® AV, < ® AV, which is a contradiction.

Therefore, there exists a valuation y € [V, v,[ such that Fou > u. O

Proposition 4.2.10. With the notations from Lemma we have Fo(U(V')) € U(V') and for
all i/ e U(V),

Fiyl Vi (4.54)

n—-+00
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for the weak topology.

Proof. For every ¢/ in U(V'), write i =/ AV,. By the proof of Lemma F!'(u') — v, for
7

the strong topology. Therefore, F/'t/ A V. = F' (i) — V. and F'u converges weakly towards

V. because for all ¢ € Oy ) irreducible, we have

F(u')(9) = og, (Fli' Ave)mE, (). (4.55)

For n large enough we have FJ't// AV, = v, A Ve, hence FJ't/ A Vg = Vi A Vg and

Fo(W)(9) = 0y (Vs A Vo), (@) = Vi (9) (4.56)
0

Proof of Proposition|d.2.3] Let v be as in Proposition #.2.6] Let v, be the approximating se-
quence of v, (see Proposition . We have for n large enough v, € [v,v,] and v, satis-
fies Lemma [4.2.8] Set u = v, for some n large enough and let Z be a completion such that
cz(u) = E and cz(vy) =: p € E is a free point. The open subset U (V) associated to the tan-
gent vector at u defined by Vv, is exactly the image of ¥%(p) in V¥ (py;Ey). By Proposition
4.2.10, FL,U(V) € U(V), this means that f. 7y (p) = Y4 (p). By Lemma f is de-
fined at p, f(p) = p and since Fou > u, we get f contracts E to p. We have that for every
ne Vy(psm,), fip — Vv, also by Proposition4.2.10]

The statement about cofinalness follows from the fact that the sequence of infinitely near
points associated to V. contains infinitely many free points, so for every completion X of X,

there exists a completion above it where the center of v, is a free point at infinity. [l

4.2.2 Attractingness of v,, the irrational case

Suppose now that chark = 0, this is necessary as we will use Theorem [3.1.9|in this paragraph.
Suppose now that v, is an irrational valuation. There exists a completion X such that the center
of v, on X and on any completion above X is the intersection of two divisors at infinity E, F.
We still write f: X --+ X for the lift of f.

Let X; = X and for all n > 1, let X+ be the blow up of X,, at cx, (v«). (The center of v, is
always a point since Vv, is not divisorial). Let p, = cx, (V«) and E,, F,, be the divisors at infinity
in X, such that p,, = E, n F;,,. A consequence of Theorem 18
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Proposition 4.2.11. There exist integers N = M such that the lift ]?: XN — Xy is regular at
PN = cxy (V) and such that f is monomial at py in the coordinates that have En,Fy and

Ey, Fyy for axis respectively.

Proof. Apply Theorem[3.1.9]to f : X --» X. There exist completions ¥, Z above X such that the
lift F : Y — Z of f is regular and monomial at every point. Let Ny = max {N : Y is above Xy}
and define Nz in the same way. By construction, the morphism of completions 7 : Y — Xy,
consists of blow up of points that are not py,. The same holds for T: Z — Xp,. This shows
that the lift f : X, --» X, is defined at py,. We therefore have that f(py,) = pn, because
f+(V«) =MV, and f is monomial at py, in the coordinates that have ENY7FMy and Ey,, Fy, for
axis respectively by Theorem[3.1.9, We set M = Nz. If Ny < M, we keep blowing up py, until
Ny = M. This does not change the result because in local coordinates the blow up is given by a
monomial map 7t(u,v) = (uv,v) where u and v are local equation of the prime divisors at infinity

to which the center of v, belong. [
Using this we show
Proposition 4.2.12. There exists a completion Y such that

(1) The liftf: Y — Y isdefined at p = cy(V+);

~

(2) f(p) = p;

(3) If E,F are the two divisors at infinity such that p = E N F, then E and F are both con-
tracted to p by f

(4) Define fo : Vy(pimy,) — Yy (psmy). For all e Vy(p;my), fimu — Vv for the weak
topology of Vy(p;m,).

Furthermore, If Z is a completion above Y, then (1)-(4) remain true.

Proof. Let N > M given by Proposition d.2.11] We still write f : Xy --» Xjy for the lift of f
and 7 : Xy — Xy for the composition of blow ups. Let x,y be local coordinates at py such that
Ey = {x =0} and Fy = {y = 0} and let z, w be local coordinates at pys such that Ey; = {z = 0}
and Fjy = {w = 0}. Both maps f and © are monomial at py with respect to these coordinates.

Write
fxy) = (x40, x9). (4.57)

Consider the tree ‘VXM (p,,; Em) with its order <y, its skewness function o and the generic

multiplicity function by,. This tree is rooted in ordg,, and Fj, defines the end v,, that we denote
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by vg,. Let vg, = mordEN7VFN = mordpl\,. Suppose without loss of generality that
VEy <M VEy. Consider the tree Vx, (pn;En) with its order <y and skewness function oy. We
have by Proposition item (2) that the map 7, : Vx, (pn; En) — Vx,,(Pm; En) is an inclu-
sion of trees. Hence, the orders <js, <y are compatible and Vx, (pn;En) is naturally a subtree
of V%,,(pm; Ey) via the map .. We also have the map f. : Vx, (pn; En) — Vx,, (v Em). The
root of Vx, (pn;En) is ordg, and Fy defines the end Vy in Vx, (pn; En) that we also denote by
VEy. We have that ordg, <y Vi <y VE,. Using Equation (4.57)), we can write

J«V

Vve (VXN(pN;EN)7 f.(V) = a—i—bv(y)'

(4.58)
Now, both maps f, and m, send the segment [ord Ey,Vp, | into the segment [ordg,,,VE,] via
a Mobius transformation. Indeed, if vy, € Vx,(pn;Ey) is a monomial valuation at py, then

f¥V1s = Vaybr c+1a and one has by Lemma 3.4.13|and Equation (4.58)

c+oy(viy)d

a+aN(V]7t)b :Mf(aN(Vl,t)) (459)

(XM(fovl,t) = Oy (Vl ﬂ) =
Ya+tb

) ) ) ) . [d c
Where M is the Mobius transformation associated to the matrix . We can do the same
a

process with the map 7, to get a Mobius transformation represented by a matrix My. Set M to

be the Mobius transformation Mo My .

Lemma 4.2.13. The Mébius map M is loxodromic with an attracting fixed point t,, = Oy (Te V)
and the multiplier of M at t, is < , /;t—% < 1.
In particular, for every Vi,va € Vx, (pn;En) close enough to V.. such that vi < Vi < Va,

fo([V1,V2]) € [ReV1,TeV2].

Proof of Lemma First of all, M cannot be of finite order. Indeed, for every v € [Vg,,, Vg, ]
sufficiently close to v, we have Z, -0* > 0 since 0% -0, = 1. So fl'v — v, by Propositionm

We know that M(t,) = t, and we want to show that |[M’(z,)| < 1. The only way that the
proposition is not true is if #, is a parabolic fixed point of M. This means up to reversing
the orientation that 7, is attracting for ¢ < t, sufficiently close to z, and ¢, is repelling for
t > t, sufficiently close to 7. In particular, there exists #' such that the segment [¢,7,] is sent
strictly into itself, so we can iterate M on it, and there exist two constant c1,cy > 0 such that
L < |M"(s) —t.| < 2. We will show that we have actually an exponential speed of convergence

and this leads to a contradiction. Let v be the valuation centered at py such that oy (TeV) =1/,
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we can suppose that v is divisorial up to shrinking [¢',z,]. Since f?v — V., we have Z, -8* > 0.
We have by Equation (3.68))

1 . 7\’2 k/2
420 Bu = 0. En) -0 + 0 (32) (4.60)
A M
1 . 7\’2 k/2
—k(f*ZV)-FMz (0. Fy)(Zy-06%)+ 0 <—2) . (4.61)
A M
Using Lemma [3.4.13| we get that
fiZy - Fy 9*(FM)’ <7M2)k/2
M* (o (maV)) — 1] = —~ =0 (= : 4.62
(omm¥ ) =te| = [z, BB~ O\ \22 “6
Therefore the speed of convergence is exponential and this shows that |[M’(z.)| < 1. O

End of Proof of Proposition4.2.12, By Lemma{4.2.13| pick vi,v, € Tk, (pn;Ey) divisorial
sufficiently close to v, such that

OI'dEN <N V1 <N Vi <Ny V2 <N VFy (463)

and
fo([V1,v2]) € [revi, V2] (4.64)

Let Uy = {V: V1 <V AVE, <Va2} < Vx,(pn;En). It is clear that vy, ¢ Uy. Let y € Ox,, 5, be
such that vy >y fo([V1,V2]). Let yy, -,y € O?NT,N be irreducible such that f*y =y ---y,.
We can shrink the segment [v},V;] to make sure that none of the y; belong to Uy (see Figure
[.5)). If this is the case, then for all u € Uy, set i = u A Va, then for all i

and
M N VEy :,Tl/\VFN- (4.66)

Now, for all u € Uy, by Equation (4.58) and Proposition [3.4.3]

Cou(fry) 2o (A vy m (W)
Sarbl) T atbal) 6D

(forr) ()
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By Equations (4.63]) and (4.66), we get

(fer) (W) = (fel) (). (4.68)

This means that
Vue Uy, oy ((forr) A Vy) = 0 ((fofl) A Vy). (4.69)

In particular, fo(Uy) € Te(Uy). So we can iterate f, on Uy.

Figure 4.5: An f,-invariant open subset of V., irrational case

Proposition 4.2.14. For every ue€ Uy, flu — V. for the weak topology.

Proof. Let ue Uy and let i1 := u A vo. We have flu — v, for the strong topology by Lemma
By equation (4.60), we have fJ'u A Vo = flfi A V2. Therefore for ¢ € Oy, p, irreducible
and for n large enough, F'u A vy = flii A V. Therefore,

fou(@) = an(fiu A ve)my (@) (4.70)
= o (foll A Vo)my(9) (4.71)

= fou(o) P V(@) 4.72)

]
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Now pick a completion X above Xy such that for i = 1,2, the center of v; is a prime divisor
E; at infinity such that E; and E, intersect at a unique point p. We have cx(v.) = p. The
open set Uy € Vx, (pn,En) is the image of ¥x(p). Since foUn € Te(Uy), this shows that
f«Vx(p) € Vx(p). Therefore by Lemma the lift f : X --+ X is defined at p, f(p) =p
and since f, contracts the segment [vi, V] we have that f contracts Ej and E, to p. We have
for every ue Vx(p;m,), fiu— v, by Proposition

If Y is a completion above X, then cy(v.) = F] n F, where F; is a prime divisor at infinity
because V., is irrational. The segment [V, , VF, | is a subsegment of [Vg,, Vg, | and the same proof

applies. This shows that Y satisfies also Proposition 4.2.12 O

4.2.3 Attractingness of v., the divisorial case

Suppose that v, is divisorial and let X be a completion such that the center of v, on X is a prime

divisor E at infinity. Since f, ordg = A; ordg we have that f induces a rational selfmap of E.

Lemma 4.2.15. Either there exists an integer N > 0 such that fN admits a noncritical fixed

point on E, or E is an elliptic curve and f| is a translation by a non-torsion element of E.

Proof. The rational transformation f induces a rational selfmap on E. If E is rational, then
E ~ P! and it admits a noncritical fixed point. If E is of general type, then some iterate of f
induces the identity on E. Finally, if E is an elliptic curve, then E is isomorphic to C/A for
some lattice A, f liftstoamap F : ze€ C— az+b. If a =1, then F is a translation. Otherwise

F and hence f|r admits a noncritical fixed point. [

Suppose chark = 0 and k = C. In the case where f|£ is not a translation by a non-torsion
element on an elliptic curve, f defines a holomorphic fixed point germ at p and we can proceed
as in [EJO7] §5.2 to show that there exists a completion X that contains a prime divisor E at
infinity such that p = E n Ep and f, maps the segment of monomial valuations Vg, Vg, ]| strictly
into itself. Here is how to proceed.

Set Xo = X, po = p. Define the sequence of completions (X,) as follows: m, : X1 — X,
is the blow up of X,, at p, and p,,4 is the intersection point of the strict transform of E with
the exceptional divisor of 7,4 1. We still denote by E its strict transform in every X,,. For every

n, we have fig(pn) = pn and if f : X, --» X is defined at p,, we have f(p,) = p. We apply
Theorem [3.1.9]to get

Proposition 4.2.16. There exists integers N = M such that the lift f : Xy --+ Xy is defined

at py, f(pn) = pm. Furthermore, there exists local coordinates (x,y),(z,w) respectively at
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PN, Pm such that x = 0 and 7 = 0 are local equations of the strict transform of E in Xy and Xy

respectively and f is monomial in these coordinates.
The proof is the same as in Proposition 4.2.11]
Proposition 4.2.17. If v, is divisorial, there exists a completion X such that
(1) cx (V) is a prime divisor E at infinity.
(2) E intersects another prime divisor Eqy at infinity.
(3) Up to replacing f by an iterate, f : X --+ X is defined at p, f(p) = p.
(4) pis a noncritical fixed point of f|g.
(5) f leaves E invariant and contracts Ey to p.

(6) Define fo: Vx(p;E) — Vx(p;E), then for all u € cVx(p;E), flu — ordg for the weak
topology.

Ifn: (Y,Exc(n)) — (X, p) is a completion exceptional above p, then all the item above remain

trueinY.

Proof. Let N > M be as in Proposition f.2.16] Let F : Xy --» Xy be the lift of f. We can
suppose that N > M and denote by 7 : Xy — Xj; the morphism of completions. We therefore
have amap f, : W(pn,E) — Vx(pm,E). Again, the tree V¥ (py, E) is a subtree via the map T,
and they are both rooted at the divisorial valuation ordg.

Let (x,y),(z,w) be the local coordinates at py and pys respectively given by Proposition
We have that x = 0 is a local equation of E in Xy and z = 0 is a local equation of E in
Xum.

flx,y) = <x“yb,xcyd) ) (4.73)

Since we know that E is not contracted by f we actually have ¢ = 0. We can therefore write

fxv
Vv e 1, E),  folv)= ———. 4.74
€ XN(pN ) f( ) a+bv(y) ( )
(Recall from §3.4]that Vx, (p,;E) is defined by the normalization v(E) = 1). We have
fulordg,vy] < [ordg, v, ] (4.75)
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and the map is given by the following formula

foVis =V, . (4.76)

As in the irrational case, we can consider the matrix My and My and study the type of the
Mobius transformation induced by M; ! o M . Since ordg is a fixed point, we show that it is not
repelling on the segment [ordE,Vy].

Let vo € [ordg,V,,] be a divisorial valuation. We have f.(|ordg,Vo]) < [ordg,Vv,]. Let
Uy = {u:ordg SuAvy<vo} < Vx,(pn:E). It is clear that vy ¢ Uy. Let y € Oy, p, be
irreducible such that vy > f,([ordg,vo]). Let yi,---,y,,€ 6XN,,,N be irreducible such that

f*y =vyi---y,. Up to shrinking the segment [ordg, Vo] we can suppose that none of the vy,
belong to Uy (See Figure [4.6)). If this is the case, then for all u € Uy, set it = u A Vo, then for all
i

MAVy, =UAVy, UAVy=[AVy. 4.77)
Now, for all u € Uy, by Equation and Proposition [3.4.3|

u(f*y) Zka’NCU/\V\IIk)m(Wk).

(for) (W) = atbu(y) o+ buly) (4.78)
By Equation (4.77)), we get
(fer) (W) = (fert) (W) (4.79)
This means that
VYue Uy, opr((forr) AVy) = oar((foll) A Vy). (4.80)

If v e V,, is divisorial such that Z, - 6* > 0, then # fiv — v, by Proposition 4.2.2| Then, there

exists No = 1 such that for n > Np, 5 o fI'v € Uy. Replace v by — 0 _L_¢No (v). If ordg was a repelling
fixed point, then we could not have f'v — v, by Equation m and (4.80). Therefore, we can
pick vo such that f,[ordg, Vo] € Te[ordg, Vo). In that case fo(Uy) € Te(Uy). So we can iterate
fe on Uy.

Proposition 4.2.18. For all ue Uy, fllu— ordg for the weak topology.

Proof. The proof is similar to the proof of Proposition 4.2.14, Let u € Uy and set g = u A V.
Since ordg is an attracting fixed point for f, and f,[ordg, V| € [ordg, Vo], we have fii — ordg
for the strong topology. Then, by Equation (4.80), fi'u A vo = fi1i. Let @ € Oy, py be irreducible
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Figure 4.6: An f,-invariant open subset of 1V, divisorial case

such that @ is not a local equation of E, then for n large enough

Fou(@) = ag(fou A ve)me (@) (4.81)
= g (fl A Ve)me(@) (4.82)

= o (fo)me (@) ——0 (4.83)

O

Let Ey be the divisor associated to the divisorial valuation vy and let Z be a completion
such that cz(vp) is the divisor Ey and such that Ey n E is a point p. Then, the open subset Uy
corresponds to V% (p) and we have f. V4(p) = Vz(p). By Lemma[4.1.12] we have that the lift
f: Z — Z is regular at p, f(p) = p and since we know that f,vo < Vo and f,ordg = A (f)ordg
we have that fcontracts Ey at p, E is f-invariant and for all u€ V%(p;E), f'u — V. by Propo-
sition 4.2.18l

If ©: (Z',Exc(n)) — (Z,p) is a completion exceptional above p, then Exc(n) is a tree of
rational curves, let E, be the irreducible component of Exc(m) that intersect the strict transform
of E. Then E|, corresponds to a divisorial valuation v( such that ordg = v, < Vvj; < Vo and all
the proofs above apply so Proposition holds also for Z’. [

Lemma 4.2.19. When v, is divisorial, A\ < Ay, with equality if and only if fip : E — E has
degree 1.

Proof. Let X be a completion such that the center of v, is a prime divisor E at infinity. Since
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f«V« = A1Vy, we have that f*E = A E + R where R denotes an effective divisor supported at
infinity. Now, we also have f.E = dE + R’. From the equality f. o f* = A,id, we get that
Aid < Ay. In particular, A} < A;. O

4.2.4 Local normal form of f

We are now ready to proof Theorem

Proof of Theorem Suppose V.. is infinitely singular. From Proposition .2.3] there exists
a completion X such that cx(v.) =: p € E is a free point, f : X --+ X is defined at p and
f«(Vx(p)) € Yx(p). We need to show that the germ of holomorphic functions induced by f
at p is contracting and rigid. It is clear that E € Crit(f) (Recall the notations from . It
Crit(f) admits another irreducible component, it induces a curve valuation in Vx(p), we can
blow up p to get another completion above X satisfying Proposition such that Crit(f)
does not admit any other component than E. Thus, f is rigid at p it remains to show that it is
contracting. Let (x,y) be local coordinates at p such that x = 0 is a local equation of E. Since
V.(E) > 0 and f,v, = AV, we get that f*x = x7‘1(p with @ € O}?,p and A > 2. Now, since E is
contracted by f, we get that f*y = x\y with y € Ox , but since f is dominant we have y € m,,.
Hence, we get that

fx,y) = (Mo,xy) (4.84)

with ¢ € Oy , and y € m,. Consider the norm || (x,y)|| = max(|x[, [y|) associated to the coordi-
nates x,y and let U™ be the ball of center p and radius € > 0. If € > 0 is small enough, then U*
is f-invariant and f(U*) € U*, so f is contracting at p. Finally, there are no f-invariant germ
of curves at p. Indeed, if ¢ € O/X} is f-invariant, then foV¢y = Vo. But we have by Proposition
that f'vo — v, and this is a contradiction. Thus, we get that f has the local normal form
of with a = Ay. If k = C, Looking at the classification of the rigid contracting germs in
dimension 2, we see that f is in Class 4 of Table 1 in [Fav00] hence of type (3.2) thus there
exists local analytic coordinates (z,w) at p

~

fz,w) = (%, AW+ P(2)) (4.85)

where a > 2,¢ > 1,A e C* and P is a polynomial such that P(0) = 0. Since E is the only germ
of curve contracted by f (all the other germs of analytic curves are contained in X they cannot

be contracted to p by f since f is an endomorphism of Xj), we have that z = 0 is a local equation
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of E. We infer v (z) = V.(E) > 0 and therefore
MV (2) = fiva(z) = Vi (29) = a- v« (2); (4.86)

thus A = a € Z>(. Furthermore, since f does not have any invariant germ of analytic curve, we
get that P = 0.

Suppose now that v, is irrational, by Proposition 4.2.12] there exists a completion X of Xy
such that the lift f : X --+ X is defined at p = cx(V«), X contains two divisors at infinity E, F
such that p = En F and f contracts both E and F at p. It remains to show that f is contracting
and rigid at p. First we can suppose up to further blow ups that Crit(f) N Xo = J. Therefore f is
rigid, now since both E, F are contracted to p, f is contracting. Finally, there are no f-invariant
germs of curves at p since for all ue Vx(p;m,), filu — v. by Proposition Let (z,w) be
local coordinates at p associated to (E,F). We have that f is of the pseudomonomial form

Flzw) = (Z“wb(p,zcwdq!). (4.87)

with @,y e O§7 » and a,b,c,d > 1 since E, F are contracted to p. Notice that f, ordg = v, and
fxordr = v, 4. Consider the segment of monomial valuations / centered at p inside Vx(p;m,)
we have that f, : I — I is injective, therefore (a,b) is not proportional to (c¢,d). Furthermore
the open subset U* corresponding to the ball of radius € > 0 is f-invariant for € > 0 small
enough and f(U*) € U*. In that case, we show that A;(f) is the spectral radius of the matrix
A= 4 Z , hence an algebraic integer of degree 2. Indeed, v, = v,; where (s,?) is an eigen-

c
vector of A for the eigenvalue A;. Since Vv, is irrational, we have s/t ¢ Q and therefore A; ¢ Q.

Now, when we iterate f, we get that f” is pseudomonomial with monomials given by the matrix

Al (V*(Z)> v <s> (4.88)
Vi (w) t

If k = C, then f is in the class 6 of Table 1 of [Fav00]. Hence it can be made monomial and

A", hence we get

there exists local analytic coordinates x,y at p such that

flx,y) = (,x99) (4.89)

It is clear that (x,y) is associated to (E,F') since these are the only two germs of curves con-
tracted by f.
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Now finally, suppose that v, is divisorial. Take a completion X as in Proposition Let
p = E nEy with v, = ordg. The lift f : X --» X is defined at p. Up to further blow-ups we
can suppose that Crit(f) n Xo = &J. Therefore, Crit(f) < E U Ey which is totally invariant as
f+Vx(p) € Vx(p) so fisrigid at p. There are no f-invariant germs of curves apart from E at p
since for all u € Vx(p;E), f'u — ordg by Proposition Let (x,y) be local coordinates at
p associated to (E, Ep). Since f, ordg = Ajordg with A} > 2 we have f*x = x7“1(p with @ € Ox .
Since no germ of curve is sent to E apart from Ey, we have that up to multiplying x by a constant
that f*x = x’“'y”(l + ¢) with @ € Ox . Then, Ey is contracted to p so f*y = y“y with y € O}}(’p
and ¢ = 1 since p is a noncritical fixed point of f|z. Hence, in these coordinates the local normal

form of f is (3.6):

A~

Fley) = (¥ (1+ @) (1 + ) (4.90)
witha =Xy > 2,6 > 1,Ae C* and ¢(0) = y(0) = 0. O
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4.3 General case

In this section, we extend Theorem |A| to the general case, without assuming A* = K> or
Pic? (Xp) = 0. We rely on the universal property of the quasi-Albanese variety (see [SerO1]]),

as well as on the geometric properties of subvarieties of quasi-abelian varieties (see [Abr94]).

4.3.1 Quasi-Albanese variety and morphism

Let G be an algebraic group over k with k algebraically closed. We say that G is a quasi-abelian
variety if there exists an algebraic torus 7' = (G}, an abelian variety A, and an exact sequence of
k-algebraic groups

0-T—-G—-A—0. (4.91)

Theorem 4.3.1 (see [SerO1l], Théoreme 7). Let X be a variety over K, then there exists a quasi-
abelian variety G and a morphism q : X — G such that for any quasi-abelian variety G' and
any morphism @ : X — G’ there exists a unique morphism g : G — G’ and a unique b € G’ such
that

¢=g0°gq.

Moreover, g is the composition of a homomorphism Ly : G — G’ of algebraic groups and a

translation Ty : G' — G’ by some element b € G'.

Such a G is unique up to (a unique) isomorphism. It is called the quasi-Albanese variety
of X and it will be denoted by QAIb(X); the universal morphism ¢ : X — QAIb(X) is “the”

quasi-Albanese morphism (it is unique up to post-composition with an isomorphism of G).

Proposition 4.3.2. Let Xy be an affine variety. Then k[Xo]* = k* and Pic®(Xy) = 0 if and only
if QAIb(Xo) = 0.

Proof. Let G = QAIb(Xp) and ¢ : Xo — G be a quasi-Albanese morphism. Let
0->T—>G5>A—0. (4.92)

be an exact sequence, as in Equation (4.91)). Let X be a completion of X, such that wo g extends
to aregular map tog: X — A.

Assume k[Xp]* = k* and Pic’(Xo) = 0. Then, mog(Xp) is a point in A, and composing
g with a translation of G, we can assume that this point is the neutral element of A. Then,
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4.3. General case

q(Xo) = T, so g is a regular map from Xj to an algebraic torus, and k[Xp|* = k* implies that
q(Xo) is a point. This shows that QAIb(Xp) is a point.

Now, suppose that k[Xp|* # k*, then any non-constant invertible function Xy — k* pro-
vides a dominant morphism to a 1-dimensional torus, so dim(QAIlb(Xp)) > 1 by the universal
property. And if Pic®(Xo) # 0, the Albanese morphism also shows that dim(QAIb(Xp)) > 1.
This concludes the proof. 0

In the following, we show that if Xy is an irreducible normal affine surface with non-trivial
quasi-Albanese variety and f is a dominant endomorphism of Xy, then A;(f) is a quadratic

integer. See Proposition 4.3.6)below. We will rely on the following result.

Theorem 4.3.3 (Theorem 3 of [Abr94)). Let Q be a quasi-abelian variety and let V be a closed
subvariety of Q. Let K be the maximal closed subgroup of Q such thatV + K =V. Then, the
variety V /K is of general type.

4.3.2 Dynamical degree in presence of an invariant fibration

Proposition 4.3.4 (Stein Factorization). Let X, S be projective varieties and let f : X — X be
a rational transformation. Suppose that there exists @ : X — S and g : S — S such that the

following diagram commutes,

x -1 x
o Lo
s—f% 59

Then there exists a variety S and morphisms Y : X — S, T : S — S such that

-

*p=Toy,
* T is finite and ¥ has connected fibers

* there exists a rational transformation g : S --+ S such that the diagram

X --Iox
l\l’ \
s--f..3

T lﬂ:
s—% .5
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commutes.

Proof. The existence of S along with 7 and  is due to Stein Factorization theorem: It is known
that one can take S = Specg @+ Ox where Specg is the relative Spec; that is for every affine open
subset U of S, one has

' (U) = Spec Ox (¢~ (U)). (4.93)

Now to construct g, take affine open subsets U and V of S such that U = g~!(V). Suppose also
that ! (U) and ¢~ !(V') do not contain any indeterminacy of f. To construct

By (U) =7 (V) (4.94)

we use the map f* : Ox(¢~!(V)) — Ox(¢~'(U)) induced by f; this is well defined since
o L U) < f~Y (o7 1(V)). Itis clear that yo f = go. O

Proposition 4.3.5. Let S be a quasiprojective surface and f be a dominant endomorphism of
S. Suppose there exists a quasiprojective curve C with a dominant morphism 1t : S — C and an
endomorphism g : C — C such that mto f = gon. Then, the first dynamical degree of f is an

integer.

Proof. Let X be a completion of S; f extends to a rational transformation of X. We can also
suppose that C is a projective curve, and then we apply Theorem [4.3.4] to suppose also that 7
has connected fibers.

Let P be a general point of C and H an ample divisor of X. We have by [DN11, Trul3] that

A1 (f) = max (Ai(g), M1 (fin))) (4.95)

where A (g) is the integer given by the topological degree of g and
. _ 1
M(fir) i=Tim (H - (7)an ' (P) " (4.96)

Since C is a curve and 7 is dominant we have that 7 is flat ([Har77] Proposition I11.9.7) so for

any point P € C,

» ©~!(P) is an irreducible curve Cp and the topological degree of f : Cp — Cy(p) 18 an

integer d that does not depend on P

* d-diop(g) = A2(/):
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Indeed, consider the following O-cycle in S x S:
o(P) = (miCp) - (m5H) -T'y (4.97)
where 71,7 : § x S — S are the two projections and I's is the graph of f. The degree of o(P) is
dego = (H - Cypy) -deg(f : Cp — Cy(p))- (4.98)

Now, since C is a curve the morphism mom; : § x § — C is flat, therefore deg(o(P)) does not
depend on P ([Ful98] §20.3) and since 7 is flat, the intersection number (H - Cp) does not depend
on P either. Therefore, deg(f : Cp — Cy P)) is an integer d independent of P. Hence, we infer

M (fin) = lim (H - (f)en'P) =d- lim (H - n'P) U _ g (4.99)

and we get that A; (f) is the integer max(d,A;(g)). O

4.3.3 Dynamical degree when the quasi-Albanese variety is non-trivial

The goal of this section is to show the following proposition.

Proposition 4.3.6. Let Xy be an irreducible normal affine surface and f a dominant endomor-
phism of Xo. Suppose that QAIb(Xy) is non-trivial, then A (f) is an integer or a quadratic

integer.

Set Qp = QAIb(Xp) and let g : Xo — Qo be a quasi-Albanese morphism. Let V = g(Xp) be
the closure of the image of Xy in Qp. By the universal property, there exists an endomorphism
g of Qg such that

gof=goq (4.100)
8(z) = Ly(z) + by (4.101)

for some algebraic homomorphism Ly : Qg — Qo and some translation z — z + b, (here, we
denote the group law by addition). In particular g, defines a regular endomorphism of q(Xo)
and since f is dominant, so is gv- As in Theorem set K ={xe Qp; x+V =V}. Then,
denote by my : V — V /K the canonical projection onto the quotient.

Proposition 4.3.7. There exists an endomorphism g' : V /K —V /K such that g’ o1ty = Tty o g}y .
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Proof. We have to show that g|y is compatible with the quotient map. Take veV and k € K.
Sincev+keV, g(v+k)eV. Now,

gv4k)=Ly(v+k)+bg=Le(v)+Lg(k)+bg = g(v)+Lg(k). (4.102)

Thus, Lg(k) +g(V) = V. Taking the closure and knowing that gy is dominant, we have
Lg(k) +V = V. Therefore, L,(k) € K and gy is compatible with the quotient modulo K. O

Case dimV /K =2 - In that case, the map iy og : X — V /K is generically finite. Since V /K
is of general type, g’ has finite order: there is some positive integer n such that (g')" = Idy /K-

Thus, f is also a finite order automorphism, and A;(f) = 1.

Case dimV /K =1 —In that case Ty o ¢ induces a fibration of X, over a curve of general type
and we conclude that A (f) is an integer by Proposition[4.3.3].

Case dimV /K =0 - This means that V is equal to K up to translation. Therefore, by the
universal property of the quasi-Albanese variety, K =V = Qg and ¢q : X9 — Qo is dominant.

If dimQp = 1, then f preserves a fibration over a curve and Proposition {.3.5|implies again
that A; (f) is an integer.

Suppose now that dim Qg = 2. Then g is generically finite, so that A;(f) = A;(g). A priori,
there are three possibilities.

The first case is when Qg is a 2-dimensional multiplicative torus. In that case, g is a mono-
mial endomorphism: in coordinates, g(x,y) = (ox*y’, Bx“y?) for some o, B in k* and some
integers (a,b,c,d) with ad — bc # 0; then, A (g) is the spectral radius of the 2 x 2 matrix

a b (4.103)
c d ]’ '

Thus, it is the maximum of the moduli |A|, || of the eigenvalues of this matrix and, as such, it

is an algebraic integer of degree < 1.

The second possibility is that Qg is an extension of an elliptic curve A by a one dimensional
torus G,,; then, the projection Qp — A is g-equivariant, and Proposition implies that A (g)

is an integer.
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The third and last possibility is that Qg is an abelian surface. Let X be a (good) completion
of Xy such that g extends to a regular morphism gx : X — Qp. Pulling back a regular 2-form
by ¢, we see that the Kodaira dimension of X is non-negative. If it is equal to 2, a positive
iterate of f is the identity, so A;(f) = 1. If it is equal to 1, the Kodaira-litaka fibration gives
an f-invariant fibration and Proposition implies that A;(g) is an integer. Thus, we may
assume that the Kodaira dimension of X vanishes. Since the dimension of the Albanese variety
of X is 2, the classification of surfaces implies that X is a blow-up of its Albanese variety Qy,
and gy is the inverse of this blow-up. In particular, gx is a birational morphism, it is one-to-one
on the complement of its exceptional locus Exc(gx).

Set B = gx(0xXop). Since dxXp supports an ample divisor, B is a curve (0xXp cannot be
contracted by gyx).

Let p be an indeterminacy point of f : X --+ X and C be the total transform of p by f. Since
C is a union of rational curves and abelian surfaces do not contain rational curves, gx(C) is a
point. Moreover, this point must be contained in B. Thus, g(B) = gx(f(0xXo)) is contained in
B, and B is g-invariant. Also, since Xy does not contain any complete curve, each component of
Exc(gx) must intersect dx X, and gx (Exc(gx)) < B.

Composing ¢ by a translation we may assume that B contains the neutral element o of Q.
Let By be an irreducible component of B containing 0. Then, some positive iterate g" of g
preserves By. If the genus of By is > 2, gp has finite order and By generates the group Qo, so
g has finite order, so does f, and A;(f) = 1. Thus, we can now assume that the genus of each
component of B is 1, each component being a translate of some elliptic curve.

If B is irreducible, the quotient map Qyp — Qo/B is g-equivariant and we conclude again by
Proposition If there is an irreducible component By of B with g(Bg) = Bo + b for some
b € Qp, we conclude in the same way.

Now, we can assume that B is reducible and g(By) is not a translate of By. There is an integer
n > 1 such that the curve By is periodic of period n, i.e. By, By := g(Bo), .... B,_1 = g" ' (By) are
pairwise distinct, and g"(By) = By. Taking some further iterate g"”, and changing the position
of the neutral element, we can suppose that o is a point of intersection of By and B and that
g""(0) = o. Let d denote the degree of g" along By; since g maps By to By, d is also the degree
of g" along B;. If d = 1, then f and g have A; = A, = 1.

Let us now assume d > 2 and derive a contradiction. On By, the pre-images (gfg; ) X(z)
form a dense subset of By; the same is true for B;. The homomorphism By x By — Qg given by
addition is an isogeny, so the preimages of any point of Q¢ under the action of g form a dense

subset of Qp. Let z be a point in Exc(gy), then its preimages should be dense, but this would
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imply that f maps some point in the interior of X into the boundary dxXp. This contraction

concludes the proof.
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4.4 The automorphism case

Here we suppose that Xy is an irreducible normal affine surface that admits a loxodromic au-
tomorphism over a field of characteristic zero. In this situation, we can actually deduce a lot
more from the result of Section[4.1] In particular one can first check that Xj has to be rational,
see [DFOI] Table 1 Class 5. So the condition Pic’(Xp) is automatically satisfied. We change
the notation for this section, we will denote 6* and 0, by 01 and 0~ respectively. So that

(f£1)*6* = 1,6%. By Proposition 4.1.15|and Theorem 4.1.16} we get that
» 01,07 € Weily, (Xo) nL?(Xo) and they are both effective.

* 8t =Z,_ and 6~ = Z,, where v, is the eigenvaluation of f and v_ the eigenvaluation
of f~1.
Proposition 4.4.1. Let Xy = SpecA be a rational affine surface such that A* = k> and let f be

a loxodromic automorphism of Xy, then

(1) The eigenvaluations v, V_ of f and f~1 respectively are of the same type.
(2) If A € Z>, then v and v _ are infinitely singular.

(3) If A € R\Z>( then v, and v_ are irrational.

Proof. If the eigenvaluation was divisorial, then we would get by Lemma 4.2.19|that A; < A,
and this is absurd because A; > 1, f being loxodromic. The dichotomy of the type of eigenval-
uation follows from Theorem and the fact that A (f) = A (f~1). O

Corollary 4.4.2. In that case, the nef eigenclasses 0~ and 0" verify
(67)*=(67)>=0

and in any completion X of Xy one has (9;7’)2 > 0.

Proof. The equalities (87)? = (6%)% = 0 come from Theorem [3.2.28| (3.71)). Since the eigen-
valuations are not divisorial, 8~ and 8 are not Cartier divisors by Corollary therefore for
any completion X of Xy, (65)% > 0. Indeed, if (85 )2 = 0 then since 8+ is nef, we would get
0y = 6~ O

Let X be a completion of Xy. We have a simple criterion to check whether a divisor at
infinity is contracted thanks to Proposition #.2.2]

Proposition 4.4.3. Let E be a prime divisor at infinity in a completion X of Xo. If Zorg, -0~ >0
then there exists N > 0 such that f contracts E to the point cx (V) .
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4.4.1 Gizatullin’s work on the boundary and applications

In [Giz71a]], Gizatullin considers minimal completions of affine surface. That is a completion

X of Xy minimal with respect to the following property:
» The boundary Jdx Xy does not have three prime divisors that intersect at the same point.

* If dxXp has a singular irreducible component then dy Xy consists only of one irreducible

curve with at most one nodal singularity.

For such a completion 1 : Xp < X, Gizatullin defines the curve E(1) as the union of the irre-
ducible components E of dx Xy that are contracted by an automorphism of Xy (the automorphism
depends on E).

We call a zigzag a chain of rational curves. That is a sequence (E},- -, E,) of rational curves
suchthatE;-E; 1 =1,i=1,--- ,r—1andforalli, jsuch that |i — j| > 2,E;- E; = 0. In particular
the dual graph with respect to the E;’s is of the form

Ey E, E.— E;

We will write E| = E, - - - = E, for the zigzag defined by (Ey,--- ,E,).
A cycle of rational curves is a sequence (E,- - -, E,) of rational curves such that E;- E; | = 1

and E1 - E, = 1. The dual graph with respect to the E;’s is of the form

E>

Theorem 4.4.4. Let Xy = SpecA be an irreducible normal affine surface such that A* = k*
and Pic®(Xy) = 0. Suppose that Xy admits an automorphism f with A (f) > 1. If X is a minimal

completion of Xo, one has E(1) = dxXo. Furthermore we have two mutually excluding cases
(1) A (f) is an integer and in that case E(1) is a zigzag.
(2) M (f) is irrational and E(1) is a cycle of rational curves.

Furthermore, there exists a completion Y with two distinct points p,p— € 0yXo and an integer
N > 0 such that
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« fHps) = ps.
o fEN contracts dyXo to p+.

o N has a normal form at p+ given by Theorem it pseudomonomial or monomial
in the cycle case and of type (3.2) or (3.3) in the zigzag case.

* In the cycle case, this set of properties remains true if we blow up p+ or p—.

* In the zigzag case, the set of completions above Y that satisfy these properties is cofinal

in the set of all completions above Y .

The normal form of f at p+ is monomial in the cycle case and of the form of Theorem 4.2.1|

case (3) in the zigzag case.

This shows Theorem [C| We will prove Theorem {.4.4] in §4.4.2] and §.4.3] We end this

section with some technical result that will be useful in the proof of Theorem 4.4.4]

Lemma 4.4.5. Let X be a completion of Xy and let E be a prime divisor at infinity such that
Zordy - 07 = 0 and E intersects some prime divisor in the support of G;(r , then cx (V) belongs
toE.

Proof. Since 07 is effective and ordg(87) = 0 we get 67 - E > 0 since E intersects the support
of ©T. This implies by Proposition [3.6.6] that cx (v ) belongs to E. O

Lemma 4.4.6. Let Y be a completion of Xy and E a prime divisor at infinity of Y such that
Zordy <07 > 0. If p€ E\{cx(V+)}, then for any divisorial valuation v such that cx (V) = p, one
has Z, -0% > 0.

Proof. Let Z be the blow up of Y at p. Then, 6} = (7*6) + cE for some ¢ € R. Since the
center of v, is not on E , one has 6} E = 0, hence ¢ = 0. Now whether p is a free point on E

or a satellite point, we have Zo, - 0" > Zor, - 67 > 0. N

Lemma 4.4.7. Let Y be a completion of Xy such that the center of V. is the intersection of two
prime divisors at infinity Fi,F>. Then, Zor,, 0" >0o0r Zordr, 0T > 0.

Proof. Recall that 07 is nef and effective. Suppose that Z4,, -0 = 0 for i = 1,2 and let E be

the exceptional divisor above p. Let t: Z — Y be the blow-up at p. Then we have
05 =n*(8y) +cE
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for some ¢ € R. This implies 67 .E = —c > 0 because p+ was the center of v on Y, therefore
¢ <0. But Zoyq,. - 0 = (ZordF1 + Zorsz)G;{ +c¢ = ¢ < 0 and this contradicts the fact that 87 is
effective. L]

Proposition 4.4.8. For any completion Y such that cy (V) is a free point, we have
Supp 6y = dy Xo. (4.104)

Hence, if v+ is an infinitely singular valuation, then for any completion Z, there exists an integer
N > 0 such that =N (07Xy) = p+.

Proof. Let E be the unique prime divisor at infinity such that cy (v ) € E. If Supp8; # dyXo,
there a prime divisor F at infinity such that Zyq, - 6% = 0 and F n Supp G}L # ). By Lemma
we have F = E; therefore Zoq, - 01 = 0. But we have that 9;} = My, for some A > 0
by Proposition So (6;} )2 = 0, but this is absurd by Corollary

For the second assertion, assume that v is an infinitely singular valuation. Let Z be a
completion of Xy. Then, by Proposition [3.3.16] there exists a completion Y above Z such that
cy(vy) is a free point. The first assertion shows that Supp 6% = 0yXp and so the same is true

for Supp 9}:. The fact that some iterate of ft! contracts the boundary on p follows from
Proposition #.4.3] N

4.4.2 Proof of Theorem 4.4.4, the cycle case

In that case it was already proven by Gizatullin that oxXo = E(1).

Proposition 4.4.9 ([EH74, [CAC19]). Let X be projective surface and U an open subset of X
such that X\U is a cycle of rational curves. Assume that X\U is not an irreducible curve with
one nodal singularity. Let g be an automorphism of U, then the indeterminacy points of g can

only be intersection points of two components of the cycle.

Corollary 4.4.10. In the cycle case, the eigenvaluation of a loxodromic automorphism must be

irrational and therefore M\ is an algebraic integer of degree 2, in particular it is irrational.

Proof. Proposition shows that for any completion X of Xy, p;+ = cx(v4) is a satellite
point at infinity. Indeed, since 6T is nef, its incarnation in X cannot be 0. Therefore, there
exists a prime divisor E at infinity such that Zq, .07 > 0 because 07 is effective. Therefore,
by Proposition E must be contracted by f to p. so it must be an indeterminacy point of
£~N. Proposition shows that the eigenvaluations v are irrational. [
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Proof of Theorem Corollary [4.4.10]shows the first part of the theorem. We get the normal
form at p+ by blowing up the center of v+ enough times. Since these are always intersection
points of two prime divisors at infinity we can suppose that dy Xy is still a cycle.

It remains to show that dyXy is contracted by some iterate of f and f~'. Suppose that
there exists a prime divisor E that is not contracted to p4 by any iterate of f. In particular
Zordp - 01 = 0 by Proposition m By Lemma we have that E contains cy(v_) and
f~1 contracts E to p_. And by Lemma and Corollary we have that E is the unique
prime divisor at infinity that satisfy this property. Either f contracts E to a satellite point p # p4
of the boundary or f is sent to a prime divisor at infinity. Indeed, we cannot have f(E) = E,
otherwise E is f-invariant but this contradicts that f~! contracts E. If E is contracted, it cannot
be contracted to p_ because it is not an indeterminacy point of f~!. Therefore, we have that
the center of f, ordg is either another prime divisor at infinity or a satellite point at infinity that
is not the center of v;. In both case, we get fiZyq, - 67 > 0 by Lemma and this is a

contradiction. ]

4.4.3 Proof of Theorem {4.4.4, the zigzag case

4.4.3.1 Some technical lemmas about zigzags

We will say following [GD75, BD11b] that a zigzag Z is standard if it is of the form
Z=F=E=Z7 (4.105)

where F? = 0,E? < —1 and Z is a negative zigzag meaning that every component of Z’ has
self-intersection < —2. Any zigzag can be put to a standard form via blow-up of points and
contractions of (-1)-curves (see [GD75], §1.7)

Following [BD11bl], an almost standard zigzag is a zigzag Z = B| = B, = - - - = B, such that

1. There exists a unique irreducible component By, such that (By)? = 0.

2. There exists at most one component B; such that (B;)> = —1 and in that case we must
have [ = k+ 1.

We need to state some technical results for the proof of Theorem §.4.4] we will need to apply
them to a quasiprojective surface which is not necessarily affine. If U is a quasiprojective
surface, a completion of U is defined in the same way as the completion of an affine surface.

All the results in this Section rely heavily on Proposition [3.1.6|and the Castelnuovo criterion.

177



Chapter 4 — Eigenvaluations and dynamics at infinity

Lemma 4.4.11 (Proposition 3.1.3 of [BDI11bl]). Let U be a quasiprojective surface and X a
completion of U such that X\U is an almost standard zigzag that has no component of self
intersection —1. Let By be the unique irreducible component of nonnegative self-intersection of

X\U. Let g be an automorphism of U, then

(1) g has at most one indeterminacy point q on X.
(2) q has to be on By (if it exists).

(3) If By, is not on the boundary of the zigzag then q must be the intersection point of By with
Bjt1 or Bi—j.

Proof. Suppose that g has an indeterminacy point, then g~! also has one and g has to contract
a curve of the zigzag. Let w: Y — X be the minimal resolution of indeterminacies of g and let
g be the lift of g. Then, the first curve contracted by g has to be the strict transform of By. So g
has at least one indeterminacy point on By.

There cannot be any indeterminacy point g outside of By because otherwise it belongs to
components that have self-intersection < —2 and since the zigzag X\U contains no (—1)-curve
any exceptional divisor above g has to be contracted by g so ¢ is not an indeterminacy point.

Suppose that By is not on the boundary and that the indeterminacy point p of g is not an
intersection point. Then, the map 7 factorizes through the blow-up of p and after contracting
the strict transform of By, we get at infinity three prime divisors that intersect at the same point.
But this is a contradiction because g consists only of blow ups of point at infinity and X\U does
not have three divisors that intersects at the same point.

Finally, there cannot be more than one indeterminacy point on X. Suppose the contrary and
let p1, p> be two indeterminacy points, they both belong to By. Let E1, E> be two exceptional
divisor above p; and p; in Y respectively. They cannot be contracted by g because Y is the
minimal resolution of singularities of g. Therefore, their strict transform is either a (—1)-curve
or a curve with nonnegative self intersection. But this is absurd because X\U does not contain

any (—1)-curve and has only one curve of nonnegative self-intersection. [

Corollary 4.4.12. Let X be a completion of U such that X\U is an almost standard zigzag Z
and let f be an automorphism of U. Suppose that f has an indeterminacy point that is a free
point on By, then one of the two sides of Z can be contracted so that B becomes a boundary

component of the zigzag.

Proof. Suppose that By, is not a boundary component of the zigzag and that f has an indeter-
minacy point that is a free point on By. Then, by Lemma [#.4.T1| By_; or By, has to be a
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(—1)-curve, suppose it is By;1. We contract it and we obtain an almost standard zigzag and f
still has an indeterminacy point that is a free point on By. If By is on the boundary we are done,
otherwise the only (—1)-curve is the strict transform of By, and we keep contracting until By,

becomes a boundary component of the zigzag. [

Lemma 4.4.13. Let U be a quasiprojective variety and X a completion of U such that X\U
is a zigzag of type (—my, -+, —my,—1,— 1, —myy1,---,—m,) such that for all i,m; = 2. Let f
be an automorphism of U. Then the intersection point of the two (—1)-curves cannot be an
indeterminacy point of f.

If the zigzag is of type (—1,-2,..., =2, —1 | —my4y, -+ ,—m,) withm; > 2, then F nE

— ~~
F E

cannot be an indeterminacy point of f.
Proof. Lett: Z — X be a minimal resolution of indeterminacy of f : X — X and let f: Z—-X
be the lift of f. The first curve contracted by f must be the strict transform of one of the prime
divisors at infinity of X. But if the intersection of the (—1)-curves is an indeterminacy point
of f, then all the strict transforms of the prime divisors at infinity of X have self-intersections
< —2 and this is a contradiction.

If X\U is a zigzag Z of type (—1,—2,---,—2,—1,—my 41, -+ ,—m,), suppose that F N E is
an indeterminacy point of f, then the first curve contracted by f must be the strict transform

of the (—1)-curve on the left of the zigzag. So we can start by contracting it and we get a

zigzag Z' of type (—1,-2,---, =2, —1 ,—my,1, -+ ,—m,) and of size #Z — 1. We can repeat
~—
F E
this process until we get a zigzag of the form ( —1 , —1 ,—myyy,---,—m,) and we have that
~— ~~

F E
F N E cannot be an indeterminacy point of f by the previous case, this is a contradiction. [
Lemma 4.4.14. Let f be an automorphism of Xy and let X be a minimal completion of Xy in
the sense of Gizatullin. Then, f defines an automorphism of U = (E(1))¢ < X, the complement

of E(1), i.e the birational map f : X --+ X does not have any indeterminacy point on U.

Proof. Suppose that f admits an indeterminacy point p on some component E; of dxXp with
p¢ E(1). Letm:Y — X be a minimal resolution of indeterminacies for f and let F : Y — X be
the lift of f. The fiber 7~!(p) contains at least one (—1)-curve and we claim that none of the
irreducible components of T=!(p) can be contracted by F, indeed since E| is not contracted,
one can only contract (—1)-curves of ©T~!(p) but that would contradict the minimality of Y.

Therefore, the fiber T~!(p) is not affected by F and neither are the self-intersections in the
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fiber. This would imply that dxXp contains some (—1)-curves that can be contracted and this
contradicts the minimality of X.
]

Corollary 4.4.15. Let Xy, be a minimal completion of the affine surface Xo. The centers
cx,... (V+) must belong to E(1).

We will apply all the results of this section with U = (E(1))¢ < Xpin Where Xpy is @ minimal

completion of X.

4.4.3.2 Elementary links between almost standard zigzags

From now on U = (E(1))°  Xmin Where Xpin is @ minimal completion of the affine surface
Xo. All the results of §4.4.3.1] will be applied to the following situation. If X is a completion
of U (hence of Xp) and f is a loxodromic automorphism of Xy, then some positive iterate of
f contracts a component of X\U to cx(v4). Thus, cx(v4) is an indeterminacy point of some

positive iterate of f~! on X.

Proposition 4.4.16. Let X be a completion of U such that X\U is an almost standard zigzag,
then one can find a completion Y of U with a birational map ¢ : X — Y that is an isomorphism

above U such that

(1) Y\U is also an almost standard zigzag.

(2) Let X be the blow up of X at cx(V4), then the lift @ : X --» Y is defined at cy(Vy) and is

a local isomorphism there.

Proof. Let B the unique irreducible component of X\U of nonnegative self intersection.

Case: B is on the boundary X\U is a zigzag of the form B> E =Z where B> > 0,E*> < —1
and Z is a negative zigzag.

s cx(v,) is a free point on B If E2 = —1, we blow up cx (V) and then contract the strict

transform of E. Let Y be the new projective surface obtained, it satisfies the proposition.

Suppose E2 < —1, If B > 0 we blow up BN E to obtain a new zigzag B=FE’ =Z' which is
still almost standard. We keep blowing up the strict transform of B with the second com-
ponent of the zigzag until B> = 0. After all these blowups, let X’ be the newly obtained
projective surface, we have that X"\U is an almost standard zigzag of the form B>E =>Z
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Case:

where B> = 0,E? = —1 and Z is a negative zigzag. We blow up cy/(v, ) and let E be the
exceptional divisor, by Lemma [4.4.13] the center of v cannot be the intersection point
of E and the strict transform of B, therefore it is a free point of E and we can contract the

strict transform of B. We call Y the new obtained surface it satisfies the proposition.

cx (v4) is the satellite point B n E We blow up B n E and call E the exceptional divisor.
If B > 0in X, then we still have an almost standard zigzag and we call Y the new obtained
surface. If B> = 0 in X, then by Lemma 4.4.13|is a free point of E and we can contract

the strict transform of B, we call Y the newly obtained surface.

B is not on the boundary

cx(v4) is a free point of B By Corollary 4.4.12] one of the two sides of X\U is con-
tractible, so we contract it and call X; the newly obtained surface, we can now apply the

proof of the boundary case to find Y.

cx(vy) is the satellite point B N E We can suppose up to contraction that if X\U con-
tains a (—1)-component, it must be E. We start by blowing up cx (v ) and let E be the

exceptional divisor.

— If B> > 0 in X, then we still have an almost standard zigzag and we call Y the newly

obtained surface.

— If B> = 0 in X, then by Lemma the center of v, cannot be the intersection
of E and the strict transform of B where E is the exceptional divisor. So we can
contract the strict transform of B and we get an almost standard zigzag and we call

Y the newly obtained surface.

]

Corollary 4.4.17. If 0xXo is a zigzag, the eigenvaluation Vv cannot be irrational, hence it is

infinitely singular and A is an integer. Furthermore, U = Xj).

Proof. It suffices to show that the sequence of centers of v contains infinitely many free points.

If not,

we can apply Proposition 4.4.16|finitely many times so that we get a completion X of Xy

such that X\U is an almost standard zigzag and the center of v is always a satellite point. We

show that this leads to a contradiction.
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Case 1: cx(v+) = BN E with E a component of X\U We can suppose after contractions and
blow ups that B> = 0. We will show that we can suppose that B is a boundary component of the

zigzag. The zigzag X\U is of the form Z; < B=>E =Z. Denote by (my,--- ,m,) the type of Z;.

* Case m; > 2 Blow up BN E and call E the exceptional divisor. The center of v has
tobe BAE or E N E, but it cannot be BN E by Lemma So we can contract the
strict transform of B. We get a new zigzag of the form Z; < B’ =Z' with m| = m; — 1 and
#Z, = #Z,.

» Case m| = 1 call Ej the first component of Z;. Blow up B n E. The center of v, is either
BAE or ENE. Either way, we can contract the strict transform of E;. We get a zigzag
of the form Zi <B>E =E=>Z where #Zi =#Z;— 1.

We can apply this procedure recursively, it stops because the sequence (#Z,m,) is strictly
decreasing for the lexicographical order. And we never blow down a curve that contains the
center of v nor do we blow down a curve to the center of v, .

Now that we have that B is a boundary component, we can suppose that X\U is a 1-standard
zigzag. Call E the (—1)-component of X\U, we will show that Zy, - E = +00. Indeed, blow
up BN E and let E be the exceptional divisor. By Lemma the center of v has to be
E nE. If we blow up the center of v again we can still apply Lemma so the center of
v is always the intersection point of the strict transform of E with the exceptional divisor. This

implies that v is the curve valuation associated to the curve E and this is absurd.

Case 2: cx(vy) = Bn C with C a component of dxXo but C~U # ¢J. This means that
cx (v4) belongs to no other component of X\U than B. Using Lemma we can contract
one of the two sides of the zigzag so that B is a boundary component of the zigzag X\U, we
can furthermore suppose that X\U has no (—1)-component. Call m the self intersection of the

component next to B in the zigzag, we have by assumption m < —2.

+ Case B> > 0 let X’ be the blow up of B~ C and let E be the exceptional divisor. Then,
since the strict transform of B has nonnegative self intersection X"\U is an almost standard
zigzag. We must have that ¢y/(v ) € E and by Lemmal4.4.11|cys (v, ) must be B~ E and

we are back in Case 1. This leads to a contradiction.

+ Case B? = 0 Let E be the component on X\U next to B (if it exists). Let X’ be the blow up
of B~ C and let E be the exceptional divisor. By Lemma4.4.13} cx/(V) cannot be B E
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s0 it has to be E n C. Let X” be the blow down of the strict transform of B. The strict
transform of E has nonnegative self-intersection and X”\U is an almost standard zigzag
and cx#(V,) = E nC. Rename E by B in X”. If E> = m in X, then the strict transform
of E in X” satisfies EZ = m + 1. We repeat this procedure until E> = —1. We then blow

down E and we end up back in the case B> > 0 and this leads to a contradiction.

The last case to treat is if X\U is a zigzag containing only B with B> = 0. We will show
in that case that v (C) = +co which is a contradiction. Indeed, let X’ be the blow up of
B~ C and let E be the exceptional divisor. Then, by Lemma cx' cannot be B N E
so it must be E N C. Let X” be the blow up of E ~C andlet E? be the exceptional divisor.
Again, by Lemma cxr(V4) = E® ~ C. By induction, we see that the centers of
v must always belong to the strict transform of C in every blow up, this implies that v

is the curve valuation associated to C and this is absurd.

Thus, v is not irrational. Hence, by Proposition d.4.1| v is an infinitely singular valuation, so
we get that U = X by Proposition #.4.8] O
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4.4.4 A summary and applications

We sum up the content of Theorem #.4.18]in Figure[4.7|and 4.§|

X\ X

O > ~E
/ =

pi = Ind(f™") p_ = Ind(f)

Figure 4.7: Dynamics at infinity of f when A;(f) € Z>o

Theorem 4.4.18. Let Xy = SpecA be a normal affine surface defined over an algebraically
closed complete field C, such that A* = C} and Pic? (Xo) = 0. Let f be a loxodromic automor-
phism of Xo. Then, there exists two unique (up to normalization) distinct valuations centered at
Vi, V_ such that ff'(vy) = Mvyi. Let 0~ = Zy, and 07 = Z, . We have that 87,0~ are nef,

effective and satisfy the following relations

1
ot =nm0", o7 = 7»_9_ (4.106)
1
1
f:01 = }L—9+, f+07 =A6". (4.107)
1
Furthermore we have the following intersection relations: (8%)% = (9_)2 =0and®* -0~ = 1.

We can find a completion X of Xo such that if p+ :=cx(V+), p— :=cx(v_), then
(1) p+ # p—
(2) some positive iterate of fX! contracts 0xXo to p-.
(3) f* is defined at p+, f* = p+ and p+ is the unique indeterminacy point of f*.
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Figure 4.8: Dynamics at infinity of f when A;(f) € R\Q

(4) There exists an open neighbourhood U* of p4. in X(C,) and local coordinates at p such
that fﬁi has a local normal form of (pseudo)monomial type (3.4) or ((3.3)) if M1 (f) ¢ Z >0
or of type (3.2) or (3.3) if M (f) € Z=o.

(5) For all prime divisor E™ of X at infinity such that p, € E™,
ordg+(0) > ordg+(67) (4.108)
(6) For all prime divisor E~ of X at infinity such that p_ € E™,

ordg—(07) > ordg- (67) (4.109)

(7) If M € Z=, then (65,05) € Dive, (X )q is a well ordered pair (cf.
Proof. Any completion provided by Theorem {.4.4]satisfies item (1)-(4). Fix X such a comple-
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tion, we show that there exists a completion above X that satisfy (1)-(6) by successively blowing

up the centers of v, and v_.

Lemma 4.4.19. There exists a completion Y above X such that for all completion Y' above Y,
for all prime divisor E* of Y' at infinity such that cy:(V4) € ET,

ordg+(07) > ordg+(67) (4.110)

Proof of Lemma#.4.19 Recall that 6© = Z, and 8~ = Z,,. Let p, = cx(v4) and replace
v, (and 6T) by their multiple such that v, € Vx(p4;m,, ). Let X, be the sequence of com-
pletions defined by Xo = X and m, : X,,+1 — X, is the blow up of X,, at cx, (v+). Define also
the morphism of completions T, := TyoT 0+ 0T, : X1 — X. Since cx(v4) # cx(v-), we
have that for all n,cx, (V+) # cx,(v—). By Proposition Equation (@.1T]), we have that for
all n,0y =m0y since cx,(v4) # cx, (v—), hence 8y = T;0y. Let E, be the exceptional

divisor of 7, : X;,,+1 — X,. Notice that

Vn =0, Cx((’Cn)*OI‘dEn) =Cx(V+). 4.111)
We have by Proposition |3.4.26| that the sequence v,, := b(+€) ordg, converges strongly towards

V. Therefore, by Corollary 4.1.8] we have
Zy — A0~ 4.112)

where A > 0 such that Av . € Vx(p;m,,). This convergence is with respect to the strong topology
of L2(Xy), therefore we can intersect both sides with 67, to get

Zy, -0~ —0. (4.113)

This means that ordg, (6~) = o(b(E,)) when n — oo. Now, we evaluate Z,, - 6". Since for all

n, B;Enﬂ = ‘EZG;, we get
Zy, 0" =Zy, %1 Ox, ., = (W)sZv, X, 0% =Zv,x 6. (4.114)
If cx(v4) € E is a free point, then by Equation (.111)) and Proposition
Zy,x = (Zv, E)Zowd- (4.115)
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By Proposition[3.6.20, we have that L, (E) > 1. Hence, we get @ ordg, (87) = ordg (67) > 0.

If cx(v4) is a satellite point, i.e cx(vV4+) = E N F where E, F are two prime divisors of X at
infinity, then we get by Equation (4.111)), Proposition 4.1.5/and Proposition that

1
b(En)

ordg, (07) = ordg(0™) + ordr(67) (4.116)

and the lemma is proven. 0

Let Y be a completion above X given by Lemma By the last assertion of Theorem
there exists a completion Y’ above Y that satisfy conditions (1)-(4) and Lemma
shows that Y’ satisfies also conditions (5) and (6). Suppose now that A; € Z~, then the eigen-
valuations v and v_ are infinitely singular, therefore up to normalisation 61,0~ € Weil,, (XO)Q
by Corollary and cx (v ),cx(v—) are free points at infinity. Let ¥ be a completion above
X such that 8} v 0y is defined in Y. By Proposition ,the morphism of completions
n:Y — X is a composition of blow ups of satellite points. Therefore, by Proposition 4.1.5]
8; = 705 and conditions (1)-(6) still holds in Y. O

Proposition 4.4.20. Let Xy be a normal affine surface defined over C,. If f is a loxodromic

automorphism of Xy, then, there are no f-invariant algebraic curves in X.

Proof. Tf dimQAIb(Xp) = 2, then Xp is a finite ramified cover of G2,. It suffices to show the
result for the loxodromic automorphisms of G2,. Any monomial automorphism of G2, does not
admit invariant curves, so the result follows.

If dimQAIb(Xp) = 1, then every automorphism of Xy preserves a fibration over a curve,
hence it cannot be loxodromic.

Finally, if dim QAIb(Xp) = 0, let X be a completion of X, given by Theorem4.4.18] Suppose
that C = X; is an algebraic curve invariant by f. Let C be the closure of C in X. We must
have {p.,p_} n (CndxXo) # &. Indeed, C n dxXj is not empty so let p be a point in it. If
p¢ {p.,p_}, then f is defined at p and f(p) = p,. Since C is f-invariant, we get p, € C.
This means that C defines a germ of an analytic curve at p that is invariant by f but this is not
possible by Theorem4.2.1 0

Corollary 4.4.21. If Xy is a normal affine surface defined over a number field K and f is a

loxodromic automorphism of Xy, then all periodic points of f are defined over K.

Proof. Suppose there exists p € Xo(C)\Xo(K) such that f¥(p) = p. Let G := Gal(C/Q), then
for all g€ G- p, we have fN(q) = q. Since p ¢ Xo(K), the orbit G - p is infinite and its Zariski
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closure G- p < Xo x SpecC has dimension > 0. If dimG-p = 2, then fV = id and this is
impossible because f is loxodromic. If dimG-p = 1, then C = G - p is an f"-invariant curve of

Xo x Spec C. This is impossible by Proposition 4.4.20 0

Corollary 4.4.22. Let X( be a normal affine surface defined over C, such that QAlb(Xy) = 0.

Let f be a loxodromic automorphism of Xo and let X be a completion of Xy from Theorem

If p € Xo(C,), we have two possibilities.

1. The forward f-orbit of p is bounded.
2. (f"(P))nxo converges towards p.

Proof. Suppose that (f"(p)), is not bounded. Since X (C,) is compact, (f"(p)) has an accumu-
lation point g € dxXp. Let U, be the open neighbourhood of p given by Theorem We
must have ¢ € {p,,p_}. Otherwise, since f(q) = p-, if f*(p) is sufficiently close to ¢, then
for all N > Ny + 1, fN(p) € U, and g cannot be an accumulation point. Suppose that ¢ = p—.
Let (x,y) be the local coordinates at p_ over U~ given by Theorem Consider the norm
max(|x|, [y|) over U~. Looking at the normal form of f, for any € > 0 small enough, the ball
B(p_,€) of center p_ and radius €, with respect to this norm, is f~!-invariant and we have
f~'B(p_.,e) € B(p_,¢). Therefore if fNo(p) e B(p_,€), we have p € B(p_,¢). Letting € — 0
we get p = p_ and this is a contradiction. Therefore, the only accumulation point of (f¥(p))n
is p+ and it is the limit of this sequence.

O
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CHAPTER 5

GREEN FUNCTIONS AND DYNAMICS OF
LOXODROMIC AUTOMORPHISMS OF
AFFINE SURFACES

5.1 Berkovich spaces, Adelic divisors and line bundles

5.1.1 Berkovich spaces

Let k be a complete field with a multiplicative norm |-|. We recall the definition and main
properties of Berkovich spaces, for a reference see [Berl2]. If X is scheme over k, we will
write X" or (X /k)* the Berkovich analytification of X.

Definition 5.1.1. (i) If X = SpecA where A is a k-algebra, then X" is the set of multiplica-
tive seminorms on A extending the norm on k. For every x € X' we have a seminorm
|-|, : A — Ry. We will write |P|, as |P(x)|. The topology on X" is the coarsest topology
such that the evaluation maps |f| : X“" — R are continuous. This is the weak topology of

simple convergence.

(ii) If X is covered by an open affine cover {SpecA;}, then X%* is defined to be the union of

the (SpecA;)*" glued in a canonical way. X% has a locally ringed space structure.

If X = SpecA, for any x € X%, the seminorm ||, induces a norm over A/ker|-|,. We can
take the fraction field of A/ker|-|, and complete it with respect to the norm induced by || . This
defines the residue field of x which we denote by H,.

We have a functoriality property, If f: X — Y is a morphism of k-schemes, then it induces

a continuous map f“" : X" — Yy

Proposition 5.1.2 (Topological properties of the Berkovich space). (1) If X is separated and
of finite type over K, then X" is Hausdorff.
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(2) If X is of finite type over K, then X" is locally compact.
(3) If X is projective over K, then X" is compact.

If k = C equipped with the usual norm, then if X is a scheme of finite type over C,
X" =X(C).

Contraction map There is a natural contraction map ¢ : X*" — X defined as follows. Suppose
X = SpecA, then if x € X" the kernel of |-|, : A — H, — R is a prime ideal of A, we let c(x) be
this prime ideal. If p € X is a closed point, then ¢~ !(p) consists of a unique point and we have
a natural embedding X (k) < X", Indeed, let x € ¢! (p), then x induces a norm on the field
K(p) := Ox,p/m,, but ¥(p) is a finite extension of k so there exists a unique extension of the

norm of k to ¥(p).

The reduction map Suppose that k is a complete valued non-archimedean field. We write k°
for its valuation ring and k°° for the maximal ideal of k°. Let X be a projective scheme over
k and let 2 be a model of X. That is a projective k°-scheme 2~ such that the generic fiber
Iy is isomorphic to X. We denote by Z, the special fiber of 2. There exists a canonical
reduction map rg : X" — Z, defined as follows. Recall that we have the contraction map
c: X" — X ~ Zy. For every x € X, let & := c(x), we have a non-archimedean norm on
the residue field k(§) induced by x. Let R be the valuation ring of k(§) with respect to the
norm x. There is a map Spec Rg — Speck® induced by k® — Rg. By the valuative criterion for

properness, there exists a unique lift in the following diagram

Speck(§), ——— 2

| ?l . 5.1)

SpecRg — Speck”

We define r4-(x) as the image of the closed point of SpecRg in 2.

5.1.2 Green functions

Now until the end of this memoir, C, will be an algebraically closed complete field. If X is a

scheme over C,, then X*" will be the Berkovich analytification of C,,.
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Definition 5.1.3. Let X be a completion of Xy and D = } ;a;E; € Div(X)r. A (continuous)

Green function of D is a continuous function g : X"\ (SuppD)** — R such that for any finite

open affine cover X = | jUjif hl] is a local equation of E; over U}, the function

h! (5.2)

g+2al~log
i

extends to a continuous function over U ]“"

Proposition 5.1.4. Two Green functions of the same R-divisor D differ by a bounded continuous

function

Proof. 1f g1, g2 are two Green functions of D, g; — g> can be extended to a continuous function

over X", Since X is projective, X*" is compact and the function g; — g> is bounded. [

Proposition 5.1.5. Let D € Div(X)R be an effective divisor, then any Green function of D is

bounded from below.

Proof. Let g be any Green function of D. Write D = . a;E; where a; € R and E; is a prime
divisor. Let x € (SuppD)®" and let h; be a local equation of E; at c(x). By definition, the
function g + ), a;log |h|; extends to a continuous function at x. Since D is effective, a; > 0Vi
and »;a;log|h|, — —oo at x. This means that there exists an open neighbourhood U, < X"
of x such that gy (suppp)e = 0. Since Supp D is a closed curve, (SuppD)** is compact so we
can cover it by a finite number of such open subset U,. We have therefore constructed an open
neighbourhood V of the curve (SuppD)“" over which g is > 0. Now, the complement of V is
a closed compact subset of X"\ (SuppD)*", therefore g is bounded over it. We get that g is
bounded from below over X"\ (Supp D)“". O

Proposition 5.1.6. Let XY be two projective varieties and let ¢ : Y — X be a surjective mor-
phism. Let D € Div(X)R, let gp be a Green function of D and let go+p be a Green function of
©*D, then

gp o0 — g p (5.3)

defines a continuous (bounded) function over Y.

Proposition 5.1.7. Let X be a completion of Xo. Let D1,D> € Divy,(X)r and let g1,g> be
Green functions of Dy and D, respectively. Suppose that (D1,D5) is a well ordered pair. Then,
max(g1,g2) is a Green function of max(D1,D;).
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Proof. Let D = max(Dj,D,) and x € Supp(D)*". We have that ¢(x) is either a closed point on
Supp D or the generic point of one of the irreducible components of Supp D.

If ¢(x) = Mg is the generic point of an irreducible component of SuppD or if ¢(x) € E is a
free point. Set o; = ordg(D;),i = 1,2. Then, if z is a local equation of E at c(x) there exists a

continuous function y; defined locally at x such that g; + o;log |z| = y;. If a; = a; = o, then

max(g1,g2) + alog|z| = max(yy,y?) (5.4)

which is continuous. If o} < 0», then

max(g1,82) + o log|z| = max(yy,y2 + (0 — 02) log|z]). (5.5)

Since ot — 0 > 0, this is equal to Y on the open neighbourhood {log |z| < %} of x, so it
extends to a continuous function at x.

If c¢(x) = E N F is asatellite point where E, F € Supp D, set o; = ordg (D;), B; = ordp (D;). Let
z,w be local equations of E, F at c(x) respectively. There exist two continuous functions Yy, y»
locally defined at x such that g; + o;log|z| + B;log|w| = ;. If a; = op = o and By = B = B,
then

max(gy,g2) + alog|z| + Blog|w| = max(yy,y>) (5.6)

which is continuous.

If o > ap, since (D1, D;) is a well ordered pair, we have 31 = ;. Therefore,

max(g1,82) + o log|z| + B1 log |w| = max(y1,y2 + (o) —02) log |z| + (B1 — B2) log |w]) (5.7)

Since a; — oy > 0 and B; — B2 = 0, the right hand side is equal to y on the open neighbourhood

{(0 —0p)log|z| < max [y, |} of x, so it extends to a continuous function at x. O

Suppose C, is non-archimedean. A model Green function of D is any Green function of the
following form. Let 2" be a projective variety over Spec O, such that X = 2" ®, Spec C, and
let Z be a Cartier divisor of 2 such that 2 ®, Spec C, = D. We say that (2", Z) is a model of
(X,D). We define the function g4 7 : (X\SuppD)(C,) as follows. Let r5- : X(C,) — Z, be
the reduction map defined in Section[5.1] Let x € X"\ (Supp D)“". Let & be a local equation of 2
at r(x). By definition, we have a local ring homomorphism Oy ., (x) = Rc(x) Where R.(y) is the
valuation ring of the residue field k(c(x)) equipped with the non-archimedean norm induced by

x, in particular we can define |h(x)|. We define g( - #)(x) = —log|h(x)|. This does not depend
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on the choice of & because the quotient of two local equations of & is an invertible element of
O 1y (x) hence it has norm 1. If D = Z,-CliDi is an R-divisor of X with D; Cartier divisors,
then a model Green function is a function g4 o) = >, aig(2°,9,) where (27, %;) is a model of
(X ,Di).

A model Green function g(4- ) is said to be semipositive if 7 is nef over Z.

Example 5.1.8. Let h € C,(X)* be a rational function, then log || is a model Green function
of div(h). Indeed, let 2" be a model of X and consider the principal divisor div(k) on 2" as h

defines a rational function on 2 .

Proposition 5.1.9. Let X = PI(\:’V with homogeneous coordinates Ty, - - -, Ty. Consider the affine
chart {Ty # 0} with affine coordinates ty,- - - ,t,. Then the function

g(x) =log" max(|r1 (x)| -+, [tn(x)]) (5.8)

If C,, is non-archimedean, g is a semipositive model Green function for the divisor {Ty = 0}. If
C, = C, then g is a psh Green function of {Ty = 0}.

Proof. Take 2" = ng with homogeneous coordinates Tp,---, Ty and set 2 = {Tp = 0}, then
(Z,2) is amodel of X, D where D = {T) = 0} € Div(X). O

Proposition 5.1.10. Let X,Y be C,-projective scheme with a morphism @ : Y — X. Let D be a
R-divisoron X. Let (2", 2) be a model of (X, D) and suppose that there is a model % of Y and
a morphism ® : % — 2 extending ¢. Then,

8w .@*9) = 8(2.2)°P (5.9)

and it is a model Green function of ©*D. Furthermore, g9 ) is semipositive, then g 2~ 4 © @

also is.

Corollary 5.1.11. Let X be a projective variety and let D be an integral effective divisor on X
such that Ox (D) is generated by global sections. Let sp be the global section defining D and

let s1,- - s, be global sections of Ox (D) such that (sp,si,--- ,s,) generates Ox (D). Then, the
Jfunction
Vxe (X\SuppD)(C,), gs;.--.5, (%) :=log* max ( j—ll)(x) R j—;(x) > (5.10)

is a semipositive model Green function of D, If C,, = C, then it is a psh Green function of D.
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Proof. If C, = C the statement is clear, so we treat only the non-archimedean case. Consider

the morphism @ : X — PV induced by the sections sp,sy,--,s, such that ¢*Xy = sp. Then,
8s,,.s, 1s the pull back of the model Green function defined in which is semipositive. By
Proposition [5.1.10]it is a semipositive model Green function of D. O

Proposition 5.1.12. Every R-divisor D € Div(X )R admits a Green function.

Proof. We can suppose that D is effective. Let H be an ample divisor on X. Let m be a large
enough integer such that Ox (mH + D) and Ox(mH) are both generated by global sections. Let
g1 be a Green function of mH + D and g, be a Green function of mH both provided by Corollary
[5.1.T1] Then, g; — g2 is a Green function of D. O

5.1.3 Adelic divisors

Definition 5.1.13. Let X be a projective variety over a number field K. An adelic R-divisor
over X is the data (D, (gv)VEM(K)) where D is an R-divisor over X and for each place v of K,
gv 1s a Green function of the divisor D¢, := D®Spec C, over Xc, such that there exists an open
subset U of Spec Ok such that there is a model (Zy, Zy) of (X,D) over U and forallve U, g,
is the model Green function induced by

(Zu x Specy; O,, Zy <y Spec O,)  (coherence condition) (5.11)

An adelic R-divisor is semipositive if

* For every archimedean place, g, is a plurisubharmonic function and ¢; (D¢, g,) is a posi-

tive current.

* For every non-archimedean place v, (Dc,, gy) is semipositive.

To an adelic R-divisor D = (D, (g,),) we can associate a height function defined as follows

_ 1
vpe (X\SuppD)(K), hp(p):= @Z > melq) (5.12)
V. geGal(K/K)-p

where n, is an integer that depend only on the place v.

5.1.4 Metrics over line bundles

Let X be a projective variety over C, and let X*"* be its Berkovich analytification. Since X" is

a locally ringed space, we can define line bundles on X“". If L is a line bundle over X we define
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LY := c*L the analytification of L where ¢ : X" — X is the contraction map. Let L be a line
bundle over X" a metric over L is the data for every x € X*" of a C,-norm over the stalk L, of
L at x.

Let L be a line bundle over X. A model metric of L** is a metric defined as follows. Let
(Z,Z) be amodel of (X,L) over C,. Thatis 2 is a model of X and .Z is a line bundle over
Z such that £ @ Spec C,, ~ L" for some integer n > 1. Let x € X" and let s € L{". Then, there
exists s’ € L(y) such that s = c¢*s’. Now, let §'be a local generator of £ at ¢(x) e X = 2. We

have that there exists a germ of regular function @ at c¢(x) such that (s')" = @s. We set
IsCo)ll = o) (5.13)

Example 5.1.14. Let X = P’é’v with homogeneous coordinates Tp,---,Ty and let L = O(1).
Consider the model 2 = Plgv with the same homogeneous and the line bundle .Z = O(1) o
over 2. The line bundle L (and .¥) is generated by the global sections induced by the 7}’s. Let

F)| <1

x € X, suppose that 4 (x) € {T; # 0} this means that c(x) € {T; # 0} and max ;|7

(indeed, % defines a germ of regular function at r4-(x)). Consider s; the global section of L

induced by 7;. Then, it is also a section of .Z, therefore

ITi(x)]] =1 514
1
- - . (5.15)
max( %(X) ,-.-,‘% 1, T’Tfl(x) e %(X)D
|T:(x))|
- 5.16
max (|To(x)[, -+, |T(x)]) (5.16)

In particular, consider the global section Ty and consider the affine space {7y # 0} ~ a” with

homogeneous coordinates 71, - - - ,1,. Then, we have the Green function of {7 = 0} given by

g(x) = —log||To(x)|| = log" max(|1 (x)] -+, [ta (x)]) (5.17)

Which is the model Green function from Proposition [5.1.9]
A model metric is said to be semipositive if for every vertical curve ¢ in 2, deg, £ > 0.

Proposition 5.1.15. Let L be a line bundle over X and let s € HO(X,L). Then, the function
x — —log||(c*s)(x))|| is a Green function of div(s). Conversely, if D € Div(X) and g is a Green
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function of D. Then, we can define a metric on Ox (D)™ by setting

Vxe X\ (SuppD)™, ||(c*sp)(x)|| = e 8™ (5.18)

5.1.5 Adelic line bundles

Let X be a projective variety over a number field K, an adelic line bundle L is the data of a
line bundle L over X and a collection of metrics {||-||,} v € M (K) such that there exists an open
subset U < Spec Ok and a model (Zy,-%y) of (X,L) over U such that for every place v e U,
the metric ||-||, is the metric induced by the model (Zy x Spec Oy, £y x Spec Oy).

An adelic line bundle is semipositive if
* For every archimedean place v, ci(Lc,||||,) is a positive current.

* For every non archimedean place v, the metric ||-||, on L, is a uniform limit of semiposi-

tive model metric on L,.

It is integrable if it is the difference of two semipositive adelic line bundles.
To an adelic line bundle L, we can associate a height function hy defined for all closed

subvarieties of X defined by the following formula

(Zz>dimz+l

") = Geer L)

(5.19)

In particular, if s € H%(X,L) is a global section of L, then for all p € (X\ Suppdiv(s))(K),

1
hz<x>=@2 > —mloglls()lz, (5.20)

v yeGal(K/K)-x
which is exactly the height function associated to the adelic divisor (div(s),—log||s|[z ) (see

G.12)).

5.1.6 Chambert-Loir measure

Let X be a projective variety over C, of dimension d, let L, -- - ,L; be integrable metrized line

bundles, then Chambert-Loir constructed in [[Cha03]] a measure

ci(Ly)---ci(La) (5.21)
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defined over X“". Here are the main properties of this measure:

Proposition 5.1.16. If for every i, there exists e; such that L' is induced by a model (2, 2).
Then, let X1, -- ,X; be the irreducible components of the special fiber X of 2" and let L; be the
restriction of Z; to the special fiber of 2. For each j, there exists a unique point &;j € X" such
that r(&;) is the generic point of X, we have
— — 1

D (er(Lh)--er(La)X;) &, (5.22)

J
This is in fact how the measure is defined for the model case.

Proposition 5.1.17 ([ChaO3])). Let X be a projective variety over C, of dimension d. Let
Ly, - ,Ly be semipositive metrized line bundles, then for any sequences (Li,)n of semiposi-

tive model metrics of L; converging to L; one has that the measures

c1(Liy)-c1(Lna) (5.23)

converges to a measure independent of the choices of the sequences. We denote this measure

c1(Ly) - cq(Ly). Furthermore, it has total mass

| @ altn - aw)-a) (5.24)
X(ln
In particular, we write py := mq@) ---c1(L), we call it the equilibrium measure of L,

it is a probability measure by Proposition |5.1.17, If L is an adelic line bundle over a projective

variety X over a number field K, we write y7 ,, for the equilibrium measure of L,.

5.1.7 Equidistribution

Let (x,) be a sequence of X(K) < X(C,) and let 4, be a measure on (Xc,)*". We say that the

Galois orbit of (x,) is equidistributed with respect to u, if the sequence of measures

1
d(x,) 1= Oy (5.25)
( ) deg (Xn ) xe Gal(%(:/K) “Xn

weakly converges towards u, where 9, is the Dirac measure at x.

We say that a sequence of points (x,) of X(K) is generic if no subsequence of (x,) is

contained in a strict subvariety of X. In particular, a generic sequence is Zariski dense.
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Lemma 5.1.18. Let X be a projective variety over a number field K and let (x,) be a Zariski

dense sequence of X (K), then one can extract a generic subsequence of (x,).

Proof. The set of strict irreducible subvarieties of X is countable because K is a number field.
Let (Y,)4en be the set of strict irreducible subvarieties of X. We construct a generic subsequence
(xg)gen as follows. Set ¥ = (Jy<, Y- This is a strict subvariety of X, since (x,) is Zariski

dense, there exists an integer n(q) such that x,,) ¢ Y;. We set x;, = x,(,). The sequence (x;) is

a subsequence of (x,) which is clearly generic. O

Theorem 5.1.19 (Yuan-Zhang equidistribution theorem, [YZ22]]). Let X be a projective variety
and let L be a semipositive adelic line bundle over X such that degy (L) > 0. Let (x,) € X (K)
be a generic sequence such that lim, hy(x,) — hy(X), then at every place v the Galois orbit of

the sequence (x,) is equidistributed with respect to the equilibrium measure g ..

5.1.8 Intersection of line bundles

Let X be a projective variety over C, of dimension d and let Ly, - - - , Ly be integrable line bundles

over X. Then, there exists an intersection number
Lo----Ly (5.26)

with the following properties:
1. It is multilinear.

2. If s is a global rational section of L, then
Lo Ly = (L Lyl div(s)) —J tog|lslle1(Z1)- -1 (L) (527)
Xan

Theorem 5.1.20 (Arithmetic Hodge index theorem, [YZ17)]). Let X be a projective surface over
some complete algebraically closed field C,. Let D be a big, nef and effective divisor on X and
let L be a semipositive metrized line bundle such that L = Ox (D). If (M, ||-||) is an integrable
metrized line bundle such that M = Oy, then

M L<0. (5.28)

Furthermore, if M is L bounded, we have equality if and only if ||-|| is constant.
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As in [YZ17], we get the following corollary

Corollary 5.1.21 (Calabi Theorem). Let D be a big, nef and effective divisor over a pro-
jective surface X over C,. Let g1,82 be two semipositive Green functions of D such that

c1(D,g1)? = c1(D,g2)?, then g\ — g3 is constant over X.

Proof. Let L; be the metrized line bundle such that L; = Ox (D) and the metric on L; is induced
by g;. Consider M = L; — L. Let f = g1 — g2, then

[—) — _— — =2
M-Li=—| fa@)y=-| fal)}?=M1L . (5.29)
Xal‘l Xan
Hence we get
M (Li+12) =0 (5.30)

Now, M is (L; + Ly)-bounded so by the equality case in the Arithmetic hodge index theorem
we get that g — g is constant. [

Proof of Arithmetic Hodge index theorem. The only part not shown by Yuan and Zhang is the
equality part in the case where we only suppose that D is big, nef and effective and not ample.
So we prove only the second assertion. Suppose that M L=0. Following the proof of [YZ17],

We have the following result

Lemma 5.1.22 ([YZ17], Lemma 2.5). For any integrable line bundle M’ such that M’ = Oy,
we have
MM =0 (5.31)

In particular, it implies that ¢;(M)? = 0. Indeed, since M*-M' =0, this means that
f geiM)? =0 (5.32)

where ¢’ = log||1||3;7. So this holds for any model metric of the trivial line bundle. Now, by
a result of Gubler or [Morl16|] Theorem 3.3.3, the set of model metric of the trivial line bundle
is dense in the set of all real-valued continuous function over X" for the topology of uniform

convergence so we get ¢ (M)? = 0.

Lemma 5.1.23. For all curve C C X,
—2
M‘C =0 (5.33)
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Proof. We first show that there exists an integer m > 1 such that Ox(mD) has a section that
vanishes along C. Indeed, if C is not in the support of D, since D is big , by [Laz04]] Proposition
2.2.6, there exists an integer m > 1 such that H(X, Oy (mD —C) # (. Therefore, we can find a
section s € H(X,mD) such that s vanishes along C. If C is in the support of D, there is a global
section s € H(X, Ox (D)) such that div(s) = D, in particular it vanishes along C.

Write div(s) = Y., a;C; with a; > 0. We get

0=M D= aMg, —J log||s||zc1 (M)>. (5.34)
. Xun
l

By Lemma|5.1.22) we get 0 = > ;a; (M‘Ci)z. By the arithmetic Hodge index theorem in the case
of curves, every term in the sum is nonpositive, hence there are all equal to 0. Since C is one of
the C; we get the result. [

Now, the equality case when X is a curve is shown in [YZ17]] and therefore we get that
for every curve C = X, g|can is constant where g = log||1][z7. We are going to show that g is
constant. The set of rational points X (C,) is Zariski dense in X% so it suffices to show that g
is constant on this subset. Let p,q € X(C,) be two closed point, it suffices to show that there
exists a connected curve of X containing p and g. If we embed X in some projective space PV
we get by [Har77] Chapter III Corollary 7.9 that for every hyperplane H,H n X is connected.
Therefore, if H is a hyperplane containing p and g, H n X is connected curve C that contains p

and g and we get the result. [
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5.2 Definition of the Green functions

Definition 5.2.1. Fix a completion X of Xj that satisfy Theorem4.4.18| Let D € Divy, (X )gr and
let G(D) be a Green function of D. Recall that f is a fixed loxodromic automorphism of Xy. We

define the sequence of continuous functions over Xo(C,)

1

Gypi=7:G(D)e (f)" (5.35)
1
1

Gup = 57G(D)e (£)™" (5.36)

1

In the following we are going to state all the results for the sequence G;f, . as everything is

analogous for G, ,.

Remark 5.2.2. The choice of the Green function G(D) is not canonical but by Proposition
the limit process we are going to apply will not depend on this choice.

Proposition 5.2.3. For any effective R-divisor R € Div, (X )Rr. The function
G(R)o f™ —G(f¥R) (5.37)
extends to a continuous function over X“"\p_.

Proof. Letm:Y — X be a completion above p_ € X such that the lift F : Y — X is regular. By
definition, f5R = m.F*R. Now, by Proposition we have that G(R) o F9" is a Green func-
tion of F*R over Y*". Now,  induces an isomorphism 7t : Y\ Exc(®w) — X\p_. Let g € oxXo\p—,
let y be a local equation of fyR at g. By definition, F*R — ¥ f¢ R is m-exceptional, therefore
n*\ is a local equation of F*R at t~'¢. Thus, the function

G(R)oF +log|m*y| (5.38)

extends to a continuous function at 7! (¢) and therefore G(R) o f + log |y| extends to a contin-

uous function at q. [

5.2.1 The Green function of 6;;

Start with the following lemma
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Lemma 5.24. Let n: Y — X be a birational morphism between smooth projective surfaces.
Let D € Div(Y)R, suppose that D is effective and nef, then

n'n.D = D (5.39)

Proof. If = id then the lemma is true. Suppose T = ' o T where T:Y — X’ is the blow up of
a point. Let D € Div(Y )R be nef and effective, then

D = 1" (') *T, T.D. (5.40)

By induction, we get (T')*n), (t.D) > T.D because T.D is nef and effective. Therefore, it suffices
to show that T*1,.D > D. Let p € X’ be the center of T, write D’ = 1,.D = > ,;a;C; + R with p € ;
and p ¢ SuppR. Let E be the exceptional divisor above p, then

D = TR+ at'(C)+ (D ami)E (5.41)
i i
where m; 1s the multiplicity of C; at p and

D =vR+ ) av'(C;)+dE. (5.42)

Since D is nef, we have D - E > 0. Hence,

D-E — —8+Za,~m,~>0 (5.43)
i

and 0 < Ziaimi which shows the result. O

Proposition 5.2.5. The sequence (G:lr 0 +) converges uniformly over any compact of Xo(C,) to
9%

a continuous function Gé} that satisfy the following properties

(1) Gy of = MGy
X X

2) {G;; > 0} — Uy f"(U+\OxXo).

(3) Vpe XO(CV),G(;F+ (p) = 0 and G(;r+ (p) = 0 if and only if the forward f-orbit of p is
X X
bounded.
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5.2. Definition of the Green functions

(4) If C, = C, then G is a plurisubharmonic function over Xo(C), it is pluriharmonic on the
set {G4 > 0}.

(5) The function Gt — G(0) extends to a continuous function h over (X\p_)(C,) which is

bounded from above.

(6) The sequence (G:eJr — G(G;)) converges uniformly to h over any compact subset of
Ux
X(Cy)\p-.

Proof. By Proposition [5.2.3] the function

1
W= —G(8x) o f ~ G(8x) (5.44)

1
extends to a continuous function over X (C,)\p—. We first show that ¥ is bounded from above.
Let m:Y — X be a morphism of completions such that the lift F : Y — X is regular. We
have A0} = f56) = 1.F*6),. By Lemma , we get that there exists an effective divisor

R € Dive,(Y) such that A, *05 = F*6} + R. By Proposition|5.1.6, we get that

¥ =—-G(R)+O(1). (5.45)
And by Proposition|5.1.5) we get that ' is bounded from above. Set G := G(8x),G, =G ..
Iy
In particular, Gt = G. We have
G+:iGof": ! iGof o ! (5.46)
n 7\/11 }\'rll_l }\‘1 :
1 _
=T (¥+G)of! (5.47)
1
1 _
= Yo+ Gl (5.48)
1
By induction we get
n—1
1
Gl =Gy + > x_ﬁ% Vi (5.49)
k=0

So, for all n > 0,G;f — GJ = G, — G extends to a continuous function over X\p_ which is
bounded from above since y is. Now, let U_ be a small open neighbourhood of p_. Since p_

is a super attracting fixed point of f~! we can suppose that f~!U_ < U_ so that W := X\U_ is
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f-invariant. The function |y| is bounded by a constant M and therefore

s&p %\pof” < % (5.50)

In particular, G, converges uniformly over W n Xp(C,) to a continuous function G;; and

G;+ — Gar = G;+ — G extends to continuous bounded from above function over X\p_. This
X X
shows (5) and (6).

Proof of (1): This follows from G:lr’e; of = MG”H’G;.

Proof of (2) and (3): Since G(85 )(p) — +o0 when p — p.. we can replace U™ by a smaller
f-invariant subset such that (Gg; U+ naxx, > 0. By (1), we get

U \oxxo) = {Gg; > 0} (5.51)

n=0

. To get the other inclusion, we use Corollary 4.4.22| Let p € Xo(C,). If (f"(p))n=0 is bounded,
then G; (p) = 0. If not, then by Corollary |4.4.22| we have that f"(p) o P+ 80 for n large
X n——+0o0

enough f"(p) € U* and by (1), G* (p) = 1:G* (f"(p)) > 0.

Proof of (4): We will show in Proposition that G is locally the uniform limit of
a sequence of psh functions, so G* is plurisubharmonic. We show the pluriharmonicity over
{G;;(r > ()} we only need to show by (1) and (2) that G;} is pluriharmonic over U™ N dx Xy. We
have that U™ is f-invariant. Let (u,v) be local analytic coordinates at p_ such that if p, € E is
a free point, then u = 0 is a local equation of the E; and if p; = E n F is a satellite point then

uv = 01is a local equation of E U F at p..

In the free case, we have that G(85) = allog|u| + log|@| where @ is an invertible holomor-
phic function over U™, then (f")*u = uNll\un where , is an invertible holomorphic function
over U™ and (f")* o @ is still an invertible holomorphic function over U™, therefore

1 o

—G(G;(r) o f" = alog|u| + ¥

1 T *
v log|yi| + 75 og ()" o) (5.52)

over UT n Xy. Since u does not vanish on U™ n Xy we have that GT is a uniform limit of

pluriharmonic functions over U n Xj so it is pluriharmonic.
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5.2. Definition of the Green functions

5.2.2 The Green function for any divisor not supported on £ and F;

Let R € Divy, (X )R be an effective divisor such that SuppR N {E tF +} = ¢ where E,,F, are
the prime divisor at infinity on which cx(v4) lies. If it is a free point, we use the convention
that E+ = F+.

Proposition 5.2.6. For any such R-divisor R, the function
G(R)of (5.53)

extends to a continuous function over X (Cy)\p—.

Proof. For any E in the support of R, we have f§(E) = 0, therefore by Proposition [5.2.3] we

have that G(E) o f extends to a continuous function over X (C,)\p_. O

Corollary 5.2.7. For any such R-divisor, the sequence GZ g converges uniformly to the zero

function over any compact subset of X\p—.

Proof. Any compact subspace of Xj is a subset of X\U~ for some open neighbourhood U~ of
p—. We can shrink U~ such that f~!(U~) € U~. Therefore, W := X\U ™ is f-invariant. The
function G(R) o f is continuous over W by Proposition Now W is compact, therefore
|G(R) o f| is bounded over W. We get

1

1
o < sy sup|G(R) o f] — 0 (5.54)

G(R)of"| <

sup

5.2.3 The Green function for D™
Proposition 5.2.8. If we are in the cycle case, there exists D~ € Divy, (X)R such that

fxD™ = %ID‘- (5.55)

b
Proof. Write 8 = oTE, +BTF, +---. Let M = <a d) be the matrix associated to the
c

normal form of f at p.. From f505 = 1105 we get that the vector (o™, B ) is an eigenvector
of 'M for the eigenvalue A;. Since detM = A, (f) = 1 there exists o, € R such that (o=, )
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is an eigenvector of 'M for the eigenvalue 1/A;. Define D := o~ E; + B~ F,.. We have
X 1
fxD = k_D +R (5.56)
1
with E,F, ¢ SuppR, therefore fyR = 0. Set D~ := D + AR, then

FiD~ = iD= DR L (D+MR) = D (5.57)
" N N

Lemma 5.2.9. One has 0~ -D~ = 0.

Proof. Wehave 8~ - fyD~ = X160~ - D~ because 0™ is associated to the eigenvaluation of f. On
the other hand,

0 - fiD — 0 .D. (5.58)
A

Since A > 1, we get 6~ -D~ =0.

Lemma 5.2.10. The family (8y;,D7) U (E;E ¢ {E4,Fy}) is a basis of Dive, (X)R.

Proof. Since the length of the family is the dimension of Divy, (X ), we only need to show that
the family is free. Suppose that
A0y +uD” +R=0 (5.59)

with A, € R and R € Divy, (X)R, E4, i ¢ SuppR. Since 0y -05 =01-6~ =1and 06~ -R =0,
by intersecting Equation (5.59) with 0, we get

A=0 (5.60)

Now, write D~ = o E4 + B~ F,. From the proof of Proposition |5.2.8] we have either
o~ # 0 or B~ # 0 since the vector (a~,37) is an eigenvector for an invertible 2 x 2 matrix.

Suppose for example that o~ # 0, then intersecting Equation (5.59) with Zordg, » We get
po =0 (5.61)

and therefore u = 0. It remains that R = 0 and the result is proven. [
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Proposition 5.2.11. The sequence <G:lr D*) converges uniformly to zero over any compact sub-

set of Xo(C,). Moreover the sequence <GZ 7L2nG(D )> converges uniformly to the zero

function over any compact subspace of X (C,)\p—.

Proof. Set G:= G(D™) and G, := G

n.D—" From fyD~ = XLID* and Proposition |5.2.3| we get

that the function

Y= G(D )of— %IG(D) (5.62)

extends to a continuous function over X\p_. By an analogous computation as before we get

Gh = % (GD 7)o f)of ! (5.63)
1

sy iG( ) ot (5.64)

k" M '

n—1 i +
= ;Ln Yof x%G (5.65)
By induction, we get
= 1 . 1 _
Gy => (anrk‘Pof ’<+1> +ﬁG(D ) (5.66)
k=0 1 1

Take a small open neighbourhood U_ of p_ such that W := X\U_ is f-invariant. For any
compact subset K < Xo(C,) n W, we get

sup G| < sup P - ( fﬂ

1
> kznsup‘G )|—0 (5.67)

5.2.4 The Green function for any divisor

Proposition 5.2.12. Let H be an R-divisor supported at infinity, then the sequence (G;r u) of
continuous function over Xo(C,) converges uniformly locally to the function (H - 9_)G;+. More-
X

over, there exists a real number t such that the sequence

(G;H _(H-07)G(6}) + ﬁG(D—)) (5.68)
1

n
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converges to a continuous function over (X\p—_)(C,) uniformly over any compact subspace of
X(Cy)\p-.

Proof. 1f we are in the cycle case, let D™ be the divisor from Proposition m If we are in the
zigzag case, set D~ = 0. By Lemma|5.2.10, we can write

H=(H-67)0 +uD™ +R. (5.69)
with E;, F; ¢ SuppR. Therefore, we get that for alln > 0

Giy=(H e—)GZe; +uG, - +Gyp, (5.70)

By Propositions [5.2.5,15.2.7/and [5.2.11] G;“  converges uniformly locally to (H - (T)Géﬁr and

X
we also get the result on the uniform convergence over any compact subset of X\ p_ [
Corollary 5.2.13. The function Gy is plurisubharmonic over Xo(C).

Proof. Let H be a very ample divisor supported at infinity, then H -0~ > 0 and by Proposition

5.2.12| (H - 9_)Ge; is uniformly locally the limit of l—lnG(H )o f", now since H is very ample,
1
it is globally generated so by Corollary [5.1.11| we can suppose that G(H) is plurisubharmonic

over Xo(C). Then, for all n > 0, %G(H ) o f™ is plurisubharmonic, so Goy also is. O
1

5.2.5 An invariant adelic divisor

Lemma 5.2.14. The R-divisor D = max(0},,0y) is big, nef and effective.

Proof. It is obvious that D is effective since G;E and 0, both are. For every prime divisor E

at infinity, set a+ (E) = ordg(05). Let E be a prime divisor at infinity, then since X is a good

completion
0% E=ar(E)E*+ > ax(F). (5.71)
|FAE|=1
And,
D-E = max(ay(E),a_(E))E*+ ) max(a((F),a_(F)) (5.72)
F#E

If for example a4 (E) > a_(E), we get

D-E>a,(E)E*+ ) a.(F)>6;-E>0 (5.73)
F#E
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Therefore, D is nef. Since the intersection form is non-degenerate over Divy, (X ) there must
exist a prime divisor E at infinity such that D - E > 0, therefore D?> > 0 and D is big. U

Set G := Gé} and G~ := G _.
Proposition 5.2.15. Suppose that A1 (f) is an integer. Let G := max(G™,G™), then
(1) G is a continuous function over Xo(C,).
(2) Ifk = C, then G is plurisubharmonic on Xo(C), it is pluriharmonic on {G > 0}.

(3) G(p) = 0 if and only if the orbit of p under f% is bounded. In particular, {G =0} is a
compact subset of Xo(C,).

(4) The function G — G(max(0},0y)) extends to a continuous function ¥ over X.

(5) Set G,, = max (G;r ot G; 9_), then the sequence of continuous functions
WYX 129'¢

(Gn—max (G(8y),G(8y))), (5.74)
converges uniformly to ¥ over X“".

Proof. (1) is immediate as both Gt and G~ are continuous over Xo(C,).

(2) is also direct as the maximum of two plurisubharmonic (resp. pluriharmonic) is plurisub-
harmonic (resp. pluriharmonic)

(3): G(p) =0< G (p) = G~ (p) = 0 so the forward and backward orbit of p under f has
to be bounded.

(4)-(5): On a small open neighbourhood U~ of p_ we have G(65') < G(6) because, by
our assumption, if cx(v_) € E, then ordg(0~) > ordg(6™). Now, by Proposition there
exists a constant M > 0 such that over U™ n Xj,

G (p) <G(6y)(p)+M (5.75)
G (p) = G(6y —M. (5.76)
We can shrink U~ even more such thaton U, G(8 ) > G(65;) + 10M because of the weights of
6; .0y at the prime divisor at infinity on which p_ lies. Therefore, G~ > G* over U~ n X, and

G =G~ on U~ nXp. Therefore, G — G(max (85,05 )) extends to a continuous function at p_.
The same assertion holds at p.,. This shows (4). Now to show (5), set W =X\ (Ut uU~). We
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have by Proposition|5.2.5/that G ', —G(8Y) converges uniformly to G* —G(8y ) over W u U+
X

and that G™n,0; — G(0y ) converges uniformly to G~ — G(8;, ) over W u U ~. We therefore get

that max(G:e+,G; 9_) converges uniformly towards G over W. Now since Gt > G~ over
WX WX

U: nXpand G~ > G* over U~ n Xp the convergence is uniform over X(C,) =W oUT vU".
This shows (5). ]

Proposition 5.2.16. Let Xy be an affine surface over a number field K, let f be a loxodromic
automorphism of Xo with M (f) € Zxo and let X be as in Theoremld.4.18) If G, = max(G;,G;),
then (max(e;,eg), (GV>VEM(K)> is a semipositive Q-adelic divisor over X. In particular, the
corresponding adelic line bundle L satisfies the hypothesis of Theorem

Proof. We show the semipositivity. Let v be a place of K, replace X by X, and set D* = 9;%
and D := max(D*,D™). Since 9;; and 6y are both big and nef and their support supports
an ample divisor there exists an integer m such that Ox (m65;) and Ox(m0y ) are generated by

global sections. Set st+,sf, -+, s and Smp—»S1 ,° " ,5; beasetof global sections generating
+ —

Ox(mD%),Ox(mD~) and let P; = s%’ Qi = SS’— be the induced regular functions over Xy. Then
D D—

by Corollary [5.1.T1] the function

1
G(Dg,) := —log" max(|Pil,, -+, |Pr],) (5.77)

is a semipositive model Green function of DJCFV. The same holds for D¢ ~with the Q;’s instead
of the P;’s.

Claim 5.2.17. For every n = 0, the line bundle Ox (m\] max(D*,D™)) is globally generated by
((fn)*Pla T (fn>*Pr7 (f_n)*le Ty (f_n)*QY) (578)
viewed as elements of I'(X, Ox (mA]D)).
The claim along with Corollary shows that for every n > 0,

max (G(Da)v o (f*)",G(Dg )y fa")—") (5.79)

is a semipositive model Green function of D¢, which converges uniformly to G,, so G, is

semipositive.

Proof. Proof of the Claim First of all, since OX(DJF)‘ x, = Ox, we have that n ,~Pfl (0) = & and
this remains true for P;o f" since f is an automorphism. So it is clear that this set of global

210



5.2. Definition of the Green functions

sections generate Ox (mA]D)|x,. Now, take a point at infinity g € dxXo, we want to show that
this set of global sections generates Ox(mA[D) at g. First suppose that g # cx(v4),cx(v—).
We are going to suppose that ¢ is a satellite point because this is the harder case. So, suppose
g = E nF with E, F two prime divisors at infinity. Let (z, w) be local coordinates at p associated
to E and F. Both f and f~! are defined at g. Since (f#)*0y; = A0y, the fractional ideal
{f™)*Pry...,(f")*P,) is locally generated at ¢ by

o mAfordg (D) | —m)f ordp (D) (5.80)

In the same way, {(f")*Q1,---,(f")*Q;)) is locally generated at g by

LM ordg (D7) | —mAfordr (D7) (5.81)

Now, Ox(mM\D) is locally generated at g by

Z—mh’f max (ordg (D) ,ordp (DV)) | WM max (ord (D) ordr (D)) (5.82)

Since D™, D~ is a well ordered pair we have that

((fn)*Pla T ;(fn>*Pr; (fin)*Qla T ;(fin)*Qs) (5.83)

generates Ox (mA]D) at g. O

Now suppose for example that ¢ = cx(v_) = p_ the indeterminacy point of f. Since we
have supposed that A (f) € Z, we have that p_ is a free point at infinity. Let E be the unique
prime divisor at infinity over which p_ lies and let z be a local equation of E. Then for ev-
ery i , we have locally at p_ (f")*P, = z-"ode(D) g, where @; is a regular non invertible
function because f is not defined at p_. However, f~! is defined at p_, therefore the frac-
tional ideal ((f~")*Qi,--,(f")*Q,) is locally generated by 7~ orde(D7) - Since we have
ordg (D) > ordg (D) we get that the fractional ideal

CPY P () P (F7")7 Q1 (F7)0s) (5.84)

—mMfordg (D7)

is locally generated by z so it is equal to Ox (mA[D),_ at p_.

We show that the coherence condition is satisfied. Let 2" be a model of X over Spec Ok,
f and f~! induce birational transformations on .2". There exists an open subset U of Spec Ok
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such that if we set Zy = 2 x o U.

1. The indeterminacy locus of fy : Zy --+ Zy does not contain vertical components.

2. We have {p+},, n{p-}y = .
3. The horizontal divisors D:; and Dy, induced by D and D™ over 2y are big and nef.
For every ve U set 2, = Xy xy Spec O,, 2+ = DZ—; and f = fy x Spec O,.

Claim 5.2.18. For every v e U, we have Vx € (Xc,)\(SuppDy), if 2, (x) # 2, (p5), then

1
5;;8(ga”g%¢)((f§t)a”(X)) = 82,08 ®) (5.85)

Proof of the claim. We have that f;* defines a regular endomorphism of 23\ {p+,7,(p5)} by
condition (1) and (2). Recall that r z;, is anti continuous so the set V™ := {rg; = rg;(p—)}is an
open subset of (Xc,)®". Since p_ is fixed by f; !, r9; (p—) also is and therefore V~ is (f, 1)®"-
invariant. Therefore, the complement of V™~ is f¢"-invariant. Let x € X*"\V ~, Let & be a local
equation of 2, at rg;, (f*"(x)) and W a local equation of 2, at rg; (x). From f 2, = M 2
over Z,\{p—,ra;,(p—)} we get that there exists an invertible regular function at rg; (x) such
that

fr&=u-y (5.86)
Since u is invertible, we have |u(x)| = 1 and the claim is shown. O

To show the coherence condition we show that on the open subset V 82,95 S 820, 90)
and this is immediate as p_ € E_ is a free point and therefore the only irreducible component of
9y on which ry; (p—) lies is the closure of E_ in 2y, since ordg_(8y) > ordg_(65;) the result
is proven.

Finally, let L be the associated semipositive adelic line bundle. To show that L satisfies the
hypothesis of Theorem it suffices to show that degy (L) > 0 but this is equal to D?> with
D= max(ejg, Oy ). By Lemma D is big and nef therefore D? > 0 (see [Laz04] Theorem
2.2.16). [

Remark 5.2.19. If 1 (f) € R\Q, then we can still define G = max(G*,G ™), however since 6y;
and 0y are R-divisors, in general they are not a well ordered pair and G is not the Green function
of any R-divisor. In fact, the right way to look at G™ and G~ is to consider adelic line bundles
over the quasi-projective variety Xo (see [YZ22]). Roughly speaking an adelic line bundle over

a quasi-projective variety U is a limit of model adelic line bundles over completions X of U
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that satisfy a compatibility condition over U. The process is very similar to the construction of
Weilo, (Xo) or L2(Xg). In particular, Yuan and Zhang showed the equidistribution theorem for

this generalized class of adelic line bundles. We conjecture the following result.

Conjecture 5.2.20. Suppose f is a loxodromic automorphism of Xy and Ai(f) ¢ Z=0. The
Green functions G and G~ induce two nef adelic line bundles LT and L™ on the quasiprojec-
tive variety Xo in the sense of [[YZ22l] such that

1. f*L+ =ML+

2. (Y L =ML

3. IfL:= %(F + L~), then L satisfies the hypothesis of Theorem

4. At the archimedean places, the equilibrium measure of % (L_+ + 17) isdd°GT Add°G™.

As explained in the previous remark, I believe that the work done in this memoir and the
work of Yuan and Zhang will be sufficient to prove this Conjecture, with a construction similar
to [YZ17] Section 4.

Using Proposition or assuming Conjecture [5.2.20] we can consider the canonical
height iy associated to f. From Proposition (3) and Proposition (3) it follows

that if p € Xo(K) is periodic, then Az (p) = 0.
For the last two propositions of this section, we assume A (f) € Z. We assume that they will
be true for A (f) ¢ Z=o once Conjecture |5.2.20is established.

Proposition 5.2.21 (Northcott property for heights for affine surfaces). Let d,B > 0, the set

{peXo(K)|degp < d.hy;(p) < B} (5.87)

is finite.

Proof. Let D = max (85,0 ), then D is big, nef and effective by Lemma [5.2.14{ and we know
that Supp D = 0xXp. Let H € Div,(X) be an ample divisor such that Supp H = dxXp. Then, for

m = 1 large enough, there exists an effective Q-divisor N such that
1
D=—H+N. (5.88)
m
Now we have by the well known properties of heights [S1186] that

hp = hr; = (1/m)hy + hy + O(1) (5.89)
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and since N is effective, we have hy > O(1) over Xo(K) (see [Sil86]), therefore
h@? (1/m)hg +O(1) (5.90)

and the result follows from Northcott Theorem [Sil86] which states that since H is ample, for
all d,B > 0 the set
{peX(K)|degp < d,hn(p) < B} (5.91)

is finite. ]

Proposition 5.2.22. For any p € Xo(K) we have

hg(p) =0 < pis periodic (5.92)

Proof. We look at the sequence <hq( ( p))) We have hg( p) = 0 if and only if for every
place v, G,(g) = 0 for all points ¢ in the Galois orbit of p, this is equivalent to saying that f%(q)
is bounded for all places v. This means that h;( f"(p)) = 0 for all n, since the points (") (p)
all have the same degree, we get that this sequence is finite by Proposition 0
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5.3 Periodic points and equilibrium measure

5.3.1 Equidistribution of periodic points

Let Xp be a normal affine surface defined over a number field K and let f € Aut(Xp) be a loxo-
dromic automorphism. Let X be a completion as in Theorem For any place v e M (K),
let G}, G, ,G, be the Green functions of f defined in Section Let Ly be the adelic line
bundle induced by these Green functions. If A;(f) € Zxo, then this comes from Proposition
and if A (f) ¢ Z, then we use Conjecture We have for every place the equilibrium
measure uz .

If v is archimedean, then we can apply the dd¢ operator to our plurisubharmonic functions.

Namely the equilibrium measure is proportional to
(dd°G)* = dd“G, A dd°G_ (5.93)

which is well-defined via the work of Bedford and Diller in [BDO0S5]], indeed the condition of
Bedford and Diller is satisfied because every iterate of f has indeterminacy point either p or
p—. The measure u is f-invariant thanks to Proposition In addition, Dujardin showed in
[Duj04] that over X((C) the periodic points of f equidistributes with respect to u.

Theorem 5.3.1. If (p,) is a generic sequence of Xo(K) of periodic points of f, then for every
place v of K the Galois orbit of (py) is equidistributed with respect to the measure Lrv

Proof. We apply Yuan-Zhang’s equidistribution theorem to the adelic line bundle L;. We need
to show that the sequence hg( Pn) converges to hU<X ). Since the points p, are periodic, this
bounds to show that hZf (X) = 0. To do that we apply Theorem 5.3.3 of [YZ22]]. Namely, let

e(X,(D,G)) := sup inf h—(p) (5.94)
UcxpeU

this quantity is called the essential minimum of (D, G). Here, since we suppose that we have a
generic sequence of periodic points, we get e(X, (D,G)) = 0. Theorem 5.3.3 of [YZ22] states
that

e(X,(D,G)) = hs(X) (5.95)

Therefore we get i 7(X) = 0 and Yuan’s equidistribution theorem gives the desired result. [
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For any place v (archimedean or not), we have that
Suppuys, < {G, = 0} = K, (5.96)

If A (f) € Z, we characterize the set {G, = 0} with the measure .

Theorem 5.3.2 (Extension of [DF17] Lemma 6.3). If A{(f) € Z, then for any P € O(Xy), one
has
sup |P|, =sup|P|, (5.97)
Supp uy K,
In analogy with the case of the affine plane, we can say that K, is the polynomial convex
hull of Suppp,.

Proof. Let D = max (05,0} ), let a be an integer such that aD > divo, x (P) and let Cy be a con-
stant such that log ‘P—(L" < 0 over Suppu,. Then, the functions aG, and G, = max(aG,,log Cl:ks)

are both semipositive (or psh if v is archimedean) Green functions of the divisor aD. Now, on

an open neighbourhood V' of Suppu, we have G, = aG, and we get that

~

(c (aD,GV)W)2 = (¢ (aD,an)W)2 (5.98)

by [DE17] Appendix A.2 (in loc. cit. the result is stated for ample divisors but the proof works
for big and nef divisors). Since the two measures ¢1(aD,G)? and ¢ (aD,aGy)? are positive and
have total mass a>D? > 0 we conclude that they are equal. Therefore, by the arithmetic Hodge

index theorem we get that aG, — G is a constant, since they coincide on Suppu, we get G =aG
|Pl,

and therefore log Cote

< 0 over K,,. Letting € — 0 yields the result.
O

5.3.2 A rigidity theorem

Theorem 5.3.3. Let Xy be a normal affine surface over a number field K such that K[Xp]* = K*
and let f,g be two loxodromic automorphisms of Xy such that A\ (f) € Z,, then the following

assertions are equivalent
(1) Per(f) nPer(g) is Zariski dense.
(2) ppy =gy, Vv e M(K).
(3) Ky = Kg,Vve M(K).
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5.3. Periodic points and equilibrium measure

(4) Per(f) =Per(g).

If M (f) ¢ Z, assuming Conjecture we have that if Per(f) n Per(g) is Zariski dense, then
for every place ve M (K),ur., = tg.,.

Proof. We apply the results of Section[5.3.1] Let uy,,, yg, be the equilibrium measure of f and
g at every place. Let (p,) be a Zariski dense sequence of Per(f) nPer(g). By Lemma
We can suppose that (p,) is generic. We can apply Theoremto f and g with the sequence
(pn). Therefore, we get for all places v e M (K) that uy, = pg .. If Ai(f) ¢ Z we are done.
Otherwise, let G, r and G, , be the Green functions of f and g respectively at every place
vof K, K, s := {wa = 0} K, ¢ :={G,g =0} and let h7, h, be the respective canonical height
of f and g. by Theorem[5.3.2] we get that K,y = K, for any place v. Therefore, the canonical
heights hy,he have the same set of points of height 0. By Proposition we get that
Per(f) = Per(g). O

5.3.3 A stronger rigidity result for the Markov Surface

Assuming Conjecture we show the following result.

Theorem 5.3.4. Let Mp be the Markov surface of parameter D. Suppose that D = 0 or
D = —2+2cos <%“> with g € Z=1. Let f,g be two loxodromic automorphism of Mp defined

over a number field K. Then, the following assertions are equivalent
(1) Per(f) nPer(g) is Zariski dense.
(2) ANMeZ, fN = gM.
The proof relies on the following proposition.

Proposition 5.3.5. Suppose D =0 or D = —2 + 2cos (%’t) and let f € Aut(Mp) be a loxo-
dromic automorphism. If v is an archimedean place, then f admits a periodic saddle fixed point

q(f) € Mp(C) such that

(1) q(f) € Supp(ur,y)

(2) If g € Aut(Mp) is loxodromic such that f and g do not share a common iterate, then
(g"(q(f))) is unbounded.
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Assuming the proposition, suppose that f, g share a Zariski dense subset of periodic points,
then by Theorem [5.3.3] we have equality of the equilibrium measures of f and g at every
place so in particular at every archimedean place. Fix v one of them. Suppose that f and g
do not share a common iterate, then (g"(¢(f)))n is unbounded. Let u = uys, = pg,. Since
Suppu = Suppuy,, = Supp,, ,,, we have that Suppu is a compact subset of Mp(C) invariant by f
and g. Since g(f) € Suppuy,, = Suppu we get that (g"(g(f))) < Suppu which is a contradiction.

To construct g(f) we use Quasi-Fuchsian representation theory.

5.3.4 Character varieties and the Markov surface

Let T} be the once punctured torus. The fundamental group m;(T;) is a free group generated
by two elements a and b. The commutator [a,b] := aba~'b~! is represented by a simple loop
around the puncture that follows the orientation of the surface. One can study the representation
of 1 (T}) into SLy(C). It is clear that

Hom (7 (T}),SL(C)) ~ SLy(C) x SL,(C) (5.99)

as ;1 (T) is a free group on two generators, therefore it is an algebraic variety. We are interested

in the Character variety,
X = HOIII(TE] (T]), SLz(C))//SLz(C) (5.100)

where the action of SL,(C) is diagonal and given by conjugation and // is the Geometric Invari-
ant Theory (GIT) quotient. This is also an algebraic variety and we have the following result of
Fricke and Klein.

Theorem 5.3.6 (Fricke, Klein, [Gol09]]). The algebraic variety X is isomorphic to c%. The

isomorphism is given by

[p] € X = (Tr(p(a)), Tr(p(h)), Tr(p(ab)))- (5.101)

We will denote by (x,y,z) = (Tr(p(a)), Tr(p(b)), Tr(p(ab))) these are the Frick-Klein coor-
dinates.
Let K = [a,b] and let k : X — C be the regular function

K(p) = Tr(p(K)). (5.102)
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5.3. Periodic points and equilibrium measure

One can show that
K=x>+y+22—xyz—2 (5.103)

Therefore, if X, = k! (t) is the relative character variety, we have
X = M2 (5.104)

where Mp is the Markov surface of parameter D.

The generalized mapping class group MCG*(T) is the group of homotopy class of home-
omorphism of 77 not necessarily orientation preserving. It contains MCG(T)) as an index 2

subgroup and it acts on 7ty (T ), we have the following isomorphism:

MCG* ~ Out(m (T})) (5.105)

Furthermore,
Out(m;(T)) ~ GLy(Z) (5.106)

) . . myp mipp
and the action on F> is as follows, if M = , then

may M
M-a=d"p"? (5.107)
M-b=d"™bp". (5.108)

For any element @ € Out(7; (T)), ®([a,b]) is conjugated to [a,b]*. This implies, that the action
of MCG*(T}) on X preserves every X;. Now, the matrix id acts trivially, because in SL(C) we
have that TrA = TrA~!, so for all D € C we get a group homomorphism

PGL;(Z) — Aut(Mp) (5.109)

Theorem 5.3.7 (JCLO7] Theorem A, [EH74]). Let T* PGL,(Z) be the subgroup of element
congruent toid mod 2, then for any D € C,

" — Aut(Mp) (5.110)
is injective and its image is of index at most 8.
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We can describe the group homomorphism. Let 6, € Aut(‘Mp) be the automorphism

ox(x,y,2) = (y2—X,9,2), (5.111)

If we fix the coordinates y, z, then the equation defining Mp becomes a polynomial equation of
degree 2 with respect to x, 0, permutes the 2 roots of this equation. We can define G,,0; in
the same way. Then, oy, G), G, generate a free group isomorphic to (Z/2Z) « (Z/2Z) « (Z/2Z)
which is of finite index in Aut(Mp) (see [EH74]). The subgroup I+ is the free group on the

(—1 —2>, (1 0)’ (1 0) 512
0 1 2 1 0 —1

which correspond respectively to Gy, Gy, ;.

three generators

5.3.5 Fuchsian and Quasi-Fuchsian representation

A Fuchsian group is a discrete subgroup I" of PSL,(R). A Quasi-Fuchsian group is a discrete
subgroup I" of PSL,(C) such that its limit set in C:=P! (C) is a Jordan curve. Let S be a com-
pact surface of negative Euler characteristic. We say that a representation p : ;(S) — SLy(C)
is Fuchsian (resp, Quasi-Fuchsian) if p(S) < PSL,(C) is Fuchsian (resp. Quasi-Fuchsian).

Let Teich(S) be the Teichmuller space of S, that is the set of complete finite hyperbolic
metrics over S. Every point of Teich(S) induces a Fuchsian representation of S. We can actu-
ally parametrize the set of Quasi-Fuchsian representations of S using Teich(S) by the double

uniformization theorem of Bers.

Theorem 5.3.8 ([Ber60]). There is a biholomorphic map

Bers : Teich(S) x Teich(S) — QF(S) (5.113)

where Teich(S) is the Teichmuller space with its reversed orientation.

Using this theorem, one can apply an iterative process to find a fixed point in the character

variety of S.

Theorem 5.3.9 ([IMcM96]). Let S be a compact surface of negative Euler characteristic. Let

(X,Y) € Teich(S) x Teich(S), ler ¢ € Mod(S) be pseudo-Anosov, then the sequence

Bers(¢"(X), 9 "(Y)) (5.114)
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5.3. Periodic points and equilibrium measure

has an accumulation point po, : T1(S) — PSLy(C). Furthermore,
(1) pw is discrete and faithful.
(2) The limit set of P (71 (S)) is the whole boundary S* of H?.
(3) P is a fixed point of @ and @ is conjugated to an isometry o, ofﬂ(p = H3/pop(m1(S)).
(4) The group of isometries of M, is discrete and . is of infinite order.
(5) The mapping torus My is isomorphic as an hyperbolic manifold to ]\71([,/ <o >.

(6) The subgroup generated by . of the group of isometries of M(p is of finite index.

5.3.6 The surface 9/ and a Theorem of Minsky

We are interested in this section with the Markov surface M that is when Tr(K) = —2, therefore
p(K) is a parabolic Mébius transformation. The real points My (R) consist of an isolated point
(0,0,0) and four diffeomorphic connected components that are given by the signs of x and
y. We will denote by My(R)™ the connected component such that x,y > 0. It is known that
Teich(T;) (T; the punctured torus) is isomorphic to the upper half plane H* and we make this
identification from now on. The action of Mod(T;) on Teich(T;) is conjugated to the usual
action of PSLy(Z) by isometries on ID.

Any point in Teich(T;) gives rise to a representation p : 1 (T;) — PSL;(R) which can be
lifted to four distinct representations p : 1 (T;) — SL(R). The cusp condition gives the condi-
tion Tr(p(a,b)) = —2 (because Tr = 2 corresponds to reducible representations). Therefore, we
get an embedding of Teich(T) into the 4 different connected component of My(R)\(0,0,0).
We will restrict our attention to the embedding Teich(‘7;) < My(R) . The set My(R) " is made
of (conjugacy class of) Fuchsian representations. Let DFy c ,(C) be the subset of discrete
and faithful representation of 7t; (T;). Then DF, has four different connected components, one
of them contains My(R)*. We denote it by DF(J)r and we denote by QF(J)r the set of Quasi-
Fuchsian representation inside DFS . In fact, QFS is the interior of DFg (see [Min02]). We can
identify Teich(7}) with the upper half plane H* and Teich(T;) with the lower half plane H~.
The group PSL,(Z) acts on P! (C) via M&bius transformation. It preserves H*,H~ and P!(R).
In particular, the mapping class group MCG(T}) = SL;(Z) acts on P!(C) and we can conjugate
this action to the action on My(R)™ via the Bers mapping. Namely, let ® e MCG(T}) and let
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Jo € Aut(Mp) induced by the map from Equation (5.109). We have for every (s,z) e HT x H™,
Bers(®(s,1)) = fo(Bers(s,1)) (5.115)

Theorem is not applicable directly as T is not compact. However, Minsky showed

that the Bers mapping can be extended to almost all the boundary of Teich(T;) x Teich(T}).
The boundary of H* is P!(R). We denote by A the diagonal in 0 Teich(T;) x 0 Teich(T).

Theorem 5.3.10 ([Min99]). The Bers mapping extend to a continuous bijection

Bers : Teich(T) x Teich(T;)\A — DF* (5.116)

In particular, let ® € SL,(Z) = MCG(T) be a loxodromic element and let fg be its associ-
ated automorphism over Mp. The isometry & has a repulsive fixed point o(®) on P!(R) and an

attractive one ®(P). By Minsky’s theorem, this gives two unique fixed point
p(®) = Bers((a(®), 0(P))), q(P) = Bers((o(P),0(P))) (5.117)

of fo in DFT\QF™.

5.3.7 Construction of the saddle fixed point ¢(f)

Suppose first that D = 0. Up to taking an iterate of f we can suppose that there exists a loxo-
dromic element ®¢ € SL»(Z) such that f = fo,. Denote by p(f) = p(fo,) and q(f) = q(fo,)
the fixed point constructed using Minsky theorem. These two fixed point are saddle fixed
points by [McM96] Corollary 3.19. The fixed point ¢(f) corresponds to a representation
P : F» — PSLy(C), one can show that po, also satisfies Theorem even though the punc-
tured torus is not compact.

Suppose now that D =2 —2cos 27”. Following [McMY6] §3.7, let S be the orbifold obtained
from a genus 1 torus with a singular point of index g. The fundamental group of S is

T (S) = (a,b|[a,b]? = 1) (5.118)

The modular class group Mod(S) of S is also SL»(Z). Let & € SLy(Z) be an element of Mod(S)
associated to f.
There exists a smooth (real) surface S with a map S — S which is a finite characteris-

tic covering. In particular, ®; lifts to S and defines an element of Mod(S) that we denote
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by o . Apply Theorem to (§, o ), there exists a faithful and discrete representation
Poo i W1 (S) — PSLy(C). Let My, = H3 /Py (w1 (S)), the group of isometries of M., contains the
subgroup generated by o . The quotient My, /< o > 18 the mapping torus M, &, of @ + which
is a finite cover of the mapping torus Me,. By Mostow rigidity theorem, the covering group can
be realized by isometries, therefore the hyperbolic structure on M, & descends to a hyperbolic

structure on the mapping torus Mg, which yields a fixed point po of f in Mp that we denote
by ¢(f). By [McM96] Corollary 3.19, g(f) is a saddle fixed point.

5.3.8 Saddle periodic points are in the support of the equilibrium measure

Theorem 5.3.11. Let f be a loxodromic automorphism of the Markov surface. Every periodic

saddle point of f is in the support of the measure py.

This shows item (1) of Proposition @ This theorem, stated in [CanO1], follows directly
from the work of Dinh and Sibony in [DS13]], which extends [BS91b], and an argument of
[BLS93|] for Hénon type automorphisms of the complex affine plane. We do not provide a
detailed proof, our goal in this section is only to describe the type of techniques and arguments
used in [BLS93|IDS13].

5.3.8.1 Green functions and bounded orbits

First, let us summarize some of the properties of the function GJT : Xo(C) — Rxo
(a) {G;{ = 0} coincides with the set K*(f) of points with a bounded forward orbit;
(b) G}f is plurisubharmonic, and is pluriharmonic on the set {G;{ > 0};
(c) the set K™ (f) is closed in Xp(C), its closure in X (C) coincides with K*(f) u p_;

(d) locally, near every point g # p_ of dxXop,

G} (x) = = > ailog(|si(x)]) + u(x) (5.119)

i

where the functions s;(x) are holomorphic equations of the boundary components con-
taining ¢, the real numbers a; > 0 are the weight of 05, and u(x) is a continuous (pluri-

harmonic) function.
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(e) there is an open neighborhood U~ of p_ in X(C) such that f~'(U7) EU~ and U~ is
contained in the basin of attraction of p_ for the backward dynamics; there is an open

neighborhood U™ of p, with similar properties for f instead of f~!;

(f) If g is a saddle periodic point, its stable manifold W*(q) is contained in K (f); in fact,
the proof of Proposition 5.1 in [BS91al] shows that W*(g) is contained in the boundary of

K*(f);

(g2) f does not preserve any algebraic curve Cy < Xp(C).

In particular, if S is a closed positive current supported by K(f) = K+(f) nK—(f), then its

support does not intersect the open set U ™.

5.3.8.2 Rigidity of K*(f) and equidistribution of stable manifolds

The properties (a) to (g) are sufficient to apply the arguments of Sections 4, 5, 6 of [DS13].
More precisely, one first obtains Theorem 6.6 of [DS13]], because its proof relies only on the
above properties and general results concerning closed positive currents (in particular Corollary
3.13 of [DST3]). [T]

Then, one gets directly the following fact (which corresponds to a weak version of Theorem
6.5 of [DS13]], with the same proof):

Theorem 5.3.12. The set K*(f) (resp. K—(f)) supports a unique closed positive current,
namely Tf+ = ddCG;cr (resp. Tff ) up to multiplication by a positive constant.

This rigidity results provides automatic equidistribution theorems for (1,1) positive cur-
rents. We shall need the following specific application.

If g is a saddle periodic point of f, then its stable manifold W*(g) is biholomorphic to the
complex line[} Denote by §: C — W*(g) = Xp(C) a one to one holomorphic parametrization of
W*(q); & is an entire holomorphic curve. To such a curve, one can associate a family of currents
of mass 1, constructed as follows. One fixes a Kihler form k on X(C) and one measures

lengths, areas and volumes with respect to this form. For instance, if D, < C is the disk of

1. The only changes in this proof are that (1) P?(C) should be replaced by X (C) and the line at infinity by
dxXo; and (2) the function log(1+ || z ||>)'/? should be replaced by a smooth Green function associated to the
R-divisor 9;{, as in Definition

2. Indeed, it is a Riemann surface, it is homeomorphic to R2, and f acts on it as a contraction fixing g, so W*(q)
cannot be a disk and Riemann uniformization theorem says that it is a copy of C
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radius r centered at the origin, then

Area(§(D,)) = f k= &% (5.120)
go) I,

is the area of the image of D, by &. Averaging with respect to dr/r, one introduces the function

R dt

N(R) = Area(§(Dy))— - (5.121)
t=0

Now, for each disk I,, one can consider the current of integration over §(ID,): to a smooth form

o of type (1,1), this current {&(ID,)} associates the number
o= a-| g (5.122)
&(y) D,

Taking averages with respect to the weight dr/r one obtains the following family of currents,
parametrized by a radius R > 0:

Wl = ot [ G8moen (5.123)

1 dt
- ol (5.124)
N(R) Jt—O L(ID)R) t

The normalization by 1/N(R) assures that the mass (Ng(R)|k) is equal to 1 for every R > 0.
From an inequality of Ahlfors, and from the compactness of the space of positive currents of
mass 1, there are sequences of radii (R,) such that Ne (R,,) converges to a closed positive current
S. A priori, such a closed positive current S depends on the choice of the sequence R,,; if there
is a unique closed positive current S that can be obtained as such a limit, one says that there is

a unique Ahlfors-Nevanlinna current (namely S) associated to .

Corollary 5.3.13 (Proposition 4.10, Corollary 4.11 [DS13l]). Let g be a saddle periodic point
of f. Let §: C — Xo(C) be a holomorphic parametrization of the stable manifold of f. Then,

there is a unique Ahlfors-Nevanlinna current associated to &, and this current is equal to Tf+.

Here is another similar consequence of [DS13l]: Given any algebraic curve Cy < Xy, the
sequence of currents A(f)~"{(f")*Co} converges towards a positive multiple of T]fr as n goes
to +o0 (see Corollary 6.7 of [DS13]). Thus, TfJr can be approximated by a sequence of currents

of integration on algebraic curves of a fixed genus (properly renormalized); in this context,
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one can apply the theory of strongly approximable laminar currents, as developed by Dujardin
(see [Canl4, |DujO4] for an introduction).

5.3.8.3 Laminarity, Pesin theory and consequence

The measure uy = TJ}L N is an ergodic measure of positive (and maximal) entropy for f,
and tools from Pesin theory can be used to describe the dynamics of f with respect to this
measure. In particular, in our setting, one can apply the work of Bedford, Lyubich, and Smillie
in [BLS93]| or the work of Dujardin in [Duj04]].

First, the laminar structure of TfJr is compatible with Pesin theory; the second one is that u¢
has a local product structure. Taken together, these facts imply that one can find holomorphic
bi-disks V ~ D x D in Xy(C) and transverse laminations £L* and L" of V, the leaves of L® being

horizontal graphs, the leaves of L" being vertical graphs, such that

(a) it makes sense to restrict TfJr (resp. T, ) to the support Supp(L*) of L% (resp. on
Supp(L));

(b) the restriction is given by the current of integration on the leaves of L* (resp. L") averaged
by a transversal measure ,u‘J,r (resp. uy ); in other words, if L*(w) is a leaf of L¥, ,u;,r
induces a positive measure on Supp(L*) n L*(w) and if a is a smooth form supported by

a compact subset of V, then
o= [ A di @)
ZELY(w)

(c¢) in restriction to Supp(L*) n Supp(L~), the measure uy is given by the product of the

currents, i.e. by the Dirac masses at the points of intersection of the leaves, weighted by
dpy ®dpy ;

(d) for s almost every point x € Supp(L™*) n Supp(L~), the leaf L°(x) is a piece of stable

manifold, and £¥(x) is a piece of unstable manifold.

Then, one can apply the following argument, taken from Section 9 of [BLS93]]. Pick a sad-
dle periodic point g of f, take a small neighborhood W of ¢, and consider its stable manifold,
parametrized by &: C — W*(q). Since the Ahlfors-Nevanlinna current of & coincides with T,
each disk of £* is a limit of disks &(D;), for some topological disks D; = C. Since the lamina-
tions £" and L* intersect transversally, one finds a disk §(D;) that intersects L* transversally.

Then, if one applies fV with N large, the preimages of &(D;) n L* approach the point g, and
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the inclination lemma implies that the images of the leaves of L” are (very large) disks which,
in the neighborhood W of g, converge towards W“(g) (in the C! topology). Doing the same
with the unstable manifold W“(g) and the dynamics of f~V, one pull back £* near g. On the
other hand, T;r and T, are eigencurrents for f. Thus, one sees that TfJr and T, give mass to
two transversal laminations of W. And this implies that uy gives a positive mass to W. Since
this work for any neighborhood of g, this point is in the support of us. Thus, Theorem is

proven.

5.3.9 The sequence (g"(¢(f))) is unbounded

Suppose D = 0 we can consider S as the flat torus 7 = R?/Z? with a puncture at the origin,
i.e. S=T\{o}, or as a complete hyperbolic surface X of finite area (we fix such a hyperbolic
structure, it corresponds to some point X in the Teichmuller space Teich(S) ~ D).

An element f of Out ™ (F») is pseudo-Anosov if the corresponding matrix A € SL»(Z) has
Tr(Af)? > 4. In that case, the matrix has two eigenvalues A(f) > 1 and 1/A(f) < 1 and the
mapping class is represented by a linear automorphism of the torus 7 (fixing the origin o) with
stable and unstable linear foliations. In the hyperbolic surface X, these foliations give rise to
two measured laminations F_ and F (by geodesic lines). If C < § is a closed curve (repre-
sented by some geodesic in X), one can define two intersection numbers i(C, Fy) and i(C,F_);
they depend only on the free homotopy class of C. The product j(C) = i(C,F)i(C,F_) is f-
invariant, because f stretches F by a dilatation factor A(f) > 1, and contracts F_ by 1/A(f); if
C is not homotopic to a loop around the puncture j(C) is strictly positive (any closed geodesic
is transverse to F and F_).

If D =2—2cos(2m/q), let S be the genus one torus with an orbifold singularity of order
q. We have seen that there exists a characteristic finite covering S — S with S a compact sur-
face of negative Euler characteristic. We let X = H?/T" be a hyperbolic surface homeomorphic
to S (e X e Teich(g)). If £ € Out™(F) is pseudo-Anosov then it lifts to a pseudo-Anosov
f € Mod(X) = Out*(F,) pseudo-Anosov also. In that case, there exist two measured lamina-
tions F; and F_ over S (the stable and the unstable one) and by Proposition 1.5.1 of [Ota96].
We have that for any geodesic ye S,

#\+i
)™ F. (5.125)

()= (y) =t

in the sense of measured laminations. (This also holds in the case D = 0). Here / is the length

227



Chapter 5 — Green functions and dynamics of loxodromic automorphisms of affine surfaces

induced by the hyperbolic structure from the quotient H2/T" so £( )£ (y) grows like A(f)". We
also have that j(y) = i(y, Fy. )i(y, F_) is f-invariant as i(f(Y), Fx) = AM(f)FLi(y, Fy) and if yis a
geodesic, then j(7y) > 0. To unify the notations we will still denote by f the lift fof ftoX.

Lemma 5.3.14. If f and g are two loxodromic elements of Out™ (F>) ~ SLy(Z) generating a
non-elementary subgroup of SLy(Z), then given any geodesic Yy < X, j(g"(Y)) goes to +0 as n

goes to +.

Proof. Let G4 and G_ be the unstable and stable laminations associated to g in X. Since
f and g generate a non-elementary subgroup of GLy(Z), G, is transverse to both F, and
F_ (equivalently, the four fixed points of Ay and Ag on P!(R) are distinct). Thus, by Equa-
tion j(g"(C)) ~AMg)"i(G+,Fy)i(G_,F-) by continuity of the intersection number (see
[Ota96] p.151). [

Lemma 5.3.15. Ler f and g be two loxodromic elements of Out™ (F,) ~ SL,(Z) generating a
non-elementary subgroup of SLy(Z). Let Y < X be a geodesic, and let || be its free homotopy

class. Then the sequence g"|Y| intersects each orbit of f only finitely many times.

Proof. This follows from the previous lemma and the fact that j(-) is f-invariant so it is constant
in each orbit of f. O

Recall the definition of Mg > Mq; > Poo and oy from Theorem (here we consider
f € Mod(S) if we are in the orbifold case). In Me ;> the number of simple closed geodesics
of length < L is finite (for every L > 0); thus, in Mg, given any upper bound L, there are only
finitely many homotopy classes of simple closed curves up to the action of f% (Note that, since
o acts by isometry, each closed geodesic C < M r gives rise to infinitely many geodesics oc?(C )

with the exact same length).

Proof of Proposition 5.3.5]item (2) Fix a generator a in 7; (S) where S is either the punctured
torus or the genus 1 torus with an orbifold singularity of index g. Set k to be the degree of
the finite cover § — S in the orbifold case and k = 1 otherwise. The element a* gives rise to
a closed geodesic A in Mo - From these preliminaries and the previous lemma, the sequence
of homotopy classes g"(a*) correspond to a sequence of closed geodesics in Mo > with length
going to infinity because f acts by isometry on M, .

Now, g"(a*) corresponds to a (conjugacy class of a) matrix po(g"(a*)) € SLy(C), and the
trace of this matrix is related to the length of the geodesic by a simple formula; in particular, the

fact that the length goes to infinity implies that the modulus of the trace goes to +c0. Since for
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5.3. Periodic points and equilibrium measure

any matrix A € SLy(C), TrA* is a polynomial in TrA we get that Tr(po,(g"(a))) goes to infinity.
This implies that the orbit of g( f) under the action of g on Mp(C) is discrete, going to infinity.
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