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ABSTRACT. We study the problem of unlikely intersections for automorphisms of Markov surfaces
of positive entropy. We show for certain parameters that two automorphisms with positive entropy
share a Zariski dense set of periodic points if and only if they share a common iterate. Our proof uses
arithmetic equidistribution for adelic line bundles over quasiprojective varieties, the theory of laminar
currents and quasi-Fuchsian representation theory.
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1. INTRODUCTION
The Markov surface Mp of parameter D € C is the affine subvariety of C3 defined by the equation
X+ +22 =xyz+D (D

This family of surfaces has been heavily studied as they appear in different areas of mathematics
(see or [RR22] §2). We study the dynamics of polynomial automorphisms of Mp, that is
polynomial transformations of the ambient space C* that preserves Mp and are invertible there. A

loxodromic automorphism f is an automorphism with first dynamical degree A; > 1. Here the first
1
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dynamical degree is defined as follows. Let X be a completion of Mp, that is a projective surface
with an embedding Mp — X as an open dense subset and let H be an ample divisor on X, then

M(f) = lim ((f")*H-H)"" 2)

where - is the intersection product on divisors and (f")* is the pull back operator induced by f” on
the Néron-Severi group of X. One shows that this definition does not depend on the choice of X
nor H. Alternatively, it is known (see Theorem [L.2)) that the topological entropy of f is equal to
hiop(f) = logAi(f). Therefore, loxodromic automorphisms are the one with positive entropy.

1.1. Character varieties and the Markov surfaces. Let T be the once punctured torus. The
fundamental group m;(T) is a free group generated by two elements a and b. The commutator
[a,b] := aba—'b~! is represented by a simple loop around the puncture that follows the orientation
of the surface. One can study the representation of 7;(T) into the affine variety SL,(C). It is clear
that

hom(nl(Tl),SLz(C)) > SLz(C) X SLZ(C) (3)

as y(Ty) is a free group on two generators, therefore it is an affine variety. Define the character
variety,

X = hom(nl(Tl),SLz(C))//SLz(C) “4)

where the action of SL,(C) is diagonal and given by conjugation and // is the Geometric Invariant
Theory (GIT) quotient. This is also an affine variety and we have the following result of Fricke and
Klein.

Theorem 1.1 (Fricke, Klein, [Gol09]). The algebraic variety X is isomorphic to C3. The isomor-
phism is given by

[p] € X — (Tr(p(a)), Tr(p(b)), Tr(p(ab)))- )

We will denote by (x,y,z) = (Tr(p(a)), Tr(p(b)), Tr(p(ab))) these are the Frick-Klein coordinates.
Let ¥ : X — C be the regular function

K(p) = Tr(p([a,b])) (6)
where [a,b] = aba='h~!. One can show that
Kk=x>+y" +722—xyz-2 (7)
Therefore, if X, = k! (t) is the relative character variety, we have
Xe = M1 (8)

where Mp is the Markov surface of parameter D.
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1.2. Automorphism group of the Markov surfaces. The generalized mapping class group MCG*(T)
is the group of homotopy class of homeomorphism of 77 (not necessarily orientation preserving). It
contains MCG(T}) as an index 2 subgroup and it acts on 7;(T}), we have the following isomor-
phism:
MCG™ ~ Out(m;(T})) 9)
Furthermore,

Out(m;(Ty)) ~ GL,(Z). (10)
For any element ® € Out(7; (T})),®([a,b]) is conjugated to [a,b]*. This implies, that the action of
MCG*(T) on X preserves every X;. Now, the matrix —id acts trivially, because in SL,(C) we have
that TrA = TrA~!, so for all D € C we get a group homomorphism

PGLZ(Z) — Aut(fMD) (11)

Theorem 1.2 ([?] Theorem A and B, [EH74]). Let T* PGL,(Z) be the subgroup of element
congruent to idmod?2, then for any D € C,

™ — Aut(Mp) (12)

is injective and its image is of index at most 8. Furthermore if ® € I'* and p is its spectral radius, then
logp = A1 (fe) where fo is the automorphism of Mp induced by ®. Furthermore, the topological

entropy of fo is equal to log\; (fo).

We can describe the group homomorphism. Let 6, € Aut(Mp) be the automorphism

ox(x,%,2) = (y2—x,¥,2), (13)

If we fix the coordinates y,z, then the equation defining Mp becomes a polynomial equation of
degree 2 with respect to x, 6, permutes the 2 roots of this equation. We can define 6,,0; in the
same way. Then, oy, G,,0; generate a free group isomorphic to (Z/2Z) « (Z/2Z) = (Z,/2Z) which is
of finite index in Aut(Mp) (see [EH74]). The subgroup I'* is the free group on the three generators

1 -2 10 10
() (55 65 s

which correspond respectively to Oy, G,,6,. For a more detailed description of the action of GL(Z)
on the character variety, see the appendix of [Gol03].

1.3. The Picard parameter D =4. When D = 4 the trace of the commutator is equal to Tr(p([a, b])) =
2. This corresponds to reducible representations. This parameter is very special because of the fol-
lowing. There is a 2 : 1 cover of S4 by the algebraic torus G2, = C* x C* given by

u 1% uy

1 1 1
n:(u,v)eG,an<u+—,v+—,uv+—)eS4. (15)



UNLIKELY INTERSECTIONS PROBLEM FOR AUTOMORPHISMS OF MARKOV SURFACES 4

If 6 is the involution on G2, given by 6(u,v) = (u~!,v™"), then S4 is the quotient 1 is the quotient
map. The action of the automorphism group is very explicit for the Picard parameter D = 4. Indeed,
GL;(Z) acts on G2, by monomial transformations:

(z Z) (u,v) = <uavb,ucvd> . (16)

We have 6 = —id and GL(Z)/{c) = PGL;(Z) acts on S4 = G2,/{c). Thus, all dynamical problems
on Sy can be lifted to G2,. The parameter D = 4 is the only one where Mp is a finite equivariant
quotient of G,%,,. Indeed, Rebelo and Roeder in [RR22] proved that the parameter D = 4 is the only
parameter where the Fatou set of Aut(Mp) is empty.

1.4. Green functions. If f : C> — C? is a Henon transformation of C? (i.e a loxodromic auto-
morphism of C?), it defines a birational transformation of P and f, f~! have one indeterminacy
point. Up to conjugation, we can suppose that Ind(f) # Ind(f~!), in that case, we define the Green
functions G;f, G as follows

G (p) = lilgn@bf (Il @)l) - (17)

We have the following properties (see [BS91al).

(D G;F is well defined, continuous and plurisubharmonic over C2,

(2) G o f = deg(f)GF.

3) G;? (p) = 0 if and only if the forward orbit (™ (p))ny=0 is bounded.
The function GJ? satisfies similar properties. We define the Green currents 7+ = da’CGJ'f and T~ =
dd°G . These are positive closed (1,1)-currents over C? and the measure

=TT AT~ (18)

is well defined. It is of finite mass, thus we can suppose that it is a probability measure. We call it
the equilibrium measure of f. It is f-invariant and its support is called the Julia set of f.

Now if f € Aut(Mp) is a loxodromic automorphism, the construction of the Green functions
G;f Gy is similar as in the Henon case. Since Mp(C) embeds into C* we can apply the same defini-
tion as in by replacing deg( /™) by A1 (f)" and use the norm given by || (x,y,z) ||= max(|x/, [y, |z]).

Thus we can still define Green currents, the Julia set of f and the equilibrium measure u;.
1.5. Unlikely intersections problem for special parameters. The main result of this paper is

Theorem A. Let D =0o0rD = 2cos(27n) with g€ Z>». If f and g are two loxodromic automorphisms
of Mp, then the following are equivalent

(1) Per(f) nPer(g) is Zariski dense.
(2) Julia(f) = Julia(g).
(3) uy = g
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(4) Per(f) = Per(g).
(5) INMeZ, N =gM,

The first four equivalences are called unlikely intersection problems in the literature. It was first
established by Baker and DeMarco for endomorphisms of P! ([BDI11]) and for polarized endomor-
phisms of projective varieties in characteristic zero by Yuan and Zhang in [YZ17]] and [YZ21]]. The
first instance of this result for non-projective varieties is due to Dujardin and Favre who showed
Theorem [A] for Hénon maps over a number field in [DF17]]. It is believed that one could lower the
hypothesis of the theorem requiring only Per(f) n Per(g) to be infinite (see [DF17|] Theorem D and
Conjecture 3). In [CD20], Cantat and Dujardin showed a similar result for subgroups of automor-
phisms of projective surfaces: If I' = Aut(X) is a large subgroup of automorphisms of a projective
surface then I' cannot have a Zariski dense set of finite orbits unless X is a Kummer example, that is
the quotient of an abelian surface by a finite group.

1.6. Arithmetic equidistribution. If D is algebraic, the construction of the Green functions of f
can be done over any complete algebraically closed field C, such that Q(D) — C,. We write G+
and u, for the Green functions and the equilibrium measures respectively. For the Hénon case, the
data of the line at infinity Ly, in P? and the data of G, = max (G, G;") for every C, defines an adelic
divisor over P? (see §2). Yuan’s equidistribution theorem [YuaO8] states that the Galois orbits of any
generic sequence of periodic points equidistributes with respect to .

The equidistribution of periodic points with respect to the equilibrium measure is a key ingredi-
ent of the proof of Theorem [Al However, for the Markov surface, max (G, G, ) will not define in
general an adelic divisor because for every completion X of Mp, X\ Mp has several irreducible com-
ponents (see Lemmal[2.3]). To overcome this, we use Yuan and Zhang’s theory of adelic divisors over
quasiprojective varieties in [YZ23|] where they also prove an arithmetic equidistribution theorem in
this setting. This is done in §6land §71

1.7. For a general parameter. Theorem [Al cannot hold for every parameter D. Namely, the Pi-
card surface M provides a counterexample. Indeed, for every monomial transformation M of G2,
the periodic points are given by (u,®) where u, ® are roots of unity, the Julia set of M is S! x S!
and the equilibrium measure is the Lebesgue measure on the Julia set. Thus, when looking at the
quotient, we have that every loxodromic monomial automorphism of A, have the same equilibrium
measure, the same Julia set and share a Zariski dense set of periodic points. We conjecture that the
finite quotient of G2, are the only counterexample to the unlikely intersection principle. This is the
affine counterpart to the Kummer example appearing in the result of Cantat and Dujardin. Using a
specialization argument, we show the following result that goes in the direction of this conjecture.

Theorem B. Let D € C be transcendental and let f,g € Aut(Mp) be loxodromic automorphisms.
The following assertions are equivalent:

(1) Per(f) = Per(g).
(2) INMeZ, N = g™,
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1.8. Plan of the paper. The proof of Theorem [Al is split into three parts. In the first part, we
construct the Green functions, Green currents and the equilibrium measure of any loxodromic au-
tomorphism of Mp with D algebraic at both archimedean and non-archimedean places. We then
apply Yuan-Zhang arithmetic equidistribution theorem from [YZ23]] to show that two loxodromic
automorphisms of Mp sharing a Zariski dense set of periodic points must have the same equilibrium
measure at every place.

The second part is to apply the method of Bedford, Lyubich and Smillie in [BLS93] to show
that in Mp(C) every saddle periodic point of a loxodromic automorphism is in the support of the
equilibrium measure. We use the theory of laminar and strongly approximable currents from [Duj05]
and apply techniques from [DujO4].

The third part is to construct a "special” saddle periodic point g(f) which has the following prop-
erty: the orbit of ¢(f) under any loxodromic automorphism g that does not share a common iterate
with f is unbounded. To construct g(f) we use the theory of quasi Fuchsian representation, the
simultaneous uniformization theorem of Bers and Thurston’s hyperbolisation theorem for 3-fold
fibering over a circle (see [McMO96|]). This third part is where the hypothesis on the parameter D
is used. The specific values of D give an interpretation of M} as representation of the fundamental
group of the punctured torus (D = 0) or of an orbifold obtained from a genus 1 torus with a singular
point of index ¢ (D =2 — ZCOS(%E)).

Acknowledgments. This work was done during my PhD thesis. I would like to thank my PhD advi-
sors Serge Cantat and Junyi Xie for their guidance. I also thank Juan Souto for answering questions
about quasi Fuchsian representation theory and Xinyi Yuan for our discussions on adelic divisors. I
thank Seung uk Jang for pointing out typos and small mistakes in an earlier version of this paper.
Part of this paper was written during my visit at Beijing International Center for Mathematical Re-
search which I thank for its welcome. Finally, I thank the France 2030 framework programme Centre
Henri Lebesgue ANR-11-LABX-0020-01 and European Research Council (ERCGOAT101053021)
for creating an attractive mathematical environment.

2. ADELIC DIVISORS OVER QUASIPROJECTIVE VARIETIES

2.1. Berkovich spaces. For a general reference on Berkovich spaces, we refer to [Berl2]. Let C,
be a complete algebraically closed field with respect to an absolute value |- |,. Let X¢, = SpecA be
an affine C,-variety, the Berkovich analytification Xé“1 of X¢, is the set of multiplicative seminorms

over A that extends | - |,. It is a locally ringed space with a contraction map
c: X¢, — Xc, (19)
defined as follows, if x € Xé‘v‘, then
c(x) =ker(x) ={acA:l|al, =0} (20)

where |-|, is the seminorm associated to x. If X¢, is a C,-variety then X¢, is defined by a glueing
process using affine charts and we have the contraction map c : Xé‘: — Xc,. In particular, if ¢ €
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C,(Xc,) is arational function with divisor div(¢), for x€ X&"\ (Supp D), we define [0] (x) := [c¢*0],.
If X¢, is proper (e.g projective), then Xf—‘f is compact. If p € X¢ (C,) is a closed point, then the fiber
¢~ !(p) consists of a single point | - |, defined by

lalp = la(p)l, 21)
where a(p) = a mod p, this uses the fact that the local field at p is C,. We thus have an embedding
=c:Xc(C) — X (22)

and we write Xc,(C,) for its image. It is a dense subset of X". If the reader is not familiar with
Berkovich spaces, it is enough for this paper to think of Xé“ as bemg equal to Xc,(C,) (this is the
case in particular when C, = C). If ¢ : X¢c, — Y, is a morphism of varieties, then there exists a
unique morphism

o Xe — YE! (23)
such that the diagram

an

an an
XCV Y, C,

|,

XCV L YCV

commutes. In particular, if X¢, < Yc,, then X¢! is isomorphic to ¢y '(Xc,) c Ye.

2.2. Places and restricted analytic spaces. Let K be a number field. A place v of K is an equiv-
alence class of absolute values over K. If v is archimedean then there is an embedding 6 : K — C
such that any absolute value representing v is of the form |x| = [o(x)|- with 0 < 7 < 1. In that case
we will write |- |, for the absolute value with r = 1 and we write C, = C. If v is non-archimedean
(we also say that v is finite) it lies over a prime p then we write | - |, for the absolute value of K
representing v such that |p|, = % Every finite place v is of the form

v(P) = #(Og/m)~dm(P) 25)

for P € K where m is a maximal ideal of Ok. Let K, be the completion of K with respect to | - |,,, we
denote by C, the completion of the algebraic closure of K, with respect to | - |,. We write M (K) for
the set of places of K. If V. < M(K), we write V[f] for the subset of finite places in V and V[oo] for
the archimedean ones.

If v is archimedean, then define O, = C,. If v is non-archimedean, we define O, as the ring of
elements of absolute values < 1 and x, as the residue field

Ky = v/mv (26)

where m, is the maximal ideal of elements of absolute value < 1.
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Let X be a variety over K. For every place v of K, define X, := X xg SpecC,. Similarly, if D is
an R-divisor over X then we denote by D, its image under the base change. We write X" for the
Berkovich analytification of X,. We also define the global Berkovich analytification of X as

X .= |_|X§“. (27)
v

Comparing to [YZ23]], this space is called the restricted analytic space of X by Yuan and Zhang. If
V is a set of places, we also define

xpe=| | xi (28)
veV
In particular, we define
X*[f] := X XMel= || X (29)
veM (K)[f] veM (K)[oo]

If 2 is a variety over Ok, we write 2, for the base change
2y = Z x o Spec O,. (30)

Similarly, if & is an R-divisor over 2", we denote by &), its image under the base change.

2.3. Adelic divisors over a projective variety. Let K be a number field and X a projective variety
over K. A divisor on X is a formal finite sum Zi a;E; where a; € Z and E; is an irreducible subvariety
of codimension 1. An R-divisor on X is a sum

D = ZaiDi (31)

where a; € R and D; are divisors on X.

Models, horizontal and vertical divisors. If D = ) .a;D; is an R-divisor on X, a model of (X, D)
is the data of (2°,2) where 2" is a normal projective variety over Ok with generic fiber X and
9 = > ;a;i%; is an R-divisor on £ such that 9i|x = D;. There are two types of divisors on a
projective variety 2~ over Ok: horizontal divisors which irreducible components are the closure
of prime divisors over the generic fiber and vertical divisors which irreducible components do not
intersect the generic fiber. If D is a divisor on X, we will still write D for the horizontal divisor it
induces over 2 . Every divisor & over 2 can be uniquely split into a sum & = Dy, + Dyerr 0f an
horizontal divisor and a vertical one. In particular, Dy, = 2 Xgspec ox Spec K is the generic part of

2.

Green functions. A Green function of D is a continuous function g : X*™\ (Supp D)*" — R such that
for any point p € (SuppD)®", if z; is a local equation of D; at p then the function

g+ ailog|z (32)
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extends locally to a continuous function at p. For any place v € M(K), we write g, for g|xm, g[f] =
g|xan[f] and gloo] = gxan[oo]- For the archimedean places v we add the extra condition that g, must be
invariant under complex conjugation. That is if ¥ is the conjugate place of v, then gy(z) = g,(Z) for
z€ X(C). Notice that compared to [Mor16] or [YZ23]], our definition of Green functions differs by
a factor 2.

If (2°,2) is amodel of (X,D), then for every finite place v, (2, %,) induces a Green function
of D, over X" as follows. We have the reduction map (see [Ber12])

ra i XM (2, (33)

Let x € X2™\(SuppD)3", and let z; be a local equation of % ,, at r ¢, (x), we define
8(2,2,)(x) := = > ailog|z|(x). (34)

It does not depend on the choice of the local equations z; because an invertible regular function ¢
satisfies |¢| (x) = 1 (recall that here v is non-archimedean).

Adelic divisors. An adelic divisor D on X is the data of D = (D, g) where D is an R-divisor on X
and g is a continuous Green function of D over X" such that

(1) There exists an open subset V c Spec Ok and a model (Zv, %y) of (X,D) over V such that
for every finite place v lying over V

8v = 8(2,,%,) (35)

(2) For any finite place not lying over V and all the archimedean ones, the Green function g, is
the uniform limit of model Green functions of D over X2".
A model adelic divisor on X is an adelic divisor (D,g) on X such that g[f] is induced by a model
(Z,92). Itis vertical if 9 is vertical, in particular D = 0.

Following [Zha93]], a model adelic divisor is semipositive if g[cc] is plurisubharmonic (psh) and
9 is nef over 2. An adelic divisor D = (D, g) is semipositive if g[oo] is psh and there exists a
sequence of semipositive model adelic divisors 2, such that (2;, Z,) is a model of (X,D) and the
sequence

8lfl — &2, (36)
converges uniformly to zero over X*". An adelic divisor is integrable if it is the difference of two
semipositive adelic divisors. We say that an adelic divisor D = (D, g) is effective if g = 0 in particular

this implies that D is an effective divisor. We write D > D it D—D' is effective. We say that D is
strictly effective if D > 0 and g[c] > 0.

Lemma 2.1. Every ample divisor H on X admits a strictly effective semipositive model.

Proof. Let1: X — P} be a projective embedding such that H = {Ty = 0} n1(X) where Ty, -+, Ty
are the homogeneous coordinates of Pﬁ. We can find a model .2 such that 1 extends to a regular
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map

1: 2 - Py 37)
then the divisor 2 = 1" {Tp = 0} is amodel of H and a nef divisor over .2~ (Here Tj is a homogeneous
coordinate of P%K). For every archimedean place v, g, is given by

gv(p) = 1+log" max (|t (p)],---, |tn(p)]) (38)
where t; := %’) This is (one plus) the pull back of the Weil metric over PV (see e.g [Challl]). ]

Proposition 2.2 (Lemma 3.3.3 of [YZ23]). If Z = (D, g) is a model adelic divisor, then 9 is effective
if and only if g[0] = 0 and P is effective.

In our setting, using adelic divisors over a projective variety will not be enough because the
completions of Mp have several components at infinity. The following lemma shows that Green
functions of divisors do not behave well under maximum.

Lemma 2.3. Let X be a projective variety, let E,F < X be two prime divisors of X. Let D; =
a;E +biF,i = 1,2 be two R-divisors of X* with Green function g; such that 0 < a; < ay,b; > by >0,
then

max(g1,g2) (39)
is not the Green function of an R-divisor in X.

Proof. Let g = max(g1,g2) and suppose that there exists a divisor D such that g is a Green function
of D. Then, D must be of the form D = aE + bF. Let p € (E n F)*" and let x,y be local equations of
E and F respectively. Then, locally at p we have

gi = —a;log|x| — bilog|y| and g = —alog|x| — blog|y| (40)

where = means equality up to a (bounded) continuous function. Pick € > 0 such that a; + b€ < a».
In the region Ue = {|log|y|| < €|log|x||}, we have

g1 < — (a1 +¢by)log|x| < —azlog|x| < g (41)

where < means inequality up to a (bounded) continuous function. Thus, g = g» in that region and
therefore D = ayE + by F. But the same reasoning in the region {|log|x|| < €|log|y||} for € > 0 small
enough shows that g = g1 in that region and therefore D should be equal to D = a{E + b F and this
is a contradiction. O

2.4. Over quasiprojective varieties. The main reference for this section is [YZ23]]. Let U be
a normal quasiprojective variety over a number field K. A quasiprojective model % of U is a
quasiprojective variety % over Spec Og with generic fiber isomorphic to U. A projective model of
 is a projective variety 2~ over Spec Ok with an open embedding % — 2.

A model adelic divisor on % is a model adelic adelic divisor induced by a projective model of
% . If 9 is a model adelic divisor on some projective model .2~ of % . We say that Z is supported

at infinity if (Zhor)jy = 0. We write ISR/(% , % ) for the set of model adelic divisor supported at
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infinity induced by a fixed projective model .2 of % . Since the system of projective models of U is
a projective system, we can define the inductive limit

Div(% )mod := limDiv(2, %). (42)
z

Our definition differs from [[YZ23]] because we only take divisors supported outside U. This make
sense for our dynamical setting. o
A boundary divisor on 7/ is a model adelic divisor 2y = (20, g) such that Supp 2y = Zo\% . It

defines a norm on ]SRI(?/ ) given by
H§||=inf{8>0: —Sgoégéego} (43)

An adelic divisor D on % is an element of the completion of Div(%/ ) With respect to this norm.
More precisely, an adelic divisor on % is a sequence of model adelic divisors (2}, Z;) such that
there exists a sequence €; > 0,€&; — 0 such that

Vizi, —-€90<9;,—9:<¢&%. (44)

If we denote by g; the Green function of the model adelic divisor &;. Then, this is equivalent to
asking that

—€i80 < 8 — &i < €igo- (45)

In particular, (g;) converges umformly locally to a continuous function g over U*". We call it the

Green function of D. We write Dlv(% ) for the completion of Dlv(% ) with respect to this norm. An
adelic divisor on U is an element of

Div(U/0k) := limDiv(%) (46)
4

Remark 2.4. In [YZ23] Yuan and Zhang use only Q-model divisors for the definition of Div(.2", %)
and I/)R/(@/ ) whereas here we also allow R-model adelic divisors. If one wants to use adelic line
bundles instead of adelic divisors and in particular the global section of line bundles then it make
sense to use only Q-line bundles in the limit process defining adelic line bundles with the boundary
topology but we do not need that here. Anyway, for adelic divisors, using R-model divisors provides
the same final space thanks to the following lemma.

Lemma 2.5. Let 9 be a model R-adelic divisor supported at infinity and let 9 be a boundary
divisor. Then for any € > 0, there exists a Q-model divisor 9 such that

—890 9 93 8@0 (47)

Proof. Let 2" be a model over Spec Ok such that &, 9 are defined. It is easy to find a Q-divisor
over 2 arbitrary close to Z so we just need to do some work for the archimedean places.

Fix an archimedean place v, and let g : X (C) — R be the Green function of Z overv. LetEy,-- - ,E,
be the irreducible components of the boundary of X in Z¢ and write D = ). a;E;. Let g; be a Green
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function E; over X(C) then g — > ;a;g; = h is a continuous bounded function over X (C). Suppose
a; # 0 we replace g| by g1 + u—llh such that

g = Zaigi- (48)

be a sequence of rational numbers

Now, let A > 0 such that for all i supyc) g
converging towards a;, then

'm < rAmax (|a; — a; ) “
l

80
and we have the result. O

Definition 2.6. An adelic divisor D over U is

e strongly nef if for the Cauchy sequence (Z;) defining it we can take for every &; a semipos-
itive model adelic divisor.

e nef if there exists a strongly nef adelic divisor A such that for all m > 1,D + mA is strongly
nef.

e integrable if it is the difference of two strongly nef divisors.

If D is an adelic divisor over U, then D has an associated height function
hy:UK)—R (50)

which is computed as follows if D)y = 0 which is our use case in this paper:

VpeURK), hslp)==—— >, D, map,4) (51)

veM (K) geGal(K/K)-p

where n, = [K, : Q,]. Moreover, for any closed K-subvariety Z of U, we define the height of Z to

be

—dimZ+1
D|Z

(1+ dlmZ)Df%mZ

hp(Z) := (52)

—dimZ+1 . . . )
where D| %m - represents the intersection number of adelic divisors, see [YZ23]] for more details.

Proposition 2.7 ([YZ23]] §2.5.5). If f : X — Y is a morphism between quasiprojective varieties over
K, then there is a pullback operator

f*:Div(Y/Ok) — Div(X/Ok) (53)
that preserves model, strongly nef, nef and integrable adelic divisors. If g is the Green function of
D € Div(Y/OK), then the Green function of f*D is g o f.
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3. PICARD-MANIN SPACE AT INFINITY

3.1. Completions. A completion of Mp is a projective surface X with an open embedding 1y :
Mp — X. We call X\1y(Mp) the boundary of Mp in X. By [Goo69] Proposition 1, it is a curve.
We will also refer to it at the part "at infinity" in X. For any completion X of Mp we define
Divy, (X)a = @AE; where A = Z,Q,R and X\‘Mp = | JE;, the space of A-divisors at infinity. For
any two completions X,Y we have a birational map Tyy = 1y o 1;1 : X -—» Y. If this map is reg-
ular, we say that Tyy is a morphism of completions and that X is above Y. For any completion
X, Y there exists a completion Z above X and Y. Indeed, take Z to be a resolution of indetermina-
cies of Tyy : X --» Y. A morphism of completions defines a pullback and a pushforward operator
Ty, (Txy)« on divisors and Néron-Severi classes. We have the projection formula,

Vae NS(X),BeNS(Y),o - mtyyP = (Txy)«0 - B. (54)

Let M p < P3 be the closure of Mp in P3. We have that WQMD is a triangle of lines all of self
intersection —1. The matrix of the intersection form on Dive, (M p) is

1 -1 1 (55)

Therefore, the intersection form is non degenerate over Divy, (WD) A and we have the embedding
Diveo(Mp)a < NS(Mp)a. (56)
And this holds for every completion X of Mp.

3.2. Weil and Cartier classes. If Tyyx : ¥ — X are two completions of M) then we have the em-
bedding defined by the pullback operator

Tyy : Dives (X)a < Dives (Y)A. (57)
We define the space of Cartier divisors at infinity of M} to be the direct limit

C(Mp) := lim Dives (X )R- (58)
X

In the same way we define the space of Cartier classes of Mp

Z(Mp) := imNS (X ). (59)
X

An element of Z(Mp) is an equivalence class of pairs (X, o) where X is a completion of Mp and
o € NS(X)Rr such that (X,o) ~ (Y,pB) if and only if there exists a completion Z above X,Y such
that 75, o0 = T3, B. We say that a.e Z(Mp) is defined in X if it is represented by (X, o). We have a
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natural embedding C(Mp) — Z(Mp), we still write C(Mp ) for its image in Z(Mp). We also define
the space of Weil classes
Z(Mp) := limNS(X)r (60)
X

where the compatibility morphisms are given by the pushforward morphisms (Ttyx). : NS(Y) —
NS(X) for a morphism of completions Ttyy : ¥ — X. An element of this inverse limit is a family
o = (o )x such that if X,Y are two completions of Mp with ¥ above X, then (7yx )0y = oy. We

call oy the incarnation of o in X. We have a natural embedding Z(Mp) — 2(9\/[0). We also define
the space of Weil divisors at infinity

W (Mp) := limDive, (X)R 61)
X

and we have the commutating diagram

C(Mp) —— Z(Mp)

[ | (62)

W(Mp) —— Z(Mp)

Thanks to the projection formula, the intersection form defines a perfect pairing

Z(Mp) x Z(Mp) — R (63)
defined as follows. If o € Z(Mp) is defined in X and B € 2(9\/[0), then
o-B=oyx Bx (64)

An element o € W (Mp) is effective if for every completion X, aiy is an effective divisor. We write
o = B if oo — P is effective. An element B € Z(Mp) is nef if for every completion X, By is nef.

3.3. The Picard-Manin space of Mp. We provide 2(5\/[0) with the topology of the inverse limit,
we call it the weak topology, Z(Mp) is dense in Z(Mp) for this topology. Analogously, C(Mp) is
dense in W (Mp).

We define D, for the set of prime divisors at infinity. An element of D, is an equivalence class
of pairs (X,E) where X is a completion of Mp and E is a prime divisor at infinity. Two pairs
(X,E),(Y,E') are equivalent if the birational map Tyy sends E to E’. We will just write E € Dy,
instead of (X,E). We define the function ordg : W(Mp) — R as follows. Let o € Mp, if X is any
completion where E is defined (in particular (X, E) represents E € D), then oy is of the form

oy =agk + Z arF (65)
F#E

and we set ordg (0y ) = ag. This does not depend on the choice of (X, E).
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Lemma 3.1 ([BEJO8] Lemma 1.5). The map
oe W(Mp) — (ordg(at)) pen,, € R™* (66)
is a homeomorphism for the product topology.

We can define a stronger topology on Z(Mp) as follows. The intersection product defines a
non-degenerate bilinear form

Z(Mp) x Z(Mp) — R (67)

of signature (1,00) by the Hodge Index Theorem. Take an ample class ® on some completion X of

Mp such that > = 1. Every Cartier class o € Z(Mp) can be decomposed with respect to ® and o

o= (o0 0o+ (a— (o 0)o). (68)

By the Hodge index theorem, the intersection form is negative definite on @ and we define the
norm

[lotgy = (- @) = (ot (o @) ). (69)
This defines a topology on Z(Mp) which is independent of the choice of ®. We call it the strong
topology. We define Z(Mp) to be the completion of Z(Mp) with respect to this topology. As this
topology is stronger than the weak topology, Z(“Mp) is a subspace of E(MD). This is a Hilbert space
and the intersection product extends to a continuous non-degenerate bilinear form

Z(Mp) x Z(Mp) — R. (70)

We call Z(Mp) the Picard-Manin space of Mp. We also write C(Mp) for the closure of C(Mp)

for the strong topology. We have in particular that every nef class in E(MD) belongs to Z(Mp) (see
[BEJOS] Proposition 1.4).

Remark 3.2. In [BEJOS] or [CLC13], the Picard-Manin space is defined by allowing blow up with
arbitrary centers not only at infinity. Since we study dynamics of automorphism of Mp, the indeter-
minacy points are only at infinity. This justifies our restricted definition of the Picard-Manin space.
A similar construction is used in [EJ11] for the affine plane.

3.4. Spectral property of the dynamical degree. If f € Aut(‘Mp) we define the operator f* on
Z(Mp) as follows. Let o€ Z(Mp) defined in a completion X. Let ¥ be a completion of Mp such
that the lift F' : Y — X of f is regular. We define f*a as the Cartier class defined by F*o. This does
not depend on the choice of X or Y. We write f, for (f~1)*. If X is a completion of Mp, we write
fx : Divey (Mp) — Divy, (Mp) for the following operator:

fx(D) = (f*D)x (71)
where we consider the class of D and f*D in C(Mp). We also define the operator fy : NS(X) —
NS(X) in a similar way.

Proposition 3.3 (Proposition 2._3 and Thegrem 3.2 of [BEIOS8)). The operator f* extends to a con-
tinuous bounded operator * : Z(Mp) — Z(Mp) that satisfy
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(1) f*o-B=o- fi.
(2) ffo-f*p=o-Pp
(3) Ai(f) is the spectral radius and an eigenvalue of f*.
If A1 (f) > 1, then A is simple and there is a spectral gap property.

Theorem 3.4 (Theorem 3.5 of [BEJOS|). Let f be a loxodromic automorphism of Mp, there exist
nef elements 07,0~ € C(Mp) unique up to renormalisation such that

(1) 0 and O~ are effective.

(2) (0%)2=(0")>2=0,6"-0" =1.

(3) f*0r =0T, (f e =10"

(4) For any o€ Z(Mp),

— 1
Wf%*oc = (87 - a)6F + Ou(57) (72)
1 1

Proof. The only assertion not following from [BEJOS] is that 6 and 6~ are effective and belong
to C. We show the result for 8. Following the proof of [BFJ08] Theorem 3.2, we have that 6
is obtained as a cluster value of a sequence of Cartier divisors (X,,0,) on completions of M) such
that f;ne,, = pn0, where p, is the spectral radius of f)}"n. The existence of 8" follows from the
fact that p, — A;. We show that 6, can be chosen nef and effective. Fix a completion X of Mp,
fx preserves the nef cone Nef(X) of NS(X). It also preserves the subcone of Nef(X) consisting
of effective divisors supported at infinity. This subcone is nonempty because for example in the

completion M p < P3, the divisor
H={X=T=0+{Y =T =0}+{Z=T =0} (73)

is very ample as it is equal to Mpn {T = 0}. By Perron-Frobenius theorem, there exists Oy in this
subcone such that fy0x = px6x with px the spectral radius of fy. U

3.5. Compatibility with adelic divisors. We have a forgetful group homomorphism
¢ : Div(Mp/Ok) — W (Mp) (74)

defined as follows. Let U be a quasiprojective model of Mp over Ok and let Z be a model adelic
divisor on U. Then, ¢(¥) = Dk is the horizontal part of D, this is an element of C(Mp) because ¥
is supported at infinity.

Proposition 3.5. The group homomorphism c extends to a continuous group homomorphism
¢ :Div(Mp/Ok) — W (Mp). (75)
Furthermore, if D is integrable then c(D) € C(Mp).
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Proof. Let D € ISR/(MD /Ok) be given by a Cauchy sequence of model adelic divisors (D;). Let X
be a completion of Mp. There exists a sequence €; converging to zero such that

—8,'5() < 5]' — 51' < 8,'@0 (76)

Applying ¢, we get (write D; = ¢(D;))
—& Dy < Dj—D; < gDy (77)

Thus, for every E € D,,,ordg(D;) is a Cauchy sequence and converges to a number ordg (D). By
Lemma [3.1] this defines a Weil divisor ¢(D) € W(Mp). It is clear that ¢ is continuous, again using
Lemmal[3.1l

If D is integrable, then it is the difference of two strongly nef adelic divisors and nef classes in

W(Mp) belong to C(Mp). O

We will drop the notation ¢(D) and just write D = ¢(D).

4. REPRESENTATION THEORY

4.1. Fuchsian and Quasi-Fuchsian representation. A Fuchsian group is a discrete subgroup I
of PSLy(R). A Quasi-Fuchsian group is a discrete subgroup I' of PSL,(C) such that its limit set
in C := P!(C) is a Jordan curve. Let S be an oriented compact (real) surface of negative Euler
characteristic. We say that a representation p : 7;(S) — SL(C) is Fuchsian (resp, Quasi-Fuchsian)
if p(S) = PSL,(C) is Fuchsian (resp. Quasi-Fuchsian).

Let Teich(S) be the Teichmuller space of S, that is the set of complete finite hyperbolic metrics
over S. Every point of Teich(S) induces a Fuchsian representation of S. We can actually parametrize
the set of Quasi-Fuchsian representations of S using Teich(S) by the simultaneous uniformization
theorem of Bers.

Theorem 4.1 ([Ber60l). There is a biholomorphic map

Bers : Teich(S) x Teich(S) — QF(S) (78)
where S is the surface S with its reversed orientation.

Using this theorem, one can apply an iterative process to find a fixed point in the character variety
of S.

Theorem 4.2 ([McMO96]). Let S be an oriented compact surface of negative Euler characteristic.

Let (X,Y) € Teich(S) x Teich(S), let ® € Mod(S) be pseudo-Anosov, then the sequence
Bers(®"(X),®"(Y)) (79)

has an accumulation point py, : 71 (S) — PSLy(C). Furthermore,

(1) poo is discrete and faithful.
(2) The limit set of po (71 (S)) is the whole boundary S* of H>.
(3) P is a fixed point of ® and ® is conjugated to an isometry o, of Mo = H? /po (11 (S)).
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(4) The group of isometries of My, is discrete and Q. is of infinite order.
(5) The mapping torus Mg is isomorphic as an hyperbolic manifold to Mo/ < oL >.
(6) The subgroup generated by 0. of the group of isometries of Mg is of finite index.

4.2. The surface M, and a Theorem of Minsky. We are interested in this section with the Markov
surface M) that is when Tr(K) = —2, therefore p(K) is a parabolic Mobius transformation. The real
points My(R) consist of an isolated point (0,0,0) and four diffeomorphic connected components
that are given by the signs of x and y. We will denote by My(R)™ the connected component such
that x,y > 0. of area 2x. This is equivalent to asking that there is a cusp at the puncture. It is known
that Teich(T;) (T; the punctured torus) is isomorphic to the upper half plane H* and we make this
identification from now on. The action of Mod(T ) on Teich(T}) is conjugated to the usual action of
PSL,(Z) by isometries on . The point (0,0,0) is the only singular point of % and it corresponds
to the conjugacy class of the representation

p(a)=<(3 (’)) p<b>=(? _01). (80)

Its image is the quaternionic group of order eight. The automorphism group Aut(Mp) fixes (0,0,0),
preserves Mp(R)~ and permutes the three remaining connected components of My(R)\(0,0,0).

Any point in Teich(T}) gives rise to a representation p : 7w (T ) — PSL,(R) which can be lifted to
four distinct representations p : 7t; (T ) — SLy(R). The cusp condition gives the condition Tr(p(a,b)) =
—2 (because Tr = 2 corresponds to reducible representations). Therefore, we get an embedding of
Teich(T) ) into the 4 different connected component of My(R)\(0,0,0). We will restrict our attention
to the embedding Teich(T;) — Mp(R) ™.

The set My(R)™ is made of (conjugacy class of) Fuchsian representations. Let DFy « My(C) be
the subset of discrete and faithful representation of 7t;(T;). Then DFy has four different connected
components, one of them contains My(R)™. We denote it by DF(J)r and we denote by QF(J)r the set
of Quasi-Fuchsian representation inside DF(J)r . In fact, QF(J)r is the interior of DF(J)r (see [Min02]).
We can identify Teich(T;) with the upper half plane H* and Teich(T;) with the lower half plane
H~. The group PSL(Z) acts on P!(C) via M&bius transformation. It preserves H*,H~ and P! (R).
In particular, the mapping class group MCG(T;) = SL,(Z) acts on P'(C) and we can conjugate
this action to the action on My(R)™ via the Bers mapping. Namely, let ® € MCG(T)) and let
fo € Aut(Mp) induced by the map from Equation (I1). We have for every (s,7) € Ht x H™,

Bers(®(s,t)) = fo(Bers(s,?)) (81)

Theorem [4.2] is not applicable directly as T; is not compact. However, Minsky showed that the
Bers mapping can be extended to almost all the boundary of Teich(T;) x Teich(T;). The boundary
of H* is P! (R). We denote by A the diagonal in 0 Teich(T;) x 0 Teich(T}).

Theorem 4.3 ([Min99]). The Bers mapping extend to a continuous bijection

Bers : Teich(T) x Teich(T;)\A — DF* (82)
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In particular, let ® € SLy(Z) = MCG(T]) be a loxodromic element and let fp be its associated
automorphism over Mp. The isometry & has a repulsive fixed point o(®) on P!(R) and an attractive
one ®(P). By Minsky’s theorem, this gives two unique fixed point p(®) = Bers((o(®P), ®(P))) and
q(®) = Bers((0(®),o(P))) of fp in DFT\QF™.

5. DYNAMICS OF LOXODROMIC AUTOMORPHISMS OF THE MARKOV SURFACE

5.1. Cyclic completions and circle at infinity. Let M = P be the closure of M) in P3. We have
that M p\Mp is a triangle of lines. We use the following result.

Proposition 5.1 ([EH74, [CAC19]). Let X be projective surface and U an open subset of X such
that X\U is a cycle of rational curves. Assume that X\U is not an irreducible curve with one
nodal singularity. Let g be an automorphism of U, then the indeterminacy points of g can only be
intersection points of two components of the cycle.

This shows that to understand the dynamics of a loxodromic automorphism at infinity it suffices to
blow up the intersection points of the divisor at infinity. Therefore we can remain with completions
X of Mp such that X\ M), is a cycle of rational curves. We call them cyclic completions.

Start with M p < P3. If we blow up the three intersection points of the triangle at infinity we
get a new completion of Mp with a hexagon of rational curves at infinity. If we repeat the process
we get a sequence of completions with an increasing polygon of rational curves at infinity, let X,
be this sequence of completions. Let G, be the dual graph of X\Mp, i.e the vertices of G, are
the irreducible components E; of X,,\'Mp and we have an edge between E; and E; if and only if
E;nE; # (J. We have a natural embedding of graphs G, — G,;1. We define the direct limit
G =lim G, and Aut(Mp) acts naturally on G. There is a parametrization of the vertices of G called
the Farey parametrization (see [[CdC19]] §8.2), and G is isomorphic to the set of rational points of
the circle S' with this parametrization. If X is a cyclic completion, the irreducible components E;
(enumerated cyclically) of the boundary corresponds to rational points v; € S'. The rational points
of |v;i,viy1| are obtained by blowing up above the point E; N E; 1.

Following §2.6 of [Can09], we identify S' ~ R U {c0} with the boundary of the upper half plane of
H*. If vy, vy, v, are the three vertices of G representing the three curves {X =7 =0}, {Y =T =0}
and {Z =T = 0} in M p, then this identification sends vy,vy,v; to 0,—1,00 € JH" which we write
Jxs Jy, J- respectively. Recall the notations of §I.2] The generator G, (resp. Gy, ;) of I'™* acts on JH ™
as the reflection with respect to the geodesic (jy, j;) (resp. (jx, jz), (jx,jy)) under this identification.
The isometries of H* induced by oy, 6y, 6, with this identification are exactly given by (I4). Hence,
the action of I'* on G is given by the action of G on H* via isometries. Thus every loxodromic
automorphism f € ['* admits two irrational fixed points o f),®(f) € 0HT, a(f) is repulsive and
o(f) is attracting.

The circle S! has an interpretation as a special subset of the set of valuations of the ring of regular
functions of Mp. The two fixed point a(f),®(f) correspond to a repulsive and attracting fixed point
in this space of valuation. See §14.5 of [Abb23]] for more details.
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5.2. Dynamics of loxodromic automorphism at infinity. From the previous discussion, we get

Proposition 5.2. Let D e C,K = Q(D) and f € Aut(Mp). For any cyclic completionY of Mp, there
exists a cyclic completion X above Y such that there exists two closed points p.,p— € X\Mp(K)
satisfying the following properties

(1) p+ # p-

(2) There exists a unique attracting fixed point p € X\'Mp(K) at infinity.

(3) some positive iterate of f*! contracts X\Mp to p+.

(4) £ is defined at pi,fil(pi) = p+ and p= is the unique indeterminacy point of f*V for N

large enough.

(5) There exists local algebraic coordinates (u,v) at py such that uv = 0 is a local equation of
the boundary and f£' is of the form

) = (v 0,uvy) (83)

with ad — bc = £1 and ¢, invertible. In particular, for any place v of K there exists an
open neighbourhood U of p+ in X such that fi(UCiv) CUF.

(6) f is algebraically stable over X and f305, = \16y;, (fx—l)*eg = MOy

Proof. From the previous section, write E1,--- , E, for the irreducible components of ¥ enumerated
in cyclic order. We write p for the unique point p = E; N E;; such that ®(f) €]v;,vi+1[ and we
define p_ similarly with respect to o(f). It is clear that for N large enough every E; is contracted
to p+ by fEV because of the attractingness of ®(f) and o.(f) = o(f~!). Thus, to get a completion
above Y that satisfy Properties (1)-(5) we just need that p, # p_ in that completion. Since f is
loxodromic, we have o f) # ®(f), thus after enough blow-ups this will be the case. O

Corollary 5.3 (Corollary 3.4 from [Can09])). Any loxodromic automorphism of Mp does not admit
any invariant algebraic curves.

Proof. Let f € Aut(Mp) be loxodromic. Let X be a completion of M) given by Proposition [5.21
If C © Mp was an invariant algebraic curve, then its closure C in X should intersect X \Mp. Since
the boundary is contracted by f, we must have p, € C and f : C — C is an automorphism with a
superattractive fixed point. This is a contradiction. 0

Proposition 5.4. Let X be a completion of Mp given by Proposition replace f by one of its
iterates such that ' contracts X\Mp to p. Then,

(1) There exists D~ € Divey, (X )R such that f{D~ = %ID_.

(2) If E+,F are the two divisors at infinity such that p = E " Fy, then for all R € Divy, (X)r
such that E, ,F, ¢ SuppR, then f{R=0and®™ -R =0.

(3) D~-0~ =0.

(4) {6y, D"} U{E : E ¢ {E. F.}} is a basis of Dive, (X).
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Proof. If E is a prime divisor at infinity distinct from E and F, then f3E = 0 because every prime
divisor at infinity is contracted to p4 by f and p, ¢ E. Now if R satisfies fyR = 0, then

0=fiR-8y =R-(fx')"6x = MR-6y. (84)

Thus R- 65 = 0. This shows (2).
Since f; 6;{ = A107, we have that

where (o, ) is an eigenvector of A = ( ) of eigenvalue A;. Now, the other eigenvalue of A is

a c
b d
7%1 by Proposition[5.2](5) (up to replacing f by f2), let (y,8) be an associated eigenvector, then

. 1
Jx(YE4 +8F,) = k_l(YE+ +8F)+R (86)
where R is a divisor at infinity which support does not contain E, or F.. Set D~ =YE, + 0F; + AR,
then by (2), D™ satisfies fyD™ = LD~ This shows (1).

Now, :
1 1
7»_1D_ 07 = ED‘-G; = (fxD7)-65x =D -(fx)«0y =MD~ -6~ (87)
Thus D™ -0~ = 0. This shows (3).

Finally, we just have to show that the family {6,D~} U {E;E ¢ {E,,F,}} is free. Suppose that

aby +BD” +R=0 (88)
with o, € Rand E,F, ¢ SuppR. Intersecting with 6~ in (88)) and using (2) and (3), we get a = 0.
Then, applying f5 to (88) we get B = 0. Thus R = 0 and we have shown (4). O

6. AN INVARIANT ADELIC DIVISOR
We now suppose that D € C is algebraic and write K = Q(D) which is a number field.

Theorem 6.1. Let f be a loxodromic automorphism of Mp, then there exists a unique adelic divisor
0+ € Div(Mp/OK) of 0" such that
et =70+, (89)

Furthermore, 0% is a strongly nef adelic divisor in the sense of Yuan and Zhang.

Remark 6.2. Of course, the same result holds for f~! with the existence of a unique effective
strongly nef invariant adelic divisor ® , the proof is symmetric. With the notations of §3.3 we
must have c(@i) — 0% (up to multiplication by a positive constant) because of Theorem 3.4l So our
notation of 8 is compatible with Theorem [3.4.

The rest of this section is dedicated to the proof of this theorem.
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6.1. Two lemmas. Start with the following lemma

Lemma 6.3. If Z is a model vertical divisor, then
1 =

w7 =0 (90)
1

in Div(Mp, Ok).

Proof. Let g be the Green function induced by 2 over Mp". It is a continuous bounded function

over Mj". Thus

1 an\n
k_’fgo(f ) oD

converges uniformly to zero over M}". Thus it also converges to zero for the boundary topology. [

From now on, we fix a completion X of M}, that satisfies Proposition[5.2l We also replace f by
one of its iterate f¥0 such that fN contracts X\ Mp to p-.

Lemma 6.4. Let D € Divy, (X )R be a R-divisor at infinity. Let (2°,9) be a model of (X,D) over

Ok. Let V < Spec Ok be an open subset such that
(1) The indeterminacy locus I~ of the rational map f': 2 --» X satisfies

Iy = (I {ps . (92)

(2) No vertical components of the support of ¥ lies above V.

Then, for every finite place v above V, let U be the open subset of X2 such that ry,(x) = r 4, (p+ ).
Then, f*! is defined over UE, UF is f*!-invariant and if Wt = X*™\UZF, then

(8.2 S - = 8(.150) - ©3)
~1
(g(%79‘,)0(f )an)|WV+ = g((%f‘)?(f)(—l)*D)'Wj (94)

Proof. let m: % — 2 be a minimal sequence of blow ups such that the lift F : # — 2" of f is
regular. We have that

8w,2)°F" = 8w r+a)- (95)
Now, over V the birational morphism 7 consists only of horizontal blow ups that is blow ups of p
where p is a closed point of the generic fiber. By hypothesis, T induces an isomorphism between
Zy\{p_}and n=' (23 \{p_}) because all the indeterminacy points of f : X --» X are above p_. Let
v be a finite place above V, T induces an isomorphism between W,~ and n~!W,~ since ry; o " =
Ti" o rg;. Finally, since & has no vertical component above v, we get that (F*2), = (F*D),. Now
ifxeW,,

8.2 () = 8.2 (For™)"(0) =g@ires) ()" 0) . ©6)
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Now it is clear that
_ an
srea (8" W) =8 50) ) 97)

and thus the result is shown. O

6.2. An iterative process.

Proposition 6.5. Let D € Divy, (X) be such that f{D = uD for some pe R. Let (2", 2) be a model
of (X,D), then

o Ifu= >\, then D = 9;5 up to renormalisation and 7%,1[( "M)*D converges towards an element

0 (X) such that f*8" (X) =M0 " (X).
e Else |u| < |\| and %,f(f")*.@ converges towards 0.

To prove the proposition, we study the sequence of adelic divisors
1 u\”
Lipya- (_) 7 ©98)
w7 (5
We show that if |u| < Aj, then this sequence tends to 0 and if 4 = A, then this sequence converges
towards an adelic divisor. Looking at Green functions, we need to show that the sequence

L man (M)
Un = Mé’(%,.@)O(f) <M) 8(2,2)- (99)

converges over Mj" with respect to the boundary topology. We split the proof into two parts. First
we show that away from the indeterminacy point p_, the convergence is actually uniform. Then,
we will study in more details what happens near p_ and show the convergence for the boundary
topology there.

6.3. Convergence away from p_. There exists an open neighbourhood U~ of p_ in X" such that
f~!is defined over U~ and U~ is f~'-invariant. Indeed, let V — Spec Ok be an open subset that
satisfies the hypothesis of Lemma[6.4] for every finite place v above V we set U, as the open subset
of X" defined in Lemma For the finite number of remaining places v (including also all the
infinite ones), we know by Proposition [5.2] that p¥_ is an attracting fixed point of (f,”1)* (here we
write p”_ for the point defined by p_ in X3"). Let U, be an (f,"!)® invariant open neighbourhood
of p¥_ such that (f,"1)3(U,") € U,". Define

U™ = U (100)
veM (K)

It is an (f~1)2" invariant open subset. Let W™~ be its complement, it is f*"-invariant.
Set

h=w=g(7.9)°f" = 1 87.9) (101)



UNLIKELY INTERSECTIONS PROBLEM FOR AUTOMORPHISMS OF MARKOV SURFACES 24

Lemma 6.6. The function h extends to a continuous bounded function over W~ and

hy,— = 102

Wit 0 (102)

Proof. First, by Lemma [6.4l we have h = 0 over W, for every finite place ve V. If v ¢ V|[f], then
since fyD = uD, we have that & extends to a continuous function over W, because p_ ¢ W,”. Since
W~\W,, is compact we have that / is a bounded continuous function over W~ H

Proposition 6.7. If |u| < A, then u, converges uniformly to 0 over W™.
If u = A1, then u,, converges uniformly towards a continuous function h™ over W~ such that

(1) h|WV —0.
(2) IfG* = ™ + (9 ), then G* o f* = L, G*.
Proof.
1 1 n—1 m\"
Up = YL (k 8(2.2) Of) of (7»_1) 8(2.2) (103)
= 1—1 <h+ ngg)of" ! (ﬂ)ng(%% (104)
A A A1 7
_ 7»’1'1 oty 771”” N (105)
Therefore, L
Uy = x” hof” 1= (106)
If |u| < Ap, let M = maxy - |A|, then
"—1
sup fun ()] < o ||’2| — (107)
If y = =+1, then
sup i ()] < }i‘;_”l ——0. (108)
If u = A1, then write 27 for &, Equation (I06) becomes
=1
Uy = I;)k—,fhofk. (109)

Since & is bounded over W, u,, converges uniformly over W~ towards a continuous function A™.
By Lemma [6.4] it is clear that nyy,~ = 0, thus hv+r =0. If G" =h" + g9 9+), then it is defined
\4

on W~ n Mpj" and satisfies Gt o f4" = G™. O
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If 2~ is a model of 6y, we construct in the same fashion an open f“"-invariant neighbourhood
U™ of (p} )vem(og) With WF := X*™\U™ and G~ which is defined over W* n M}3" and satisfies

G~ o(f~1* =\ G~ and such that G~ — 8(2 o) extends to a continuous function 4~ over W~
that satisfies

o, =0 (110)

Furthermore, we can choose U~ and U such that U~ € W™ and U™ € W™ . For the places outside
V|[f] we shrink U,", U, such that G|J£/+ > I,GEJ_ > 1, this is always possible because G+ —8(2,9%)
extends to a continuous function at p.

6.4. Convergence everywhere. Define

U=2\|X\Mpu || Zn (111)
m¢V

where 21, = 2" x Spec Ok /m. This is a quasiprojective model of Mp over Ok. Let %, be a model
of 85 and a boundary divisor of % in 2. If g¢ is the Green function of % over MA" then we can
suppose without loss of generality that for all v ¢ V[f], g0, > 1. We have already constructed the
Green functions G* away from pz.

Lemma 6.8. For every place v ¢ V[f], over U;” n M}", the functions

G-
- 80 (112)
g G™
are continuous and bounded.
Proof. With the notations of §6.3] there exists a constant A > 0 such that
A< 9 <AD (113)
and over U, we have by Proposition[6.7] that
G- =h_+g(%7n@—) (114)
where A~ is continuous. This shows the result. O

Let m: % — 2 be a resolution of indeterminacies of f: 2 --» 2 and let & : % — 2 be
a lift of f, write F' : Y — X for the restriction to the generic fiber. Then, / is a green function of
%IF *D— %E*D. Therefore, there exists a constant A such that
F*9 —

—A9y < 9 < ADp. (115)

>I=

1
A
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Thus, g% is a continuous bounded function over Mj". We show that the sequence u, converges with
respect to the boundary topology. Set the following constants

h
My = sup |— M; = sup Pk M, = sup|h| (116)
a3 180 My pge 180 w=
o
Ms=  sup % . My=  sup | — 117)
Uypge 5" Uy e N9 | 80

where V[f]¢ is the set of places of K outside V|[f].
Claim 6.9. Set M := max(MyM,MoM3My), then for every k =0
—Mgo < h<Mgg (118)

an
over Mp".

Proof. We will write f instead of f*" as avoid heavy notations. Let k > 0 and x € M}3". Suppose
first that f*(x) e W—. If x lies above v € V[f], then h(f*(x)) = 0 by Lemmal6.6/and (IT8) is obvious.
Otherwise we have

'h(f" (x))

go(x)

‘ < MM, (119)

and (I18) is satisfied.
If f*(x) ¢ W~ then x, f*(x) e U~ = W*. If x lies above V[f], then by Proposition[6.7]

G|_WV+ = 8(2v,2;) — 80 (120)

thus M
(F4(6)| < Mogo( () = S s0(). (121)

1

Suppose x does not lie above V[f], let y = f*(x), then
h(f"(X))’: h) ’ o) ’:M h() ' 122
P I R P i) A (e P t9)) R PYT O =
Thus, )

h(f (x))‘ My go(Y)' h(Y)‘ MoM3M,4 123
‘ 2 | A G=(v)] | go(y) s AL (129
U

End of proof of Proposition[6.3 (1) If u = Ay, then u, converges with respect to the boundary
topology because by the claim
ho fk
80

sup (124)

an
MD
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is the term of a converging sum.

(2) If |u| < |Ay], then ‘Z,—g converges uniformly towards 0 over M}}". Indeed,

1 n
M —1
sup |22 <MZ i M ] 0 (125)
Man £0 }\‘n }\"il_ |lu—1| n—-+40o0
if u # +1 and otherwise
M
sup| 2| < = ——— 0, (126)
agplgol  Ap nmeo

O

Proposition 6.10. For any completion X of Mp, for any divisor D € Divy,(X)R and any adelic
extension 9 of D, we have

7 = 007" (). (127)

Furthermore, 9 :=0" (X) does not depend on the completion X and is strongly nef and effective.
Proof. Using Proposition[5.4](4) we write
D =08y +pD” +R (128)
where E, F., ¢ SuppR. Intersecting with 6 and using Proposition[5.41(1) and (3) we getou=D-0".
For any adelic extension & of D we get by Proposition that
7 = 007" (). (129)

Now we show that 8 (X) does not depend on X. It suffices to show that 8 (X) =8 (Y) for
any completion Y above X. Let D = 60} € Divg,(X), then ©*D € Divy,(Y) and satisfies 7D - 0, =
6} -0 = 670~ = 1. Thus we get by (I27) that 8 (X) =6 ().

Let H be the ample divisoron M p — P? definedby H = {X =T = 0} +{Y =T =0} +{Z =T = 0}.
Let H be a strongly nef extension of H. We can suppose that H is also effective. Since H is ample
we have H-0~ > 0, and shows that 8 is strongly nef and effective. O

Corollary 6.11. Forany D € ISR/(MD/OK) we have that

}LN(fN)*D—> (D-67)8" (130)

Proof. If D is a model adelic divisor then we have already shown the result. Otherwise D is defined
by a sequence of model adelic divisors (D) and we have rational numbers €; — 0 such that

—8j50<ﬁ—ﬁj<8jﬁo. (131)
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The operator f* preserves effectiveness, therefore we get for all N > 0.

1 o— 1 — 1 - 1 T
e ") Do < g (1*)D = g (7)"Ds <35 ()" Do (132)

Since %N (fV)*Dg converges to some multiple of 6" there exists a constant C > 0 such that for all N
1

ﬁ (fN)*Do < CDy. Now, by the model case, for N large enough

_¢,Dy < ﬁ(ﬂ)*z—)j— (D;-67)8" < ¢,Do (133)

Thus, for N large enough
—(1+C)e;Dy < %(fN)*E— (D;-67)8" < (1+C)e,;Do (134)
letting j — +o0 finishes the proof. 0

Remark 6.12. This corollary shows that the fact that we replaced f by one of its iterate, Theorem
6.1lis proven for f. Indeed, Suppose we have shown the Corollary for 0, then Corollary[6.11holds
for f as well: take D € Div(Mp/Ok), it suffices to show that for £ =0,--- Ny — 1

=+

1 {+Nok\* 7y —

And this holds by applying Corollary with M and k—b (f)*D.
1

Remark 6.13. Let X be the completion M p < P3 and H the ample divisor H = {X=T=0}+
{Y=T=0}+{Z=T =0}. Write D = A/B where A, B € Ok, we have a natural model (2", 5¢) of
(X,H) given by

2 =ProjOk[X,Y,Z,T)/ (BT (X*+Y*+Z*) — BXYZ — AT°) (136)
A ={X=T=0},+{Y =T =0}, +{Z=T =0}, (137)
Applying Corollary with .77 yields the definitions of the Green functions from the introduction.

Proposition 6.14. Let Gt be the Green function of §+, then
(1) G >0.
(2) Gt o fa=0G" .
(3) G (x) = 0 if and only if the forward f* orbit of x is bounded.
(4) Ifv is archimedean, then G\ is plurisubharmonic and pluriharmonic over the set {G;r > O}.
(5) If X is a completion of Mp, then for any Green function g of 9;, G — g extends to a contin-
uous function over X2\ {p_} for every archimedean place v.
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Proof. (1) follows from 9" being effective. (2) follows from f 9t = A0t

If X is any completion of Mp, we can suppose that it satisfies (1)-(5) of Proposition up to
blowing up. Let (27, Z) be a model of (X,05) for a completion X that satisfies Proposition [5.21
Fix a place v of K, let U™ be the open neighborhood of p, in X" constructed in this §6.31 Since
G* — g(2,9) extends to a continuous function over U* and 8y is effective, we can shrink U,} such

that G;+ > 0.
By (2), we have that Gt > 0 over

U= U™, n M5 (138)

n=0

To show (3), it suffices to show that if the forward orbit of x € (Mp)3" is unbounded, then there
exists Ny such that (fM)3(x) € U,". Since X2 is compact, the sequence ((f")*(x)) must have
an accumulation point g € X2™\(Mp)3". If g # p—_, then since f : X\ {p_} — X\p_ contracts the
complement of Mp to p we must have f*"(gq) = p., thus by continuity there exists Ny such that
(fNoyan(x) e UF. Otherwise (f")*(x) — p_. Since p_ is an attracting fixed point for (f~!)2", there
exists a basis of neighbourhood U¥ of p_ in X such that (f~!)*(U¥) € U and we would get that
X€E ka for all k > 0, this is absurd.

To show (4), let H be the ample divisor on Mp = P? defined by {X =T =0} +{Y =T =0} +
{Z=T =0} and let H be a strongly nef effective extension of H and gy the associated Green
function. Suppose v is archimedean. Since gy is plurisubharmonic over Mp(C), 7%’} gy o f" also

is. By local uniform convergence, we get that G is plurisubharmonic over Mp(C). To show the

pluriharmonicity, it suffices to show that GIJIFJ+ N96,(C) is pluriharmonic by the proof of (3). We

can suppose that gy is pluriharmonic over U, () Mp(C) up to shrinking U,F, then since U, is f*"-
invariant, %,11 gm o (f*)" is also pluriharmonic over U;” n Mp(C) and Gr{]jm 26(C) is pluriharmonic
as the local uniform limit of pluriharmonic functions.

To show (5), Let v be any place of K, let g € X2™\(Mp )" such that g # p_. From Proposition[5.2]
we can find an open neighbourhood U, of p_ such that ¢ ¢ U, and (f~")*(U,;") € U,". The proof

of §6.3shows that if g, is a model Green function of 6;, then

1
ﬁngO(fn)an—ng (139)
1

converges uniformly over W,” = X2"\U,~ to a continuous function which is equal to G — g... Since
two Green functions of the same divisor differ by a continuous function we get the result for any
Green function of 65. O

Remark 6.15. In [CD12], Chambert-Loir and Ducros developed a theory of plurisubharmonic func-
tions, currents and differential forms on Berkovich spaces. Following their definitions, (4) also holds
for non-archimedean places with the same proof.
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7. PERIODIC POINTS AND EQUILIBRIUM MEASURE

7.1. Equidistribution. Let (x,) be a sequence of X(K) = X(C,) and let &, be a measure on X2".
We say that the Galois orbit of (x;) is equidistributed with respect to u, if the sequence of measures

8(x,) = — > b (140)

deg <xn ) xeGal(K/K)-x,

weakly converges towards u, where 8, is the Dirac measure at x.

We say that a sequence of points (x,) of X (K) is generic if no subsequence of (x,) is contained in
a strict subvariety of X. In particular, a generic sequence is Zariski dense.

Lemma 7.1. Let X be a projective variety over a number field K and let (xn) be a Zariski dense
sequence of X (K), then one can extract a generic subsequence of (x,).

Proof. The set of strict irreducible subvarieties of X is countable because K is a number field. Let
(¥)4en be the set of strict irreducible subvarieties of X. We construct a generic subsequence (x;,)geN
as follows. Set Yy = [ Jy<, Yk This is a strict subvariety of X. Let n(1) be such that x,(1) ¢ Y1 = Y]
and suppose we have constructed n(1) < --- < n(g) such that x,(;) ¢ ¥;. Since (x,) is Zariski dense,
there exists an integer n(¢ + 1) > n(g) such that x,,(,) ¢ Y. This defines an increasing sequence n(q)

and we set x;, = x,(,), The sequence (x}) is a subsequence of (x,) which is clearly generic. O

Theorem 7.2 ([YZ23]] Theorem 5.4.3). Let X be a quasiprojective variety over a number field K
and let D be a nef adelic divisor over X such that DY™X > 0. Let (x,) € X(K) be a generic se-
quence such that lim, h;(x,) — hp(X), then at every place v the Galois orbit of the sequence (x;) is
equidistributed with respect to the equilibrium measure pip .

7.2. Equidistribution of periodic points. Suppose D € C is algebraic. Let f € Aut(‘Mp) be loxo-

dromic. Let §+,6_— be the two strongly nef adelic divisors provided by Theorem for f and f~!.
Recall that 67 -0~ = 1. Set
0 +0
2
It is a strongly nef adelic divisor over Mp and satisfies 8> = 1. For every place v, we write uy,y for

the equilibrium measure of 8. We also write & 1= hg.

0= (141)

Theorem 7.3. If (p,) is a generic sequence of Mp(K) of periodic points of f, then for every place
v of K the Galois orbit of (p,) is equidistributed with respect to the measure iy .

Proof. We apply Yuan-Zhang’s equidistribution theorem to the adelic divisor 8. We need to show
that the sequence A 7(p,) converges to hs(X). Since the points p, are periodic, this bounds to show
that /17(X) = 0. To do that we apply Theorem 5.3.3 of [YZ23]]. Namely, let

e(X,(D,G)) := sup inf h¢(p) (142)
Ucx PeU
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where U runs through open subsets of X. This quantity is called the essential minimum of (D,G).
Since we have a generic sequence of periodic points, we get e(X,(D,G)) = 0. Theorem 5.3.3 of
[YZ23] states that

e(X,(D,G)) = hs(X). (143)

Therefore we get 47(X) = 0 and Yuan’s equidistribution theorem gives the desired result. U

Corollary 7.4. If D is algebraic and f,g are two loxodromic automorphisms of Mp such that
Per(f) nPer(g) is Zariski dense, then for every place v of Q(D),

Hfyv = Hgy (144)

Proof. Let (x,) be a Zariski dense sequence of Per(f) n Per(g). By Lemma [7.Il we can suppose
that (x,) is generic. By Theorem [7.3] for every place v of K, the Galois orbit of the sequence (x;)
equidistributes with respect to both the measures uy ,, and yg . Thus, they must be equal. ([

8. SADDLE PERIODIC POINTS ARE IN THE SUPPORT OF THE EQUILIBRIUM MEASURE

Let D € C be algebraic. Fix an archimedean place v of Q(D). For this section we work only over
this place so we will drop the index v and fix an embedding Q(D) — C.

Theorem 8.1. Let f be a loxodromic automorphism of Mp. Every periodic saddle point of f is in
the support of the measure .

This theorem, stated in [[Can0O1]] and [Can09], follows directly from the work of Dinh and Sibony
in [DS13], which extends [BS91b], and an argument of [BLS93]] for Hénon type automorphisms of
the complex affine plane. A sketch of proof is given in [Can09] §3.1 and §3.2. We provide a more
detailed proof here.

8.1. Green functions and bounded orbits. First, let us summarize some of the properties of the
function G;? : Mp(C) — R of 8" from Proposition A saddle point is a point where the
differential of f does not have any eigenvalue of modulus 1. The stable manifold of a point g €
Mp(C) is the set of point p such that

dist(f"(q), f"(p)) —— 0. (145)

n——+0o0
Fix a completion X of M), that satisfies Proposition[5.2]
(a) {G}r = 0} coincides with the set K (f) of points with a bounded forward orbit;

(b) G;? is plurisubharmonic, and is pluriharmonic on the set {G;? > 0};

(c) the set KT (f) is closed in Mp(C), its closure in X (C) coincides with K™ (f) u p_;
(d) locally, near every point g # p_ of X (C)\Mp(C),

G (x) = = > ailog(|zi]) + u(x) (146)

i
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where the functions z; are holomorphic equations of the boundary components containing
g, the real numbers a; > 0 are the weight of 85, and u(x) is a continuous (pluriharmonic)
function.

(e) there is an open neighborhood U* of p_ in X(C) such that f~'(U~) €U~ and U~ is
contained in the basin of attraction of p_ for the backward dynamics; there is an open neigh-
borhood U™ of p., with similar properties for f instead of f~;

(f) If ¢ is a saddle periodic point, its stable manifold W*(gq) is contained in K+ (f); in fact, the
proof of Proposition 5.1 in [BS91a]] shows that W*(gq) is contained in the boundary of K+ (f);

(g2) f does not preserve any algebraic curve Cop = Mp(C).

In particular, if S is a closed positive current supported by m, then its support does not intersect
the open set U ™.

8.2. Rigidity of K*(f) and equidistribution of stable manifolds. The properties (a) to (g) are
sufficient to apply the arguments of Sections 4, 5, 6 of [DS13]]. More precisely, one first obtains
Theorem 6.6 of [DS13]], because its proof relies only on the above properties and general results
concerning closed positive currents (in particular Corollary 3.13 of [DS13]). M Then, one gets
directly the following fact (which corresponds to a weak version of Theorem 6.5 of [DS13]], with the
same proof):

Theorem 8.2. The set K*(f) (resp. K~ (f)) supports a unique closed positive current, namely
T;r = dd"G;cr (resp. Tf_ ) up to multiplication by a positive constant.

Consequently, we get the following result: Given any algebraic curve Cy < Mp, the sequence
of currents Ay (f)"{(f")*Co} converges towards a positive multiple of T;r as n goes to +oo (see

Corollary 6.7 of [DS13]]). Thus, TfJr can be approximated by a sequence of currents of integration on
algebraic curves of a fixed genus (properly renormalized); in this context, one can apply the theory
of strongly approximable laminar currents, as developed by Dujardin (see [Canl4, |DujO4, Duj05]
for an introduction and §8.3).

This rigidity results provides automatic equidistribution theorems for (1, 1) positive currents. We
shall need the following specific application.

If g is a saddle periodic point of f, then its stable manifold W*(g) is biholomorphic to the complex
line . Denote by &: C — W*(g) = Mp(C) a one to one holomorphic parametrization of W*(g); &
is an entire holomorphic curve. To such a curve, one can associate a family of currents of mass 1,
constructed as follows. One fixes a Kihler form x on X(C) and one measures lengths, areas and
volumes with respect to this form. For instance, if D, < C is the disk of radius r centered at the

IThe only changes in this proof are that (1) P?(C) should be replaced by X (C) and the line at infinity by X\ Mp; and
(2) the function log(1+ || z||?)"/? should be replaced by a smooth Green function associated to the R-divisor 85 .

2Indeed, it is a Riemann surface, it is homeomorphic to R?, and f acts on it as a contraction fixing ¢, so W*(g) cannot
be a disk and Riemann uniformization theorem says that it is a copy of C
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origin, then

Area(§(D,)) = J K= J £k (147)
&(Dy) r
is the area of the image of D, by &. Averaging with respect to dr/r, one introduces the function
R dt
N(R) =J Area(E(Dy))— - (148)
t=0

Now, for each disk ID,, one can consider the current of integration over &(ID,): to a smooth form o
of type (1,1), this current {&(ID,)} associates the number

D) oty = f =L}m. (149)

Taking averages with respect to the weight dr/r one obtains the following family of currents,
parametrized by a radius R > 0:

wa|@—Ngf (a2 (150)

! J J (151)
&(Dg)

The normalization by 1/N(R) assures that the mass (N ( )|K> is equal to 1 for every R > 0. From an
inequality of Ahlfors, and from the compactness of the space of positive currents of mass 1, there are
sequences of radii (R,) such that Ng(R,) converges to a closed positive current S. A priori, such a
closed positive current S depends on the choice of the sequence Ry,; if there is a unique closed positive
current S that can be obtained as such a limit, one says that there is a unique Ahlfors-Nevanlinna
current (namely S) associated to .

Corollary 8.3 (Proposition 4.10, Corollary 4.11 [DS13]]). Let q be a saddle periodic point of f. Let
E: C — Mp(C) be a holomorphic parametrization of the stable manifold of f. Then, there is a
unique Ahlfors-Nevanlinna current associated to &, and this current is equal to Tf+.

8.3. Laminarity, Pesin theory and consequence. The measure uy = TfJr AT, is an ergodic mea-
sure of positive (and maximal) entropy for f, and tools from Pesin theory can be used to describe
the dynamics of f with respect to this measure. In particular, in our setting, one can apply the work
of Bedford, Lyubich, and Smillie in [BLS93]] or the work of Dujardin in [Duj04]].

Definition 8.4. (1) A family of disjoint horizontal graphs I' in D x DD is called a flow box. If it
is equipped with a measure A on {0} x D we call it a measured flow box. It defines a closed
positive current 1, in D x DD defined by

<Tm,oc>=f focd?»(a). (152)
acD JT,
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(i1) A current T is uniformly laminar if for every x € Supp T, there exist an open subset V 3 x such
that V is biholomorphic to a bidisk and a measured flow box (I',A) in V such that Ty = Tr.
(iii) A current is laminar if there exists a family of disjoint measured flow boxes (I';, A;) such that

T =) Tr,y, (153)
i

(iv) A current is strongly approximable if it is the weak limit of a sequence of integration currents
d—ln [Cy] such that
genus(Cy) + Z n,(Cy) = O(dy). (154)
peSing(Cy)
(v) A current is diffuse if it does not charge algebraic curves.

The main result of [Duj03] is that if X is a projective rational surface and T is a strongly approx-
imable diffuse current on X, then T is laminar and for every flow box I, Tir is uniformly laminar.
The discussion after Theorem 8.2 shows that T;r and T~ are strongly approximable currents. They
are also diffuse by Proposition 6.3 of [DFO1].

Definition 8.5. If S1, S are two uniformly laminar diffuse currents with a representation

5i— J (Do]dps(a) (155)
Aj
then we define the geometric intersection of S1,S; as
Si /\ Sz ZZJ J [Dg1 N Dyppldui(a) @dus(b) (156)
A JA,

where [D, 1 N Dy ] is the sum of Dirac masses at the intersection point if the intersection is finite
and 0 otherwise. We extend the definition of geometric intersection to sums of uniformly laminar
currents by taking geometric intersection with respect to each term of the sum. We say that a product

is geometric if Sy A S, = 81 A\ S2.

Definition 8.6. A Pesin box is a pair (U, K) where U is an open subset isomorphic to a bidisk D x D
and a compact K < U of positive us-measure such that
(1) Every point in K is a hyperbolic point of f.
(i1) The local stable and unstable manifolds of the points of K are vertical and horizontal graphs
inU.
(iii) For all pair of distinct points (x,y) € K2, W} (x) n W}

() is a singleton contained in K.

In particular, the local stable and unstable manifolds define a lamination K* and K" in U. By the
main theorem of [[DujO5], Tf+|Ks is uniformly laminar so there exists a transverse measure k} such

that

+ —
T ks g

o (157)
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Theorem 8.7 (Theorem 1, Theorem 5.2 of [DujO04]). The currents T;’,Tf_ are diffuse strongly ap-
proximable and therefore laminar and the laminar structure is compatible with Pesin theory. The
current T;r is equal to

T = D) Tt (158)
(U.K)

and since the potentials of Tfi are continuous, the product TfJr A Tf_ is geometric. Thus, the measure
ur has a product structure with respect to the laminations induced by the local stable and unstable
manifolds.

Proposition 8.8. Every saddle periodic point of f is in the support of uy.

Proof. We apply the following argument taken from Section 9 of [BLS93] and [Duj04] §5.2. Pick
a saddle periodic point g of f, take a small neighborhood W of ¢, and consider its stable manifold,
parametrized by §: C — W*(g). Take a Pesin box (U, K). Since the Ahlfors-Nevanlinna current of
& coincides with Tf+, each disk of K* is a limit of disks &(D;), for some topological disks D; = C.
Now, u¢(K) > 0 and by the product structure we have

7t AT
ik =I5 o AT I (159)

Thus T;r and T, give mass to K* and K" respectively. Since the laminations K* and K* intersect

transversaly, one finds a disk &(D;) that intersects K* transversaly. Then, if one applies f with
N large, the preimages of &(D;) n K" approach the point ¢, and the inclination lemma (or Lambda
lemma see [PDMS82]] §7.1) implies that the images of the leaves of K* are (very large) disks which, in
the neighborhood W of ¢, converge towards W*(g) (in the C! topology). We thus obtain a sequence
of uniformly laminar currents

1, ~ ~
7 ) (77 IK”>|W <T;. (160)

Doing the same with the unstable manifold W*(q) and the dynamics of =V, one pulls back K* near
q. Thus we get the sequence of measures
1 n\*pr+ ‘ n —

that gives mass to W. Since this work for any neighborhood of ¢, this point is in the support of
ur. [

Thus, Theorem [8.1]is proven.
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9. PROOF OF THEOREM [A]

The proof of Theorem [Alrelies on the following proposition.

Proposition 9.1. Let f € Aut(Mp) be a loxodromic automorphism with D =0 or D = —2+2cos <27“)

and let v be an archimedean place. Then, f admits a periodic saddle fixed point q(f) € Mp(C) such
that

(1) q(f) € Supp(uy,)
(2) If g € Aut(Mp) is loxodromic such that f and g do not share a common iterate, then

(g"(q(f))) is unbounded.

Item (1) follows from Theorem [8.11

Assuming the proposition, suppose that f, g share a Zariski dense subset of periodic points, we
can suppose that they share a generic sequence of periodic points. Then by Theorem we have
equality of the equilibrium measures of f and g at every place so in particular at every archimedean
place. Fix v one of them. Suppose that f and g do not share a common iterate, then (g"(q(f)))n
is unbounded. Let u = uy, = g . Since Suppu = Suppuy, = Supp, ,, we have that Suppu is
a compact subset of Mp(C) invariant by f and g. Since ¢(f) € Suppuys, = Suppu we get that
(&"(q(f))) = Suppu which is a contradiction.

9.1. Construction of the saddle fixed point ¢(f). Suppose first that D = 0.

Up to taking an iterate of f we can suppose that there exists a loxodromic element ®; € SL>(Z)
such that f = fo,. Denote by p(f) = p(fo,) and q(f) = q(fo,) the fixed points constructed using
Minsky theorem. These two fixed point are saddle fixed points by [McM96] Corollary 3.19. The
fixed point ¢(f) corresponds to a representation p,, : F» — PSL,(C), one can show that p,, also
satisfies Theorem [4.2] even though the punctured torus is not compact. One can show that for any
automorphism g of M the differential of g at (0,0,0) has order 1 or 2, thus p(f),q(f) # (0,0,0)
and it is a smooth point of M.

Suppose now that D = 2 —2cos 27” Following [McM96] §3.7, let S be the orbifold obtained from
a genus 1 torus with a singular point of index g. The fundamental group of S is

T1(S) = (a,b|[a,b]? = 1) (162)

The modular class group Mod(S) of S is also SL,(Z). Let @/ € SL»(Z) be an element of Mod(S) as-
sociated to f. There exists a smooth (real) surface S with a map S — S which is a finite characteristic
covering. In particular, ® lifts to S and defines an element of Mod(S) that we denote by & - Apply
Theorem B2 to (S, Py), there exists a faithful and discrete representation o, : 71 (S) — PSL(C).
Let Mo, = H3 /poy (11 (S)), the group of isometries of M, contains the subgroup generated by ®y.
The quotient M.,/ < ® > 1s the mapping torus M&,f of ® + which is a finite cover of the mapping
torus Mo ,. By Mostow rigidity theorem, the covering group can be realized by isometries, therefore
the hyperbolic structure on ngf descends to a hyperbolic structure on the mapping torus Mg, which
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yields a fixed point po, of f in Mp that we denote by ¢(f). By [McM96] Corollary 3.19, ¢(f) is a
saddle fixed point.

9.2. The sequence (g"(¢(f))) is unbounded. Suppose D = 0 we can consider S as the flat torus
T = R?/Z? with a puncture at the origin, i.e. S = T'\{o}, or as a complete hyperbolic surface X of
finite area (we fix such a hyperbolic structure, it corresponds to some point X in the Teichmiiller
space Teich(S) ~ D).

Anelement f of Out™ (F) is pseudo-Anosov if the corresponding matrix A s € SL(Z) has Tr(A )% >
4. In that case, the matrix has two eigenvalues A(f) > 1 and 1/A(f) < 1 and the mapping class is
represented by a linear automorphism of the torus 7 (fixing the origin o) with stable and unstable
linear foliations. In the hyperbolic surface X, these foliations give rise to two measured laminations
F_ and F (by geodesic lines). If C — § is a closed curve (represented by some geodesic in X)), one
can define two intersection numbers i(C, F, ) and i(C, F-); they depend only on the free homotopy
class of C. The product j(C) = i(C,F} )i(C,F_) is f-invariant, because f stretches F. by a dilatation
factor A(f) > 1, and contracts F_ by 1/A(f); if C is not homotopic to a loop around the puncture
J(C) is strictly positive (any closed geodesic is transverse to F; and F_).

If D =2—2cos(2m/q), let S be the genus one torus with an orbifold singularity of order g. We
have seen that there exists a characteristic finite covering § — § with § a compact surface of negative
Euler characteristic. We let X = H?/T"be a hyperbolic surface homeomorphic to S (i.e X € Teich(S)).
If f € Out™ (F») is pseudo-Anosov then it lifts to a pseudo-Anosov f € Mod(X) = Out™ (F;) pseudo-
Anosov also. In that case, there exist two measured laminations F, and F_ over S (the stable and
the unstable one) and by Proposition 1.5.1 of [Ota96]]. We have that for any geodesic ye S,

()"
U(F)et) e
in the sense of measured laminations. (This also holds in the case D = 0). Here ¢ is the length
induced by the hyperbolic structure from the quotient H?/T" so £((f)£'y) grows like A(f)’. We also
have that j(y) = i(y,F. )i(Y,F_) is f-invariant as i( i (), F1) = A f) Tli(y, F1) and if yis a geodesic,
then j(y) > 0. To unify the notations we will still denote by f the lift £ of f to X.

(163)

Lemma 9.2. If f and g are two loxodromic elements of Out™ (F») ~ SLy(Z) generating a non-
elementary subgroup of SLy(Z), then given any geodesic Yy < X, j(g"(Y)) goes to + as n goes to
~+ Q0.

Proof. Let G+ and G_ be the unstable and stable laminations associated to g in X. Since f and g
generate a non-elementary subgroup of GL,(Z), G is transverse to both F; and F_ (equivalently,
the four fixed points of A and A, on P!(R) are distinct). Thus, by Equation (I63) j(g"(C)) ~
Ag)"i(G+,F;)i(G_, F-) by continuity of the intersection number (see [Ota96] p.151). O

Lemma 9.3. Let f and g be two loxodromic elements of Out™ (F>) ~ SLy(Z) generating a non-
elementary subgroup of SLy(Z). Let Yy < X be a geodesic, and let Y| be its free homotopy class.
Then the sequence g"|Y| intersects each orbit of f only finitely many times.
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Proof. This follows from the previous lemma and the fact that j(-) is f-invariant so it is constant in
each orbit of f. ([

Recall the definition of Mg, Mq)f, Peo and oy from Theorem [4.2] (here we consider f € Mod(S)
if we are in the orbifold case). In Mg, the number of simple closed geodesics of length < L is finite
(for every L > 0); thus, in Mq)f, given any upper bound L, there are only finitely many homotopy
classes of simple closed curves up to the action of fZ (Note that, since o acts by isometry, each
closed geodesic C = M ¢ gives rise to infinitely many geodesics oc;'c (C) with the exact same length).
Proof of Proposition (2). Fix a generator a in | (S) where S is either the punctured torus or
the genus 1 torus with an orbifold singularity of index ¢g. Set k to be the degree of the finite cover
S — S in the orbifold case and k = 1 otherwise. The element a* gives rise to a closed geodesic A in
Mg - From these preliminaries and the previous lemma, the sequence of homotopy classes g"(d")
correspond to a sequence of closed geodesics in Mq>f, with length going to infinity because f acts
by isometry on M,

Now, g"(a*) corresponds to a (conjugacy class of a) matrix po(g"(a*)) € SLy(C), and the trace
of this matrix is related to the length of the geodesic by a simple formula; in particular, the fact that
the length goes to infinity implies that the modulus of the trace goes to +co0. Since for any matrix
A € SL,(C), TrAF is a polynomial in TrA we get that Tr(p,(g"(a))) goes to infinity. This implies
that the orbit of ¢(f) under the action of g on Mp(C) is discrete, going to infinity.

10. FOR A TRANSCENDENTAL PARAMETER D

We finish this paper by proving Theorem [Bl which we restate.

Theorem 10.1. Let D € C be transcendental and let f,g € Aut(Mp) be loxodromic automorphisms.
The following assertions are equivalent:

(1) Per(f) = Per(g).
(2) INMeZ, fN = gM,

Proof. We can suppose that f,g € SLy(Z), for any parameter ¢t € C, we denote by f; the automor-
phism induced by f € SLy(Z) over S;. For the parameter r = 0, we have constructed a hyperbolic
fixed point g(f) € My(C). Because g(f) # (0,0,0), we can find local analytic coordinates u, v, w at
g(f) € C? with w = Try such that f; is locally of the form

Sw(u,v,w) = (ku,%v, w) (164)

where A, % are the two eigenvalues of the differential of fy at ¢(f). By the analytic implicit function
theorem, there exists € > 0 a local analytic curve cg : we D(0,€) — ce(w) € S,, such that c¢(0) = g(f)
and f,(ce(w)) = ce(w). Now, if f, g do not share a common iterate, then the orbit of ¢(f) under g is
unbounded by Proposition0.1] Thus, for all k € Z, we have g5(q(f)) # q(f). We show the following.
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Lemma 10.2. If D € C is transcendental, then for all k € Z~, there exists p € Mp(C) such that

fo(p) = pand gp(p) # p,V1 <L <k. (165)
Using the lemma, we can conclude because fp admits a finite number of fixed points since fp
does not admit an invariant curve, thus we must have Per(fp) # Per(gp). 0J

Proof of the lemma. Notice that this statement does not depend on the transcendental parameter D.
Indeed, let D' be another transcendental parameter, then there exists a Galois automorphism G €
Gal(C/Q) that exchange D and D'. Since the family of surfaces Mp gives a foliation of C*> we can
view a point p € Mp(C) as a point in C? and apply 6 to each coordinates, we denote by p° € C> the
new obtained point. We apply o to (I63) to get

ooy (p®) = p° and gg ) (p°) # p° V1 < L < k. (166)
Now, fix k > 1. For any transcendental parameter ¢ small enough we have
Jilee(t)) = ce(t) (167)
by construction of the curve c¢ and
V1<l <k g¥(ce(t)) # ce(t) (168)
by continuity since we have g{J'(¢(f)) # q(f) for all m € Z. Thus, the lemma is shown. O
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