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CHAPTER 1

Introduction

In [FJO7], Favre and Jonsson developed tools from valuative theory to study the
dynamics of a dominant endomorphism of the complex affine plane. We extend this
theory to the case of any affine surface, over any field. We give a new method to
construct an eigenvaluation of an endomorphism. We generalize the result of Favre and
Jonsson and show that the first dynamical degree of a dominant endomorphism of a
normal affine surface is an algebraic integer of degree < 2. Plus, we obtain a new result
of rigidity. The set of first dynamical degrees of loxodromic automorphisms of a given
affine surface must be contained in the set of integers or in the set of algebraic numbers
of degree 2.

1.1. Dynamical degrees

Let X be a smooth projective variety over an algebraically closed field and let d
be its dimension. For d Cartier divisors Dy, --,D, of X we can define the intersection
product Dy --- D, € Z (see [Laz04]]). If f : X --» X is a dominant rational transformation
of X, we define for 0 < ¢ < d the ¢-th dynamical degree of f by

)= tim (2t omt=)" m

n—0o0
where H is an ample divisor over X. One can show that these quantities are well
defined and do not depend on the choice of H. Furthermore, the dynamical degrees are
birational invariants: if @ : X --+ Y is a birational map, then

M(f) =M(@ofoe™!), VO<I<d. 2)

We have that A;(f) is the topological degree of f and Ay(f) = 1. The Khovanskii-
Teissier inequalities (see [Gro90], [DNO5]) imply that the sequence (A;)o<;<q is log-
concave; 1.e
logh;_1 +logh;+
2
In particular, one has V1 <1 < d, A (f)! = M ().
Let Xy be a smooth affine variety of dimension d and f : Xo — Xp a dominant
endomorphism of Xy. We define the dynamical degrees of f as follows. A completion
of Xy is a smooth projective variety X equipped with an open immersion 1 : Xop —

<logh;, Vi<I<d-1. 3)

6



1.2. DYNAMICAL DEGREES ON PROJECTIVE SURFACES 7

X such that 1(Xp) is dense in X. The endomorphism f induces a dominant rational
transformation of X via f = 1o fo1~! and we define the dynamical degrees

~

M (f) == (f)- )

As the dynamical degrees are birational invariants, these quantities do not depend on
the choice of the completion X. The data of these dynamical degrees gives information
on the dynamical system. For example over C, Dinh and Sibony showed in [DS03] that
for all dominant rational transformation f: X --» X

hiop(f) < max log(A;) 5)

0<i<d

where hyop is the topological entropy of f, Gromov showed this result for endomor-
phisms of PV in [Gro03]. Yomdin showed in [Yom87] that we have an equality if
f 1s an endomorphism. The inequality is strict in general (see [Gue(S]). Recently,
Favre, Truong and Xie showed in [FTX22] that the inequality (5) still holds in the non
archimedean case; however the equality does not hold even for endomorphisms.

1.2. Dynamical degrees on projective surfaces

A natural question is to ask what numbers can appear as the first dynamical degree
of a rational transformation of a projective surface. For the topological degrees, it
is easy to check that any integer k is the topoological degree of a dominant rational
transformation of P? (consider f(x,y) = (x*,y%) over C?).

In 2021, Bell, Diller and Jonsson showed in [BDJ20] that there exists a dominant
rational transformation o : P> --» P? such that A; (o) is transcendental. The authors
with Krieger showed in [BDJ20] this example can be generalised to give an example
of a birational transformation of PV, N > 3 with a transcendental first dynamical de-
gree. However in dimension 2, there are strong constraints on A (f) for f birational. In
[DFO01], Diller and Favre showed that the first dynamical degree of a birational trans-
formation of a projective surface is an algebraic integer, but with arbitrary large degree.
Indeed, Bedford, Kim and McMullen have given in [BK06] and [McMO07|] examples
of birational transformations of projective surfaces with first dynamical degree an al-
gebraic integer of arbitrary large degree. In particular, Theorem 1.1 of [McMUO07] states
that for all d > 10 we can find a smooth complex projective surface with an automor-
phism with first dynamical degree an algebraic integer of degree d. This also holds
in positive characteristic by the main theorem of [CD]. Blanc and Cantat showed in
[BC13] that the set of all first dynamical degrees of elements of Bir(P%) is a well or-
dered set if K is infinite.
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1.3. Dynamical degrees of endomorphisms of affine surfaces and Perron
numbers

The first example of an affine surface is the complex affine plane C>. An endo-
morphism is then a polynomial transformation. Even in that case, the first dynamical
degree is not necessarily an integer. Indeed, let

a b
A=<c d) ©)

be a matrix with nonnegative integer coefficients such that ad — bc # 0. Consider the
following monomial transformation

Fly) = (7). ™

then fV is the monomial transformation where the monomials are given by the coeffi-
cients of AN and A (f) is equal to the spectral radius of A. Hence, A (f) is an algebraic
integer of degree 2 because it satisfies the equation

M (f)? = Tr(A)A (f) + det(A) = 0. (8)

It is in fact a Perron number. A weak) Perron number is a real algebraic integer
o > 1 such that all its Galois conjugates have complex modulus < |a|. Thus, there
exist polynomial transformations f of the affine plane with A;(f) an integer or a Perron
number of degree 2. Favre and Jonsson showed that these are the only two possibilities.

THEOREM 1.1. [FJO07] Let f : C> — C? be a dominant polynomial transformation,
then M (f) is a Perron number of degree < 2.

The first result of this memoir is to extend this result to all normal affine surfaces,
in any characteristic. Even if the semigroup of endomorphisms can change drastically
when one changes the affine surface. For example, Blanc and Dubouloz, in [BD13]],
build smooth affine surfaces with a big group of automorphisms, much bigger than the
one of the affine plane. Bot used this construction to show the existence of smooth
complex rational affine surfaces with uncountably many real forms (see [Bot23]]). The
results in this paper show that, even though structure wise these groups are a lot more
complicated, from the point of view of the dynamics of a single element, this is not the
case.

THEOREM A. Let X be a normal affine surface over a field k. If f : Xo — Xo is a
dominant endomorphism, then A (f) is a Perron number of degree < 2.

n the litterature, the Galois conjugates of a Perron number have a strictly smaller modulus but we
want to include square roots of integers in our definition.
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The proof uses valuative techniques which we describe in the next section. If
chark = 0 or if f is an automorphism, we also obtain results on the dynamics of f.
For any completion X of Xy, the endomorphism f extends to a rational transformation
of X, it has a finite number of indeterminacy points at infinity i.e on X\Xy. One cannot
hope in general to find a completion X such that f extends to a regular endomorphism
of X. The strategy of proof consists of studying the dynamics of f at infinity. More
specificallly, we find good completions where f has an attracting fixed point at infinity,
i.e a point p € X\Xo where the lift f : X --» X of f is defined at p and f(p) = p we can
then study the local dynamics at p to compute the first dynamical degree of f. Theorem
below provides a precise statement in the case of automorphisms; the most general
results will be described in Chapter

1.4. The dynamical spectrum of the algebraic torus

If V is an algebraic variety, let End(V) be the semigroup of dominant endomor-
phisms of V. We define the dynamical spectrum of V by

A(V) = {M(f) : f€End(V)}. )

As every 2 x 2 matrix with integer coefficients induces a monomial endomorphism of
the algebraic torus G2,, we have that A(G2,) is the set of Perron numbers of degree < 2.
By Theorem , this shows that A((G&%,) is maximal among the dynamical spectra of
normal affine surfaces. One might wonder if this is a characterization of the algebraic
torus but we show that this is not the case.

THEOREM B. For any field Kk,
A(A}) = A(Gj, ). (10)

1.5. Existence of an eigenvaluation

Let A be the ring of regular functions of a normal affine surface Xy over an alge-
braically closed field k. A valuation is amap v : A — Ru {0} such that

(1) v(PQ) = V(P) +Vv(Q);

(2) v(P+ Q) = min(v(P),v(Q));
(3) v(0) = o

@) Vjx =0

Two valuations v and u are equivalent if there exists t > 0 such that v = tu. For example,
if X is a completion of X, for each irreducible curve E < X, the map ordg defined by
ordg (P) being the order of vanishing of P along E is a valuation. Any valuation of
the form Aordg with A > 0 is called divisorial. If f is an endomorphism of X, then f
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induces a ring homomorphism f* : A — A. We can then define the pushforward f.v of
a valuation v by

FeV(P) = V(f*P). (11)

We say that a valuation is centered at infinity if there exists P € A such that v(P) < 0.

If X is a completion of X, the divisorial valuations centered at infinity are exactly the

one corresponding to the irreducible components of X\Xp. Let ¥, the set of valuations

centered at infinity and 7, the set of valuations centered at infinity modulo equiva-
lence. Suppose for the sake of simplicity that f is an automorphism of Xy, then f,

induces a bijection of 7, and of 7, which will in fact be a homeomorphism for a
topology that will be described in Chapter ]

If X is the complex affine plane, then Favre and Jonsson proved the existence of
a valuation v, € V., such that f,v, = A; (f)V«. Such a valuation is called an eigen-

valuation of f. To do so, they show in [FJ04] that 1/, has a real tree structure and
f+« 1s compatible with this structure. The existence of v, follows from a fixed point
theorem on trees. The existence of this eigenvaluation has a big impact on the dynam-
ics of f. In particular, it allows one to find a good completion X of C? and a point
g € X\C? (a point at infinity) which is an attracting fixed point for the dynamics of f
(extended to X as a rational map). Xie uses this construction to prove the Zariski dense
orbits conjecture and the dynamical Mordell-Lang conjecture for polynomial endomor-
phisms of the complex affine plane ([Xiel7]). Jonsson and Wulcan use these techniques
to build canonical heights for polynomial endomorphisms of the complex affine plane
with small topological degree in [JW12].

THEOREM C. Let Xy be a normal affine surface over an algebraically closed field
Kk (of any characteristic) and let f be a dominant endomorphism of Xo. Suppose that
(1) k[Xo]* =k*.
(2) For any completion X of Xy, Pic®(X) = 0.
(3) M(f)* > Qa(f).

Then, there exists a valuation V., unique up to equivalence, such that

The techniques we use do not use the global geometry of 4, because it is not
necessarily a tree anymore. If X is a completion of Xj and v is a valuation centered at
infinity, we associate in a canonical way a divisor Zy x of X supported outside of Xj. If
7 : Y — X is another completion of X obtained from blowing up points of X at infinity,
and 7. Zyy = Zy x (see Proposition . This construction involves the Picard-Manin
space of Xy. We give a brief description of this space. Consider the direct limit

Cartier-NS(Xp) = lim NS(X)gr (13)
X
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indexed by all the completions of Xy. This is an infinite dimension real vector space.
The intersection form can be extended in a natural way to Cartier-NS(Xp) and the
Hodge Index theorem states that it is a non-degenerate form of Minkowski type, i.e its
signature is (1,00). We can use the intersection form to define a norm on Cartier-NS(Xp)
and the Picard Manin space of Xy will be the completion of Cartier-NS(Xy) with respect
to this norm. It has a structure of a Hilbert space and any dominant endomorphism f of
Xp induces two bounded operators f*, f, on it. The spectral analysis of the operators
fe, [T (see [BEJ08, [Canl1]) allows one to construct the eigenvaluation v, and show
its uniqueness. Namely, A;(f) is the spectral radius of f* and f. and when A? > A;,
there is a spectral gap property. The eigenvalue A is simple for f* and f. This process
is similar to the techniques of [DF21] §6. These techniques were used by Gignac and
Ruggiero in [GR21] to study the local dynamics of non invertible germs near a normal
singularity in dimension 2. This memoir can be considered to be the global counter-
part to the local techniques developed by these two authors. Our construction of the
valuation v, is however different.

1.6. Discussion of the assumptions of Theorem C]

The assumptions of Theorem [C| may seem arbitrary but they are not restrictive.
Indeed, if assumption (1) or (2) is not satisfied, then one can show that f preserves a
fibration over aEL]uasi—abelian variety. We can decompose the dynamics of f with this
fibration and it becomes easier to study. This is done in Chapter [I0] we show that the
only case with interesting dynamics is when X; is the algebraic torus G2,.

THEOREM D. Let Xy be a normal affine surface over an algebraically closed field.
Suppose that Xy does not satisfy Conditions (1) or (2) of Theorem|C| then either

(1) Xo is of log general type. Every dominant endomorphism of Xy is an automor-
phism and Aut(Xy) is a finite group.

(2) There exists a curve C and a regular map 1 : Xo — C and for every endomor-
phism f of Xo, there exists an endomorphism g : C — C such that wo f = goT.
In that case A (f) is always an integer.

(3) Xo ~ G2,

If Assumption (3) is not satisfied, then we have A1 (f)? = A2(f). In that case, A1 (f)
is automatically a Perron number of degree < 2 because A, (f) is the topological degree
of f, hence an integer. In the case of the complex affine plane, Favre and Jonsson man-
age to classify all polynomial transformations of the complex affine plane for which
7»% = Ay: either they preserve a rational fibration, or there exists a completion X of A%
with at most quotient singularities at infinity such that f extends to an endomorphism

23 quasi-abelian variety is an algebraic group such that there exists an algebraic torus 7 and an
abelian variety A such that the sequence of algebraic groups 0 - T — X — A — 0 is exact.
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of X. We expect that such a classification should exist in general, with one excep-
tional counterexample: The monomial transformations of (G2,) that cannot be made
algebraically stable (see [Fav03]). We conjecture that the only counterexamples of this
classification should come from equivariant quotient of these monomial maps. In the
local case of dyamics near a normal singularity Gignac and Ruggiero ([GR21]]) showed
such a classification. One can notice that in the invertible case, a classification exists:
By [Giz69] and [[Can01b], every birational transformation ¢ : X — X of a smooth pro-
jective surface such that A (o) = 1 lifts to an automorphism or preserves a rational or
elliptic fibration.

1.7. Statement of the theorem in the case of automorphisms

In the case of loxodromic automorphism (i.e with A; > 1), we obtain informations
on the dynamics. For this introduction we state the result in the complex case.

THEOREM E. Let Xy be a normal affine surface over C such that C[Xo]|* = C*. If
f is an automorphism of Xo such that My (f) > 1, then there exists a completion X of Xy
such that
(1) f admits a unique attracting fixed point p € X (C)\Xo(C) at infinity.
(2) An iterate of f contracts X\X to p.
(3) There exists local analytic coordinates centered at p such that f is locally of

the form
(a)
flzw) = (W, zw) (14)
with a,b,c,d integers > 1, in that case A (f) is the spectral radius of
Z Z . In particular, A1 (f) € R\Q, it is a Perron number of degree 2.
(b) or
flz,w) = (& w + P(2)) (15)
with a > 2,c > 1 and P # 0 a polynomial, in that case A (f) = a is an
integer.

(4) The attracting fixed points of f and f~" are distinct.
(5) The local normal form of £~ at its attracting fixed point is the same as f.

Theorem [E] holds in fact for any complete algebraically closed field (in any charac-
teristic) but we cannot be as precise with local normal forms in general, see Theorem

12.1land[14.4

The cases (3)(a) et (3)(b) are mutually exclusive in the following way

THEOREM F. Let Xy be a normal affine surface over a field k such that k[Xo]* =k*
and f € Aut(Xp) a loxodromic automorphism. We have the following dichotomy
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o If M(f) € Z=o, then for any loxodromic automorphism g of Xo, we have
A (g) € Z=o and the local normal form of g at its attracting fixed point is
given by (13).

o If M (f) ¢ Z=¢ then it is a Perron number of degree 2 and this holds for any
loxodromic automorphism g of Xo. In particular, the local normal form of g at
its attracting fixed point is given by (14).

Plan of the memoir. This memoir is divided into two parts. In the first part we
establish the main definitions and results needed for the proofs of the theorems stated in
this introduction. In Chapter[3] we define completions of an affine surface and introduce
the Picard Manin space of an affine surface. In Chapter {6 we define valuations
and explain the geometry of the space of valuations centered at infinity of an affine
surface. The main result of this part is that a valuation induces a linear form with
special properties on the space of divisors at infinity and that this process is bijective.
This is the goal of Chapters

The second part is dedicated to the proofs of the theorems of this introduction using
the results established in the first part. We construct the eigenvaluation and prove Theo-
rems[A] [B]and [C|in Chapters[I0Jand [T 1] In Chapter[I2] we show that the eigenvaluation
constructed is an attracting fixed point in the space of valuations and derive results on
the dynamics at infinity of our endomorphisms. We study examples in Chapter[I3] For
examples over the complex affine plane, we refer to [FJ07] and [FJ11]]. For examples
of affine surfaces with interesting automorphisms group, we refer to [BD13]. Theorems
[E and [ are proven in Chapter [[4] where we apply the techniques of Chapter[12]
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programme Centre Henri Lebesgue ANR-11-LABX-0020-01 and European Research
Council (ERCGOAT101053021) for creating an attractive mathematical environment.
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Valuations and Algebraic geometry



CHAPTER 2

Results from Algebraic Geometry

In this chapter, we recall several results from Algebraic Geometry that will be used
throughout this memoir. Let k be an algebraically closed field. A variety is an integral
scheme of finite type over k. A surface is a variety of dimension 2. An affine variety
over k is a variety Xo = SpecA with A a finitely generated k-algebra. We will denote
by k[Xo] the ring of regular functions of the affine variety Xj.

2.1. Bertini

THEOREM 2.1 (Bertini’s Theorem, [Har77]). Let X < PN be a smooth quasi-
projective variety over an algebraically closed field k. The set of hyperplanes H of

PV such that the intersection H n X is a smooth irreducible subvariety of X is a dense
open subset of PT(PV, O(1)).

2.2. Local power series and local coordinates

Let X be a variety and x € X a closed point. We will write Ox , for the ring of germs
of regular functions at x. A regular sequence of Ox , is a sequence t1,--- ,t, € Ox x
such that #; is not a zero divisor in Ox , and for all i > 2,#; is not a zero divisor in
Ox x/(t1,--- ,ti—1) (see [Har77] p.184). The point x is regular if the local ring Oy . is
regular, i.e there exists a regular sequence of length dim Oy .

THEOREM 2.2 ([Har77], Theorem 5.5A). Let R be a regular local k-algebra of
dimension n with maximal ideal m, then the completion of R with respect to the m-adic
topology is isomorphic to K[[t1,- - ,t,]] where (t1,--- ,1,) is a regular sequence of R.

Let X be a surface and x a regular point of X. Then, we will say that (z, w) are local
coordinates at x if (z,w) is a regular sequence of Oy . If (z,w) is a regular sequence of
the completion 5;(\)6 we will say that they are local formal coordinates. By Theorem
O/X\,x is isomorphic to k|[[z,w]]. Finally, If k = C,, is a complete algebraically closed
field of any characteristic, we consider the local ring of germs of holomorphic functions
at x, this is the subring of 5X\x of power series with a positive radius of convergence.
We denote it by O)’}‘ffc it is also a local ring of dimension 2, if (z,w) is a regular sequence
of O;éofc, we say that (z,w) are local analytic coordinates. If E,F are two germs of

15
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reduced irreducible curves at x (algebraic, analytic of formal) we will say that (z,w) are
associated to (E,F) if z = 0 is a local equation of E and w = 0 is a local equation of F'.

2.3. Boundary

PROPOSITION 2.3 ([G0069]], Proposition 1 and 2). Let Xy be an affine variety and
let1: Xo — X be an open embedding into a projective variety, then the subvariety X\Xo
is connected and of pure codimension 1.

Set
0xXo ::X\Xo, (16)

we call it the boundary of Xy in X; by Proposition [2.3]it is a curve when Xj is a surface.

THEOREM 2.4 ([G0069]]). Let X be a normal proper surface and U an open dense
affine subset of X (that is an open dense subset of X that is also an affine variety) such
that V := X\U is locally factorial (each local ring is a unique factorization domain),
then there exists an ample divisor H on X such that SuppH =V.

In fact, Goodman shows that Theorem [2.4] holds in higher dimension with the only
difference that you may need to do some blow-ups at infinity to find an ample divisor.

2.4. Surfaces

THEOREM 2.5 ([Har77] Proposition 5.3). Let g: S1 — S» be a birational morphism
between smooth projective surfaces. Then, g is a composition of blow-ups of points and
of an automorphism of Sy. Furthermore, if h : S| --+ S is a birational map, then there
exists a sequence of blow-ups T : S3 — S such that hw : S3 — S» is regular and S3 can
be chosen minimal for this property.

PROPOSITION 2.6. Let g : S; --+ S2 be a birational map. Let ®:S3 — S| be a
minimal resolution of indeterminacies of g such that the lift h : S3 — S> of g is regular.
Then, the first curve contracted by h must be the strict transform of a curve in Sj.

Recall the Castelnuovo criterion

THEOREM 2.7 ([Har77] Theorem V.5.7). Let C be a curve in a projective surface
S such that C ~ P! and C*> = —1, then there exists a projective surface S', a birational
morphism 7 : S — S and a point p € §' such that S is isomorphic via T to the blow up
of p and C is the exceptional divisor under this isomorphism.

We will use these results for the study of automorphisms of affine surfaces as they
induce birational maps. Understanding the combinatorics of the blow ups and contrac-
tions induced by the automorphism will allow us to understand their dynamics.

Our work relies heavily on the elimination of indeterminacies for rational mor-
phism. Since we are in dimension 2, it exists in any characteristic.
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THEOREM 2.8. Let f : 81 --+ S2 be a dominant rational morphism between projec-
tive varieties over an algebraically closed field of any characteristic, then there exists
a sequence of blow-ups ©: S — Sy such that fon:S — S is regular.

THEOREM 2.9 ([Cut02], [CP00]). Suppose chark =0. Let f : S — S’ be a dominant
rational map between normal projective surfaces over K. There exists blow ups S| — S
and S} — S’ such that the lift f:8 — S} is monomial at every point. Meaning that for
every closed point p € S| there exists local coordinates (x,y) at p and local coordinates
(u,v) at f(p) such that f(x,y) = (xyP, 3y,

If chark > O the result remains true if f is separable and tamely ramified (see
in the sense of [CPO0). In particular, it holds if f is birational.

2.5. Rigid contracting germs in dimension 2 and local normal forms

Let k be a complete algebraically closed field (of any characteristic). Let f :
(k?,0) — (k,0) be the germ of a regular function fixing the origin. The critical set
Crit(f) of f is the set where the Jacobian of f vanishes. A germ is said to be rigid if
the generalized critical set U,>of " (Crit(f)) = U,>1 Crit(f") is a divisor with simple
normal crossings (see [Fav00]).

A germ is contracting if there exists an open (euclidian) neighbourhood U of 0 such
that f(U) € U. In [Fav00], Favre classified all the complex rigid contracting germs in
dimension 2 up to holomorphic conjugacy. Ruggiero extended the classification to any
dimension in [Rug13|] and showed that it holds over any algebraically closed complete
metrized field of characteristic zero. For this section, C will denote any algebraically
closed complete field of characteristic zero. In dimension 2, there are 7 possible pos-
sibilities which we call local normal forms. We are interested in 3 of them that will
appear in this text. However since we do not only work in characteristic zero, we start
by more general local forms that works over any field and show their complex counter-
part.

First normal form.— Suppose that there are local coordinates (z,w) at the origin
such that f contracts {z = 0} with an index of ramification a > 2, f admits no invariant
curves and no other curves is contracted to the origin, then f is of the form

f(z,w) = (2"0(z,w), W2 (z,w) + Y1 (2)) (17)

with @ invertible, y;(z) # 0 and y2(0,w) # 0. If k = C, then in the classification of
Favre that this local normal form corresponds to Class 2 of Table II in [Fav00] and it is
analytically conjugated to

fxy) = (%, My + P(x)) (18)
with a > 2,¢ > 1,A € k™ and P is a polynomial such that P(0) = 0. This is the local
normal form of a Hénon map at its attracting fixed point in P? (see [Fav00] §2).
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Second normal form.—- If f is a germ of a regular function such that there exists
local coordinates (z,w) at the origin with both axis {z =0} and {w = 0} contracted
and they are the only two germs of curves contracted. Then, f is of the following
pseudomonomial form

flz,w) = (Z""w*2@(z,w), 2wy (z,w)) (19)
with @, invertible and a;; € Z>(. Suppose furthermore that ajjaz; — ajzaz; is not

divisible by chark. In particular, ad — bc # 0, then (19) is analytically conjugated to
the monomial normal form

fx,y) = (a1 y x®y®2) (20)
The germ of curves {x = 0}, {y = 0} are contracted to the origin. We have Crit(f") =
{xy = 0}. If k = C, we can characterize the matrix A given by (a;;) in the following
way. The local fundamental group of (C?,0)\ {xy = 0} is isomorphic to Z2. The action
of f. on Z? is given by the matrix A and we have that |detA| is equal to the topological
degree of f. This corresponds to Class 6 of Table II of [Fav00)].
Third normal form.— The third one is

fy) = (".yy) 1)
with @ > 2,b > 1 and @,y are germs of invertible regular functions vanishing at the
origin. We have that {y = 0} is contracted to the origin. The germ {x = 0} is f-invariant
with a ramification index equal to a. We have Crit(f") = {xy = 0} and the origin is a
noncritical fixed point of f|(,—¢;. Notice that this germ is rigid but not necessarily
contracting. It is contracting if and only if |y(0)| < 1. If the germ is contracting and
k = C, then the germ is analytically conjugated to this normal form

flzw) = (2w w(opw) (22)

with the same numbers a, b as in Equation [21] This corresponds to Class 5 of Table II
in [Fav00].



CHAPTER 3

Divisors at infinity and Picard-Manin space

In this chapter, we introduce the notion of completions of an affine surface Xy. They
are essentialy projective compatifications of Xy and form a projective set. The Picard-
Manin space of Xy will be a completion of the direct limit of the Néron Sévéri groups
of the completions of Xj. It is a Hilbert space on which every endomorphism of X acts
in a natural way. Let k be an algebraically closed field of any characteristic and let Xy
be a normal affine surface over k. We will denote by k[Xp] the ring of regular functions
on X().

3.1. Completions and divisors at infinity

A completion of X is the data of a projective surface X with an open embedding
1: Xp — X such that 1(Xp) is an open dense subset of X and such that there exists an
open smooth neighbourhood of dxXy in X. We will say that a completion is good if
OxXp is an effective divisor with simple normal crossings. From any completion of X,
one obtains a good one by a finite number of blow ups at infinity (i.e on dxXp) see for
example [Har77|] Theorem 3.9 p.391.

Let X be a completion of Xy with the embedding 1y : Xo — X, we will still de-
note 1x(Xp) by Xo and we will denote by Ox(Xp) the subring of k(X) of functions
f € k(X) which are regular on Xy. By Proposition the boundary dx Xj is a possibly
reducible connected curve. We denote by Div(X) the group of divisors of X and by
Divy, (X) the subgroup of divisors of X supported on dxXy. For A = Z,Q,R, we set
Div(X)a := Div(X) ® A and Divy,(X)a = Divy,(X) ® A. Let Ey,--- ,E,, be the irre-
ducible components of dxXy (we will call them the prime divisors at infinity). Any
element of Divey, (X)a is of the form D = } ;a;(D)E; with a;(D) € A. We will write
ordg, (D) for a;(D) of D at E;. For a family (D)) jey of elements of Dive,(X) the coef-
ficients a;(D) are integers; so, using the natural order on Z, we define the supremum
V je;Dj and the infimum A\ ;_; D; by

\/Dj =) sup(ordg,(D;))E; and  /\D; = inf(ordg,(D))E;  (23)
J i Jj i
19
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It only exists if each (ordg; (D)) es is bounded respectively from above or from
below. If A\;D; (respectively \/;D;) is well defined we say that the family (D) is
bounded from below (from above). Notice that we only define supremum and infimum
for family of divisors with coefficients in Z.

3.2. Morphisms between completions, Weil, Cartier divisors

Some notations. If T: Y — X is a projective birational morphism between smooth
projective surfaces and Dy is a divisor on X, we will denote by ©* Dy the pull-back of
Dyx under 7 and if Dy is effective, then ' (Dy) will be the strict transform of Dy under
n. For any projective surface Z, if D is a divisor on Z, we will denote by Oz(Dy) the
invertible sheaf on Z associated to Dy.

Let X1,X, be two completions of Xy with their embeddings 11,1,. There exists a
unique birational map 7 : X1 --+ X5 such that the diagram

X1 ___n__) X2
11] 12] (24)
X id Xo

commutes. If 7 is a morphism, we call it a morphism of completions. In that case we
say that X is above X,. By Theorem n~! is a composition of blow-ups; since T is
an isomorphism over Xj, the centers of these blowups are above dx,Xo. Conversely, let
X be a completion of Xy with an embedding 1: Xy — X, let w: Y — X be the blowup of
X at a point p € dxXo, then Y with the embedding n~' o1 : Xy — Y is a completion of
Xp and 7 is a morphism of completions. For a morphism of completions w: Y — X, we
will write Exc(m) < Y for the exceptional locus of 7.

LEMMA 3.1. The system of completions of Xy is a projective system: For any two
completions X1,X, of Xg there exists a completion X3 above X| and X».

PROOF. Let X1, X, be two completions of X, let Tt : X; --+ X3 be the birational map
from Diagram 24] By Theorem [2.5] there exists a sequence of blow-ups 7; : X3 — X
such that g = 7y o : X3 — X> is regular. It is clear that 7 is a morphism of completions
since by definition 1y, =:13 =1 0m;~ 1. The map g is also a morphism of completion
because by construction g = To x| and 1, = Twoly, therefore 13 = n; loy = g‘l ofo
1 = g_] oly ]

If ©: X; — X5 is a morphism of completions. We can define (see [Ful98]], Sec-
tion 1.4) the pushforward 7, : Div(X;)a — Div(X2)a and pullback ©* : Div(X2)a —
Div(X))a of divisors. They define group homomorphisms

Ty : DiVoo (Xl)A —» Divoo (Xz)A and w*: Divoo (Xz)A — Divoo (Xl )A; (25)
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the map ©* is often called the total transform. Recall that ([Har77] Proposition 3.2
p.386)

TC*TC* = idDiV(Xz)A . (26)
Let X be a completion of Xo and P € K[Xp], then (1x~')*(P) € k(X). We set
(1x)« := (1x1)* and we denote by divx (P) := div((1x)«P) the divisor of the rational
function P in X. In particular, if w: Y — X is a morphism of completions above Xj, then
by Diagram (24), one has 1y = ! o1y. Therefore divy(P) = div((r~' o1x)«(P)) =
div(m* ((1x)«(P))) = &* divy (P). We will write dive, x (P) € Divy, (X) the divisor on X
supported at infinity such that
divy (P) =D+ diVOO’X (P)
where D is an effective divisor and no components of its support is in dx Xp.

EXAMPLE 3.2. Let Xo = A% = Speck|x, y] and let P = xy. Take the completion P?
of A? with homogeneous coordinates X,Y,Z such that x = X /Y and y = Y /Z. Then,

divp2(P) = {X = 0} + {¥ =0} —2{Z = 0} 27)

and div, p2(P) = —2{Z=0}. Letn: X — P? be the blow-up of [1: 0 : 0], we can take
W to be the subscheme of P? x P! given by the equation

UzZ=VY (28)

where U,V are the homogeneous coordinates of P!. Then = is the projection onto the
first factor. We take the affine chart X = 1 in P? with affine coordinates y’ = ¥ /X and
7 = Z/X. Take the chart U = 1 with affine coordinate v in P!, then W n {X = 1} x
{U = 1} is an affine chart of W with coordinates v,y’ and we have the relation 7’ = vy/;
y' = 0 is a local equation of the exceptional divisor and v = 0 is a local equation of the
strict transform of 7/ = 0.

/ 1
w*(P) = ( > ) - vz(yy,)z -y (29)

Therefore,
divy(P) =W {X =0} + ' {Y =0} =21/ {Z = 0} —E = n*(divp2(P))  (30)
and
dive x (P) = -2/ {Z = 0} — E (31)

The system of completions of Xj is a projective system by Lemma[3.1] Consider the
system of groups (Div,, (X)) for X a completion of Xy with compatibility morphisms

T : Diveo (X) — Diveo (Y) (32)
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for any morphism of completions ®: X — Y. This is a projective system of groups.
Analogously, the same system of groups with ©* as compatibility morphisms is an
inductive system. We define the space of Cartier and Weil divisors at infinity of X, by

Cartiery;(Xo), = limDive, (X)a, and Weily (Xo) 4 = limDiveg (X) 4. (33)
X X

Concretely, an element D € Weil,,(Xp), is a collection D = (Dy) such that Dy is an
element of Div,, (X )4 for every completion X of Xy and such that for any morphism of
completions t: X — Y, w.Dx = Dy; Dy is called the incarnation of D in X. An element
of Cartier,(Xo), is the data of a completion X and a divisor D € Div,(X) where two
pairs (X,D) and (X’,D') are equivalent if there exists a completion Z above X and X’
with morphisms of completion t: Z — X, ®’' : Z — X’ such that t*D = (#')*D’. We will
say that D e Cartier,, (Xo), is defined over a completion X if D is the equivalence class
of (X,Dx) for some Dy € Divy,(X)a. We have a natural inclusion

@ : Cartiery, (Xp), — Weily (Xo) o (34)

defined as follows. If (X, D) € Cartier,,(Xo),, then we need to define the incarnation
@(D)y for any completion Y. First of all, set 9(D)x = D. Then, for any completion Y,
by Lemma [3.1] there exists a completion Z above Y and X; denote by my : Z — Y and
Tz : Z — X the respective morphism of completions. We define @(D)y := (7ty). 7y D.
This does not depend on the choice of Z because of Equation (26). In the rest of
the paper, we will drop the notation @(D) and denote by D the image of (X,D) in
Weil, (Xo) ,- We equip Weily, (Xo), with the projective limit topology.

In the same manner we define Cartier(Xp), := limDiv(X)s and Weil(Xp), :=
limDiv(X)a and we have the following commutative diagram

| l

Cartier(Xo), — Weil(Xo),

REMARK 3.3. We have that Cartier,,(Xo), = Cartiery, (Xo) ®A but Weil,(Xp), is
strictly larger than Weil, (Xo) ®A when A = Q,R. Indeed, let Wy,..., W, € Weil,,(Xp),
AM,...,A- e Aandset W := >, A;W,. Then, for every completion X and for every prime
divisor E at infinity in X we have

ordg(Wy) = ordg () MiWix) = Y Ajordg (Wix) € ZAy + -+ ZA, (36)

In particular, the group G(W) generated by (ordg(Wx)) x g for all completions X and
all prime divisor E at infinity in X is a finitely generated subgroup of R. Now pick a
completion X and consider a sequence of blow ups &, : X;,+1 — X, starting with X;. Let
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E, be the exceptional divisor of 7,. We still denote by E,, the strict transform of E,, in
every X,,,m = n+ 1. Define the Weil divisor W € Weil,,(Xo), such that its incarnation
in X,41 is Wx,,, = >4 #Ex. Then, G(W) is not finitely generated, therefore W ¢
Weil (X()) ®A.

An element D of Weily,(Xo), with A = Z,Q, R is called effective (denoted by D >
0) if its incarnation in every completion X is effective; if D belongs to Cartier,, (Xo)g

this is equivalent to Dy > O for one completion X where D is defined. If D{,D, €
Weily, (Xo) o, we will write Wy = W, for Wy — W, > 0.

3.3. A canonical basis

Let X be a completion of Xy, we define Dy as follows. Elements of Dy are
equivalence classes of prime divisors exceptional above X at infinity in completions
Ty : Y — X above X where two prime divisors E and E’ belonging respectively to Y
and Y’ are equivalent if the birational map 7y, ' oty : ¥ --» Y’ induces an isomor-
phism mty, ' omy : E — E'. We call Dy the set of prime divisors above X. We also
define D,,(Xp) as the set of equivalence classes of prime divisors at infinity modulo the
same equivalence relation. We write A”X for the set of functions Dy — A and APx)
for the subset of functions with finite support.

PROPOSITION 3.4. If X is a completion of Xy, then
Cartiery, (Xo) 4 = Divee (X)a @APY) | and Weily (Xo) 4 = Dives (X)a ®APY. (37)
This is a homeomorphism with respect to the product topology of ATx.

PROOF. Following [BFJO08|] Proposition 1.4, for any E € Dy there exists a minimal
completion Xg above X such that E is a prime divisor in Xg. We denote by og €
Cartier,, (Xp) the element ag := (Xg,E). Let Eq,. .., E, be the prime divisor at infinity
in X, then

(E(),...,Er)U{O(.EZEEQ)X} (38)
is a A-basis of Cartier,(Xo),. In the same fashion we obtain the second homeomor-
phism. 0J

REMARK 3.5. Since for any completion X, one can find a good completion Y above
X and the blow up of a good completion is still a good completion, the projective system
of good completions is cofinal in the projective system of completions, so in the rest of
the paper any completion that we take will be a good completion.

If f: Xo — Xo is a dominant endomorphism, then we can define

f* i Cartiery (Xo) , — Cartiery (Xo), and fi : Weily, (Xo), — Weily(Xo),  (39)
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as follows. Let D = (X,Dy) € Cartier,,(Xo),. Let Y be a completion of X such that
the lift F : Y — X of f is regular, then we define
f*D:= (Y,F*Dy) € Cartier(Xo) 5 - (40)

This does not depend on the choice of Y. If D € Weil,,(Xp), let X,Y be completions of
Xo such that the lift F' : Y — X is regular, then

(f«D)x := F.Dy. 41)
Again, this does not depend on the choice of Y.

3.4. Local version of the canonical basis

Let X be a completion and let p € X be a closed point at infinity i.e on dx Xp. We de-
note by Weil(X, p)a the subspace of Weil,,(Xo), defined as follows: D € Weil(X, p)a
if and only if Dy = 0 and for every completion © : ¥ — X above X and every prime
divisor E at infinity in Y, one has E € Supp Dy if and only if ©(E) = p. We define

Cartier(X, p)a = Weil(X, p)a n Cartiery, (Xo) 5 - (42)

We can define the set Dy , of prime divisors above p as follows. We will say that
a completion T : Y — X is exceptional above p if n(Exc(n)) = p. We will write 7 :
(Y,Exc(m)) — (X, p) for such a completion. Elements of Dy , are equivalence classes
of prime divisors E € Exc(m) for all completions 7 : (Y,Exc(n)) — (X, p).

PROPOSITION 3.6. If X is a completion of Xo, then Dx = | ¢, x, Px,p and
Cartier(X, p)a = (A)(Px») (43)
A= (A (44)

3.5. Supremum and infimum of divisors

Let (D;)ier be a family of elements of Weily,(Xg) such that for all completions X,
the family (D; x) is bounded from below, we define /\,.;D; with its incarnation in X

being
</\Di>X = /\Di,x- (45)

We have an analogous definition for \/, D; when each (D; x ) is bounded from above.
LEMMA 3.7. If D,D’ € Cartiery,(Xo), then D A D',D v D' € Cartiery (Xo).

PROOF. It suffices to show that D A D' € Cartier,,(Xo) because D v D' = —(—D A
—D’). So take D, D’ € Cartier,(Xo), we have to show that D A D' belongs to Cartiery, (Xp).

Now, it suffices to show this for D, D’ effective, indeed let X be a completion such
that D and D’ are defined over X. Then, there exists D, € Divy,(X) such that D — D,
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and D' — D, are effective. Indeed, take D, as the Cartier class determined by D A D' in
X, Then
DAD' = (D—D;) A (D' —D))+D;. (46)
Therefore, suppose D, D’ are effective. Then a = Ox(—D) + Ox(—D') is a coherent
sheaf of ideals such that ax, = Ox,, let w: ¥ — X be the blow-up along a. Since ay, is
trivial, 7 is an isomorphism over Xy, therefore Y is a completion of X, with respect to
the embedding 1y := ! o1y and & is a morphism of completions. Then, b := ©*a- Oy
is an invertible sheaf over Y trivial over Xy, so there exists a divisor Dy € Div,,(Y) such
that b = Oy (—Dy).

CLAIM 3.8. The Cartier class in Cartiery,(Xo) induced by Dy is D A D',
We postpone the proof of this claim to the end of Chapter([7] page 0

EXAMPLE 3.9. Let X be a completion that contains two prime divisors E,E’ at
infinity in X such that they intersect (transversely) at a point p. The sheaf of ideals
a= OX( E)+ Ox(—E’) is the ideal of regular functions vanishing at p. The blow up
of ais exactly the blow up T : Y — X at p since by universal property of the blow-up
m*a = Oy (—E) where E is the exceptional divisor above p. If we still denote by E, E’, E
the elements they define in Cartiery, (Xo), then E A E' = —E.

Let X be a good completion of Xy. Let Dy,D; € Divy,(X). Let E, F be two prime
divisors at infinity that intersect. We say that (D1, D;) is well ordered at E N F if

ordg(Dy) < ordg(D;) < ordp(Dy) < ordg(D»). 47)

We say that (D1, D;) is a well ordered pair if it is well ordered at E N F for every prime
divisor E, F at infinity that intersect.

LEMMA 3.10. If Dy A Dy or Dy v Dy is defined in X, then (Dy,D;) is a well ordered
pair.

PROOF. Suppose for example that D v D is defined in X and that D, D, is not a
well ordered pair and let E, F' be two prime divisors at infinity that intersect such that
at E N F,D; = o;E + B;F with oi; < oy and By > Bo. Then, Dy v Dy = 0apE + B F. Let
E be the exceptional divisor above E N F, then we have ordz(D; v Dy) = 02 + 1. But

OI‘dEDi =0+ [3,' < 0y + Bl = OI‘dE(Dl \Y Dz). (48)
This is a contradiction. Ul

REMARK 3.11. This is actually an equivalence, if D,D; is a well ordered pair,
then Dy A Dy and D; v D5 is defined in X. This gives an algorithmic procedure by
successive blow ups to find the minimum and maximum of two Cartier divisors.
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DEFINITION 3.12. Let S, (Xo) be the semigroup of Weily,(Xp) of elements D €
Weilo, (Xo) such that there exists a (potentially uncountable) family (D;);e; < Cartierq, (Xo)
such that

D=\/Di (49)
1

PROPOSITION 3.13. (1) Cartiery,(Xg) < Su(Xo)-
(2) Fora,b>0and D,D’ € S, (Xo), one has aD + bD' € Sy, (Xp).
(3) If D; € S5 (Xo) for each i € I and (D;) is bounded from above then \/;.;D; €
S0 (Xo)-
(4) If D,D’ € S5,(Xo), then D A D' € S5 (Xp).

PROOF. The first assertion is trivial as for D € Cartier,, (Xo),D = \/ D. For Prop-
erty (2), let X be a completion of Xy then \/;aD;x +\/; bD}X =V, (aD;+ bD;)X.
For Property (3), if D; = \/ ;D j, then V,Di = \/(L j) Di,j- Finally, the fourth assertion

is a corollary of Lemma 3.7} O
EXAMPLE 3.14. We have S, (Xo) & Weily, (Xo). Let Xo = A% and X = P2. Let E
denote the line at infinity, a canonical divisor in P? is given by Kp> = —3E. We can

define an element K € Weil,,(Xo) by taking for any completion ¥ of A the canonical
divisor supported at infinity. More precisely, let Y is any completion of A% above P2.
We still denote by Ej the strict transform of Eq in Y. Then, Ky is of the form

Ky =-3E+ ), E. (50)
EcoxXo,E+Eg

Suppose that K = sup,(D;) for some D; € Cartier,,(Xp). Let D € (D;) such that

D is defined over some completion Y and for some prime divisor E # E at infinity,

ordg (D) = 1. Then, we must have K > D meaning that for any completion Z, Kz = Dy .

Consider the following blow ups. Let ®; : Y1 — Y be the blow-up of a point p of E

that does not belong to any other divisor at infinity. Let E be the exceptional divisor

of m. Now let mp : Yo — Y] be the blow-up at n’lE A E and let F be the exceptional

divisor of 3. Then, ordx(Ky,) = 1 but ord(Dy,) = ordz((m2 07y )*D) = 2 and this is
a contradiction.

3.6. Picard-Manin Space at infinity

3.6.1. Cartier and Weil classes of Xj. Let X be a completion of Xy and let NS(X)
be the Néron-Severi group of X. We have a perfect pairing given by the intersection
form

NS(X)r x NS(X)r — R. (51

Recall the Hodge index theorem
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THEOREM 3.15 (Hodge Index Theorem, [Har77] Theorem 1.9 p.364). Let X be a
projective surface over a smooth projective surface over an algebraically closed field.
Let o€ NS(X) and let H be an ample divisor on X. If .- H = 0, then

o? < 0. (52)

In particular, the signature of the quadratic form induced by the intersection form is
(1,p — 1) where p is the rank of NS(X).

A class o e NS(X) is nef if for all irreducible curve Cc X, - [C] > 0. If n: Y — X
is a morphism of completions we have two group homomorphisms

T, : NS(Y)a — NS(X)a, " : NS(X)a — NS(Y)a (53)
with the following properties
(1) o™ = idns(x),
Q) Tfa-TP=o-P
(3) m*a- B = o - w.P (Projection Formula)
Furthermore, if w:Y — X is the blow up of one point, let E be the exceptional
divisor, then N N
[E]?> = —1, and NS(Y)a = T*NS(X)A ©A - [E] (54)
Therefore, the system of groups (NS(X)) with compatibility morphisms 7. is a pro-

jective system of groups and (NS(X)) with compatibility morphisms * is an inductive
system of groups.

DEFINITION 3.16. The spaces of Cartier and Weil classes of Xy are defined as

Cartier-NS(Xp), := lim NS(X)a, Weil-NS(Xg), = lim NS(X)a (55)
Xo—X Xo—X

We equip Weil-NS(Xp), with the topology of the projective limit. An element of
Weil-NS(X) is a family o = (oy )x where oy € NS(X) such that forallt:Y — X, we
have

Ty = Oly.

We call oy the incarnation of o in X.

An element of Cartier-NS(Xp) is the data of a completion X of Xo and a class
o € NS(X) with the following equivalence relation: (X,a) ~ (¥,P) if there exists a
completion Z with a morphism of completion

ﬂ:ylZ—>Y, Ty : Z— X

such that Ty B = wya.. We say that the Cartier class is defined (by o) in X. We have a
natural embedding

Cartier-NS(Xp) — Weil-NS(X) . (56)
We have a pairing
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Weil-NS(Xo)g x Cartier-NS(Xo)g — R (57)
given by the following: let o € Weil-NS(Xo)g and P € Cartier-NS(Xo)g; let X be a
completion where B is defined i.e B = (X,Bx); then

OC-B:z (Xx-Bx. (58)
This is well defined because if T: Y — X then
oy By = ay - PBx = w.ay - Px = ax - Px (59)

by the projection formula.
An element o € Weil-NS (X ) is nef if for all completion X, oty is nef.

PRrOPOSITION 3.17 ([BFJO08] Proposition 1.7). The intersection pairing
Weil-NS(Xo)g x Cartier-NS(Xo)p — R (60)

*

is a perfect pairing and it induces a homeomorphism Weil-NS(Xo)g ~ Cartier-NS(Xo)g
endowed with the weak-+ topology.

Using the canonical basis of divisors introduced in §3.3| we have a more explicit
description of the space of Cartier and Weil classes of Xj.

PROPOSITION 3.18. Let X be a completion of X, then
Cartier-NS(Xg), = NS(X)a @APY) | Weil-NS(Xg), = NS(X)@APx.  (61)

Moreover, the intersection product is negative definite over AP0 and {og : E€ Dx}is
an orthonormal basis for the quadratic form o € AP s o2,

PROOF. The decomposition follows from Equation (54)). The fact that the inter-
section form is negative definite follows from the existence of an ample divisor on X,
the Hodge Index theorem and the projection formula. The fact that {a : E € Dy} is
an orthonormal basis is again a consequence of the projection formula and Equation

(4. O

3.6.2. Local Cartier and Weil classes. Let X be a completion of Xy and let p be
a point at infinity. Then, by Proposition [3.18| we have the canonical embeddings

Cartier(X, p)a — Cartier-NS(Xo),, Weil(X, p)a — Weil-NS(Xo), (62)
PROPOSITION 3.19. The space Cartier(X, p)R is an infinite dimensional R-vector
space and the intersection product defines a negative definite quadratic form over it.

The set {0 : E € Dy p} is an orthonormal basis for the scalar product o, — —o?. Fur-
thermore, the pairing

Weil(X, p)r x Cartier(X,p)r — R (63)
is perfect.
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3.6.3. The divisors supported at infinity. Fix a completion X of Xj, we have a
natural linear map T : Divy, (X )r — NS(X)R.

PROPOSITION 3.20. The intersection pairing restricted to T(Divey, (X)R) is non de-
generate.

PROOF. Let D € T(Divy (X)R), suppose that D- D’ = 0 for all D’ € T(Dive, (X)R)-
Then, by Theorem there exists H € Divy, (X) ample. We have D-H = 0. By the
Hodge index theorem, if D is not numerically equivalent to zero, then D? < 0 and this
is a contradiction. 0J

Let V < NS(X) be the orthogonal subspace of T(Divy, (X)r). Then,
NS(X)r =V O 1(Dive (X)R)- (64)
For example if Xy = A and X = P2, then V = 0. Since we only blow up at infinity we
get
PROPOSITION 3.21. Let X be an affine surface, then

Cartier-NS(Xo)g = V@1 (Cartier (Xo)g), Weil-NS(Xp)g = VOt (Weily (Xo)g)
(65)

3.6.4. Functoriality. Let f : Xo) — Xp be a dominant endomorphism of Xj;. We
define f*, fi. on the spaces of Cartier and Weil classes as follows. We first define

f* : Cartier-NS(Xg)g — Cartier-NS(Xo) - (66)

Let B € Cartier-NS(Xg)g and let X be a completion where B3 is defined. Let Y be a

completion of Xy such that the lift F : Y — X is regular, then we define f*B as the
Cartier class defined in Y by

B = (Y,F*Bx) (67)

this does not depend on the choice of Y. Indeed, if Y’ is another completion such that

F':Y' — X is well defined, then there exists a completion Z such that we have the
following diagram.

Z
RN
G ) G L 5x

Then, the lift of f:Z --+ X is F omy = F' oTy/, hence we get
Ty oF* =m0 (F')* (69)
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and the pull back of Cartier classes is well defined.

Next, we define f, : Weil-NS(Xo)g — Weil-NS(Xo)g. Let o€ Weil-NS(Xg)g. Let
X,Y be completions of Xy such that the lift ' : ¥ — X is regular, then the incarnation
of f,ain X is

(f*OC)X = F.ay. (70)
Again, this does not depend on the choice of Y by a similar argument as for the pullback.
We have the following proposition

PRrROPOSITION 3.22 ([BFJO08] Section 2). We have the following properties.
o The operator f* extends to an operator

¥ Weil-NS(Xg)g — Weil-NS(Xo)g - (71)
e the operator f restricts to an operator
f+ ¢ Cartier-NS(Xo ) g — Cartier-NS(Xo)g (72)

o Let e Weil-NS(Xo), let X, Y be completions of Xy such that the lift f : X --»
Y does not contract any curves, then

(ffa)x = (fay)x (73)

REMARK 3.23. For a completion X, we can also define the restriction of f* and f
to NS(X). We denote them respectively by fy and (fx).. They are defined by

VBEeNS(X), fxB=(f"B)x, (fx)«B=(f:B)x (74)

3.6.5. The Picard-Manin space and spectral property of the first dynamical
degree. Consider a completion X of Xy and @ € NS(X) an ample class. By the Hodge
index theorem, the intersection form on Cartier-NS(Xg) x Cartier-NS(Xg) is negative
definite on w'. If o e Cartier-NS(Xy), the projection of & on ®* is o — (0t - ®)w.
Consider the quadratic form on Cartier-NS(Xj) given by

Vote Cartier-NS(Xo), | [0 := (00 0)? — é(oc— (- o)) (75)

This defines a norm on Cartier-NS(X()g and Cartier-NS(Xp)g is not complete for this
norm. We define the Picard-Manin space of Xy as the completion of Cartier-NS(Xo)g
with respect to this norm and we denote it by L?(X); Had we chosen a different ample
class, we would have gotten an equivalent norm so the space L?(Xy) is independent of
the choice of ®. This is a Hilbert space and we have

PROPOSITION 3.24 ([BFJO08] Proposition 1.10). There is a continuous injection
L2(Xg) < Weil-NS(Xy) (76)

and the topology on L*(Xo) induced by Weil-NS(Xo) coincides with its weak topol-
ogy as a Hilbert space. If a.€ Weil-NS(Xq) then o belongs to 1L?(Xo) if and only if
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infy (0) > —o0, in which case a? = inf (0%). Furthermore, the intersection product -
defines a continuous bilinear form on L*(Xo).

REMARK 3.25. In particular, any nef class belongs to LZ(XO). Recall that o e
Weil-NS(Xo)g is nef if for every completion X, oy is nef. The cone theorem ([Laz04]
Theorem 1.4.23) states that oty is a limit of ample classes in NS(X )R, therefore (oty)? =
0 and o e L2(Xp).

Using the canonical basis of exceptional divisors we can have an explicit description
of L?(Xy). Let a € Cartier-NS(X() and let oy be the incarnation of o in X. Then, since
o is a Cartier class, we have for all but finitely many E € Dy that o.- oig = 0 and

o= oy + Z (o-og)og. (77)
EcDyx
Therefore,
1] = llax| P+ D] (o0 0g)?, (78)
EeDy
and
o =ox— > (0-0p)’ (79)
EE@X

Therefore, L2(Xy) is isomorphic to the Hilbert space
L?(Xo) = NS(X) & £*(Dy). (80)
We also have the local version of this statement

PROPOSITION 3.26. Let X be a completion of Xo and p € X be a point at infinity.
Then,

L%(Xo) N Weil(X, p) = *(Dx ) (81)
and {0 : E € Dx ,} is a Hilbert basis of this space.

PRrROPOSITION 3.27 (IBFJO8]). Let f be a dominant endomorphism of Xo. The
linear maps

I, fe - Weil-NS(X() — Weil-NS(Xj) (82)
induce continuous operators
f*, fe 1 L2 (Xo) — L2 (Xo) (83)
Furthermore, we have the following properties in L?(Xo).
(1) (f")" = ()"
(2) Yo pe L2(Xo), f*ou- B = - fiP.
(3) Yooe L2(Xp), ffou- f*ou = e(f)a- o where e(f) is the topological degree of f.



3.6. PICARD-MANIN SPACE AT INFINITY 32

In particular, if f € Aut(Xy) then f* is an isometry of L?(X() viewed as an infinite
dimensional hyperbolic space (see [CLC13]).

THEOREM 3.28 ([BFJ08, DF21]). Suppose that M (f)? > A (f), then there exist
nef classes 0*,0, € L>(Xo) unique up to multiplication by a positive constant such that
(1) f*0* = A10%
(2) f:0. =N\ 0,.
(3) Forall e L?(Xo),

1 }\’2 n/2
—(f") o= (o 0,)0% H10q (—) >, (84)
7“1( ) ( ) I < 2

n/2
%(f”hoc: (0t-6)0s + Oq ((%) ) (85)
1

In particular, for all o, B € L*(Xo),

im (1) B = (00,)(B-6°). (36
Furthermore, 0% and 0, satisfy
(6*)2=0, 6,-0*>0 (87)
We call 6* and 0, the eigenclasses of f.

SKETCH OF PROOF. We sketch here the proof for 6*. Let X be a completion
of Xo. The pull back f* induces a linear map fy : NS(X) — NS(X). Let px be
the spectral radius of this map. We have for any ample class w € NS(X) that pxy =

lim,,—, o ((f;)”w-w)l/”. Now, fy preserves the cone Cy of nef classes in NS(X)g.
This is a closed convex cone with compact basis and non-empty interior. By a Perron-
Frobenius type argument, there exists Ox € Cx such that fy0y = px0x.

Now, Let (Xy) be a sequence of completions of Xy such that X; = X and Xy is
a composition of blowups of Xy at infinity such that the lift of f to Fy : Xy+1 — Xy
is regular, we denote by Ty : Xy+1 — Xy the induced morphism of completions. Let
pn := Pxy and Oy := Byx,.. One can show that limy py = A;. By construction, we have
that for all N > 1, the element f*0y — pyOy € Weil-NS(Xo)g has incarnation zero in
X, hence it tends to zero in Weil-NS(Xo ). We can normalize all 6y such that Oy -w =
1 where w is an ample class of NS(X). Now, the set {W € Weil-NS(Xq)g [W -w = 1}
is a compact subset of Weil-NS(Xy) so the sequence (6y) has an accumulation point
0* € Weil-NS(Xj) that is nef, effective and we get f*0* = A,0*. O]

A = Oy,(B) means that there exists a constant C(o) > 0 such that A < C(a)B.



CHAPTER 4

Valuations

We introduce the notion of valuations and describe some properties. We will espe-
cially focus on valuations over the ring of power series in two variables k[[x, y]] as they
allow one to describe every valuation over k[Xy] for X a normal affine surface.

4.1. Valuations and completions

Our general reference for the theory of valuations is [Vaq00]. Let R be a com-
mutative k-algebra that is also an integral domain, a valuation on R is a function
v:R — Ru {00} such that

(@) v(k*) = 0;
(ii) For all P,Q € R,v(PQ) = V(P) +v(Q);

(iii) Forall P,Q € R, V(P + Q) = min(V(P),v(Q));

(iv) v(0) = +o0.

If 7 is an ideal of R, we set v(I) := min;e; v(i). If S < I is a set of generators, then

v(I) = mi;w(s). (88)

REMARK 4.1. In [AbhS56] A valuation can take the value +oo only at O but we
do not require such a property. Let py = {a€ R:Vv(a) = oo} then py is a prime ideal
of R that we call the bad ideal of v. 1f v is a valuation on R, it defines naturally a
valuation in the sense of [Abh56] on the quotient field R/py. Furthermore v can be
naturally extended to a valuation on the ring Ry, via the formula v(p/q) = v(p) —v(q).
In particular, if py = {0}, then v defines a valuation over FracR.

Let X be a completion of Xy and let v be a valuation over B := Ox(Xp). Let py be
the bad ideal of v. Consider By, the localization of B at py. Set

Oy := {xe By, : V(x) = 0}. (89)
This is a subring of By,. If py = {0}, then this is the classical valuation ring of v.

LEMMA 4.2. The subring Oy is a local ring, its maximal ideal is

my = {xe Oy :v(x) >0} (90)
33



4.1. VALUATIONS AND COMPLETIONS 34

PROOF. It suffices to show that if v(x) = 0, then x is invertible in O, but this is
obvious since v(x~!) = —v(x) = 0. O

One defines naturally a valuation v on C := B/py, let L be the fraction field of C and
O be the valuation ring of L with respect to v. Then, we have the natural isomorphisms

Lzpr/pV and O\//pvzo (91)

Geometrically, the Zariski closure of py inside X defines an irreducible closed sub-
scheme Y of X and L is isomorphic to the field of rational functions on Y.

Two valuations Vi, V; are equivalent if there exists a real number A > 0 such that
Vi = Ava. Let R,R’' be two integral domains with a homomorphism of schemes ¢ :
Spec R’ — SpecR; it induces a ring homomorphism ¢@* : R — R’. If v is a valuation on
R’ we define .V the pushforward by @ of v by

VP e R,0.V(P) =Vv(¢*(P)). (92)

Let Xo be an affine surface. Denote by 7/ the set of valuations on k[Xp]. We
equip this space with the topology of weak convergence, that is the coarsest topology
such that the evaluation map v € ¥ +— v(P) is continuous for all P € k[Xp]. If f is an
endomorphism of Xy, then f induces a continuous map f : V — V.

Via the natural isomorphism 1§ : Ox(Xo) — K[Xo], every v € ¥ induces a valuation
(1x)+V on Ox(Xp), namely

VP e Ox(Xo), (x)«V(P):=V(xP). (93)
We will denote (1x ).V by vx for every valuation v on Kk[Xp].

REMARK 4.3. Take a morphism of completions 7 : X; — X and v a valuation on
K[Xp]. Then, (1x,)«v = (1~ ! o1y, )«V. In particular T, vy, = Vx,.

REMARK 4.4. In the language of Berkovich theory, the set ¥ is the Berkovich

analytification of Xy over k where we have endowed k with the trivial valuation (see
[Ber12)).

EXAMPLE 4.5 (Divisorial valuations). Let X be a completion of Xy and E be a
prime divisor of X. Let ordg be the valuation on k(X) such that for any f € k(X),ordg(f)
is the order of vanishing of f along E. Any valuation v on k[Xy] such that vyx is
equivalent to ordg for some prime divisor £ in some completion X is called a di-
visorial valuation. In that case py = {0} and v extends uniquely to a valuation on
Frack|[Xp]. For example if Xy = A? and X = P2, then let Lo, be the line at infinity, we
have VP e k[x,y],ord; (P) = —deg(P). If instead we take the completion P! x P!, de-
compose AZ = A x Al and let x,y be the affine coordinate of A% each being an affine
coordinate of Al. Let L, = {00} x P! and L, = P! x {00}, then

VP e K[x,y],ordr, (P) = —deg,(P), ordy (P)= —deg,(P) (94)
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where deg, (respectively deg)) is the degree with respect to the variable x (respectively
y).

EXAMPLE 4.6 (Curve valuations). Let X be a completion of Xy, let p € dxXo C be
the germ of a (formal) curve at p. This means that C is defined as @ = 0 for ¢ in the
completion Ox ,p of the local ring Ox , at p. If y € Ox ,p 1s another germ of a formal
curve at p, we define the intersection number at p by

{0 =0}, {y =0} := dimg Ox ,/(9, V. (95)

This number is equal to oo exactly when one of the germs divides the other. We first
define a valuation v¢ , on Ox , by

vep(¥) ={y=0-,C}. (96)
Suppose ¢ is not divisible by the local equatlon of any component of dxXp. For any

P e Ox(Xp), P can be written as P = \|f -~y with y; € OX7 p irreducible and o; € Z.
We define

vep(P) =Y oive (i) e RU {oo} (97)

Then vc¢ p, is a valuation on Oy (Xp). Any valuation on k[Xp| such that vy is equivalent
to V¢, is called a curve valuation. If v is a valuation such that py # {0}, then v is a
curve valuation (see [FJ04] and Proposition below). We will make the following
distinction, if C is defined by @ € Ox , we will say that vc , is an algebraic curve
valuation. Otherwise, we will say that it is a formal curve valuation.

If @ was divisible by the local equation of a component of dxXj, then v¢, , would
not define a valuation on k[Xy| as some regular functions P € k[Xp] would have a pole
along C and v(P) would be equal to —co.

4.2. Valuations over k|[[x,y]]

We recall some results about valuations from [FJ04] and [FJO07]]. Let R be a regular
local ring with maximal ideal m. We say that a valuation on R is centered if v > 0 and
Vim > 0. Here we set R := K[[x,y]] for our local ring. Its maximal ideal is m := (x,y)
we will study the set of centered valuations on R.

PROPOSITION 4.7 (Proposition 2.10 [FJ04], [Spi90]). Any valuation on K|x,y|
centered at the origin extends uniquely to a centered valuation on R as follows. Let
¢ € R and let @, be the polynomial of degree n such that @ = lim@,. Then,

v(p) = nli_)rglomin(v((pn),n). (98)
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COROLLARY 4.8. Let R’ be regular local ring of dimension 2 over K, then the mg -
adic completion R’ of R' is isomorphic to R. Any centered valuation on R’ extends
uniquely to a centered valuation on R'.

PROOF. Let (x,y) be a regular sequence of R', that is mp = (x,y). It exists because
R’ is a regular local ring of dimension 2. Then, R’ is isomorphic to k[[x,y]]. Let v be a
centered valuation on R’. We have that k|x,y| < R’, so v induces a valuation on K[x, y]
that is centered at the origin and we can apply the previous proposition to conclude. [J

Let p be a regular point on a surface X and let R = 5)(\]3 we define 4 types of
valuations over R.

4.2.1. Divisorial valuations. A valuation v over R is divisorial if there exists a
sequence of blow-up 7 : (Y,Exc(®)) — (X,x) such that v is equivalent to T, ordg for
some prime divisor E < Exc(m).

4.2.2. Quasimonomial valuations. Let w: (Y,Exc(w)) — (X,x) be a sequence of

blow-ups and let g € Exc(m). A monomial valuation at ¢ is a valuation v on Oy 4 such
that there exists s, > 0,

\Y (Zaijxiyj> :min{si+tj:a,-j7é0} (99)
i.j
for some local coordinates at g. We write v =V, ;.

A valuation over 6;(\17 is called quasimonomial if there exists a sequence of blow-
ups © : (Y,Exc(w)) — (X, p) such that v = w,vs,. Quasimonomial valuations split into
two categories: if s/t € Q, one can show actually that v is divisorial. Otherwise s/t €
R\Q, v is not divisorial and we say that it is irrational.

4.2.3. Curve valuations. Let ¢ € m, be irreducible, we define v by
_{p=0}-{y=0} (100)
m(e)

where m() is the order of vanishing of @ at the origin. A curve valuation is a valuation
equivalent to Vv, for some @ € m,, irreducible.

Yye Oxp,  VolW)

4.2.4. Infinitely singular valuations. These are all the remaining valuations. They
have a nice description in term of Puiseux series (see [FJ04|] Section 4.1 for more de-
tails). Briefly, to any valuation v of k[[x,y]], one can associated a generalized power
series

¢=> apb (101)
j
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with a; € k and B; € Q. The infinitely singular valuations are exactly the valuations
such that lim;; 3; # +o0.

PROPOSITION 4.9 ([EJ04]). There are four types of centered valuations on R: di-
visorial, irrational, curve valuations and infinitely singular valuations. The only type
of valuation v such that py = {v = +w0} # 0 are curve valuations

REMARK 4.10. Instead of looking at valuations over R with values in R, we can
look at valuations with values in a totally ordered abelian group I', these are called
Krull valuations (see [FJ04], section 1.3) and they have the advantage to always extend
to FracR. We can make any curve valuation into a Krull valuation by the following
procedure (see [FJ04], section 1.5.5): Let ¢ € m and consider the curve valuation vy.
Let I' = Z x Q with the lexicographical order, we define \7(p : R — T"as follows. For any
Y € R, there exists an integer k € N such that

v=9y (102)
where V is not divisible by ¢. Set

V(W) = (k,ve(V)) (103)

Notice that Vo(y) = ©© < pi(Ve(Wy)) > 0 where p; : I’ — Z is the projection to the
first coordinate and if Vo(y) < +00, then V() = (0,ve(y)). We will not need Krull
valuations in the rest of the text. But this argument comes in handy for the proof of
Proposition so we state it here.

4.3. The center of a valuation

Let X be a completion of Xy and let v be a valuation on Ox(Xp). A center of v
on X is a scheme-theoretic point p € X such that Oy dominates the local ring Ox , (i.
Ox,p < Oy and m;, — my). If such a p exists then v induces a centered valuation on Oy ,
(cf and in particular for any open affine subset U < X that contains p, v induces a
valuation on Oy (U) via the inclusion Ox(U) < Ox .

LEMMA 4.11. The center of v on X always exists and is unique.

PROOF. Let Oy be the subring of k(X) where v is > 0; it contains k*. Let L =
By, /pv and O = Oy/py. If p is a center of v on X then we have the following commu-
tative diagram of ring homomorphism

Oxp « > Oy » < > L 4 By, ; (104)

inducing the following commutative diagram of scheme morphisms



4.3. THE CENTER OF A VALUATION 38

SpecL

l = w

Spec O —— Spec Oy —— Spec Ox,, — Speck

Since X is proper over k (it’s a projective variety), the valuative criterion of proper-
ness ([Har77]) shows that if the center exists, then it is unique. For the existence, Let
x € X be the image of the maximal ideal of O, then x is the center of v on X. Indeed, the
image of SpecL is the prime ideal py of Ox(Xp) and x belongs to its closure, therefore
Ox x < By, and the morphism of local rings Ox , — O shows that O, dominates Oy .

0

The center of v on X is the center of vy we will denote it by cx (V).

EXAMPLE 4.12. Let v be a divisorial valuation over k[Xj] and let X be a completion
of Xy such that vy ~ ordg for some prime divisor E of X, then the center of v on X is
the generic point xg of E. Indeed, the ring of regular function at the generic point of E
is a discrete valuation ring since E is of codimension 1. In that case, we will identify
the center with its closure and say that the center of v on X is the prime divisor E. In
fact a valuation is divisorial if and only if its center on some completion of Xy is a prime
divisor because if cx (V) = xg, then v and ordg defines the same valuation ring which
is a discrete valuation ring, therefore they are equivalent.

EXAMPLE 4.13. If v is a curve valuation and X is a completion of Xy such that
(1x)«V =~ V¢ p, then the center of v on X is the closed point p.

A valuation over k[Xy| is centered at infinity if there exists a completion X such
that cx (V) ¢ Xo.

COROLLARY 4.14. Let Xo be a smooth affine surface, there are exactly four types of
valuations centered at infinity over K[Xo|: divisorial valuations, irrational valuations,
curve valuations and infinitely singular valuations. If v is a valuation such that py #
{0}, then Vv is a curve valuation.

PROOF. let v be a valuation over k[Xp] and let cx (V) be its center on some com-
pletion X. If cx (V) is a prime divisor at infinity then v is divisorial. Otherwise, cx (V)

is a regular point at infinity and v induces a centered valuation over Oy ,. The result
follows from the classification of centered valuations over K[[x,y]] from Proposition
4.9 OJ
DEFINITION 4.15. e Let X be a good completion of Xy and p € dx Xy a point

at infinity. Following [FJ04]], we say that p is a free point if it belongs to a

unique prime divisor at infinity and we say that it is a satellite point otherwise,
i.e it is the intersection point of two prime divisors at infinity.
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e Let v be a valuation over k[Xp| centered at infinity. Let p; = cx (V) be its
center on X and X; := X. We define the following sequence: If p, is a prime
divisor, then the sequence stops, else p,, is a closed point of X,, and we define
Xu+1 as the blow up of p,, then define p,;1 := cx, (V). This is the sequence
of centers of v with respect to X.

We adopt the following convention: When we write "let p € E be a free point (at
infinity)" this means that E is the unique prime divisor at infinity on which p lies. If
we write "let p = E n F be a satellite point", this means that £ and F are the two
prime divisors at infinity such that p = E n F (Recall that we only work with good
completions).

PROPOSITION 4.16 ([FJ04], Section 6.2 ). Let Vv be a valuation centered at infinity.
Let X be a completion of Xy and (p,) the sequence of centers (above X ) associated to
V. Then,

(1) v is divisorial if and only if the sequence (py,) is finite.

(2) If v is irrational, then (p,) contains finitely many free points.

(3) if v is a curve valuation, then (py,) contains finitely many satellite points.
(4) If v is infinitely singular, then (p,) contains infinitely many free points.

PROOF. Assertion 1 is clear since the sequence (p,) stops if and only if p, is a
prime divisor at infinity. Assertion 2 and 4 follows from [FJ04] Theorem 6.10 and
Assertion 3 follows from [EJ04] Proposition 6.12. O

4.4. Image of a valuation via an endomorphism

Let f : Xo — Xop be a endomorphism of Xp, it induces a map f, on the space of
valuation f : // — ¥/ via the formula

VPek[Xo], VeV, fv(9). (106)

We will denote by f, the induced map f, : ¥V — V.

PROPOSITION 4.17 (Proposition 2.4 of [EJO7]). Suppose that f is dominant, the
map f. preserves the sets of divisorial, of irrational and of infinitely singular valua-
tions. If V¢ is a curve valuation such that f does not contract C, then f.Vc is a curve
valuation. If f contracts C, then f.Vc is a divisorial valuation.

We will use this proposition in the following context. Let X,Y be two completions
of Xp such that the lift F : X — Y of f is regular. For any point p € X\Xp, we have a
map F, : Vx(p) — V¥ (F(p)) that preserves the type of the valuations. The only curve
that might be contracted by F' to g are the divisors at infinity; but the curve valuation
that they define do not define valuations on k|[Xp].
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PROPOSITION 4.18. Let f : Xg — Xo be a dominant endomorphism of topological
degree \y. Then, every valuation v on K[Xo| has at most Ay preimages under f.

PROOF. Suppose first that the valuation v takes the value +-c0 only for 0. Therefore,
it extends to a valuation on K = Frack|[Xp|. The extension f*K < K is a finite extension
of degree A,. The valuation v induces a valuation on f*K and every valuation w such
that f.w = v is an extension of v pxg to K. By [ZS60] Theorem 19 p.55, there are at
most A, extension of v| g«

If now py = {v = +00} # 0, then we know that v is a curve valuation. By Remark
v can be made into a Krull valuation V. Since V is a Krull valuation, it extends
to a Krull valuation over K and f.v extends to a Krull valuation over f*K. The same
argument as above still works as [ZS60] deals with Krull valuations. O

4.5. Tamely ramified endomorphisms

Let K — L be a field extension, let v be a valuation over K and let w be a valuation
over L such that wg = v. If T, and I}, are the value group of v and w respectively, we
have I, < I}, and we define the ramification index e(w|v) =T, : T,

If | is the valuation ring of v and ,, the valuation ring of w. Let K, be the residue
field of v, then we have a field extension «, — X, the inertia degree is defined as
fw|v) := [k : ,]. If L/K is finite of degree n, then

e(w|v)f(wly) <n. (107)

Now consider a dominant endomorphism f : Xo — Xp, let L = k(Xp) and K = f*L.
Following [CP00]], we say that f is tamely ramified if f is separable and for every
divisorial valuation v of Xo,e(v|f«v) is not divisible by chark and the residue field
extension ¥, /Ky, is separable.

In particular, if chark = 0 or f is an automorphism, f is automatically tamely ram-
ified.



CHAPTER 5

Tree structure on the space of valuations

We show that the space of valuation centered at infinity of a normal affine surface
Xo has a local tree structure. Namely, the set of (normalized) valuations centered at a
closed point is isomorphic to the valuative tree constructed in [FJ04]. We recall some
of its properties.

5.1. Trees

For this section, we refer to [FJ04] Section 3.1. Let (7, <) be a partially ordered
set, a subset S < T is full if for every 6,6’ € §,1e T,0 <1< 0’ = 1€ .

DEFINITION 5.1. Let A =N, Q,R. An interval in A is a subset I = A such that for
all x,y,ze A, if x<y<zand x,z€l, then ye . If (7T,<) be a partially ordered set,
then (7, <) is a rooted A-tree if

(1) 7 has a unique minimal element T called the root of 7.
(i) If te 7, the set {oc €7 : 6 < T} is E|isomorphic to an interval in A.

(iii) Every full, totally ordered subset of 7 is isomorphic to an interval in A.

A parametrized-A tree is a rooted A-tree ‘7 with a map o : 7 — A U {00} such that
the restriction of a to any full totally ordered subset of 7" induces a bijection with an
interval in A. The map o is called the parametrisation.

A rooted R-tree is called complete if every increasing sequence has an upper bound.

A subtree S of a A-tree T is a subset such that (S5, <|s) is a A-tree. An inclusion of
trees is an order preserving injection 1: § — 7. Where S is a A-tree, and T is a A’-tree,
we do not require A = A’. For example N < R is an inclusion of trees. In particular, if
A=A, then1(S) is a subtree of 7.

If 7 is an R-tree and 71,7, € 7, then the minimum t| A T2 € T exists by complete-
ness of R. We define the set

[T, 2] ={te T AT <T<TIOr T AT) S TS T} (108)

and we call it a segment. The segments [t;,72), (T1,72] and (t1,72) are defined simi-
larly. A finite subtree of T is a subtree that consists of a finite union of segments in

T.

1isomorphic here means that there exists an order preserving bijection.

41
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If 7 is an R-tree, a tangent vector vV at T € T is an equivalence class of elements
v € T\ {t} where

T ~v < (1,7]n(1,7"] # &. (109)
We define the weak topology on 7 by the topology generated by the sets
U(V):={t' e T\{t} : U represents V'}. (110)

THEOREM 5.2 ([FJ04] Proposition 3.12). We have the following

e Every rooted R-tree T admits a completion T thatis a complete rooted R-tree.

e Every rooted Q-tree Iy admits a completion ‘Ig into a complete rooted R-tree,
i.e there exists an order preserving injection 1 : Ig — ‘Ig such that
(1) If to is the root of Ig,1(To) is the root of ‘Ix.
(2) (1) is weakly dense in Iy
(3) ‘Ir is minimal for this property.

o Ifog: Ig — Q- is a parametrisation of Iq, then there exists a unique parametri-
sation oR of ‘I such that 0,y = OR ©1.

5.2. The local tree structure of the space of valuations

We denote by 1) the set of centered valuations on R where R = Kk[[x, y]]. Define the
multiplicity valuation Vi by Vi (@) = max{n > 0: @ e m"}. We will sometimes write
m(@) instead of vy (@). Let Vi < 1) be the set of centered valuations on R such that
v(m) = 1 and consider the following order relation on ¥j,:

V<w < YoeR,Vv(Q) <w(9). (111)

With this order relation 4’ becomes a complete rooted R-tree called the valuative tree
([FJ04] Theorem 3.14) rooted in vy,. The ends of ¥/, consist of the curve valuations
and the infinitely singular ones. The interior points are all quasimonomial valuations,
all divisorial valuations are branching points whereas all the irrational valuations are
regular points (i.e admit only two tangent vectors). Define on V}, the following function

o) = sup{%:(pem}. (112)

It is called the skewness function (see [FJ04] §3.3)

PROPOSITION 5.3 (Proposition 3.25 of [FJ04])). The skewness function o : Vi, —
[1,+00] defines a parametrisation of V. We have the following properties.
e 0(V)=1<V=vq,
o Let @ € m be irreducible and let v € Vi, then
Voem,v(Q) = a(vAve)m(Q). (113)
e [fVv is divisorial, then a(v) € Q.
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e [fV is irrational, then o(v) € R\Q.

e [fV is a curve valuation, then o(V) = +0o0.

e [fV is infinitely singular, then (V) € (1,+00] and every value is realised.

o If Vin giv is the subset of Vi, consisting of the divisorial valuations, then (Vi giv, )
is a parametrized Q-tree.

We can define two topologies over V. The first one is the weak topology being
the coarsest topology such that for all ¢ € R, the evaluations map v € ¥V, — V(@) is
continuous. The second is the weak topology given by the R-tree structure on V.

PROPOSITION 5.4 ([FJ04]], Theorem 5.1). The weak topology over Vi, given by the
evaluation maps v € Vi — V(@) and the weak topology induced by the tree structure of
Vin are the same.

Let X be a good completion of Xy and let p be a smooth point of X. Take local
coordinates z,w at p, then the completion of the local ring Ox , with respect the maxi-
mal ideal m,, is isomorphic to K[[z,w]]. Let ¥k (p) be the set of valuations v on k[Xo]
centered at p. We will denote by Vx(p;m,,) the subset of Vx(p) of valuations v such
that v(m,) = 1. The space Vx(p;m,) is an R-tree isomorphic rooted in vi,,. We make
its structure precise.

PROPOSITION 5.5. The R-tree Vx(p;m,) is not complete.

(1) If p € E is a free point then Vx(p;m,,) is isomorphic to Vy\{V.} where z is a
local equation of E.

(2) If p = E N F is a satellite point, then Vx (p;my,) is isomorphic to Vig\{V,, Vi }
where z,w are local coordinates at p with z a local equation of E and w a local
equation of F.

PROOF. If p € E is a free point, let z, w be local coordinates at p such that z is a local
equation of E. Then, the completion of the local ring at p is isomorphic to k[[z,w]] by
Theorem Every P € k[Xj] is of the form P = Z% with a > 0 and @ € Ox . Hence, a
centered valuation on K[|z, w]] defines a valuation over k[Xp] if and only if it is not the
curve valuation v,. Hence we have an isomorphism ¥ (p;m,,) ~ ¥\ {Vv_}.

If p=FE nF is a satellite point, then let z,w be local coordinates at p such that
z is a local equation of E and w is a local equation of F. Every P € k[Xp] is of the
form P = z“(vpvb where a,b > 0 and ¢ € Ox ). Therefore a centered valuation on k[[z, w]]
defines a valuation over k[Xp] if and only if it is not the curve valuation v or v,,. Hence
we have an isomorphism Vx (p;m,) — Vin\ {Vz, Vi }. O

5.3. The relative tree with respect to a curve z =0

Let R = k[[x,y]] and let m be the maximal ideal of R. Let z € m be irreducible
such that vy (z) = 1. One can consider the set V; of centered valuations on R such that
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V(z) = 1; we also add the valuation ord; to ¥, defined by ord,(¢) = max{n > 0: 7"|@}.
(notice that ord, is not centered, because for example if x # z, ord;(x) = 0). This is also
a tree rooted in ord; called the relative tree (see [FJ04] Proposition 3.61) with the order
relation v <, y < Vo € R, v(9) < u(@). We can define the weak topology on 7, being
the coarsest topology such that the for all @ € R, the evaluation map v € V, — V(@) is
continuous. There is also the weak topology given by the tree structure of 7.

PROPOSITION 5.6 (Relative version of . The weak topology over V. given by
the evaluation maps v € V., — V(@) and the weak topology induced by the tree structure
of V, are the same.

PROPOSITION 5.7 ([FJ04] Lemma 3.59). We have an onto map N, : Vo — V, de-
fined by

N (V) =v/V(2) if v #V,
N;(v;) = ord;.

This map restricts to a homeomorphism N, : Vi, — V. with respect to the weak topology.
Ifwe m s irreducible, then the map N, := N,, oN, ! V. — vV, is a homeomorphism
for the weak topology.

The tree ¥, comes with a skewness function o, : ¥, — [0, +00] and a multiplicity
function m (@) = v,(¢). The skewness is defined by

—sup] YW } 114
vy i=sup { Xy e (114)
PROPOSITION 5.8 (Relative version of Proposition . The function o, : V, —
[0, +00] defines a parametrisation of the tree ‘V,. We have the following properties.
e 0,(V) =0<Vv=ord,.
o Let @ € m be irreducible and let v € V,, then
V(@) = 0z (V AN (Ve))m(9). (115)
If v is divisorial or v = ord,, then o,(v) € Q
If v is irrational, then o;(v) € R\Q.
If v is a curve valuation, then o (V) = +o0.
If v is infinitely singular, then o, (V) € (0, +00] and every value is realised.
o If V. iy is the subset of V. consisting of ord, and divisorial valuations, then
(‘I/miv, OLZ) is a parametrised Q-tree.

PROPOSITION 5.9 ([FJO04], Proposition 3.65). We have the following relation

)zmmW@wafa< Y > (116)

min (v(x),v(y))

v

V(@)

YWe ), v(z)?o, (
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If w e m is another irreducible element with m(w) = 1, then

W e U, v(2) 0 (é) — v(w)20h, <$> . (117)

PROPOSITION 5.10 ([FJ04], Lemma 3.60 and 6.47). The map N : Vi — YV, is not
an isomorphism of trees. The two orders on Vi, and ‘V, are compatible except on the
segments [Vm, V.| and [ord,;,N(Vy, )] where they are reversed. More precisely,

(1) VV,u € [Vin,Vz] © Vi,V <m = N(V) =, N(u).
(2) Wvi,v2 € Y\ {ord;},vi <;va < [N7'(v1),v] < [NT1(v2), V..

The situation is summed up in Figure 1| where we have put arrows on the branches
of the tree to indicate the order.

U Vz
NZ(Vm) d
ord.

FIGURE 1. The homeomorphism between 1}, and 7V

We will use the relative tree in the following context. Let E be a prime divisor at
infinity of some good completion X, let p be a point of £ and let z, w be local coordi-
nates at p such that £ = {z = 0}. The completion of the local ring at p is isomorphic to
k[[z,w]]. We define Vx(p;E) as follows; an element of Vx (p;E) is either a valuation
v on k[Xj] centered at p such that v(z) = 1 or the divisorial valuation ordg. Notice that
the definition of ¥x(p; E) does not depend on the local equation z = 0 of E because the
quotient of two local equations is a regular invertible function.
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PROPOSITION 5.11. Let X be a completion and let p € X be a closed point at
infinity.
(1) If p € E is a free point, then Vx (p;E) is isomorphic to V..
(2) If p = E NF is a satellite point. Let z,w be local coordinates at p such that 7 is
a local equation of E and w a local equation of F then Vx (p; E) is isomorphic
to V,\{vw} and Vx(p;F) is isomorphic to V,,\ {v_}.

The map N, : Vin — V, induces a homeomorphism

Np,E . Wx(p;mp) — er(p;E)\{OrdE}. (118)
Furthermore, if p = E N F, then the map
NppoN, g~ Vx(p;E)\{ordg} — Yk (p;F)\ {ordr} (119)

is a homeomorphism.

PROOF. If p € E is a free point. Let z,w be local coordinates at p such that z is a
local equation of E. The completion of the local ring at p is isomorphic to k[[z,w]] by
Theorem For every P € K[Xo], P is of the form P = z where a > 0 and ¢ € Ox ).
Therefore, a centered valuation on K[|z, w]] defines a valuation over k[Xp] if and only
if it is not the curve valuation v,. Since v, ¢ 1, we have that Vx(p;E) ~ V. Call
G : Vx(p;E) — YV, the isomorphism. We define N, ¢ as follows. Recall by Proposition
that there is a homeomorphism N : ¥, — V. where in particular N(v,) = ord,. Here
we have that ord, is canonically identified with ordg and ¥ ( p;mp) is isomorphic to
Y\ {v;}, call1: Vx(p;mp) — Y\ {V;} the isomorphism. Define

NpE = o loNot: Vx (psmy,) — Vx(p;E)\ {ordg}, (120)

it is a homeomorphism.

If p = E N F is a satellite point. Let (z,w) be local coordinates at p such that z is a
local equation of E and w is a local equation of F. The completion of the local ring at
p is isomorphic to k[[z,w]]| by Theorem Every P € k[Xp] is of the form P = z“%
where a,b > 0 and @ € Oy, . Therefore a centered valuation on K[[z,w]] defines a
valuation over k[Xp] if and only if it is not the curve valuation associated to z or w. Or
v, does not belong to ¥, but v,, does. Therefore, Vx(p;E) is isomorphic to V\ {v,,}.
If N, : Viy — V., is the map from Proposition then N(v;) = ord, and N(v,,) = V,,.
Therefore, N,, oN,~! : 9. — 4/, is a homeomorphism that sends ord, to v, and v,, to
ord,,. Fix an isomorphism 1z : Vx(p;E) — V.{vy} and 1 : Vx(p;F) —> V,,\ V.. We
have that the map

Np F ONp,E_l =1y ONWONZ_1 otg : Vx(p;E)\{ordg} — Vx(p;F)\{ordr} (121)

is a homeomorphism. 0
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PROPOSITION 5.12. Let X be a completion of Xy and let E be a prime divisor
at infinity. If p1, p2 € E are closed points with py # pa, then Vx(p1;E) n Vx(p2,E) =
{ordg}. Define the set Vx (E;E) of valuations v such that cx (V) € E and v(z) = 1 where
z is a local equation of E at cx (V). Then

Vk(E;E) = | ] % (p;E) (122)

PEE

and it has a natural structure of a rooted R-tree rooted in ordg. The skewness functions
og glue together to give Vx(E;E) the structure of a parametrized rooted tree. Every
point p € E defines a tangent vector at ordg given by Vx(p;E)\ {ordg}.
Furthermore, Let Y be a completion of Xy and q €Y a closed point at infinity. Let
T :Z — Y be the blow up of q and let E be the exceptional divisor of . Then, for every
GeE, the map T : ‘VZ@;E) — Yy (q;my) is actually equal to T, and they glue together
to give a map
T VZ(ESE) — Yy (gsmyg), (123)

which is an isomorphism of trees. We have the relation Olm,, O Ty = 1+0og and bmq OTy =
bg.

We postpone the proof to If E ~ P!, this tree is isomorphic to the tree of
normalized valuations centered at infinity over A2 constructed in [FJ07]], Appendix.

5.4. The monomial valuations centered at an intersection point at infinity

Let X be a good completion of Xy and let £, F be two divisors at infinity that in-
tersect at a point p. Let (x,y) be local coordinates at p such that E = {x = 0} and
F = {y = 0}. There are three spaces to consider: Vx(p,m,), Vx(p;E) and Vx(p;F).
We explain here how they are related. For (s,7) € [0, +0]\ {(0,0), (20, 0)}, we denote
by Vv, the monomial valuation defined by

Ve (Zaijxiyj> — min {si +1|a;j # 0} (124)

Notice that vo | = ordr, Vi o = ordg, Vi, = Vy, V1 = V. We will denote the set of such
valuation by [ordg,ordr|. We use this notation because of the following: [ordg,ordr]| N
Vx(p;E) consists of the valuations vi; for ¢ € [0,+) and [ordg,ordr] N Vx(p; F)
consists of the valuations v, | for s € [0, +0). So they define segments in the respective
trees. In particular we have

NproNpe ' (Vig) =Vip1, Vie(0,+m) (125)

One can show with the definition of the skewness function o that o (Vi) = .
Therefore we show
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LEMMA 5.13. Let v be a monomial valuation centered at p = E N F. One has
v v(y)

v(x)

\% X .
o () 3y ~5 70

-1
In particular we have that o (Vz'—x)> = oF (ﬁ) on |ordg,ordr|.

5.5. Geometric interpretations of the valuative tree

Let X be a completion of Xy and let p € X be a closed point at infinity. We
consider in this section only completions above X that are exceptional above p. If
n: (Y,Exc(m)) — (X, p) is such a completion, then we call I'y the dual graph which
vertices consist of the exceptional divisors of . Two exceptional divisors are linked by
an edge if they intersect. The graph I'y is connected without cycles, it is therefore an
N-tree. We set the root of I'; to be the exceptional divisor E that appears after blowing
up p.

If E is a prime divisor at infinity of X such that p € E. We define the dual graph

I'np:=Tru{E}. (126)
It is also a N-tree. We set the root of I'y g to be E.

LEMMA 5.14 ([FJ04], Proposition 6.2). Letn:Y — (X, p) be a completion excep-
tional above p. if T: Z — Y is the blow up of a point in the exceptional locus of T, then
there are natural inclusions of N-trees

'y — o, FmE - lﬂn’ot.,E- (127)
Therefore, the direct limits I := li_r)nn I'n, I'e = li_r)nn I'r £ are well defined. The points

of I are in bijection with Dx , and I'y = T" U {E} and they have a structure of Q-trees.

LEMMA 5.15 ([FJ04] Theorem 6.9). We have a map m, : I'r — Vx(p;m,)giy de-
fined by
Mu(F) =V (128)

where Vi is the valuation equivalent to T, ordr that belongs to Vx(p;my). These maps
are compatible with the direct limit and give a map I — Vx(p;m,).

LEMMA 5.16. We have a map Tty : I'y g — Vg giv defined by
a(F) = Vp (129)

where V is the valuation equivalent to T, ordg that belongs to Vx(p;E). These maps
are compatible with the direct limit and give a map Tr — Vx (p; E).
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PROPOSITION 5.17 ([FJ04], Lemma 6.28). Let w: (Y,Exc(n)) — (X, p) be a com-
pletion exceptional above p. Let g €Y be a closed point that belongs to the exceptional
component of T. Let F be the exceptional divisor above q.

(1) If g€ F with F € I'y, then Vi > Vp.
(2) If g = F\ 0 F> with F\, F> € Uy, suppose that Vi, < Vp,, then Vg, <V < Vp,.

PROPOSITION 5.18 (Relative version of Proposition [5.17). Ler & : (Y,Exc(m)) —
(X, p) be a completion exceptional above p. Let q € Exc(r). Let F be the exceptional
divisor above q.

(1) If g€ F is a free point with F € U g, then Vi > Vp.
(2) If g = Fi n F, is a satellite point with Fi,I5 € I'n g, if Vi, < Vp, then Vi <
Vﬁ < Vp.
(3) In particular, if g = E N F, then ordg < Vp < Vp.
THEOREM 5.19 ([FJ04], Theorem 6.22). We have an isomorphism of Q-trees

I~ Y (psmp)av, Tr =~ Vx(p;sE)aiv (130)
given by F ~ Vvg. We can take the completion of the Q-trees to get the isomorphism
T~ Y (psmy), Te=~Vx(p;E) (131)

PROPOSITION 5.20. Let X be a completion of Xy and let p € X be a closed point
at infinity. Let V, be either Vx(p;m,) or Vx(p;E) for some prime divisor E at infinity
such that p € E. Let Ty be either T or I'g. Let w: (Y,Exc(m)) — (X, p) be a completion
exceptional above p. Let q € Exc(n) be a closed point. The map T induces a map
T Ve(q) — Vx(p).

(1) If g € E; is a free point with E, € 'y, then we have an inclusion map T, :
W(q;Eq) — Vi. The order relation in Vy(q;E,) and V; are compatible and
T, is an inclusion of trees.

(2) If g = E4 N Fy is a satellite point with E4, F, € 'y, then, ifvK <« VE,, the order
relations on V;, and Vy(q;E,) are compatible and Tt : Vy (q;E;) — Vi is an
inclusion of trees.

PROOF. We only need to show that the orders are compatible on the divisorial val-
uations of Yy (q; E,). Therefore we show the following,

CLAIM 5.21. For every completion t: (Z,Exc(t)) — (Y,q) exceptional above g, we
have the following

(1) Forall F\,F, € FT,Eq7
VF, <« VR, < VF <E, VR (132)
(2) If F € FLEq satisfies F n Fy # (), then
VF < VF, (133)
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Here there is a slight abuse of notation as we denote by Vg, the image of F; both in
’Vy(q;Eq) and V.. This is done to lighten notations, we believe that it does not provide
any confusion.

We prove this by induction on the number of blow ups above ¢g. If T = id, then ordg,
is the root of 1% (q;E,) and Vg , < VF, by assumption so there is nothing to do.

Let t: (Z,Exc(t)) — (Y,q) be a completion exceptional above ¢ such that Claim
(5.21) is true. Let ¢’ € Exc(t) be a closed point, let v : Z' — Z be the blow up of ¢’ and
let F be the exceptional divisor above ¢'.

o If ¢’ € F is a free point with F € I'; g, then by Proposition we have
VF <E, V§ (134)

Now we have two possibilities.
— If ¢ is also a free point with respect to I, then by Proposition and

[5.18 we also get

Vi <ix Vﬁ. (135)

Since F N Fy = &, Claim|5.21|is shown for I'tor g, .
— If ¢ is the satellite point F N Fy, then by induction hypothesis we have

VF <« VF, and therefore Fn F, # & and by Propositionm andm we
get

VF <« Vg <« VE, (136)

So Claimis shown for L'eor £, .
e If ¢ is a satellite point. Let F,F> € FnEq such that ¢ = F1 n F>. Suppose

without loss of generality that Vi, <g, Vp,, then by the induction hypothesis
we have Vi, <. Vr, and by Proposition and [5.18] we get

VE <Eq Vﬁ <Eq VFp, and Vi <x Vﬁ <« VF,- (137)

Since F N Fy = & we have proven Claim |5.21{for I'or f, -

O

PROOF OF PROPOSITION[5.12l. Let Y be a completion of X, and let g € Y be a
closed point at infinity. Let ©: Z — Y be the blow up of ¢g. Let E be the exceptional
divisor and let § € E be a closed point. Apply Proposition with Vi = Ty (q;my).
The map T, : Vz(§.E) — Vy (g¢:my) is an inclusion of trees. There exists local coordi-
nates z,w at ¢ and x, y at p such that m(z,w) = (z,zw) where z is a local equation of E.
We therefore get

v(z) = 1 & min(n.v(x),m.v(y)) = 1. (138)
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Hence, e = ®.. and . (ordg) = Vm,- Therefore we can glue these maps to obtain
an isomorphism of trees

T V4(E;E) — Y (g:my) (139)

We get the relation on the skewness functions by Proposition [5.28 which will be proven
in the next section. 0J

5.6. Properties of skewness

We have two valuative tree structures. We describe some properties of the skewness
function for these two structures and how they behave after blowing up. Fix a comple-
tion X, let p € X be a closed point at infinity and let £ be a prime divisor at infinity in X
such that p € E. In accordance with the notations of the previous section, set I' = Dy ,
andTg = Dy , U {E}.

DEFINITION 5.22. If F €T is a prime divisor above p, we define the generic mul-
tiplicity b(F) inductively as follows.

. b(E ) = 1 where E is the exceptional divisor above p.
e If g€ F is a free point with F € T, then b(F) = b(F) where F is the exceptional
divisor above q.
e If ¢ = F| n F, is a satellite point with F, F> € ', then b(ﬁ) =b(F;) +b(F).
If ve Vx(p;m,) is divisorial then we define b(v) := b(E) where E is the center of v in
some completion above X.

DEFINITION 5.23. If F € I'g, we define the relative generic multiplicity bg(F)

inductively as follows.

e bp(E) =1.

e If g € F is a free point with F € I'g, then bg (F) = bg(F).

e If g = F| n F, is a satellite point with F},F, € I'g, then bE(ﬁ) = bp(F)) +

be(F,).

If ve Vx(p;E;) is divisorial, then we set bg (V) := bg(F) where F is the center of v in
some completion above X.

Figure 2 sums up the definition of the generic multiplicity.
The term generic multiplicity is justified by the following proposition.

PROPOSITION 5.24 ([FJ04] Proposition 6.26). Let v € Vx(p;m),) be divisorial, let
E €T be the center of v over some completion ®: Y — X above X. Then,

T, ordg (my) = b(v) (140)
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FIGURE 2. Algorithm for computing the generic multiplicity

PROPOSITION 5.25 (Relative version of Proposition |5.24). If v e Vx(p;E) is divi-
sorial, let F' be the center of vV over some completion T : Y — X above X. Then,

7. ordp (2) = bg (F) (141)
where z € Oy is a local equation of E. This means that ordp (n*E) = bg(F).

From now on we write V; for either Vx(p;m,) and Vx(p;E) and we write 0., b,
for the skewness function and the generic multiplicity function associated to the tree
structure.

For a valuation v € V,, we define the infinitely near sequence of v as follows, set
Vo = V. the root of ¥V, and let p, be the sequence of centers above X associated to v. Let
E, be the exceptional divisor above p,. Set v, = Wordgn, if v is quasimonomial
(v,) is the infinitely near sequence of v, in particular it is finite if and only if v is
divisorial. If v is a curve valuation or infinitely singular we define the infinitely near
sequence of v as the subsequence of v, where cx, (V) is a free point (at infinity).

PROPOSITION 5.26. Let v € V, and let v, be its infinitely near sequence
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o the sequence V,, := bi ordg, converges weakly towards V.
o 0 (V) =lim, 0 (Vy).

PROOF. The infinitely near sequence is constructed in Section 6.2.2 of [FJ04] (this
sequence does not have a name in [FJ04]). The fact v,, converges weakly towards Vv is
shown there. To show the statement for skewness, we split the proof with respect to the
type of v.

If v is a curve valuation or an infinitely singular one, then v,, < v and v,, increases
towards v. Since o induces an order preserving bijection of the segment [v,,v]. We
have that o(v,) < o(Vv) and is increasing. So it converges towards a real number o €
[0l (Vi ), Ol (V)] If 0t < 0L (V), then v, < Vo <V where a, (Vo) = 0 and this is absurd.

If v is irrational, then there exists Ny such that for all n > Ny, p,, is a satellite point.
We can split the sequence (Vy),>n, into two subsequences (V;"), (v; ) such that v, is
increasing and converges towards v and (v, ) is decreasing and converges towards V.
We therefore get

a(vi) < o(v) <a(vy) (142)

and it is clear that limg o (V") = limg o (v ) = o(v). O]

We will say that two divisorial valuations v,V’ are adjacent if there exists a com-
pletion Y above X such that the centers of v and v’ are both prime divisors and they
intersect.

PROPOSITION 5.27 ([FJ04], Corollary 6.39). Let v,V' € V. Assume v < V' and
that they are adjacent, then
1

b (V)ba (V') (143)

o (V) — 0 (V) =

PROPOSITION 5.28 ([FJ04]], Theorem 6.51). Let :Y — X be a completion above
X and let q € E, be a free point of Y such that ©(E;) = p. By Proposition T
Yy (q:E4) — Vs is an inclusion of trees.

(1) The normalization of T ordg, (to get a valuation in Vi) is

1
Teordg =: Vg = —— T, ordg . (144)
E‘] E‘] b* (Eq) E‘]
(2)
1
YWe W (p:E), 0:(TeV)=0u(VE,)+ bi(E )2(xEq(v) (145)
# g

by (TeV) = by (Ey)bE, (V (146)
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PROOF. It suffices to show this formula for every divisorial valuation v € 7% (¢; E;)
and then use infinitely near sequences by Proposition We prove the result by
induction on the number of blow-ups above g. Namely we show the following

CLAIM 5.29. For every completiont: (Z,Exc(t)) — (Y, q) exceptional above g, for
every F eI,

b.(F) = bg,(F)b.(Ey) (147)

0 (VF) = 0 (VE,) + ag, (Vr) (148)

1
b (Eg)

Ift=id:Y —Y,then Iy g, = {E,}. Wehave by definition that b, (E,) = 1,0, (ordg, ) =
0. Therefore Equations and (148) holds.

Suppose the claim to be true for a completion T : (Z,Exc(t)) — (Y, q) exceptional
above g. Let T : Z' — Z be the blow up of a closed point ¢’ € Exc(t). Let E be the
exceptional divisor above ¢'.

If ¢’ € F is a free point with F € I'y g, then ¢’ is also a free point with respect to
I's ot because g € Y is a free point. Therefore by definition

bo(E) = bu(F), bk, (E) = bg,(F) (149)
So Equation ((147)) is true for E by induction. Now, by Propositionm
0 (Vz) = O (VE) + m, ag, (Vi) = ok, (VF) + m (150)
By induction, Equation is true for E.
If ¢ = F| 0 F; is a satellite point with F{,F5 € T’ T.E,» then
bu(E) = bu(F\) + bu(F2), bg,(E) = b, (Fy) + be, (F) (151)

So by induction Equation (147) holds for E. Suppose without loss of generality that
VF, <Vp, both in ¥, and % (¢;E,). This is possible by Proposition By Proposi-
tion [5.27]

1 1

0 (Vi) = 0 (VR ) + ————=, ag, (V) = og, (V)

. (152)
b+ (F1)b«(E)

_|_ -
be,(F1)be,(E)
Therefore, Equation (148)) holds for E. And the claim is shown by induction. 0J

PROPOSITION 5.30. Let v be a valuation over K[Xy| centered at infinity. Let X be
a completion of Xy and let E be a prime divisor of X at infinity such thatV € Vx (E;E)
for some valuation v equivalent to v. If og(V) < +00, then for every completion Y of
Xo if Ve Yy (F,F) for some prime divisor F at infinity in Y, then o (V) < +00,
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PROOF. If v is quasimonomial, this is immediate as for any prime divisor E at
infinity and any closed point p € E, we have that az(v) < +o0 for v = ordg or v quasi-
monomial centered at p. If v is a curve valuation, then ag(v) = +co for any prime
divisor E of any completion X such that cx(v) € E. So it remains to show the result for
v an infinitely singular valuation.

We show that if : Y — X is a completion above X, then 0z (V) < +00 < 0g(V) <
+00 where E’ is a prime divisor of Y at infinity such that some multiple of v belongs
to W (E',E’). Let p = cx(v) and ¢ = ¢y (V). Since V is infinitely singular, by Propo-
sition there exists a completion T : (Z,Exc(t)) — (Y,q) exceptional above g such
that ¢z(v) is a free point ¢’ lying over a unique prime divisor F at infinity. We apply
Proposition We have that

1
og (V) =og(vr) + bE(F)zaFM (153)
1
o (V) = o (VE) + Do (F)Zocp(v) (154)
Thus 0 (V) < +00 < ap(V) < +0 < 0g (V) < +00. O

PROPOSITION 5.31 ([FJ04] Proposition 6.35). Let ©: (Y,Exc(w)) — (X, p) be a
completion exceptional above p. Let ¢ = E N F € Exc(m) be a satellite point with E | F €
I's n. Define vg = #(E)n* ordg and Vg = b*;(F)n* ordr. Let z,w be local coordinates
at q associated to (E, F). Let vs; be the monomial valuation centered at q such that
V(z) = s and v(w) = t. Then, the map T, induces a homeomorphism from the set
{Vssls,t = 0,5b.(E) +1tb.(F) = 1} and [Vg,VFr| < Vs for the weak topology.

Furthermore, the skewness function is given by

Ol (T Vs ) = O(VE) + (155)

t

b(E)

PROOF. The first part of the proposition is exactly the content of [FJ04] Proposition
6.35. We compute the skewness. It suffices to show (I53) for the divisorial valuations
in [Vg,vr| and then use infinitely near sequences. We show (153 by induction on
the number of blowups. The result holds for Vg = vy, (g),0 and VF = Vg 1, (r). Let
Vs, Vsy., D€ adjacent divisorial valuations such that holds. Let E{,E» be the
associated prime divisor and let T: (Z,Exc(t) — (Y, E N F) be a completion exceptional
above E N F such that E|,E; intersect in Z and let ¢ = E; n E;. Let (x,y) be local
coordinates at g associated to (Ej,E>) and let E be the exceptional divisor above ¢ and
o be the blow up of g. We want to compute s,7 > 0 such that

(Tow)sordg = Vg, (156)
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To do so, we need to compute ord;((To®)*z) and ((tow)*ordzw) Let by = b, (E;)
and by = b, (E;). We have by the first part of the proposition that

1
VE, = (TEO’C)*EOI‘dEi = TC*<VS1.’,[.). (157)
i

Thus, ’C*bliordE[. = Vy, 4. In local coordinates (u,v), @ is given by
o(u,v) = (u,uv) (158)

where u = 0 is a local equation of E and v = 0 is a local equation of the strict transform
of E>. By (157), we get up to multiplication by invertible germs of functions that

(D* (T*Z) _ (D* <xslb1yszb2) _ Ms1b1+s2bzvs2b2. (159)
and
OJ* (T*W) _ ut1b1+l‘2b2vtzb2 (160)
Thus, s = s1b1 + s2b and t = t1b1 + t2b;. This implies that

n*v.s‘lb1+32b2 fnb1+pby :VE- (161)
h]+b2 ’ h1+b2

We compute the skewness, by Proposition we have that
_ D106 (VE) + 5204 (VE,)

(Vi) b+ by (162)
and by induction, we get
t 1
o (VN) _ bl(OC(VE) + T};)) +b2(0ﬂ(VE) + W%)) _ a(VE) N t1b1 + by (163)
VE by + by be(by +b)

and the result is shown by induction. 0



CHAPTER 6

Different topologies over the space of valuations

We define two topologies on the space of valuations centered at infinity. We saw in
the previous chapter that the space of valuations centered at infinity can be viewed as a
space with an atlas of open subsets given by valuation trees. The valuation tree comes
with a weak and a strong topology and they glue together to define the weak and the
strong topology on the whole space of valuations centered at infinity.

6.1. The weak topology

Let X be an affine surface and let 1V, be the space of valuations centered at infinity.
We define v, to be the space of valuations centered at infinity modulo equivalence and
N : Vo — Vo the quotient map. We define the weak topology over ¥, as follows. A
basis for the topology is given by

{veVy:t<v(P) <t} (164)
for some 7,/ € R, P € k[Xp]. A sequence v, of V., converges towards Vv if and only if
for every P € k[Xp], the sequence v, (P) converges towards vV(P). We define the weak
topology over V., to be the thinnest topology such that n : V., — ¥, is continuous
with respect to the weak topology.

PROPOSITION 6.1. Let X be a completion of Xy. Let v € V., and (V) a sequence
of elements of V. Suppose that v,, — Vv with respect to the weak topology. Then,

e I[fcx (V) = pisa closed point at infinity, then for all n large enough cx (v,) = p.
€

e Ifcx (V) = E is a prime divisor at infinity, then for all n large enough cx (v,)
E.

PROOF. Suppose first that cx(v) = p is a closed point at infinity. Let (x,y) be
local coordinates at p. By definition of the center we have v(x),v(y) > 0. We can find
PP, 01,07€ Ox(X()) such that x = P]/Q] , Y= P2/Q2 and such thatV(Q1 ),V(Qz) # 0.
Indeed by Lemma.11] Ox , is a subring of Ox (Xo)p, where py = {v = +0}. Now, we
have that v, (P;) — v(P;) and v, (Q;) — v(Q;) as n — o, therefore for all n large enough

Vu(x),v,(y) > 0. (165)
Thus, for all n large enough cx (v,) = p.
57
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If cx(v) = E, then v = Aordg for some A > 0. Let U be an open affine subset of
X such that U n E # ¢J. Let z be a local equation of E over U. Similarly, we can
write z = P/Q with v(Q) # oo. Since v,(P) — v(Q) and v,(Q) — v(Q), we get that
Vi (z) = v(z) > 0. Therefore for n large enough, v,,(z) > 0 and therefore cx (v,) € E. [

PROPOSITION 6.2. Let X be a completion and let p € X be a closed point at infinity.
Let v € Vx(p) and v, € Vx(p). Then, v, — v weakly if and only if for every ¢ €

Ox p; V(@) — V(9).

PROOF. Indeed, every ¢ € Ox , can be written as @ = 5 with v(Q) # oo. This

shows one implication. Conversely, every P € k[Xp] is of the form % where @,y € Ox .
Furthermore, if p € E is a free point then y = u“ where a € Z~( and u is a local equation
of E. If p = E N F is a satellite point, then y = u“* where uv is a local equation
of E U F. Now since v, and v are valuations over k[Xp|, they cannot be the curve
valuations associated to a prime divisor at infinity. Therefore, for all n, v, (y) # oo and
V() # . This shows the other implication. 0J

PROPOSITION 6.3. Let X be a completion of Xy and let p € X be a closed point. Let
E be a prime divisor at infinity in X such that p € X. Letm, : Vx(p) — Vx(p;E) be the

natural map defined by M, (V) = \% where z € Ox p, is a local equation of E. Let (V)

be a sequence of Vx(p) and letv e Vx(p). If v, — V for the weak topology of Vi, then
Np(Va) = Np(V) for the weak topology of Vx (p;E).

PROOF. If v,, — Vv for the weak topology, then, v, (z) — V(z) by Proposition
Therefore N, (v,) — M, (V), again by Proposition This shows the first implication.
0

THEOREM 6.4. Let X be a completion of Xy. The weak topology on V., is the
topology induced by the open subsets Vx (E;E) for all prime divisor E at infinity.

PROOF. Let X be a completion at infinity and let £ be a prime divisor at infinity.
Let Vx(E) be the set of valuations v over K[Xp]| such that cx(v) € E (this includes
cx(v) =E,i.e v =ordg). We have that

Yk (E) = {ordg} U | ] % (p). (166)
PEE
Let Uy,---,U, be a finite open affine cover of E such that for every i = 1,--- ,r there

exists z; € Ox (U;) a local equation of E. Then, every z; is of the form z; = P;/Q; with
P;, Qi € k[Xp]. Then,

V% (E) = U (V(Q)) < +20,V(P) —V(Q;) > 0} (167)
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and, it follows that 7k (E) is an open subset of 7. Set ‘I//:o(p) :=n(%x(p)). Define a
map G, : Vo (p) = Vx (p;E)\{orde} = Vx(p) by
Sp([V]) =mp(V) (168)

where 1, is the map from Propositionand [V] is the class of v in V. By Proposition

Gy is a continuous section of M4y () : Vx(p) — Vo(p). Still by Proposition
the map 6, : [ordg] U ‘1//;(1)) — Vx(p;E) extended by 6, ([ordg]) = ordg is also a
continuous section of 1 : {Aordg : A > 0} U Vx(p) — {[ordg]} U ’I//;(p) These maps
6, glue together to give a continuous section Of : ’1//O\O(E ) — W (E;E) < Vx(E) of
n: 9K (E) = Vo(E).

To finish the proof we need to understand the behaviour of 6z, 6g on

Voo (E) 0 Vi (F) = Vo (p) (169)
for p = E n F where E,F are two prime divisors at infinity. By Proposition we
have that the map Ny roN, g~ ! : Vx(p;E)\{ordg} — Vx(p;F)\{ordr} is a homeo-
morphism and we have

— — _l —
(©OF) 77y = Wor oNo )0 (OE) 7 (170

OJ

6.2. The strong topology

Let R = K[[x,y]] and let m = (x,y). Let ¥, be the valuative tree with either the
normalization by m or with respect to a curve z. We will write o, for the skewness
function over ;. We consider a stronger topology on ¥;. Let 9" be the subset of
quasimonomial valuations. We define the following distance

d(vi,v2) = a(vi) —o(vi AVa) +o(Va) —o(Vi AV2). (171)
The topology induced by this distance is called the strong topology.

PROPOSITION 6.5 ([FJO04] Proposition 5.12). We have the following

o The strong topology is stronger than the weak topology.
e The closure of V"™ with respect to the strong topology is the subspace of V,
consisting of valuations of finite skewness.

PROPOSITION 6.6. Let R =K[[z,w]] and let Vi, V., V,, be the three valuation trees.
Let V), V!, V,, be the three subtrees of valuations of finite skewness. Then, the maps

N, : VY — Y\ {ord,}, NyoN, ': 9 - (172)

are homeomorphisms with respect to the strong topology.
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This follows from Proposition[5.9]
Let V), be the subset of V., of valuations of finite skewness, this set is well defined
thanks to Proposition We define the strong topology on V), as follows. First

—/
define the strong topology on V., := (7)) using the notations from the proof of

—~

/ —~
TheoremM Consider the map 6 : Vo, N Vo (E) — Vx(E;E)'. We define the strong
—~ —~
topology on V., n Vi (E) as the coarsest topology such that 6 is continuous for the

-~/
strong topology on ¥ (E;E)’. This defines a topology on ¥, thanks to Proposition
6.6

COROLLARY 6.7. Let v be a valuation centered at infinity, let X be a completion
of Xo and let (vy,) be the infinitely near sequence of v from Proposition Ifve vV,
then M(v,,) converges towards N(V) with respect to the strong topology.

PROOF. Let p = cx(v) and we can suppose that v,V € Vx(p;E) for some prime
divisor E at infinity with p € E. Then, we have v, <V for all n and a(v,) — (V).
Therefore

d(Vp,V) = a(V) —o(v,) —— 0 (173)

n—m
0



CHAPTER 7

Valuations as Linear forms

As done in [JM12]], we can view valuations on X as
e linear forms with values in R over the space of integral Cartier Divisors over
X supported at infinity
e as real-valued functions over the set of coherent fractional ideal sheaves of X
co-supported at infinity.
We recall how to do so. For a divisor D, we denote by H’(X, Ox (D)) the set of global
sections of the line bundle Ox (D) and

[(X,0x(D)) = {hek(X)" : D+div(h) > 0}. (174)

7.1. Valuations as linear forms over Div (X)

LEMMA 7.1. Let D € Div(X) such that the negative part (if any) of D is supported
in 0xXo. For any point p € X, there exists an open neighbourhood U of p such that a
local equation of D on U is of the form ¢ = P -y with P € Ox(Xp) and y € Ox(U).

PROOF. Let ¢ € k(U')* = k(X)* be a local equation of D where U’ is an open
subset of X containing p.

Let H be an ample effective divisor such that Supp(H) = dxXp. There exists an
integer n > 1 such that D+ nH > 0. Pick P general in I'(X, Ox(nH)) < Ox(Xp), then
divP = Zp —nH with Zp > 0 and p ¢ SuppZp because we chose P general and |nH| is
basepoint free, in particular P restricts to a regular function over Xp. Set y := @/P, one
has

div (W|U) :D|U+”H|U_ZP\U- (175)
Set U = U"\ Supp Zp, then div(y)y» = 0, i.e y € Ox(U) and we are done. O

COROLLARY 7.2. If D is a divisor such that the negative part (if any) of D is at
infinity and v is a valuation on K[Xo|, then for all small enough affine open subsets
U c X containing cx(V),

[(U, Ox(~D)) = Ox (Xo)p, (176)
and Vx can be extended to T'(U, Ox(—D)).
61
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PROOF. If U is small enough, then I'(U, Ox(—D)) is the Ox (U)-module generated
by @ where @ is a local equation of D. Now, by Lemma ¢ is of the form ¢ = P -y
where P € Ox(Xo) and y € Ox (U). By definition we have Ox (Xo) = Ox(Xo)p,, and for
all affine open neighbourhood U of cx (), Ox(U) < Ox(Xo)y,, by the proof of Lemma
4.11 0J

Let D be divisor of X supported at infinity and let ¢ € k(X) be a local equation of
D at cx(v). Then we set
Lyx(D) := vx(9). (177)
This is well defined because by Corollary[7.2]because by definition there exists an open
affine neighbourhood U of cx(v) such that ¢ € I'(U, Ox(—D)). This does not depend
on the choice of the local equation because if y is another local equation of D, then %
is a regular invertible function near cx (v) and vx(¢/y) = 0.

LEMMA 7.3. Let v be a valuation over K[Xo| and let X be a completion of Xy, then
forall D € Divy, (X)R, Ly x(D) < 0.

PROOF. Itsuffices to show Lemma(7.3|for D an integral divisor supported at infinity
in X. We can apply corollary to D and —D, therefore if @ is a local equation of D,
we have that both 1% (@) and 1% (1/¢) belong to Ay, and this means that vy (@) < co. [

REMARK 7.4. We can in fact define Ly x at any divisor D on X such that the neg-
ative part of D is supported at infinity but it could happen that Ly x (D) is infinite. For
example, let Xy = A%, X = P2, Let v be the curve valuation centered at [1 : 0 : 0] asso-
ciated to the curve y = 0, then

Lyp2({Y =0} —{Z=0}) =v(Y/Z) = +. (178)

EXAMPLE 7.5. If X is a completion of Xy, let E be a prime divisor at infinity. Let

D € Divy, (X). Recall that we have defined in Section [3.1] that ordg (D) is the weight of
D along E, then

Lora, (D) = ordg (D). (179)

Indeed, at the generic point of E, a local equation of D is z° (D)

equation of E and @ is regular not divisible by z.

¢ where z is a local

PROPOSITION 7.6. If'V is a valuation over K[Xy|, and X is a completion of Xy then

(1) Ly x(Opjy,,(x)) = 0.

(2) Forany D,D' € Divyy(X),Ly x(D+D') = Ly x(D)+ Ly x(D'), and L, x(mD) =
mL, x (D) for allmeZ.

(3) If D =0, then Ly x(D) = 0 and Ly x (D) > 0 < cx(v) € SuppD. In particular,
if v is not centered at infinity then Ly = 0.

(4) If P € Ox(Xo), then vx (P) = Ly x(div P).
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(5) If Y is another completion of Xo above X, and ™ : Y — X is the morphism of
completions over Xy, then Ly x (D) = Ly y (T*D).

Thus, we can extend Ly x to Divy, (X )R by linearity:
Lyx : Divoo(X)r — R. (180)

PROOF. The first assertion is trivial as 1 is a local equation of the trivial divisor.
The second assertion follows from the fact that if ¢, are local equations of D and D’
respectively, then @V is a local equation of D + D" and 1/@ is a local equation of —D.
For the third one, suppose D is an integral divisor. If D is effective and f is a local
equation at cx (Vv), then f is regular at p and by definition of the center v(f) > 0, now
if cx(v) belongs to SuppD, then f vanishes at cx(Vv); thus, v(f) > 0. If on the other
hand cx (V) ¢ Supp D, then f is invertible at the center of vy and vx(f) = 0. The fourth
assertion follows from f being a local equation of div(f) and the fact that f has no
pole over Xy. Finally, if f € k(X) is a local equation of D at cx(Vv), then * f is a local
equation of T*D at cy (V) and by Remark[4.3] one has vx(f) = vy (T*f). O

PROPOSITION 7.7. Let f : Xo — Xo be a dominant endomorphism of Xy. Let Y, X
be two completions of X such that the lift F : Y — X of f is regular. Then,

F(cy(v)) = cx(fsv) and YD € Dives (X ), Ly, x (D) = L,y (F*D) (181)

PROOF. Let p = cy(v) and ¢ = cx(f«V). Then, F induces a local ring homomor-

phism
F*:0xq— Orp

Now, for any @ € Oy 4, there exists P, Q € k[Xp| such that ¢ = 5. Therefore,
frP
Y
and therefore f,v(@) = V(F*@) > 0. Therefore, g = cx (f«v).

Now, to show the second result. If g is a local equation of D at the center of vy,
then F*g is a local equation of F*D at the center of vy. Since T.Vy = Vy, one has

F*p =

vy (F*g) =vx((Fom ")*g) = vx(f*g) = (fuV)x(g) (182)
and this shows the result. O

7.2. Valuations as real-valued functions over the set of fractional ideals
co-supported at infinity in X

An ideal of X is a sheaf of ideals of Ox and a fractional ideal is a coherent sub-Oyx-
module of the constant sheaf k(X). Let a be a fractional ideal of X, we say that a is
co-supported at infinity if ax, = O,. For example, for any divisor D € Div(X), Ox (D)
is a fractional ideal of X and if D € Divy,(X) then Ox (D) is co-supported at infinity.
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PROPOSITION 7.8. Let a be a fractional ideal of X co-supported at infinity and let

p € X, for any finite system (f1,--- , fy) of local generators of a at p there exists an open
neighbourhood U of p such that f;y is of the form
fi = Figi (183)

with F; € Ox(Xp) and g; € Ox(U).

PROOF. Pick U’ an open neighbourhood containing p. Since f; is regular over Xo,
we have div f; = D™ — D — D, where D*,D| and D, are effective divisors such that
SuppD; < dxXo and D5 o = 0. By Lemma there exists an open neighbourhood
Ui < U’ of p such that (D* — D7)y, = divFig; with F; € Ox(Xo) and g} € Ox(U;).
Therefore, there exists g € Ox (U;) such that f; = Figlg?. SetU = nU; and g; = glg’.

OJ

COROLLARY 7.9. Let a be a fractional ideal co-supported at infinity and let v
be a valuation over K[Xy|, then for all affine open neighbourhood of cx(v),['(U,a)
Ox (X0)py, and Vx is defined over I'(U, a).

If v is a valuation over k[Xp|, then we define Ly x (a) as

Lyx(a):= m}nvx(f). (184)

where the f runs over the germs of sections of a at c¢x(v). This makes sense by Corol-
lary
PROPOSITION 7.10. IfVv is a valuation over K[Xo|, then

(1) Ly x(Ox) = 0.
(2) If a,b are two fractional ideals of X co-supported at infinity, then

Lv7x(a- b) = wa(a) -i-Lvyx(b) and Lv7x(a+ b) = min(LV’x(u),Lv’x(b)) (185)
(3) If f1,-- -, fr € K(X) is a set of local generators of a at cx (V), then

Lyx(a) = min(vx (f1), -, vx(fr))- (186)

(4) If D € Div(X) is a divisor, then Ly x (D) = Ly x(Ox (—D)).
(5) If Y is another completion of Xy above X, and ® : Y — X is the morphism
of completions over Xy, then a := n*a - Oy is a fractional ideal over Y and

Lyx(a) = Lyy(a).

PROOF. The first assertion is trivial since 1 is a local generator of the trivial sheaf.
For Assertion (2), notice that if (fi,...,f,) are local generators of a at cx(v) and
(81,---,8s) local generators of b at cx(Vv) then (fig;); ; is a set of local generators of
a-batcx(v)and (f1,...,fr &1,---,8s) is a set of local generators of a+ b at cx(Vv), so
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Assertion (2) follows from Assertion (3). To show Assertion (3), let f1,-- -, f, be local
generators of a at cx (V). This implies that a., (v) = f1 Ocy(v) + f2Ocy(v) + -+ fr Ocy (v)-
Since v is nonnegative on O, (v) by definition of the center, the assertion follows. For
assertion 5, if f1,---, f, are local generators of a, then @* f,--- , " f, are local genera-
tors of d at cy(v) and the result follows since T.Vy = vyx. Assertion (4) follows from
the fact Ox(—D) is locally generated by an equation of D and Assertion (5) follows
from the fact that if (f1,---, f,) are local generators of a at cx(v) then (7*fi,--- , " )
are local generators of d at cy (V). O

PROPOSITION 7.11. If v is a valuation over k[Xy| and a is a fractional ideal co-
supported at infinity, then Ly x (a) < 0.

PROOF. Take fi,---, f, local generators of a at p the center of v on X. The proof
of Lemma shows that there exists an affine open neighbourhood U of p such that
fiju = higi with h; € K[Xo] and g; € Ox(U) and such that f;~! can be put into the same
form. This shows that for all i, v(f;) < 0. O

REMARK 7.12. The same definition would allow one to define Ly x(a) for any
fractional ideal such that a is a sheaf of ideals of Xy but we have to allow infinite
values. In particular, Ly x (a) is defined for any sheaf of ideals over X.

7.3. Valuations centered at infinity

Recall that a valuation v over K[Xy]| is centered at infinity, if v does not admit a
center on Xp. We denote by ¥, the set of valuations over k[Xp] centered at infinity.

LEMMA 7.13. Let Vv be valuation over K|Xo|. The following assertions are equiva-
lent.

(1) Vv is centered at infinity.

(2) There exists P € K[Xo| such that v(P) < 0.

(3) For any completion X of Xo and any effective divisor H in X such that Supp H =
OxXo, one has Ly x (H) > 0.

(4) There exists a completion X of Xy and an effective divisor H € X with SuppH =
Ox Xo such that LV,X (H) > 0.

PROOF. We will show the following implications 2 = 1 = 3 = 4. Then, we will
show that 1 = 2 and finally that 4 = 2.

2 = 1 = 3 = 4. If there exists a regular function P over Xy such that v(P) < 0 then
the center of v cannot be a point of Xy because P is regular at every point of Xy. This
shows 2 = 1, then if v is centered at infinity, take a completion X of Xy, let E be a prime
divisor at infinity in X such that cx(v) € E. Then, since H is effective and E € SuppH,
Ly x(H) > V(E) > 0 by Proposition[7.6](1). This shows 1 = 3 and 3 = 4 is clear.
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1 = 2. Conversely, suppose V is centered at infinity and fix a closed embedding
Xo — AV for some integer N. Let X be the Zariski closure of X in PV with homo-
geneous coordinates xg,--- ,xy such that {xo = 0} is the hyperplane at infinity. The
surface X might not be smooth so it is not necessarily a completion of Xy but it still is
proper and the center p of v on X belongs to {xo = 0} n X. Let 1 <i < N be an integer
such that p belongs to the open subset {x; # 0}. Then, the rational function P := f—(’) isa
regular function on Xy and 1/P vanishes at p. Therefore, v(P) < 0.

4 = 1. Suppose that v is not centered at infinity, i.e the center of v belongs to Xjp.
Then, for any completion X and for any divisor D € Divy,(X), one has Ly x (D) = 0 by
Proposition [7.6/(1) since cx (V) ¢ SuppD. O

This lemma shows that being centered at infinity is a property that can be tested on
only one completion Xj.

COROLLARY 7.14. The space V., is an open subset of V.

PROOF. We have by Lemma that
Vo= | {v(P)<0}. (187)
]

Pek[Xo

Therefore, it is a union of open subsets.
O

7.3.1. Topologies over the set of valuations centered at infinity. Let X be a com-
pletion of X. Call 6 the coarsest topology such that the evaluation maps @7 : v e 1V, —
v(f) are continuous for all f € k[Xy] and 7 the coarsest topology such that the evalua-
tion maps Y, : vV € V,, — Ly(a) are continuous for all fractional ideals a of X such that
a)x, 18 a sheaf of ideals over Xp. Recall that we allow in both cases infinite values.

PROPOSITION 7.15. [JM12]] These two topologies on V are the same.

PROOF. First if f € k[Xp], then v(f) = Ly((f)) where (f) is the fractional ideal
generated by f. So ¢ is finer than T. For the other way, Let H be an ample divisor
supported at infinity and let a be a fractional ideal co-supported at infinity. There exists
an integer n > 0 such that a® Ox(nH) and Ox(nH) are generated by global sections
(fi, -+, fr) and (g1, -+ ,gs) respectively. Notice that for all i, j, the rational functions
fi,g;j belong to Ox(Xp). Now, we have that Ly(a) = Ly(a ® Ox(nH) ® Ox(—nH)),

therefore
Ly(a) = min (V (i>) = min (V(f;) —(g;))

ij gj ij
Therefore, T is finer than ¢ and the result is shown.
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7.3.2. Valuations centered at infinity as linear forms over Cartier,,(Xp).

DEFINITION 7.16. Let v be a valuation over k[Xp]. Let D € Cartiery, (Xp) and X be
a completion of Xy such that D is defined by Dx. We define

Ly(D) := Ly x(Dx). (133)

This does not depend on the choice X and defines a linear map on Cartier,,(Xo) by
Proposition [7.6and Ly (D) < +oo by Lemma(7.3] Notice that Ly = 0 if and only if v is
not centered at infinity.

PROPOSITION 7.17. If v is a valuation on K[Xy| centered at infinity then Ly is a

linear form Cartier,, (Xo) — R and satisfies

(1) If D = 0, then Ly(D) = 0.

(2) For D,D' € Cartiery(Xo),Ly(D A D") = min(Ly(D),Ly(D")).
We will say that an element of hom(Cartier,,(Xo),R) that satisfies these 2 properties
satisfies property (+).

PROOF. Assertion 1 follows from Proposition (3). We show the second asser-
tion. Take D, D’ € Cartier,,(Xo) and X a completion of Xy such that D, D’ are defined
by their incarnation Dx,D}. By Claim (that we prove in the next section), we
know that there exists a completion Y along with a morphism of completions t: Y — X
such that D A D' is the Cartier class determined by some divisor Dy in Y such that

T*(Ox(—Dx) + Ox(—DY)) - Oy = Oy(—Dy). Using Proposition|7.10} it follows that

= min(Ly x (Ox (—Dx)),Lvx(Ox(=Dx))) [7.10(2)
= min(Ly(D),Ly(D")) [7.10(4)
O

PROPOSITION 7.18. Let v be a valuation over K[Xo| and f : Xo — Xo a dominant
endomorphism, then for all D € Cartiery (X)),

L¢v(D) = Ly(f*D) = (f«Lv)(D) (189)

PROOF. Let X be a completion of Xy where D is defined, then f induces a dominant
rational map f: X — X. Let ®: Y — X be a projective birational morphism such that
the lift F' : Y — X is regular. Since f is an endomorphism of X we can suppose that 7t is
the identity over Xo, hence Y is a completion of Xy and 7 is a morphism of completions.
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Now, if @ is a local equation of D near the center of vy, then F*@ is a local equation of
F*D near the center of vy. Since T..Vy = Vy, one has

vy (F*g) =vx((Fom™")*g) = vx(f*g) = (fiV)x(g) (190)
O

We equip hom(Cartier, (Xg),R) with the weak-+ topology, that is the coarsest
topology such that the map L € hom(Cartier,(Xg),R) — L(D) is continuous for all
D € Cartier, (Xo). We extend Ly to Cartiery, (Xo)g by linearity.

PROPOSITION 7.19. The map v € Vi, — Ly € hom(Cartier,,(Xo),R) is a continu-
ous embedding.

PROOF. For the injectivity, let v,w € V., such that v # w. First, if w = rv with
t > 0, then since L, # 0, we have L, # L,,. Otherwise, there exists a completion X such
that cx(v) # cx(w). If the centers are both prime divisors at infinity then it is clear
that Ly # L,,. If cx(Vv) is a point, let E be the exceptional divisor above it. Then, by
Proposition Ly(E) > 0, but L, (E) = 0.

By definition, to show continuity we have to show that for all D € Cartier,,(Xp), the
map vV € Vs, — Ly(D) is continuous. Let X be a completion where D is defined, then
by Proposition [7.6| Ly(D) = Ly(Ox(—D)) and by Proposition[7.15|the map v € ¥, —
Ly(Ox(—D)) is continuous. O

PROPOSITION 7.20. Let X be a completion of Xo and p € X a closed point at infinity.
Letv e Vx(p;m,). IfE is a prime divisor of X at infinity such that p € E, then

1 < Ly(E) < a(v) (191)

PROOF. Let z€ Ox , be alocal equation of E, z is irreducible and we have Ly (E) =

V(z). We have that z € m,, therefore v(z) > v(m,) = 1. This shows the first inequality.

For the second one, let v, be the curve valuation associated to z. It does not define a
valuation over k[Xp| but it defines a valuation over O, by Proposition we get

V(z) = a(v, A V) < a(v) (192)
0J

7.3.3. Special look at divisorial valuations centered at infinity.

LEMMA 7.21. Let X be a completion of X and let E be a prime divisor at infinity.
One has Ly, (E) = 1 and for any prime divisor F # E in X, Lo, (F) = 0.

Furthermore, if T : Y — X is some blow-up of X, and & (E) the strict transform of
E by, then

T ordy ) = ordg . (193)
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PROOF. The first assertion follows from Proposition (3). We show the second
assertion. It suffices to show it when 7 is the blow-up of one point of X. Let D =
aE + Y p_pordp(D)F, then w*D is of the form

n*D = ar/(E)+bE+ ) ap(D)W(F) (194)
F+#E

where E is the exceptional divisor of 7. Therefore ordy gy (T*(D)) = a=ordg(D). O

PROPOSITION 7.22. Let Vv be a divisorial valuation, then L, can be extended natu-
rally to Weily,(Xo) in a compatible way with the definition of Ly over Cartiery, (Xp).

PROOF. Take W € Weily,(Xp). Since v is divisorial, there exists a completion X of
Xo that contains a prime divisor E at infinity such that (1x).v = Aordg. We set

Ly(W) := Ly x(Wx) (195)

This does not depend on the completion X. To show this, it suffices to show
that we get the same result if we blow up one point of X. So, let t:Y — X be the
blow up of one point of Xy at infinity. Then, by Lemma [7.21} vy = Aordy(z) and
ordy ) (Wy) = ordg (T Wy ) = ordg (Wy). If D € Cartiers (Xo), then this is compatible
with the previous definition of Ly(D) because if D is defined over X, there exists a
completion T : ¥ — X such that the center of v on Y is a prime divisor at infinity and

by Proposition[7.6](5) Ly y (n*D) = Ly x (D). O

REMARK 7.23. Recall that we have defined in the set Dy (Xp) as the set of
equivalence classes of prime divisors at infinity modulo the following equivalence re-
lations : (X1,E;) ~ (X2,E>) if t =101, : X| --» X, satisfies n(E1) = E>. Lemma
[7.21] shows that it makes sense to define ordg for E € D, (Xo) and that ordg is defined
over Weily (Xo).

PROPOSITION 7.24. Let W,W' € Weily,(Xy), then W' =W AW’ if and only if for
any divisorial valuation E € Dy, (Xy),

ordg (W) = min(ordg (W), ordg (W')). (196)
PROOF. This is immediate as for any completion X,

Wy = > ordg(W)-E. (197)
EecdxXy

O

‘We can now show that the minimum of two Cartier divisors is still a Cartier divisor.
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PROPOSITION 7.25. Let X be a completion of Xy, let D,D' € Divy,(X) be two ef-
fective divisor and let a be the sheaf of ideals a = Ox(—D) + Ox(—D'"). Then, D A D’
is the Cartier divisor defined by m*a where T is the blow up of a.

Notice that a is not locally principle only at satellite points, so T is a sequence of
blow-ups of satellite points. This shows the Claim [3.8]

PROOF OF CLAIM[3.8] Define the sheaf of ideals a = Ox(—D) + Ox(—D') and
let T:Y — X be the blow up of a. There exists a Cartier divisor Dy on Y such
that b = Oy(—Dy) = m*a- Oy. We show that Dy = D A D’ in Cartier,,(Xp). By
Proposition we only need to show that for any divisorial valuation v, Ly y (Dy) =
min(Ly x (D), Ly x (D')), but by Proposition[7.10| we have the following equalities

Lyy(Dy) = Lyy(b) = Ly x(a) = min(Ly x (D), Ly x(D')) (198)
O

7.4. Local divisor associated to a valuation

Let X be a completion of X and let p € X be a closed point at infinity. Let v be a
valuation centered at p. We know by Section that v induces a linear form L, on
Cartiere, (Xo)g. By restriction, it induces a linear form Ly x , on Cartier(X, p)r. Now
by Proposition [3.19] the pairing

Weil(X, p)r x Cartier(X, p)r — R (199)
induced by the intersection product is perfect. Thus, there is a unique Zy x , € Weil(X, p)r

such that
VD e Cartier(X,p)r, Zvx,p-D=Lyx (D) (200)

EXAMPLE 7.26. If E is the exceptional divisor above p, then Zmdi’X’ p= —E.

PROPOSITION 7.27. For any valuation vV € Vx(p), we have Zy x , € Cartier(X, p)
if and only if v is divisorial. Furthermore, Zyx , is defined over any completion
such that the center of v is a prime divisor at infinity. Furthermore, for any E €
D(X,p): Zordy x,p € Cartier(X, p)q.

PROOF. Let E € Dy , for every W € Weil(X, p),ordg (W) = ordg (Wy) where Y is
a completion exceptional above p by Proposition Let E,E|,--- ,E, be the com-
ponent of dy Xy that are exceptional above p. The intersection form is non degenerate
on

V:=QE® (@QE,-) . (201)

Let L be the restriction of ordg to V, by duality there exists a unique Z € V such that for
alWeV,W.-Z=L(W) = ordg(W). This implies that Z = Zyq, x ,. Conversely, if v
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is a valuation such that Zy x , € Cartier(X, p) then let Y be a completion where Zyxpis
defined. If cy (V) is a point at infinity, then let E be the exceptional divisor above cy (V).
Then, we must have Zy x , - E > 0 but it is equal to 0, this is a contradiction. Il

PROPOSITION 7.28. The embedding Vx(p;m,) — Weil(X, p)r is continuous with
respect to the weak topology.

PROOF. This is a direct consequence of Proposition[7.19]and Proposition[6.2]  [J

Thus, For all completion Tt : Y — X, for all E € I'y, we can consider Zoq, x p as an
element of Divy, (Y)R.

PROPOSITION 7.29. Letm: (Y,Exc(n)) — (X, p) be a completion exceptional above
p. Let v be a valuation such that cx (V) = p. Suppose that cy (V) is a point at infinity.
Consider Vx(p;m,) with its generic multiplicity function b.

(1) If cy(v) € E is a free point with E € I'y, then the incarnation of Zy x , in'Y is

(ZV,X7p)Y = LV (E)ZordE,X,p (202)
Moreover if v € Vx(p;m,), then Ly(E) = ﬁ.
(2) If cy (v) = E N F is a satellite point with E | F € I, then
(ZV7X,p)Y = LV(E)ZordE,v,p + LV(F)Zordp,X,p (203)

Moreover if v e Vx(p;my,), then Ly(E)b(E) + Ly(F)b(F) = 1.
Furthermore, if ¢ # cy(V) and ©: Z — Y is the blow up of q then

(Zvxp)z =7 (Zvxp)y (204)

PROOF. For any prime divisor E at infinity of Y, Ly(E) > 0 < cy(v) € E by item
(3) ofProposition Therefore, if cy(v) € E is a free point with E € Ty, then for
FeTln,Ly(F)#0< F = E, hence

(Lv) | Dive (¥)r = (v (E)) (Lordg ) | Dives (¥ ) (205)

by definition (see Equation (I79)). This shows the result if ¢y (V) is a free point. Now,
if cy(v) = E N F is a satellite point with E, F € I'y, then for all prime divisors F’ of ¥
at infinity Ly (F’) > 0 < F’' = E or F' = F. We therefore have

(Lv) | Dives (¥)r = (Lv - E)(Lordg ) | Dives (¥)g + (Lv - F) (Lordp ) | Divey (¥ )g - (206)

This shows the result in the satellite case. N
If ve Vx(p;m,). Let T: Z — X be the blow up of p. We know then that Ly(E) = 1
where E is the exceptional divisor above p by Proposition Let b be the generic
multiplicity function of the tree ‘VZ(E E ). We have for every prime divisor F excep-

~

tional above p that ordp(E) = bz(F') again by Proposition |5.12} In the free point case,
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we get 1 = Ly(E) = Ly(bg(E)E) by Proposition 7.6 (3) and (5). In the satellite point
case, we get

~

1 = Ly(E) = Ly(b(E)E + bx(F)F) (207)

again by Proposition[7.6|(3) and (5).
For the last assertion, if F is the exceptional divisor above g, we have

(ZV,X,p)Z =1* (Zv.,X,p)Y — (ZV,X,p ﬁ)ﬁ (208)

Since ¢z (V) ¢ F, we have Lv(ﬁ) = 0 by Proposition(7.6|(3). O

From now on let b be the generic multiplicity function of ¥k (p;m,) and for any
prime divisor E € Dy , =1, set Vg = @ordg.

PROPOSITION 7.30. Let: (Y,Exc(n)) — (X, p) be a completion exceptional above
p. Let g € Exc(m) be a closed point. Let t:Z — Y be the blow up of q and let E be the
exceptional divisor above gq.

(1) If g € E is a free point with E € I, then
I ~ .
Zy xp =" (Zopx.p) — @E € Divs(Z)q (209)

(2) If g = E N F is a satellite point with E | F € Iy, then
b(E) b(F)

Zyxp= ) gtz _
VeXor = BE) +b(F) " VX T BE) 1 b(F)

% I ~ .
T ZVF,XW—@EEDNOO(Z)Q (210)

PROOF. If g € E is a free point with E € I'y, we have by Proposition that the
incarnation of ZordE7X7 pinYis

T*<ZordE7X7p) = Zordp X ,p (211)
because ordz(E) = 1. Therefore

Zordy x,pV Zordg X p + AE (212)

~

with A € R. Since Zordz x,pE =1, we get A = —1. Now, by the definition of the generic
multiplicity, we have b(E) = b(E). Therefore,

1 ~
ZVE-,X7P == T*ZVE,X,[? - _,\,E (213)

b(E)

If g = E A F is a satellite point with E, F € I'y, then b(E) = b(E) + b(F ). Note that
ord(E) = ordx(F) = 1. We have by Proposition 7.29

T>|<ZordE,X,p = ZordE,X,p + Zordp,X,p (214)
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and since ord (E) =1, we get
ZordE,X.,p = T*ZordE,X,p + T*Zordp,X,p - E (215)
Therefore,

b(E)

* b<F) * 1 ~
ZVE,X,p = WT Zovde Xpt+ 77 7o ¥ Zodr Xp— —=—FE. (216)

b(E)+b(F) b(E))

THEOREM 7.31. Let v,V' € Vx(p;m,), then

ZyXp Zyx,p=—0VAV) (217)
PROOF. We show by induction the

CLAIM 7.32. For every completion w : (Y,Exc(m)) — (X, p) exceptional above p,
forall E €'y, for all v e Vx(p;m,),

Zvpxp-Zvxp=—0VEAV) (218)

First if ®: Y — X is the blow up of p with exceptional divisor E. Recall that
T, ordy = Vi, then ZordE,X,p = —F and

~ ~

ZordE,X,p 'ZV,X,p = ZV,X,p : (_E> = ‘Lv(_E)- (219)

By definition, v(m,) = 1 and m*m, = Oy (—E). Therefore, by Proposition we get
ZordE,X,p 'ZV,X,p =—-1= —(X(Vmp /\V).

Suppose that w: (Y, Exc(n)) — (X, p) is a completion exceptional above p for which
the claim holds. Let g € Y be a closed point at infinity, let T: Z — Y be the blow up of ¢
and let E be the exceptional divisor. Let v e Py ( p;mp), we show that Zy x , 'ZvE,X, p=
—0(V A Vg). We divide the proof in 2 different cases.

Case 1: g € E is a free point with E € I'z. In that case v > vg by Proposition

5.17. We also have b(E) = b(E) and Zv.xp=2ZvpXp— —L_E by Proposition [7.30

b(E)
If cy (V) # (g) (this includes the case where cy (V) is a prime divisor at infinity. Then,
VAVg =V AVg. We have by Proposition(7.30|that Zy . x,p = T*(Zv; x p) — ﬁE. Since

ZV7X7[,-E =0, we get
Zyx.p -ng,x »=vxp Lvg X.p (220)

This is equal to —a/(v A Vg) by induction and therefore it is equal to —(V A V).
If cy (V) = g, then cz(v) € E. We either have Vi SVOrVE <VAVg <V
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(1) If v= v, then v A Vi = v and cz(V) is either E or a free point on E. In both
cases by Proposition the incarnation of Zy x j, in Z is Zy . x, . Therefore

1
Zvxp gy, = (Zv; x.p)° = (Zvpx p)’ — bE) (221)

|
b(E)?

By induction (Zy, x »)* = —0/(vg) and (V) = a(Vg) +
so the claim is shown in that case.

(2) If ve <V AVE < V. Then, v A vg is a monomial valuation centered at £ N E
(we still denote by E the strict transform of E in Z). Therefore, by Proposi-
tion there exists 5,7 > 0 such that sh(E) +tb(E) = 1 and v A Vi = Vg
is the monomial valuation with weight s, with respect to local coordinates

associated to E and E respectively. By Proposition , we have

by Proposition

(ZV,X,[))Z = SZordE7X,p + tZordE7X7p = SbEZvE,X7p + l‘bEZvE,X.,p- (222)
Therefore,
Zoxp Zvpxp=Sb(E)Zyy x.p- Zupx,p +1H(E)(Zy, x )7 (223)

By induction and the previous case this is equal to —b(E)(sa(Vg) +to(Vg)).

By Proposition|5.27, we have a(vz) = o(VEg) + @. Therefore, we get

—b(E) (sa(VE) +10i(Vp)) = —0i(Vg) — b(E) (224)

and this is equal to —ou(,V,,) by Proposition[5.31]

Case 2: g = E1 n E; is a satellite point. We can suppose without loss of generality

~

that Vg, < Vg,. In that case we get Vg, < Vg < VE,,b(E) = b(E1) + b(E>) and

Bk N E R Bt O
> liioi(zﬁi(;nn V AVE, < VE, OrV = Vg, and we get
ZvX.p 'ng»xvp = %(z\d,p 'ZV51 ,X,p> + %(%x,p 'ZVE27X:P)‘
By induction, this is equal to —%a(v& AV)— %a(v@ AV). =

If VA VE, < Vg, thenV A Vg, =V AVE =V A VE, and the quantity in Equation
is equal to —a(V A V).
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If v = Vg, then v > vz and vV A Vi = V. In that case V A Vg, = Vg, and V A Vg, =
VE,. Therefore, the quantity in Equation is equal to

b(E1) b(Ey)
b(E) 1 6E) YV E) T BED 1 005

o(VE,). (227)

By Proposition |5.27, a/(Vg,) = a(Vg,) + m, so we get

! = —a(VEl) — ;«, (228)

Zvxp ZgXp = ~OUVE) — b(E))(b(E1) + b(Ey)) b(E1)b(E)

and this is equal to —a(V) again by Proposition W

If cy (V) = ¢, then cz(v) € E. We have that vg, <V A Vz < Vg,. Therefore either
vV=Vgorcz(v)e Eisapointand v AV 7 1s a monomial valuation centered at £1 N E or
E> nE. We show again the claim by induction in an analogous way as in Case 1. We
have thus shown the claim by induction.

To show the Proposition, let v,V € ¥k (p;m,). If v # V', then there exists a com-
pletion 7 : (Y,Exc(m)) — (X, p) exceptional above p such that cy (V) # cy(V'). Then,
we have that

ZV,X:P 'ZV/7X7P = (ZV,X,p)Y ’ (ZV/7X7P)Y (229)

If V' is infinitely singular or a curve valuation, we can suppose that cy (V') is a free
point lying over a unique prime divisor E at infinity. Then, V' > vg and V' AV =
V' A vg. Furthermore, the incarnation of Zy x , in Y is exactly Zy, x,, by Proposition

Therefore,
Zvxp Lvxp=2Zvxp LvpX.p- (230)

This is equal to —a(v A VE) = —a(V A V') by the Claim.

If v/ is irrational, then we can suppose that cy (V') = E; n E; for E1, E; two prime
divisors at infinity. Suppose without loss of generality that vg, < Vg,. By Proposition
we have that v/ = T, V,, for some s, > 0 such that sb(E;) +tb(E;) = 1 and
o(V) = o(vg,) + #El)' Furthermore, by Proposition 7.29, the incarnation of Z,/ x , in
Y is

(Zurxp) = SB(EV) Zug, x.p + tD(E2)Zug, X - 231)
And we have
Zyvxp-Zy x,p = SO(EV)(Zv.x.p Zvg, x.p) +1D(E2)(Zv X p - Zvg, X.p)- (232)

EithervAV =V AVg orvAV =V . IfvAV =V A Vg, then we also have v A VE, =
V A VEg,. The quantity in Equation (232) is then equal to

—sb(E1)oUV AVE,) —th(E2)0(V A VE,) = (VA VE) = —a(V A V). (233)
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IfvAV =V thenv A Vg, =Vg, and v A Vg, = Vg,. The quantity in Equation (232)
is then equal to
t

—sb(Ey)o(VE,) —th(E2)a(VE,) = —0(VE, ) — bE) —a(V). (234)
To get the last two equalities we use Proposition and[5.31]
Finally, if v = v/, we need to show that (Z, x ,)° = —o(v). We know the result if

v is divisorial. We use infinitely near sequence to conclude in general. If v is infinitely
singular or a curve valuation. Let (X, p,) be the sequence of infinitely near points
associated to v. The infinitely near sequence of v (Proposition[5.26)) is the subsequence
vV, = @ ordg, where p,, is a free point lying over a unique prime divisor E, at infinity.
We have that o(v,) — o/(v) and the incarnation of Zy x , in X,, is Zy, x ,. Therefore,

(Zv.xp)* =1im(Zy, xp)* = ~limo(vy) = —a(v) (235)

If v is irrational, then let (X, p,) be the sequence of infinitely near points as-
sociated to v. For every n large enough, p, = E, n F, for E,, F, two prime divi-
sors at infinity. Suppose that for all n,vg, < vg,. Then, we have vg, <V < Vg,
o(Vg,) = o(v),o(Vg,) — o(v) and b(E,) — +0,b(F,) — +0. We have by Propo-
sition that the incarnation of Zy x , in X, is

Snb<En)ZVEn,X,p + tnb(Fn)Zan ,X7p (236)
for some sy,,#, > 0 such that s,b(E,) + t,b(F,) = 1. We have
(Lo ) = im(s,b(En) o, .+ 10 (F) 2y, 37)

= lim —52b(Ep)?0U(VE,) — 25utab(En)b(F)o(VE,) — t2b(F,)?o(VE,)  (238)

Therefore we get
lim—a(vg,) < (Zyx,p)? < lim—o(Vg,). (239)
n n

Hence (Zy x,,)* = —a(v). O

COROLLARY 7.33. If ve Vx(p;m,), then Zy x , ¢ Weil(X, p)q if and only if v is
irrational.

PROOF. If v is divisorial, let E € Dy, such that v is equivalent to ordg. Then,
ZVX P = L

"7 b(E)

by Proposition|/.2/} If v is infinitely singular or a curve valuation, let u be any divisorial

valuation. We have that u A v must be a divisorial valuation, therefore by Theorem|/7.31
we have

Zordp x,p € Weil(X, p)g (240)

Zy-Zy=—o(vAu) eQ. (241)
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Hence Zy x , € Weil(X, p)q.
If v is irrational, then for all u > v divisorial we have o(u A V) = a(v) € R\Q.
Therefore, Zy x , ¢ Weil(X, p)q. O

PROPOSITION 7.34. Let X be a completion, let p € X be a closed point at infinity. If
(Vn) is a sequence of Vx (p;my,) such that &(v,) < +00 for alln and v € Vx(p;my,), then
Vp — V for the strong topology if and only if Zy, x , — Zy x p for the strong topology of
L2(Xo).

PROOF. This all comes from Theorem [7.31] as
(Zvx.p—Zux.p)’| = |—0UV) +20(V A V) — (V)| (242)
= |o(V) =0V AV,) F0U(V,) — OV AV, (243)
O



CHAPTER 8

From linear forms to valuations

Suppose now that we have an element L of hom(Cartier,,(Xp),R) satisfying prop-
erty (+), we want to construct a valuation vy, : K[Xo] — R U {oo} centered at infinity
such that vy, 1 = fevr.

8.1. Construction of v,

First we extend L to Sy (Xp) (see Definition [3.12)) by setting
If D= \/Di with D; € Cartiero,(Xo), L(D) :=supL(D;). (244)

PROPOSITION 8.1. This definition does not depend on the representation of D as a
supremum D = \/,; D; with D; € Cartier (Xp).

PROOF. If D = \/;;D; = \/ ;D). Let j€J be an index and X a completion
such that D; is defined on X. Let € > 0 and let H be an effective divisor such that
Supp(H) = 0xXp. There exists an index i € I such that D; + eH > D;., since otherwise
we would get D+ eH < D} < D. Therefore we have by property (+) item (1)

L(D;) < L(D;) +eL(H) < supL(Dy) +€L(H). (245)
k

Letting € go to 0, we get sup; L(D";) < sup; L(Dy) and the result holds by symmetry.
[

PROPOSITION 8.2. We have the following properties: for D,D’ € 5, (Xo)

(1) L(D+D') = L(D) + L(D').

(2) L(D AD') = min(L(D),L(D")).

(3) If D =0, then L(D) > 0.
PROOF. For (1), write

L(D+D')= sup L(D;+D))

(irj)elxJ
= supL(D;) +supL(D’;) = L(D) + L(D')
i€l jeJ

78
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For (2),let D =\/;D; and D' = \/ i D’j be two elements of S, (Xp). Then,

DAD =\/DinD] (246)
i,j
and
L(D A D') = supmin(L(D;),L(D})) (247)
i,J

= min(sup L(D;),supL(D’)) (248)

i J
_ min(L(D),L(D')). (249)

For (3), if D = 0, then L(D) = 0. Otherwise, D > 0 and there exists a Cartier divisor
D; defined in some completion X of Xq such that Dx > D; > 0 and therefore

L(D) = L(D;) > 0. (250)
L]
Recall the notations of Section Define

W(P) = (diveox (P)x. @251)

PROPOSITION 8.3. For Pek[Xy|, w(P) defines an element of Weily, (Xo), moreover
if one identifies for any completion X the divisor divy, x (P) € Divy, (X) with its image
in Cartier,, (Xo), then

w(P) = \/ divee x (P). (252)
X

Thus, w(P) defines an element of Sy (Xo).

PROOF. To prove both assertions it suffices to show that if X is a completion of
Xo and Y is the blow up of some point at infinity, then .. dive, y (P) = divy, x (P) and
* dive, x (P) < diveo y (P). Let E be the exceptional divisor of T and let Ej, ..., E, be
the prime divisors in 0xXp. Since P is regular over Xy, divx (P) is of the form

.
divg(P) =D+ ) _aiE; (253)
i=1

where D is an effective divisor such that no irreducible component of its support is one
of the E;’s; by definition divy, x (P) = > ._, a;E;. Then, divy (P) is of the form
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divy (P) = divy (PoT) = m* divy (P) = U'(D) + bE + Z a;m (E;) (254)
i=1
for some b € Z. So divyy(P) = bE + Yi_ a;w' (E;) and we get T.(dive, y(P)) =
dive x (P) as . (E) = 0, This shows that w(P) is an element of Weily, (Xo).
To show that ¥ div x (P) < dive y (P) we have to be more precise about the co-
efficient b. We can write b = ¢ + d, where n*D = n/(D) + dE and ©*divy, x (P) =

cE + > aim (E;). Since, D is effective, we have d = 0 and the result follows. 0J

We define
vL(P) := L(w(P)). (255)

REMARK 8.4. The class w(P) is not in general a Cartier class. Indeed, take Xy =
A2 X = P? with homogeneous coordinates [x : y : z] such that {z =0} is the line at
infinity. Consider P = y/z € k(P?). Define a sequence of blow ups X; by Xo = P?, Ey =
{z=0} and ;1| : X;+1 — X; the blow up of the intersection point of the strict transform
of {y = 0} in X; and E;, where E; is the exceptional divisor in X;. Let C, be the strict
transform of {y = 0} in any the X;. We still denote by E; its strict transform in every
Xj,j =i Then,

divp2 (P) =Cy,—Ey
divy,(P) = C,—Ep
diVXZ(P) = Cy +Ey, —Ey
diVx3 (P) = Cy +2E3+E>, — Ey
and by induction, we get for all k > 2
k
divy (P) =Cy+ > (j— 1)E; — Eo. (256)
j=2
Therefore, for all k > 2
k
M1 divee x, (P) = (k= 1)Egyr + Y (j— DE; — Eo
j=2
k
# kEjp1+ Y. (j— VEj— Eo = divee .., (P).
j=2

Thus, w(P) is not a Cartier class.
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8.2. Proofs
We show that vy, is a valuation centered at infinity and satisfies f,v;, =V, ;.
PROPOSITION 8.5. The function vy is a valuation on K[Xy| centered at infinity.

PROOF. We first show that v is in fact a valuation
(1) For any A € k* and for any completion X of Xp, divy(A) =0so v.(A) =0.
(2) If f, g € k[Xo], then divx (fg) = divx(f) +divx(g). So, w(fg) = w(f) +w(g)

and by Proposition[8.2v.(fg) = VL(f) +VL(g).
(3) Let f,g €Kk[Xo], f # —g, then divx (f + g) = divx(f) A divx(g), therefore

w(f +g) =w(f) Aw(g) (257)

and by Proposition[8.2] v, (f +g) = min(v.(f),VL(g)).

If L # 0, there exists a completion X and a prime divisor E at infinity such that
L(E) > 0. By Theorem[2.4] there exists H € Divy,(X) ample such that H > 0, SuppH =
OxXo. We have by item (1) of (+) that L(H) > L(E) > 0. To show that vy, is centered at
infinity, it suffices to show that Ly, (H) > 0. Up to replacing H by one of its multiples
(which does not change the hypothesis L(H) > 0), we can suppose that H is very ample
and that it induces an embedding T : X < PV such that T(H) is the intersection of
T(X) with the hyperplane {xo = 0}. By Bertini’s theorem, we can find a hyperplane
M = {>;hix; = 0} # {xo = 0} such that M n t(X) is a smooth irreducible subvariety C
in X satisfying

(1) The intersection of C with any divisor at infinity of X is transverse.
(2) If vy is not divisorial, the center of v; is not contained in C.

Indeed, by Bertini theorem, the set Ux of hyperplanes H such that H n X is a smooth
irreducible curve is an open dense subset. Let Eq, - - -, E, be the primes at infinity in X.
Applying Bertini theorem to E; yields an open subset U; of hyperplanes that meet E;
transversally. Finally, if the center of vy is a subvariety Y of codimension > 2, then the
set of hyperplanes that contain Y is a closed nowhere dense subset of P(I'(P", O(1)))
because |H| is base point free, so its complementary is a non-empty open subset Uy.
Now, Uy n--- n U, n Uy is an open subset that intersects Uy since it is dense, we then
choose M in the intersection. Define

N
Xi
P = Z(:)}“"x_o (258)

Then, P is a regular function over Xy such that divx(P) = C — H and 1/P is a local
equation of H at the center of v (even if vy is divisorial). Hence,

Ly (H) = vi(1/P) = sup(L(diver(1/P)) = L(H) > 0. (259)
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0J
In Chapter[7] we have constructed a map
L: V,, — hom(Cartiery, (Xo0),R) (43 (260)
here, we have constructed a map
v : hom(Cartiers (Xo),R) () — Vi (261)

where hom(Cartiero, (Xo),R)(4) are the linear forms over Cartiers,;(Xo) that satisfy
property (+). We shall prove that they are mutual inverse in Chapter[9] Using this result
we show

PROPOSITION 8.6. Let f be a dominant endomorphism of Xo. If L € hom(Cartiero, (Xo), R)(4)),
then f.L € hom(Cartier(Xo),R) (1) and vy,1 = fivr.

PROOF. Let L € hom(Cartiers(Xo),R)(4)), then there exists a unique valuation
v € Vo such that L = L,. Then, we have by Proposition that

feL = feLy = Ly, . (262)
Therefore, fiL € hom(Cartiero (Xo),R) () and if w e V% such that f.L = L,, it is clear
that w = f,v. O

REMARK 8.7. If P € (Xp), it is not true that w(f*P) = \/dive x (f*P). Indeed,
the problem is that f might not be proper. For example, take f(x,y) = (x,xy) with
Xo = A%. In P2, blow up [0: 1: 0], let E be the exceptional divisor and blow up again
the intersection point of E and the strict transform of {X = 0}. Let V be the completion
obtained after the two blow ups and call E; the exceptional divisor. The lift f: V — P?is
regular and f,E; = {X = 0}. Thus, we have that for all D € Cartiers,(Xo),ordg, f*D =
0. Now take P = x, then f*P = P and

divy(P) ={X =0} +E| —{Z =0}. (263)
Thus, w(f*P) # \/ f*dive x (P). However it is true in general that

w(f*P) = \/ f*diveo x (P) (264)



CHAPTER 9

Proof that v and L are mutual inverses

Set M := hom(Cartier,(Xo),R)(4). In Chapters and , we have defined L: v e
Vo> LyeMandv:Le M — vy € V. The goal is to show that these two maps are
inverse of each other.

9.1. Firststep,voL =idy,
PROPOSITION 9.1. For all valuation v € Vi, and for all P € Ox (Xp),V(P) = Ly(w(P)).

PROOF. Let X be a completion of Xo. We have seen that divy, x (P) = divx (P) — D
where D is an effective divisor not supported in dxyXp. Therefore,

LV,X(diVoojx(P)) = V(P) —wa(D) < V(P) (265)
Taking the supremum over X, we get Ly(w(P)) < v(P).
To show the other inequality, take a valuation v centered at infinity and let X be
a completion of Xy. Up to further blow ups of point at infinity, we can suppose that
D := divx(P) is a divisor in X with simple normal crossing on dxXp. Let Ey,--- ,E, be
the prime divisors at infinity of X. Then, D is of the form

-
D = ZaiEi+ijFj (266)
i=1 jel
for some prime divisors F; not supported at infinity. Let p be the center of v on X, there
are two cases.
(1) Forall jeJ,p¢F;,inthatcase forall jeJ,Ly x(Fj) =0and V(P) = Ly x (dive x (P)).
Therefore, v(P) < Ly(w(P)) and they are equal.
(2) There exist a unique j € J and a unique i such that p = E; " F;. The uniqueness
comes from the fact that D is a divisor with simple normal crossing. We denote
them respectively by E and F. Then, we construct a sequence of blow up of
points T; : X;;1 — X; such that 7; is the blow-up of the center of v in X; and
Xo = X. We still denote by F the strict transform of F' in any of these blow-ups.
There are two possibilities:
(a) Either there exists a number k£ such that the center of v in X} does not
belong to F' (This includes the case where v is divisorial, in that case

83
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the center becomes a prime divisor and there are no more blow-ups to be
done). In that case, we are back in case 1 and V(P) = vy, (dive x, (P)) <
Ly(w(P)) and we get the desired equality.

(b) Or for all k£ > 0, the center of v in X} belongs to F, in that case Vv is
the curve valuation associated to F at p and v(P) = +oo. We show that
Vx, (dive x, (P)) — +0 using the following result.

LEMMA 9.2. In case 2.(b), set Ey = E and for k > 1, Ek the exceptional
divisor in Xy above cx,_,(V), then Ly x,(E) = Ly x, (E) for all k and the divisor
divx, (P) is of the form

divy, (P) = (a + kb)Ey + bF + D), (267)
where a = ordg(P) > 0, b = ordr(P) > 0 and cx,, , (V) does not belong to the
support of D).

PROOF. First, since we are in case[2bjand we have supposed that Supp divy (P)
is with simple normal crossings, we have that for all k£ > O the center of v in
Xy is the intersection point py := Ek NF.

We proceed by induction on k. If kK = O then the result is true as Xo = X
and cx(v) = EnF. Suppose the result true for a given index k > 0, then
when we blow up pg, pr+1 1s the intersection point of Ek+1 and F so it does
not belong to m,(Ey) therefore Ly, (m}(Ex)) = 0. By induction we have

Vx, (Ep) = Ly x,(E), and we know that
Lyx (Ey) = Lyx,., (n}Ey) = Lyx,., (n}(Ey) + Exy1) = Lyx,., (Exs1) (268)

so this shows the first assertion. Now, by induction divy, (P) is of the form

divy, (P) = (a + kb)Ey + bF + D}, (269)
Now, since p; = Ek N F and py ¢ Supp D), one has

divy,,,(p) = T divy, (P) = (a+ (k+ 1)b)Egy1 +bF + (a+ kb)(Ex) + 7 (Dy). (270)

Since pi1 ¢ m,(Ey), the support of the divisor D, | := m,(D}) + (a +
kb)m, (Ey) does not contain py| and we are done. O
Using this lemma we see that

Ly x,(diveo x, (P)) = (a+kb)Ly x,(E) ﬁ’ +0 (271)

Therefore Ly(w(P)) = +oo and since V(P) = Ly(w(P)) we have that v(P) =
+00
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9.2. Second step, LoV =idy,
To show that Lov = id4, we need some technical lemmas.

9.2.1. The center of L.

PROPOSITION 9.3. Let Le M and X be a completion of Xy. If there exists two
divisors EE' at infinity in X such that L(E),L(E") > 0, then E and E' must intersect.

PROOF. Suppose that E and E’ do not intersect, then the sheaf of ideals a = Ox (—E)@®
Ox(—E’) is trivial, a = Ox. From Proposition [7.25] we get E A E' = 0. Thus L(E A
E')=0.But L(E AE") = min(L(E),L(E")) > 0 and this is a contradiction. O

COROLLARY 9.4. Let X be a completion of Xy, suppose there exists two prime

divisors at infinity E,F such that L(E),L(F) > 0. Then, let E be the exceptional divisor
above p =ENF, one has L(E) > 0.

PROOF. Let m: Y — X be the blow up of p and suppose that L(E) = 0. Since
T*E =7/ (E)+E and t*F = 7/(F) + E, one has L('(E)) > 0 and L(@/(F)) > 0 but the
two divisors no longer meet and this is a contradiction. 0

PROPOSITION 9.5. Let X be a completion of Xy, there are two possibilities

(1) There exist a unique closed point p in X at infinity such that if E is the excep-
tional divisor above p, one has L(E) > 0. We call this point the center of L in
X.
(2) If no point satisfy this property, then there exists a unique divisor at infinity E
in X such that L(E) > 0. In that case we call E the center of L in X.
and we have the following properties

(a) Let E be a prime divisor at infinity in X. If the center of L on X is a point p,
then pe E < L(E) > 0.

(b) If Y is a completion of Xy above X, then the center of L in Y belongs to the
inverse image of the center of X.

PROOF. Suppose there are two points py, py satisfying this property on X. Let 7;
be the blow up of p; in X, we have commutative diagram

Y
Xi X
X: y
X
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where on the left side we first blow up p; then we blow up the strict transform of p, and
the other way around on the right. Now let E 1, E> be the exceptional divisors above pi
and p; respectively in X; and in X, and suppose that L(El) L(Ez) > 0. Then, since p;
does not belong to E, and p2 does not belong to E1, we have that L(El) L(TTEl) =
L(%|(E}1)) > 0 and L(ty(E,)) > 0. But in Y the prime divisors 7, (E ) and T} (E>) do not
intersect and that contradicts Proposition[9.3]

Now, if E, F are two divisors at infinity such that L(E), L(F) > 0, Lemma[9.4shows
that £ n F must be the center of L on X. Hence if no point of X is the center of L there
is only one prime divisor at infinity E such that L(E) > 0.

To show assertion (a), suppose that the center of L on X is a point p and let T be
the blow up of p. If p € E, then n*(E) = n/(E) + E and L(E) = L(n*E) > L(E) > 0.
If L(E) > 0 then p must belong to E otherwise E and E would not intersect and this
contradicts Proposition[9.3]

We now assertion (b), we only need to show it for the blow up of apointmw: Y — X.
Suppose first that the center of L on X is a (closed) point p. If we blow up another point
than p, then it is clear that the center of L on Y is the point ©T~!p as the order of the
blow ups does not matter in that case.

Suppose now that we blow up p, then the exceptional divisor E verifies L(E ) >0,
if the center of L on Y is a prime divisor then it must be E. Ifitisa point then it must
belong to E by assertion (a).

If the center of L on X is a prime divisor E, then for any blow up w: ¥ — X of a point
of X, we show that the center of L on Y is T'(E). The exceptional divisor E verifies
L(E) = 0 and 7(E) is the only prime divisor of ¥ such that L(%'(E)) > 0. Thus, if the
center of L on Y is not a point, it must be ' (E). If the center of L on Y is a point g, then
it must belong to 7' (E) by assertion (a). If g is not the intersection point '(E) N E,
then it is the strict transform of a point p € E and in that case p was the center of L in X
this is a contradiction. If g = E n1'(E), then L(E) > 0 by assertion (a) and this is also
a contradiction. Therefore, the center of L on Y cannot be a point, it is ' (E). 0J

9.2.2. End of the proof. We say that L is divisorial if there exists a completion X
of Xy such that the center of L on X is a prime divisor at infinity.

PROPOSITION 9.6. The map v sends divisorial valuations to divisorial elements of
M and the map L sends divisorial functions to divisorial valuations.

PROOF. The fact that divisorial valuations induce divisorial functions on Cartier
divisors is clear. Suppose that L is a divisorial function and let X be a completion
such that the center of L in X is a prime divisor E at infinity. Then, for all completion
m:Y — X above X, the center of L on Y is the strict transform of E by Proposition
and L(E) = L(T'(E)). Therefore, let v be the divisorial valuation on K[Xp] such
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that vy = ordg and let P € Oy, (Xo), then for all completion Y above X, we have by

Proposition

L(divy, y (P)) = L(7'(E)) ordg (divy (P)) = L(E)V(P). (272)
Therefore v, (P) = L(E)v(P) and it is a divisorial valuation. O

PROPOSITION 9.7. One has Lov = idy,.

PROOF. We can assume that L and v are not divisorial. Let X be a completion of
Xo, we will show first that if H € Div,(X) is an effective divisor such that |H| is base
point free and Supp H = dxXo, then v, (H) = L(H). Pick f generic in H(X, Ox (H)).
We have that div f = Zy — H with Z; effective, SuppZy does not contain any divisor
at infinity and the center of v, and the center of L do not belong to SuppZ;. Thus, f
defines a regular function over Xy, 1/f is a local equation of H at the center of v, and
we have

VL(f) = supL(divey (f)) (273)
Y
Now, by our assumptions on f we have

LEMMA 9.8. ForallY above X, divy(f) is of the form Zsy +dive y (f) where Zy y
is effective, supported on Xy and SuppZyy does not contain the center of L. Further-
more, we have L(dive, y (f)) = L(dive x (f))-

PROOF. This is true for Y = X. We proceed by induction. Let ¥ be a completion
above Y where the lemma is true and let w: Y7 — Y be a blow up of Y at a point p. If p
is not the center of L then the lemma is clearly true over Y1, if p is the center of L over
Y then since p does not belong to SuppZyy we have

divyy, = m'(Zsy) + 7" (diveo v (f)) (274)
and the lemma is true since Zyy, = '(Zsy) and divy y, (f) = T (diveo v (f)).
O
Using this lemma we conclude that vz (f) = L(dive x (f)) = —L(H). Therefore,
vi(H) =vi(1/f) = L(H). (275)

Now take any divisor D € Divy,(X). There exists an integer n > 1 such that D +nH
is effective and |D + nH| is base-point free. Therefore,

V(D) =vi(D+nH) —vy(nH) = L(D+nH) —L(nH) = L(D).  (276)
O
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Eigenvaluations and dynamics at infinity



CHAPTER 10

General case

In this chapter, we show Theorem |A| when either the condition k[Xp]* = k* or
Pic’ (Xp) = 0 is not satisfied. We rely on the universal property of the quasi-Albanese
variety (see [Ser01]]), as well as on the geometric properties of subvarieties of quasi-
abelian varieties (see [[Abr94]).

10.1. Quasi-Albanese variety and morphism

Let G be an algebraic group over k with k algebraically closed. We say that G is
a quasi-abelian variety if there exists an algebraic torus 7' = G/, an abelian variety A,
and an exact sequence of k-algebraic groups

0-T—-G—-A—0. (277)

THEOREM 10.1 (see [Ser01], Théoreme 7). Let X be a variety over K, then there
exists a quasi-abelian variety G and a morphism q : X — G such that for any quasi-
abelian variety G' and any morphism @ : X — G’ there exists a unique morphism g :
G — G’ and a unique b € G’ such that

¢P=g°gq.
Moreover, g is the composition of a homomorphism Ly : G — G’ of algebraic groups

and a translation T, : G' — G’ by some element b € G'.

Such a G is unique up to (a unique) isomorphism. It is called the quasi-Albanese va-
riety of X and it will be denoted by QAIb(X); the universal morphism g : X — QAIb(X)
is “the” quasi-Albanese morphism (it is unique up to post-composition with an isomor-
phism of G). Of course if X is projective, then QAIb(X) is the classical Albanese
variety of X.

PROPOSITION 10.2. Let Xo be an affine variety. Then k[Xo]* = k* and Pic®(Xy) =
0 if and only if QAlIb(Xy) = 0.

PROOF. Let G = QAIb(Xp) and ¢ : Xo — G be a quasi-Albanese morphism. Let
0-T—>G5A—0. (278)

be an exact sequence, as in Equation (277)). Let X be a completion of X such that Tog
extends to a regular map Ttog: X — A.

89
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Assume k[Xo]* = k* and Pic®(Xy) = 0. Then, mog(Xp) is a point in A, and compos-
ing g with a translation of G, we can assume that this point is the neutral element of A.
Then, ¢(Xp) = T, so g is a regular map from Xj to an algebraic torus, and k[Xp]* = k*
implies that ¢(Xp) is a point. This shows that QAlb(Xp) is a point.

Now, suppose that k[Xo]* # k*, then any non-constant invertible function Xy — k*
provides a dominant morphism to a 1-dimensional torus, so dim(QAlb(Xp)) = 1 by
the universal property. And if Pic? (Xo) # 0, the Albanese morphism also shows that
dim(QAIb(Xp)) = 1. This concludes the proof. O

In the following, we show that if X is an irreducible normal affine surface with non-
trivial quasi-Albanese variety and f is a dominant endomorphism of X, then A;(f) is
a quadratic integer. See Proposition [[0.9]below. We will rely on the following result.

THEOREM 10.3 (Theorem 3 of [Abr94]). Let Q be a quasi-abelian variety and let
V be a closed subvariety of Q. Let K be the maximal closed subgroup of Q such that
V + K =V. Then, the variety V /K is of general type.

10.2. Logarithmic Kodaira dimension

Let V be an algebraic variety, let V be a good completion of V and D = V\V, it
is a simple normal crossing divisor. For ¢ = 1,--- ,dimV, let Q4(logD) be the sheaf
of logarithmic g-forms along D, i.e the subsheaf of rational g-forms o on V such that
locally at every point of D, « is of the form

dz; dz;
o= Z OCIJ(Z,W)ﬂ/\---/\ i) AW(1) A AWj(s) (279)
Z Z
r+s=q i(1) i(r)
I=(l(1),,l(}’))
J=(j(1),,j(s))
where (z,w) = (21, ,Zm, W1, ,Wn—m) is a local system of coordinates such that

71+ zZm = 0 is a local equation of D and oy;(z,w) is a local germ of regular function.

In particular, H(V, Q4™ (log D)) = H(V,K + D) where K is a canonical divisor
over V. Following [Tit77] we have that dimH°(V,K + D) does not depend on the
completion V. Define the following invariant

q(v) =dimH®(V,Q!(logD)) (280)
(V) =x(V,K+D). (281)
Where for a line bundle L over V,
_ ! _
«(V,L) = limsup - dim H'(V, L). (282)
k—+oo K

The invariant (V) is actually the dimension of the quasi-Albanese variety of V (see
[Fuj15]) and K(V) is the logarithmic Kodaira dimension of V (see [Iit77]). We have
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the following characterization of the algebraic torus of dimension 2. If V is projective,
then the log kodaira dimension is nothing but the classical Kodaira dimension of V.

THEOREM 10.4 (Theorem 2 of [Lit79]). Let V be a normal affine surface, then
V ~ G2 ifand only if &(V) = 0 and g(V) = 2.

LEMMA 10.5 ([Iit77] Proposition 1 and 2). If'V is an affine variety and f :V —V
is a dominant endomorphism, then f induces an isomorphism
f*:H°(V,m(K + D)) — H*(V,m(K + D)) (283)
forallm > 1.
This lemma allows one to define the log Kodaira litaka fibration
D,V --»P(H V. m(K +D)). (284)

By the lemma, every dominant endomorphism of V must preserve the log Kodaira
Iitaka fibration for m >> 1.

We say that V' is of log general type if K<V = dimV.

COROLLARY 10.6 ([Iit77]] Proposition 2 and Corollary p.5). IfV is an affine variety
of log general type, then EndV = AutV and this is a finite group.

10.3. Dynamical degree in presence of an invariant fibration

PROPOSITION 10.7 (Stein Factorization). Let X, S be projective varieties and let
f X — X be a rational transformation. Suppose that there exists ¢ : X — S and
g : S — S such that the following diagram commutes,

x --Lx
ol
s 248

Then there exists a variety S and morphisms Y : X — S, m:S — S such that
e p=TOV,
e T is finite and \y has connected fibers
e there exists a rational transformation g : S --> S such that the diagram

X --=-- » X
lw v
§--2.%

I I
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commutes.

PROOF. The existence of § along with 7 and W is due to Stein Factorization theo-
rem: It is known that one can take S = Specg @, Ox where Specg is the relative Spec;
that is for every affine open subset U of S, one has

' (U) ~ Spec Ox (¢~ (U)). (285)

Now to construct g, take affine open subsets U and V of S such that U < g~ (V).
Suppose also that ¢! (U) and ¢~!(V) do not contain any indeterminacy of f. To
construct

i) (U) — (V) (286)
we use the map f* : Ox (¢~ !(V)) — Ox(¢~!(U)) induced by f; this is well defined
since ' (U) < f~1 (@' (V)). Itis clear that yo f = go. O

PROPOSITION 10.8. Let S be a quasiprojective surface and f be a dominant en-
domorphism of S. Suppose there exists a quasiprojective curve C with a dominant
morphism T : S — C and an endomorphism g : C — C such that wo f = gom. Then, the
first dynamical degree of f is an integer.

PROOF. Let X be a completion of S; f extends to a rational transformation of X.
We can also suppose that C is a projective curve, and then we apply Theorem to
suppose also that T has connected fibers.

Let P be a general point of C and H an ample divisor of X. We have by [DN11,
Trul5] that

A (f) = max (A1(g), M (fix))) (287)
where A (g) is the integer given by the topological degree of g and

M (fig) 1= Tim (H - (") ()" (288)

Since C'is a curve and 7 is dominant we have that 7 is flat ([Har77] Proposition I111.9.7)
so for any point P e C,

e T !(P) is an irreducible curve Cp and the topological degree of f : Cp — Ce(p)
is an integer d that does not depend on P

o d-diop(g) = Ma(f)-
Indeed, consider the following O-cycle in § x S:

o(P) = (miCp) - (M3 H) - Ty (289)
where 11,7 : § X § — § are the two projections and I'y is the graph of f. The degree
of a(P) is

degoc(P) = (H : Cg(p)) -deg(f :Cp— Cg(p)). (290)
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Now, since C is a curve the morphism wom; : § x S — C is flat, therefore deg(o(P)) does
not depend on P ([Ful98|] §20.3) and since = is flat, the intersection number (H - Cp)
does not depend on P either. Therefore, deg(f : Cp — C o p)) is an integer d independent
of P. Hence, we infer

M (fix) = lim (H - (), 'P) = d -lim (H-n~'P) " —d (291)
and we get that A; (f) is the integer max(d,A;(g)). O

10.4. Dynamical degree when the quasi-Albanese variety is non-trivial
The goal of this section is to show the following proposition.

PROPOSITION 10.9. Let Xy be an irreducible normal affine surface and f a dom-
inant endomorphism of Xo. Suppose that QAlb(Xy) is non-trivial, then A (f) is an
algebraic integer of degree < 2. Furthermore, if M| (f) is not an integer, then Xo ~ G2,.

Set Qp = QAIb(Xp) and let ¢ : Xy — Qo be a quasi-Albanese morphism. Let V =
q(Xo) be the closure of the image of Xy in Qp. By the universal property, there exists
an endomorphism g of Qg such that

qof=goq (292)
8(z) = Lg(2) + by (293)
for some algebraic homomorphism L : Qg — Qp and some translation z — z + b, (here,
we denote the group law by addition). In particular gy defines a regular endomorphism

of g(Xo) and since f is dominant, o is gy. As in Theorem[10.3} set K = {xe€ Qo ; x +
V = V}. Then, denote by nty : V — V /K the canonical projection onto the quotient.

PROPOSITION 10.10. There exists an endomorphism g : V /K — V /K such that
gomy =mnyogy.

PROOF. We have to show that g is compatible with the quotient map. Take ve V
and k€ K. Sincev+keV, g(v+k) e V. Now,

g4k)=Le(v+k)+by=Le(v)+Lg(k)+ by = g(v)+ Lg(k). (294)

Thus, Ly (k) +g(V) = V. Taking the closure and knowing that g, is dominant, we have
Lg(k) +V = V. Therefore, Lg(k) € K and gy is compatible with the quotient modulo
K. 0

Case dimV /K = 2.~ In that case, the map iy og : X — V /K is generically finite.
Since V /K is of general type, g’ has finite order: there is some positive integer n such
that (g')" = Idy k. Thus, f is also a finite order automorphism, and A (f) = 1.

Case dimV /K = 1.- In that case Ty o ¢ induces a fibration of X over a curve of
general type and we conclude that A; (f) is an integer by Proposition :
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Case dimV /K = 0.- This means that V is equal to K up to translation. Therefore,
by the universal property of the quasi-Albanese variety, K =V = Qg and g : X9 — Qo
is dominant.

If dim Qp = 1, then f preserves a fibration over a curve and Proposition (10.8|implies
again that A (f) is an integer.

Suppose now that dim Qg = 2. Then ¢ is generically finite, so that A;(f) = A;(g).
Since ¥(Qp) = 0, we have ¥(Xp) € {0,1,2}.

If K(Xp) = 2, then Xj is of log general type. In that case, by Corollary every
endomorphism f of Xy is an automorphism and satisfy A; (f) = 1 because it is of finite
order.

If ¥(Xp) = 1, then every endomorphism of Xy preserves the log Kodaira litaka fi-
bration and by Proposition [10.8] A (f) is an integer.

Finally, if ¥(Xo) = 0, then by Theorem Xo ~ G2 and A;(f) is an algebraic
integer of degree < 2 because it is the spectral radius of a 2 x 2 matrix with integer
entries. We see that this is the only case where we might have A; (f) ¢ Z>o.

COROLLARY 10.11. If Xo is a normal affine surface with a loxodromic automor-
phism and QAIb(Xy) is not trivial, then Xy ~ G2,

PROOF. A loxodromic automorphism of Xy satisfies A; > A, = 1 and thus cannot
preserve a fibration over a curve or be of finite order. Looking at the proof of Proposi-
tion|10.9} we see that this only happens when Xy ~ G2,. O



CHAPTER 11
Dynamics when k[X]* = k* and Pic’(Xy) = 0

In this chapter, we will prove Theorem [C| and derive Theorems [A] and [Bl The two
hypothesis allows one to describe the Picard-Manin space of Xy more precisely. In
particular, we show that 7}, embeds into Weil,, (Xo)g and 4, embeds into L2(Xo).

11.1. The structure of the Picard-Manin space of X,
From we have linear maps
T : Cartier,, (Xo)g — Cartier-NS(Xo)g, T: Weily (Xo)g — Weil-NS(Xp)g- (295)
For this section we suppose that X is a normal affine surface over an algebraically
closed field k such that
(1) K[Xo]* =Kk*;
(2) For all completion X of Xy, Pic’(X) = 0.

It suffices to test the second condition on one completion of X as the Albanese variety
of a projective variety is a birational invariant. We will make an abuse of notations and
write Pic”(Xg) = O for the second hypothesis.

If these two conditions are satisfied, the finite dimensional subspace Divy,(X) em-
beds into NS(X). Indeed, consider the composition

Dive (X) — Pic(X) — NS(X), (296)

the first map is injective since k[Xp|* = k* and the second is an isomorphism because
Pic? (X) = 0. Therefore the maps T are injective and we have the orthogonal decompo-
sition

Weil-NS(Xo)g = Weily (Xo)g BV (297)

where V is a finite-dimensional vector space(this decomposition also holds over Q); in
fact let X be a completion of X, then V is the orthogonal of Divy, (X) in NS(X).

11.1.1. The intersection form at infinity.

PROPOSITION 11.1. Let X be a completion of X, then

e Divy,(X)a embeds into NS(X)a and the intersection form is non degenerate
on Divy, (X)a.
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e The perfect pairing Cartier-NS(Xo)g x Weil-NS(Xo)g — R induces a pairing
Cartiery, (Xo)g X Weily (Xo)g — R (298)

that is also perfect.
o Weily, (Xo)g is isomorphic, as a topological vector space, to Cartiery (Xo)g
endowed with the weak-+ topology.

PROOF. Everything follows from Propositions and and that T: Dive, (X) —
NS(X) is injective. O

COROLLARY 11.2. The subspace hom(Cartiers,(Xo),R)(4) is a closed subspace
of Weily, (Xo)g with the weak-x topology.

PROOF. All the conditions that elements of hom(Cartier, (Xo), R) () have to sat-
isfy are closed conditions. Indeed, we have

hom(Cartiery, (Xo), R)(+) =C1nC (299)
where
Ci = [ ) {L(D) >0} (300)
D=0
Cy = N {L(D AD') =min(L(D),L(D'))} . (301)

D,D’eCartierq, (Xo)
]

11.1.2. A continuous embedding of 7, into Weil,(Xo)g. From Proposition|11.1}
we get the immediate corollary.

COROLLARY 11.3. For any valuation v centered at infinity, there exists a unique
Zy € Weily, (Xo)g such that for all D € Cartiero, (Xo) g, Lv(D) = Zy - D.

COROLLARY 11.4. Avaluation v is divisorial if and only if Zy belongs to Cartiery (Xo)g.
In particular, for any prime divisor E at infinity, Zq, € Cartiery, (XO)Q. The embedding

is a continuous map for the weak topology.

PROOF. If v is divisorial, then there exists a completion X such that the center of v
is a prime divisor E at infinity. For every W € Weily,(Xo), Lord, (W) = Lord, x (Wx ), by
Proposition By non-degeneracy of the intersection pairing on Dive, (X)q, there
exists Z € Divy, (X)q such that for all D € Div (X)Q, Lordz x (D) = Z - D. 1t follows that
Zord 18 the Cartier class defined by Z, hence it is an element of Cartieroo(Xo)Q.
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Conversely, if Zy € Cartier,, (Xo)g, let X be a completion where Zy is defined. The
center of v over X cannot be a closed point p; otherwise let E be the exceptional divisor
above p, we would have L, (E) >0,butZ,-E = 0.

Now to show the continuity of the map of the Corollary, it suffices by Proposition
to show that for any D € Cartier,,(Xo)g, themap v e V.o — Zy - D is continuous. It
actually suffices to show this for D € Cartier,,(Xo) and this follows immediately from

Zy-D = Ly(D) and Proposition[7.19] O

PROPOSITION 11.5. Let v be a valuation centered at infinity and X a completion
of Xo such that cx (v) € E is a free point. Then, the incarnation of Zy in X is

ZV7X = (ZV 'E)ZordE- (303)
If cx(v) = E N F is a satellite point, then
ZV,X == (ZV . E)ZOl"dE + (ZV . F)ZOI”dF' (304)

Furthermore, if ©: Y — X is the blow up of a point at infinity p # cx(V), then
ZV7Y - TC*ZV’X. (305)

PROOF. If cx(v) € E is a free point. For any D € Divy, (X )R, one has D = > Lorg, (D)F,
therefore by Proposition (2) and (3) Ly(D) = Log, (D)Ly(E) . Since (Zy-E) =
Ly(E), we get the result. The proof is similar for the case cx(v) = ENF.

For the last assertion, if E is the exceptional divisor of w: ¥ — X, then by definition

~

Zyy =T Zyx — (Zy-E)E (306)

However, since cx (V) # p, we have that cy (v) ¢ E and therefore Z, - E = 0 by Proposi-
tion O

Recall that in §7.4] we have defined for a point p at infinity in a completion X the
local divisor Zy x , for every valuation v centered at p. The divisor is defined by duality
via the following property

VD e Cartier(X,p)r, Lv(D)=2Zy,x-D. (307)

COROLLARY 11.6. Let X be a completion of Xy and let v be a valuation centered
at infinity.
o Ifp:=cx(v)€E, then

Zy = (Zv E)Zoray +Zv x p (308)
e If p:=cx(v) = EnF is a satellite point, then
Zy = (Zy - E)Zordy + (Zv - Zorar ) Zordy +Zv X, p (309)
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In particular, Zy € L*>(Xo) if and only if v is quasimonomial or there exists a com-
pletion X and a closed point p € X at infinity such that cx(v) = p and o(V) < +o0
where V is the valuation equivalent to v such that V € Vx (p;my).

PROOF. We have that
ZV == ZV,X + Z/ (310)
where Z' € Weily, (Xp) is exceptional above X. Now, for every divisor D exceptional
above X, we have
Ly(D)=2,-D=Z7"D. (311)
If D is exceptional above a point g # p, then Ly (D) = 0 by Proposition[7.6as ¢ # cx (V).
Therefore, we get that Z' = Zy x .

Now, we have Z, € L?(Xo) < (Zy)? < —oo. Replace v by the equivalent valuation
such that v e Vx(p;m,), then by Theoremm (Zyx p)* = —oV) and therefore

(Zv)* = (Zvx)* — V). (312)
This shows the result. O

COROLLARY 11.7. Let v € Vs, then up to normalisation Zy € Weily,(Xo) if and
only Vv is not irrational.

PROOF. First, if v is divisorial, the result follows from Corollary [IT.4] Then, if
v is infinitely singular or a curve valuation. Then, there exists a completion X such
that cx (V) is a free point p € E. Then, replace v by its equivalent valuation such that
ve Vx(p;m,). Let (z,w) be local coordinates at p such that z = 0 is a local equation of
E. Then, Zy(E) = v(z) = a(v A v;) € Q because v A V_ has to be a divisorial valuation.
Therefore, by Corollary and Proposition we get that Z, € Weily, (Xo)q-

Finally, if v is irrational then let X be a completion such that cx(v) = EnF is a
satellite point. Then, Zy x = sZord, +Zord, With s/t ¢ Q by Proposition It is clear
that no multiple of Zy x can be in Dive, (X)q. O

COROLLARY 11.8. Let V), be the subspace of Vi, consisting of V € Vi, such that
Zy € L2(Xy), then
V), L2(Xo) (313)

is a continuous embedding for the strong topology. Furthermore, it is a homeomor-
phism onto its image.

PROOF. Let X be a completion of Xj. Let v, be a sequence of 7/, converging
towards v € 1V, for the strong topology. We treat two cases, whether v is associated to
a prime divisor of X or v is centered at a closed point p € X at infinity.

If v is centered at a closed point p at infinity, then since Vv, converges strongly
towards Vv then it converges also weakly, therefore for n big enough, v, is centered at
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p by Proposition [6.I] We can replace each v, and v by their representative such that
Vi,V E Vx(p;m,). Then

o If p e E is a free point,
Zy, = (Zv, E)Zoray + Zv, X p (314)
o If p = E n F is a satellite point, then
Zy, = (Zy, E)Zowy + (Zv, F)Zowdy +Zv, x.p (315)

and we have similar formulas for Z,. Now the incarnation of Zy, in X converges towards
the incarnation of Zy in X in both the free and the satellite case by weak convergence.
Let ||-| | be any norm over NS(X)R, then

120 = Zv,| [P0y = 1126 = Zux | P = (Zv.x p = Zu, x.) (316)

where f = g means that there exists constants A,B > 0 such that Ag < f < Bg. By
Proposition [7.34, we have that ||Z, — Z,, | |32(X0) — 0.

If v ~ ordg for some prime divisor E at infinity in X, then for all n large enough,
cx(v,) € E. We can suppose that v = ordg and for all n v,(E) > 0, i.e v,v, € Vx(E)
and Zy, - E — 1 as n — 00. We show that

Zy

7 nE 00 ZordE (317)
vV, -

in L?(Xp). We can replace v, by its equivalent valuation such that v, € Vx(p,,m,,)
where p, = cx(Vvn). Then, we have that Z,, x/Zy, - E converges towards Zuy, in
NS(X)r by weak convergence. It suffices to show

(ZV Xp)2
—rr () 318
(2, EP G
but this is equal to
o \%
_ m[’n< ;l) _ _OCE(Vnz) (319)
vn(E) V(E)? n—+w

by Theorem [7.3T]and Proposition [5.9so we are done.

Finally, to show the homeomorphism, we have to show that if Z,, — Z in L2 (Xo),
then v,, converges strongly towards v. Let X be a completion of Xy. Suppose first that
cx (V) is a point at infinity. Let E be the exceptional divisor above cx(V), we have
Zy - E > 0, therefore for all n large enough Z, ‘E>0and cy (Vy) = cx(v) =: p. Now,
we can suppose that v,,v € Vx(p;m,), it suffices to show that v, — v for the strong
topology of Vx(p;m,) and this is a direct consequence of Proposition m

If cx(v) = E a prime divisor at infinity, then for all n large enough, Zy, - E > 0.
Suppose that v = ordg and v, € Vx(E). We have that Zy, x /Zy - E — Zord, in NS(X)R.
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We need to show that oz (—~2<) — 0. We can suppose that v, € Vx(p,,m,,) where

Vi (E)
pn = cx(Vy), then by Proposition
a = - . 320
(i) ~ e o2
Thus, by Proposition [5.9]and Theorem
2
Vn ZV X,p
a — ny wn 321
(i) - [ == e2b
]

COROLLARY 11.9. If v is a curve valuation, then Z, is a Weil class satisfying
72 = —.

PROOF. Let X be a completion of Xy, let p = cx (V) and replace v by the valuation
equivalent to v such that v € Vx(p;m,,). We have by Corollary that

ZV == ZV7X +ZV.,X,p- (322)

Therefore, by Theorem
(Zv)? = Zg,x + (ZV7X-,P)2 = \%,X —a(v) =—x (323)
because a(v) = —co for any curve valuation v (see [FJ04] Lemma 3.32). O

11.2. Endomorphisms

PROPOSITION 11.10. Let f be an endomorphism of Xo and let X, Y be completions
of Xo such that the lift F : X — Y of f is regular. Let p € X be a closed point and
q:=F(p) €Y. Then,

o [V (p) = Vr(q)

o f. preserves the set of divisorial, irrational and infinitely singular valuations.

e If V¢ is a curve valuation centered at infinity and such that f.vc is still cen-
tered at infinity, then f.Vc¢ is also a curve valuation.

PROOF. The map F induces a local ring homomorphism F* : Oy(q) — Ox(p).
Let v be a valuation centered at p. For @ € Oy(q), fxv(®) = V(F*¢) > 0 and for
Y e myq, fuV(Y) = V(F*y) > 0. Therefore f.v is centered at g. The fact that f. pre-
serves the type of valuations is shown in Proposition It only remains to show
the statement for curve valuations. Let p = cx(v¢) and ¢ = cy(f«vc). We have that
F(p) = q. By Proposition f«Vc 1s not a curve valuation only if it is contracted by
F'. But the only germ of holomorphic curve at p that can be contracted by F is the germ
of a prime divisor E at infinity on which p lies, and the curve valuation associated to E
does not define a valuation on k[Xp]. So, fiVc is a curve valuation. O



11.2. ENDOMORPHISMS 101

EXAMPLE 11.11. It might happen that f,V is not centered at infinity even though
v is; if this is the case then f is not proper. For example, let Xy = A2 with affine
coordinates (x,y) and consider the completion P? with homogeneous coordinates [X :
Y : Z]. We have the relation x = X/Z,y = Y/Z. Consider the chart X # 0 with affine
coordinates y' = Y /X and 7 = Z/X. Define v; to be the monomial valuation centered at
[1:0:0] such that v,(y') = 1 and v,(z') =t witht > 0. Let P = 3, . a;ix'yl e K[x,y], we
have that v;(P) = min {j + (j — i)t|a;j # 0}. Now take the map f : (x,y) € A> — (xy,y),
f contracts the curve {y = 0} to the point (0,0) in A2, hence it is not proper. For any
polynomial P =3, ; a; Xyl f*P = DI, a; X'y . We get

Vi (f*P) =min{i+ j(r + 1)|a;; # 0}. (324)
L]

The center of f,v, is [0:0: 1] and f,Vv; is the monomial valuation centered at [0: 0 : 1]
such that v,(x) = 1,v,(y) =1+ 1.

LEMMA 11.12 (Proposition 3.2 of [FJO7]). Let f : X9 — Xo be a dominant endo-
morphism and let X,Y be completions of Xo. Let F : X — Y be the lift of f, let p be a
closed point of X at infinity and Vx (p) be the set of valuations on K[Xo| centered at p.
Then, F is defined at p if and only if f Vx(p) does not contain any divisorial valuation
associated to a prime divisor (not necessarily at infinity) of Y. If F is defined at p, then
F(p) is the unique point q such that f.Vx(p) < Y (q).

PROOF. If fis defined at p, then let g = f(p), we have that f, Vx(p) € T (q) by

Proposition [TT.10]

Conversely, If p is an indeterminacy point of f . Let ®: Z — X be a completion
above X such that the lift F : Z — Y is regular. Then, F(n~!(p)) contains a prime
divisor E’ of Y. Let E be a prime divisor at infinity in Z above p such that F(E) = E,
then F, ordg = fi (T, ordg) = Aordg: for some constant A > 0 and ordg € f,. Vx (p). O

PROPOSITION 11.13. Let v be a valuation over K[Xy| and let [ : Xo — Xo be a
dominant endomorphism, then

o fiZy=Zs,y mod Cartieroo(Xo)L.
o If f is proper then f preserves Weily(Xo) and fiZy = Zj,y.

PROOE. Indeed, let D € Cartiery, (Xp), then

faZy-D=2Zy- f*D = Ly(f*D) = Ly,y(D) = Z,y - D. (325)

Therefore, we get that Zy, v — fiZy belongs to Cartieroo(Xo)L. If f is proper, then
Weil, (Xo) is fi-stable and f.Zy € Weily (Xo), thus Zs,y = fiZy. O
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EXAMPLE 11.14. Suppose that P(x) and Q(x) are two rational fractions of degree
two and E in P! x P! defined by the equation

¥ —P(x)y + Q(x) = 0. (326)

if P,Q are general, then E is smooth and irreducible and it is an elliptic curve. Let
X =P! x P! and Xy = X\E. We have Pic’(X) = 0 because it is a rational surface and
k[Xo]* = k* because X\Xy consists of a single irreducible curve. We have Zoyq, =
%E . Consider the projection pr; : X — P! to the first coordinates. Each fiber of pr; is
isomorphic to P! and generically it has two intersection points with E. Let xq,x1,Xx2,Xx3
be the four roots of the discriminant A = P(x)> —4Q(x). Then, pr; ' (x;) has only one
intersection point with E. Consider the following selfmap of Xy

2 _0(x
f@ﬁz(%%j%£>. (327)

It preserves the fibers of pr, and it acts as z — z> in each fiber where the points 0 and

o of P! are the intersection point of the fiber with E. See Figure|l| There are exactly 4
indeterminacy points on X, they are the points (x;,y;) where x; is one of the roots of A
and y; € P! is such that (x;,y;) € E.

(0, %o)

(ZL‘@', yi) S [nd(f)

FIGURE 1. The endomorphism f on Xy
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Let Co = {xo} x P'. Then, Cartieroo(Xo)L =R-(4Cy)—E) because Cy-E =2,E> =8
and dimNS(X)gr = 2.

The endomorphism f is not proper, indeed we have in NS(X), fxE = E +4Cy. Since
f*E is of the form f*E =2E +..., we have f,ordg = 2ordg. And we get

1 1

f*ZordE = gE + ECO (328)
= 1E+1(4C —E)+1E (329)
g g 8
1
= 2Zod; + g (4C0 —F ) (330)

11.3. Existence of Eigenvaluations

Recall from Theorem that there exists unique nef classes 8*,0, € L?(Xo) up to
normalization such that f*0* = A;0* and f,0, = A,6*.

PROPOSITION 11.15. Ifk[Xo]* = k* and Pic®(Xy) = 0, then 0* € Weily, (Xo) nL?(Xo)
and is effective.

PROOF. We have that Weil-NS(Xo) = V & Weily (Xo) where V is a finite dimen-
sional vector space. Furthermore, Weily,(Xo) is f*-invariant as f is an endomorphism
of Xp. In the proof of Theorem [3.28] for every completion X we can consider the cone
Cy < Divy, (X)R of nef, effective divisors supported at infinity. By Theorem [2.4] there
exists an ample effective divisor H € Divy, (X) such that SuppH = 0xXp. Therefore,
Cy is a closed convex cone with compact basis and non-empty interior, the Perron-
Frobenius type argument shows that there exists 8y € Cy such that f;0% = px6x and
the rest of the proof is unchanged. 0

THEOREM 11.16. Let Xo be an irreducible normal affine surface such that K[ Xp|* =
k* and Pic’(Xy) = 0. Let f be a dominant endomorphism such that M (f)* > A (f),
then there exists a unique valuation v, centered at infinity up to equivalence satisfying

VP e k[Xo],v+(P) <0 (331)
f*v* = 7\41 (f)v* (332)
Zg, >~ (333)

In particular, there exists w € Cartieroo(Xo)L such that 0, = w+Zy,. Furthermore, V.
is not a curve valuation.

We call v, the eigenvaluation of f.

PROOF. By Theorem [3.28| there exists nef classes 0,,0* € L2(Xy) that satisfy
(1) f*6* = 1,0
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(2) f*e* = }\rle*
(3) Yae L2(Xy), ﬁ(f")*oc — (0, -0)0*

Let X be a completion of Xo. Write the decomposition 0, = w + Z with w € Div,, (X )+

and Z € Weily, (Xo)g nL?(Xo). Let E be a prime divisor at infinity in X such that
Zord, - 0™ > 0, it exists because 0* is effective and nef. Then, Item (3)) and the continuity
of the intersection product in L?(Xg) imply that for all D € Cartiery (Xo),

Zuse+ (35 (17D ) = oy 00 D) = (Zogy 0)2:D) (534
1

Now, set v, := %,lz( f™)sordg. Equation shows that Z, converges towards Z in
Weily, (Xo). But, for all n, Zy, belongs to hom(Cartierc, (Xo), R)(4) which is a closed
set of Weily,(Xg) by Corollary Therefore, Z € hom(Cartier, (Xo), R) ;) and it
defines a valuation v, by Proposition From the relation f,0, = A0, we get that
[V = AV

Using the decomposition 0, = w + Z,, we have

0<6;=w*+27;, . (335)

Therefore we get 23* # —oo and by Corollary , V. is not a curve valuation.
Now to show the uniqueness of v, if v is another valuation satisfying Equations

(331), (332), (333)), then for all D € Cartiery,(Xy), Item (3] implies

1 * *
ZV'DZK—?ZV'(]M) DE’(ZV'G )(9*-D) (336)
Since v # 0, we get Zy - 0* > 0. And then v = v, up to a scalar factor. |

REMARK 11.17. It can happen that f admits a curve valuation u such that f,u =
M u. For example take the dominant endomorphism of C?

flay) = (5. (337)
Then, A (f) = 3,A2(f) = 6. The curves x = +1 are invariant by f, so they defines curve
valuations at infinity centered at [0 : 1 : 0] in P?. The extension of f to P is the rational
map
fIX:Y:Z]=[X°2:Y*: 2°] (338)
We see that p = [0: 1: 0] is a fixed point of f. Take the local coordinates u = X /Y,v =
Z/Y, then we have
flu,v) = (v, (339)
The curve x = +1 becomes u = +v in these coordinates. We can see that they are
both invariant by f and their curve valuations satisfy f.u = 3u. Now, if vy ; is the
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multiplicity valuation at p, then we get also that f.v1 1 = v33 = 3v1 1. Thus, this is the
eigenvaluation of f and it is divisorial.

COROLLARY 11.18. With the hypothesis of Theorem[I1.16] The dynamical degree
A1 (f) is a Perron number of degree < 2. More precisely,
o If v, is divisorial or infinitely singular, then Ay € Z~ .
o If Vv, is irrational, then Ay is a Perron number of degree 2, in particular M ¢ Z.

This finishes the proof of Theorem [A]

PROOF. By Theorem [[1.16] f admits an eigenvaluation v, satisfying Equations
(331)), (332)), (333). We know that v, cannot be a curve valuation, so there are three
cases. It can either be a divisorial valuation, an irrational one or an infinitely singular
one. Hence, v.(P) = oo < P = 0 and it defines a valuation over K = Frack[Xp]. Let
G = v(K*) be the value group of v,.. The value group of f, v, is a subgroup of G and
[+« induces a Z-linear map f; : G — G.

(1) If v, is divisorial, then G is isomorphic to Z. Since f.V. = Ajv, we get that
A1 is an integer.

(2) If v, is irrational, then G is isomorphic to Z?. Since fiVs = AV, Aq is the
spectral radius of a 2 x 2 matrix with integer coefficients. Therefore, it is
a Perron number of degree 2 by Proposition which will be proven in

SILLA4
(3) If v, is infinitely singular. We will show in Proposition page [109] the
following.

CLAIM 11.19. There exists a completion X of Xo such that p := cx(v) € E
is a free point at infinity , the lift f : X — X is defined at p, f(p) = p and f
contracts E to p.

Suppose the claim is true. Let (z,w) be local coordinates at p such that
z = 01is a local equation of E, f*z is of the form z°®(z,w) where ® is a unit.
Then,

MLy, (E) = Ly, (E) = Lv,(f"E) = aLv, (E). (340)
Since Ly, (E) > 0 we get A; = a and it is an integer.
0

11.4. The dynamical spectrum of the complex algebraic torus

For an algebraic variety V, we have defined in the introduction the dynamical spec-
trum of V by

A(V):={\(f): f€End(V)}. (341)

Recall the definition of Perron numbers, given in the introduction.
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PROPOSITION 11.20. For any field k, A(G,zn) is the set of Perron numbers of degree
<2

PROOF. Any endomorphism f of G2 is given by the composition of a monomial
transformation and a translation. Let A be the matrix associated to the monomial trans-
formation of f. Then, A;(f) is equal to the spectral radius p of A. We show that p
is a Perron number of degree < 1. Let P = T2 — (TrA)T + detA be the characteristic
polynomial of A. Set A = (TrA)? —4detA the discriminant.

If A <0, then detA > 0 and the two roots of P are complex conjugate and their
modulus is v/detA, so p = v/detA which is a Perron number of degree 2 if detA is not
a square in Z, otherwise it is a positive integer.

If A =0, then (TrA)? = 4detA. Therefore TrA is even and P = (T — %)2, SO
p= ‘%\ which is a positive integer.

IfA>0,seta:=TrA. Ifa> 0, thenp = %Z which is the largest root of P and so
p is a Perron number of degree 2. If a < 0, then p = #E which is a Perron number
of degree 2 as it is the largest root of T2 + aT + detA. O

By Theorem |A any normal affine surface satisfies A(Xy) = A(G2). Thus, A(G2)
1s maximal and one might think that this is a characterisation of the algebraic torus but
this is not the case. We now prove Theorem [B| which states

A(A%) = A(G2). (342)

PROOF OF THEOREM [Bl By Theorem|12.1|and Proposition|11.20|we have A(A?) c
A(G2)). We show the equality using the following lemma.

LEMMA 11.21. Every Perron number of degree < 2 is the spectral radius of a2 x 2
matrix with nonnegative integer entries.

Using the lemma, we have that every A € A(G2,) is the dynamical degree of a mono-
mial transformation of A2, thus A(A?) = A(G2). O]

PROOF OF THE LEMMA. Let A be a Perron number of degree < 2.
0
0 1)
If A = \/m with m a positive integer which is not a square, then A is the spectral

radius of <0 l).
m 0

If A is an integer then it is the spectral radius of
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Finally, suppose A is the largest root of T? —aT + b witha > 0,b # 0. If b < 0, then

A is the spectral radius of _ab (1)) . If b > 0, then the discriminant must satisfy
2 a\?

A=a —4b>0:><§> ~b. (343)
If a = 2k is even, then A is the spectral radius of
k 1

(k2 b k) . (344)

If a = 2k + 1is odd, then (k + 1/2)?> > b = k(k + 1) > b and A is the spectral radius of

k 1
<k(k+1)—b k+1)' (343)

O



CHAPTER 12

Local normal forms

We now suppose that we are in the conditions of Theorem 1.e either chark =
0 or chark > 0 and f is tamely ramified, e.g an automorphism. Since everything is
defined over a finitely generated field over the prime subfield of k, we can suppose that
k is a subfield of C,, which is a complete algebraically closed field. We show that the
existence of this eigenvaluation allows one to find an attracting fixed point at infinity
and a local normal form at this fixed point.

THEOREM 12.1. Let Xo be an irreducible normal affine surface over a complete
algebraically closed field C,. Let f be a dominant tamely ramified endomorphism of
Xo such that A2 > Ay. Suppose that Pic®(Xy) = 0 and k[Xo]* = k* then

(1) If v, is infinitely singular or irrational, there exists a completion X such that
the lift f : X — X is defined at cx(V+), f(cx(Vs)) = cx(Vs) and f defines a
rigid contracting germ of holomorphic function at cx (V) with no f-invariant
germ of curves at c¢x (V). Furthermore, there exists an open (euclidian) f-
invariant neighbourhood U* of cx (V) such that f(U*) € U*. We have the
following local normal form:

(a) If v, is infinitely singular, cx (V) € E is a free point and f has the local
normal form and if char C, = 0 with {x = 0} a local equation of
E )\«1 =dac Z;z.

(b) If v is irrational, cx(V.) = E N F is a satellite point. The local normal
form is monomial (359) with (x,y) associated to (E,F). The dynamical
degree \| is the spectral radius of the matrix (ai j). It is a Perron number
of degree 2; in particular My ¢ Z.

(2) If v is divisorial, then there exists a completion such that cx(V.) is a prime
divisor E at infinity. In that case, E is f-invariant and M| € Z>; is such that
fxE = ME + D where D € Divy,(X) and E ¢ Supp D.

(a) Up to replacing f by some iterate, there exists a noncritical fixed point
pPEE of fig, p=E nEy is a satellite point, [ : X --» X is defined at p,
f(p) = pand f is a rigid germ (not necessarily contracting) at p with E
the only f-invariant germ of curves at p. The local normal form of f at p
is 21)) with (x,y) associated to (E,Ey) and A| = a.

108
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(b) The curve E is an elliptic curve and fg is a translation by a non-torsion
element.

In particular, the dynamical degree of f is a Perron number of degree < 2, and if
it is not an integer then the eigenvaluation v, of f is irrational and the normal form is
monomial.

We will call[(2)b]the elliptic case. The rest of this section is devoted to the proof of
Theorem [I2.1], we will prove the Theorem page [123]

To prove the theorem we need to understand the dynamics of f, on the space of
valuations.

PROPOSITION 12.2. Let v € Vy, such that Zy € L?(Xo). If Zy-0* > 0, then 55 fiv
1
strongly converges towards (Zy - 0% )Vv,.
PROOF. This is a direct consequence of Equation (85) and Corollary[I1.§] O

We will use this to show that f admits a fixed point at infinity on some completion
and that f contracts a divisor at infinity there.

For the rest of Chapter [[2] we suppose that we are in the conditions of Theorem
11.16l

12.1. Attractingness of v, the infinitely singular case

For the infinitely singular case we do not assume chark = O or that f is tamely
ramified. We show the following

PROPOSITION 12.3. Let Kk be an algebraically closed field (of any characteristic).

If the eigenvaluation v, is infinitely singular, then there exists a completion X of Xy
such that

(1) p:=cx(vs) € E is a free point at infinity.

(2) f* r[/X(p) = (VX(p);

(3) f contracts E to p.

(4) Let fo : Vx(p;m,) — Vx(pimy), then for all v e Vx(p;m,), fIV — V..
Furthermore, the set of completions Y above X that satisfy these 4 properties is cofinal
in the set of all completions above X.

Let X be a completion of Xy such that cx(v,) is a free point px € Ex. Such a
completion X exists and there are infinitely many of them above X by Proposition
Let Y be a completion above X such that cy(v.) on Y is a free point py € Ey and such
that the diagram
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commutes, where F is regular and F(py) = px. Let x,y be coordinates at px such that
x = 0 1is a local equation of Ex and z,w be coordinates at py such that z = 0 is a local
equation for Ey. We use the notations of Chapter We have that f. % (py) < Vx(px)

by Lemma|11.12| We define F, : T4 (py;Ey) — Vx(px,m,y) as follows:
F*V

M e Y S R) 40
Similarly, we define
TC*V
Yve rI/'Y(py;Ey), TC.(V) : (347)

~ min (v(m*x), v(n*y))

By Propositionitem (1), the map . : Ty (py;Ey) — Vx(px;m,y) is an inclusion
of trees and allows one to view Uy (py;Ey) as a subtree of Ty (px;m,y).

See Figure (1} The tree Vx(px,m,y) is in black with its root Vi, in blue, the
tree V¥ (py;Ey) is in orange with its root ordg, in red. One can see how T, maps
homeomorphically 7% (py;Ey) to a subtree of Vx (px,mpy ).

FIGURE 1. The embedding 7,
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REMARK 12.4. Since the orders Smpy and <g, are compatible on V¥ (py;Ey) and

Te V¥ (py; Ey) we will not write T, or <g, when no confusion is possible to avoid heavy
notations.

By Proposition[5.28] we have the following relation

O, (Ttt) = O, (Tea 0rdg, ) + b(Ey) 0tz (1) (348)

where b is the generic multiplicity function of the tree Vx (p;m,,) and O, oy » OEy are the
skewness functions defined in Chapter[5] Indeed, with the notation of Proposition[5.28§]
VE, = Tle OI'dEY .

LEMMA 12.5. There exists v € Vy(py;Ey) such that v <V, and for all u >,

min (u(F*x),u(F*y)) = b(Ey)A. (349)
Le set U = {u >V}, we have Fy = ﬁ over U. In particular, F, is order preserving

over U and F,([V,V.]) [Vm,,X ,V*]-

PROOF. Using Proposition[5.3] we see that the map v — min(v(f*x, f*y)) is locally
constant outside a finite subtree of 7y (py;Ep, ). Indeed, one has f*x = [ [, y; with y;
irreducible and therefore

V(f*x) = Zv(wi) (350)

= Z Oy (V A Vy;)mE, (W;) by Proposition[5.3] (351)
1

Let S, be the finite subtree consisting of the segments [ordg,, Vy,|, then the map y —
u(f*x)) is locally constant outside of S,. Let S be the maximal finite subtree of 1y (py; Ep, )
such that the evaluation maps on f*x, f*y and z are locally constant outside of S. Since
V. 1s an infinitely singular valuation it does not belong to S and these three evaluation
maps are constant on the open connected component V of 1 (py;Ep,)\S containing
V.. Since fiV. = A|V., this means that F,v, = A T,v,. Since the ideal generated by
T*x,T*y is the ideal generated by z2(EY), we have foy = ﬁ and the map F, is order
preserving on V. Following Remark the two orders <m, and <g, agreeonV. Let
v € [ordg,, V] NV be a divisorial valuation, F, sends the segment [V, V.| < U (py;Ey)
inside the segment [V, ,Vi] = Vx(px;mpy ). Notice that U := {u>Vv} < V so the
valuation v satisfies Lemma [12.3] O

PROPOSITION 12.6 ([FJO07], Theorem 3.1). Let v be as in Lemma Forte
[ag, (V),0E, (V«)], let v, be the unique valuation in [V, V] such that ag, (v;) =t. Then,
there exists a divisorial valuation V' € [v,v,]| such that the map
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1 € [ougy (V), 0gy (Vi) ] = O, (FeVr) (352)
is an affine function of t with nonnegative coefficients.

PROOF. Let vi,V2 € T (py;Ey) be such that v < v; < Vv, < V.. Since F, is or-
der preserving on U = {u > v} one has that F, maps [vi,v2] homeomorphically to
[Fovi,Fov2]. Let we Z);p\x be irreducible such that vy > F,Vv», then by Proposition
for all u € [V, V2] one has

Fou(y) 1)
O, (Fopt) = = (353)
o o) ) i (B
Now let yy,---,y, € O/y; be irreducible (not necessarily distinct) such that f*y =
Y1 - Y,. One has,
) = (W) = > oy (1 AV mE, (W) (354)

Take one of the ; and call it yo, we shall study the map p € [V, V2] — g, (U A V).
Let 1o = V2 A Vyy,, this map is equal to &g, on [vq,uo] and constant equal to Oz, (to) on
[0, V2]. Therefore, the map u € [V, V2] — u(f*y) is a piecewise affine function with
nonnegative coefficients of ag, (u). The points on [vy, V2] where this map is not smooth
are exactly the valuations V. A Vy, and there are at most A, of them by Proposition
4.18] Therefore the map u — v(f*y) is an affine function of o, with nonnegative
coefficients on the segment [/, Vv, ] for any ¢/ < v, close enough to V.. 0

As a corollary of the proof, we get the following proposition.

PROPOSITION 12.7. Let v € V¥ (py;Ey) be as in Proposition|12.6| let letvo e [V, V]
and let y € OX ,p be irreducible such that vy > feVo. Then, for all ¢ € Oy py such that
feVo = Vy,, one has two possibilities:

(1) Either vy > Vo.
(2) 0r Vo AVo =Vi AVg < V.
Le the configuration of Figure [2] cannot occur.

PROOF. The map u € [V, Vo] — Oy, (Fopt) is a smooth affine function of o, (u).
If (1) and (2) were not satisfied, then we would get Vo A Vi € [V, V] and this would
contradict the smoothness of the map p € [V, V.| — Oy, (Fout) O

LEMMA 12.8. Let v be as in Proposition If ue [v,v.] is sufficiently close to
V., then Fou > pand Fo({¢/ > u}) € U(V') where V is the tangent vector at u defined
by v. and U (V') is its associated open subset.

We sum up Lemma [I2.8]in Figure 3]
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FIGURE 2. Configuration which is not possible

PROOF. Let U = {u > v}. Recall that F, is order preserving over U. We first notice
that if every u € [v, V] close enough to v, satisfies Fou > y, it is clear that F, {¢/ > u} €
U(V). Indeed, let ¢ > u and set yy := g’ A v, > pu. Then, Fo > Foup > po. In
particular, Fou/ AV, >t/ AV, >

Secondly, by Proposition the map € [0tgy (V), Oy (Vi) | = O, (Vr) is affine
and we know that it is non decreasing.

LEMMA 12.9. Let a : R — R be a non-decreasing non constant affine function that
admits a fixed point ty. If there exists s < ty, a(s) > s then the slope of a is < 1 and for
all't <ty, a(t) > t.

PROOF OF LEMMA [12.9] We can suppose that 7y = 0 by a linear change of coor-
dinate. Then, a(t) is of the form

a(t) = ot (355)
with o0 > 0. Now, if s < 0 satisfies a(s) > s, this means that 0 < o < 1 and therefore for
allt <0,a(t) >t. O

We show that there exists u € [v,V.] such that Fou > u. If not, then for all u €
[V, V.|, Fou < u. Under such an assumption, we show the following

Claim. For all ¢ > v we have Foi/ AV, <t/ AV,

Suppose that the claim is false and let ¢/ be a valuation that contradicts this state-
ment. It is clear that ¢ does not belong to [v,v.]. Pick vg € [V,V,] such that v <
U AV. < Vo< Fou/ AVy. Let@e ay_,,,y be such that vy > 1/ and let y e 5;(,,, be such that
feVe = Vy. Since f is order preserving we get that vy, > Fou' = Fop/’ AV, > vy, therefore
vy > F,vo. But then ¢ contradicts Proposition since Vo A Vo =t A Vg € [V,Vo].
So the claim is shown.

Now, pick ® divisorial such that Z-6* > 0 by Proposition|12.2|the sequence 7%'11 fro

converges towards (Zg - 0)v.. Hence, there exists an integer Ny > 0 such that for all
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o Vx

7
\\];.
p Y

o
L4

FIGURE 3. An f,-invariant open subset of 1, infinitely singular case

N = Ny, fNv e 1% (py), replace o by M@ and normalize it such that © € V4 (py,Ey).

We can suppose up to choosing a larger Ny that ® > v. In that case F¥® converges

towards V. but by the claim, YN > 0, F¥® A v, < ® AV, which is a contradiction.
Therefore, there exists a valuation u € [V, V[ such that Fou > u. O

PROPOSITION 12.10. With the notations from Lemma we have F,(U(V)) €
U(V) and for all f/ e U(V),

Fou Vi (356)

n——+0o0

for the weak topology.

PROOF. For every i/ in U(7), write i = i/ A V,. By the proof of Lemma ,
F!'(i') — v, for the strong topology. Therefore, F/'t' AV, > F!'(¢') — V. and F'y/
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converges weakly towards v, because for all ¢ € Oy, irreducible, we have

F(1)(9) = augy (F' Ave)mEy (@) (357)

For n large enough we have F't// AV, = Vi A Ve, hence F't AVg = Vi A Vg and
FJ(U)(@) = agy (Vs A Vo), (@) = Vi (9) (358)
]

PROOF OF PROPOSITION[I2.3] Let v be as in Proposition [I2.6] Let v, be the
infinitely near sequence of v, (see Proposition [5.26). We have for n large enough
vy, € [v,V.] and v, satisfies Lemma Set u = v, for some n large enough and let
Z be a completion such that cz(u) = E and cz(v.) =: p € E is a free point. The open
subset U(V') associated to the tangent vector at u defined by v, is exactly the image
of V4(p) in Y (py;Ey). By Proposition [12.10, F.U(V) € U(V), this means that
f+V(p) € Y (p). By Lemma [11.12] f is defined at p, f(p) = p and since Fou > p,
we get f contracts E to p. We have that for every u e Vz(p;m,), flu — v, also by
Proposition [[2.10]

The statement about cofinalness follows from the fact that the sequence of infinitely
near points associated to v, contains infinitely many free points, so for every comple-
tion X of Xy, there exists a completion above it where the center of v, is a free point at
infinity. U

12.2. Attractingness of v., the irrational case

Suppose now that chark = 0 or that f is tamely ramified, this is necessary as we
will use Theorem [2.9]in this paragraph. Suppose now that v, is an irrational valuation.
There exists a completion X such that the center of v, on X and on any completion
above X is the intersection of two divisors at infinity E,F. We still write f : X --» X
for the lift of f.

Let X; = X and for all n > 1, let X,,;1 be the blow up of X,, at cx, (V). (The center
of v, is always a point since Vv, is not divisorial). Let p, = cx,(v«) and E,, F, be the
divisors at infinity in X,, such that p, = E,, n F;,. A consequence of Theorem [2.9]is

PROPOSITION 12.11. There exist integers N = M such that the lift f: XN — Xu

is regular at py := cx, (V) and such that f is monomial at py in the coordinates that
have Ey, Fy and Ey, Fy for axis respectively.

PROOF. Apply Theorem 2.9to f : X --» X. There exist completions ¥,Z above
X such that the lift F : Y — Z of f is regular and monomial at every point. Let Ny =
max {N : Y is above Xy} and define Nz in the same way. By construction, the morphism
of completions T : Y — Xj, consists of blow up of points that are not py,. The same
holds for t: Z — X,. This shows that the lift f : Xj, --» Xy, is defined at py,. We
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therefore have that f(py,) = pn, because f.(V.) = AV, and f is monomial at py, in
the coordinates that have Ey, r,, and Ey,,Fy, for axis respectively by Theorem 2.9
We set M = Nz. If Ny < M, we keep blowing up py, until Ny > M. This does not
change the result because in local coordinates the blow up is given by a monomial map
7t(u,v) = (uv,v) where u and v are local equation of the prime divisors at infinity to
which the center of v, belong. O

Using this we show

PROPOSITION 12.12. There exists a completion Y such that
(1) The lift f:Y — Y is defined at p = cy (Vi);

~

(2) f(p) = p; .

(3) If E, F are the two divisors at infinity such that p = E N F, then f contracts at
least one of the two divisors and ]?2 contracts both of them.

(4) Define fo: Vy(p;mp) — Vy(p;my,). Forall ue Vy(p;my), fimu — v, for the
weak topology of Vy(p;mp).

Furthermore, If Z is a completion above Y, then (1)-(4) remain true.

PROOF. Let N > M given by Proposition[I2.11] We still write f : Xy --» X) for the
lift of f and ® : Xy — X)s for the composition of blow ups. Let x,y be local coordinates
at py such that Ey = {x =0} and Fy = {y = 0} and let z,w be local coordinates at py,
such that Eyy = {z =0} and Fjy = {w = 0}. Both maps f and ® are monomial at py
with respect to these coordinates. Write

flxy) = (x4, x7). (359)

Consider the tree Vk,,(p,,; Em) with its order <y, its skewness function oy, and

the generic multiplicity function bys. This tree is rooted in ordg,, and Fjs defines the
1 1

end v,, that we denote by vg,,. Let Vg, = WordEN,vFN = WordFN. Suppose

without loss of generality that Vg, <uy Vfg,. Consider the tree ’VXN (pn;En) with its
order <y and skewness function oiy. We have by Proposition[5.20]item (2) that the map
Te : Vxy (PN EN) — Vi, (Pms Eyr) is an inclusion of trees. Hence, the orders <7, <y
are compatible and Y, (pn;Ey) is naturally a subtree of V,, (pa; Ey) via the map ..
We also have the map f. : Vx, (pn;EN) — YV, (Pm; Em). The root of Vx, (pn;EN) is
ordg, and Fy defines the end v, in ‘VXN (pn; En) that we also denote by vg,. We have
that ordg, <y Vi« <n VE,. Using Equation (359)), we can write

Y

Vve Vx, (pv:En),  fo(V) = a0y

(360)

Now, both maps f. and 7, send the segment [ord Ey, Vg, | into the segment [ordg,,, VF,, |
via a Mobius transformation. Indeed, if vi; € T, (pn;En) is a monomial valuation at
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PN, then fuVi; = Vaipr c11q and one has by Lemma [5.13]and Equation (360)

) c+on(viy)d

- a+oy(vig)b = My(on(viy)) (361)

(XM(foVL[) = Oy (Vl c+td
Ya+th

b
the same process with the map 7, to get a Mdbius transformation represented by a
matrix My. Set M to be the Mobius transformation Mg o M, L

) - ) . ) d c
Where My is the Mobius transformation associated to the matrix ( a) . We can do

LEMMA 12.13. The Mobius map M is loxodromic with an attracting fixed point

tx = O (TeVy) and the multiplier of M at t, is < % < 1.
1
In particular, for every vi,va € Vx, (pn; En) close enough to v, such that Vi < Vv, <

Vo, fo([V1,V2]) € [TeV],TeV2].

PROOF OF LEMMA [12.13] First of all, M cannot be of finite order. Indeed, for
every Vv € [Vgy, Vg, | sufficiently close to v,, we have Z, - 6% > 0 since 6% -0, = 1. So
fIv — v, by Proposition [12.2]

We know that M(t,) = t, and we want to show that |M'(t,)| < 1. The only way
that the proposition is not true is if ¢, is a parabolic fixed point of M. This means up
to reversing the orientation that ¢, is attracting for ¢ < ¢, sufficiently close to ¢, and ¢,
is repelling for ¢ > 1, sufficiently close to . In particular, there exists ¢’ such that the
segment [t' .1, is sent strictly into itself, so we can iterate M on it, and there exist two
constant c1,c2 > 0 such that - < |[M"(s) —t,.| < <2. We will show that we have actually
an exponential speed of convergence and this leads to a contradiction. Let v be the
valuation centered at py such that o, (TeV) = ¢/, we can suppose that v is divisorial up
to shrinking [¢',,]. Since fI'v — V., we have Z, - 6* > 0. We have by Equation (84)

1 k 7\.2 k/2
ﬁ(f*zv) Ey = (0+-Ey)(Zy-0")+ 0 (ﬁ) (362)
1 1
1 A\ 2
k * 2
ﬁ(f*zv)-FM: (9*-FM)(ZV-9 )—I—O ((ﬁ) ) . (363)
1 1
Using Lemma [5.13| we get that
k k/2
k | | fsl Fu 8k Fy| L)
M (o (TeV)) — 1| = 7, Ey 8 ‘EM' =0 ((7@ . (364)

Therefore the speed of convergence is exponential and this shows that |M’(z,)| <
1. U
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End of Proof of Proposition [12.12,- By Lemma|12.13} pick vi,vs2 € Vx, (pn;En)
divisorial sufficiently close to v, such that

OI'dEN <N V1 <Ny Vi <N V2 <N VEy (365)

and

fe([V1,V2]) € [TeV1, TaV2]. (366)
If f, is order preserving, then we must have fo[Vi, V2] C|TeVi, TeV2[. If f, is not order-
preserving, it is possible to have f,(V2) = TeV] and fo (V1) €|TeV, TeV2[. In that case,
f? is order-preserving and we have f2[v{, V2] C|TeVi, TeVa|.

Let Uy = {V:Vi <V AVE, <V2} < TVx,(pn;En). It is clear that vg, ¢ Uy. Let
VRS % be such that vy >y fo([V1,V2]). Let yi,---,y, € Oﬁ be irreducible
such that f*y =y - - - y,. We can shrink the segment [v{,V;] to make sure that none of
the y; belong to Uy (see Figure[d). If this is the case, then for all u € Uy, set i = u A va,
then for all i

M A Vy, = A Vy, (367)
and

UAVE, =HUAVE,. (368)
Now, for all u € Uy, by Equation (360) and Proposition [5.3]

_ HUTY) 2o vym(Yi))

. = 369
() = 0L P (369)
By Equations and (368), we get
(fer) (W) = (fert) (W). (370)
This means that
Vue Uy, o((forr) AVy) = 0ar((foll) A Vy). (371)

In particular, f,(Uy) € Te(Un). So we can iterate f, on Uy.
PROPOSITION 12.14. For every ue Uy, fllu — V. for the weak topology.

PROOF. Let u€ Uy and let i := u A vo. We have fli — v, for the strong topology

by Lemma [12.13] By equation (368)), we have fllu A vy = flui A vo. Therefore for
¢ € Oyy,py irreducible and for n large enough, f'u A Ve = fl1i A Ve. Therefore,

fou(@) = o (fou A ve)my(9) (372)
= oy (fol A Ve)mu(9) (373)
= foli(o) P Vi (9). (374)

O
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FIGURE 4. An f,-invariant open subset of 7/, irrational case

Now pick a completion X above Xy such that for i = 1,2, the center of v; is a
prime divisor E; at infinity such that £7 and E; intersect at a unique point p. We have
cx(V«) = p. The open set Uy < Vx, (pn; En) is the image of Vx (p; E1) via the inclusion
Vx(p;Er) — Vxy(pn;En). Since foUy < e (Uy), this shows that f,. Vx(p) < Vx(p).
Therefore by Lemma[[1.12]the lift f : X --» X is defined at p, f(p) = p and since f,
(or f2) contracts the segment [v{,V>] we have that f contracts E; and E; to p. We have
for every u e Vx(p;m,), fiu — V. by Proposition[12.14]

If Y is a completion above X, then cy (V) = F; N F> where F; is a prime divisor at
infinity because V. is irrational. The segment [VF,,VF,]| is a subsegment of [vg,,VE, ]
and the same proof applies. This shows that Y satisfies also Proposition[12.12] 0

12.3. Attractingness of v.., the divisorial case

Here we also suppose that f is tamely ramified. Suppose that v, is divisorial and
let X be a completion such that the center of v, on X is a prime divisor E at infinity.
Since f,ordg = Ajordg we have that f induces a dominant rational selfmap of E.

LEMMA 12.15. Either there exists an integer N > 0 such that ‘]IV;

ical fixed point on E, or E is an elliptic curve and f|g is a translation by a non-torsion
element of E.

admits a noncrit-
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PROOF. The rational transformation f induces a rational selfmap on E. If E is

rational, then E ~ P! and f|E 1s given by a rational fraction % and therefore admits
fixed points. It admits a noncritical fixed point if and only if f is not a rational fraction

of the form # where p = chark that is if and only if fig is separable. If E is of
1(xP) |

general type, then some iterate of f induces the identity on E. Finally, if E is an elliptic
curve, then fig =7, 0g where g : E — E is a homomorphism of elliptic curves and
t_p is the translation by —b. We have fip(p) = p < g(p) — p = b. Thus fg admits a
fixed point if and only if g —id is not the trivial homomorphism, i.e g # id. Now, by
[S1109] II1.5, there exists an invariant 1-form ® with no poles or zeros on E such that
g*® = a(g)w where a(g) € k. If a(g) # 0 then every fixed point of f is non-critical, if
a(g) = 0, then every fixed point of fi¢ is critical and f|g is inseparable.

Suppose that E ~ P! or E is an elliptic curve with f|e inseparable. We show that
this is not possible if f is tamely ramified. Pick a general free point p on E, then f is
defined at p and we can find local coordinates (x,y) at p and (z,w) at f(p) such that
x=0and z =0 is a local equation of E at p and f(p) respectively and f*w is divisible
by y. Thus f is of the form

Fx,y) = (My(x,y),y"o(x,)) (375)

with Y, @ invertible regular functions and m is an integer divisible by chark. Indeed, E
is f-invariant and y = 0O is the local equation of an algebraic curve C such that C n Xy #
& so it can’t be sent to E by f because f is an endomorphism. Let C; be the curve
f(C) with its reduced structure, then we have f, ordc = mordc, and this contradicts the
fact that f is tamely ramified because chark|m. U

In the case where f|g is not a translation by a non-torsion element on an elliptic
curve, f defines a regular fixed point germ at p and we can proceed as in [FJ07] §5.2 to
show that there exists a completion X that contains a prime divisor Ey at infinity such
that p = E n Ej and f, maps the segment of monomial valuations [V, Vg, | strictly into
itself. Here is how to proceed.

Set Xop = X,po = p. Define the sequence of completions (X,) as follows: w, :
Xn4+1 — X, 1s the blow up of X,, at p,, and p, is the intersection point of the strict
transform of E with the exceptional divisor of 7, . We still denote by E its strict
transform in every X,,. For every n, we have f| £(pn) = ppandif f: X, --» X is defined

at pn, we have f(p,) = p. We apply Theorem[2.9)to get

PROPOSITION 12.16. There exists integers N = M such that the lift f : Xy --+ Xpy is
defined at py, f(pn) = pm. Furthermore, there exists local coordinates (x,y), (z,w) re-
spectively at py, py such that x = 0 and z = 0 are local equations of the strict transform
of E in Xy and Xy respectively and f is monomial in these coordinates.

The proof is the same as in Proposition[12.T1]



12.3. ATTRACTINGNESS OF v, THE DIVISORIAL CASE 121

PROPOSITION 12.17. If v, is divisorial, there exists a completion X such that

(1) cx (V) is a prime divisor E at infinity.

(2) E intersects another prime divisor E at infinity and we set p = E N Ej.

(3) Up to replacing f by an iterate, f : X --+ X is defined at p, f(p) = p.

(4) p is a noncritical fixed point of fig.

(5) f leaves E invariant and contracts E to p.

(6) Define fo : Vx(p;E) — Vx(p;E), then for all u e cVx(p;E), flu— ordg for

the weak topology.

Ifn: (Y,Exc(m)) — (X, p) is a completion exceptional above p, then all the item above
remain true in Y.

PROOF. Let N > M be as in Proposition [I2.16] Let F : Xy --+ Xjs be the lift of f.
We can suppose that N > M and denote by 7 : Xy — Xjs the morphism of completions.
We therefore have a map f, : V¥ (pn,E) — Vx(pum, E). Again, the tree 15 (pn,E) is a
subtree via the map 7, and they are both rooted at the divisorial valuation ordg.

Let (x,y),(z,w) be the local coordinates at py and py respectively given by Propo-
sition [I2.16] We have that x = 0 is a local equation of E in Xy and z = 0 is a local
equation of E in Xjy.

flxy) = (xayb 7xcyd)- (376)
Since we know that E is not contracted by f we actually have ¢ = 0. We can therefore
write
fev

Vve Vxy(pn:E),  fo(V) = a0

(Recall from Chapterthat Vxy (pn; E) is defined by the normalization v(E) = 1). We
have

(377)

felordg,vy] < [ordg, vy ] (378)
and the map is given by the following formula
foVis =V, s . (379)
’a+sb

As in the irrational case, we can consider the matrix My and My and study the type of
the Mobius transformation induced by M, Lom r. Since ordg 1s a fixed point, we show
that it is not repelling on the segment [ordg, vy].

Let vg € [ordg, V] be a divisorial valuation. We have f,([ordg,vo]) < [ordg, V).
Let Uy = {u:ordg <uAvy <vo} < Vx,(pn;E). It is clear that vy ¢ Uy. Let y e
% be irreducible such that vy > fo([ordg,vo]). Let yi,---,y,,€ 5XN,,,N be ir-
reducible such that f*y = y;---y,. Up to shrinking the segment [ordg,Vvo| we can
suppose that none of the vy, belong to Uy (See Figure |§]) If this is the case, then for all
u e Uy, set i = u A Vo, then for all i
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Now, for all u € Uy, by Equation (377)) and Proposition [5.3]
ou(fw) oy (A vy ) m(w)

A - = 381
(for) (W) =~ by) a1 baly) (381)
By Equation (380), we get
(fer) (W) = (fer) (W). (382)
This means that
Ve Uy,  or((fok) A Vy) = aar((fafi) A Vy). (383)

If v e V., is divisorial such that Z, - 6* > 0, then % fiv — v, by Proposition|12.2| Then,
1

there exists Ny > 1 such that for n > N, % fiv € Uy. Replace v by X%O No(v). If ordg
1

was a repelling fixed point, then we could not have fJ'v — v, by quuation (380) and
(383). Therefore, we can pick v such that f.[ordg, Vo] € Te[ordg,Vo]. In that case
fo(Un) € me(Uy). So we can iterate f, on Uy.

FIGURE 5. An f,-invariant open subset of V., divisorial case

PROPOSITION 12.18. For all ue Uy, flu— ordg for the weak topology.

PROOF. The proof is similar to the proof of Proposition|12.14] Let u e Uy and set
U = u A V. Since ordg is an attracting fixed point for f, and f,[ordg, Vo] € [ordg, Vo],
we have I — ordg for the strong topology. Then, by Equation (383)), flu A vo = fli.
Let ¢ € Oy, py be irreducible such that @ is not a local equation of E, then for n large
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enough
Fou(Q) = o (fiunve)me (o) (384)
= 0 (fJAVe)me () (385)
= o (fom)me (@) —0 (386)
0J

Let Eq be the divisor associated to the divisorial valuation v and let Z be a comple-
tion such that cz(vo) is the divisor Ep and such that Ep N E is a point p. Then, the open
subset Uy corresponds to V%(p) and we have f. V%(p) = Vy(p). By Lemmal[l1.12] we
have that the lift f: Z — Z is regular at p, f( p) = p and since we know that fovo < vo

and f,ordg = A;(f)ordg we have that f contracts Ey at p, E is f-invariant and for all
pe Vy(p;E), fiu — Vs by Proposition[12.18]

If m: (Z,Exc(m)) — (Z,p) is a completion exceptional above p, then Exc(m) is
a tree of rational curves, let E}) be the irreducible component of Exc(m) that intersect
the strict transform of E. Then E| corresponds to a divisorial valuation v, such that
ordg = V. < V{, < V¢ and all the proofs above apply so Proposition holds also for
Z.

LEMMA 12.19. When V. is divisorial, i < Ay, with equality if and only if fig :
E — E has degree 1.

PROOF. Let X be a completion such that the center of v, is a prime divisor E at
infinity. Since f,V. = A1V, we have that f*E = A E + R where R denotes an effective
divisor supported at infinity. Now, we also have f.E = dE + R'. From the equality
feof* =MA\id, we get that Ad < A,. In particular, A} < A;. O

12.4. Local normal form of f
We are now ready to proof Theorem[12.1]

PROOF OF THEOREM [I2.1l Suppose V. is infinitely singular. From Proposition
12.3] there exists a completion X such that cx(v.) =: p € E is a free point, f : X --» X
is defined at p and f,.(Vx(p)) € Vx(p). We need to show that the germ of holomorphic
functions induced by f at p is contracting and rigid. It is clear that E < Crit(f) (Recall
the notations from . If Crit(f) admits another irreducible component, it induces a
curve valuation in Vx (p), we can blow up p to get another completion above X satisfy-
ing Proposition such that V% (p) does not contain any curve valuation associated
an irreducible component of Crit(f). Thus, f is rigid at p it remains to show that it is
contracting. Let (x,y) be local coordinates at p such that x = 0 is a local equation of E.
We must have that f*x = x*@ witha>1and @ O)é » because no other germs of curve
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is contracted to p or sent to E since f is an endomorphism of Xj. Since v, (E) > 0 and
f¥Vs = A1V, we get that

Mvi(x) = fuva(x) = vi(x"@) = avi(x). (387)

Thus, A; = a is an integer. Now, since E is contracted by f, we get that f*y = xy with
VY € Ox p but we must have Y € m;, because the image of the curve y = 0 is a curve that
contains p. Hence, we get that

flay) = (M1o.xy) (388)
with ¢ € Oy , and y € m),. Consider the norm ||(x,y)|| = max(|x[,[y[) associated to
the coordinates x,y and let U* be the ball of center p and radius € > 0. If € > 0 is
small enough, then U* is f-invariant and f(U*) € U*, so f is contracting at p. Finally,
there are no f-invariant germ of curves at p. Indeed, if ¢ € O/X\J, is f-invariant, then
feVe = Vo. But we have by Proposition[I2.3]that f;'Vy — V. and this is a contradiction,
Thus, we get that f has the local normal form of with a = Ay. If k = C, Looking at
the classification of the rigid contracting germs in dimension 2, we see that f is in Class
4 of Table 1 in [Fav00] hence of type thus there exists local analytic coordinates

(z.w) at p X
flz,w) = (2% Zw+ P(2)) (389)
where a > 2,c¢ > 1,L e C* and P is a polynomial such that P(0) = 0. Since E is the
only germ of curve contracted by f (all the other germs of analytic curves are contained
in Xy they cannot be contracted to p by f since f is an endomorphism of Xj), we have
that z = 0 is a local equation of E. Furthermore, since f does not have any invariant
germ of analytic curve, we get that P = 0.
Suppose now that v, is irrational, by Proposition [I2.12] there exists a completion
X of Xp such that the lift f: X --» X is defined at p = cx(V.), X contains two divisors
at infinity £, F such that p = En F and f contracts both £ and F at p. It remains
to show that f is contracting and rigid at p. First we can suppose up to further blow
ups that Crit(f) n Xo = &J. Therefore f is rigid, now since both E, F are contracted
to p, f is contracting. Finally, there are no f-invariant germs of curves at p since for
all ue Vx(p;my), filu — V. by Proposition Let (z,w) be local coordinates at p
associated to (E, F). We have that f is of the pseudomonomial form

flz,w) = <zawb(p,zcwd\|l> . (390)

with @,y e O)ip and a,b,c,d > 0. Notice that f, ordg = v, and f,ordr = v, 4. Con-
sider the segment of monomial valuations / centered at p inside Vx(p;m,) we have
that f, : I — I is injective, therefore (a,b) is not proportional to (c,d) and ad — bc # 0.
We show that in fact ad — bc is not divisible by chark. Otherwise, there would be pos-
itive integers s,7 such that f.vs, = pvy » and this contradicts the fact that f is tamely
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ramified because the value group of f.v;, in the value group of vy ,» has index divisible
by p. Thus, the normal form of f at p is analytically conjugated to the monomial form

flz,w) = (zawb,zcwd> . (391)

Furthermore the open subset U* corresponding to the ball of radius € > 0 is f-invariant
for € > 0 small enough and f(U*) € U*. In that case, we show that A; (f) is the spectral

radius of the invertible matrix A = <Ccl Z) , hence a Perron number of degree 2. Indeed,

V. = Vg, Where (s,7) is an eigenvector of A for the eigenvalue A;. Since v, is irrational,
we have s/t ¢ Q and therefore A; ¢ Q. Now, when we iterate f, we get that f” has a
monomial form at p given by the matrix A", hence we get

(1))

Now finally, suppose that v, is divisorial. Take a completion X as in Proposition
Let p = E n Ep with v, = ordg. The lift f: X --» X is defined at p. Up to further
blow-ups we can suppose that Crit(f) N Xo = . Therefore, Crit(f) < E U Ep which is
totally invariant as f, Vx(p) € Vx(p) so f is rigid at p. There are no f-invariant germs
of curves apart from E at p since for all ue Vx (p; E), f'u — ordg by Proposition
Let (x,y) be local coordinates at p associated to (E,Ep). Since f,ordg = Ajordg with
A1 =2 we have f*x = xkl(p with @ € Ox . Since no germ of curve is sent to E apart
from Ey, we have that up to multiplying x by a constant that f*x = xMyb (1 + @) with
¢ € Ox . Then, Ey is contracted to p so f*y = y“y with y € O;J, and ¢ = 1 since p is
a noncritical fixed point of f|g. Hence, in these coordinates the local normal form of f

is (21):

Fley) = (¥ (1 + @) (1 +w)) (393)
witha = A =2,b > 1,1 e C* and 9(0) = y(0) = 0. O



CHAPTER 13

Examples

13.1. An affine surface with a lot of nonproper endomorphisms

13.1.1. A family of rational affine surface with no loxodromic automorphisms.
In [Dub04] Example 2.23, Dubouloz gives an infinite family of examples of rational
complex affine surfaces that admit a minimal completion for which the dual graph of
the curve at infinity is neither a zigzag nor a cycle. This means by Theorem [I4.4] that
these surfaces do not admit loxodromic automorphism. The result is the following:
Consider the affine surface Sy A% given by the equation

X'y = P(z) (394)

where n > 2 and P is a degree r polynomial with r > 2 distinct roots. Then, Sy admits
a minimial completion for which the dual graph at infinity is given by

: - (395)

where o is a zigzag of (—2)-curves of length n — 3 if n > 3 and o = (JJ otherwise.

13.1.2. A subfamily with a lot of endomorphisms. In [DP18] §5A, Dubouloz
and Palka study the following family of surfaces
Sn):={"y=7"-1} (n=2). (396)
They fall inside the previous category of affine surfaces; S(n) admits a Z/nZ action
given by
VaeZ/nZ, a-(x,y,z)=(gy,e ) (397)
where € is a primitive n-th root of unity. The quotient S(n)/(Z/nZ) is an affine surface
S'(n) of equation

S'(n) = {u(1 +uw) =w"} (398)
and the quotient map 7t : S(n) — §'(n) is given by
n(x,y,2) = (", 3,%2). (399)

We have the surprising result
126
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PROPOSITION 13.1. For every n = 2 the affine surface S'(n) admits a strict open
embedding into S(n) given by the following formula

Ju,v,w) = (w,vRo(—uv),Ri(—uv)) (400)

where R1(t) = (€— 1)t + 1 and Ry(t) = % € C[t] where € # 1 is an n-th root of
unity. Different choices of € lead to different embeddings that are not conjugated by the

Z/nZ action over S(n).

Hence we can define the endomorphism f : S(n) — S(n) defined by f = jomn. This
yields a nonproper endomorphism of S(n) of topological degree n. We can twist this
example using the following result

PROPOSITION 13.2. Let n > 2 be an integer. Every polynomial P € C|x]| yields an
automorphism gp of S(n) defined by

(z+ P(x)x™")" ="

gr(x,y,2) = (x,y+ ,Z+P(X)x")- (401)

13.1.3. The surface S(2). We treat in details the example of S(2) = {x%y = 22 — 1}.
The Z/2/Z action is given by (—1) - (x,y,z) = (—x,y,—z). To find a minimal completion

of S(2) we follow the computations of [Dub04] Example 2.23. Consider the birational
morphism

0:(x,y,2) €S(2) — (x,2) e A2 P! x P!, (402)

Define the following curves in S(2),Ce = {x =0,z =€} where € = +1,Fp := {0} x
P! F, = {00} x P and L = P! x {0}, then

©:SQ2)\(CruC_y) —>P' xP\(FyUF, UL) (403)

1s an isomorphism with inverse given by

) = (0 (404)
u,v)=\u,—s—,v|.
(p ) ) uz )

The curve C; is contracted by ¢ to (0,€) € Fy. Let F; be the exceptional divisor above
(0,¢€). The lift of @ contract C; to a free point on F; that we call pe. Let X be the blow
up of p; and p_1, then @ induces an open embedding @ : §(2) < X as C; is sent by @ to
the exceptional divisor above pe. Hence, X is a completion of S(2) and the dual graph
of the boundary is
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-2
F
0 0 -2
F, L K
-2
F_;

(405)

Here, we stil denote by F,, Fy, L their strict transform in X. In particular, F, is not
linearly equivalent to Fp but to Fy + Fi + F_; + @(C1) + @(C_1) which is the strict trans-
form of the "original" Fy = {0} x P! < P! x P!,

PROPOSITION 13.3. The surface S(2) satisfies QAIb(S(2)) = 0. For every endo-
morphism f of S(2) such that M (f)? > Ma(f), the eigenvaluation v of Theorem
satisfies cx (V) € L.

PROOF. Since S(2) is birational to A% we have that it is a rational surface, hence
Pic’(S(2)) = 0. It suffices to show that $(2) does not admit any nonconstant invertible
regular function. To do so, we consider the intersection form on Divy,(X) = ZF,, ®
2ZLOLFyDZLF ®ZLF_,. It suffices to show that it is non degenerate. The matrix of the
intersection form in the basis (F.,, L, Fy, F1,F_1)is given by

01 0 0 O

1 0 1 0 0
M=101 -2 1 1 1. (406)
00 1 -2 0
0 0 1 0o -2
It is inversible with inverse given by
—4 4 4 2 2
1 4 0 0 0 O
M'=2|4 0 -4 —2 —2]. (407)
12 0 —2 -3 —1
2 0 -2 -1 -3

Hence the intersection form in nondegenerate on Div,, (X)) which shows that QAIb(S(2))
0.

Therefore, we are in the condition of Theorem Let f be a dominant endo-
morphism with A;(f)? > A(f). Let v, be its eigenvaluation. Then, the invariant class
0. € L2(8(2)) is of the form

0. = w+uZy,. (408)
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with w € Pic(X) N Divy(X)*. Therefore, we must have (Zy,)?> = 0 as w?> < 0 and
since 0, is nef, we have (9*)2 < (9*71/)2 for every completion Y. This implies that
(ZV *7x)2 = 0.

Now, for all prime divisor E of X at infinity, Zq, is given by a column of M —1 In-
deed, M is the matrix of the intersection form in the basis (F,, L, Fy, F1, F_1) and there-

fore M~ ! is the matrix of the intersection form in the dual basis (Zorde s ZLord; s Zordpo »Zord A 7ZordF,1 ) .
For example Z4, = Fy and Zordp, = —Fo+L+Fo+ %Fl + %F_l. In particular, we
have that L is the unique prime divisor at infinity of X such that ZgrdL > 0. This implies

that cx (V) cannot be a free point on a prime divisor E # L otherwise we would get
(Zy *7X)2 < 0. If cx(vs) is a satellite point, then it cannot be Fy N F; because in that case

Zv*,X = A’ZOI‘dFO + ,UZordp8 (409)

with A,u > 0 and looking at the last three rows and colums of M ~1 we would get
(Zv*7x)2 < 0. Hence cx(vi)eLorcx(vy)=L. .

First example of endomorphism.— The endomorphism f = jow is equal to

fx,y,z) = (xz,4y,22% — 1) (410)
Using the map @ : S(2) — A? from Equation (#02)), we have that f is conjugated to
T]:(u,v)eAZ»—>(uv,2vz—1)eA2 411)

Hence we get that A (f) = A2(f) = 2. Consider the completion X of S(2) defined above
with dual graph given by Equation (#03]). We know that the eigenvaluation v, of f must

be centered on L = P! x {o0}. Therefore, we can study the local dynamics of f on L

using M. Let [U : T, [V : W] be the homogenous coordinates of P! x P! such that u = ¥
gn g T

and v = % In homogenous coordinates we get
n([U:T],[V:W)) = ([UV:TW],[2V> - W?: W?]). (412)

Consider the affine coordinates t = 5 andw = % In particular, ¢ = 0 is a local equation
of F, and w = 0 is a local equation of L. Then, in these coordinates we have

2
n(t,w) = (zw,ziv—wz) . (413)

Hence, we get that (0,0) = F,, n L is a fixed point. From m*f = tw we infer
fwordp, = ordg,. Hence, ordg, is not the eigenvaluation of f because A;(f) = 2.
We have that L is contracted to (0,0) so v, must be centered at (0,0). We blow up
(0,0) = Fy n L. Let E be the exceptional divisor and let s,s” be local coordinates at
E n L (we still denote by L its strict transform), the blow up map is given by

n(s,s’) = (s,s5); (414)
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s’ = 0 is a local equation of L and s = 0 a local equation of E.AtEnL, we get

£(s,8) = (SZSQ#W). (415)

Thus, f*s = s2s’ and therefore Sx ordg = 20rd5. This implies that v, = ordg.
Second example.— Consider Proposition|13.2)with P = 1 and f the endomorphism
of S(2) from the previous paragraph. Define g = g; o f, then

g(x,3,2) = (xz,X°2* + 42 + 4y — 2,x°2> + 27 — 1) (416)

Let A?> = P! x P! with affine coordinates (u,v) and the birational morphism ¢ : §(2) —
A?. Then, g is conjugated by @ to

N(u,v) = (wv,u>?* +2v* - 1). (417)

It is an endomorphism of S(2) of topological degree 2. By Proposition|13.3} if v, is the
eigenvaluation of g, then its center must belong to L,,. Consider the affine coordinates
t = 1/u,w = 1/v centered at F,, N Ly, In these coordinates we have

*w?
14212 —12w?
Hence, F,, and L., are both contracted to Ly, N F, = p so it must be equal to cx (V).
Blow up p and let E; be the exceptional divisor. Blow up again the intersection point

of E and the strict transform of L., and let E; be the exceptional divisor. Then there
exists local algebraic coordinates (u,v) at E; N Lo, associated to (E>, Ly, ) such that

1
_ (3
g(u>v) - (u v, 1 +u2(2_u4vz)>

n(ew) = (ew, ). (418)

(419)

we see that the point (0,1) in these coordinates is fixed. Consider the local analytic
coordinates at this point given by (u,w) = (u,v— 1). Then,

glu,w) = (u3(1 +w), —2u* + uzw(u,w)) (420)

where y(u,w) is a holomorphic function with y(0,0) = 0. We have g*u = u3(1 +w)
this implies that A; () = 3 and since A (g) = 3 > A»(g) = 2 we have by Lemma([12.19]
that v, is not divisorial. Therefore, we get that v, is infinitely singular and the center
of v, is a free point on this completion.

13.2. An affine surface with an elliptic curve at infinity with an action by
translation

We show that the Elliptic case in Theorem [12.1{ can happen. Start with a generic
(2,2,2) divisor V in P! x P! x P!, This is a K3 surface. It is given by one equation in the
variables (x,y,z) which is of degree 2 with respect to each x,y, z. The projection on the
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plane P! x P! induced by forgetting the coordinate x yields a 2:1 cover V — P! x P!,
Indeed, we can rewrite the equation of V as

a(y, Z)x2 +b(y,2)x+c(y,z) =0 (421)

where b, ¢ are polynomials in y, z of degree 2 with respect to each variable. Let 6, be the
involution of V that switches the folds of the cover. We can define similarly the involu-
tions ©y,6;. The group generated by G,6,,0; is Z/2Z «Z/27 « Z/27Z (see [Can01al).
Now, we restict our attention to the subgroup generated by oy, 6y. Consider the family
of curves defined by the hyperplane sections Eq := V n {z = a}. The involutions oy, G,
preserve E, for every o Thus, for a very general parameter o the subgroup of Aut(Ey)
generated by Ox|g,,, Oy, 1s isomorphic to Z /22 +Z1)2L.

PROPOSITION 13.4. For o€ C very general, set E := Eq, Xo = P! x Pl\E where we
have identified P! x P! ~ P! x P! x P'("{z = a}. Then, Xy is a smooth affine surface
and there exists two endomorphism f, g of Xy such that

(1) M(f) =hi(g) =Aa(f) = ha(g) = 2.

(2) f|E = Gy

(3) 8|E = Ox

(4) let h=go f, then A (h) = Aa(h) = 4 and h is a translation by a non-torsion
element.

PROOF. We look again at Example[I1.14] We write the equation of E in two differ-
ent ways. There exists degree two rational fractions P(x), Q(x) € C(x),R(y),S(y) € C(y)
such that the equation of E is of the form

¥ —P(x)y+Q(x) =0 (422)

and
X —R(Y)x+S(y)=0 (423)

LetX =P! xPlandletXp =X \E. Let k : Xo — Xo be the endomorphism from Example
11.14, That is k commutes with pr, and acts as z — z> on each fiber with 0,0 € P!
being the intersection points of E with the fiber. We let f be the endomorphism of
X that preserves the fibration pr, and acts on each fiber (~ P') as z+— 1/z> where 0
and oo are the intersection points of the fiber and E. This defines an endomorphism
with A; = A, = 2 and f| g 1s an involution. Indeed, we have f2 = k2, therefore the
eigenvaluation of f must be ordg and A;(k?) = 4. The four points of E where the
discriminant with respect to y vanishes are the four indeterminacy points of f and they
are fixed points of fig. In coordinates (x,y), f is of the form

P(x)y* —2(P(x)* —2Q(x))y + P(x)(P(x)* — Q(x)) )
¥?=2P(x)y+ (P(x)* —20(x)) '

flx,y) = (x, (424)
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It is clear that fip = Oy |-
Now, if we exchange the role of the coordinates x,y, we obtain an endomorphism
g with an expression similar to with (R(y),S(y)) instead of (P(x),Q(x)). Set
h = go f, then A (h) = Ay(h) = 4. Indeed, Ay(h) = A2(f)A2(g). And we have that
NiZosdy, = &x fx(Zoray) = 4Zordy +w with w € Dives (X)L Since Zorq, = gE is nef, ordg
must be the eigenvaluation of 4 and A; (h) = 4.
Now, let A < C be a lattice such that E ~ C/A. An involution of E lifts to a linear
map over C of the form
2 —z4b (425)
with b € C or
Z—>2z+b (426)
with 2b € A. However, (426)) is impossible for Gy or Oy because they admit fixed
points. So, they are both of the form (@23) and we get that Ox|E © Oy is a translation
of infinite order because (G|, (Sy‘E> ~7/27+7/27Z. O

COROLLARY 13.5. The endomorphism go f does not admit an invariant fibration
over a curve.

PROOF. First, go f or any of its iterate cannot admit an invariant curve in Xy be-
cause (go f )‘ g does not admit any fixed point. Now, suppose that there exists a curve
C and a rational transformation ¢ : C --» C such that the diagram

X, %1 x,

b

x -5, x
' '
A
cC — C

We cannot have g(C) > 2 or g(C) = 0 because in both cases some iterate of ¢ has a

fixed point and its fiber would be an invariant curve in Xy. Now, g(C) = 1 is also not
possible because X is rational. Thus, we have a contradiction. O



CHAPTER 14

The automorphism case

Here we suppose that Xj is an irreducible normal affine surface that admits a lox-
odromic automorphism. In this situation, we can actually deduce a lot more from the
result of Chapter [[T} In particular one can first check that X has to be rational, see
[DF01]] Table 1 Class 5. So the condition Pic’(X) is automatically satisfied. We
change the notation for this section, we will denote 6* and 6. by 6" and 6~ respec-

tively. So that (f¥1)*@* = A0, By Proposition [11.15|and Theorem [11.16, we get
that

e 01,07 € Weil,(Xg) nL?(Xp) and they are both effective.
e 07 =Z, and 6~ =Z,, where v, is the eigenvaluation of f and v_ the eigen-
valuation of f~1.

PROPOSITION 14.1. Let Xy be a rational affine surface such that k[Xo]* =k* and
let f be a loxodromic automorphism of X, then

(1) The eigenvaluations v, V_ of f and f~" respectively are of the same type.
(2) If A € Z>, then v and v_ are infinitely singular.
(3) If A} € R\Z> then v, and v_ are irrational.

PROOF. If the eigenvaluation was divisorial, then we would get by Lemma [I2.19]
that A; < A, and this is absurd because A; > 1, f being loxodromic. The dichotomy
of the type of eigenvaluation follows from Theorem and the fact that A;(f) =

M(OFY. O
COROLLARY 14.2. In that case, the nef eigenclasses 0~ and 0% verify
(87)*=(67)>=0
and in any completion X of Xy one has (85 ) > 0.
PROOF. The equalities (67)% = (6%)? = 0 come from Theorem (87). Since
the eigenvaluations are not divisorial, 6~ and 6" are not Cartier divisors by Corollary

therefore for any completion X of Xy, (85)% > 0. Indeed, if (85)? = 0 then since
0+ is nef, we would get G;f =0+ 0J

Let X be a completion of Xy. We have a simple criterion to check whether a divisor
at infinity is contracted thanks to Proposition [12.2]

133
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PROPOSITION 14.3. Let E be a prime divisor at infinity in a completion X of Xo. If
Zordg -0~ > 0 then there exists N > 0 such that fN contracts E to the point cx (V) .

14.1. Gizatullin’s work on the boundary and applications

In [Giz71a], Gizatullin considers minimal completions of affine surface. That is a
completion X of X minimal with respect to the following property:

e The boundary dxXop does not have three prime divisors that intersect at the
same point.

e If 0xXp has a singular irreducible component then dxXp consists only of one
irreducible curve with at most one nodal singularity.

For such a completion 1 : Xy <— X, Gizatullin defines the curve E(1) as the union of the
irreducible components E of dy Xy that are contracted by an automorphism of X (the
automorphism depends on E).

We call a zigzag a chain of rational curves. That is a sequence (Ej,---,E,) of
rational curves such that E; - E; v = 1,i = 1,--- ,r — 1 and for all i, j such that |i — j| >
2,E;-E; = 0. In particular the dual graph with respect to the E;’s is of the form

Ey E E,_1 E,

We will write E| = E; = - -- = E, for the zigzag defined by (Ey,--- ,E,).

A cycle of rational curves is a sequence (Ej,---,E,) of rational curves such that
E;-Ei;1 =1and E; - E, = 1. The dual graph with respect to the E;’s is of the form
Es
E;
Ey—

THEOREM 14.4. Let Xy = Speck[Xo] be an irreducible normal affine surface such
that K[Xo]* = k* and Pic®(Xo) = 0. Suppose that Xy admits an automorphism f with
M (f) > L. If X is a minimal completion of Xy, one has E(1) = 0xXo. Furthermore we
have two mutually excluding cases

(1) M (f) is an integer and in that case E(1) is a zigzag.

(2) Ai(f) is irrational and E(1) is a cycle of rational curves.
Furthermore, there exists a completion Y with two distinct points p.,p_ € dyXy and
an integer N > 0 such that

o X (ps) = ps
o fEN contracts oy Xy to D+
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o ! has a normal form at p+ given by Theorem it is pseudomonomial or
monomial in the cycle case and of type (18)) or in the zigzag case.

e In the cycle case, this set of properties remains true if we blow up p or p_.

o In the zigzag case, the set of completions above Y that satisfy these properties
is cofinal in the set of all completions above Y.

The normal form of f at p+ is monomial in the cycle case and of the form of Theorem
[[2.1] case (3) in the zigzag case.

This shows Theorem [E| We will prove Theorem [14.4]in §14.2] and §14.3] We end
this section with some technical result that will be useful in the proof of Theorem[14.4

LEMMA 14.5. Let X be a completion of X and let E be a prime divisor at infinity
such that Zog, -0 = 0 and E intersects some prime divisor in the support of 05, , then
cx(vy) belongs to E.

PROOF. Since 07 is effective and ordg (07) = 0 we get 87 - E > 0 since E intersects
the support of 8. This implies by Proposition 7.6|that cx (v ) belongs to E. 0

LEMMA 14.6. Let Y be a completion of Xy and E a prime divisor at infinity of Y
such that Zogg, -0 > 0. If p € E\{cx(V4)}, then for any divisorial valuation v such
that cx (V) = p, one has Z, -8 > 0.

PROOF. Let Z be the blow up of Y at p. Then, 6 = (1*8;") + cE for some ¢ € R.

Since the center of v is not on E, one has 6; .E =0, hence ¢ = 0. Now whether pis
a free point on E or a satellite point, we have Zordg 0t > Zordg * 6t > 0. ]

LEMMA 14.7. Let Y be a completion of Xy such that the center of V4 is the inter-
section of two prime divisors at infinity Fy,F,. Then, ZordF1 0" >0o0r Zorsz 07 > 0.

PROOF. Recall that 07 is nef and effective. Suppose that Zordy, - 0t =0fori=1,2

and let E be the exceptional divisor above p;. Let ®: Z — Y be the blow-up at p.
Then we have
0, =7 (0))+cE

for some ¢ € R. This implies 67 .E = —¢ > 0 because p+ was the center of v onY,
therefore ¢ < 0. But Zordg : 9} = (ZomlF1 + ZordF2 )6;5 + ¢ = ¢ < 0 and this contradicts the
fact that 67 is effective. O

PROPOSITION 14.8. For any completionY such that cy (v4.) is a free point, we have
Supp8; = dy Xo. (427)

Hence, if vy is an infinitely singular valuation, then for any completion Z, there exists
an integer N > 0 such that fN(0,Xo) = p+.
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PROOF. Let E be the unique prime divisor at infinity such that cy(vy) € E. If
Supp 6;5 # OyXo, there a prime divisor F at infinity such that Zq, -87 = 0 and F n
Supp 6;} # . By Lemma we have F' = E; therefore Zyq, - 6" = 0. But we have
that 6;} = AZyyq,, for some A > 0 by Proposition So (6;} )2 = 0, but this is absurd
by Corollary

For the second assertion, assume that v+ is an infinitely singular valuation. Let Z
be a completion of Xy. Then, by Proposition .16 there exists a completion Y above Z
such that cy(v4) is a free point. The first assertion shows that Supp 6% = 0y Xp and so
the same is true for Supp G%. The fact that some iterate of f*! contracts the boundary
on p follows from Proposition [I4.3] O

14.2. Proof of Theorem [14.4} the cycle case

In that case it was already proven by Gizatullin that 0x Xy = E ().

PROPOSITION 14.9 (J[EH74,[CdC19])). Let X be projective surface and U an open
subset of X such that X\U is a cycle of rational curves. Assume that X\U is not an
irreducible curve with one nodal singularity. Let g be an automorphism of U, then
the indeterminacy points of g can only be intersection points of two components of the
cycle.

COROLLARY 14.10. In the cycle case, the eigenvaluation of a loxodromic auto-
morphism must be irrational and therefore N\ is an algebraic integer of degree 2, in
particular it is irrational.

PROOF. Proposition shows that for any completion X of Xy, p+ = cx(v4) is
a satellite point at infinity. Indeed, since 0" is nef, its incarnation in X cannot be 0.
Therefore, there exists a prime divisor E at infinity such that Zoqg, -0 > 0 because 6
is effective. Therefore, by Proposition E must be contracted by 7V to p so it
must be an indeterminacy point of V. Proposition shows that the eigenvaluations
V4 are irrational. O

PROOF OF THEOREM [I4.4] Corollary [14.10] shows the first part of the theorem.
We get the normal form at p4 by blowing up the center of v1 enough times. Since
these are always intersection points of two prime divisors at infinity we can suppose
that oy Xy is still a cycle.

It remains to show that dy Xy is contracted by some iterate of f and f~!. Suppose
that there exists a prime divisor E that is not contracted to p, by any iterate of f. In
particular Zyq, - 6" = 0 by Proposition By Lemma E we have that E contains
cy(v_) and f~! contracts E to p_. And by Lemma IE and Corollary we have
that £ is the unique prime divisor at infinity that satisfy this property. Either f contracts
E to a satellite point p # p of the boundary or f is sent to a prime divisor at infinity.




14.3. PROOF OF THEOREM [14.4] THE ZIGZAG CASE 137

Indeed, we cannot have f(E) = E, otherwise E is f-invariant but this contradicts that
f_1 contracts E. If E is contracted, it cannot be contracted to p_ because it is not
an indeterminacy point of f~!. Therefore, we have that the center of f, ordg is either
another prime divisor at infinity or a satellite point at infinity that is not the center of v .
In both case, we get fiZog, -0 > 0 by Lemma and this is a contradiction. 0

14.3. Proof of Theorem [14.4} the zigzag case

14.3.1. Some technical lemmas about zigzags. We will say following [GD7S,
BD11]] that a zigzag Z is standard if it is of the form

Z=F=E=Z7 (428)

where F? = 0,E? < —1 and Z is a negative zigzag meaning that every component of Z’
has self-intersection < —2. Any zigzag can be put to a standard form via blow-up of
points and contractions of (-1)-curves (see [[GD75I, §1.7)

Following [BD11], an almost standard zigzag is a zigzag Z = By > By > --- > B,
such that

(1) There exists a unique irreducible component By such that (By)? = 0.
(2) There exists at most one component B; such that (Bl)2 = —1 and in that case
we must have = k+ 1.

We need to state some technical results for the proof of Theorem [14.4] we will need
to apply them to a quasiprojective surface which is not necessarily affine. If U is a
quasiprojective surface, a completion of U is defined in the same way as the completion
of an affine surface. All the results in this Section rely heavily on Proposition [2.6] and
the Castelnuovo criterion.

LEMMA 14.11 (Proposition 3.1.3 of [BD11]). Let U be a quasiprojective surface
and X a completion of U such that X\U is an almost standard zigzag that has no
component of self intersection —1. Let By be the unique irreducible component of
nonnegative self-intersection of X\U. Let g be an automorphism of U, then

(1) g has at most one indeterminacy point q on X.

(2) q has to be on By, (if it exists).

(3) If By, is not on the boundary of the zigzag then q must be the intersection point
Oka with Bii1 or By_;.

PROOF. Suppose that g has an indeterminacy point, then g~! also has one and g
has to contract a curve of the zigzag. Let ®:Y — X be the minimal resolution of
indeterminacies of g and let g be the lift of g. Then, the first curve contracted by g has
to be the strict transform of Bg. So g has at least one indeterminacy point on By.
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There cannot be any indeterminacy point ¢ outside of By because otherwise it be-
longs to components that have self-intersection < —2 and since the zigzag X\U con-
tains no (—1)-curve any exceptional divisor above g has to be contracted by g so ¢ is
not an indeterminacy point.

Suppose that By, is not on the boundary and that the indeterminacy point p of g is
not an intersection point. Then, the map 7 factorizes through the blow-up of p and
after contracting the strict transform of By, we get at infinity three prime divisors that
intersect at the same point. But this is a contradiction because g consists only of blow
ups of point at infinity and X\U does not have three divisors that intersects at the same
point.

Finally, there cannot be more than one indeterminacy point on X. Suppose the
contrary and let p1, p» be two indeterminacy points, they both belong to By. Let Eq, E»
be two exceptional divisor above p; and p» in Y respectively. They cannot be contracted
by g because Y is the minimal resolution of singularities of g. Therefore, their strict
transform is either a (—1)-curve or a curve with nonnegative self intersection. But this
is absurd because X\U does not contain any (—1)-curve and has only one curve of
nonnegative self-intersection. 0

COROLLARY 14.12. Let X be a completion of U such that X\U is an almost stan-
dard zigzag Z and let f be an automorphism of U. Suppose that f has an indeterminacy
point that is a free point on By, then one of the two sides of Z can be contracted so that
By becomes a boundary component of the zigzag.

PROOF. Suppose that By is not a boundary component of the zigzag and that f
has an indeterminacy point that is a free point on By. Then, by Lemma [14.11] By_;
or By, has to be a (—1)-curve, suppose it is By, 1. We contract it and we obtain an
almost standard zigzag and f still has an indeterminacy point that is a free point on
By. If By is on the boundary we are done, otherwise the only (—1)-curve is the strict
transform of By, and we keep contracting until By becomes a boundary component of
the zigzag. OJ

LEMMA 14.13. Let U be a quasiprojective variety and X a completion of U such
that X\U is a zigzag of type (—my,--- ,—my,—1,—1,—myy1,--- ,—m,) such that for
all i,m; = 2. Let f be an automorphism of U. Then the intersection point of the two
(—1)-curves cannot be an indeterminacy point of f.

If the zigzag is of type (—1,-2,..., =2, —1 ,—myyy, - ,—m,) withm; = 2, then
——
F E

F N E cannot be an indeterminacy point of f.

PROOF. Let t: Z — X be a minimal resolution of indeterminacy of f : X — X and
let f: Z — X be the lift of f. The first curve contracted by f must be the strict transform
of one of the prime divisors at infinity of X. But if the intersection of the (—1)-curves
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is an indeterminacy point of f, then all the strict transforms of the prime divisors at
infinity of X have self-intersections < —2 and this is a contradiction.

If X\U is a zigzag Z of type (—1,-2,---,—2,—1,—my,y,--- ,—m,), suppose that

F N E is an indeterminacy point of f, then the first curve contracted by fmust be the

strict transform of the (—1)-curve on the left of the zigzag. So we can start by con-

tracting it and we get a zigzag Z' of type (—1,—2,---, =2, —1 ,—my41,---,—m;)
~— ~—~

F E
and of size #Z — 1. We can repeat this process until we get a zigzag of the form

(-1, =1 ,—mgy1, -+ ,—m,) and we have that F n E cannot be an indeterminacy
~—

F E
point of f by the previous case, this is a contradiction. 0

LEMMA 14.14. Let f be an automorphism of Xy and let X be a minimal completion
of Xo in the sense of Gizatullin. Then, f defines an automorphism of U = (E(1))€ c X,
the complement of E(1), i.e the birational map f : X --+ X does not have any indeter-
minacy point on U.

PROOF. Suppose that f admits an indeterminacy point p on some component £ of
OxXo with p¢ E(1). Let m: Y — X be a minimal resolution of indeterminacies for f and
let F: Y — X be the lift of f. The fiber t=!(p) contains at least one (—1)-curve and
we claim that none of the irreducible components of ©~!(p) can be contracted by F,
indeed since E is not contracted, one can only contract (—1)-curves of 7! (p) but that
would contradict the minimality of Y. Therefore, the fiber ! (p) is not affected by F
and neither are the self-intersections in the fiber. This would imply that 0x X, contains
some (—1)-curves that can be contracted and this contradicts the minimality of X.

O

COROLLARY 14.15. Let Xpin be a minimal completion of the affine surface Xo. The
centers cx_. (V+) must belong to E(1).

We will apply all the results of this section with U = (E(1))¢ < Xpin where Xy 18
a minimal completion of Xj.

14.3.2. Elementary links between almost standard zigzags. From now on U =
(E(1))¢ © Xmin Where Xpi, is @ minimal completion of the affine surface Xy. All the
results of §14.3.1 will be applied to the following situation. If X is a completion of U
(hence of Xp) and f is a loxodromic automorphism of Xy, then some positive iterate of
f contracts a component of X\U to ¢x (v ). Thus, cx(v4) is an indeterminacy point of
some positive iterate of f~! on X.
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PROPOSITION 14.16. Let X be a completion of U such that X\U is an almost
standard zigzag, then one can find a completion Y of U with a birational map ¢ : X —Y
that is an isomorphism above U such that

(1) Y\U is also an almost standard zigzag.
(2) Let X be the blow up of X at cx(Vy), then the lift @ : X --» Y is defined at
cy (V1) and is a local isomorphism there.

PROOF. Let B the unique irreducible component of X\U of nonnegative self inter-
section.

Case: B is on the boundary. X\U is a zigzag of the form B> E = Z where B> >
0,E? < —1 and Z is a negative zigzag.

e cx(vy)isafree point on B If E2 = —1, we blow up cx (Vv ) and then contract
the strict transform of E. Let Y be the new projective surface obtained, it
satisfies the proposition.

Suppose E? < —1, If B> > 0 we blow up B N E to obtain a new zigzag B
E'=Z7' which is still almost standard. We keep blowing up the strict transform
of B with the second component of the zigzag until B> = 0. After all these
blowups, let X’ be the newly obtained projective surface, we have that X"\U is
an almost standard zigzag of the form B=FE =Z where B> = 0,E> = —1 and Z
is a negative zigzag. We blow up cy/(v. ) and let E be the exceptional divisor,
by Lemma the center of v, cannot be the intersection point of E and
the strict transform of B, therefore it is a free point of E and we can contract
the strict transform of B. We call Y the new obtained surface it satisfies the
proposition.

e cx(v.) is the satellite point B E We blow up B E and call E the excep-
tional divisor. If B2 > 0 in X, then we still have an almost standard zigzag and
we call Y the new obtained surface. If B> = 0 in X, then by Lemma is
a free point of E and we can contract the strict transform of B, we call Y the
newly obtained surface.

Case: B is not on the boundary.

e cx(v,) is a free point of B By Corollary one of the two sides of X\U
is contractible, so we contract it and call X; the newly obtained surface, we
can now apply the proof of the boundary case to find Y.

e cx(vy) is the satellite point B n E We can suppose up to contraction that if
X\U contains a (—1)-component, it must be E. We start by blowing up cx (V)
and let E be the exceptional divisor.

— If B > 0 in X, then we still have an almost standard zigzag and we call ¥
the newly obtained surface.
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— If B2 =0 in X, then by Lemma the center of v, cannot be the
intersection of E and the strict transform of B where E is the exceptional
divisor. So we can contract the strict transform of B and we get an almost
standard zigzag and we call Y the newly obtained surface.

OJ

COROLLARY 14.17. If 0x Xy is a zigzag, the eigenvaluation v cannot be irrational,
hence it is infinitely singular and Ay is an integer. Furthermore, U = X.

PROOF. It suffices to show that the sequence of centers of v, contains infinitely
many free points. If not, we can apply Proposition [[4.16]finitely many times so that we
get a completion X of Xj such that X\U is an almost standard zigzag and the center of
v, is always a satellite point. We show that this leads to a contradiction.

Case 1: cx(v+) = BN E with E a component of X\U. We can suppose after con-
tractions and blow ups that B> = 0. We will show that we can suppose that B is a
boundary component of the zigzag. The zigzag X\U is of the form Zj<B=>F >Z.
Denote by (my,---,m,) the type of Z;.

e Case m; > 2 Blow up BN E and call E the exceptional divisor. The center
of v has to be BN E or E n E, but it cannot be B~ E by Lemma So
we can contract the strict transform of B. We get a new zigzag of the form
Zi<B' =7 withm| = m; — 1 and #Z| = #Z,.

e Case m| = 1 call E; the first component of Z;. Blow up B n E. The center of
v, is either B E or E N E. Either way, we can contract the strict transform
of Ey. We get a zigzag of the form Z{ < B ~F =E =Z where #Z) =#7Z, — .

We can apply this procedure recursively, it stops because the sequence (#Z;,m;) is
strictly decreasing for the lexicographical order. And we never blow down a curve that
contains the center of v nor do we blow down a curve to the center of v ..

Now that we have that B is a boundary component, we can suppose that X\U is a 1-
standard zigzag. Call E the (—1)-component of X\U, we will show that Z,, - E = +c0.

Indeed, blow up BN E and let E be the exceptional divisor. By Lemma the center
of v, has to be E N E. If we blow up the center of v again we can still apply Lemma
[14.13] so the center of v is always the intersection point of the strict transform of E
with the exceptional divisor. This implies that v is the curve valuation associated to
the curve E and this is absurd.

Case 2: cx(v4) = BnC with C a component of 0x Xy but C nU # 4. This means
that cx(v4) belongs to no other component of X\U than B. Using Lemma we
can contract one of the two sides of the zigzag so that B is a boundary component of
the zigzag X\U, we can furthermore suppose that X\U has no (—1)-component. Call
m the self intersection of the component next to B in the zigzag, we have by assumption
m< —2.
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e Case B> > 0 let X’ be the blow up of B~ C and let E be the exceptional divisor.
Then, since the strict transform of B has nonnegative self intersection X"\U is
an almost standard zigzag. We must have that cx/(v4) € E and by Lemma
cxr(vy) must be B E and we are back in Case 1. This leads to a
contradiction.

e Case B> = 0 Let E be the component on X\U next to B (if it exists). Let
X’ be the blow up of B C and let E be the exceptional divisor. By Lemma
cx/(V4) cannot be B E so it has to be E A C. Let X” be the blow
down of the strict transform of B. The strict transform of E has nonnegative
self-intersection and X”\U is an almost standard zigzag and cx» (v, ) = E N C.
Rename E by B in X”. If E2 = m in X, then the strict transform of E in X”
satisfies E2 = m + 1. We repeat this procedure until E2 = —1. We then blow
down E and we end up back in the case B> > 0 and this leads to a contradiction.

The last case to treat is if X\U is a zigzag containing only B with B> = 0.
We will show in that case that v (C) = 40 which is a contradiction. Indeed,
let X’ be the blow up of B~ C and let E be the exceptional divisor. Then, by
Lemma ¢y cannot be B N E so it must be E A C. Let X” be the blow
up of E N C and let E? be the exceptional divisor. Again, by Lemma
cxn(Vy) = E®@ A C. By induction, we see that the centers of v, must always
belong to the strict transform of C in every blow up, this implies that v is the
curve valuation associated to C and this is absurd.

Thus, v, is not irrational. Hence, by Proposition [I4.1] v is an infinitely singular
valuation, so we get that U = Xy by Proposition |14.8 0J

14.4. A summary and applications
We sum up the content of Theorem [14.18]in Figure [T]and

THEOREM 14.18. Let Xy be a normal affine surface defined over a field k such that
K[Xo]* = k* and Pic’(Xo) = 0. Let f be a loxodromic automorphism of Xo. Then, there
exists two unique (up to normalization) distinct valuations centered at vV ,V_ such that

Tl ve) =MV Let 0 =Z,, and 07 = Z, . We have that 6,0~ are nef, effective
and satisfy the following relations

ot =n0", o = %19— (429)

£,07 = %et 07 =107, (430)
1

Furthermore we have the following intersection relations: (%)% = (9_)2 =0 and
0t-07 =1.
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X\ X,

D+ f)é 7/\f -

6 Q) \\ g__
f I=

pi = Ind(f ™) p- = Ind(f)

FIGURE 1. Dynamics at infinity of f when A (f) € Z>¢

We can find a completion X of Xy such that if p+ = cx(V4),p— :=cx(v_), then
(1) ps # p—.
(2) some positive iterate of fX! contracts 0xXy to p+.
(3) ftlis defined at p+, f*' = p+ and Pz is the unique indeterminacy point of
f*
(4) There exists an open neighbourhood U+ of p+ in X(C,) and local coordinates
at p+ such that ff-&i has a local normal form of (pseudo)monomial type (20)

or ((T9) if M (f) & Z=o or of type (I8) or (T7) if M1 (f) € Z>o.
PROOF. Any completion provided by Theorem [14.4] satisfies item (1)-(4). U

PROPOSITION 14.19. Let Xo be a normal affine surface defined over k. If f is a
loxodromic automorphism of Xo, then, there are no f-invariant algebraic curves in Xo.

PROOF. If QAIb(Xp) # 0, then by Corollary Xo ~ G2, and this is known.

If QAIb(Xp) = 0, let X be a completion of X given by Theorem Suppose that
C < Xy is an algebraic curve invariant by f. Let C be the closure of C in X. We must
have {p4,p_} n(CndxXo) # &. Indeed, C n dxXp is not empty so let p be a point in
it. If p¢ {p.,p_}, then f is defined at p and f(p) = p.. Since C is f-invariant, we get
p+ € C. This means that C defines a germ of an analytic curve at p, that is invariant by
f but this is not possible by Theorem [12.1] O
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f X\ Xo
p+ = Ind(f™") /Q

p- = fnd(f)

FIGURE 2. Dynamics at infinity of f when A;(f) € R\Q

COROLLARY 14.20. If Xo is a normal affine surface defined over a number field
K and f is a loxodromic automorphism of Xo, then all periodic points of f are defined
over K.

PROOF. Suppose there exists p € Xo(C)\Xo(K) such that fN(p) = p. Let G :=
Gal(C/Q), then for all g € G- p, we have fV(g) = q. Since p ¢ Xo(K), the orbit G - p is
infinite and its Zariski closure G - p — Xy x Spec C has dimension > 0. If dimG - p = 2,
then fN id and this is impossible because f is loxodromic. If dimG-p = 1, then

C = G- pis an fN-invariant curve of Xy x SpecC. This is impossible by Proposition
14.19] 0J

COROLLARY 14.21. Let Xy be a normal affine surface defined over C, such that
QAIb(Xp) = 0. Let f be a loxodromic automorphism of Xy and let X be a completion
of Xo from Theorem|14.18| If p € Xo(C,), we have two possibilities.

(1) The forward f-orbit of p is bounded.
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(2) (f"(P))n=o converges towards p.

PROOF. Suppose that (f"(p)), is not bounded. Since X(C,) is compact, (f"(p))
has an accumulation point g € dxXy. Let U; be the open neighbourhood of p, given
by Theorem We must have g € {p,, p_}. Otherwise, since f(q) = p.., if fNo(p)
is sufficiently close to ¢, then for all N > Ny + 1, fN(p) € U, and ¢ cannot be an ac-
cumulation point. Suppose that ¢ = p—. Let (x,y) be the local coordinates at p_ over
U~ given by Theorem [14.18] Consider the norm max(|x|, [y|) over U ~. Looking at the
normal form of f, for any € > 0 small enough, the ball B(p_,€) of center p_ and ra-
dius €, with respect to this norm, is f~!-invariant and we have f~'B(p_,€) € B(p_,¢).
Therefore if fNo(p) e B(p_,€), we have pe B(p_,€). Letting € — 0 we get p = p_ and
this is a contradiction. Therefore, the only accumulation point of (fV(p))y is p+ and
it is the limit of this sequence.

O

14.5. Affine surfaces with a cycle at infinity

Let Xy be a normal affine surface and suppose that there exists a loxodromic au-
tomorphism f of Xp such that A;(f) ¢ Z. Then, by Theorem for any minimal
completion X of Xy, dxXp is a cycle of rational curves and to study the dynamics of
a loxodromic automorphism it suffices to consider completions where the boundary
remains a cycle of rational curves.

14.5.1. The circle at infinity. Let X be such a completion and let E1, - - - , E, be the
irreducible components of dxXy. Define Cx = V., by

-
Cx = U[ordEl.,ordEiH]. (431)
i=1
-~/
Cx consists only of quasimonomial valuations hence it is a subset of ¥, , the subset of

valuations of finite skewness. It can therefore be equipped with the strong topology.

PROPOSITION 14.22. For every completion X such that 0xXy is a cycle of rational
curves, one has

(1) Cx =: C does not depend on X.
(2) C is homeomorphic to S'.
(3) C is characterized as follows: for every continuous embedding c : S' — V.,
c(Sh=c
PROOF. For (1) we show that if w: Y — X is the blow up of a satellite point, then

(v = Cx. Let p = E nF be the center of the blow up and let E be the exceptional
divisor. Then, [ordg,ordr] = [ordg,ordz] U [ordg, ordr] and we see that Cx = (y.
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For (2), recall that the segment [ordg,ordr) is naturally a subsegment of ¥y (p;E)
parametrized with the skewness function ag. By Proposition we have that o =
o ! over (ordg,ordr).

For (3), let ¢ : S! <> 7/, be a continuous embedding. Suppose that ¢(S') # C this
means that there exists a completion X and 7y € S! such that c(to) is centered at a free
point p € E at infinity. Let Iy =]a, b[ be the largest subsegment of S! containing y such
that for all s € I, c(s) € Vx(p;E). Because Vx(p;E) is open we must have a = b and
c(a) = c¢(b) = ordg. Therefore c is a continuous embedding of S' into ¥y (p;E) but
this is not possible since Vx(p;E) is a tree. O

14.5.2. Farey parametrisation. Let X be a completion of X( and let E be a prime
divisor at infinity and let p € E. A Farey parametrisation of Dx , U {E} is given by
the following procedure. Pick positive integers ag, by such that ged(ag,bg) = 1 and set
Far(g q.p,) (E) = (@0,bo), then do the following. Suppose that Tt: ¥ — X is a comple-
tion exceptional above p such that Farg 4, 5, (F) has been defined for every F € I'y .
Then, if g € F is a free point with respect to I'y g, set

Far(E,ambo)(ﬁ) = (ar +1,br) (432)

where Far(g 4, 5,)(F) = (ar,br). If ¢ = F n F' is a satellite point with respect to I'y £
then set

Far(F) = (a+d ,b+V) (433)
where Far(g 4, 5,)(F) = (a,b) and Far(g 4, ) (F') = (d', ).
PROPOSITION 14.23. Let Farg 4, 1, be a Farey parametrisation of Dx , U{E}.

(1) Set A ayp,)(F) = where Far(g 4 p)(F) = (a,b), then A is a parametrisa-
tion of I'g.
(2) For any Fy,F, € I'g that are adjacent such that Vi, < Vg, we have

arby —ai1b, =1 (434)
where Far(E,ao,b0)<Fi) = (ai, ;).

(3) If M = ((;L g) € PSL,(Z), then M o Far(F) := (0a + B,Yb + &) is another
Farey parametrisation of Dx .

PROPOSITION 14.24. Let X be a completion of Xy and p = E N F a satellite point
at infinity. Then, the skewness function g is a Farey parametrisation of [ordg,VF).

PROOF. This uses another parametrisation of the valuative tree defined in [FJ04]
called the rhinness function. The thinness function Ag of the valuative tree Vx(p;E)
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is defined by the Farey parametrisation starting with Far(E) = (1,1). The relation
between Ag and o is the following. Define the multiplicity function mg by

Voex,, me(@)=E-,{p=0}. (435)

The multiplicity of a valuation is defined as

mg (V) := min{mg (@) : V¢ = v}. (436)
and we have
Ap() =1+ [ me()dots ) (437)

see [FJ04] Definition 3.64. It is clear that on the segment [ordg,Vvr| we get that mg is
constant equal to 1. Hence, over this segment Ax = 1+ o and og is a Farey parametri-
sation of the segment. 0J

PROPOSITION 14.25. Let E,F be two prime divisors at infinity and let p = E N
F. Let ag,bg,ar,br be nonnegative integers such that apbg —agbr = 1. If M =
ar dg
(bF bE) € PSLy(Z), then
Moog (438)

is the Farey parametrisation of [ordg,ordr| such that Far(E) = (ag,bg) and Far(F) =
(ap, bF).

14.5.3. The Thompson group. The Thompson group is a subgroup of the group
of homeomorphism of S! defined as follows. A homeomorphism g is in the Thompson
group if there exists two subdivisions U;_,I;, Ui_,J; of S! into Farey intervals such
that g sends /; to J; and g; : I; — J; is given by a Mobius transformation with integer
coefficients (i.e given by a matrix of PGL;(Z)). In particular, the group PGL,(Z) acting
on S! via Mobius transformations is a subgroup of the Thompson group.

THEOREM 14.26. If Xy is an affine surface such that X\Xo is a cycle of rational
curves, then every automorphism of Xo acts on C ~ S! via an element of the Thompson

group.

PROOF. This is a consequence of Proposition Let f € Aut(Xp) be an automor-
phism. Suppose that Y is a completion above X such that the lift F : Y — X is regular.
Then, satellite points of ¥ must be sent to satellite points of X. Plus, by applying Theo-
rem [2.9]there exists two completions Y, Z above X such that the lift f : ¥ — Z is regular
and at every satellite point f is monomial. Let p = E n F be a satellite point of Y and
g = f(p) € Z. Then, f is of the form

flxy) = (x4, x99). (439)



14.5. AFFINE SURFACES WITH A CYCLE AT INFINITY 148

with ad — bc = £1 as the determinant of the matrix of a monomial map is equal to the
topological degree and f is invertible. We get fiVs; = Vst pr,cs+4:- Hence, fo sends the
Farey interval determined by [ordg,ordr] to another Farey interval of S! via a Mobius
transformation. It acts as an element of the Thompson group. 0

THEOREM 14.27. There is a group homomorphism Aut(Xo) — Grhompson- The
kernel is up to finite index an algebraic torus of dimension d < 2. And we have the
following

(1) Ifd =2, then Xo ~ G2,.

(2) If Xo # G,% and Aut(Xy) contains a loxodromic element, then d = 0. In par-
ticular, the kernel is finite and Aut(Xy) is countable.

(3) If d = 1, then up to finite index

Aut(Xo) ~ Gy, or Aut(Xp) ~ G, x A (440)
where A is a solvable group.

PROOF. Let X be a completion of Xy such that dxXp is a cycle. The kernel is
the group i (C) of [Giz71b] where C = 0xXy. Gizatullin showed that the connected
component of l; (C) must be an algebraic torus of dimension d <2 and d = 2 if and
only if Xy ~ G2, Let K = ;(C) be the kernel.

Now, Suppose Xq # G,%T By [Giz71b] Proposition 1, Xj is rational, therefore we
can suppose Aut(Xy) < Bir(P?). If Aut(X) contains a loxodromic element, then §7 of
[DP12] shows that if K is infinite, then K° must have an open orbit in Xy and therefore
dimK® = 2 which is a contradiction. Thus dimK® = 0 and K is finite, Aut(Xy) is
countable as Grpompson 18-

Finally, if dimK° = 1, then Aut(Xp) does not contain loxodromic elements by the
same argument as in the previous paragraph and Aut(Xy) preserves the fibration over
the affine curve X//K° =: C. Plus Aut(Xp) acts by conjugation on K° by an action of al-
gebraic groups. But the group of algebraic group automorphism of K is {41} because
K° ~ G,,. Therefore, up to a finite index subgroup, every element of Aut(Xy) com-
mutes with the element of K°. We have a group homomorphism Aut(Xy) — Aut(C)).
Let C be the unique projective curve that is a completion of C.

If g(C) = 2, then Aut(C) is finite because C is of general type and up to finite index
Aut(X()) ~ Gy

If g(C) = 1, then Aut(C) is the subgroup of Aut(C) that preserves C\C. This is a
finite subgroup, so up to finite index we also get Aut(Xp) ~ G,,.

Finally, if g(C) = 0, then C ~ P! and Aut(C) is the subgroup of Aut(P') ~ PGL,(C)
that preserves P\C. If #(P'\C) > 3, then Aut(C) is finite and we get Aut(Xy) ~ G,, up
to finite index. Otherwise, up to finite index Aut(C) is solvable and Aut(Xy) ~ G, x A
where A is a solvable group. 0
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14.6. An example: The Markov surface

Let k be an algebraically closed field with chark # 2, let D € k and consider the
affine surface Mp — A13< of equation

x> +y*+2% =xyz+D. (441)

For any D € k, M, satisfies QAlb(Mp) = 0. This is because if we consider the Zariski
closure Mp of Mp in P3, it is defined by the equation

T (X*+Y*+2%) =XYZ+DT°. (442)

Thus, Mp\Mp is the triangle of lines defined by the equations {T = 0,XYZ = 0}. One
shows that each line has self intersection —1, thus the matrix of the intersection form
at infinity is given by
-1 1 1

I -1 1 (443)

I 1 -1
which is nondegenerate. Therefore, Mp does not admit nonconstant invertible regular
functions and it admits loxodromic automorphisms, thus by Corollary M p # G2,
and QAIb(Mp) = 0.

If D # 0,4, this is a smooth affine surface. If D = 0, My is a normal affine surface
with a singularity at (0,0,0). If D =4, M4 is a normal affine surface with 4 singularities
at the points

(£2,42,42) (444)
where two of the signs must be equal.

We see that each surface Mp falls into the category of the surface with a cycle at in-
finity. Thus by Theorem|14.27, there is a group homomorphism Aut(Mp) — GTrompson
with finite kernel. In the case of the Markov surface there is a very explicit description
of the automorphism group and its image in the Thompson group.

THEOREM 14.28 ([Can09])). Up to finite index Aut(Mp) ~ GLy(Z), the kernel of
Aut(Mp) — Grhompson is a finite group of size 24 given by the permutations of the
coordinates and signs flip. The image of Aut(Mp) in GThompson 1S exactly the group
PGL,(Z) acting on S' by Mobius transformations.

For the parameter D = 4, the action is very explicit. The surface My is the quotient

of G2, by the involution 6 : (u,v) — (u~!,v~1). The quotient map is given by
(u,v) € G2 > (u+ 1/u,v+1/v,uv + 1 /uv) € My. (445)
This involution has four fixed points: (+1,+1) which gives the four singularities of
M,. The group GL,(Z) acts by monomial automorphisms on G2, commuting with G,

this gives the embedding GL,(Z)/ < 6 >= PGL;(Z) < Aut(M4). For more results on
the dynamics of Aut(Mp) and characterization of the case D = 4, see [RR22].
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