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CHAPTER 1

Introduction

In [FJ07], Favre and Jonsson developed tools from valuative theory to study the
dynamics of a dominant endomorphism of the complex affine plane. We extend this
theory to the case of any affine surface, over any field. We give a new method to
construct an eigenvaluation of an endomorphism. We generalize the result of Favre and
Jonsson and show that the first dynamical degree of a dominant endomorphism of a
normal affine surface is an algebraic integer of degree ď 2. Plus, we obtain a new result
of rigidity. The set of first dynamical degrees of loxodromic automorphisms of a given
affine surface must be contained in the set of integers or in the set of algebraic numbers
of degree 2.

1.1. Dynamical degrees

Let X be a smooth projective variety over an algebraically closed field and let d
be its dimension. For d Cartier divisors D1, ¨ ¨ ¨ ,Dd of X we can define the intersection
product D1 ¨ ¨ ¨Dd P Z (see [Laz04]). If f : X 99KX is a dominant rational transformation
of X , we define for 0 ď ℓ ď d the ℓ-th dynamical degree of f by

λℓp f q :“ lim
nÑ8

´

p f n
q

˚Hℓ
¨ Hd´ℓ

¯1{n
, (1)

where H is an ample divisor over X . One can show that these quantities are well
defined and do not depend on the choice of H. Furthermore, the dynamical degrees are
birational invariants: if ϕ : X 99K Y is a birational map, then

λlp f q “ λlpϕ ˝ f ˝ ϕ
´1

q, @0 ď l ď d. (2)

We have that λdp f q is the topological degree of f and λ0p f q “ 1. The Khovanskii-
Teissier inequalities (see [Gro90], [DN05]) imply that the sequence pλlq0ďlďd is log-
concave; i.e

logλl´1 ` logλl`1

2
ď logλl, @1 ď l ď d ´ 1. (3)

In particular, one has @1 ď l ď d,λ1p f ql ě λkp f q.
Let X0 be a smooth affine variety of dimension d and f : X0 Ñ X0 a dominant

endomorphism of X0. We define the dynamical degrees of f as follows. A completion
of X0 is a smooth projective variety X equipped with an open immersion ι : X0 ãÑ

6



1.2. DYNAMICAL DEGREES ON PROJECTIVE SURFACES 7

X such that ιpX0q is dense in X . The endomorphism f induces a dominant rational
transformation of X via rf “ ι ˝ f ˝ ι´1 and we define the dynamical degrees

λlp f q :“ λlprf q. (4)

As the dynamical degrees are birational invariants, these quantities do not depend on
the choice of the completion X . The data of these dynamical degrees gives information
on the dynamical system. For example over C, Dinh and Sibony showed in [DS03] that
for all dominant rational transformation f : X 99K X

htopp f q ď max
0ďlďd

logpλlq (5)

where htop is the topological entropy of f , Gromov showed this result for endomor-
phisms of PN in [Gro03]. Yomdin showed in [Yom87] that we have an equality if
f is an endomorphism. The inequality is strict in general (see [Gue05]). Recently,
Favre, Truong and Xie showed in [FTX22] that the inequality (5) still holds in the non
archimedean case; however the equality does not hold even for endomorphisms.

1.2. Dynamical degrees on projective surfaces

A natural question is to ask what numbers can appear as the first dynamical degree
of a rational transformation of a projective surface. For the topological degrees, it
is easy to check that any integer k is the topoological degree of a dominant rational
transformation of P2 (consider f px,yq “ pxk,ykq over C2).

In 2021, Bell, Diller and Jonsson showed in [BDJ20] that there exists a dominant
rational transformation σ : P2 99K P2 such that λ1pσq is transcendental. The authors
with Krieger showed in [BDJ20] this example can be generalised to give an example
of a birational transformation of PN ,N ě 3 with a transcendental first dynamical de-
gree. However in dimension 2, there are strong constraints on λ1p f q for f birational. In
[DF01], Diller and Favre showed that the first dynamical degree of a birational trans-
formation of a projective surface is an algebraic integer, but with arbitrary large degree.
Indeed, Bedford, Kim and McMullen have given in [BK06] and [McM07] examples
of birational transformations of projective surfaces with first dynamical degree an al-
gebraic integer of arbitrary large degree. In particular, Theorem 1.1 of [McM07] states
that for all d ě 10 we can find a smooth complex projective surface with an automor-
phism with first dynamical degree an algebraic integer of degree d. This also holds
in positive characteristic by the main theorem of [CD]. Blanc and Cantat showed in
[BC13] that the set of all first dynamical degrees of elements of BirpP2

Kq is a well or-
dered set if K is infinite.
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1.3. Dynamical degrees of endomorphisms of affine surfaces and Perron
numbers

The first example of an affine surface is the complex affine plane C2. An endo-
morphism is then a polynomial transformation. Even in that case, the first dynamical
degree is not necessarily an integer. Indeed, let

A “

ˆ

a b
c d

˙

(6)

be a matrix with nonnegative integer coefficients such that ad ´ bc ‰ 0. Consider the
following monomial transformation

f px,yq “

´

xayb,xcyd
¯

, (7)

then f N is the monomial transformation where the monomials are given by the coeffi-
cients of AN and λ1p f q is equal to the spectral radius of A. Hence, λ1p f q is an algebraic
integer of degree 2 because it satisfies the equation

λ1p f q
2

´ TrpAqλ1p f q ` detpAq “ 0. (8)

It is in fact a Perron number. A 1(weak) Perron number is a real algebraic integer
α ě 1 such that all its Galois conjugates have complex modulus ď |α|. Thus, there
exist polynomial transformations f of the affine plane with λ1p f q an integer or a Perron
number of degree 2. Favre and Jonsson showed that these are the only two possibilities.

THEOREM 1.1. [FJ07] Let f : C2 Ñ C2 be a dominant polynomial transformation,
then λ1p f q is a Perron number of degree ď 2.

The first result of this memoir is to extend this result to all normal affine surfaces,
in any characteristic. Even if the semigroup of endomorphisms can change drastically
when one changes the affine surface. For example, Blanc and Dubouloz, in [BD13],
build smooth affine surfaces with a big group of automorphisms, much bigger than the
one of the affine plane. Bot used this construction to show the existence of smooth
complex rational affine surfaces with uncountably many real forms (see [Bot23]). The
results in this paper show that, even though structure wise these groups are a lot more
complicated, from the point of view of the dynamics of a single element, this is not the
case.

THEOREM A. Let X0 be a normal affine surface over a field k. If f : X0 Ñ X0 is a
dominant endomorphism, then λ1p f q is a Perron number of degree ď 2.

1In the litterature, the Galois conjugates of a Perron number have a strictly smaller modulus but we
want to include square roots of integers in our definition.
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The proof uses valuative techniques which we describe in the next section. If
chark “ 0 or if f is an automorphism, we also obtain results on the dynamics of f .
For any completion X of X0, the endomorphism f extends to a rational transformation
of X , it has a finite number of indeterminacy points at infinity i.e on XzX0. One cannot
hope in general to find a completion X such that f extends to a regular endomorphism
of X . The strategy of proof consists of studying the dynamics of f at infinity. More
specificallly, we find good completions where f has an attracting fixed point at infinity,
i.e a point p P XzX0 where the lift f : X 99K X of f is defined at p and f ppq “ p we can
then study the local dynamics at p to compute the first dynamical degree of f . Theorem
E below provides a precise statement in the case of automorphisms; the most general
results will be described in Chapter 14.

1.4. The dynamical spectrum of the algebraic torus

If V is an algebraic variety, let EndpV q be the semigroup of dominant endomor-
phisms of V . We define the dynamical spectrum of V by

ΛpV q :“ tλ1p f q : f P EndpV qu . (9)

As every 2 ˆ 2 matrix with integer coefficients induces a monomial endomorphism of
the algebraic torus G2

m, we have that ΛpG2
mq is the set of Perron numbers of degree ď 2.

By Theorem A, this shows that ΛpG2
mq is maximal among the dynamical spectra of

normal affine surfaces. One might wonder if this is a characterization of the algebraic
torus but we show that this is not the case.

THEOREM B. For any field k,

ΛpA2
kq “ ΛpG2

m,kq. (10)

1.5. Existence of an eigenvaluation

Let A be the ring of regular functions of a normal affine surface X0 over an alge-
braically closed field k. A valuation is a map ν : A Ñ R Y t8u such that

(1) νpPQq “ νpPq ` νpQq;
(2) νpP ` Qq ě minpvpPq,νpQqq;
(3) νp0q “ 8;
(4) ν|kˆ “ 0

Two valuations ν and µ are equivalent if there exists t ą 0 such that ν “ tµ. For example,
if X is a completion of X0, for each irreducible curve E Ă X , the map ordE defined by
ordEpPq being the order of vanishing of P along E is a valuation. Any valuation of
the form λordE with λ ą 0 is called divisorial. If f is an endomorphism of X0, then f
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induces a ring homomorphism f ˚ : A Ñ A. We can then define the pushforward f˚ν of
a valuation ν by

f˚νpPq “ νp f ˚Pq. (11)
We say that a valuation is centered at infinity if there exists P P A such that νpPq ă 0.

If X is a completion of X0, the divisorial valuations centered at infinity are exactly the
one corresponding to the irreducible components of XzX0. Let V8 the set of valuations
centered at infinity and pV8 the set of valuations centered at infinity modulo equiva-
lence. Suppose for the sake of simplicity that f is an automorphism of X0, then f˚

induces a bijection of V8 and of pV8 which will in fact be a homeomorphism for a
topology that will be described in Chapter 4.

If X0 is the complex affine plane, then Favre and Jonsson proved the existence of
a valuation ν˚ P V8 such that f˚ν˚ “ λ1p f qν˚. Such a valuation is called an eigen-
valuation of f . To do so, they show in [FJ04] that pV8 has a real tree structure and
f˚ is compatible with this structure. The existence of ν˚ follows from a fixed point
theorem on trees. The existence of this eigenvaluation has a big impact on the dynam-
ics of f . In particular, it allows one to find a good completion X of C2 and a point
q P XzC2 (a point at infinity) which is an attracting fixed point for the dynamics of f
(extended to X as a rational map). Xie uses this construction to prove the Zariski dense
orbits conjecture and the dynamical Mordell-Lang conjecture for polynomial endomor-
phisms of the complex affine plane ([Xie17]). Jonsson and Wulcan use these techniques
to build canonical heights for polynomial endomorphisms of the complex affine plane
with small topological degree in [JW12].

THEOREM C. Let X0 be a normal affine surface over an algebraically closed field
k (of any characteristic) and let f be a dominant endomorphism of X0. Suppose that

(1) krX0sˆ “ kˆ.
(2) For any completion X of X0, Pic0pXq “ 0.
(3) λ1p f q2 ą λ2p f q.

Then, there exists a valuation ν˚, unique up to equivalence, such that

f˚pvq “ λ1p f qν˚. (12)

The techniques we use do not use the global geometry of pV8 because it is not
necessarily a tree anymore. If X is a completion of X0 and v is a valuation centered at
infinity, we associate in a canonical way a divisor Zν,X of X supported outside of X0. If
π : Y Ñ X is another completion of X0 obtained from blowing up points of X at infinity,
and π˚Zν,Y “ Zν,X (see Proposition 7.6). This construction involves the Picard-Manin
space of X0. We give a brief description of this space. Consider the direct limit

Cartier-NSpX0q “ lim
ÝÑ

X
NSpXqR (13)
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indexed by all the completions of X0. This is an infinite dimension real vector space.
The intersection form can be extended in a natural way to Cartier-NSpX0q and the
Hodge Index theorem states that it is a non-degenerate form of Minkowski type, i.e its
signature is p1,8q. We can use the intersection form to define a norm on Cartier-NSpX0q

and the Picard Manin space of X0 will be the completion of Cartier-NSpX0q with respect
to this norm. It has a structure of a Hilbert space and any dominant endomorphism f of
X0 induces two bounded operators f ˚, f˚ on it. The spectral analysis of the operators
f˚, f ˚ (see [BFJ08, Can11]) allows one to construct the eigenvaluation ν˚ and show
its uniqueness. Namely, λ1p f q is the spectral radius of f ˚ and f˚ and when λ2

1 ą λ2,
there is a spectral gap property. The eigenvalue λ1 is simple for f ˚ and f˚. This process
is similar to the techniques of [DF21] §6. These techniques were used by Gignac and
Ruggiero in [GR21] to study the local dynamics of non invertible germs near a normal
singularity in dimension 2. This memoir can be considered to be the global counter-
part to the local techniques developed by these two authors. Our construction of the
valuation v˚ is however different.

1.6. Discussion of the assumptions of Theorem C

The assumptions of Theorem C may seem arbitrary but they are not restrictive.
Indeed, if assumption (1) or (2) is not satisfied, then one can show that f preserves a
fibration over a 2quasi-abelian variety. We can decompose the dynamics of f with this
fibration and it becomes easier to study. This is done in Chapter 10, we show that the
only case with interesting dynamics is when X0 is the algebraic torus G2

m.

THEOREM D. Let X0 be a normal affine surface over an algebraically closed field.
Suppose that X0 does not satisfy Conditions (1) or (2) of Theorem C, then either

(1) X0 is of log general type. Every dominant endomorphism of X0 is an automor-
phism and AutpX0q is a finite group.

(2) There exists a curve C and a regular map π : X0 Ñ C and for every endomor-
phism f of X0, there exists an endomorphism g : C Ñ C such that π˝ f “ g˝π.
In that case λ1p f q is always an integer.

(3) X0 » G2
m.

If Assumption (3) is not satisfied, then we have λ1p f q2 “ λ2p f q. In that case, λ1p f q

is automatically a Perron number of degree ď 2 because λ2p f q is the topological degree
of f , hence an integer. In the case of the complex affine plane, Favre and Jonsson man-
age to classify all polynomial transformations of the complex affine plane for which
λ2

1 “ λ2: either they preserve a rational fibration, or there exists a completion X of A2
C

with at most quotient singularities at infinity such that f extends to an endomorphism

2a quasi-abelian variety is an algebraic group such that there exists an algebraic torus T and an
abelian variety A such that the sequence of algebraic groups 0 Ñ T Ñ X Ñ A Ñ 0 is exact.
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of X . We expect that such a classification should exist in general, with one excep-
tional counterexample: The monomial transformations of pG2

mq that cannot be made
algebraically stable (see [Fav03]). We conjecture that the only counterexamples of this
classification should come from equivariant quotient of these monomial maps. In the
local case of dyamics near a normal singularity Gignac and Ruggiero ([GR21]) showed
such a classification. One can notice that in the invertible case, a classification exists:
By [Giz69] and [Can01b], every birational transformation σ : X Ñ X of a smooth pro-
jective surface such that λ1pσq “ 1 lifts to an automorphism or preserves a rational or
elliptic fibration.

1.7. Statement of the theorem in the case of automorphisms

In the case of loxodromic automorphism (i.e with λ1 ą 1), we obtain informations
on the dynamics. For this introduction we state the result in the complex case.

THEOREM E. Let X0 be a normal affine surface over C such that CrX0sˆ “ Cˆ. If
f is an automorphism of X0 such that λ1p f q ą 1, then there exists a completion X of X0
such that

(1) f admits a unique attracting fixed point p P XpCqzX0pCq at infinity.
(2) An iterate of f contracts XzX0 to p.
(3) There exists local analytic coordinates centered at p such that f is locally of

the form
(a)

f pz,wq “ pzawb,zcwd
q (14)

with a,b,c,d integers ě 1, in that case λ1p f q is the spectral radius of
ˆ

a b
c d

˙

. In particular, λ1p f q P RzQ, it is a Perron number of degree 2.

(b) or
f pz,wq “ pza,λzcw ` Ppzqq (15)

with a ě 2,c ě 1 and P ı 0 a polynomial, in that case λ1p f q “ a is an
integer.

(4) The attracting fixed points of f and f ´1 are distinct.
(5) The local normal form of f ´1 at its attracting fixed point is the same as f .

Theorem E holds in fact for any complete algebraically closed field (in any charac-
teristic) but we cannot be as precise with local normal forms in general, see Theorem
12.1 and 14.4.

The cases (3)(a) et (3)(b) are mutually exclusive in the following way

THEOREM F. Let X0 be a normal affine surface over a field k such that krX0sˆ “ kˆ

and f P AutpX0q a loxodromic automorphism. We have the following dichotomy
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‚ If λ1p f q P Zě0, then for any loxodromic automorphism g of X0, we have
λ1pgq P Zě0 and the local normal form of g at its attracting fixed point is
given by (15).

‚ If λ1p f q R Zě0 then it is a Perron number of degree 2 and this holds for any
loxodromic automorphism g of X0. In particular, the local normal form of g at
its attracting fixed point is given by (14).

Plan of the memoir. This memoir is divided into two parts. In the first part we
establish the main definitions and results needed for the proofs of the theorems stated in
this introduction. In Chapter 3, we define completions of an affine surface and introduce
the Picard Manin space of an affine surface. In Chapter 4-6, we define valuations
and explain the geometry of the space of valuations centered at infinity of an affine
surface. The main result of this part is that a valuation induces a linear form with
special properties on the space of divisors at infinity and that this process is bijective.
This is the goal of Chapters 7-9.

The second part is dedicated to the proofs of the theorems of this introduction using
the results established in the first part. We construct the eigenvaluation and prove Theo-
rems A, B and C in Chapters 10 and 11. In Chapter 12, we show that the eigenvaluation
constructed is an attracting fixed point in the space of valuations and derive results on
the dynamics at infinity of our endomorphisms. We study examples in Chapter 13. For
examples over the complex affine plane, we refer to [FJ07] and [FJ11]. For examples
of affine surfaces with interesting automorphisms group, we refer to [BD13]. Theorems
E and F are proven in Chapter 14, where we apply the techniques of Chapter 12.
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memoir was written during my visit at Beijing International Center for Mathematical
Research which I thank for its welcome. Finally, I thank the France 2030 framework
programme Centre Henri Lebesgue ANR-11-LABX-0020-01 and European Research
Council (ERCGOAT101053021) for creating an attractive mathematical environment.
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Valuations and Algebraic geometry



CHAPTER 2

Results from Algebraic Geometry

In this chapter, we recall several results from Algebraic Geometry that will be used
throughout this memoir. Let k be an algebraically closed field. A variety is an integral
scheme of finite type over k. A surface is a variety of dimension 2. An affine variety
over k is a variety X0 “ SpecA with A a finitely generated k-algebra. We will denote
by krX0s the ring of regular functions of the affine variety X0.

2.1. Bertini

THEOREM 2.1 (Bertini’s Theorem, [Har77]). Let X Ă PN be a smooth quasi-
projective variety over an algebraically closed field k. The set of hyperplanes H of
PN such that the intersection H X X is a smooth irreducible subvariety of X is a dense
open subset of PΓpPN ,Op1qq.

2.2. Local power series and local coordinates

Let X be a variety and x P X a closed point. We will write OX ,x for the ring of germs
of regular functions at x. A regular sequence of OX ,x is a sequence t1, ¨ ¨ ¨ , tr P OX ,x
such that t1 is not a zero divisor in OX ,x and for all i ě 2, ti is not a zero divisor in
OX ,x{pt1, ¨ ¨ ¨ , ti´1q (see [Har77] p.184). The point x is regular if the local ring OX ,x is
regular, i.e there exists a regular sequence of length dimOX ,x.

THEOREM 2.2 ([Har77], Theorem 5.5A). Let R be a regular local k-algebra of
dimension n with maximal ideal m, then the completion of R with respect to the m-adic
topology is isomorphic to k rrt1, ¨ ¨ ¨ , tnss where pt1, ¨ ¨ ¨ , tnq is a regular sequence of R.

Let X be a surface and x a regular point of X . Then, we will say that pz,wq are local
coordinates at x if pz,wq is a regular sequence of OX ,x. If pz,wq is a regular sequence of
the completion yOX ,x we will say that they are local formal coordinates. By Theorem 2.2,
yOX ,x is isomorphic to krrz,wss. Finally, If k “ Cv, is a complete algebraically closed
field of any characteristic, we consider the local ring of germs of holomorphic functions
at x, this is the subring of yOX ,x of power series with a positive radius of convergence.
We denote it by Ohol

X ,x it is also a local ring of dimension 2, if pz,wq is a regular sequence
of Ohol

X ,x, we say that pz,wq are local analytic coordinates. If E,F are two germs of

15
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reduced irreducible curves at x (algebraic, analytic of formal) we will say that pz,wq are
associated to pE,Fq if z “ 0 is a local equation of E and w “ 0 is a local equation of F .

2.3. Boundary

PROPOSITION 2.3 ([Goo69], Proposition 1 and 2). Let X0 be an affine variety and
let ι : X0 ãÑ X be an open embedding into a projective variety, then the subvariety XzX0
is connected and of pure codimension 1.

Set
BX X0 :“ XzX0, (16)

we call it the boundary of X0 in X ; by Proposition 2.3 it is a curve when X0 is a surface.

THEOREM 2.4 ([Goo69]). Let X be a normal proper surface and U an open dense
affine subset of X (that is an open dense subset of X that is also an affine variety) such
that V :“ XzU is locally factorial (each local ring is a unique factorization domain),
then there exists an ample divisor H on X such that SuppH “ V .

In fact, Goodman shows that Theorem 2.4 holds in higher dimension with the only
difference that you may need to do some blow-ups at infinity to find an ample divisor.

2.4. Surfaces

THEOREM 2.5 ([Har77] Proposition 5.3). Let g : S1 Ñ S2 be a birational morphism
between smooth projective surfaces. Then, g is a composition of blow-ups of points and
of an automorphism of S2. Furthermore, if h : S1 99K S2 is a birational map, then there
exists a sequence of blow-ups π : S3 Ñ S1 such that hπ : S3 Ñ S2 is regular and S3 can
be chosen minimal for this property.

PROPOSITION 2.6. Let g : S1 99K S2 be a birational map. Let π : S3 Ñ S1 be a
minimal resolution of indeterminacies of g such that the lift h : S3 Ñ S2 of g is regular.
Then, the first curve contracted by h must be the strict transform of a curve in S1.

Recall the Castelnuovo criterion

THEOREM 2.7 ([Har77] Theorem V.5.7). Let C be a curve in a projective surface
S such that C » P1 and C2 “ ´1, then there exists a projective surface S1, a birational
morphism π : S Ñ S1 and a point p P S1 such that S is isomorphic via π to the blow up
of p and C is the exceptional divisor under this isomorphism.

We will use these results for the study of automorphisms of affine surfaces as they
induce birational maps. Understanding the combinatorics of the blow ups and contrac-
tions induced by the automorphism will allow us to understand their dynamics.

Our work relies heavily on the elimination of indeterminacies for rational mor-
phism. Since we are in dimension 2, it exists in any characteristic.
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THEOREM 2.8. Let f : S1 99K S2 be a dominant rational morphism between projec-
tive varieties over an algebraically closed field of any characteristic, then there exists
a sequence of blow-ups π : S Ñ S1 such that f ˝ π : S Ñ S2 is regular.

THEOREM 2.9 ([Cut02], [CP00]). Suppose chark “ 0. Let f : S Ñ S1 be a dominant
rational map between normal projective surfaces over k. There exists blow ups S1 Ñ S
and S1

1 Ñ S1 such that the lift pf : S1 Ñ S1
1 is monomial at every point. Meaning that for

every closed point p P S1 there exists local coordinates px,yq at p and local coordinates
pu,vq at f ppq such that f px,yq “ pxayb,xcydq.

If chark ą 0 the result remains true if f is separable and tamely ramified (see §4.5)
in the sense of [CP00]. In particular, it holds if f is birational.

2.5. Rigid contracting germs in dimension 2 and local normal forms

Let k be a complete algebraically closed field (of any characteristic). Let f :
pk2,0q Ñ pk2,0q be the germ of a regular function fixing the origin. The critical set
Critp f q of f is the set where the Jacobian of f vanishes. A germ is said to be rigid if
the generalized critical set Yně0 f ´npCritp f qq “ Yně1 Critp f nq is a divisor with simple
normal crossings (see [Fav00]).

A germ is contracting if there exists an open (euclidian) neighbourhood U of 0 such
that f pUq Ť U . In [Fav00], Favre classified all the complex rigid contracting germs in
dimension 2 up to holomorphic conjugacy. Ruggiero extended the classification to any
dimension in [Rug13] and showed that it holds over any algebraically closed complete
metrized field of characteristic zero. For this section, C will denote any algebraically
closed complete field of characteristic zero. In dimension 2, there are 7 possible pos-
sibilities which we call local normal forms. We are interested in 3 of them that will
appear in this text. However since we do not only work in characteristic zero, we start
by more general local forms that works over any field and show their complex counter-
part.

First normal form.– Suppose that there are local coordinates pz,wq at the origin
such that f contracts tz “ 0u with an index of ramification a ě 2, f admits no invariant
curves and no other curves is contracted to the origin, then f is of the form

f pz,wq “ pza
ϕpz,wq,zcwψ2pz,wq ` ψ1pzqq (17)

with ϕ invertible, ψ1pzq ‰ 0 and ψ2p0,wq ‰ 0. If k “ C, then in the classification of
Favre that this local normal form corresponds to Class 2 of Table II in [Fav00] and it is
analytically conjugated to

f px,yq “ pxa,λxcy ` Ppxqq (18)
with a ě 2,c ě 1,λ P kˆ and P is a polynomial such that Pp0q “ 0. This is the local
normal form of a Hénon map at its attracting fixed point in P2 (see [Fav00] §2).
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Second normal form.– If f is a germ of a regular function such that there exists
local coordinates pz,wq at the origin with both axis tz “ 0u and tw “ 0u contracted
and they are the only two germs of curves contracted. Then, f is of the following
pseudomonomial form

f pz,wq “ pza11wa12ϕpz,wq,za21wa22ψpz,wqq (19)

with ϕ,ψ invertible and ai j P Zě0. Suppose furthermore that a11a22 ´ a12a21 is not
divisible by chark. In particular, ad ´ bc ‰ 0, then (19) is analytically conjugated to
the monomial normal form

f px,yq “ pxa11ya12,xa21ya22q (20)

The germ of curves tx “ 0u ,ty “ 0u are contracted to the origin. We have Critp f nq “

txy “ 0u. If k “ C, we can characterize the matrix A given by pai jq in the following
way. The local fundamental group of pC2,0qztxy “ 0u is isomorphic to Z2. The action
of f˚ on Z2 is given by the matrix A and we have that |detA| is equal to the topological
degree of f . This corresponds to Class 6 of Table II of [Fav00].

Third normal form.– The third one is

f px,yq “ pxayb
ϕ,yψq (21)

with a ě 2,b ě 1 and ϕ,ψ are germs of invertible regular functions vanishing at the
origin. We have that ty “ 0u is contracted to the origin. The germ tx “ 0u is f -invariant
with a ramification index equal to a. We have Critp f nq “ txy “ 0u and the origin is a
noncritical fixed point of f|tx“0u. Notice that this germ is rigid but not necessarily
contracting. It is contracting if and only if |ψp0q| ă 1. If the germ is contracting and
k “ C, then the germ is analytically conjugated to this normal form

f pz,wq “

´

zawb,ψp0qw
¯

(22)

with the same numbers a,b as in Equation 21. This corresponds to Class 5 of Table II
in [Fav00].



CHAPTER 3

Divisors at infinity and Picard-Manin space

In this chapter, we introduce the notion of completions of an affine surface X0. They
are essentialy projective compatifications of X0 and form a projective set. The Picard-
Manin space of X0 will be a completion of the direct limit of the Néron Sévéri groups
of the completions of X0. It is a Hilbert space on which every endomorphism of X0 acts
in a natural way. Let k be an algebraically closed field of any characteristic and let X0
be a normal affine surface over k. We will denote by krX0s the ring of regular functions
on X0.

3.1. Completions and divisors at infinity

A completion of X0 is the data of a projective surface X with an open embedding
ι : X0 ãÑ X such that ιpX0q is an open dense subset of X and such that there exists an
open smooth neighbourhood of BX X0 in X . We will say that a completion is good if
BX X0 is an effective divisor with simple normal crossings. From any completion of X ,
one obtains a good one by a finite number of blow ups at infinity (i.e on BX X0) see for
example [Har77] Theorem 3.9 p.391.

Let X be a completion of X0 with the embedding ιX : X0 Ñ X , we will still de-
note ιX pX0q by X0 and we will denote by OX pX0q the subring of kpXq of functions
f P kpXq which are regular on X0. By Proposition 2.3, the boundary BX X0 is a possibly
reducible connected curve. We denote by DivpXq the group of divisors of X and by
Div8pXq the subgroup of divisors of X supported on BX X0. For A “ Z,Q,R, we set
DivpXqA :“ DivpXq b A and Div8pXqA “ Div8pXq b A. Let E1, ¨ ¨ ¨ ,Em be the irre-
ducible components of BX X0 (we will call them the prime divisors at infinity). Any
element of Div8pXqA is of the form D “

ř

i aipDqEi with aipDq P A. We will write
ordEipDq for aipDq of D at Ei. For a family pD jq jPJ of elements of Div8pXq the coef-
ficients aipDq are integers; so, using the natural order on Z, we define the supremum
Ž

jPJ D j and the infimum
Ź

jPJ D j by

ł

j

D j “
ÿ

i

suppordEipD jqqEi and
ľ

j

D j “
ÿ

i

infpordEipD jqqEi (23)

19
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It only exists if each pordEipD jqq jPJ is bounded respectively from above or from
below. If

Ź

j D j (respectively
Ž

j D j) is well defined we say that the family pD jq is
bounded from below (from above). Notice that we only define supremum and infimum
for family of divisors with coefficients in Z.

3.2. Morphisms between completions, Weil, Cartier divisors

Some notations. If π : Y Ñ X is a projective birational morphism between smooth
projective surfaces and DX is a divisor on X , we will denote by π˚DX the pull-back of
DX under π and if DX is effective, then π1pDX q will be the strict transform of DX under
π. For any projective surface Z, if DZ is a divisor on Z, we will denote by OZpDZq the
invertible sheaf on Z associated to DZ .

Let X1,X2 be two completions of X0 with their embeddings ι1, ι2. There exists a
unique birational map π : X1 99K X2 such that the diagram

X1 X2

X0 X0

π

ι1

id

ι2 (24)

commutes. If π is a morphism, we call it a morphism of completions. In that case we
say that X1 is above X2. By Theorem 2.5, π´1 is a composition of blow-ups; since π is
an isomorphism over X0, the centers of these blowups are above BX2X0. Conversely, let
X be a completion of X0 with an embedding ι : X0 ãÑ X , let π : Y Ñ X be the blowup of
X at a point p P BX X0, then Y with the embedding π´1 ˝ ι : X0 Ñ Y is a completion of
X0 and π is a morphism of completions. For a morphism of completions π : Y Ñ X , we
will write Excpπq Ă Y for the exceptional locus of π.

LEMMA 3.1. The system of completions of X0 is a projective system: For any two
completions X1,X2 of X0 there exists a completion X3 above X1 and X2.

PROOF. Let X1, X2 be two completions of X0, let π : X1 99K X2 be the birational map
from Diagram 24. By Theorem 2.5, there exists a sequence of blow-ups π1 : X3 Ñ X1
such that g “ π1 ˝π : X3 Ñ X2 is regular. It is clear that π1 is a morphism of completions
since by definition ιX3 “: ι3 “ ι1 ˝ π1

´1. The map g is also a morphism of completion
because by construction g “ π ˝ π1 and ι2 “ π ˝ ι1, therefore ι3 “ π1

´1 ˝ ι1 “ g´1 ˝ π ˝

ι1 “ g´1 ˝ ι2 □

If π : X1 Ñ X2 is a morphism of completions. We can define (see [Ful98], Sec-
tion 1.4) the pushforward π˚ : DivpX1qA Ñ DivpX2qA and pullback π˚ : DivpX2qA Ñ

DivpX1qA of divisors. They define group homomorphisms

π˚ : Div8pX1qA ↠ Div8pX2qA and π
˚ : Div8pX2qA ãÑ Div8pX1qA; (25)
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the map π˚ is often called the total transform. Recall that ([Har77] Proposition 3.2
p.386)

π˚π
˚

“ idDivpX2qA . (26)

Let X be a completion of X0 and P P krX0s, then pιX
´1q˚pPq P kpXq. We set

pιX q˚ :“ pιX
´1q˚ and we denote by divX pPq :“ divppιX q˚Pq the divisor of the rational

function P in X . In particular, if π : Y Ñ X is a morphism of completions above X0, then
by Diagram (24), one has ιY “ π´1 ˝ ιX . Therefore divY pPq “ divppπ´1 ˝ ιX q˚pPqq “

divpπ˚ ppιX q˚pPqqq “ π˚ divX pPq. We will write div8,X pPq P Div8pXq the divisor on X
supported at infinity such that

divX pPq “ D ` div8,X pPq

where D is an effective divisor and no components of its support is in BX X0.

EXAMPLE 3.2. Let X0 “ A2 “ Speckrx,ys and let P “ xy. Take the completion P2

of A2 with homogeneous coordinates X ,Y,Z such that x “ X{Y and y “ Y {Z. Then,

divP2pPq “ tX “ 0u ` tY “ 0u ´ 2tZ “ 0u (27)

and div8,P2pPq “ ´2tZ “ 0u. Let π : X Ñ P2 be the blow-up of r1 : 0 : 0s, we can take
W to be the subscheme of P2 ˆ P1 given by the equation

UZ “ VY (28)

where U,V are the homogeneous coordinates of P1. Then π is the projection onto the
first factor. We take the affine chart X “ 1 in P2 with affine coordinates y1 “ Y {X and
z1 “ Z{X . Take the chart U “ 1 with affine coordinate v in P1, then W X tX “ 1u ˆ

tU “ 1u is an affine chart of W with coordinates v,y1 and we have the relation z1 “ vy1;
y1 “ 0 is a local equation of the exceptional divisor and v “ 0 is a local equation of the
strict transform of z1 “ 0.

π
˚
pPq “ π

˚

ˆ

y1

pz1q2

˙

“
y1

v2py1q2 “
1

v2y1
(29)

Therefore,

divX pPq “ π
1
tX “ 0u ` π

1
tY “ 0u ´ 2π

1
tZ “ 0u ´ rE “ π

˚
pdivP2pPqq (30)

and
div8,X pPq “ ´2π

1
tZ “ 0u ´ rE (31)

The system of completions of X0 is a projective system by Lemma 3.1. Consider the
system of groups pDiv8pXqqA for X a completion of X0 with compatibility morphisms

π˚ : Div8pXq Ñ Div8pY q (32)
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for any morphism of completions π : X Ñ Y . This is a projective system of groups.
Analogously, the same system of groups with π˚ as compatibility morphisms is an
inductive system. We define the space of Cartier and Weil divisors at infinity of X0 by

Cartier8pX0qA “ lim
ÝÑ

X
Div8pXqA, and Weil8pX0qA “ lim

ÐÝ
X

Div8pXqA. (33)

Concretely, an element D P Weil8pX0qA is a collection D “ pDX q such that DX is an
element of Div8pXqA for every completion X of X0 and such that for any morphism of
completions π : X Ñ Y , π˚DX “ DY ; DX is called the incarnation of D in X . An element
of Cartier8pX0qA is the data of a completion X and a divisor D P Div8pXq where two
pairs pX ,Dq and pX 1,D1q are equivalent if there exists a completion Z above X and X 1

with morphisms of completion π : Z Ñ X ,π1 : Z Ñ X 1 such that π˚D “ pπ1q˚D1. We will
say that D P Cartier8pX0qA is defined over a completion X if D is the equivalence class
of pX ,DX q for some DX P Div8pXqA. We have a natural inclusion

ϕ : Cartier8pX0qA ãÑ Weil8pX0qA (34)

defined as follows. If pX ,Dq P Cartier8pX0qA, then we need to define the incarnation
ϕpDqY for any completion Y . First of all, set ϕpDqX “ D. Then, for any completion Y ,
by Lemma 3.1, there exists a completion Z above Y and X ; denote by πY : Z Ñ Y and
πZ : Z Ñ X the respective morphism of completions. We define ϕpDqY :“ pπY q˚π˚

X D.
This does not depend on the choice of Z because of Equation (26). In the rest of
the paper, we will drop the notation ϕpDq and denote by D the image of pX ,Dq in
Weil8pX0qA. We equip Weil8pX0qA with the projective limit topology.

In the same manner we define CartierpX0qA :“ lim
ÝÑ

DivpXqA and WeilpX0qA :“
lim
ÐÝ

DivpXqA and we have the following commutative diagram

Cartier8pX0qA Weil8pX0qA

CartierpX0qA WeilpX0qA

(35)

REMARK 3.3. We have that Cartier8pX0qA “ Cartier8pX0qbA but Weil8pX0qA is
strictly larger than Weil8pX0qbA when A “ Q,R. Indeed, let W1, . . . ,Wr P Weil8pX0q,
λ1, . . . ,λr P A and set W :“

ř

i λiWi. Then, for every completion X and for every prime
divisor E at infinity in X we have

ordEpWX q “ ordEp
ÿ

i

λiWi,X q “
ÿ

i

λi ordEpWi,X q P Zλ1 ` ¨¨ ¨ ` Zλr (36)

In particular, the group GpW q generated by pordEpWX qqpX ,Eq for all completions X and
all prime divisor E at infinity in X is a finitely generated subgroup of R. Now pick a
completion X1 and consider a sequence of blow ups πn : Xn`1 Ñ Xn starting with X1. Let
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En be the exceptional divisor of πn. We still denote by En the strict transform of En in
every Xm,m ě n ` 1. Define the Weil divisor W P Weil8pX0qA such that its incarnation
in Xn`1 is WXn`1 “

řn
k“1

1
k Ek. Then, GpW q is not finitely generated, therefore W R

Weil8pX0qbA.

An element D of Weil8pX0qA with A “ Z,Q,R is called effective (denoted by D ě

0) if its incarnation in every completion X is effective; if D belongs to Cartier8pX0qR
this is equivalent to DX ě 0 for one completion X where D is defined. If D1,D2 P

Weil8pX0qA, we will write W1 ě W2 for W1 ´W2 ě 0.

3.3. A canonical basis

Let X be a completion of X0, we define DX as follows. Elements of DX are
equivalence classes of prime divisors exceptional above X at infinity in completions
πY : Y Ñ X above X where two prime divisors E and E 1 belonging respectively to Y
and Y 1 are equivalent if the birational map πY 1

´1 ˝ πY : Y 99K Y 1 induces an isomor-
phism πY 1

´1 ˝ πY : E Ñ E 1. We call DX the set of prime divisors above X . We also
define D8pX0q as the set of equivalence classes of prime divisors at infinity modulo the
same equivalence relation. We write ADX for the set of functions DX Ñ A and ApDX q

for the subset of functions with finite support.

PROPOSITION 3.4. If X is a completion of X0, then

Cartier8pX0qA “ Div8pXqA ‘ ApDX q, and Weil8pX0qA “ Div8pXqA ‘ ADX . (37)

This is a homeomorphism with respect to the product topology of ADX .

PROOF. Following [BFJ08] Proposition 1.4, for any E P DX there exists a minimal
completion XE above X such that E is a prime divisor in XE . We denote by αE P

Cartier8pX0q the element αE :“ pXE ,Eq. Let E1, . . . ,Er be the prime divisor at infinity
in X , then

pE0, . . . ,Erq Y tαE : E P DX u (38)

is a A-basis of Cartier8pX0qA. In the same fashion we obtain the second homeomor-
phism. □

REMARK 3.5. Since for any completion X , one can find a good completion Y above
X and the blow up of a good completion is still a good completion, the projective system
of good completions is cofinal in the projective system of completions, so in the rest of
the paper any completion that we take will be a good completion.

If f : X0 Ñ X0 is a dominant endomorphism, then we can define

f ˚ : Cartier8pX0qA Ñ Cartier8pX0qA and f˚ : Weil8pX0qA Ñ Weil8pX0qA (39)
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as follows. Let D “ pX ,DX q P Cartier8pX0qA. Let Y be a completion of X0 such that
the lift F : Y Ñ X of f is regular, then we define

f ˚D :“ pY,F˚DX q P Cartier8pX0qA . (40)

This does not depend on the choice of Y . If D P Weil8pX0q, let X ,Y be completions of
X0 such that the lift F : Y Ñ X is regular, then

p f˚DqX :“ F̊ DY . (41)

Again, this does not depend on the choice of Y .

3.4. Local version of the canonical basis

Let X be a completion and let p P X be a closed point at infinity i.e on BX X0. We de-
note by WeilpX , pqA the subspace of Weil8pX0qA defined as follows: D P WeilpX , pqA
if and only if DX “ 0 and for every completion π : Y Ñ X above X and every prime
divisor E at infinity in Y , one has E P SuppDY if and only if πpEq “ p. We define

CartierpX , pqA “ WeilpX , pqA X Cartier8pX0qA . (42)

We can define the set DX ,p of prime divisors above p as follows. We will say that
a completion π : Y Ñ X is exceptional above p if πpExcpπqq “ p. We will write π :
pY,Excpπqq Ñ pX , pq for such a completion. Elements of DX ,p are equivalence classes
of prime divisors E P Excpπq for all completions π : pY,Excpπqq Ñ pX , pq.

PROPOSITION 3.6. If X is a completion of X0, then DX “
Ů

pPBX X0
DX ,p and

CartierpX , pqA “ pAq
pDX ,pq (43)

WeilpX , pqA “ pAq
DX ,p (44)

3.5. Supremum and infimum of divisors

Let pDiqiPI be a family of elements of Weil8pX0q such that for all completions X ,
the family pDi,X q is bounded from below, we define

Ź

iPI Di with its incarnation in X
being

´

ľ

Di

¯

X
“
ľ

i

Di,X . (45)

We have an analogous definition for
Ž

i Di when each pDi,X q is bounded from above.

LEMMA 3.7. If D,D1 P Cartier8pX0q, then D ^ D1,D _ D1 P Cartier8pX0q.

PROOF. It suffices to show that D ^ D1 P Cartier8pX0q because D _ D1 “ ´p´D ^

´D1q. So take D,D1 P Cartier8pX0q, we have to show that D^D1 belongs to Cartier8pX0q.
Now, it suffices to show this for D,D1 effective, indeed let X be a completion such

that D and D1 are defined over X . Then, there exists D2 P Div8pXq such that D ´ D2
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and D1 ´ D2 are effective. Indeed, take D2 as the Cartier class determined by D ^ D1 in
X , Then

D ^ D1
“ pD ´ D2q ^ pD1

´ D2q ` D2. (46)

Therefore, suppose D,D1 are effective. Then a “ OX p´Dq`OX p´D1q is a coherent
sheaf of ideals such that a|X0 “ OX0 , let π : Y Ñ X be the blow-up along a. Since a|X0 is
trivial, π is an isomorphism over X0, therefore Y is a completion of X0 with respect to
the embedding ιY :“ π´1 ˝ ιX and π is a morphism of completions. Then, b :“ π˚a ¨ OY
is an invertible sheaf over Y trivial over X0, so there exists a divisor DY P Div8pY q such
that b “ OY p´DY q.

CLAIM 3.8. The Cartier class in Cartier8pX0q induced by DY is D ^ D1.

We postpone the proof of this claim to the end of Chapter 7, page 70. □

EXAMPLE 3.9. Let X be a completion that contains two prime divisors E,E 1 at
infinity in X such that they intersect (transversely) at a point p. The sheaf of ideals
a “ OX p´Eq ` OX p´E 1q is the ideal of regular functions vanishing at p. The blow up
of a is exactly the blow up π : Y Ñ X at p since by universal property of the blow-up
π˚a“ OY p´rEq where rE is the exceptional divisor above p. If we still denote by E,E 1, rE
the elements they define in Cartier8pX0q, then E ^ E 1 “ rE.

Let X be a good completion of X0. Let D1,D2 P Div8pXq. Let E,F be two prime
divisors at infinity that intersect. We say that pD1,D2q is well ordered at E X F if

ordEpD1q ă ordEpD2q ô ordFpD1q ă ordFpD2q. (47)

We say that pD1,D2q is a well ordered pair if it is well ordered at E XF for every prime
divisor E,F at infinity that intersect.

LEMMA 3.10. If D1 ^D2 or D1 _D2 is defined in X, then pD1,D2q is a well ordered
pair.

PROOF. Suppose for example that D1 _ D2 is defined in X and that D1,D2 is not a
well ordered pair and let E,F be two prime divisors at infinity that intersect such that
at E X F,Di “ αiE ` βiF with α1 ă α2 and β1 ą β2. Then, D1 _ D2 “ α2E ` β1F . Let
rE be the exceptional divisor above E X F , then we have ord

rEpD1 _ D2q “ α2 ` β1. But

ord
rE Di “ αi ` βi ă α2 ` β1 “ ord

rEpD1 _ D2q. (48)

This is a contradiction. □

REMARK 3.11. This is actually an equivalence, if D1,D2 is a well ordered pair,
then D1 ^ D2 and D1 _ D2 is defined in X . This gives an algorithmic procedure by
successive blow ups to find the minimum and maximum of two Cartier divisors.
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DEFINITION 3.12. Let S8pX0q be the semigroup of Weil8pX0q of elements D P

Weil8pX0q such that there exists a (potentially uncountable) family pDiqiPI Ă Cartier8pX0q

such that

D “
ł

I

Di (49)

PROPOSITION 3.13. (1) Cartier8pX0q Ă S8pX0q.
(2) For a,b ě 0 and D,D1 P S8pX0q, one has aD ` bD1 P S8pX0q.
(3) If Di P S8pX0q for each i P I and pDiq is bounded from above then

Ž

iPI Di P

S8pX0q.
(4) If D,D1 P S8pX0q, then D ^ D1 P S8pX0q.

PROOF. The first assertion is trivial as for D P Cartier8pX0q,D “
Ž

D. For Prop-
erty (2), let X be a completion of X0 then

Ž

i aDi,X `
Ž

j bD1
j,X “

Ž

i, jpaDi ` bD1
jqX .

For Property (3), if Di “
Ž

j Di, j, then
Ž

i Di “
Ž

pi, jq Di, j. Finally, the fourth assertion
is a corollary of Lemma 3.7. □

EXAMPLE 3.14. We have S8pX0q Ę Weil8pX0q. Let X0 “ A2 and X “ P2. Let E0
denote the line at infinity, a canonical divisor in P2 is given by KP2 “ ´3E0. We can
define an element K P Weil8pX0q by taking for any completion Y of A2 the canonical
divisor supported at infinity. More precisely, let Y is any completion of A2 above P2.
We still denote by E0 the strict transform of E0 in Y . Then, KY is of the form

KY “ ´3E0 `
ÿ

EĂBX X0,E‰E0

E. (50)

Suppose that K “ supipDiq for some Di P Cartier8pX0q. Let D P pDiq such that
D is defined over some completion Y and for some prime divisor E ‰ E0 at infinity,
ordEpDq “ 1. Then, we must have K ě D meaning that for any completion Z, KZ ě DZ .
Consider the following blow ups. Let π1 : Y1 Ñ Y be the blow-up of a point p of E
that does not belong to any other divisor at infinity. Let rE be the exceptional divisor
of π. Now let π2 : Y2 Ñ Y1 be the blow-up at π1

1E X rE and let rF be the exceptional
divisor of π2. Then, ord

rFpKY2q “ 1 but ord
rFpDY2q “ ord

rFppπ2 ˝ π1q˚Dq “ 2 and this is
a contradiction.

3.6. Picard-Manin Space at infinity

3.6.1. Cartier and Weil classes of X0. Let X be a completion of X0 and let NSpXq

be the Néron-Severi group of X . We have a perfect pairing given by the intersection
form

NSpXqR ˆ NSpXqR Ñ R. (51)
Recall the Hodge index theorem
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THEOREM 3.15 (Hodge Index Theorem, [Har77] Theorem 1.9 p.364). Let X be a
projective surface over a smooth projective surface over an algebraically closed field.
Let α P NSpXq and let H be an ample divisor on X. If α ¨ H “ 0, then

α
2

ă 0. (52)

In particular, the signature of the quadratic form induced by the intersection form is
p1,ρ ´ 1q where ρ is the rank of NSpXq.

A class α P NSpXq is nef if for all irreducible curve C Ă X ,α ¨ rCs ě 0. If π : Y Ñ X
is a morphism of completions we have two group homomorphisms

π˚ : NSpY qA Ñ NSpXqA,π
˚ : NSpXqA Ñ NSpY qA (53)

with the following properties
(1) π˚ ˝ π˚ “ idNSpXqA
(2) π˚α ¨ π˚β “ α ¨ β

(3) π˚α ¨ β “ α ¨ π˚β (Projection Formula)
Furthermore, if π : Y Ñ X is the blow up of one point, let rE be the exceptional

divisor, then
rrEs

2
“ ´1, and NSpY qA “ π

˚ NSpXqA k A ¨ rrEs (54)
Therefore, the system of groups pNSpXqq with compatibility morphisms π˚ is a pro-
jective system of groups and pNSpXqq with compatibility morphisms π˚ is an inductive
system of groups.

DEFINITION 3.16. The spaces of Cartier and Weil classes of X0 are defined as

Cartier-NSpX0qA :“ lim
ÝÑ

X0ãÑX
NSpXqA, Weil-NSpX0qA “ lim

ÐÝ
X0ãÑX

NSpXqA (55)

We equip Weil-NSpX0qA with the topology of the projective limit. An element of
Weil-NSpX0q is a family α “ pαX qX where αX P NSpXq such that for all π : Y Ñ X , we
have

π˚αY “ αX .

We call αX the incarnation of α in X .
An element of Cartier-NSpX0q is the data of a completion X of X0 and a class

α P NSpXq with the following equivalence relation: pX ,αq » pY,βq if there exists a
completion Z with a morphism of completion

πY : Z Ñ Y, πX : Z Ñ X

such that π˚
Y β “ π˚

X α. We say that the Cartier class is defined (by α) in X . We have a
natural embedding

Cartier-NSpX0q ãÑ Weil-NSpX0q . (56)
We have a pairing
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Weil-NSpX0qR ˆCartier-NSpX0qR Ñ R (57)
given by the following: let α P Weil-NSpX0qR and β P Cartier-NSpX0qR; let X be a
completion where β is defined i.e β “ pX ,βX q; then

α ¨ β :“ αX ¨ βX . (58)

This is well defined because if π : Y Ñ X then

αY ¨ βY “ αY ¨ π
˚
βX “ π˚αY ¨ βX “ αX ¨ βX (59)

by the projection formula.
An element α P Weil-NSpX0qR is nef if for all completion X , αX is nef.

PROPOSITION 3.17 ([BFJ08] Proposition 1.7). The intersection pairing

Weil-NSpX0qR ˆCartier-NSpX0qR Ñ R (60)

is a perfect pairing and it induces a homeomorphism Weil-NSpX0qR » Cartier-NSpX0q
˚
R

endowed with the weak-˚ topology.

Using the canonical basis of divisors introduced in §3.3 we have a more explicit
description of the space of Cartier and Weil classes of X0.

PROPOSITION 3.18. Let X be a completion of X0, then

Cartier-NSpX0qA “ NSpXqA k ApDX q, Weil-NSpX0qA “ NSpXq k ADX . (61)

Moreover, the intersection product is negative definite over ApDX q and tαE : E P DX u is
an orthonormal basis for the quadratic form α P ApDX q ÞÑ ´α2.

PROOF. The decomposition follows from Equation (54). The fact that the inter-
section form is negative definite follows from the existence of an ample divisor on X ,
the Hodge Index theorem and the projection formula. The fact that tαE : E P DX u is
an orthonormal basis is again a consequence of the projection formula and Equation
(54). □

3.6.2. Local Cartier and Weil classes. Let X be a completion of X0 and let p be
a point at infinity. Then, by Proposition 3.18 we have the canonical embeddings

CartierpX , pqA ãÑ Cartier-NSpX0qA, WeilpX , pqA ãÑ Weil-NSpX0qA (62)

PROPOSITION 3.19. The space CartierpX , pqR is an infinite dimensional R-vector
space and the intersection product defines a negative definite quadratic form over it.
The set tαE : E P DX ,pu is an orthonormal basis for the scalar product α ÞÑ ´α2. Fur-
thermore, the pairing

WeilpX , pqR ˆ CartierpX , pqR Ñ R (63)

is perfect.
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3.6.3. The divisors supported at infinity. Fix a completion X of X0, we have a
natural linear map τ : Div8pXqR Ñ NSpXqR.

PROPOSITION 3.20. The intersection pairing restricted to τpDiv8pXqRq is non de-
generate.

PROOF. Let D P τpDiv8pXqRq, suppose that D ¨ D1 “ 0 for all D1 P τpDiv8pXqRq .
Then, by Theorem 2.4, there exists H P Div8pXq ample. We have D ¨ H “ 0. By the
Hodge index theorem, if D is not numerically equivalent to zero, then D2 ă 0 and this
is a contradiction. □

Let V Ă NSpXq be the orthogonal subspace of τpDiv8pXqRq. Then,

NSpXqR “ V k τpDiv8pXqRq. (64)

For example if X0 “ A2 and X “ P2, then V “ 0. Since we only blow up at infinity we
get

PROPOSITION 3.21. Let X0 be an affine surface, then

Cartier-NSpX0qR “ V k τpCartier8pX0qRq , Weil-NSpX0qR “ V k τpWeil8pX0qRq

(65)

3.6.4. Functoriality. Let f : X0 Ñ X0 be a dominant endomorphism of X0. We
define f ˚, f˚ on the spaces of Cartier and Weil classes as follows. We first define

f ˚ : Cartier-NSpX0qR Ñ Cartier-NSpX0qR . (66)

Let β P Cartier-NSpX0qR and let X be a completion where β is defined. Let Y be a
completion of X0 such that the lift F : Y Ñ X is regular, then we define f ˚β as the
Cartier class defined in Y by

f ˚
β :“ pY,F˚

βX q (67)
this does not depend on the choice of Y . Indeed, if Y 1 is another completion such that
F 1 : Y 1 Ñ X is well defined, then there exists a completion Z such that we have the
following diagram.

Z

Y 1 Y

X X X

πY 1 πY

π1F 1 π F

f f

(68)

Then, the lift of f : Z 99K X is F ˝ πY “ F 1 ˝ πY 1 , hence we get

π
˚
Y ˝ F˚

“ π
˚
Y 1 ˝ pF 1

q
˚ (69)
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and the pull back of Cartier classes is well defined.
Next, we define f˚ : Weil-NSpX0qR Ñ Weil-NSpX0qR. Let α P Weil-NSpX0qR. Let

X ,Y be completions of X0 such that the lift F : Y Ñ X is regular, then the incarnation
of f˚α in X is

p f˚αqX :“ F̊ αY . (70)
Again, this does not depend on the choice of Y by a similar argument as for the pullback.
We have the following proposition

PROPOSITION 3.22 ([BFJ08] Section 2). We have the following properties.
‚ The operator f ˚ extends to an operator

f ˚ : Weil-NSpX0qR Ñ Weil-NSpX0qR . (71)

‚ the operator f˚ restricts to an operator

f˚ : Cartier-NSpX0qR Ñ Cartier-NSpX0qR (72)

‚ Let α P Weil-NSpX0q, let X ,Y be completions of X0 such that the lift f : X 99K
Y does not contract any curves, then

p f ˚
αqX “ p f ˚

αY qX (73)

REMARK 3.23. For a completion X , we can also define the restriction of f ˚ and f˚

to NSpXq. We denote them respectively by f ˚
X and p fX q˚. They are defined by

@β P NSpXq, f ˚
X β “ p f ˚

βqX , p fX q˚β “ p f˚βqX (74)

3.6.5. The Picard-Manin space and spectral property of the first dynamical
degree. Consider a completion X of X0 and ω P NSpXq an ample class. By the Hodge
index theorem, the intersection form on Cartier-NSpX0qˆCartier-NSpX0q is negative
definite on ωK. If α P Cartier-NSpX0q, the projection of α on ωK is α ´ pα ¨ ωqω.
Consider the quadratic form on Cartier-NSpX0q given by

@α P Cartier-NSpX0q,
ˇ

ˇ|α
2ˇ
ˇ | :“ pω ¨ αq

2
´

1
ω2 pα ´ pα ¨ ωqωq

2. (75)

This defines a norm on Cartier-NSpX0qR and Cartier-NSpX0qR is not complete for this
norm. We define the Picard-Manin space of X0 as the completion of Cartier-NSpX0qR
with respect to this norm and we denote it by L2pX0q; Had we chosen a different ample
class, we would have gotten an equivalent norm so the space L2pX0q is independent of
the choice of ω. This is a Hilbert space and we have

PROPOSITION 3.24 ([BFJ08] Proposition 1.10). There is a continuous injection

L2
pX0q ãÑ Weil-NSpX0q (76)

and the topology on L2pX0q induced by Weil-NSpX0q coincides with its weak topol-
ogy as a Hilbert space. If α P Weil-NSpX0q then α belongs to L2pX0q if and only if
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infX pα2
X q ą ´8, in which case α2 “ infX pα2

X q. Furthermore, the intersection product ¨

defines a continuous bilinear form on L2pX0q.

REMARK 3.25. In particular, any nef class belongs to L2pX0q. Recall that α P

Weil-NSpX0qR is nef if for every completion X ,αX is nef. The cone theorem ([Laz04]
Theorem 1.4.23) states that αX is a limit of ample classes in NSpXqR, therefore pαX q2 ě

0 and α P L2pX0q.

Using the canonical basis of exceptional divisors we can have an explicit description
of L2pX0q. Let α P Cartier-NSpX0q and let αX be the incarnation of α in X . Then, since
α is a Cartier class, we have for all but finitely many E P DX that α ¨ αE “ 0 and

α “ αX `
ÿ

EPDX

pα ¨ αEqαE . (77)

Therefore,
ˇ

ˇ|α
2ˇ
ˇ | “ ||αX | |

2
`

ÿ

EPDX

pα ¨ αEq
2, (78)

and
α

2
“ α

2
X ´

ÿ

EPDX

pα ¨ αEq
2 (79)

Therefore, L2pX0q is isomorphic to the Hilbert space

L2
pX0q “ NSpXq k ℓ2

pDX q. (80)

We also have the local version of this statement

PROPOSITION 3.26. Let X be a completion of X0 and p P X be a point at infinity.
Then,

L2
pX0qXWeilpX , pq “ ℓ2

pDX ,pq (81)
and tαE : E P DX ,pu is a Hilbert basis of this space.

PROPOSITION 3.27 ([BFJ08]). Let f be a dominant endomorphism of X0. The
linear maps

f ˚, f˚ : Weil-NSpX0q Ñ Weil-NSpX0q (82)
induce continuous operators

f ˚, f˚ : L2
pX0q Ñ L2

pX0q (83)

Furthermore, we have the following properties in L2pX0q.
(1) p f nq˚ “ p f ˚qn;
(2) @α,β P L2pX0q, f ˚α ¨ β “ α ¨ f˚β.
(3) @α P L2pX0q, f ˚α ¨ f ˚α “ ep f qα ¨ α where ep f q is the topological degree of f .
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In particular, if f P AutpX0q then f ˚ is an isometry of L2pX0q viewed as an infinite
dimensional hyperbolic space (see [CLC13]).

THEOREM 3.28 ([BFJ08, DF21]). Suppose that λ1p f q2 ą λ2p f q, then there exist
nef classes θ˚,θ˚ P L2pX0q unique up to multiplication by a positive constant such that

(1) f ˚θ˚ “ λ1θ˚.
(2) f˚θ˚ “ λ1θ˚.
(3) For all α P L2pX0q,

1
λn

1
p f n

q
˚
α “ pα ¨ θ˚qθ

˚
` 1Oα

˜

ˆ

λ2

λ2
1

˙n{2
¸

, (84)

1
λn

1
p f n

q˚α “ pα ¨ θ
˚
qθ˚ ` Oα

˜

ˆ

λ2

λ2
1

˙n{2
¸

. (85)

In particular, for all α,β P L2pX0q,

lim
n

1
λn

1
p f n

q
˚
α ¨ β “ pα ¨ θ˚qpβ ¨ θ

˚
q. (86)

Furthermore, θ˚ and θ˚ satisfy

pθ
˚
q

2
“ 0, θ˚ ¨ θ

˚
ą 0 (87)

We call θ˚ and θ˚ the eigenclasses of f .

SKETCH OF PROOF. We sketch here the proof for θ˚. Let X be a completion
of X0. The pull back f ˚ induces a linear map f ˚

X : NSpXq Ñ NSpXq. Let ρX be
the spectral radius of this map. We have for any ample class w P NSpXq that ρX “

limnÑ8 pp f ˚
X qnw ¨ wq

1{n. Now, f ˚
X preserves the cone CX of nef classes in NSpXqR.

This is a closed convex cone with compact basis and non-empty interior. By a Perron-
Frobenius type argument, there exists θX P CX such that f ˚

X θX “ ρX θX .
Now, Let pXNq be a sequence of completions of X0 such that X1 “ X and XN`1 is

a composition of blowups of XN at infinity such that the lift of f to FN : XN`1 Ñ XN
is regular, we denote by πN : XN`1 Ñ XN the induced morphism of completions. Let
ρN :“ ρXN and θN :“ θXN . One can show that limN ρN “ λ1. By construction, we have
that for all N ě 1, the element f ˚θN ´ ρNθN P Weil-NSpX0qR has incarnation zero in
XN , hence it tends to zero in Weil-NSpX0qR. We can normalize all θN such that θN ¨w “

1 where w is an ample class of NSpXq. Now, the set tW P Weil-NSpX0qR |W ¨ w “ 1u

is a compact subset of Weil-NSpX0q so the sequence pθNq has an accumulation point
θ˚ P Weil-NSpX0q that is nef, effective and we get f ˚θ˚ “ λ1θ˚. □

1A “ OαpBq means that there exists a constant Cpαq ą 0 such that A ď CpαqB.



CHAPTER 4

Valuations

We introduce the notion of valuations and describe some properties. We will espe-
cially focus on valuations over the ring of power series in two variables krrx,yss as they
allow one to describe every valuation over krX0s for X0 a normal affine surface.

4.1. Valuations and completions

Our general reference for the theory of valuations is [Vaq00]. Let R be a com-
mutative k-algebra that is also an integral domain, a valuation on R is a function
ν : R Ñ R Y t8u such that

(i) νpk˚q “ 0;
(ii) For all P,Q P R,νpPQq “ νpPq ` νpQq;

(iii) For all P,Q P R,νpP ` Qq ě minpνpPq,νpQqq;
(iv) νp0q “ `8.

If I is an ideal of R, we set νpIq :“ miniPI νpiq. If S Ă I is a set of generators, then

νpIq “ min
sPS

νpsq. (88)

REMARK 4.1. In [Abh56] A valuation can take the value `8 only at 0 but we
do not require such a property. Let pν “ ta P R : νpaq “ 8u then pν is a prime ideal
of R that we call the bad ideal of ν. If ν is a valuation on R, it defines naturally a
valuation in the sense of [Abh56] on the quotient field R{pν. Furthermore ν can be
naturally extended to a valuation on the ring Rpν

via the formula νpp{qq “ νppq ´ νpqq.
In particular, if pν “ t0u, then ν defines a valuation over FracR.

Let X be a completion of X0 and let ν be a valuation over B :“ OX pX0q. Let pν be
the bad ideal of ν. Consider Bpν

the localization of B at pν. Set

Oν :“ tx P Bpν
: νpxq ě 0u . (89)

This is a subring of Bpν
. If pν “ t0u, then this is the classical valuation ring of ν.

LEMMA 4.2. The subring Oν is a local ring, its maximal ideal is

mν :“ tx P Oν : νpxq ą 0u (90)
33
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PROOF. It suffices to show that if νpxq “ 0, then x is invertible in Oν but this is
obvious since νpx´1q “ ´νpxq “ 0. □

One defines naturally a valuation ν on C :“ B{pν, let L be the fraction field of C and
O be the valuation ring of L with respect to ν. Then, we have the natural isomorphisms

L » Bpν
{pν and Oν{pν » O (91)

Geometrically, the Zariski closure of pν inside X defines an irreducible closed sub-
scheme Y of X and L is isomorphic to the field of rational functions on Y .

Two valuations ν1,ν2 are equivalent if there exists a real number λ ą 0 such that
ν1 “ λν2. Let R,R1 be two integral domains with a homomorphism of schemes ϕ :
SpecR1 Ñ SpecR; it induces a ring homomorphism ϕ˚ : R Ñ R1. If ν is a valuation on
R1 we define ϕ˚ν the pushforward by ϕ of ν by

@P P R,ϕ˚νpPq “ νpϕ
˚
pPqq. (92)

Let X0 be an affine surface. Denote by V the set of valuations on krX0s. We
equip this space with the topology of weak convergence, that is the coarsest topology
such that the evaluation map ν P V ÞÑ νpPq is continuous for all P P krX0s. If f is an
endomorphism of X0, then f induces a continuous map f˚ : V Ñ V .

Via the natural isomorphism ι˚
X : OX pX0q Ñ krX0s, every ν P V induces a valuation

pιX q˚ν on OX pX0q, namely

@P P OX pX0q, pιX q˚νpPq :“ νpι
˚
X Pq. (93)

We will denote pιX q˚ν by νX for every valuation ν on krX0s.

REMARK 4.3. Take a morphism of completions π : X1 Ñ X2 and ν a valuation on
krX0s. Then, pιX2q˚ν “ pπ´1 ˝ ιX1q˚ν. In particular π˚νX2 “ νX1 .

REMARK 4.4. In the language of Berkovich theory, the set V is the Berkovich
analytification of X0 over k where we have endowed k with the trivial valuation (see
[Ber12]).

EXAMPLE 4.5 (Divisorial valuations). Let X be a completion of X0 and E be a
prime divisor of X . Let ordE be the valuation on kpXq such that for any f P kpXq,ordEp f q

is the order of vanishing of f along E. Any valuation ν on krX0s such that νX is
equivalent to ordE for some prime divisor E in some completion X is called a di-
visorial valuation. In that case pν “ t0u and ν extends uniquely to a valuation on
FrackrX0s. For example if X0 “ A2 and X “ P2, then let L8 be the line at infinity, we
have @P P krx,ys,ordL8

pPq “ ´degpPq. If instead we take the completion P1 ˆ P1, de-
compose A2 “ A1 ˆ A1 and let x,y be the affine coordinate of A2 each being an affine
coordinate of A1. Let Lx “ t8u ˆ P1 and Ly “ P1 ˆ t8u, then

@P P krx,ys,ordLxpPq “ ´degxpPq, ordLypPq “ ´degypPq (94)
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where degx (respectively degy) is the degree with respect to the variable x (respectively
y).

EXAMPLE 4.6 (Curve valuations). Let X be a completion of X0, let p P BX X0 C be
the germ of a (formal) curve at p. This means that C is defined as ϕ “ 0 for ϕ in the
completion pOX ,p of the local ring OX ,p at p. If ψ P pOX ,p is another germ of a formal
curve at p, we define the intersection number at p by

tϕ “ 0u ¨p tψ “ 0u :“ dimk pOX ,p{xϕ,ψy. (95)

This number is equal to 8 exactly when one of the germs divides the other. We first
define a valuation νC,p on pOX ,p by

νC,ppψq “ tψ “ 0 ¨p Cu . (96)

Suppose ϕ is not divisible by the local equation of any component of BX X0. For any
P P OX pX0q, P can be written as P “ ψ

α1
1 ¨ ¨ ¨ψαr

r with ψi P pOX ,p irreducible and αi P Z.
We define

νC,ppPq :“
ÿ

i

αiνC,ppψiq P R Y t8u (97)

Then νC,p is a valuation on OX pX0q. Any valuation on krX0s such that νX is equivalent
to νC,p is called a curve valuation. If ν is a valuation such that pν ‰ t0u, then ν is a
curve valuation (see [FJ04] and Proposition 4.9 below). We will make the following
distinction, if C is defined by ϕ P OX ,p we will say that νC,p is an algebraic curve
valuation. Otherwise, we will say that it is a formal curve valuation.

If ϕ was divisible by the local equation of a component of BX X0, then νC,p would
not define a valuation on krX0s as some regular functions P P krX0s would have a pole
along C and νpPq would be equal to ´8.

4.2. Valuations over krrx,yss

We recall some results about valuations from [FJ04] and [FJ07]. Let R be a regular
local ring with maximal ideal m. We say that a valuation on R is centered if v ě 0 and
v|m ą 0. Here we set R :“ krrx,yss for our local ring. Its maximal ideal is m :“ px,yq

we will study the set of centered valuations on R.

PROPOSITION 4.7 (Proposition 2.10 [FJ04], [Spi90]). Any valuation on krx,ys

centered at the origin extends uniquely to a centered valuation on R as follows. Let
ϕ P R and let ϕn be the polynomial of degree n such that ϕ “ limϕn. Then,

νpϕq “ lim
nÑ8

minpνpϕnq,nq. (98)
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COROLLARY 4.8. Let R1 be regular local ring of dimension 2 over k, then the mR1-
adic completion pR1 of R1 is isomorphic to R. Any centered valuation on R1 extends
uniquely to a centered valuation on pR1.

PROOF. Let px,yq be a regular sequence of R1, that is mR1 “ px,yq. It exists because
R1 is a regular local ring of dimension 2. Then, pR1 is isomorphic to krrx,yss. Let v be a
centered valuation on R1. We have that krx,ys Ă R1, so v induces a valuation on krx,ys

that is centered at the origin and we can apply the previous proposition to conclude. □

Let p be a regular point on a surface X and let R “ yOX ,p we define 4 types of
valuations over R.

4.2.1. Divisorial valuations. A valuation ν over R is divisorial if there exists a
sequence of blow-up π : pY,Excpπqq Ñ pX ,xq such that ν is equivalent to π˚ ordE for
some prime divisor E Ă Excpπq.

4.2.2. Quasimonomial valuations. Let π : pY,Excpπqq Ñ pX ,xq be a sequence of
blow-ups and let q P Excpπq. A monomial valuation at q is a valuation ν on yOY,q such
that there exists s, t ą 0,

ν

˜

ÿ

i, j

ai jxiy j

¸

“ min
␣

si ` t j : ai j ‰ 0
(

(99)

for some local coordinates at q. We write ν “ νs,t .
A valuation over yOX ,p is called quasimonomial if there exists a sequence of blow-

ups π : pY,Excpπqq Ñ pX , pq such that ν “ π˚νs,t . Quasimonomial valuations split into
two categories: if s{t P Q, one can show actually that ν is divisorial. Otherwise s{t P

RzQ, ν is not divisorial and we say that it is irrational.

4.2.3. Curve valuations. Let ϕ P xmp be irreducible, we define νϕ by

@ψ P yOX ,p, νϕpψq “
tϕ “ 0u ¨ tψ “ 0u

mpϕq
(100)

where mpϕq is the order of vanishing of ϕ at the origin. A curve valuation is a valuation
equivalent to νϕ for some ϕ P xmp irreducible.

4.2.4. Infinitely singular valuations. These are all the remaining valuations. They
have a nice description in term of Puiseux series (see [FJ04] Section 4.1 for more de-
tails). Briefly, to any valuation ν of krrx,yss, one can associated a generalized power
series

pϕ “
ÿ

j

a jxβ j (101)
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with a j P k and β j P Q. The infinitely singular valuations are exactly the valuations
such that lim j β j ‰ `8.

PROPOSITION 4.9 ([FJ04]). There are four types of centered valuations on R: di-
visorial, irrational, curve valuations and infinitely singular valuations. The only type
of valuation ν such that pν “ tν “ `8u ‰ 0 are curve valuations

REMARK 4.10. Instead of looking at valuations over R with values in R, we can
look at valuations with values in a totally ordered abelian group Γ, these are called
Krull valuations (see [FJ04], section 1.3) and they have the advantage to always extend
to FracR. We can make any curve valuation into a Krull valuation by the following
procedure (see [FJ04], section 1.5.5): Let ϕ P m and consider the curve valuation νϕ.
Let Γ “ ZˆQ with the lexicographical order, we define pνϕ : R Ñ Γ as follows. For any
ψ P R, there exists an integer k P N such that

ψ “ ϕ
k
pψ (102)

where pψ is not divisible by ϕ. Set

pνpψq :“ pk,νϕppψqq (103)

Notice that νϕpψq “ 8 ô p1ppνϕpψqq ą 0 where p1 : Γ Ñ Z is the projection to the
first coordinate and if νϕpψq ă `8, then pνϕpψq “ p0,νϕpψqq. We will not need Krull
valuations in the rest of the text. But this argument comes in handy for the proof of
Proposition 4.18 so we state it here.

4.3. The center of a valuation

Let X be a completion of X0 and let ν be a valuation on OX pX0q. A center of ν

on X is a scheme-theoretic point p P X such that Oν dominates the local ring OX ,p (i.e
OX ,p Ă Oν and mp Ă mν). If such a p exists then ν induces a centered valuation on OX ,p
(cf 4.2) and in particular for any open affine subset U Ă X that contains p, ν induces a
valuation on OX pUq via the inclusion OX pUq Ă OX ,p.

LEMMA 4.11. The center of ν on X always exists and is unique.

PROOF. Let Oν be the subring of kpXq where ν is ě 0; it contains k˚. Let L “

Bpν
{pν and O “ Oν{pν. If p is a center of ν on X then we have the following commu-

tative diagram of ring homomorphism

OX ,p Oν O L Bpν
; (104)

inducing the following commutative diagram of scheme morphisms
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SpecL X

SpecO SpecOν SpecOX ,p Speck

(105)

Since X is proper over k (it’s a projective variety), the valuative criterion of proper-
ness ([Har77]) shows that if the center exists, then it is unique. For the existence, Let
x P X be the image of the maximal ideal of O, then x is the center of ν on X . Indeed, the
image of SpecL is the prime ideal pν of OX pX0q and x belongs to its closure, therefore
OX ,x Ă Bpν

and the morphism of local rings OX ,x Ñ O shows that Oν dominates OX ,x.
□

The center of ν on X is the center of νX we will denote it by cX pνq.

EXAMPLE 4.12. Let ν be a divisorial valuation over krX0s and let X be a completion
of X0 such that νX » ordE for some prime divisor E of X , then the center of ν on X is
the generic point xE of E. Indeed, the ring of regular function at the generic point of E
is a discrete valuation ring since E is of codimension 1. In that case, we will identify
the center with its closure and say that the center of ν on X is the prime divisor E. In
fact a valuation is divisorial if and only if its center on some completion of X0 is a prime
divisor because if cX pνq “ xE , then ν and ordE defines the same valuation ring which
is a discrete valuation ring, therefore they are equivalent.

EXAMPLE 4.13. If ν is a curve valuation and X is a completion of X0 such that
pιX q˚ν » νC,p, then the center of ν on X is the closed point p.

A valuation over krX0s is centered at infinity if there exists a completion X such
that cX pνq R X0.

COROLLARY 4.14. Let X0 be a smooth affine surface, there are exactly four types of
valuations centered at infinity over krX0s: divisorial valuations, irrational valuations,
curve valuations and infinitely singular valuations. If ν is a valuation such that pν ‰

t0u, then ν is a curve valuation.

PROOF. let ν be a valuation over krX0s and let cX pνq be its center on some com-
pletion X . If cX pνq is a prime divisor at infinity then ν is divisorial. Otherwise, cX pνq

is a regular point at infinity and ν induces a centered valuation over yOX ,p. The result
follows from the classification of centered valuations over krrx,yss from Proposition
4.9. □

DEFINITION 4.15. ‚ Let X be a good completion of X0 and p P BX X0 a point
at infinity. Following [FJ04], we say that p is a free point if it belongs to a
unique prime divisor at infinity and we say that it is a satellite point otherwise,
i.e it is the intersection point of two prime divisors at infinity.
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‚ Let ν be a valuation over krX0s centered at infinity. Let p1 “ cX pνq be its
center on X and X1 :“ X . We define the following sequence: If pn is a prime
divisor, then the sequence stops, else pn is a closed point of Xn and we define
Xn`1 as the blow up of pn, then define pn`1 :“ cXn`1pνq. This is the sequence
of centers of ν with respect to X .

We adopt the following convention: When we write "let p P E be a free point (at
infinity)" this means that E is the unique prime divisor at infinity on which p lies. If
we write "let p “ E X F be a satellite point", this means that E and F are the two
prime divisors at infinity such that p “ E X F (Recall that we only work with good
completions).

PROPOSITION 4.16 ([FJ04], Section 6.2 ). Let ν be a valuation centered at infinity.
Let X be a completion of X0 and ppnq the sequence of centers (above X) associated to
ν. Then,

(1) ν is divisorial if and only if the sequence ppnq is finite.
(2) If ν is irrational, then ppnq contains finitely many free points.
(3) if ν is a curve valuation, then ppnq contains finitely many satellite points.
(4) If ν is infinitely singular, then ppnq contains infinitely many free points.

PROOF. Assertion 1 is clear since the sequence ppnq stops if and only if pn is a
prime divisor at infinity. Assertion 2 and 4 follows from [FJ04] Theorem 6.10 and
Assertion 3 follows from [FJ04] Proposition 6.12. □

4.4. Image of a valuation via an endomorphism

Let f : X0 Ñ X0 be a endomorphism of X0, it induces a map f˚ on the space of
valuation f˚ : V Ñ V via the formula

@P P krX0s,@ν P V , f˚νpϕq. (106)

We will denote by f‚ the induced map f‚ : pV Ñ pV .

PROPOSITION 4.17 (Proposition 2.4 of [FJ07]). Suppose that f is dominant, the
map f˚ preserves the sets of divisorial, of irrational and of infinitely singular valua-
tions. If νC is a curve valuation such that f does not contract C, then f˚νC is a curve
valuation. If f contracts C, then f˚νC is a divisorial valuation.

We will use this proposition in the following context. Let X ,Y be two completions
of X0 such that the lift F : X Ñ Y of f is regular. For any point p P XzX0, we have a
map F̊ : VX ppq Ñ VY pFppqq that preserves the type of the valuations. The only curve
that might be contracted by F to q are the divisors at infinity; but the curve valuation
that they define do not define valuations on krX0s.
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PROPOSITION 4.18. Let f : X0 Ñ X0 be a dominant endomorphism of topological
degree λ2. Then, every valuation v on krX0s has at most λ2 preimages under f˚.

PROOF. Suppose first that the valuation ν takes the value `8 only for 0. Therefore,
it extends to a valuation on K “ FrackrX0s. The extension f ˚K ãÑ K is a finite extension
of degree λ2. The valuation v induces a valuation on f ˚K and every valuation w such
that f˚w “ v is an extension of v| f ˚K to K. By [ZS60] Theorem 19 p.55, there are at
most λ2 extension of v| f ˚K .

If now pν “ tv “ `8u ‰ 0, then we know that ν is a curve valuation. By Remark
4.10, ν can be made into a Krull valuation pν. Since pν is a Krull valuation, it extends
to a Krull valuation over K and f˚v extends to a Krull valuation over f ˚K. The same
argument as above still works as [ZS60] deals with Krull valuations. □

4.5. Tamely ramified endomorphisms

Let K ãÑ L be a field extension, let v be a valuation over K and let w be a valuation
over L such that w|K “ v. If Γv and Γw are the value group of v and w respectively, we
have Γv Ă Γw and we define the ramification index epw|vq “ Γv : Γw.

If v is the valuation ring of ν and w the valuation ring of w. Let κv be the residue
field of v, then we have a field extension κv ãÑ κw, the inertia degree is defined as
f pw|vq :“ rκw : κvs. If L{K is finite of degree n, then

epw|vq f pw|vq ď n. (107)

Now consider a dominant endomorphism f : X0 Ñ X0, let L “ kpX0q and K “ f ˚L.
Following [CP00], we say that f is tamely ramified if f is separable and for every
divisorial valuation v of X0,epv| f˚vq is not divisible by chark and the residue field
extension κv{κ f˚v is separable.

In particular, if chark “ 0 or f is an automorphism, f is automatically tamely ram-
ified.



CHAPTER 5

Tree structure on the space of valuations

We show that the space of valuation centered at infinity of a normal affine surface
X0 has a local tree structure. Namely, the set of (normalized) valuations centered at a
closed point is isomorphic to the valuative tree constructed in [FJ04]. We recall some
of its properties.

5.1. Trees

For this section, we refer to [FJ04] Section 3.1. Let pT ,ďq be a partially ordered
set, a subset S Ă T is full if for every σ,σ1 P S ,τ P T ,σ ď τ ď σ1 ñ τ P S .

DEFINITION 5.1. Let Λ “ N,Q,R. An interval in Λ is a subset I Ă Λ such that for
all x,y,z P Λ, if x ď y ď z and x,z P I, then y P I. If pT ,ďq be a partially ordered set,
then pT ,ďq is a rooted Λ-tree if

(i) T has a unique minimal element τ0 called the root of T .
(ii) If τ P T , the set tσ P T : σ ď τu is 1isomorphic to an interval in Λ.

(iii) Every full, totally ordered subset of T is isomorphic to an interval in Λ.
A parametrized-Λ tree is a rooted Λ-tree T with a map α : T Ñ Λ Y t8u such that

the restriction of α to any full totally ordered subset of T induces a bijection with an
interval in Λ. The map α is called the parametrisation.

A rooted R-tree is called complete if every increasing sequence has an upper bound.

A subtree S of a Λ-tree T is a subset such that pS ,ď|S q is a Λ-tree. An inclusion of
trees is an order preserving injection ι : S Ñ T . Where S is a Λ-tree, and T is a Λ1-tree,
we do not require Λ “ Λ1. For example N ãÑ R is an inclusion of trees. In particular, if
Λ “ Λ1, then ιpSq is a subtree of T .

If T is an R-tree and τ1,τ2 P T , then the minimum τ1 ^ τ2 P T exists by complete-
ness of R. We define the set

rτ1,τ2s :“ tτ P T : τ1 ^ τ2 ď τ ď τ1 or τ1 ^ τ2 ď τ ď τ2u (108)

and we call it a segment. The segments rτ1,τ2q,pτ1,τ2s and pτ1,τ2q are defined simi-
larly. A finite subtree of T is a subtree that consists of a finite union of segments in
T .

1isomorphic here means that there exists an order preserving bijection.

41
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If T is an R-tree, a tangent vector ÝÑv at τ P T is an equivalence class of elements
τ1 P T ztτu where

τ
1
„ τ

2
ô pτ,τ1

s X pτ,τ2
s ‰ H. (109)

We define the weak topology on T by the topology generated by the sets

UpÝÑv q :“
␣

τ
1
P T ztτu : τ

1 represents ÝÑv
(

. (110)

THEOREM 5.2 ([FJ04] Proposition 3.12). We have the following
‚ Every rooted R-tree T admits a completion T that is a complete rooted R-tree.
‚ Every rooted Q-tree TQ admits a completion TR into a complete rooted R-tree,

i.e there exists an order preserving injection ι : TQ ãÑ TR such that
(1) If τ0 is the root of TQ, ιpτ0q is the root of TR.
(2) ιpTQq is weakly dense in TR
(3) TR is minimal for this property.

‚ If αQ : TQ Ñ Q` is a parametrisation of TQ, then there exists a unique parametri-
sation αR of TR such that αQ “ αR ˝ ι.

5.2. The local tree structure of the space of valuations

We denote by V0 the set of centered valuations on R where R “ krrx,yss. Define the
multiplicity valuation νm by νmpϕq “ maxtn ě 0 : ϕ P mnu. We will sometimes write
mpϕq instead of νmpϕq. Let Vm Ă V0 be the set of centered valuations on R such that
νpmq “ 1 and consider the following order relation on Vm:

ν ď w ðñ @ϕ P R,νpϕq ď wpϕq. (111)

With this order relation V becomes a complete rooted R-tree called the valuative tree
([FJ04] Theorem 3.14) rooted in νm. The ends of Vm consist of the curve valuations
and the infinitely singular ones. The interior points are all quasimonomial valuations,
all divisorial valuations are branching points whereas all the irrational valuations are
regular points (i.e admit only two tangent vectors). Define on Vm the following function

αpνq :“ sup
"

νpϕq

mpϕq
: ϕ P m

*

. (112)

It is called the skewness function (see [FJ04] §3.3)

PROPOSITION 5.3 (Proposition 3.25 of [FJ04]). The skewness function α : Vm Ñ

r1,`8s defines a parametrisation of Vm. We have the following properties.
‚ αpνq “ 1 ô ν “ νm.
‚ Let ϕ P m be irreducible and let ν P Vm, then

@ϕ P m,νpϕq “ αpν ^ νϕqmpϕq. (113)

‚ If ν is divisorial, then αpνq P Q.
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‚ If ν is irrational, then αpνq P RzQ.
‚ If ν is a curve valuation, then αpνq “ `8.
‚ If ν is infinitely singular, then αpνq P p1,`8s and every value is realised.
‚ If Vm,div is the subset of Vm consisting of the divisorial valuations, then pVm,div,αq

is a parametrized Q-tree.

We can define two topologies over Vm. The first one is the weak topology being
the coarsest topology such that for all ϕ P R, the evaluations map ν P Vm ÞÑ νpϕq is
continuous. The second is the weak topology given by the R-tree structure on Vm.

PROPOSITION 5.4 ([FJ04], Theorem 5.1). The weak topology over Vm given by the
evaluation maps ν P Vm ÞÑ νpϕq and the weak topology induced by the tree structure of
Vm are the same.

Let X be a good completion of X0 and let p be a smooth point of X . Take local
coordinates z,w at p, then the completion of the local ring OX ,p with respect the maxi-
mal ideal mp is isomorphic to krrz,wss. Let VX ppq be the set of valuations ν on krX0s

centered at p. We will denote by VX pp;mpq the subset of VX ppq of valuations ν such
that νpmpq “ 1. The space VX pp;mpq is an R-tree isomorphic rooted in νmp . We make
its structure precise.

PROPOSITION 5.5. The R-tree VX pp;mpq is not complete.
(1) If p P E is a free point then VX pp;mpq is isomorphic to Vmztνzu where z is a

local equation of E.
(2) If p “ E X F is a satellite point, then VX pp;mpq is isomorphic to Vmztνz,νwu

where z,w are local coordinates at p with z a local equation of E and w a local
equation of F.

PROOF. If p P E is a free point, let z,w be local coordinates at p such that z is a local
equation of E. Then, the completion of the local ring at p is isomorphic to krrz,wss by
Theorem 2.2. Every P P krX0s is of the form P “

ϕ

za with a ě 0 and ϕ P OX ,p. Hence, a
centered valuation on krrz,wss defines a valuation over krX0s if and only if it is not the
curve valuation νz. Hence we have an isomorphism VX pp;mpq » Vmztνzu.

If p “ E X F is a satellite point, then let z,w be local coordinates at p such that
z is a local equation of E and w is a local equation of F . Every P P krX0s is of the
form P “

ϕ

zawb where a,b ě 0 and ϕ P OX ,p. Therefore a centered valuation on krrz,wss

defines a valuation over krX0s if and only if it is not the curve valuation νz or νw. Hence
we have an isomorphism VX pp;mpq Ñ Vmztνz,νwu. □

5.3. The relative tree with respect to a curve z “ 0

Let R “ k rrx,yss and let m be the maximal ideal of R. Let z P m be irreducible
such that νmpzq “ 1. One can consider the set Vz of centered valuations on R such that
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νpzq “ 1; we also add the valuation ordz to Vz defined by ordzpϕq “ maxtn ě 0 : zn|ϕu.
(notice that ordz is not centered, because for example if x ‰ z,ordzpxq “ 0). This is also
a tree rooted in ordz called the relative tree (see [FJ04] Proposition 3.61) with the order
relation ν ďz µ ô @ϕ P R,νpϕq ď µpϕq. We can define the weak topology on Vz being
the coarsest topology such that the for all ϕ P R, the evaluation map ν P Vz ÞÑ νpϕq is
continuous. There is also the weak topology given by the tree structure of Vz.

PROPOSITION 5.6 (Relative version of 5.4). The weak topology over Vz given by
the evaluation maps ν P Vz ÞÑ νpϕq and the weak topology induced by the tree structure
of Vz are the same.

PROPOSITION 5.7 ([FJ04] Lemma 3.59). We have an onto map Nz : V0 Ñ Vz de-
fined by

Nzpνq “ ν{νpzq if ν ‰ νz

Nzpνzq “ ordz .

This map restricts to a homeomorphism Nz : Vm Ñ Vz with respect to the weak topology.
If w P m is irreducible, then the map Nz,w :“ Nw ˝Nw

´1 : Vz Ñ Vw is a homeomorphism
for the weak topology.

The tree Vz comes with a skewness function αz : Vz Ñ r0,`8s and a multiplicity
function mzpϕq “ νzpϕq. The skewness is defined by

αzpνq :“ sup
"

νpψq

mzpψq
|ψ P m

*

(114)

PROPOSITION 5.8 (Relative version of Proposition 5.3). The function αz : Vz Ñ

r0,`8s defines a parametrisation of the tree Vz. We have the following properties.
‚ αzpνq “ 0 ô ν “ ordz.
‚ Let ϕ P m be irreducible and let ν P Vz, then

νpϕq “ αzpν ^ Npνϕqqmzpϕq. (115)

‚ If ν is divisorial or ν “ ordz, then αzpνq P Q
‚ If ν is irrational, then αzpνq P RzQ.
‚ If ν is a curve valuation, then αzpνq “ `8.
‚ If ν is infinitely singular, then αzpνq P p0,`8s and every value is realised.
‚ If Vz,div is the subset of Vz consisting of ordz and divisorial valuations, then
`

Vz,div,αz
˘

is a parametrised Q-tree.

PROPOSITION 5.9 ([FJ04], Proposition 3.65). We have the following relation

@ν P V0, νpzq
2
αz

ˆ

ν

νpzq

˙

“ minpνpxq,νpyqq
2

α

ˆ

ν

minpνpxq,νpyqq

˙

(116)
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If w P m is another irreducible element with mpwq “ 1, then

@ν P V0,νpzq
2
αz

ˆ

ν

νpzq

˙

“ νpwq
2
αw

ˆ

ν

νpwq

˙

. (117)

PROPOSITION 5.10 ([FJ04], Lemma 3.60 and 6.47). The map N : Vm Ñ Vz is not
an isomorphism of trees. The two orders on Vm and Vz are compatible except on the
segments rνm,νzs and rordz,Npνmqs where they are reversed. More precisely,

(1) @ν,µ P rνm,νzs Ă Vm,ν ďm µ ô Npνq ěz Npµq.
(2) @ν1,ν2 P Vzztordzu ,ν1 ďz ν2 ô rN´1pν1q,νzs Ă rN´1pν2q,νxs.

The situation is summed up in Figure 1 where we have put arrows on the branches
of the tree to indicate the order.

FIGURE 1. The homeomorphism between Vm and Vz

We will use the relative tree in the following context. Let E be a prime divisor at
infinity of some good completion X , let p be a point of E and let z,w be local coordi-
nates at p such that E “ tz “ 0u. The completion of the local ring at p is isomorphic to
krrz,wss. We define VX pp;Eq as follows; an element of VX pp;Eq is either a valuation
ν on krX0s centered at p such that νpzq “ 1 or the divisorial valuation ordE . Notice that
the definition of VX pp;Eq does not depend on the local equation z “ 0 of E because the
quotient of two local equations is a regular invertible function.
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PROPOSITION 5.11. Let X be a completion and let p P X be a closed point at
infinity.

(1) If p P E is a free point, then VX pp;Eq is isomorphic to Vz.
(2) If p “ E XF is a satellite point. Let z,w be local coordinates at p such that z is

a local equation of E and w a local equation of F then VX pp;Eq is isomorphic
to Vzztνwu and VX pp;Fq is isomorphic to Vwztνzu.

The map Nz : Vm Ñ Vz induces a homeomorphism

Np,E : VX pp;mpq Ñ VX pp;EqztordEu . (118)

Furthermore, if p “ E X F, then the map

Np,F ˝ Np,E
´1 : VX pp;EqztordEu Ñ VX pp;FqztordFu (119)

is a homeomorphism.

PROOF. If p P E is a free point. Let z,w be local coordinates at p such that z is a
local equation of E. The completion of the local ring at p is isomorphic to krrz,wss by
Theorem 2.2. For every P P krX0s, P is of the form P “

ϕ

za where a ě 0 and ϕ P OX ,p.
Therefore, a centered valuation on krrz,wss defines a valuation over krX0s if and only
if it is not the curve valuation νz. Since νz R Vz we have that VX pp;Eq » Vz. Call
σ : VX pp;Eq Ñ Vz the isomorphism. We define Np,E as follows. Recall by Proposition
5.7 that there is a homeomorphism N : Vm Ñ Vz where in particular Npνzq “ ordz. Here
we have that ordz is canonically identified with ordE and VX pp;mpq is isomorphic to
Vmztνzu, call ι : VX pp;mpq Ñ Vmztνzu the isomorphism. Define

Np,E :“ σ
´1

˝ N ˝ τ : VX pp;mpq Ñ VX pp;EqztordEu , (120)

it is a homeomorphism.
If p “ E X F is a satellite point. Let pz,wq be local coordinates at p such that z is a

local equation of E and w is a local equation of F . The completion of the local ring at
p is isomorphic to krrz,wss by Theorem 2.2. Every P P krX0s is of the form P “

ϕ

zawb

where a,b ě 0 and ϕ P OX ,p. Therefore a centered valuation on krrz,wss defines a
valuation over krX0s if and only if it is not the curve valuation associated to z or w. Or
νz does not belong to Vz but νw does. Therefore, VX pp;Eq is isomorphic to Vzztνwu.
If Nz : Vm Ñ Vz is the map from Proposition 5.7, then Npνzq “ ordz and Npνwq “ νw.
Therefore, Nw ˝ Nz

´1 : Vz Ñ Vw is a homeomorphism that sends ordz to νz and νw to
ordw. Fix an isomorphism τE : VX pp;Eq Ñ Vz tνwu and τF : VX pp;Fq Ñ VwzVz. We
have that the map

Np,F ˝ Np,E
´1

“ τF
´1

˝ Nw ˝ Nz
´1

˝ τE : VX pp;EqztordEu Ñ VX pp;FqztordFu (121)

is a homeomorphism. □
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PROPOSITION 5.12. Let X be a completion of X0 and let E be a prime divisor
at infinity. If p1, p2 P E are closed points with p1 ‰ p2, then VX pp1;Eq X VX pp2;Eq “

tordEu. Define the set VX pE;Eq of valuations ν such that cX pνq P E and νpzq “ 1 where
z is a local equation of E at cX pνq. Then

VX pE;Eq “
ď

pPE

VX pp;Eq (122)

and it has a natural structure of a rooted R-tree rooted in ordE . The skewness functions
αE glue together to give VX pE;Eq the structure of a parametrized rooted tree. Every
point p P E defines a tangent vector at ordE given by VX pp;EqztordEu.

Furthermore, Let Y be a completion of X0 and q P Y a closed point at infinity. Let
π : Z Ñ Y be the blow up of q and let rE be the exceptional divisor of π. Then, for every
rq P rE, the map π‚ : VZprq; rEq Ñ VY pq;mqq is actually equal to π˚ and they glue together
to give a map

π˚ : VZprE; rEq Ñ VY pq;mqq, (123)

which is an isomorphism of trees. We have the relation αmq ˝π˚ “ 1`αE and bmq ˝π˚ “

bE .

We postpone the proof to §5.5. If E » P1, this tree is isomorphic to the tree of
normalized valuations centered at infinity over A2 constructed in [FJ07], Appendix.

5.4. The monomial valuations centered at an intersection point at infinity

Let X be a good completion of X0 and let E,F be two divisors at infinity that in-
tersect at a point p. Let px,yq be local coordinates at p such that E “ tx “ 0u and
F “ ty “ 0u. There are three spaces to consider: VX pp,mpq,VX pp;Eq and VX pp;Fq.
We explain here how they are related. For ps, tq P r0,`8s2ztp0,0q,p8,8qu, we denote
by νs,t the monomial valuation defined by

νs,t

´

ÿ

ai jxiy j
¯

“ min
␣

si ` t j|ai j ‰ 0
(

. (124)

Notice that ν0,1 “ ordF ,ν1,0 “ ordE ,ν1,8 “ νy,ν8,1 “ νx. We will denote the set of such
valuation by rordE ,ordF s. We use this notation because of the following: rordE ,ordF sX

VX pp;Eq consists of the valuations ν1,t for t P r0,`8q and rordE ,ordF s X VX pp;Fq

consists of the valuations νs,1 for s P r0,`8q. So they define segments in the respective
trees. In particular we have

Np,F ˝ Np,E
´1

pν1,tq “ ν1{t,1, @t P p0,`8q (125)

One can show with the definition of the skewness function α that αEpν1,tq “ t.
Therefore we show
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LEMMA 5.13. Let ν be a monomial valuation centered at p “ E X F. One has

αE

ˆ

ν

νpxq

˙

“
νpyq

νpxq
“

s
t

if ν “ νs,t

αF

ˆ

ν

νpyq

˙

“
νpxq

νpyq
“

t
s

if ν “ νs,t

In particular we have that αE

´

ν

νpxq

¯

“ αF

´

ν

νpyq

¯´1
on sordE ,ordF r.

5.5. Geometric interpretations of the valuative tree

Let X be a completion of X0 and let p P X be a closed point at infinity. We
consider in this section only completions above X that are exceptional above p. If
π : pY,Excpπqq Ñ pX , pq is such a completion, then we call Γπ the dual graph which
vertices consist of the exceptional divisors of π. Two exceptional divisors are linked by
an edge if they intersect. The graph Γπ is connected without cycles, it is therefore an
N-tree. We set the root of Γπ to be the exceptional divisor rE that appears after blowing
up p.

If E is a prime divisor at infinity of X such that p P E. We define the dual graph

Γπ,E :“ Γπ Y tEu. (126)

It is also a N-tree. We set the root of Γπ,E to be E.

LEMMA 5.14 ([FJ04], Proposition 6.2). Let π : Y Ñ pX , pq be a completion excep-
tional above p. if τ : Z Ñ Y is the blow up of a point in the exceptional locus of π, then
there are natural inclusions of N-trees

Γπ ãÑ Γπ˝τ, Γπ,E ãÑ Γπ˝τ,E . (127)

Therefore, the direct limits Γ :“ lim
ÝÑπ

Γπ, ΓE :“ lim
ÝÑπ

Γπ,E are well defined. The points
of Γ are in bijection with DX ,p and ΓE “ Γ Y tEu and they have a structure of Q-trees.

LEMMA 5.15 ([FJ04] Theorem 6.9). We have a map π‚ : Γπ ãÑ VX pp;mpqdiv de-
fined by

π‚pFq “ νF (128)
where νF is the valuation equivalent to π˚ ordF that belongs to VX pp;mpq. These maps
are compatible with the direct limit and give a map Γ ãÑ VX pp;mpq.

LEMMA 5.16. We have a map π‚ : Γπ,E ãÑ VE,div defined by

π‚pFq “ νF (129)

where νF is the valuation equivalent to π˚ ordF that belongs to VX pp;Eq. These maps
are compatible with the direct limit and give a map ΓE ãÑ VX pp;Eq.
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PROPOSITION 5.17 ([FJ04], Lemma 6.28). Let π : pY,Excpπqq Ñ pX , pq be a com-
pletion exceptional above p. Let q P Y be a closed point that belongs to the exceptional
component of π. Let rF be the exceptional divisor above q.

(1) If q P F with F P Γπ, then ν
rF ą νF .

(2) If q “ F1 X F2 with F1,F2 P Γπ, suppose that νF1 ă νF2 , then νF1 ă ν
rF ă νF2 .

PROPOSITION 5.18 (Relative version of Proposition 5.17). Let π : pY,Excpπqq Ñ

pX , pq be a completion exceptional above p. Let q P Excpπq. Let rF be the exceptional
divisor above q.

(1) If q P F is a free point with F P Γπ,E , then ν
rF ą νF .

(2) If q “ F1 X F2 is a satellite point with F1,F2 P Γπ,E , if νF1 ă νF2 , then νF1 ă

ν
rF ă νF2 .

(3) In particular, if q “ E X F, then ordE ă ν
rF ă νF .

THEOREM 5.19 ([FJ04], Theorem 6.22). We have an isomorphism of Q-trees

Γ » VX pp;mpqdiv, ΓE » VX pp;Eqdiv (130)

given by F » νF . We can take the completion of the Q-trees to get the isomorphism

Γ » VX pp;mpq, ΓE » VX pp;Eq (131)

PROPOSITION 5.20. Let X be a completion of X0 and let p P X be a closed point
at infinity. Let V˚ be either VX pp;mpq or VX pp;Eq for some prime divisor E at infinity
such that p P E. Let Γ˚ be either Γ or ΓE . Let π : pY,Excpπqq Ñ pX , pq be a completion
exceptional above p. Let q P Excpπq be a closed point. The map π induces a map
π˚ : VY pqq Ñ VX ppq.

(1) If q P Eq is a free point with Eq P Γ˚, then we have an inclusion map π‚ :
VY pq;Eqq ãÑ V˚. The order relation in VY pq;Eqq and V˚ are compatible and
π‚ is an inclusion of trees.

(2) If q “ Eq XFq is a satellite point with Eq,Fq P Γ˚, then, if νEq ă˚ νFq , the order
relations on V˚ and VY pq;Eqq are compatible and π‚ : VY pq;Eqq ãÑ V˚ is an
inclusion of trees.

PROOF. We only need to show that the orders are compatible on the divisorial val-
uations of VY pq;Eqq. Therefore we show the following,

CLAIM 5.21. For every completion τ : pZ,Excpτqq Ñ pY,qq exceptional above q, we
have the following

(1) For all F1,F2 P Γτ,Eq,

νF1 ă˚ νF2 ô νF1 ăEq νF2 (132)

(2) If F P Γτ,Eq satisfies F X Fq ‰ H, then

νF ă νFq (133)
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Here there is a slight abuse of notation as we denote by νFi the image of Fi both in
VY pq;Eqq and V˚. This is done to lighten notations, we believe that it does not provide
any confusion.

We prove this by induction on the number of blow ups above q. If τ “ id, then ordEq

is the root of VY pq;Eqq and νEq ă νFq by assumption so there is nothing to do.
Let τ : pZ,Excpτqq Ñ pY,qq be a completion exceptional above q such that Claim

(5.21) is true. Let q1 P Excpτq be a closed point, let τ1 : Z1 Ñ Z be the blow up of q1 and
let rF be the exceptional divisor above q1.

‚ If q1 P F is a free point with F P Γτ,Eq , then by Proposition 5.18 we have

νF ăEq ν
rF (134)

Now we have two possibilities.
– If q1 is also a free point with respect to Γ˚, then by Proposition 5.17 and

5.18 we also get
νF ă˚ ν

rF . (135)

Since rF X Fq “ H, Claim 5.21 is shown for Γτ˝τ1,Eq .
– If q1 is the satellite point F X Fq, then by induction hypothesis we have

νF ă˚ νFq and therefore rF XFq ‰ H and by Proposition 5.17 and 5.18 we
get

νF ă˚ ν
rF ă˚ νFq (136)

So Claim 5.21 is shown for Γτ˝τ1,Eq .
‚ If q1 is a satellite point. Let F1,F2 P Γτ,Eq such that q “ F1 X F2. Suppose

without loss of generality that νF1 ăEq νF2 , then by the induction hypothesis
we have νF1 ă˚ νF2 and by Proposition 5.17 and 5.18, we get

νF1 ăEq ν
rF ăEq νF2 and νF1 ă˚ ν

rF ă˚ νF2. (137)

Since rF X Fq “ H we have proven Claim 5.21 for Γτ˝τ1,Eq .

□

PROOF OF PROPOSITION 5.12. Let Y be a completion of X0 and let q P Y be a
closed point at infinity. Let π : Z Ñ Y be the blow up of q. Let rE be the exceptional
divisor and let rq P rE be a closed point. Apply Proposition 5.20 with V˚ “ VY pq;mqq.
The map π‚ : VZprq; rEq Ñ VY pq;mqq is an inclusion of trees. There exists local coordi-
nates z,w at q and x,y at p such that πpz,wq “ pz,zwq where z is a local equation of rE.
We therefore get

νpzq “ 1 ô minpπ˚νpxq,π˚νpyqq “ 1. (138)
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Hence, π‚ “ π˚ and π˚pord
rEq “ νmq . Therefore we can glue these maps to obtain

an isomorphism of trees

π˚ : VZprE; rEq Ñ VY pq;mqq (139)

We get the relation on the skewness functions by Proposition 5.28 which will be proven
in the next section. □

5.6. Properties of skewness

We have two valuative tree structures. We describe some properties of the skewness
function for these two structures and how they behave after blowing up. Fix a comple-
tion X , let p P X be a closed point at infinity and let E be a prime divisor at infinity in X
such that p P E. In accordance with the notations of the previous section, set Γ “ DX ,p
and ΓE “ DX ,p Y tEu.

DEFINITION 5.22. If F P Γ is a prime divisor above p, we define the generic mul-
tiplicity bpFq inductively as follows.

‚ bprEq “ 1 where rE is the exceptional divisor above p.
‚ If q P F is a free point with F P Γ, then bprFq “ bpFq where rF is the exceptional

divisor above q.
‚ If q “ F1 X F2 is a satellite point with F1,F2 P Γ, then bprFq “ bpF1q ` bpF2q.

If ν P VX pp;mpq is divisorial then we define bpνq :“ bpEq where E is the center of ν in
some completion above X .

DEFINITION 5.23. If F P ΓE , we define the relative generic multiplicity bEpFq

inductively as follows.

‚ bEpEq “ 1.
‚ If q P F is a free point with F P ΓE , then bEprFq “ bEpFq.
‚ If q “ F1 X F2 is a satellite point with F1,F2 P ΓE , then bEprFq “ bEpF1q `

bEpF2q.

If ν P VX pp;Ezq is divisorial, then we set bEpνq :“ bEpFq where F is the center of ν in
some completion above X .

Figure 2 sums up the definition of the generic multiplicity.
The term generic multiplicity is justified by the following proposition.

PROPOSITION 5.24 ([FJ04] Proposition 6.26). Let ν P VX pp;mpq be divisorial, let
E P Γ be the center of ν over some completion π : Y Ñ X above X. Then,

π˚ ordEpmpq “ bpνq (140)
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FIGURE 2. Algorithm for computing the generic multiplicity

PROPOSITION 5.25 (Relative version of Proposition 5.24). If ν P VX pp;Eq is divi-
sorial, let F be the center of ν over some completion π : Y Ñ X above X. Then,

π˚ ordFpzq “ bEpFq (141)

where z P OX ,p is a local equation of E. This means that ordFpπ˚Eq “ bEpFq.

From now on we write V˚ for either VX pp;mpq and VX pp;Eq and we write α˚,b˚

for the skewness function and the generic multiplicity function associated to the tree
structure.

For a valuation ν P V˚, we define the infinitely near sequence of ν as follows, set
ν0 “ ν˚ the root of V˚ and let pn be the sequence of centers above X associated to ν. Let
En be the exceptional divisor above pn. Set νn “ 1

b˚pEnq
ordEn , if ν is quasimonomial

pνnq is the infinitely near sequence of ν, in particular it is finite if and only if ν is
divisorial. If ν is a curve valuation or infinitely singular we define the infinitely near
sequence of ν as the subsequence of νn where cXnpνq is a free point (at infinity).

PROPOSITION 5.26. Let ν P V˚ and let νn be its infinitely near sequence
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‚ the sequence νn :“ 1
bn

ordEn converges weakly towards ν.
‚ α˚pνq “ limn α˚pνnq.

PROOF. The infinitely near sequence is constructed in Section 6.2.2 of [FJ04] (this
sequence does not have a name in [FJ04]). The fact νn converges weakly towards ν is
shown there. To show the statement for skewness, we split the proof with respect to the
type of ν.

If ν is a curve valuation or an infinitely singular one, then νn ă ν and νn increases
towards ν. Since α induces an order preserving bijection of the segment rν˚,νs. We
have that αpνnq ď αpνq and is increasing. So it converges towards a real number α0 P

rα˚pν˚q,α˚pνqs. If α0 ă α˚pνq, then νn ď ν0 ă ν where α˚pν0q “ α0 and this is absurd.
If ν is irrational, then there exists N0 such that for all n ě N0, pn is a satellite point.

We can split the sequence pνnqněN0 into two subsequences pν
`
k q,pν

´
k q such that ν

`
k is

increasing and converges towards ν and pν
´
k q is decreasing and converges towards ν.

We therefore get

αpν
`
k q ă αpνq ă αpν

´
k q (142)

and it is clear that limk αpν
`
k q “ limk αpν

´
k q “ αpνq. □

We will say that two divisorial valuations ν,ν1 are adjacent if there exists a com-
pletion Y above X such that the centers of ν and ν1 are both prime divisors and they
intersect.

PROPOSITION 5.27 ([FJ04], Corollary 6.39). Let ν,ν1 P V˚. Assume ν ă ν1 and
that they are adjacent, then

α˚pν
1
q ´ α˚pνq “

1
b˚pνqb˚pν1q

(143)

PROPOSITION 5.28 ([FJ04], Theorem 6.51). Let π : Y Ñ X be a completion above
X and let q P Eq be a free point of Y such that πpEqq “ p. By Proposition 5.20, π‚ :
VY pq;Eqq Ñ V˚ is an inclusion of trees.

(1) The normalization of π˚ ordEq (to get a valuation in V˚) is

π‚ ordEq “: νEq “
1

b˚pEqq
π˚ ordEq . (144)

(2)

@ν P VY pp;Eq, α˚pπ‚νq “ α˚pνEqq `
1

b˚pEqq2 αEqpνq (145)

b˚pπ‚νq “ b˚pEqqbE1pνq (146)
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PROOF. It suffices to show this formula for every divisorial valuation ν P VY pq;Eqq

and then use infinitely near sequences by Proposition 5.26. We prove the result by
induction on the number of blow-ups above q. Namely we show the following

CLAIM 5.29. For every completion τ : pZ,Excpτqq Ñ pY,qq exceptional above q, for
every F P Γτ,Eq ,

b˚pFq “ bEqpFqb˚pEqq (147)

α˚pνFq “ α˚pνEqq `
1

b˚pEqq
αEqpνFq (148)

If τ “ id :Y ÑY , then Γτ,Eq “
␣

Eq
(

. We have by definition that bEqpEqq “ 1,αEqpordEqq “

0. Therefore Equations (147) and (148) holds.
Suppose the claim to be true for a completion τ : pZ,Excpτqq Ñ pY,qq exceptional

above q. Let τ1 : Z1 Ñ Z be the blow up of a closed point q1 P Excpτq. Let rE be the
exceptional divisor above q1.

If q1 P F is a free point with F P Γτ,E , then q1 is also a free point with respect to
Γ˚,π˝τ because q P Y is a free point. Therefore by definition

b˚prEq “ b˚pFq, bEqprEq “ bEqpFq (149)

So Equation (147) is true for rE by induction. Now, by Proposition 5.27

α˚pν
rEq “ α˚pνFq `

1
b˚pFqb˚pEqq

, αEqpν
rEq “ αEqpνFq `

1

bEqprEqbEqpFq
(150)

By induction, Equation (148) is true for rE.
If q1 “ F1 X F2 is a satellite point with F1,F2 P Γτ,Eq , then

b˚prEq “ b˚pF1q ` b˚pF2q, bEqprEq “ bEqpF1q ` bEqpF2q (151)

So by induction Equation (147) holds for rE. Suppose without loss of generality that
νF1 ă νF2 both in V˚ and VY pq;Eqq. This is possible by Proposition 5.20. By Proposi-
tion 5.27

α˚pν
rEq “ α˚pνF1q `

1

b˚pF1qb˚prEq
, αEqpν

rEq “ αEqpνF1q `
1

bEqpF1qbEqprEq
. (152)

Therefore, Equation (148) holds for rE. And the claim is shown by induction. □

PROPOSITION 5.30. Let ν be a valuation over krX0s centered at infinity. Let X be
a completion of X0 and let E be a prime divisor of X at infinity such that rν P VX pE;Eq

for some valuation rv equivalent to ν. If αEprνq ă `8, then for every completion Y of
X0 if rν P VY pF,Fq for some prime divisor F at infinity in Y , then αFprνq ă `8.
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PROOF. If ν is quasimonomial, this is immediate as for any prime divisor E at
infinity and any closed point p P E, we have that αEpνq ă `8 for ν “ ordE or ν quasi-
monomial centered at p. If ν is a curve valuation, then αEpνq “ `8 for any prime
divisor E of any completion X such that cX pνq P E. So it remains to show the result for
ν an infinitely singular valuation.

We show that if π : Y Ñ X is a completion above X , then αE1pνq ă `8 ô αEpνq ă

`8 where E 1 is a prime divisor of Y at infinity such that some multiple of ν belongs
to VY pE 1,E 1q. Let p “ cX pνq and q “ cY pνq. Since ν is infinitely singular, by Propo-
sition 4.16 there exists a completion τ : pZ,Excpτqq Ñ pY,qq exceptional above q such
that cZpνq is a free point q1 lying over a unique prime divisor F at infinity. We apply
Proposition 5.28. We have that

αEpνq “ αEpνFq `
1

bEpFq2 αFpνq (153)

αE1pνq “ αE1pνFq `
1

bE1pFq2 αFpνq (154)

Thus αEpνq ă `8 ô αFpνq ă `8 ô αE1pνq ă `8. □

PROPOSITION 5.31 ([FJ04] Proposition 6.35). Let π : pY,Excpπqq Ñ pX , pq be a
completion exceptional above p. Let q “ E XF P Excpπq be a satellite point with E,F P

Γ˚,π. Define νE “ 1
b˚pEq

π˚ ordE and νF “ 1
b˚pFq

π˚ ordF . Let z,w be local coordinates
at q associated to (E, F). Let νs,t be the monomial valuation centered at q such that
νpzq “ s and νpwq “ t. Then, the map π˚ induces a homeomorphism from the set
tνs,t |s, t ě 0,sb˚pEq ` tb˚pFq “ 1u and rνE ,νF s Ă V˚ for the weak topology.

Furthermore, the skewness function is given by

α˚pπ˚νs,tq “ αpνEq `
t

b˚pEq
(155)

PROOF. The first part of the proposition is exactly the content of [FJ04] Proposition
6.35. We compute the skewness. It suffices to show (155) for the divisorial valuations
in rνE ,νF s and then use infinitely near sequences. We show (155) by induction on
the number of blowups. The result holds for νE “ ν1{b˚pEq,0 and νF “ ν0,1{b˚pFq. Let
νs1,t1,νs2,t2 be adjacent divisorial valuations such that (155) holds. Let E1,E2 be the
associated prime divisor and let τ : pZ,Excpτq Ñ pY,E XFq be a completion exceptional
above E X F such that E1,E2 intersect in Z and let q “ E1 X E2. Let px,yq be local
coordinates at q associated to pE1,E2q and let rE be the exceptional divisor above q and
ω be the blow up of q. We want to compute s, t ě 0 such that

pτ ˝ ωq˚ ord
rE “ νs,t . (156)
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To do so, we need to compute ord
rEppτ ˝ ωq˚zq and

`

pτ ˝ ωq˚ ord
rE w

˘

Let b1 “ b˚pE1q

and b2 “ b˚pE2q. We have by the first part of the proposition that

νEi “ pπ ˝ τq˚

1
bi

ordEi “ π˚pνsi,tiq. (157)

Thus, τ˚
1
bi

ordEi “ νsi,ti . In local coordinates pu,vq, ω is given by

ωpu,vq “ pu,uvq (158)

where u “ 0 is a local equation of rE and v “ 0 is a local equation of the strict transform
of E2. By (157), we get up to multiplication by invertible germs of functions that

ω
˚
pτ

˚zq “ ω
˚
´

xs1b1ys2b2
¯

“ us1b1`s2b2vs2b2 . (159)

and
ω

˚
pτ

˚wq “ ut1b1`t2b2vt2b2 (160)
Thus, s “ s1b1 ` s2b2 and t “ t1b1 ` t2b2. This implies that

π˚ν s1b1`s2b2
b1`b2

,
t1b1`t2b2

b1`b2

“ ν
rE . (161)

We compute the skewness, by Proposition 5.27 we have that

α˚pν
rEq “

b1α˚pνE1q ` b2α˚pνE2q

b1 ` b2
(162)

and by induction, we get

α˚pν
rEq “

b1pαpνEq `
t1

bpEq
q ` b2pαpνEq `

t2
bpEq

q

b1 ` b2
“ αpνEq `

t1b1 ` t2b2

bEpb1 ` b2q
(163)

and the result is shown by induction. □



CHAPTER 6

Different topologies over the space of valuations

We define two topologies on the space of valuations centered at infinity. We saw in
the previous chapter that the space of valuations centered at infinity can be viewed as a
space with an atlas of open subsets given by valuation trees. The valuation tree comes
with a weak and a strong topology and they glue together to define the weak and the
strong topology on the whole space of valuations centered at infinity.

6.1. The weak topology

Let X0 be an affine surface and let V8 be the space of valuations centered at infinity.
We define xV8 to be the space of valuations centered at infinity modulo equivalence and
η : V8 Ñ xV8 the quotient map. We define the weak topology over V8 as follows. A
basis for the topology is given by

␣

ν P V8 : t ă νpPq ă t 1
(

(164)

for some t, t 1 P R,P P krX0s. A sequence νn of V8 converges towards ν if and only if
for every P P krX0s, the sequence νnpPq converges towards νpPq. We define the weak
topology over xV8 to be the thinnest topology such that η : V8 Ñ xV8 is continuous
with respect to the weak topology.

PROPOSITION 6.1. Let X be a completion of X0. Let ν P V8 and pνnq a sequence
of elements of V8. Suppose that νn Ñ ν with respect to the weak topology. Then,

‚ If cX pνq “ p is a closed point at infinity, then for all n large enough cX pνnq “ p.
‚ If cX pνq “ E is a prime divisor at infinity, then for all n large enough cX pνnq P

E.

PROOF. Suppose first that cX pνq “ p is a closed point at infinity. Let px,yq be
local coordinates at p. By definition of the center we have νpxq,νpyq ą 0. We can find
P1,P2,Q1,Q2 P OX pX0q such that x “ P1{Q1,y “ P2{Q2 and such that νpQ1q,νpQ2q ‰ 8.
Indeed by Lemma 4.11, OX ,p is a subring of OX pX0qpν

where pν “ tν “ `8u. Now, we
have that νnpPiq Ñ νpPiq and νnpQiq Ñ νpQiq as n Ñ 8, therefore for all n large enough

νnpxq,νnpyq ą 0. (165)

Thus, for all n large enough cX pνnq “ p.
57
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If cX pνq “ E, then ν “ λordE for some λ ą 0. Let U be an open affine subset of
X such that U X E ‰ H. Let z be a local equation of E over U . Similarly, we can
write z “ P{Q with νpQq ‰ 8. Since νnpPq Ñ νpQq and νnpQq Ñ νpQq, we get that
νnpzq Ñ νpzq ą 0. Therefore for n large enough, νnpzq ą 0 and therefore cX pνnq P E. □

PROPOSITION 6.2. Let X be a completion and let p P X be a closed point at infinity.
Let ν P VX ppq and νn P VX ppq. Then, νn Ñ ν weakly if and only if for every ϕ P

OX ,p,νnpϕq Ñ νpϕq.

PROOF. Indeed, every ϕ P OX ,p can be written as ϕ “ P
Q with νpQq ‰ 8. This

shows one implication. Conversely, every P P krX0s is of the form ϕ

ψ
where ϕ,ψ P OX ,p.

Furthermore, if p P E is a free point then ψ “ ua where a P Zě0 and u is a local equation
of E. If p “ E X F is a satellite point, then ψ “ uavb where uv is a local equation
of E Y F . Now since νn and ν are valuations over krX0s, they cannot be the curve
valuations associated to a prime divisor at infinity. Therefore, for all n,νnpψq ‰ 8 and
νpψq ‰ 8. This shows the other implication. □

PROPOSITION 6.3. Let X be a completion of X0 and let p P X be a closed point. Let
E be a prime divisor at infinity in X such that p P X. Let ηp : VX ppq Ñ VX pp;Eq be the
natural map defined by ηppνq “ ν

νpzq
where z P OX ,p is a local equation of E. Let pνnq

be a sequence of VX ppq and let ν P VX ppq. If νn Ñ ν for the weak topology of V8, then
ηppνnq Ñ ηppνq for the weak topology of VX pp;Eq.

PROOF. If νn Ñ ν for the weak topology, then, νnpzq Ñ νpzq by Proposition 6.2.
Therefore ηppνnq Ñ ηppνq, again by Proposition 6.2. This shows the first implication.

□

THEOREM 6.4. Let X be a completion of X0. The weak topology on xV8 is the
topology induced by the open subsets VX pE;Eq for all prime divisor E at infinity.

PROOF. Let X be a completion at infinity and let E be a prime divisor at infinity.
Let VX pEq be the set of valuations ν over krX0s such that cX pνq P E (this includes
cX pνq “ E, i.e ν “ ordE). We have that

VX pEq “ tordEu Y
ď

pPE

VX ppq. (166)

Let U1, ¨ ¨ ¨ ,Ur be a finite open affine cover of E such that for every i “ 1, ¨ ¨ ¨ ,r there
exists zi P OX pUiq a local equation of E. Then, every zi is of the form zi “ Pi{Qi with
Pi,Qi P krX0s. Then,

VX pEq “
ď

i

tνpQiq ă `8,νpPiq ´ νpQiq ą 0u (167)
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and, it follows that VX pEq is an open subset of V8. Set xV8ppq :“ ηpVX ppqq. Define a
map σp : xV8ppq Ñ VX pp;EqztordEu Ă VX ppq by

σpprνsq “ ηppνq (168)

where ηp is the map from Proposition 6.3 and rνs is the class of ν in xV8. By Proposition

6.3, σp is a continuous section of η|VX ppq : VX ppq Ñ xV8ppq. Still by Proposition 6.3,

the map σp : rordEs Y xV8ppq Ñ VX pp;Eq extended by σpprordEsq “ ordE is also a

continuous section of η : tλordE : λ ą 0u Y VX ppq Ñ trordEsu Y xV8ppq. These maps
σp glue together to give a continuous section σE : xV8pEq Ñ VX pE;Eq Ă VX pEq of

η : VX pEq Ñ xV8pEq.
To finish the proof we need to understand the behaviour of σF ,σE on

xV8pEq X xV8pFq “ xV8ppq (169)

for p “ E X F where E,F are two prime divisors at infinity. By Proposition 5.11, we
have that the map Np,F ˝ Np,E

´1 : VX pp;EqztordEu Ñ VX pp;FqztordFu is a homeo-
morphism and we have

pσFq
|yV8ppq

“ pNp,F ˝ Np,E
´1

q ˝ pσEq
|yV8ppq

(170)

□

6.2. The strong topology

Let R “ krrx,yss and let m “ px,yq. Let V˚ be the valuative tree with either the
normalization by m or with respect to a curve z. We will write α˚ for the skewness
function over V˚. We consider a stronger topology on V˚. Let V qm

˚ be the subset of
quasimonomial valuations. We define the following distance

dpν1,ν2q “ αpν1q ´ αpν1 ^ ν2q ` αpν2q ´ αpν1 ^ ν2q. (171)

The topology induced by this distance is called the strong topology.

PROPOSITION 6.5 ([FJ04] Proposition 5.12). We have the following
‚ The strong topology is stronger than the weak topology.
‚ The closure of V qm

˚ with respect to the strong topology is the subspace of V˚

consisting of valuations of finite skewness.

PROPOSITION 6.6. Let R “ krrz,wss and let Vm,Vz,Vw be the three valuation trees.
Let V 1

m,V 1
z ,V 1

w be the three subtrees of valuations of finite skewness. Then, the maps

Nz : V 1
m Ñ V 1

z ztordzu , Nw ˝ Nz
´1 : V 1

z Ñ V 1
w (172)

are homeomorphisms with respect to the strong topology.
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This follows from Proposition 5.9.
Let V 1

8 be the subset of V8 of valuations of finite skewness, this set is well defined
thanks to Proposition 5.30. We define the strong topology on V 1

8 as follows. First

define the strong topology on xV8

1

:“ ηpV 1
8q using the notations from the proof of

Theorem 6.4. Consider the map σE : xV8

1

X xV8pEq Ñ VX pE;Eq1. We define the strong

topology on xV8

1

X xV8pEq as the coarsest topology such that σE is continuous for the

strong topology on VX pE;Eq1. This defines a topology on xV8

1

thanks to Proposition
6.6.

COROLLARY 6.7. Let ν be a valuation centered at infinity, let X be a completion
of X0 and let pνnq be the infinitely near sequence of ν from Proposition 5.26. If ν P V 1

8,
then ηpνnq converges towards ηpνq with respect to the strong topology.

PROOF. Let p “ cX pνq and we can suppose that νn,ν P VX pp;Eq for some prime
divisor E at infinity with p P E. Then, we have νn ď ν for all n and αpνnq Ñ αpνq.
Therefore

dpνn,νq “ αpνq ´ αpνnq ÝÝÝÑ
nÑ8

0 (173)

□



CHAPTER 7

Valuations as Linear forms

As done in [JM12], we can view valuations on X0 as
‚ linear forms with values in R over the space of integral Cartier Divisors over

X supported at infinity
‚ as real-valued functions over the set of coherent fractional ideal sheaves of X

co-supported at infinity.
We recall how to do so. For a divisor D, we denote by H0pX ,OX pDqq the set of global
sections of the line bundle OX pDq and

ΓpX ,OX pDqq “
␣

h P kpXq
ˆ : D ` divphq ě 0

(

. (174)

7.1. Valuations as linear forms over Div8pXq

LEMMA 7.1. Let D P DivpXq such that the negative part (if any) of D is supported
in BX X0. For any point p P X, there exists an open neighbourhood U of p such that a
local equation of D on U is of the form ϕ “ P ¨ ψ with P P OX pX0q and ψ P OX pUq.

PROOF. Let ϕ P kpU 1q˚ “ kpXq˚ be a local equation of D where U 1 is an open
subset of X containing p.

Let H be an ample effective divisor such that SupppHq “ BX X0. There exists an
integer n ě 1 such that D ` nH ě 0. Pick P general in ΓpX ,OX pnHqq Ă OX pX0q, then
divP “ ZP ´ nH with ZP ě 0 and p R SuppZP because we chose P general and |nH| is
basepoint free, in particular P restricts to a regular function over X0. Set ψ :“ ϕ{P, one
has

div
`

ψ|U
˘

“ D|U ` nH|U ´ ZP|U . (175)

Set U “ U 1zSuppZP, then divpψq|U 1 ě 0, i.e ψ P OX pUq and we are done. □

COROLLARY 7.2. If D is a divisor such that the negative part (if any) of D is at
infinity and ν is a valuation on krX0s, then for all small enough affine open subsets
U Ă X containing cX pνq,

ΓpU,OX p´Dqq Ă OX pX0qpνX
(176)

and νX can be extended to ΓpU,OX p´Dqq.

61
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PROOF. If U is small enough, then ΓpU,OX p´Dqq is the OX pUq-module generated
by ϕ where ϕ is a local equation of D. Now, by Lemma 7.1, ϕ is of the form ϕ “ P ¨ ψ

where P P OX pX0q and ψ P OX pUq. By definition we have OX pX0q Ă OX pX0qpvX
and for

all affine open neighbourhood U of cX pνq,OX pUq Ă OX pX0qpwX
by the proof of Lemma

4.11. □

Let D be divisor of X supported at infinity and let ϕ P kpXq be a local equation of
D at cX pνq. Then we set

Lν,X pDq :“ νX pϕq. (177)
This is well defined because by Corollary 7.2 because by definition there exists an open
affine neighbourhood U of cX pνq such that ϕ P ΓpU,OX p´Dqq. This does not depend
on the choice of the local equation because if ψ is another local equation of D, then ϕ

ψ

is a regular invertible function near cX pνq and νX pϕ{ψq “ 0.

LEMMA 7.3. Let ν be a valuation over krX0s and let X be a completion of X0, then
for all D P Div8pXqR, Lν,X pDq ă 8.

PROOF. It suffices to show Lemma 7.3 for D an integral divisor supported at infinity
in X . We can apply corollary 7.2 to D and ´D, therefore if ϕ is a local equation of D,
we have that both ι˚

X pϕq and ι˚
X p1{ϕq belong to Apν

and this means that νX pϕq ă 8. □

REMARK 7.4. We can in fact define Lν,X at any divisor D on X such that the neg-
ative part of D is supported at infinity but it could happen that Lν,X pDq is infinite. For
example, let X0 “ A2,X “ P2. Let ν be the curve valuation centered at r1 : 0 : 0s asso-
ciated to the curve y “ 0, then

Lν,P2ptY “ 0u ´ tZ “ 0uq “ νpY {Zq “ `8. (178)

EXAMPLE 7.5. If X is a completion of X0, let E be a prime divisor at infinity. Let
D P Div8pXq. Recall that we have defined in Section 3.1 that ordEpDq is the weight of
D along E, then

LordE pDq “ ordEpDq. (179)

Indeed, at the generic point of E, a local equation of D is zordE pDqϕ where z is a local
equation of E and ϕ is regular not divisible by z.

PROPOSITION 7.6. If ν is a valuation over krX0s, and X is a completion of X0 then
(1) Lν,X p0Div8pXqq “ 0.
(2) For any D,D1 P Div8pXq,Lν,X pD`D1q “ Lν,X pDq`Lν,X pD1q, and Lv,X pmDq “

mLv,X pDq for all m P Z.
(3) If D ě 0, then Lν,X pDq ě 0 and Lν,X pDq ą 0 ô cX pνq P SuppD. In particular,

if ν is not centered at infinity then Lν “ 0.
(4) If P P OX pX0q, then νX pPq “ Lν,X pdivPq.
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(5) If Y is another completion of X0 above X, and π : Y Ñ X is the morphism of
completions over X0, then Lν,X pDq “ Lν,Y pπ˚Dq.

Thus, we can extend Lν,X to Div8pXqR by linearity:

Lν,X : Div8pXqR Ñ R. (180)

PROOF. The first assertion is trivial as 1 is a local equation of the trivial divisor.
The second assertion follows from the fact that if ϕ,ψ are local equations of D and D1

respectively, then ϕψ is a local equation of D ` D1 and 1{ϕ is a local equation of ´D.
For the third one, suppose D is an integral divisor. If D is effective and f is a local
equation at cX pνq, then f is regular at p and by definition of the center νp f q ě 0, now
if cX pνq belongs to SuppD, then f vanishes at cX pνq; thus, νp f q ą 0. If on the other
hand cX pνq R SuppD, then f is invertible at the center of νX and νX p f q “ 0. The fourth
assertion follows from f being a local equation of divp f q and the fact that f has no
pole over X0. Finally, if f P kpXq is a local equation of D at cX pνq, then π˚ f is a local
equation of π˚D at cY pνq and by Remark 4.3, one has νX p f q “ νY pπ˚ f q. □

PROPOSITION 7.7. Let f : X0 Ñ X0 be a dominant endomorphism of X0. Let Y,X
be two completions of X0 such that the lift F : Y Ñ X of f is regular. Then,

FpcY pvqq “ cX p f˚vq and @D P Div8pXq,L f˚v,X pDq “ Lv,Y pF˚Dq (181)

PROOF. Let p “ cY pνq and q “ cX p f˚νq. Then, F induces a local ring homomor-
phism

F˚ : OX ,q Ñ OY,p

Now, for any ϕ P OX ,q, there exists P,Q P krX0s such that ϕ “ P
Q . Therefore,

F˚
ϕ “

f ˚P
f ˚Q

and therefore f˚νpϕq “ νpF˚ϕq ą 0. Therefore, q “ cX p f˚vq.
Now, to show the second result. If g is a local equation of D at the center of νX ,

then F˚g is a local equation of F˚D at the center of νY . Since π˚νY “ νX , one has

νY pF˚gq “ νX ppF ˝ π
´1

q
˚gq “ νX p f ˚gq “ p f˚νqX pgq (182)

and this shows the result. □

7.2. Valuations as real-valued functions over the set of fractional ideals
co-supported at infinity in X

An ideal of X is a sheaf of ideals of OX and a fractional ideal is a coherent sub-OX -
module of the constant sheaf kpXq. Let a be a fractional ideal of X , we say that a is
co-supported at infinity if a|X0 “ OX0 . For example, for any divisor D P DivpXq, OX pDq

is a fractional ideal of X and if D P Div8pXq then OX pDq is co-supported at infinity.
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PROPOSITION 7.8. Let a be a fractional ideal of X co-supported at infinity and let
p P X, for any finite system p f1, ¨ ¨ ¨ , frq of local generators of a at p there exists an open
neighbourhood U of p such that fi|U is of the form

fi “ Figi (183)

with Fi P OX pX0q and gi P OX pUq.

PROOF. Pick U 1 an open neighbourhood containing p. Since fi is regular over X0,
we have div fi “ D` ´ D´

1 ´ D´
2 where D`,D´

1 and D´
2 are effective divisors such that

SuppD´
1 Ă BX X0 and D´

2 |U 1 “ 0. By Lemma 7.1 there exists an open neighbourhood
Ui Ă U 1 of p such that pD` ´ D´

1 q|Ui “ divFig1
i with Fi P OX pX0q and g1

i P OX pUiq.
Therefore, there exists g2

i P OX pUiq such that fi “ Fig1
ig

2
i . Set U “ XUi and gi “ g1

ig
2
i .
□

COROLLARY 7.9. Let a be a fractional ideal co-supported at infinity and let ν

be a valuation over krX0s, then for all affine open neighbourhood of cX pνq,ΓpU,aq Ă

OX pX0qpνX
and νX is defined over ΓpU,aq.

If ν is a valuation over krX0s, then we define Lν,X paq as

Lν,X paq :“ min
f

νX p f q. (184)

where the f runs over the germs of sections of a at cX pνq. This makes sense by Corol-
lary 7.9.

PROPOSITION 7.10. If ν is a valuation over krX0s, then
(1) Lν,X pOX q “ 0.
(2) If a,b are two fractional ideals of X co-supported at infinity, then

Lν,X pa ¨bq “ Lν,X paq ` Lν,X pbq and Lν,X pa`bq “ minpLν,X paq,Lν,X pbqq (185)

(3) If f1, ¨ ¨ ¨ , fr P kpXq is a set of local generators of a at cX pνq, then

Lν,X paq “ minpνX p f1q, ¨ ¨ ¨ ,νX p frqq. (186)
(4) If D P DivpXq is a divisor, then Lν,X pDq “ Lν,X pOX p´Dqq.
(5) If Y is another completion of X0 above X, and π : Y Ñ X is the morphism

of completions over X0, then ra :“ π˚a ¨ OY is a fractional ideal over Y and
Lν,X paq “ Lν,Y praq.

PROOF. The first assertion is trivial since 1 is a local generator of the trivial sheaf.
For Assertion (2), notice that if p f1, . . . , frq are local generators of a at cX pνq and
pg1, . . . ,gsq local generators of b at cX pνq then p fig jqi, j is a set of local generators of
a ¨b at cX pνq and p f1, . . . , fr,g1, . . . ,gsq is a set of local generators of a`b at cX pνq, so
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Assertion (2) follows from Assertion (3). To show Assertion (3), let f1, ¨ ¨ ¨ , fr be local
generators of a at cX pνq. This implies that acX pνq “ f1OcX pνq ` f2OcX pνq `¨¨ ¨` frOcX pνq.
Since ν is nonnegative on OcX pνq by definition of the center, the assertion follows. For
assertion 5, if f1, ¨ ¨ ¨ , fr are local generators of a, then π˚ f1, ¨ ¨ ¨ ,π˚ fr are local genera-
tors of ra at cY pνq and the result follows since π˚νY “ νX . Assertion (4) follows from
the fact OX p´Dq is locally generated by an equation of D and Assertion (5) follows
from the fact that if p f1, ¨ ¨ ¨ , frq are local generators of a at cX pνq then pπ˚ f1, ¨ ¨ ¨ ,π˚ frq

are local generators of ra at cY pνq. □

PROPOSITION 7.11. If ν is a valuation over krX0s and a is a fractional ideal co-
supported at infinity, then Lν,X paq ă 8.

PROOF. Take f1, ¨ ¨ ¨ , fr local generators of a at p the center of ν on X . The proof
of Lemma 7.1 shows that there exists an affine open neighbourhood U of p such that
fi|U “ higi with hi P krX0s and gi P OX pUq and such that fi

´1 can be put into the same
form. This shows that for all i, νp fiq ă 8. □

REMARK 7.12. The same definition would allow one to define Lν,X paq for any
fractional ideal such that a is a sheaf of ideals of X0 but we have to allow infinite
values. In particular, Lν,X paq is defined for any sheaf of ideals over X .

7.3. Valuations centered at infinity

Recall that a valuation ν over krX0s is centered at infinity, if ν does not admit a
center on X0. We denote by V8 the set of valuations over krX0s centered at infinity.

LEMMA 7.13. Let ν be valuation over krX0s. The following assertions are equiva-
lent.

(1) ν is centered at infinity.
(2) There exists P P krX0s such that νpPq ă 0.
(3) For any completion X of X0 and any effective divisor H in X such that SuppH “

BX X0, one has Lν,X pHq ą 0.
(4) There exists a completion X of X0 and an effective divisor H P X with SuppH “

BX X0 such that Lν,X pHq ą 0.

PROOF. We will show the following implications 2 ñ 1 ñ 3 ñ 4. Then, we will
show that 1 ñ 2 and finally that 4 ñ 2.

2 ñ 1 ñ 3 ñ 4. If there exists a regular function P over X0 such that νpPq ă 0 then
the center of ν cannot be a point of X0 because P is regular at every point of X0. This
shows 2 ñ 1, then if ν is centered at infinity, take a completion X of X0, let E be a prime
divisor at infinity in X such that cX pνq P E. Then, since H is effective and E P SuppH,
Lν,X pHq ě νpEq ą 0 by Proposition 7.6 (1). This shows 1 ñ 3 and 3 ñ 4 is clear.
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1 ñ 2. Conversely, suppose ν is centered at infinity and fix a closed embedding
X0 ãÑ AN for some integer N. Let X be the Zariski closure of X0 in PN with homo-
geneous coordinates x0, ¨ ¨ ¨ ,xN such that tx0 “ 0u is the hyperplane at infinity. The
surface X might not be smooth so it is not necessarily a completion of X0 but it still is
proper and the center p of ν on X belongs to tx0 “ 0u X X . Let 1 ď i ď N be an integer
such that p belongs to the open subset txi ‰ 0u. Then, the rational function P :“ xi

x0
is a

regular function on X0 and 1{P vanishes at p. Therefore, νpPq ă 0.
4 ñ 1. Suppose that ν is not centered at infinity, i.e the center of ν belongs to X0.

Then, for any completion X and for any divisor D P Div8pXq, one has Lν,X pDq “ 0 by
Proposition 7.6 (1) since cX pνq R SuppD. □

This lemma shows that being centered at infinity is a property that can be tested on
only one completion X0.

COROLLARY 7.14. The space V8 is an open subset of V .

PROOF. We have by Lemma 7.13 that

V8 “
ď

PPkrX0s

tνpPq ă 0u . (187)

Therefore, it is a union of open subsets.
□

7.3.1. Topologies over the set of valuations centered at infinity. Let X be a com-
pletion of X0. Call σ the coarsest topology such that the evaluation maps ϕ f : ν P V8 ÞÑ

νp f q are continuous for all f P krX0s and τ the coarsest topology such that the evalua-
tion maps ψa : ν P V8 ÞÑ Lνpaq are continuous for all fractional ideals a of X such that
a|X0 is a sheaf of ideals over X0. Recall that we allow in both cases infinite values.

PROPOSITION 7.15. [JM12] These two topologies on V are the same.

PROOF. First if f P krX0s, then νp f q “ Lνpp f qq where p f q is the fractional ideal
generated by f . So σ is finer than τ. For the other way, Let H be an ample divisor
supported at infinity and let a be a fractional ideal co-supported at infinity. There exists
an integer n ą 0 such that ab OX pnHq and OX pnHq are generated by global sections
p f1, ¨ ¨ ¨ , frq and pg1, ¨ ¨ ¨ ,gsq respectively. Notice that for all i, j, the rational functions
fi,g j belong to OX pX0q. Now, we have that Lνpaq “ Lνpa b OX pnHq b OX p´nHqq,
therefore

Lνpaq “ min
i, j

ˆ

ν

ˆ

fi

g j

˙˙

“ min
i, j

`

νp fiq ´ νpg jq
˘

Therefore, τ is finer than σ and the result is shown.
□
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7.3.2. Valuations centered at infinity as linear forms over Cartier8pX0q.

DEFINITION 7.16. Let ν be a valuation over krX0s. Let D P Cartier8pX0q and X be
a completion of X0 such that D is defined by DX . We define

LνpDq :“ Lν,X pDX q. (188)

This does not depend on the choice X and defines a linear map on Cartier8pX0q by
Proposition 7.6 and LνpDq ă `8 by Lemma 7.3. Notice that Lν “ 0 if and only if ν is
not centered at infinity.

PROPOSITION 7.17. If ν is a valuation on krX0s centered at infinity then Lν is a
linear form Cartier8pX0q Ñ R and satisfies

(1) If D ě 0, then LνpDq ě 0.
(2) For D,D1 P Cartier8pX0q,LνpD ^ D1q “ minpLνpDq,LνpD1qq.

We will say that an element of hompCartier8pX0q,Rq that satisfies these 2 properties
satisfies property (+).

PROOF. Assertion 1 follows from Proposition 7.6 (3). We show the second asser-
tion. Take D,D1 P Cartier8pX0q and X a completion of X0 such that D,D1 are defined
by their incarnation DX ,D1

X . By Claim 3.8 (that we prove in the next section), we
know that there exists a completion Y along with a morphism of completions π : Y Ñ X
such that D ^ D1 is the Cartier class determined by some divisor DY in Y such that
π˚pOX p´DX q ` OX p´D1

X qq ¨ OY “ OY p´DY q. Using Proposition 7.10, it follows that

LνpD ^ D1
q “ Lν,Y pDY q

“ Lν,Y pOY p´DY qq 7.10p4q

“ Lν,X pOX p´DX q ` OX p´D1
X qq 3.8

“ minpLν,X pOX p´DX qq,Lν,X pOX p´D1
X qqq 7.10p2q

“ minpLνpDq,LνpD1
qq 7.10p4q

□

PROPOSITION 7.18. Let ν be a valuation over krX0s and f : X0 Ñ X0 a dominant
endomorphism, then for all D P Cartier8pX0q,

L f˚νpDq “ Lνp f ˚Dq “ p f˚LνqpDq (189)

PROOF. Let X be a completion of X0 where D is defined, then f induces a dominant
rational map f : X Ñ X . Let π : Y Ñ X be a projective birational morphism such that
the lift F : Y Ñ X is regular. Since f is an endomorphism of X0 we can suppose that π is
the identity over X0, hence Y is a completion of X0 and π is a morphism of completions.
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Now, if ϕ is a local equation of D near the center of νX , then F˚ϕ is a local equation of
F˚D near the center of νY . Since π˚νY “ νX , one has

νY pF˚gq “ νX ppF ˝ π
´1

q
˚gq “ νX p f ˚gq “ p f˚νqX pgq (190)

□

We equip hompCartier8pX0q,Rq with the weak-‹ topology, that is the coarsest
topology such that the map L P hompCartier8pX0q,Rq ÞÑ LpDq is continuous for all
D P Cartier8pX0q. We extend Lν to Cartier8pX0qR by linearity.

PROPOSITION 7.19. The map ν P V8 ÞÑ Lν P hompCartier8pX0q,Rq is a continu-
ous embedding.

PROOF. For the injectivity, let v,w P V8 such that v ‰ w. First, if w “ tν with
t ą 0, then since Lv ‰ 0, we have Lv ‰ Lw. Otherwise, there exists a completion X such
that cX pνq ‰ cX pwq. If the centers are both prime divisors at infinity then it is clear
that Lν ‰ Lw. If cX pνq is a point, let rE be the exceptional divisor above it. Then, by
Proposition 7.6, LνprEq ą 0, but LwprEq “ 0.

By definition, to show continuity we have to show that for all D P Cartier8pX0q, the
map ν P V8 ÞÑ LνpDq is continuous. Let X be a completion where D is defined, then
by Proposition 7.6 LνpDq “ LνpOX p´Dqq and by Proposition 7.15 the map ν P V8 ÞÑ

LνpOX p´Dqq is continuous. □

PROPOSITION 7.20. Let X be a completion of X0 and p P X a closed point at infinity.
Let ν P VX pp;mpq. If E is a prime divisor of X at infinity such that p P E, then

1 ď LνpEq ď αpνq (191)

PROOF. Let z P OX ,p be a local equation of E, z is irreducible and we have LνpEq “

νpzq. We have that z P mp, therefore νpzq ě νpmpq “ 1. This shows the first inequality.
For the second one, let νz be the curve valuation associated to z. It does not define a
valuation over krX0s but it defines a valuation over OX ,p by Proposition 5.3, we get

νpzq “ αpνz ^ νq ď αpνq (192)

□

7.3.3. Special look at divisorial valuations centered at infinity.

LEMMA 7.21. Let X be a completion of X0 and let E be a prime divisor at infinity.
One has LordE pEq “ 1 and for any prime divisor F ‰ E in X, LordE pFq “ 0.

Furthermore, if π : Y Ñ X is some blow-up of X, and π1pEq the strict transform of
E by π, then

π˚ ordπ1pEq “ ordE . (193)
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PROOF. The first assertion follows from Proposition 7.6 (3). We show the second
assertion. It suffices to show it when π is the blow-up of one point of X . Let D “

aE `
ř

F‰E ordFpDqF , then π˚D is of the form

π
˚D “ aπ

1
pEq ` brE `

ÿ

F‰E

aFpDqπ
1
pFq (194)

where rE is the exceptional divisor of π. Therefore ordπ1pEqpπ˚pDqq “ a “ ordEpDq. □

PROPOSITION 7.22. Let ν be a divisorial valuation, then Lν can be extended natu-
rally to Weil8pX0q in a compatible way with the definition of Lν over Cartier8pX0q.

PROOF. Take W P Weil8pX0q. Since ν is divisorial, there exists a completion X of
X0 that contains a prime divisor E at infinity such that pιX q˚ν “ λordE . We set

LνpW q :“ Lν,X pWX q (195)

This does not depend on the completion X . To show this, it suffices to show
that we get the same result if we blow up one point of X . So, let π : Y Ñ X be the
blow up of one point of X0 at infinity. Then, by Lemma 7.21, νY “ λordπ1pEq and
ordπ1pEqpWY q “ ordEpπ˚WY q “ ordEpWX q. If D P Cartier8pX0q, then this is compatible
with the previous definition of LνpDq because if D is defined over X , there exists a
completion π : Y Ñ X such that the center of ν on Y is a prime divisor at infinity and
by Proposition 7.6 (5) Lν,Y pπ˚Dq “ Lν,X pDq. □

REMARK 7.23. Recall that we have defined in §3.1 the set D8pX0q as the set of
equivalence classes of prime divisors at infinity modulo the following equivalence re-
lations : pX1,E1q „ pX2,E2q if π “ ι2 ˝ ι1

´1 : X1 99K X2 satisfies πpE1q “ E2. Lemma
7.21 shows that it makes sense to define ordE for E P D8pX0q and that ordE is defined
over Weil8pX0q.

PROPOSITION 7.24. Let W,W 1 P Weil8pX0q, then W 2 “ W ^W 1 if and only if for
any divisorial valuation E P D8pX0q,

ordEpW 2
q “ minpordEpW q,ordEpW 1

qq. (196)

PROOF. This is immediate as for any completion X ,

WX “
ÿ

EPBX X0

ordEpW q ¨ E. (197)

□

We can now show that the minimum of two Cartier divisors is still a Cartier divisor.
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PROPOSITION 7.25. Let X be a completion of X0, let D,D1 P Div8pXq be two ef-
fective divisor and let a be the sheaf of ideals a “ OX p´Dq ` OX p´D1q. Then, D ^ D1

is the Cartier divisor defined by π˚a where π is the blow up of a.

Notice that a is not locally principle only at satellite points, so π is a sequence of
blow-ups of satellite points. This shows the Claim 3.8.

PROOF OF CLAIM 3.8. Define the sheaf of ideals a “ OX p´Dq ` OX p´D1q and
let π : Y Ñ X be the blow up of a. There exists a Cartier divisor DY on Y such
that b “ OY p´DY q “ π˚a ¨ OY . We show that DY “ D ^ D1 in Cartier8pX0q. By
Proposition 7.24, we only need to show that for any divisorial valuation ν,Lν,Y pDY q “

minpLν,X pDq,Lν,X pD1qq, but by Proposition 7.10 we have the following equalities

Lν,Y pDY q “ Lν,Y pbq “ Lν,X paq “ minpLν,X pDq,Lν,X pD1
qq (198)

□

7.4. Local divisor associated to a valuation

Let X be a completion of X0 and let p P X be a closed point at infinity. Let ν be a
valuation centered at p. We know by Section 7.3.2 that ν induces a linear form Lv on
Cartier8pX0qR. By restriction, it induces a linear form Lν,X ,p on CartierpX , pqR. Now
by Proposition 3.19, the pairing

WeilpX , pqR ˆ CartierpX , pqR Ñ R (199)

induced by the intersection product is perfect. Thus, there is a unique Zν,X ,p P WeilpX , pqR
such that

@D P CartierpX , pqR, Zν,X ,p ¨ D “ Lν,X ,ppDq (200)

EXAMPLE 7.26. If rE is the exceptional divisor above p, then Zord
rE ,X ,p “ ´rE.

PROPOSITION 7.27. For any valuation ν P VX ppq, we have Zν,X ,p P CartierpX , pq

if and only if ν is divisorial. Furthermore, Zν,X ,p is defined over any completion
such that the center of ν is a prime divisor at infinity. Furthermore, for any E P

DpX , pq,ZordE ,X ,p P CartierpX , pqQ.

PROOF. Let E P DX ,p, for every W P WeilpX , pq,ordEpW q “ ordEpWY q where Y is
a completion exceptional above p by Proposition 7.22. Let E,E1, ¨ ¨ ¨ ,Er be the com-
ponent of BY X0 that are exceptional above p. The intersection form is non degenerate
on

V :“ QE ‘

˜

à

i
QEi

¸

. (201)

Let L be the restriction of ordE to V , by duality there exists a unique Z P V such that for
all W P V,W ¨ Z “ LpW q “ ordEpW q. This implies that Z “ ZordE ,X ,p. Conversely, if ν
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is a valuation such that Zν,X ,p P CartierpX , pq then let Y be a completion where Zν,X ,p is
defined. If cY pνq is a point at infinity, then let rE be the exceptional divisor above cY pνq.
Then, we must have Zν,X ,p ¨ rE ą 0 but it is equal to 0, this is a contradiction. □

PROPOSITION 7.28. The embedding VX pp;mpq ãÑ WeilpX , pqR is continuous with
respect to the weak topology.

PROOF. This is a direct consequence of Proposition 7.19 and Proposition 6.2. □

Thus, For all completion π : Y Ñ X , for all E P Γπ, we can consider ZordE ,X ,p as an
element of Div8pY qR.

PROPOSITION 7.29. Let π : pY,Excpπqq Ñ pX , pq be a completion exceptional above
p. Let ν be a valuation such that cX pνq “ p. Suppose that cY pνq is a point at infinity.
Consider VX pp;mpq with its generic multiplicity function b.

(1) If cY pνq P E is a free point with E P Γπ, then the incarnation of Zν,X ,p in Y is

pZν,X ,pqY “ LνpEqZordE ,X ,p (202)

Moreover if ν P VX pp;mpq, then LνpEq “ 1
bpEq

.
(2) If cY pνq “ E X F is a satellite point with E,F P Γπ, then

pZν,X ,pqY “ LνpEqZordE ,ν,p ` LνpFqZordF ,X ,p (203)

Moreover if ν P VX pp;mpq, then LνpEqbpEq ` LνpFqbpFq “ 1.
Furthermore, if q ‰ cY pνq and τ : Z Ñ Y is the blow up of q then

pZν,X ,pqZ “ τ
˚
pZν,X ,pqY (204)

PROOF. For any prime divisor E at infinity of Y , LνpEq ą 0 ô cY pνq P E by item
(3) ofProposition 7.6. Therefore, if cY pνq P E is a free point with E P Γπ, then for
F P Γπ,LνpFq ‰ 0 ô F “ E, hence

pLνq|Div8pY qR “ pLνpEqqpLordE q|Div8pY qR . (205)

by definition (see Equation (179)). This shows the result if cY pνq is a free point. Now,
if cY pνq “ E X F is a satellite point with E,F P Γπ, then for all prime divisors F 1 of Y
at infinity LνpF 1q ą 0 ô F 1 “ E or F 1 “ F . We therefore have

pLνq|Div8pY qR “ pLν ¨ EqpLordE q|Div8pY qR ` pLν ¨ FqpLordF q|Div8pY qR . (206)

This shows the result in the satellite case.
If ν P VX pp;mpq. Let τ : Z Ñ X be the blow up of p. We know then that LνprEq “ 1

where rE is the exceptional divisor above p by Proposition 5.12. Let b
rE be the generic

multiplicity function of the tree VZprE; rEq. We have for every prime divisor F excep-
tional above p that ordFprEq “ b

rEpFq again by Proposition 5.12. In the free point case,
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we get 1 “ LνprEq “ Lνpb
rEpEqEq by Proposition 7.6 (3) and (5). In the satellite point

case, we get
1 “ LνprEq “ Lνpb

rEpEqE ` b
rEpFqFq (207)

again by Proposition 7.6 (3) and (5).
For the last assertion, if rF is the exceptional divisor above q, we have

pZν,X ,pqZ “ τ
˚
pZν,X ,pqY ´ pZν,X ,p ¨ rFqrF . (208)

Since cZpνq R rF , we have LνprFq “ 0 by Proposition 7.6 (3). □

From now on let b be the generic multiplicity function of VX pp;mpq and for any
prime divisor E P DX ,p “ Γ, set νE “ 1

bpEq
ordE .

PROPOSITION 7.30. Let π : pY,Excpπqq Ñ pX , pq be a completion exceptional above
p. Let q P Excpπq be a closed point. Let τ : Z Ñ Y be the blow up of q and let rE be the
exceptional divisor above q.

(1) If q P E is a free point with E P Γπ, then

Zν
rE ,X ,p “ τ

˚
pZνE ,X ,pq ´

1

bprEq

rE P Div8pZqQ (209)

(2) If q “ E X F is a satellite point with E,F P Γπ, then

Zν
rE ,X ,p “

bpEq

bpEq ` bpFq
τ

˚ZνE ,X ,p `
bpFq

bpEq ` bpFq
τ

˚ZνF ,X ,p ´
1

bprEq

rE P Div8pZqQ (210)

PROOF. If q P E is a free point with E P Γπ, we have by Proposition 7.29 that the
incarnation of Zord

rE ,X ,p in Y is

τ˚pZord
rE ,X ,pq “ ZordE ,X ,p (211)

because ord
rEpEq “ 1. Therefore

Zord
rE ,X ,pτ

˚ZordE ,X ,p ` λrE (212)

with λ P R. Since Zord
rE ,X ,p ¨ rE “ 1, we get λ “ ´1. Now, by the definition of the generic

multiplicity, we have bprEq “ bpEq. Therefore,

Zν
rE ,X ,p “ τ

˚ZνE ,X ,p ´
1

bprEq

rE (213)

If q “ E X F is a satellite point with E,F P Γπ, then bprEq “ bpEq ` bpFq. Note that
ord

rEpEq “ ord
rEpFq “ 1. We have by Proposition 7.29

τ˚Zord
rE ,X ,p “ ZordE ,X ,p ` ZordF ,X ,p (214)
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and since ord
rEprEq “ 1, we get

Zord
rE ,X ,p “ τ

˚ZordE ,X ,p ` τ
˚ZordF ,X ,p ´ rE. (215)

Therefore,

Zν
rE ,X ,p “

bpEq

bpEq ` bpFq
τ

˚ZordE ,X ,p `
bpFq

bpEq ` bpFq
τ

˚ZordF ,X ,p ´
1

bprEqq

rE. (216)

□

THEOREM 7.31. Let ν,ν1 P VX pp;mpq, then

Zν,X ,p ¨ Zν1,X ,p “ ´αpν ^ ν
1
q (217)

PROOF. We show by induction the

CLAIM 7.32. For every completion π : pY,Excpπqq Ñ pX , pq exceptional above p,
for all E P Γπ, for all ν P VX pp;mpq,

ZνE ,X ,p ¨ Zν,X ,p “ ´αpνE ^ νq (218)

First if π : Y Ñ X is the blow up of p with exceptional divisor rE. Recall that
π˚ ord

rE “ νmp then Zord
rE ,X ,p “ ´E and

Zord
rE ,X ,p ¨ Zν,X ,p “ Zν,X ,p ¨ p´rEq “ ¨Lνp´rEq. (219)

By definition, νpmpq “ 1 and π˚mp “ OY p´rEq. Therefore, by Proposition 7.10, we get
Zord

rE ,X ,p ¨ Zν,X ,p “ ´1 “ ´αpνmp ^ νq.
Suppose that π : pY,Excpπqq Ñ pX , pq is a completion exceptional above p for which

the claim holds. Let q P Y be a closed point at infinity, let τ : Z Ñ Y be the blow up of q
and let rE be the exceptional divisor. Let ν P VX pp;mpq, we show that Zν,X ,p ¨ Zν

rE ,X ,p “

´αpν ^ ν
rEq. We divide the proof in 2 different cases.

Case 1: q P E is a free point with E P Γπ. In that case ν
rE ą νE by Proposition

5.17. We also have bprEq “ bpEq and Zν
rE ,X ,p “ ZνE ,X ,p ´ 1

bprEq
rE by Proposition 7.30.

If cY pνq ‰ pqq (this includes the case where cY pνq is a prime divisor at infinity. Then,
ν^ν

rE “ ν^νE . We have by Proposition 7.30 that Zν
rE ,X ,p “ τ˚pZνE ,X ,pq´ 1

bprEq
rE. Since

Zν,X ,p ¨ rE “ 0, we get
Zν,X ,p ¨ Zν

rE ,X ,p “ Zν,X ,p ¨ ZνE ,X ,p. (220)

This is equal to ´αpν ^ νEq by induction and therefore it is equal to ´αpν ^ ν
rEq.

If cY pνq “ q, then cZpνq P rE. We either have ν
rE ď ν or νE ă ν ^ ν

rE ă ν
rE .
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(1) If ν ě ν
rE , then ν ^ ν

rE “ ν
rE and cZpνq is either rE or a free point on rE. In both

cases by Proposition 7.29, the incarnation of Zν,X ,p in Z is Zν
rE ,X ,p. Therefore

Zν,X ,p ¨ Zν
rE,X ,p

“ pZν
rE ,X ,pq

2
“ pZνE ,X ,pq

2
´

1

bprEq2
. (221)

By induction pZνE ,X ,pq2 “ ´αpνEq and αpν
rEq “ αpνEq ` 1

bprEq2 by Proposition
5.27, so the claim is shown in that case.

(2) If νE ă ν ^ ν
rE ă ν

rE . Then, ν ^ νE is a monomial valuation centered at E X rE
(we still denote by E the strict transform of E in Z). Therefore, by Proposi-
tion 5.31 there exists s, t ą 0 such that sbpEq ` tbprEq “ 1 and ν ^ ν

rE “ νs,t
is the monomial valuation with weight s, t with respect to local coordinates
associated to E and rE respectively. By Proposition 7.29, we have

pZν,X ,pqZ “ sZordE ,X ,p ` tZord
rE ,X ,p “ sbEZνE ,X ,p ` tb

rEZν
rE ,X ,p. (222)

Therefore,

Zν,X ,p ¨ Zν
rE ,X ,p “ sbpEqZνE ,X ,p ¨ Zν

rE ,X ,p ` tbprEqpZν
rE ,X ,pq

2. (223)

By induction and the previous case this is equal to ´bpEqpsαpνEq ` tαpν
rEqq.

By Proposition 5.27, we have αpν
rEq “ αpνEq ` 1

bpEq2 . Therefore, we get

´bpEq
`

sαpνEq ` tαpν
rEq
˘

“ ´αpνEq ´
t

bpEq
(224)

and this is equal to ´αpπ˚νs,tq by Proposition 5.31.

Case 2: q “ E1 X E2 is a satellite point. We can suppose without loss of generality
that νE1 ă νE2 . In that case we get νE1 ă ν

rE ă νE2,bprEq “ bpE1q ` bpE2q and

Zν
rE ,X ,p “

bpE1q

bpE1q ` bpE2q
ZνE1 ,X ,p `

bpE2q

bpE1q ` bpE2q
ZνE2 ,X ,p ´

1

bprEq

rE (225)

by Proposition 7.30.
If cY pνq ‰ q, then ν ^ νE2 ď νE1 or ν ě νE2 and we get

Zν,X ,p ¨ Zν
rE ,X ,p “

bpE1q

bpE1q ` bpE2q
pZν,X ,p ¨ ZνE1 ,X ,pq `

bpE2q

bpE1q ` bpE2q
pZν,X ,p ¨ ZνE2 ,X ,pq.

(226)
By induction, this is equal to ´

bpE1q

bpE1q`bpE2q
αpνE1 ^ νq ´

bpE2q

bpE1q`bpE2q
αpνE2 ^ νq.

If ν^νE2 ď νE1 , then ν^νE2 “ ν^ν
rE “ ν^νE1 and the quantity in Equation (226)

is equal to ´αpν ^ ν
rEq.
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If ν ě νE2 , then ν ą ν
rE and ν ^ ν

rE “ ν
rE . In that case ν ^ νE1 “ νE1 and ν ^ νE2 “

νE2 . Therefore, the quantity in Equation (226) is equal to

´
bpE1q

bpE1q ` bpE2q
αpνE1q ´

bpE2q

bpE1q ` bpE2q
αpνE2q. (227)

By Proposition 5.27, αpνE2q “ αpνE1q ` 1
bpE1qbpE2q

, so we get

Zν,X ,p ¨ Zν
rE ,X ,p “ ´αpνE1q ´

1
bpE1qpbpE1q ` bpE2qq

“ ´αpνE1q ´
1

bpE1qbprEq
(228)

and this is equal to ´αpν
rEq again by Proposition 5.27.

If cY pνq “ q, then cZpνq P rE. We have that νE1 ă ν ^ ν
rE ă νE2 . Therefore either

ν “ ν
rE or cZpνq P rE is a point and ν^ν

rE is a monomial valuation centered at E1 X rE or
E2 X rE. We show again the claim by induction in an analogous way as in Case 1. We
have thus shown the claim by induction.

To show the Proposition, let ν,ν1 P VX pp;mpq. If ν ‰ ν1, then there exists a com-
pletion π : pY,Excpπqq Ñ pX , pq exceptional above p such that cY pνq ‰ cY pν1q. Then,
we have that

Zν,X ,p ¨ Zν1,X ,p “ pZν,X ,pqY ¨ pZν1,X ,pqY (229)

If ν1 is infinitely singular or a curve valuation, we can suppose that cY pν1q is a free
point lying over a unique prime divisor E at infinity. Then, ν1 ą νE and ν1 ^ ν “

ν1 ^ νE . Furthermore, the incarnation of Zν,X ,p in Y is exactly ZνE ,X ,p by Proposition
7.29. Therefore,

Zν,X ,p ¨ Zν1,X ,p “ Zν,X ,p ¨ ZνE ,X ,p. (230)

This is equal to ´αpν ^ νEq “ ´αpν ^ ν1q by the Claim.
If ν1 is irrational, then we can suppose that cY pν1q “ E1 X E2 for E1,E2 two prime

divisors at infinity. Suppose without loss of generality that vE1 ă νE2 . By Proposition
5.31, we have that ν1 “ π˚νs,t for some s, t ą 0 such that sbpE1q ` tbpE2q “ 1 and
αpν1q “ αpνE1q ` t

bpE1q
. Furthermore, by Proposition 7.29, the incarnation of Zν1,X ,p in

Y is
pZν1,X ,pqY “ sbpE1qZνE1 ,X ,p ` tbpE2qZνE2 ,X ,p. (231)

And we have

Zν,X ,p ¨ Zν1,X ,p “ sbpE1qpZν,X ,p ¨ ZνE1 ,X ,pq ` tbpE2qpZν,X ,p ¨ ZνE2 ,X ,pq. (232)

Either ν^ν1 “ ν^νE1 or ν^ν1 “ ν1. If ν^ν1 “ ν^νE1 , then we also have ν^νE2 “

ν ^ νE1 . The quantity in Equation (232) is then equal to

´sbpE1qαpν ^ νE1q ´ tbpE2qαpν ^ νE2q “ αpν ^ νE1q “ ´αpν ^ ν
1
q. (233)
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If ν^ν1 “ ν1, then ν^νE1 “ νE1 and ν^νE2 “ νE2 . The quantity in Equation (232)
is then equal to

´sbpE1qαpνE1q ´ tbpE2qαpνE2q “ ´αpνE1q ´
t

bpE1q
“ ´αpν

1
q. (234)

To get the last two equalities we use Proposition 5.27 and 5.31.
Finally, if ν “ ν1, we need to show that pZν,X ,pq2 “ ´αpνq. We know the result if

ν is divisorial. We use infinitely near sequence to conclude in general. If ν is infinitely
singular or a curve valuation. Let pXn, pnq be the sequence of infinitely near points
associated to ν. The infinitely near sequence of ν (Proposition 5.26) is the subsequence
νn “ 1

bpEnq
ordEn where pn is a free point lying over a unique prime divisor En at infinity.

We have that αpνnq Ñ αpνq and the incarnation of Zν,X ,p in Xn is Zνn,X ,p. Therefore,

pZν,X ,pq
2

“ lim
n

pZνn,X ,pq
2

“ ´ lim
n

αpνnq “ ´αpνq (235)

If ν is irrational, then let pXn, pnq be the sequence of infinitely near points as-
sociated to ν. For every n large enough, pn “ En X Fn for En,Fn two prime divi-
sors at infinity. Suppose that for all n,νEn ă νFn . Then, we have νEn ă ν ă νFn ,
αpνEnq Ñ αpνq,αpνFnq Ñ αpνq and bpEnq Ñ `8,bpFnq Ñ `8. We have by Propo-
sition 7.29 that the incarnation of Zν,X ,p in Xn is

snbpEnqZνEn ,X ,p ` tnbpFnqZνFn ,X ,p (236)

for some sn, tn ą 0 such that snbpEnq ` tnbpFnq “ 1. We have

pZν,X ,pq
2

“ lim
n

psnbpEnqZνn,X ,p ` tnbpFnqZνFn,X ,pq
2 (237)

“ lim
n

´s2
nbpEnq

2
αpνEnq ´ 2sntnbpEnqbpFnqαpνEnq ´ t2

n bpFnq
2
αpνFnq (238)

Therefore we get
lim

n
´αpνEnq ď pZν,X ,pq

2
ď lim

n
´αpνFnq. (239)

Hence pZν,X ,pq2 “ ´αpνq. □

COROLLARY 7.33. If ν P VX pp;mpq, then Zν,X ,p R WeilpX , pqQ if and only if ν is
irrational.

PROOF. If ν is divisorial, let E P DX ,p such that ν is equivalent to ordE . Then,

Zν,X ,p “
1

bpEq
ZordE ,X ,p P WeilpX , pqQ (240)

by Proposition 7.27. If ν is infinitely singular or a curve valuation, let µ be any divisorial
valuation. We have that µ^ν must be a divisorial valuation, therefore by Theorem 7.31
we have

Zµ ¨ Zν “ ´αpν ^ µq P Q. (241)
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Hence Zν,X ,p P WeilpX , pqQ.
If ν is irrational, then for all µ ě ν divisorial we have αpµ ^ νq “ αpνq P RzQ.

Therefore, Zν,X ,p R WeilpX , pqQ. □

PROPOSITION 7.34. Let X be a completion, let p P X be a closed point at infinity. If
pνnq is a sequence of VX pp;mpq such that αpνnq ă `8 for all n and ν P VX pp;mpq, then
νn Ñ ν for the strong topology if and only if Zνn,X ,p Ñ Zν,X ,p for the strong topology of
L2pX0q.

PROOF. This all comes from Theorem 7.31 as
ˇ

ˇ

ˇ
pZν,X ,p ´ Zνn,X ,pq

2
ˇ

ˇ

ˇ
“ |´αpνq ` 2αpν ^ νnq ´ αpνnq| (242)

“ |αpνq ´ αpν ^ νnq ` αpνnq ´ αpν ^ νnq| . (243)

□



CHAPTER 8

From linear forms to valuations

Suppose now that we have an element L of hompCartier8pX0q,Rq satisfying prop-
erty (+), we want to construct a valuation νL : krX0s Ñ R Y t8u centered at infinity
such that v f˚L “ f˚vL.

8.1. Construction of νL

First we extend L to S8pX0q (see Definition 3.12) by setting

If D “
ł

i

Di with Di P Cartier8pX0q, LpDq :“ sup
i

LpDiq. (244)

PROPOSITION 8.1. This definition does not depend on the representation of D as a
supremum D “

Ž

i Di with Di P Cartier8pX0q.

PROOF. If D “
Ž

iPI Di “
Ž

jPJ D1
j. Let j P J be an index and X a completion

such that D1
j is defined on X . Let ε ą 0 and let H be an effective divisor such that

SupppHq “ BX X0. There exists an index i P I such that Di ` εH ě D1
j, since otherwise

we would get D ` εH ď D1
j ď D. Therefore we have by property p`q item (1)

LpD1
jq ď LpDiq ` εLpHq ď sup

k
LpDkq ` εLpHq. (245)

Letting ε go to 0, we get sup j LpD1
jq ď supk LpDkq and the result holds by symmetry.

□

PROPOSITION 8.2. We have the following properties: for D,D1 P S8pX0q

(1) LpD ` D1q “ LpDq ` LpD1q.
(2) LpD ^ D1q “ minpLpDq,LpD1qq.
(3) If D ě 0, then LpDq ě 0.

PROOF. For (1), write

LpD ` D1
q “ sup

pi, jqPIˆJ
LpDi ` D1

jq

“ sup
iPI

LpDiq ` sup
jPJ

LpD1
jq “ LpDq ` LpD1

q

78
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For (2), let D “
Ž

i Di and D1 “
Ž

j D1
j be two elements of S8pX0q. Then,

D ^ D1
“
ł

i, j

Di ^ D1
j (246)

and

LpD ^ D1
q “ sup

i, j
minpLpDiq,LpD1

jqq (247)

“ minpsup
i

LpDiq,sup
j

LpD1
jqq (248)

“ minpLpDq,LpD1
qq. (249)

For (3), if D “ 0, then LpDq “ 0. Otherwise, D ą 0 and there exists a Cartier divisor
Di defined in some completion X of X0 such that DX ě Di ě 0 and therefore

LpDq ě LpDiq ě 0. (250)

□

Recall the notations of Section 3.2. Define

wpPq :“ pdiv8,X pPqqX . (251)

PROPOSITION 8.3. For P P krX0s, wpPq defines an element of Weil8pX0q, moreover
if one identifies for any completion X the divisor div8,X pPq P Div8pXq with its image
in Cartier8pX0q, then

wpPq “
ł

X

div8,X pPq. (252)

Thus, wpPq defines an element of S8pX0q.

PROOF. To prove both assertions it suffices to show that if X is a completion of
X0 and Y is the blow up of some point at infinity, then π˚ div8,Y pPq “ div8,X pPq and
π˚ div8,X pPq ď div8,Y pPq. Let rE be the exceptional divisor of π and let E1, . . . ,Er be
the prime divisors in BX X0. Since P is regular over X0, divX pPq is of the form

divX pPq “ D `

r
ÿ

i“1

aiEi (253)

where D is an effective divisor such that no irreducible component of its support is one
of the Ei’s; by definition div8,X pPq “

řr
i“1 aiEi. Then, divY pPq is of the form
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divY pPq “ divY pP ˝ πq “ π
˚ divX pPq “ π

1
pDq ` brE `

r
ÿ

i“1

aiπ
1
pEiq (254)

for some b P Z. So div8,Y pPq “ brE `
řr

i“1 aiπ
1pEiq and we get π˚pdiv8,Y pPqq “

div8,X pPq as π˚prEq “ 0, This shows that wpPq is an element of Weil8pX0q.
To show that π˚ div8,X pPq ď div8,Y pPq we have to be more precise about the co-

efficient b. We can write b “ c ` d, where π˚D “ π1pDq ` d rE and π˚ div8,X pPq “

crE `
ř

i aiπ
1pEiq. Since, D is effective, we have d ě 0 and the result follows. □

We define
νLpPq :“ LpwpPqq. (255)

REMARK 8.4. The class wpPq is not in general a Cartier class. Indeed, take X0 “

A2,X “ P2 with homogeneous coordinates rx : y : zs such that tz “ 0u is the line at
infinity. Consider P “ y{z P kpP2q. Define a sequence of blow ups Xi by X0 “ P2,E0 “

tz “ 0u and πi`1 : Xi`1 Ñ Xi the blow up of the intersection point of the strict transform
of ty “ 0u in Xi and Ei, where Ei is the exceptional divisor in Xi. Let Cy be the strict
transform of ty “ 0u in any the Xi. We still denote by Ei its strict transform in every
X j, j ě i. Then,

divP2pPq “ Cy ´ E0

divX1pPq “ Cy ´ E0

divX2pPq “ Cy ` E2 ´ E0

divX3pPq “ Cy ` 2E3 ` E2 ´ E0

and by induction, we get for all k ě 2

divXkpPq “ Cy `

k
ÿ

j“2

p j ´ 1qE j ´ E0. (256)

Therefore, for all k ě 2

π
˚
k`1 div8,XkpPq “ pk ´ 1qEk`1 `

k
ÿ

j“2

p j ´ 1qE j ´ E0

‰ kEk`1 `

k
ÿ

j“2

p j ´ 1qE j ´ E0 “ div8,Xk`1pPq.

Thus, wpPq is not a Cartier class.
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8.2. Proofs

We show that νL is a valuation centered at infinity and satisfies f˚νL “ ν f˚L.

PROPOSITION 8.5. The function νL is a valuation on krX0s centered at infinity.

PROOF. We first show that νL is in fact a valuation
(1) For any λ P k˚ and for any completion X of X0, divX pλq “ 0 so νLpλq “ 0.
(2) If f ,g P krX0s, then divX p f gq “ divX p f q ` divX pgq. So, wp f gq “ wp f q ` wpgq

and by Proposition 8.2 νLp f gq “ νLp f q ` νLpgq.
(3) Let f ,g P krX0s, f ‰ ´g, then divX p f ` gq ě divX p f q ^ divX pgq, therefore

wp f ` gq ě wp f q ^ wpgq (257)

and by Proposition 8.2 νLp f ` gq ě minpνLp f q,νLpgqq.
If L ‰ 0, there exists a completion X and a prime divisor E at infinity such that

LpEq ą 0. By Theorem 2.4, there exists H P Div8pXq ample such that H ě 0,SuppH “

BX X0. We have by item (1) of (+) that LpHq ě LpEq ą 0. To show that νL is centered at
infinity, it suffices to show that LνLpHq ą 0. Up to replacing H by one of its multiples
(which does not change the hypothesis LpHq ą 0), we can suppose that H is very ample
and that it induces an embedding τ : X ãÑ PN such that τpHq is the intersection of
τpXq with the hyperplane tx0 “ 0u. By Bertini’s theorem, we can find a hyperplane
M “ t

ř

i λixi “ 0u ‰ tx0 “ 0u such that M X τpXq is a smooth irreducible subvariety C
in X satisfying

(1) The intersection of C with any divisor at infinity of X is transverse.
(2) If νL is not divisorial, the center of νL is not contained in C.

Indeed, by Bertini theorem, the set UX of hyperplanes H such that H X X is a smooth
irreducible curve is an open dense subset. Let E1, ¨ ¨ ¨ ,En be the primes at infinity in X .
Applying Bertini theorem to Ei yields an open subset Ui of hyperplanes that meet Ei
transversally. Finally, if the center of νL is a subvariety Y of codimension ě 2, then the
set of hyperplanes that contain Y is a closed nowhere dense subset of PpΓpPn,Op1qqq

because |H| is base point free, so its complementary is a non-empty open subset UY .
Now, U1 X ¨¨ ¨ XUn XUY is an open subset that intersects UX since it is dense, we then
choose M in the intersection. Define

P “

N
ÿ

i“0

λi
xi

x0
(258)

Then, P is a regular function over X0 such that divX pPq “ C ´ H and 1{P is a local
equation of H at the center of νL (even if νL is divisorial). Hence,

LνLpHq “ νLp1{Pq “ sup
Y

pLpdiv8,Y p1{Pqq ě LpHq ą 0. (259)
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□

In Chapter 7, we have constructed a map

L : V8 Ñ hompCartier8pX0q,Rqp`q; (260)

here, we have constructed a map

ν : hompCartier8pX0q,Rqp`q Ñ V8 (261)

where hompCartier8pX0q,Rqp`q are the linear forms over Cartier8pX0q that satisfy
property (+). We shall prove that they are mutual inverse in Chapter 9. Using this result
we show

PROPOSITION 8.6. Let f be a dominant endomorphism of X0. If L P hompCartier8pX0q,Rqp`qq,
then f˚L P hompCartier8pX0q,Rqp`q and v f˚L “ f˚vL.

PROOF. Let L P hompCartier8pX0q,Rqp`qq, then there exists a unique valuation
v P V8 such that L “ Lv. Then, we have by Proposition 7.7 that

f˚L “ f˚Lv “ L f˚v. (262)

Therefore, f˚L P hompCartier8pX0q,Rqp`q and if w P V8 such that f˚L “ Lw it is clear
that w “ f˚v. □

REMARK 8.7. If P P pX0q, it is not true that wp f ˚Pq “
Ž

div8,X p f ˚Pq. Indeed,
the problem is that f might not be proper. For example, take f px,yq “ px,xyq with
X0 “ A2. In P2, blow up r0 : 1 : 0s, let E be the exceptional divisor and blow up again
the intersection point of E and the strict transform of tX “ 0u. Let V be the completion
obtained after the two blow ups and call E1 the exceptional divisor. The lift f :V Ñ P2 is
regular and f˚E1 “ tX “ 0u. Thus, we have that for all D P Cartier8pX0q,ordE1 f ˚D “

0. Now take P “ x, then f ˚P “ P and

divV pPq “ tX “ 0u ` E1 ´ tZ “ 0u . (263)

Thus, wp f ˚Pq ‰
Ž

f ˚ div8,X pPq. However it is true in general that

wp f ˚Pq ě
ł

f ˚ div8,X pPq (264)



CHAPTER 9

Proof that ν and L are mutual inverses

Set M :“ hompCartier8pX0q,Rqp`q. In Chapters 7 and 8 , we have defined L : ν P

V8 ÞÑ Lν P M and v : L P M ÞÑ νL P V8. The goal is to show that these two maps are
inverse of each other.

9.1. First step, ν ˝ L “ idV8

PROPOSITION 9.1. For all valuation ν P V8 and for all P P OX pX0q,νpPq “ LνpwpPqq.

PROOF. Let X be a completion of X0. We have seen that div8,X pPq “ divX pPq ´ D
where D is an effective divisor not supported in BX X0. Therefore,

Lν,X pdiv8,X pPqq “ νpPq ´ Lν,X pDq ď νpPq (265)
Taking the supremum over X , we get LνpwpPqq ď νpPq.
To show the other inequality, take a valuation ν centered at infinity and let X be

a completion of X0. Up to further blow ups of point at infinity, we can suppose that
D :“ divX pPq is a divisor in X with simple normal crossing on BX X0. Let E1, ¨ ¨ ¨ ,Er be
the prime divisors at infinity of X . Then, D is of the form

D “

r
ÿ

i“1

aiEi `
ÿ

jPJ

b jFj (266)

for some prime divisors Fj not supported at infinity. Let p be the center of ν on X , there
are two cases.

(1) For all j P J, p R Fj, in that case for all j P J,Lν,X pFjq “ 0 and νpPq “ Lν,X pdiv8,X pPqq.
Therefore, νpPq ď LνpwpPqq and they are equal.

(2) There exist a unique j P J and a unique i such that p “ Ei XFj. The uniqueness
comes from the fact that D is a divisor with simple normal crossing. We denote
them respectively by E and F . Then, we construct a sequence of blow up of
points πi : Xi`1 Ñ Xi such that πi is the blow-up of the center of ν in Xi and
X0 “ X . We still denote by F the strict transform of F in any of these blow-ups.
There are two possibilities:
(a) Either there exists a number k such that the center of ν in Xk does not

belong to F (This includes the case where ν is divisorial, in that case
83
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the center becomes a prime divisor and there are no more blow-ups to be
done). In that case, we are back in case 1 and νpPq “ νXkpdiv8,XkpPqq ď

LνpwpPqq and we get the desired equality.
(b) Or for all k ě 0, the center of ν in Xk belongs to F , in that case ν is

the curve valuation associated to F at p and νpPq “ `8. We show that
νXkpdiv8,XkpPqq Ñ `8 using the following result.

LEMMA 9.2. In case 2.(b), set E0 “ E and for k ě 1, rEk the exceptional
divisor in Xk above cXk´1pνq, then Lν,X0pEq “ Lν,XkpEkq for all k and the divisor
divXkpPq is of the form

divXkpPq “ pa ` kbqrEk ` bF ` D1
k (267)

where a “ ordEpPq ą 0, b “ ordFpPq ą 0 and cXk`1pνq does not belong to the
support of D1

k.

PROOF. First, since we are in case 2b and we have supposed that SuppdivX pPq

is with simple normal crossings, we have that for all k ě 0 the center of ν in
Xk is the intersection point pk :“ rEk X F .

We proceed by induction on k. If k “ 0 then the result is true as X0 “ X
and cX pνq “ E X F . Suppose the result true for a given index k ě 0, then
when we blow up pk, pk`1 is the intersection point of rEk`1 and F so it does
not belong to π1

kprEkq therefore Lν,Xk`1pπ1
kprEkqq “ 0. By induction we have

νXkprEkq “ Lν,X0pEq, and we know that

Lν,XkprEkq “ Lν,Xk`1pπ
˚
k
rEkq “ Lν,Xk`1pπ

1
kprEkq ` rEk`1q “ Lν,Xk`1prEk`1q (268)

so this shows the first assertion. Now, by induction divXkpPq is of the form

divXkpPq “ pa ` kbqrEk ` bF ` D1
k (269)

Now, since pk “ rEk X F and pk R SuppD1
k, one has

divXk`1pPq “ π
˚
k divXkpPq “ pa`pk `1qbqrEk`1 `bF `pa`kbqπ

1
kprEkq`π

1
kpD1

kq. (270)

Since pk`1 R π1
kprEkq, the support of the divisor D1

k`1 :“ π1
kpD1

kq ` pa `

kbqπ1
kprEkq does not contain pk`1 and we are done. □

Using this lemma we see that

Lν,Xkpdiv8,XkpPqq “ pa ` kbqLν,X0pEq ÝÝÝÑ
kÑ8

`8 (271)

Therefore LνpwpPqq “ `8 and since νpPq ě LνpwpPqq we have that νpPq “

`8
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□

9.2. Second step, L ˝ ν “ idM

To show that L ˝ ν “ idM we need some technical lemmas.

9.2.1. The center of L.
PROPOSITION 9.3. Let L P M and X be a completion of X0. If there exists two

divisors E,E 1 at infinity in X such that LpEq,LpE 1q ą 0, then E and E 1 must intersect.

PROOF. Suppose that E and E 1 do not intersect, then the sheaf of ideals a“ OX p´Eq‘

OX p´E 1q is trivial, a “ OX . From Proposition 7.25, we get E ^ E 1 “ 0. Thus LpE ^

E 1q “ 0. But LpE ^ E 1q “ minpLpEq,LpE 1qq ą 0 and this is a contradiction. □

COROLLARY 9.4. Let X be a completion of X0, suppose there exists two prime
divisors at infinity E,F such that LpEq,LpFq ą 0. Then, let rE be the exceptional divisor
above p “ E X F, one has LprEq ą 0.

PROOF. Let π : Y Ñ X be the blow up of p and suppose that LprEq “ 0. Since
π˚E “ π1pEq` rE and π˚F “ π1pFq` rE, one has Lpπ1pEqq ą 0 and Lpπ1pFqq ą 0 but the
two divisors no longer meet and this is a contradiction. □

PROPOSITION 9.5. Let X be a completion of X0, there are two possibilities
(1) There exist a unique closed point p in X at infinity such that if rE is the excep-

tional divisor above p, one has LprEq ą 0. We call this point the center of L in
X.

(2) If no point satisfy this property, then there exists a unique divisor at infinity E
in X such that LpEq ą 0. In that case we call E the center of L in X.

and we have the following properties
(a) Let E be a prime divisor at infinity in X. If the center of L on X is a point p,

then p P E ô LpEq ą 0.
(b) If Y is a completion of X0 above X, then the center of L in Y belongs to the

inverse image of the center of X.

PROOF. Suppose there are two points p1, p2 satisfying this property on X . Let πi
be the blow up of pi in X , we have commutative diagram

Y

X1 X2

X

τ1 τ2

π1 π2
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where on the left side we first blow up p1 then we blow up the strict transform of p2 and
the other way around on the right. Now let rE1, rE2 be the exceptional divisors above p1
and p2 respectively in X1 and in X2 and suppose that LprE1q,LprE2q ą 0. Then, since p1
does not belong to rE2 and p2 does not belong to rE1, we have that LprE1q “ Lpτ˚

1
rE1q “

Lpτ1
1prE1qq ą 0 and Lpτ1

2prE2qq ą 0. But in Y the prime divisors τ1
1prE1q and τ1

2prE2q do not
intersect and that contradicts Proposition 9.3.

Now, if E,F are two divisors at infinity such that LpEq,LpFq ą 0, Lemma 9.4 shows
that E X F must be the center of L on X . Hence if no point of X is the center of L there
is only one prime divisor at infinity E such that LpEq ą 0.

To show assertion (a), suppose that the center of L on X is a point p and let π be
the blow up of p. If p P E, then π˚pEq “ π1pEq ` rE and LpEq “ Lpπ˚Eq ě LprEq ą 0.
If LpEq ą 0 then p must belong to E otherwise rE and E would not intersect and this
contradicts Proposition 9.3.

We now assertion (b), we only need to show it for the blow up of a point π : Y Ñ X .
Suppose first that the center of L on X is a (closed) point p. If we blow up another point
than p, then it is clear that the center of L on Y is the point π´1 p as the order of the
blow ups does not matter in that case.

Suppose now that we blow up p, then the exceptional divisor rE verifies LprEq ą 0,
if the center of L on Y is a prime divisor then it must be rE. If it is a point then it must
belong to rE by assertion (a).

If the center of L on X is a prime divisor E, then for any blow up π : Y Ñ X of a point
of X , we show that the center of L on Y is π1pEq. The exceptional divisor rE verifies
LprEq “ 0 and π1pEq is the only prime divisor of Y such that Lpπ1pEqq ą 0. Thus, if the
center of L on Y is not a point, it must be π1pEq. If the center of L on Y is a point q, then
it must belong to π1pEq by assertion (a). If q is not the intersection point π1pEq X rE,
then it is the strict transform of a point p P E and in that case p was the center of L in X
this is a contradiction. If q “ rE X π1pEq, then LprEq ą 0 by assertion (a) and this is also
a contradiction. Therefore, the center of L on Y cannot be a point, it is π1pEq. □

9.2.2. End of the proof. We say that L is divisorial if there exists a completion X
of X0 such that the center of L on X is a prime divisor at infinity.

PROPOSITION 9.6. The map ν sends divisorial valuations to divisorial elements of
M and the map L sends divisorial functions to divisorial valuations.

PROOF. The fact that divisorial valuations induce divisorial functions on Cartier
divisors is clear. Suppose that L is a divisorial function and let X be a completion
such that the center of L in X is a prime divisor E at infinity. Then, for all completion
π : Y Ñ X above X , the center of L on Y is the strict transform of E by Proposition
9.5 and LpEq “ Lpπ1pEqq. Therefore, let ν be the divisorial valuation on krX0s such
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that νX “ ordE and let P P OX0pX0q, then for all completion Y above X , we have by
Proposition 9.5

Lpdiv8,Y pPqq “ Lpπ
1
pEqqordEpdivY pPqq “ LpEqνpPq. (272)

Therefore νLpPq “ LpEqνpPq and it is a divisorial valuation. □

PROPOSITION 9.7. One has L ˝ ν “ idM .

PROOF. We can assume that L and νL are not divisorial. Let X be a completion of
X0, we will show first that if H P Div8pXq is an effective divisor such that |H| is base
point free and SuppH “ BX X0, then νLpHq “ LpHq. Pick f generic in H0pX ,OX pHqq.
We have that div f “ Z f ´ H with Z f effective, SuppZ f does not contain any divisor
at infinity and the center of νL and the center of L do not belong to SuppZ f . Thus, f
defines a regular function over X0, 1{ f is a local equation of H at the center of νL and
we have

νLp f q “ sup
Y

Lpdiv8,Y p f qq (273)

Now, by our assumptions on f we have

LEMMA 9.8. For all Y above X, divY p f q is of the form Z f ,Y `div8,Y p f q where Z f ,Y
is effective, supported on X0 and SuppZ f ,Y does not contain the center of L. Further-
more, we have Lpdiv8,Y p f qq “ Lpdiv8,X p f qq.

PROOF. This is true for Y “ X . We proceed by induction. Let Y be a completion
above Y where the lemma is true and let π : Y1 Ñ Y be a blow up of Y at a point p. If p
is not the center of L then the lemma is clearly true over Y1, if p is the center of L over
Y then since p does not belong to SuppZ f ,Y we have

div f ,Y1 “ π
1
pZ f ,Y q ` π

˚
pdiv8,Y p f qq (274)

and the lemma is true since Z f ,Y1 “ π1pZ f ,Y q and div8,Y1p f q “ π˚pdiv8,Y p f qq.
□

Using this lemma we conclude that νLp f q “ Lpdiv8,X p f qq “ ´LpHq. Therefore,

νLpHq “ νLp1{ f q “ LpHq. (275)
Now take any divisor D P Div8pXq. There exists an integer n ě 1 such that D ` nH

is effective and |D ` nH| is base-point free. Therefore,

νLpDq “ νLpD ` nHq ´ νLpnHq “ LpD ` nHq ´ LpnHq “ LpDq. (276)
□



Part 2

Eigenvaluations and dynamics at infinity



CHAPTER 10

General case

In this chapter, we show Theorem A when either the condition krX0sˆ “ kˆ or
Pic0pX0q “ 0 is not satisfied. We rely on the universal property of the quasi-Albanese
variety (see [Ser01]), as well as on the geometric properties of subvarieties of quasi-
abelian varieties (see [Abr94]).

10.1. Quasi-Albanese variety and morphism

Let G be an algebraic group over k with k algebraically closed. We say that G is
a quasi-abelian variety if there exists an algebraic torus T “ Gr

m, an abelian variety A,
and an exact sequence of k-algebraic groups

0 Ñ T Ñ G Ñ A Ñ 0. (277)

THEOREM 10.1 (see [Ser01], Théorème 7). Let X be a variety over k, then there
exists a quasi-abelian variety G and a morphism q : X Ñ G such that for any quasi-
abelian variety G1 and any morphism ϕ : X Ñ G1 there exists a unique morphism g :
G Ñ G1 and a unique b P G1 such that

ϕ “ g ˝ q.

Moreover, g is the composition of a homomorphism Lg : G Ñ G1 of algebraic groups
and a translation Tg : G1 Ñ G1 by some element b P G1.

Such a G is unique up to (a unique) isomorphism. It is called the quasi-Albanese va-
riety of X and it will be denoted by QAlbpXq; the universal morphism q : X Ñ QAlbpXq

is “the” quasi-Albanese morphism (it is unique up to post-composition with an isomor-
phism of G). Of course if X is projective, then QAlbpXq is the classical Albanese
variety of X .

PROPOSITION 10.2. Let X0 be an affine variety. Then krX0sˆ “ kˆ and Pic0pX0q “

0 if and only if QAlbpX0q “ 0.

PROOF. Let G “ QAlbpX0q and q : X0 Ñ G be a quasi-Albanese morphism. Let

0 Ñ T Ñ G π
ÝÑ A Ñ 0. (278)

be an exact sequence, as in Equation (277). Let X be a completion of X0 such that π ˝ q
extends to a regular map π ˝ q : X Ñ A.
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Assume krX0sˆ “ kˆ and Pic0pX0q “ 0. Then, π˝qpX0q is a point in A, and compos-
ing q with a translation of G, we can assume that this point is the neutral element of A.
Then, qpX0q Ă T , so q is a regular map from X0 to an algebraic torus, and krX0sˆ “ kˆ

implies that qpX0q is a point. This shows that QAlbpX0q is a point.
Now, suppose that krX0sˆ ‰ kˆ, then any non-constant invertible function X0 Ñ kˆ

provides a dominant morphism to a 1-dimensional torus, so dimpQAlbpX0qq ě 1 by
the universal property. And if Pic0pX0q ‰ 0, the Albanese morphism also shows that
dimpQAlbpX0qq ě 1. This concludes the proof. □

In the following, we show that if X0 is an irreducible normal affine surface with non-
trivial quasi-Albanese variety and f is a dominant endomorphism of X0, then λ1p f q is
a quadratic integer. See Proposition 10.9 below. We will rely on the following result.

THEOREM 10.3 (Theorem 3 of [Abr94]). Let Q be a quasi-abelian variety and let
V be a closed subvariety of Q. Let K be the maximal closed subgroup of Q such that
V ` K “ V . Then, the variety V {K is of general type.

10.2. Logarithmic Kodaira dimension

Let V be an algebraic variety, let V be a good completion of V and D “ V zV , it
is a simple normal crossing divisor. For q “ 1, ¨ ¨ ¨ ,dimV , let ΩqplogDq be the sheaf
of logarithmic q-forms along D, i.e the subsheaf of rational q-forms α on V such that
locally at every point of D, α is of the form

α “
ÿ

r`s“q
I“pip1q,¨¨¨ ,iprqq

J“p jp1q,¨¨¨ , jpsqq

αIJpz,wq
dzip1q

zip1q

^ ¨¨ ¨ ^
dziprq

ziprq

^ w jp1q ^ ¨¨ ¨ ^ w jpsq (279)

where pz,wq “ pz1, ¨ ¨ ¨ ,zm,w1, ¨ ¨ ¨ ,wn´mq is a local system of coordinates such that
z1 ¨ ¨ ¨zm “ 0 is a local equation of D and αIJpz,wq is a local germ of regular function.

In particular, H0pV ,ΩdimV plogDqq “ H0pV ,K ` Dq where K is a canonical divisor
over V . Following [Iit77] we have that dimH0pV ,K ` Dq does not depend on the
completion V . Define the following invariant

qpV q “ dimH0
pV ,Ω1

plogDqq (280)

κpV q “ κpV ,K ` Dq. (281)

Where for a line bundle L over V ,

κpV ,Lq “ limsup
kÑ`8

n!
kn dimH0

pV ,Lq. (282)

The invariant qpV q is actually the dimension of the quasi-Albanese variety of V (see
[Fuj15]) and κpV q is the logarithmic Kodaira dimension of V (see [Iit77]). We have
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the following characterization of the algebraic torus of dimension 2. If V is projective,
then the log kodaira dimension is nothing but the classical Kodaira dimension of V .

THEOREM 10.4 (Theorem 2 of [Iit79]). Let V be a normal affine surface, then
V » G2

m if and only if κpV q “ 0 and qpV q “ 2.

LEMMA 10.5 ([Iit77] Proposition 1 and 2). If V is an affine variety and f : V Ñ V
is a dominant endomorphism, then f induces an isomorphism

f ˚ : H0
pV ,mpK ` Dqq Ñ H0

pV ,mpK ` Dqq (283)

for all m ě 1.

This lemma allows one to define the log Kodaira Iitaka fibration

Φm : V 99K P
`

H0,V ,mpK ` Dq
˘

. (284)

By the lemma, every dominant endomorphism of V must preserve the log Kodaira
Iitaka fibration for m ąą 1.

We say that V is of log general type if κV “ dimV .

COROLLARY 10.6 ([Iit77] Proposition 2 and Corollary p.5). If V is an affine variety
of log general type, then EndV “ AutV and this is a finite group.

10.3. Dynamical degree in presence of an invariant fibration

PROPOSITION 10.7 (Stein Factorization). Let X, S be projective varieties and let
f : X Ñ X be a rational transformation. Suppose that there exists ϕ : X Ñ S and
g : S Ñ S such that the following diagram commutes,

X X

S S

f

ϕ ϕ

g

Then there exists a variety rS and morphisms ψ : X Ñ rS, π : rS Ñ S such that
‚ ϕ “ π ˝ ψ,
‚ π is finite and ψ has connected fibers
‚ there exists a rational transformation rg : rS 99K rS such that the diagram

X X

rS rS

S S

f

ψ ψ

rg

π π

g
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commutes.

PROOF. The existence of rS along with π and ψ is due to Stein Factorization theo-
rem: It is known that one can take rS “ SpecS ϕ˚OX where SpecS is the relative Spec;
that is for every affine open subset U of S, one has

π
´1

pUq » SpecOX pϕ
´1

pUqq. (285)

Now to construct rg, take affine open subsets U and V of S such that U Ă g´1pV q.
Suppose also that ϕ´1pUq and ϕ´1pV q do not contain any indeterminacy of f . To
construct

rg|π´1pUq : π
´1

pUq Ñ π
´1

pV q (286)

we use the map f ˚ : OX pϕ´1pV qq Ñ OX pϕ´1pUqq induced by f ; this is well defined
since ϕ´1pUq Ă f ´1pϕ´1pV qq. It is clear that ψ ˝ f “ rg ˝ ψ. □

PROPOSITION 10.8. Let S be a quasiprojective surface and f be a dominant en-
domorphism of S. Suppose there exists a quasiprojective curve C with a dominant
morphism π : S Ñ C and an endomorphism g : C Ñ C such that π ˝ f “ g ˝ π. Then, the
first dynamical degree of f is an integer.

PROOF. Let X be a completion of S; f extends to a rational transformation of X .
We can also suppose that C is a projective curve, and then we apply Theorem 10.7 to
suppose also that π has connected fibers.

Let P be a general point of C and H an ample divisor of X . We have by [DN11,
Tru15] that

λ1p f q “ max
`

λ1pgq,λ1p f|πqq
˘

(287)

where λ1pgq is the integer given by the topological degree of g and

λ1p f|πq :“ lim
n

`

H ¨ p f n
q˚π

´1
pPq

˘1{n
. (288)

Since C is a curve and π is dominant we have that π is flat ([Har77] Proposition III.9.7)
so for any point P P C,

‚ π´1pPq is an irreducible curve CP and the topological degree of f : CP Ñ CgpPq

is an integer d that does not depend on P
‚ d ¨ dtoppgq “ λ2p f q.

Indeed, consider the following 0-cycle in S ˆ S:

αpPq “ pπ
˚
1CPq ¨ pπ

˚
2Hq ¨ Γ f (289)

where π1,π2 : S ˆ S Ñ S are the two projections and Γ f is the graph of f . The degree
of αpPq is

degαpPq “ pH ¨CgpPqq ¨ degp f : CP Ñ Cgppqq. (290)
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Now, since C is a curve the morphism π˝π1 : SˆS Ñ C is flat, therefore degpαpPqq does
not depend on P ([Ful98] §20.3) and since π is flat, the intersection number pH ¨CPq

does not depend on P either. Therefore, degp f : CP Ñ CgpPqq is an integer d independent
of P. Hence, we infer

λ1p f|πq “ lim
n

`

H ¨ p f n
q˚π

´1P
˘

“ d ¨ lim
n

`

H ¨ π
´1P

˘1{n
“ d (291)

and we get that λ1p f q is the integer maxpd,λ1pgqq. □

10.4. Dynamical degree when the quasi-Albanese variety is non-trivial

The goal of this section is to show the following proposition.

PROPOSITION 10.9. Let X0 be an irreducible normal affine surface and f a dom-
inant endomorphism of X0. Suppose that QAlbpX0q is non-trivial, then λ1p f q is an
algebraic integer of degree ď 2. Furthermore, if λ1p f q is not an integer, then X0 » G2

m.

Set Q0 “ QAlbpX0q and let q : X0 Ñ Q0 be a quasi-Albanese morphism. Let V “

qpX0q be the closure of the image of X0 in Q0. By the universal property, there exists
an endomorphism g of Q0 such that

q ˝ f “ g ˝ q (292)

gpzq “ Lgpzq ` bg (293)

for some algebraic homomorphism Lg : Q0 Ñ Q0 and some translation z ÞÑ z`bg (here,
we denote the group law by addition). In particular g|V defines a regular endomorphism
of qpX0q and since f is dominant, so is g|V . As in Theorem 10.3, set K “ tx P Q0 ; x `

V “ V u. Then, denote by πV : V Ñ V {K the canonical projection onto the quotient.

PROPOSITION 10.10. There exists an endomorphism g1 : V {K Ñ V {K such that
g1 ˝ πV “ πV ˝ g|V .

PROOF. We have to show that g|V is compatible with the quotient map. Take v P V
and k P K. Since v ` k P V , gpv ` kq P V . Now,

gpv ` kq “ Lgpv ` kq ` bg “ Lgpvq ` Lgpkq ` bg “ gpvq ` Lgpkq. (294)

Thus, Lgpkq`gpV q Ă V . Taking the closure and knowing that g|V is dominant, we have
Lgpkq `V “ V . Therefore, Lgpkq P K and g|V is compatible with the quotient modulo
K. □

Case dimV {K “ 2.– In that case, the map πV ˝ q : X Ñ V {K is generically finite.
Since V {K is of general type, g1 has finite order: there is some positive integer n such
that pg1qn “ IdV {K . Thus, f is also a finite order automorphism, and λ1p f q “ 1.

Case dimV {K “ 1.– In that case πV ˝ q induces a fibration of X0 over a curve of
general type and we conclude that λ1p f q is an integer by Proposition 10.8 .
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Case dimV {K “ 0.– This means that V is equal to K up to translation. Therefore,
by the universal property of the quasi-Albanese variety, K “ V “ Q0 and q : X0 Ñ Q0
is dominant.

If dimQ0 “ 1, then f preserves a fibration over a curve and Proposition 10.8 implies
again that λ1p f q is an integer.

Suppose now that dimQ0 “ 2. Then q is generically finite, so that λ1p f q “ λ1pgq.
Since κpQ0q “ 0, we have κpX0q P t0,1,2u.

If κpX0q “ 2, then X0 is of log general type. In that case, by Corollary 10.6, every
endomorphism f of X0 is an automorphism and satisfy λ1p f q “ 1 because it is of finite
order.

If κpX0q “ 1, then every endomorphism of X0 preserves the log Kodaira Iitaka fi-
bration and by Proposition 10.8, λ1p f q is an integer.

Finally, if κpX0q “ 0, then by Theorem 10.4, X0 » G2
m and λ1p f q is an algebraic

integer of degree ď 2 because it is the spectral radius of a 2 ˆ 2 matrix with integer
entries. We see that this is the only case where we might have λ1p f q R Zě0.

COROLLARY 10.11. If X0 is a normal affine surface with a loxodromic automor-
phism and QAlbpX0q is not trivial, then X0 » G2

m.

PROOF. A loxodromic automorphism of X0 satisfies λ1 ą λ2 “ 1 and thus cannot
preserve a fibration over a curve or be of finite order. Looking at the proof of Proposi-
tion 10.9, we see that this only happens when X0 » G2

m. □



CHAPTER 11

Dynamics when krX0sˆ “ kˆ and Pic0pX0q “ 0

In this chapter, we will prove Theorem C and derive Theorems A and B. The two
hypothesis allows one to describe the Picard-Manin space of X0 more precisely. In
particular, we show that V8 embeds into Weil8pX0qR and V 1

8 embeds into L2pX0q.

11.1. The structure of the Picard-Manin space of X0

From §3.6 we have linear maps

τ : Cartier8pX0qR Ñ Cartier-NSpX0qR, τ : Weil8pX0qR Ñ Weil-NSpX0qR . (295)

For this section we suppose that X0 is a normal affine surface over an algebraically
closed field k such that

(1) krX0sˆ “ kˆ;
(2) For all completion X of X0,Pic0pXq “ 0.

It suffices to test the second condition on one completion of X0 as the Albanese variety
of a projective variety is a birational invariant. We will make an abuse of notations and
write Pic0pX0q “ 0 for the second hypothesis.

If these two conditions are satisfied, the finite dimensional subspace Div8pXq em-
beds into NSpXq. Indeed, consider the composition

Div8pXq Ñ PicpXq Ñ NSpXq, (296)

the first map is injective since krX0sˆ “ kˆ and the second is an isomorphism because
Pic0pXq “ 0. Therefore the maps τ are injective and we have the orthogonal decompo-
sition

Weil-NSpX0qR “ Weil8pX0qR k V (297)
where V is a finite-dimensional vector space(this decomposition also holds over Q); in
fact let X be a completion of X0, then V is the orthogonal of Div8pXq in NSpXq.

11.1.1. The intersection form at infinity.

PROPOSITION 11.1. Let X be a completion of X0, then
‚ Div8pXqA embeds into NSpXqA and the intersection form is non degenerate

on Div8pXqA.

95
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‚ The perfect pairing Cartier-NSpX0qR ˆWeil-NSpX0qR Ñ R induces a pairing

Cartier8pX0qR ˆWeil8pX0qR Ñ R (298)

that is also perfect.
‚ Weil8pX0qR is isomorphic, as a topological vector space, to Cartier8pX0q

˚
R

endowed with the weak-˚ topology.

PROOF. Everything follows from Propositions 3.20 and 3.17 and that τ : Div8pXq ãÑ

NSpXq is injective. □

COROLLARY 11.2. The subspace hompCartier8pX0q,Rqp`q is a closed subspace
of Weil8pX0qR with the weak-‹ topology.

PROOF. All the conditions that elements of hompCartier8pX0q,Rqp`q have to sat-
isfy are closed conditions. Indeed, we have

hompCartier8pX0q,Rqp`q “ C1 XC2 (299)

where

C1 “
č

Dě0

tLpDq ě 0u (300)

C2 “
č

D,D1PCartier8pX0q

␣

LpD ^ D1
q “ minpLpDq,LpD1

qq
(

. (301)

□

11.1.2. A continuous embedding of V8 into Weil8pX0qR. From Proposition 11.1,
we get the immediate corollary.

COROLLARY 11.3. For any valuation ν centered at infinity, there exists a unique
Zν P Weil8pX0qR such that for all D P Cartier8pX0qR,LνpDq “ Zν ¨ D.

COROLLARY 11.4. A valuation ν is divisorial if and only if Zν belongs to Cartier8pX0qR.
In particular, for any prime divisor E at infinity, ZordE P Cartier8pX0qQ. The embedding

ν P V8 ÞÑ Zν P Weil8pX0qR (302)

is a continuous map for the weak topology.

PROOF. If ν is divisorial, then there exists a completion X such that the center of ν

is a prime divisor E at infinity. For every W P Weil8pX0q,LordE pW q “ LordE ,X pWX q, by
Proposition 7.22. By non-degeneracy of the intersection pairing on Div8pXqQ, there
exists Z P Div8pXqQ such that for all D P Div8pXqQ,LordE ,X pDq “ Z ¨D. It follows that
ZordE is the Cartier class defined by Z, hence it is an element of Cartier8pX0qQ.
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Conversely, if Zν P Cartier8pX0qR, let X be a completion where Zν is defined. The
center of ν over X cannot be a closed point p; otherwise let rE be the exceptional divisor
above p, we would have LνprEq ą 0, but Zν ¨ rE “ 0.

Now to show the continuity of the map of the Corollary, it suffices by Proposition
11.1 to show that for any D P Cartier8pX0qR, the map ν P V8 ÞÑ Zν ¨D is continuous. It
actually suffices to show this for D P Cartier8pX0q and this follows immediately from
Zν ¨ D “ LνpDq and Proposition 7.19. □

PROPOSITION 11.5. Let ν be a valuation centered at infinity and X a completion
of X0 such that cX pνq P E is a free point. Then, the incarnation of Zν in X is

Zν,X “ pZν ¨ EqZordE . (303)

If cX pνq “ E X F is a satellite point, then

Zν,X “ pZν ¨ EqZordE ` pZν ¨ FqZordF . (304)

Furthermore, if π : Y Ñ X is the blow up of a point at infinity p ‰ cX pνq, then

Zν,Y “ π
˚Zν,X . (305)

PROOF. If cX pνq P E is a free point. For any D P Div8pXqR, one has D “
ř

F LordF pDqF ,
therefore by Proposition 7.6 (2) and (3) LνpDq “ LordE pDqLνpEq . Since pZν ¨ Eq “

LνpEq, we get the result. The proof is similar for the case cX pνq “ E X F .
For the last assertion, if rE is the exceptional divisor of π : Y Ñ X , then by definition

Zν,Y “ π
˚Zν,X ´ pZν ¨ rEqrE (306)

However, since cX pνq ‰ p, we have that cY pνq R rE and therefore Zν ¨ rE “ 0 by Proposi-
tion 7.6. □

Recall that in §7.4, we have defined for a point p at infinity in a completion X the
local divisor Zν,X ,p for every valuation ν centered at p. The divisor is defined by duality
via the following property

@D P CartierpX , pqR, LνpDq “ Zν,p,X ¨ D. (307)

COROLLARY 11.6. Let X be a completion of X0 and let ν be a valuation centered
at infinity.

‚ If p :“ cX pνq P E, then

Zν “ pZν ¨ EqZordE ` Zν,X ,p (308)

‚ If p :“ cX pνq “ E X F is a satellite point, then

Zν “ pZν ¨ EqZordE ` pZν ¨ ZordF qZordF ` Zν,X ,p (309)
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In particular, Zν P L2pX0q if and only if ν is quasimonomial or there exists a com-
pletion X and a closed point p P X at infinity such that cX pνq “ p and αprνq ă `8

where rν is the valuation equivalent to ν such that rν P VX pp;mpq.

PROOF. We have that
Zν “ Zν,X ` Z1 (310)

where Z1 P Weil8pX0q is exceptional above X . Now, for every divisor D exceptional
above X , we have

LνpDq “ Zν ¨ D “ Z1
¨ D. (311)

If D is exceptional above a point q ‰ p, then LνpDq “ 0 by Proposition 7.6 as q ‰ cX pνq.
Therefore, we get that Z1 “ Zν,X ,p.

Now, we have Zv P L2pX0q ô pZνq2 ă ´8. Replace ν by the equivalent valuation
such that ν P VX pp;mpq, then by Theorem 7.31 pZν,X ,pq2 “ ´αpνq and therefore

pZνq
2

“ pZν,X q
2

´ αpνq. (312)

This shows the result. □

COROLLARY 11.7. Let ν P V8, then up to normalisation Zν P Weil8pX0qQ if and
only ν is not irrational.

PROOF. First, if ν is divisorial, the result follows from Corollary 11.4. Then, if
ν is infinitely singular or a curve valuation. Then, there exists a completion X such
that cX pνq is a free point p P E. Then, replace ν by its equivalent valuation such that
ν P VX pp;mpq. Let pz,wq be local coordinates at p such that z “ 0 is a local equation of
E. Then, ZνpEq “ νpzq “ αpν ^ νzq P Q because ν ^ νz has to be a divisorial valuation.
Therefore, by Corollary 7.33 and Proposition 11.5, we get that Zν P Weil8pX0qQ.

Finally, if ν is irrational then let X be a completion such that cX pνq “ E X F is a
satellite point. Then, Zν,X “ sZordE ` tZordF with s{t R Q by Proposition 11.5. It is clear
that no multiple of Zν,X can be in Div8pXqQ. □

COROLLARY 11.8. Let V 1
8 be the subspace of V8 consisting of ν P V8 such that

Zν P L2pX0q, then
V 1

8 ãÑ L2
pX0q (313)

is a continuous embedding for the strong topology. Furthermore, it is a homeomor-
phism onto its image.

PROOF. Let X be a completion of X0. Let νn be a sequence of V 1
8 converging

towards ν P V 1
8 for the strong topology. We treat two cases, whether ν is associated to

a prime divisor of X or ν is centered at a closed point p P X at infinity.
If ν is centered at a closed point p at infinity, then since νn converges strongly

towards ν then it converges also weakly, therefore for n big enough, νn is centered at
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p by Proposition 6.1. We can replace each νn and ν by their representative such that
νn,ν P VX pp;mpq. Then

‚ If p P E is a free point,

Zνn “ pZνn ¨ EqZordE ` Zνn,X ,p (314)

‚ If p “ E X F is a satellite point, then

Zνn “ pZνn ¨ EqZordE ` pZνn ¨ FqZordF ` Zνn,X ,p (315)

and we have similar formulas for Zν. Now the incarnation of Zνn in X converges towards
the incarnation of Zν in X in both the free and the satellite case by weak convergence.
Let ||¨| | be any norm over NSpXqR, then

||Zν ´ Zνn | |
2
L2pX0q

— ||Zν,X ´ Zνn,X | |
2

´ pZν,X ,p ´ Zνn,X ,pq
2 (316)

where f — g means that there exists constants A,B ą 0 such that Ag ď f ď Bg. By
Proposition 7.34, we have that ||Zν ´ Zνn | |2L2pX0q

Ñ 0.
If ν » ordE for some prime divisor E at infinity in X , then for all n large enough,

cX pνnq P E. We can suppose that ν “ ordE and for all n νnpEq ą 0, i.e ν,νn P VX pEq

and Zνn ¨ E Ñ 1 as n Ñ 8. We show that

Zνn

Zνn ¨ E
ÝÝÝÝÑ
nÑ`8

ZordE (317)

in L2pX0q. We can replace νn by its equivalent valuation such that νn P VX ppn,mpnq

where pn “ cX pνnq. Then, we have that Zνn,X {Zνn ¨ E converges towards ZordE in
NSpXqR by weak convergence. It suffices to show

pZνn,X ,pq2

pZνn ¨ Eq2 Ñ 0 (318)

but this is equal to

´
αmpn

pνnq

vnpEq2 “ ´
αEpνnq

νpEq2 ÝÝÝÝÑ
nÑ`8

0 (319)

by Theorem 7.31 and Proposition 5.9 so we are done.
Finally, to show the homeomorphism, we have to show that if Zνn Ñ Zν in L2pX0q,

then νn converges strongly towards ν. Let X be a completion of X0. Suppose first that
cX pνq is a point at infinity. Let rE be the exceptional divisor above cX pνq, we have
Zν ¨ rE ą 0, therefore for all n large enough Zνn ¨ rE ą 0 and cX pνnq “ cX pνq “: p. Now,
we can suppose that νn,ν P VX pp;mpq, it suffices to show that νn Ñ ν for the strong
topology of VX pp;mpq and this is a direct consequence of Proposition 7.34.

If cX pνq “ E a prime divisor at infinity, then for all n large enough, Zνn ¨ E ą 0.
Suppose that ν “ ordE and νn P VX pEq. We have that Zνn,X {Zν ¨ E Ñ ZordE in NSpXqR.
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We need to show that αEp
νn

νnpEq
q Ñ 0. We can suppose that νn P VX ppn,mpnq where

pn “ cX pνnq, then by Proposition 5.9,

αE

ˆ

νn

νnpEq

˙

“
αmpn

pνnq

νnpEq2 . (320)

Thus, by Proposition 5.9 and Theorem 7.31

αE

ˆ

νn

νnpEq

˙

“

ˇ

ˇ

ˇ

ˇ

ˇ

Z2
νn,X ,pn

pZνn ¨ Eq2

ˇ

ˇ

ˇ

ˇ

ˇ

ÝÝÝÝÑ
nÑ`8

0. (321)

□

COROLLARY 11.9. If ν is a curve valuation, then Zν is a Weil class satisfying
Z2

ν “ ´8.

PROOF. Let X be a completion of X0, let p “ cX pνq and replace ν by the valuation
equivalent to ν such that ν P VX pp;mpq. We have by Corollary 11.6 that

Zν “ Zν,X ` Zν,X ,p. (322)

Therefore, by Theorem 7.31

pZνq
2

“ Z2
ν,X ` pZν,X ,pq

2
“ Z2

ν,X ´ αpνq “ ´8 (323)

because αpνq “ ´8 for any curve valuation ν (see [FJ04] Lemma 3.32). □

11.2. Endomorphisms

PROPOSITION 11.10. Let f be an endomorphism of X0 and let X ,Y be completions
of X0 such that the lift F : X Ñ Y of f is regular. Let p P X be a closed point and
q :“ Fppq P Y . Then,

‚ f˚VX ppq Ă VY pqq.
‚ f˚ preserves the set of divisorial, irrational and infinitely singular valuations.
‚ If νC is a curve valuation centered at infinity and such that f˚νC is still cen-

tered at infinity, then f˚νC is also a curve valuation.

PROOF. The map F induces a local ring homomorphism F˚ : {OY pqq Ñ {OX ppq.
Let ν be a valuation centered at p. For ϕ P OY pqq, f˚νpϕq “ νpF˚ϕq ě 0 and for
ψ P mY,q, f˚νpψq “ νpF˚ψq ą 0. Therefore f˚ν is centered at q. The fact that f˚ pre-
serves the type of valuations is shown in Proposition 4.17. It only remains to show
the statement for curve valuations. Let p “ cX pνCq and q “ cY p f˚νCq. We have that
Fppq “ q. By Proposition 4.17 f˚νC is not a curve valuation only if it is contracted by
F . But the only germ of holomorphic curve at p that can be contracted by F is the germ
of a prime divisor E at infinity on which p lies, and the curve valuation associated to E
does not define a valuation on krX0s. So, f˚νC is a curve valuation. □
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EXAMPLE 11.11. It might happen that f˚ν is not centered at infinity even though
ν is; if this is the case then f is not proper. For example, let X0 “ A2 with affine
coordinates px,yq and consider the completion P2 with homogeneous coordinates rX :
Y : Zs. We have the relation x “ X{Z,y “ Y {Z. Consider the chart X ‰ 0 with affine
coordinates y1 “ Y {X and z1 “ Z{X . Define vt to be the monomial valuation centered at
r1 : 0 : 0s such that νtpy1q “ 1 and νtpz1q “ t with t ą 0. Let P “

ř

i, j ai jxiy j P krx,ys, we
have that νtpPq “ min

␣

j ` p j ´ iqt|ai j ‰ 0
(

. Now take the map f : px,yq P A2 ÞÑ pxy,yq,
f contracts the curve ty “ 0u to the point p0,0q in A2, hence it is not proper. For any
polynomial P “

ř

i, j ai jxiy j, f ˚P “
ř

i, j ai jxiyi` j. We get

ν1,tp f ˚Pq “ min
i, j

␣

i ` jpt ` 1q|ai j ‰ 0
(

. (324)

The center of f˚νt is r0 : 0 : 1s and f˚νt is the monomial valuation centered at r0 : 0 : 1s

such that νtpxq “ 1,νtpyq “ t ` 1.

LEMMA 11.12 (Proposition 3.2 of [FJ07]). Let f : X0 Ñ X0 be a dominant endo-
morphism and let X ,Y be completions of X0. Let F : X Ñ Y be the lift of f , let p be a
closed point of X at infinity and VX ppq be the set of valuations on krX0s centered at p.
Then, F is defined at p if and only if f˚VX ppq does not contain any divisorial valuation
associated to a prime divisor (not necessarily at infinity) of Y . If F is defined at p, then
Fppq is the unique point q such that f˚VX ppq Ă VY pqq.

PROOF. If pf is defined at p, then let q “ pf ppq, we have that f˚VX ppq Ă VY pqq by
Proposition 11.10.

Conversely, If p is an indeterminacy point of pf . Let π : Z Ñ X be a completion
above X such that the lift F : Z Ñ Y is regular. Then, Fpπ´1ppqq contains a prime
divisor E 1 of Y . Let E be a prime divisor at infinity in Z above p such that FpEq “ E 1,
then F̊ ordE “ f˚pπ˚ ordEq “ λordE1 for some constant λ ą 0 and ordE1 P f˚VX ppq. □

PROPOSITION 11.13. Let ν be a valuation over krX0s and let f : X0 Ñ X0 be a
dominant endomorphism, then

‚ f˚Zν “ Z f˚ν mod Cartier8pX0q
K.

‚ If f is proper then f˚ preserves Weil8pX0q and f˚Zν “ Z f˚ν.

PROOF. Indeed, let D P Cartier8pX0q, then

f˚Zν ¨ D “ Zν ¨ f ˚D “ Lνp f ˚Dq “ L f˚νpDq “ Z f˚ν ¨ D. (325)

Therefore, we get that Z f˚ν ´ f˚Zν belongs to Cartier8pX0q
K. If f is proper, then

Weil8pX0q is f˚-stable and f˚Zν P Weil8pX0q, thus Z f˚ν “ f˚Zν. □
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EXAMPLE 11.14. Suppose that Ppxq and Qpxq are two rational fractions of degree
two and E in P1 ˆ P1 defined by the equation

y2
´ Ppxqy ` Qpxq “ 0. (326)

if P,Q are general, then E is smooth and irreducible and it is an elliptic curve. Let
X “ P1 ˆ P1 and X0 “ XzE. We have Pic0pX0q “ 0 because it is a rational surface and
krX0sˆ “ kˆ because XzX0 consists of a single irreducible curve. We have ZordE “
1
8E. Consider the projection pr1 : X Ñ P1 to the first coordinates. Each fiber of pr1 is
isomorphic to P1 and generically it has two intersection points with E. Let x0,x1,x2,x3
be the four roots of the discriminant ∆ “ Ppxq2 ´ 4Qpxq. Then, pr´1

1 pxiq has only one
intersection point with E. Consider the following selfmap of X0

f px,yq “

ˆ

x,
y2 ´ Qpxq

2y ´ Ppxq

˙

. (327)

It preserves the fibers of prx and it acts as z ÞÑ z2 in each fiber where the points 0 and
8 of P1 are the intersection point of the fiber with E. See Figure 1. There are exactly 4
indeterminacy points on X , they are the points pxi,yiq where xi is one of the roots of ∆

and yi P P1 is such that pxi,yiq P E.

FIGURE 1. The endomorphism f on X0
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Let C0 “ tx0uˆP1. Then, Cartier8pX0q
K

“ R ¨p4C0 ´Eq because C0 ¨E “ 2,E2 “ 8
and dimNSpXqR “ 2.

The endomorphism f is not proper, indeed we have in NSpXq, f˚E “ E `4C0. Since
f ˚E is of the form f ˚E “ 2E ` . . ., we have f˚ ordE “ 2ordE . And we get

f˚ZordE “
1
8

E `
1
2

C0 (328)

“
1
8

E `
1
8

p4C0 ´ Eq `
1
8

E (329)

“ 2ZordE `
1
8

p4C0 ´ Eq (330)

11.3. Existence of Eigenvaluations

Recall from Theorem 3.28 that there exists unique nef classes θ˚,θ˚ P L2pX0q up to
normalization such that f ˚θ˚ “ λ1θ˚ and f˚θ˚ “ λ1θ˚.

PROPOSITION 11.15. If krX0sˆ “ kˆ and Pic0pX0q “ 0, then θ˚ P Weil8pX0qXL2pX0q

and is effective.

PROOF. We have that Weil-NSpX0q “ V k Weil8pX0q where V is a finite dimen-
sional vector space. Furthermore, Weil8pX0q is f ˚-invariant as f is an endomorphism
of X0. In the proof of Theorem 3.28, for every completion X we can consider the cone
C1

X Ă Div8pXqR of nef, effective divisors supported at infinity. By Theorem 2.4, there
exists an ample effective divisor H P Div8pXq such that SuppH “ BX X0. Therefore,
C1

X is a closed convex cone with compact basis and non-empty interior, the Perron-
Frobenius type argument shows that there exists θX P C1

X such that f ˚
X θ˚

X “ ρX θX and
the rest of the proof is unchanged. □

THEOREM 11.16. Let X0 be an irreducible normal affine surface such that krX0sˆ “

kˆ and Pic0pX0q “ 0. Let f be a dominant endomorphism such that λ1p f q2 ą λ2p f q,
then there exists a unique valuation ν˚ centered at infinity up to equivalence satisfying

@P P krX0s,ν˚pPq ď 0 (331)

f˚ν˚ “ λ1p f qν˚ (332)

Z2
ν˚

ą ´8 (333)

In particular, there exists w P Cartier8pX0q
K such that θ˚ “ w ` Zν˚

. Furthermore, ν˚

is not a curve valuation.

We call ν˚ the eigenvaluation of f .

PROOF. By Theorem 3.28, there exists nef classes θ˚,θ
˚ P L2pX0q that satisfy

(1) f ˚θ˚ “ λ1θ˚
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(2) f˚θ˚ “ λ1θ˚

(3) @α P L2pX0q, 1
λn

1
p f nq˚α Ñ pθ˚ ¨ αqθ˚

Let X be a completion of X0. Write the decomposition θ˚ “ w ` Z with w P Div8pXqK

and Z P Weil8pX0qR XL2pX0q. Let E be a prime divisor at infinity in X such that
ZordE ¨θ˚ ą 0, it exists because θ˚ is effective and nef. Then, Item (3) and the continuity
of the intersection product in L2pX0q imply that for all D P Cartier8pX0q,

ZordE ¨

ˆ

1
λn

1
p f n

q
˚D

˙

Ñ pZordE ¨ θ
˚
qpθ˚ ¨ Dq “ pZordE ¨ θ

˚
qpZ ¨ Dq (334)

Now, set νn :“ 1
λn

1
p f nq˚ ordE . Equation (334) shows that Zνn converges towards Z in

Weil8pX0q. But, for all n, Zνn belongs to hompCartier8pX0q,Rqp`q which is a closed
set of Weil8pX0q by Corollary 11.2. Therefore, Z P hompCartier8pX0q,Rqp`q and it
defines a valuation ν˚ by Proposition 8.5. From the relation f˚θ˚ “ λ1θ˚ we get that
f˚ν˚ “ λ1ν˚.

Using the decomposition θ˚ “ w ` Zν˚
we have

0 ď θ
2
˚ “ ω

2
` Z2

ν˚
. (335)

Therefore we get Z2
ν˚

‰ ´8 and by Corollary 11.9, ν˚ is not a curve valuation.
Now to show the uniqueness of ν˚, if ν is another valuation satisfying Equations

(331), (332), (333), then for all D P Cartier8pX0q, Item (3) implies

Zν ¨ D “
1
λn

1
Zν ¨ p f n

q
˚D ÝÝÝÑ

nÑ8
pZν ¨ θ

˚
qpθ˚ ¨ Dq (336)

Since ν ‰ 0, we get Zν ¨ θ˚ ą 0. And then ν “ ν˚ up to a scalar factor. □

REMARK 11.17. It can happen that f admits a curve valuation µ such that f˚µ “

λ1µ. For example take the dominant endomorphism of C2

f px,yq “
`

x2,y3˘ . (337)

Then, λ1p f q “ 3,λ2p f q “ 6. The curves x “ ˘1 are invariant by f , so they defines curve
valuations at infinity centered at r0 : 1 : 0s in P2. The extension of f to P2 is the rational
map

f rX : Y : Zs “
“

X2Z : Y 3 : Z3‰ (338)

We see that p “ r0 : 1 : 0s is a fixed point of f . Take the local coordinates u “ X{Y,v “

Z{Y , then we have
f pu,vq “

`

u2v,v3˘ (339)

The curve x “ ˘1 becomes u “ ˘v in these coordinates. We can see that they are
both invariant by f and their curve valuations satisfy f˚µ “ 3µ. Now, if v1,1 is the
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multiplicity valuation at p, then we get also that f˚v1,1 “ v3,3 “ 3v1,1. Thus, this is the
eigenvaluation of f and it is divisorial.

COROLLARY 11.18. With the hypothesis of Theorem 11.16. The dynamical degree
λ1p f q is a Perron number of degree ď 2. More precisely,

‚ If ν˚ is divisorial or infinitely singular, then λ1 P Zą1.
‚ If ν˚ is irrational, then λ1 is a Perron number of degree 2, in particular λ1 R Z.

This finishes the proof of Theorem A.

PROOF. By Theorem 11.16 f admits an eigenvaluation ν˚ satisfying Equations
(331), (332), (333). We know that ν˚ cannot be a curve valuation, so there are three
cases. It can either be a divisorial valuation, an irrational one or an infinitely singular
one. Hence, ν˚pPq “ 8 ô P “ 0 and it defines a valuation over K “ FrackrX0s. Let
G “ νpKˆq be the value group of ν˚. The value group of f˚ν˚ is a subgroup of G and
f˚ induces a Z-linear map f˚ : G Ñ G.

(1) If ν˚ is divisorial, then G is isomorphic to Z. Since f˚ν˚ “ λ1v˚ we get that
λ1 is an integer.

(2) If ν˚ is irrational, then G is isomorphic to Z2. Since f˚ν˚ “ λ1ν˚, λ1 is the
spectral radius of a 2 ˆ 2 matrix with integer coefficients. Therefore, it is
a Perron number of degree 2 by Proposition 11.20 which will be proven in
§11.4.

(3) If ν˚ is infinitely singular. We will show in Proposition 12.3 page 109, the
following.

CLAIM 11.19. There exists a completion X of X0 such that p :“ cX pνq P E
is a free point at infinity , the lift f : X Ñ X is defined at p, f ppq “ p and f
contracts E to p.

Suppose the claim is true. Let pz,wq be local coordinates at p such that
z “ 0 is a local equation of E, f ˚z is of the form zaΦpz,wq where Φ is a unit.
Then,

λ1Lν˚
pEq “ L f˚ν˚

pEq “ Lν˚
p f ˚Eq “ aLν˚

pEq. (340)
Since Lν˚

pEq ą 0 we get λ1 “ a and it is an integer.
□

11.4. The dynamical spectrum of the complex algebraic torus

For an algebraic variety V , we have defined in the introduction the dynamical spec-
trum of V by

ΛpV q :“ tλ1p f q : f P EndpV qu . (341)
Recall the definition of Perron numbers, given in the introduction.
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PROPOSITION 11.20. For any field k, ΛpG2
mq is the set of Perron numbers of degree

ď 2.

PROOF. Any endomorphism f of G2
m is given by the composition of a monomial

transformation and a translation. Let A be the matrix associated to the monomial trans-
formation of f . Then, λ1p f q is equal to the spectral radius ρ of A. We show that ρ

is a Perron number of degree ď 1. Let P “ T 2 ´ pTrAqT ` detA be the characteristic
polynomial of A. Set ∆ “ pTrAq2 ´ 4detA the discriminant.

If ∆ ă 0, then detA ą 0 and the two roots of P are complex conjugate and their
modulus is

?
detA, so ρ “

?
detA which is a Perron number of degree 2 if detA is not

a square in Z, otherwise it is a positive integer.
If ∆ “ 0, then pTrAq2 “ 4detA. Therefore TrA is even and P “ pT ´ TrA

2 q2, so
ρ “

ˇ

ˇ

TrA
2

ˇ

ˇ which is a positive integer.

If ∆ ą 0, set a :“ TrA. If a ě 0, then ρ “ a`
?

∆

2 which is the largest root of P and so

ρ is a Perron number of degree 2. If a ă 0, then ρ “ ´a`
?

∆

2 which is a Perron number
of degree 2 as it is the largest root of T 2 ` aT ` detA. □

By Theorem A, any normal affine surface satisfies ΛpX0q Ă ΛpG2
mq. Thus, ΛpG2

mq

is maximal and one might think that this is a characterisation of the algebraic torus but
this is not the case. We now prove Theorem B which states

ΛpA2
q “ ΛpG2

mq. (342)

PROOF OF THEOREM B. By Theorem 12.1 and Proposition 11.20 we have ΛpA2q Ă

ΛpG2
mq. We show the equality using the following lemma.

LEMMA 11.21. Every Perron number of degree ď 2 is the spectral radius of a 2ˆ2
matrix with nonnegative integer entries.

Using the lemma, we have that every λ P ΛpG2
mq is the dynamical degree of a mono-

mial transformation of A2, thus ΛpA2q “ ΛpG2
mq. □

PROOF OF THE LEMMA. Let λ be a Perron number of degree ď 2.

If λ is an integer then it is the spectral radius of
ˆ

λ 0
0 1

˙

.

If λ “
?

m with m a positive integer which is not a square, then λ is the spectral

radius of
ˆ

0 1
m 0

˙

.
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Finally, suppose λ is the largest root of T 2 ´aT `b with a ą 0,b ‰ 0. If b ă 0, then

λ is the spectral radius of
ˆ

a 1
´b 0

˙

. If b ą 0, then the discriminant must satisfy

∆ “ a2
´ 4b ą 0 ñ

´a
2

¯2
ą b. (343)

If a “ 2k is even, then λ is the spectral radius of
ˆ

k 1
k2 ´ b k

˙

. (344)

If a “ 2k ` 1 is odd, then pk ` 1{2q2 ą b ñ kpk ` 1q ě b and λ is the spectral radius of
ˆ

k 1
kpk ` 1q ´ b k ` 1

˙

. (345)

□



CHAPTER 12

Local normal forms

We now suppose that we are in the conditions of Theorem 2.9, i.e either chark “

0 or chark ą 0 and f is tamely ramified, e.g an automorphism. Since everything is
defined over a finitely generated field over the prime subfield of k, we can suppose that
k is a subfield of Cv, which is a complete algebraically closed field. We show that the
existence of this eigenvaluation allows one to find an attracting fixed point at infinity
and a local normal form at this fixed point.

THEOREM 12.1. Let X0 be an irreducible normal affine surface over a complete
algebraically closed field Cv. Let f be a dominant tamely ramified endomorphism of
X0 such that λ2

1 ą λ2. Suppose that Pic0pX0q “ 0 and krX0sˆ “ kˆ then

(1) If ν˚ is infinitely singular or irrational, there exists a completion X such that
the lift f : X Ñ X is defined at cX pν˚q, f pcX pν˚qq “ cX pν˚q and f defines a
rigid contracting germ of holomorphic function at cX pν˚q with no f -invariant
germ of curves at cX pν˚q. Furthermore, there exists an open (euclidian) f -
invariant neighbourhood U˚ of cX pν˚q such that f pU˚q Ť U˚. We have the
following local normal form:
(a) If ν˚ is infinitely singular, cX pν˚q P E is a free point and f has the local

normal form (17) and (18) if charCv “ 0 with tx “ 0u a local equation of
E λ1 “ a P Zě2.

(b) If ν˚ is irrational, cX pν˚q “ E X F is a satellite point. The local normal
form is monomial (359) with px,yq associated to pE,Fq. The dynamical
degree λ1 is the spectral radius of the matrix

`

ai j
˘

. It is a Perron number
of degree 2; in particular λ1 R Z.

(2) If ν˚ is divisorial, then there exists a completion such that cX pν˚q is a prime
divisor E at infinity. In that case, E is f -invariant and λ1 P Zě2 is such that
f ˚
X E “ λ1E ` D where D P Div8pXq and E R SuppD.
(a) Up to replacing f by some iterate, there exists a noncritical fixed point

p P E of f|E , p “ E X E0 is a satellite point, f : X 99K X is defined at p,
f ppq “ p and f is a rigid germ (not necessarily contracting) at p with E
the only f -invariant germ of curves at p. The local normal form of f at p
is (21) with px,yq associated to pE,E0q and λ1 “ a.

108
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(b) The curve E is an elliptic curve and f|E is a translation by a non-torsion
element.

In particular, the dynamical degree of f is a Perron number of degree ď 2, and if
it is not an integer then the eigenvaluation ν˚ of f is irrational and the normal form is
monomial.

We will call (2)b the elliptic case. The rest of this section is devoted to the proof of
Theorem 12.1, we will prove the Theorem page 123.

To prove the theorem we need to understand the dynamics of f˚ on the space of
valuations.

PROPOSITION 12.2. Let ν P V8 such that Zν P L2pX0q. If Zν ¨ θ˚ ą 0, then 1
λn

1
f n
˚ ν

strongly converges towards pZν ¨ θ˚qν˚.

PROOF. This is a direct consequence of Equation (85) and Corollary 11.8. □

We will use this to show that f admits a fixed point at infinity on some completion
and that f contracts a divisor at infinity there.

For the rest of Chapter 12, we suppose that we are in the conditions of Theorem
11.16.

12.1. Attractingness of ν˚, the infinitely singular case

For the infinitely singular case we do not assume chark “ 0 or that f is tamely
ramified. We show the following

PROPOSITION 12.3. Let k be an algebraically closed field (of any characteristic).
If the eigenvaluation ν˚ is infinitely singular, then there exists a completion X of X0
such that

(1) p :“ cX pν˚q P E is a free point at infinity.
(2) f˚VX ppq Ă VX ppq;
(3) f contracts E to p.
(4) Let f‚ : VX pp;mpq Ñ VX pp;mpq, then for all ν P VX pp;mpq, f n

‚ ν Ñ ν˚.
Furthermore, the set of completions Y above X that satisfy these 4 properties is cofinal
in the set of all completions above X.

Let X be a completion of X0 such that cX pν˚q is a free point pX P EX . Such a
completion X exists and there are infinitely many of them above X by Proposition 4.16.
Let Y be a completion above X such that cY pν˚q on Y is a free point pY P EY and such
that the diagram

Y

X X

π F

f
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commutes, where F is regular and FppY q “ pX . Let x,y be coordinates at pX such that
x “ 0 is a local equation of EX and z,w be coordinates at pY such that z “ 0 is a local
equation for EY . We use the notations of Chapter 5. We have that f˚VY ppY q Ă VX ppX q

by Lemma 11.12. We define F‚ : VY ppY ;EY q ÞÑ VX ppX ,mpX q as follows:

@ν P VY ppY ;EY q, F‚pνq :“
F̊ ν

minpνpF˚xq,νpF˚yqq
. (346)

Similarly, we define

@ν P VY ppY ;EY q, π‚pνq :“
π˚ν

minpνpπ˚xq,νpπ˚yqq
. (347)

By Proposition 5.20 item (1), the map π‚ : VY ppY ;EY q Ñ VX ppX ;mpX q is an inclusion
of trees and allows one to view VY ppY ;EY q as a subtree of VX ppX ;mpX q.

See Figure 1. The tree VX ppX ,mpX q is in black with its root νmpX
in blue, the

tree VY ppY ;EY q is in orange with its root ordEY in red. One can see how π‚ maps
homeomorphically VY ppY ;EY q to a subtree of VX ppX ,mpX q.

FIGURE 1. The embedding π‚
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REMARK 12.4. Since the orders ďmpX
and ďEY are compatible on VY ppY ;EY q and

π‚VY ppY ;EY q we will not write π‚ or ďEY when no confusion is possible to avoid heavy
notations.

By Proposition 5.28, we have the following relation

αmpX
pπ‚µq “ αmpX

pπ‚ ordEY q ` bpEY q
´2

αEY pµq (348)

where b is the generic multiplicity function of the tree VX pp;mpq and αmpX
,αEY are the

skewness functions defined in Chapter 5. Indeed, with the notation of Proposition 5.28,
νEY “ π‚ ordEY .

LEMMA 12.5. There exists ν P VY ppY ;EY q such that ν ă ν˚ and for all µ ě ν,

minpµpF˚xq,µpF˚yqq “ bpEY qλ1. (349)

I.e set U “ tµ ě νu, we have F‚ “
F̊

bpEY qλ1
over U. In particular, F‚ is order preserving

over U and F‚prν,ν˚sq Ă

”

νmpX
,ν˚

ı

.

PROOF. Using Proposition 5.3, we see that the map ν ÞÑ minpνp f ˚x, f ˚yqq is locally
constant outside a finite subtree of VY ppY ;EpY q. Indeed, one has f ˚x “

ś

i ψi with ψi
irreducible and therefore

νp f ˚xq “
ÿ

i

νpψiq (350)

“
ÿ

i

αEY pν ^ νψiqmEY pψiq by Proposition 5.3. (351)

Let Sx be the finite subtree consisting of the segments rordEY ,νψis, then the map µ ÞÑ

µp f ˚xqq is locally constant outside of Sx. Let S be the maximal finite subtree of VY ppY ;EpY q

such that the evaluation maps on f ˚x, f ˚y and z are locally constant outside of S. Since
ν˚ is an infinitely singular valuation it does not belong to S and these three evaluation
maps are constant on the open connected component V of VY ppY ;EpY qzS containing
ν˚. Since f˚ν˚ “ λ1ν˚, this means that F̊ v˚ “ λ1π˚v˚. Since the ideal generated by
π˚x,π˚y is the ideal generated by zbpEY q, we have f‚|V “

f˚
bpEY qλ1

and the map F‚ is order
preserving on V . Following Remark 12.4, the two orders ďmpX

and ďEY agree on V . Let
ν P rordEY ,ν˚sXV be a divisorial valuation, F‚ sends the segment rν,ν˚s Ă VY ppY ;EY q

inside the segment rνmpX
,ν˚s Ă VX ppX ;mpX q. Notice that U :“ tµ ě νu Ă V so the

valuation ν satisfies Lemma 12.5. □

PROPOSITION 12.6 ([FJ07], Theorem 3.1). Let ν be as in Lemma 12.5. For t P

rαEY pνq,αEY pν˚qs, let νt be the unique valuation in rν,ν˚s such that αEY pνtq “ t. Then,
there exists a divisorial valuation ν1 P rν,ν˚s such that the map
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t P rαEY pν
1
q,αEY pν˚qs ÞÑ αmpX

pF‚νtq (352)
is an affine function of t with nonnegative coefficients.

PROOF. Let ν1,ν2 P VY ppY ;EY q be such that ν ă ν1 ă ν2 ă ν˚. Since F‚ is or-
der preserving on U “ tµ ě νu one has that F‚ maps rν1,ν2s homeomorphically to
rF‚ν1,F‚ν2s. Let ψ P {OX ,pX be irreducible such that νψ ą F‚ν2, then by Proposition
5.3, for all µ P rν1,ν2s one has

αmpX
pF‚µq “

F‚µpψq

mpX pψq
“

µp f ˚ψq

mpX pψqbpEY qλ1
(353)

Now let ψ1, ¨ ¨ ¨ ,ψr P zOY,pY be irreducible (not necessarily distinct) such that f ˚ψ “

ψ1 ¨ ¨ ¨ψr. One has,

µp f ˚
ψq “

ÿ

i

µpψiq “
ÿ

i

αEY pµ ^ νψiqmEY pψiq. (354)

Take one of the ψi and call it ψ0, we shall study the map µ P rν1,ν2s ÞÑ αEY pµ^νψ0q.
Let µ0 “ ν2 ^νψ0 , this map is equal to αEY on rν1,µ0s and constant equal to αEY pµ0q on
rµ0,ν2s. Therefore, the map µ P rν1,ν2s ÞÑ µp f ˚ψq is a piecewise affine function with
nonnegative coefficients of αEY pµq. The points on rν1,ν2s where this map is not smooth
are exactly the valuations ν˚ ^ νψi and there are at most λ2 of them by Proposition
4.18. Therefore the map µ ÞÑ νp f ˚ψq is an affine function of αEY with nonnegative
coefficients on the segment rµ1,ν˚s for any µ1 ă ν˚ close enough to ν˚. □

As a corollary of the proof, we get the following proposition.

PROPOSITION 12.7. Let ν P VY ppY ;EY q be as in Proposition 12.6, let ν0 P rν,ν˚s

and let ψ P pOX ,p be irreducible such that νψ ą f‚ν0. Then, for all ϕ P zOY,pY such that
f‚νϕ “ νψ, one has two possibilities:

(1) Either νϕ ą ν0.
(2) or ν0 ^ νϕ “ ν˚ ^ νϕ ď ν.

I.e the configuration of Figure 2 cannot occur.

PROOF. The map µ P rν,ν0s ÞÑ αmpX
pF‚µq is a smooth affine function of αEY pµq.

If (1) and (2) were not satisfied, then we would get νϕ ^ ν˚ P rν,ν˚s and this would
contradict the smoothness of the map µ P rν,ν˚s ÞÑ αmpX

pF‚µq □

LEMMA 12.8. Let ν be as in Proposition 12.6. If µ P rν,ν˚s is sufficiently close to
ν˚, then F‚µ ą µ and F‚ptµ1 ě µuq Ť UpÝÑv q where ÝÑv is the tangent vector at µ defined
by ν˚ and UpÝÑv q is its associated open subset.

We sum up Lemma 12.8 in Figure 3
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FIGURE 2. Configuration which is not possible

PROOF. Let U “ tµ ě νu. Recall that F‚ is order preserving over U . We first notice
that if every µ P rν,ν˚s close enough to ν˚ satisfies F‚µ ą µ, it is clear that F‚ tµ1 ě µu Ť

UpÝÑv q. Indeed, let µ1 ě µ and set µ0 :“ µ1 ^ ν˚ ě µ. Then, F‚µ1 ě F‚µ0 ą µ0. In
particular, F‚µ1 ^ ν˚ ą µ1 ^ ν˚ ě µ.

Secondly, by Proposition 12.6, the map t P rαEY pνq,αEY pν˚qs ÞÑ αmpX
pνtq is affine

and we know that it is non decreasing.

LEMMA 12.9. Let a : R Ñ R be a non-decreasing non constant affine function that
admits a fixed point t0. If there exists s ă t0, apsq ą s then the slope of a is ă 1 and for
all t ă t0, aptq ą t.

PROOF OF LEMMA 12.9. We can suppose that t0 “ 0 by a linear change of coor-
dinate. Then, aptq is of the form

aptq “ αt (355)
with α ą 0. Now, if s ă 0 satisfies apsq ą s, this means that 0 ă α ă 1 and therefore for
all t ă 0, aptq ą t. □

We show that there exists µ P rν,ν˚s such that F‚µ ą µ. If not, then for all µ P

rν,ν˚r,F‚µ ď µ. Under such an assumption, we show the following

Claim. For all µ1 ě ν we have F‚µ1 ^ ν˚ ď µ1 ^ ν˚.
Suppose that the claim is false and let µ1 be a valuation that contradicts this state-

ment. It is clear that µ1 does not belong to rν,ν˚s. Pick ν0 P rν,ν˚s such that ν ď

µ1 ^ν˚ ă ν0 ă F‚µ1 ^ν˚. Let ϕ P pOY,pY be such that νϕ ą µ1 and let ψ P pOX ,p be such that
f‚νϕ “ νψ. Since f is order preserving we get that νψ ą F‚µ1 ě F‚µ1 ^ν˚ ą ν0, therefore
νψ ą F‚ν0. But then ϕ contradicts Proposition 12.7 since νϕ ^ ν0 “ µ1 ^ ν0 P rν,ν0s.
So the claim is shown.

Now, pick ω divisorial such that Zω ¨θ˚ ą 0 by Proposition 12.2 the sequence 1
λn

1
f n
˚ ω

converges towards pZω ¨ θ˚qν˚. Hence, there exists an integer N0 ą 0 such that for all
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FIGURE 3. An f‚-invariant open subset of V8, infinitely singular case

N ě N0, f N
˚ ν P VY ppY q, replace ω by f N0

˚ ω and normalize it such that ω P VY ppY ,EY q.
We can suppose up to choosing a larger N0 that ω ą ν. In that case FN

‚ ω converges
towards ν˚ but by the claim, @N ě 0,FN

‚ ω ^ ν˚ ď ω ^ ν˚ which is a contradiction.
Therefore, there exists a valuation µ P rν,ν˚r such that F‚µ ą µ. □

PROPOSITION 12.10. With the notations from Lemma 12.8, we have F‚pUpÝÑv qq Ť

UpÝÑv q and for all µ1 P UpÝÑv q,
Fn

‚ µ1
ÝÝÝÝÑ
nÑ`8

ν˚ (356)

for the weak topology.

PROOF. For every µ1 in UpÝÑv q, write rµ1 “ µ1 ^ ν˚. By the proof of Lemma 12.8,
Fn

‚ pµ1q Ñ ν˚ for the strong topology. Therefore, Fn
‚ µ1 ^ ν˚ ě Fn

‚ prµ1q Ñ ν˚ and Fn
‚ µ1
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converges weakly towards ν˚ because for all ϕ P OY,p irreducible, we have

Fn
‚ pµ1

qpϕq “ αEY pFn
‚ µ1

^ νϕqmEY pϕq. (357)

For n large enough we have Fn
‚ µ1 ^ ν˚ ě ν˚ ^ νϕ, hence Fn

‚ µ1 ^ νϕ “ ν˚ ^ νϕ and

Fn
‚ pµ1

qpϕq “ αEY pν˚ ^ νϕqmEY pϕq “ ν˚pϕq (358)

□

PROOF OF PROPOSITION 12.3. Let ν be as in Proposition 12.6. Let νn be the
infinitely near sequence of ν˚ (see Proposition 5.26). We have for n large enough
νn P rν,ν˚s and νn satisfies Lemma 12.8. Set µ “ νn for some n large enough and let
Z be a completion such that cZpµq “ E and cZpν˚q “: p P E is a free point. The open
subset UpÝÑv q associated to the tangent vector at µ defined by ν˚ is exactly the image
of VZppq in VY ppY ;EY q. By Proposition 12.10, F‚UpÝÑv q Ť UpÝÑv q, this means that
f˚VY ppq Ă VY ppq. By Lemma 11.12, f is defined at p, f ppq “ p and since F‚µ ą µ,
we get f contracts E to p. We have that for every µ P VZpp;mpq, f n

‚ µ Ñ ν˚ also by
Proposition 12.10.

The statement about cofinalness follows from the fact that the sequence of infinitely
near points associated to ν˚ contains infinitely many free points, so for every comple-
tion X of X0, there exists a completion above it where the center of ν˚ is a free point at
infinity. □

12.2. Attractingness of ν˚, the irrational case

Suppose now that chark “ 0 or that f is tamely ramified, this is necessary as we
will use Theorem 2.9 in this paragraph. Suppose now that ν˚ is an irrational valuation.
There exists a completion X such that the center of ν˚ on X and on any completion
above X is the intersection of two divisors at infinity E,F . We still write f : X 99K X
for the lift of f .

Let X1 “ X and for all n ě 1, let Xn`1 be the blow up of Xn at cXnpν˚q. (The center
of ν˚ is always a point since ν˚ is not divisorial). Let pn “ cXnpν˚q and En,Fn be the
divisors at infinity in Xn such that pn “ En X Fn. A consequence of Theorem 2.9 is

PROPOSITION 12.11. There exist integers N ě M such that the lift pf : XN Ñ XM
is regular at pN :“ cXN pν˚q and such that pf is monomial at pN in the coordinates that
have EN ,FN and EM,FM for axis respectively.

PROOF. Apply Theorem 2.9 to f : X 99K X . There exist completions Y,Z above
X such that the lift F : Y Ñ Z of f is regular and monomial at every point. Let NY “

maxtN : Y is above XNu and define NZ in the same way. By construction, the morphism
of completions π : Y Ñ XNY consists of blow up of points that are not pNY . The same
holds for τ : Z Ñ XNZ . This shows that the lift f : XNY 99K XNZ is defined at pNY . We
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therefore have that f ppNY q “ pNZ because f˚pν˚q “ λ1ν˚ and f is monomial at pNY in
the coordinates that have ENY ,FMY

and ENZ ,FNZ for axis respectively by Theorem 2.9.
We set M “ NZ . If NY ă M, we keep blowing up pNY until NY ě M. This does not
change the result because in local coordinates the blow up is given by a monomial map
πpu,vq “ puv,vq where u and v are local equation of the prime divisors at infinity to
which the center of ν˚ belong. □

Using this we show

PROPOSITION 12.12. There exists a completion Y such that

(1) The lift pf : Y Ñ Y is defined at p “ cY pν˚q;
(2) pf ppq “ p;
(3) If E,F are the two divisors at infinity such that p “ E X F, then pf contracts at

least one of the two divisors and pf 2 contracts both of them.
(4) Define f‚ : VY pp;mpq Ñ VY pp;mpq. For all µ P VY pp;mpq, f n

‚ mu Ñ ν˚ for the
weak topology of VY pp;mpq.

Furthermore, If Z is a completion above Y , then (1)-(4) remain true.

PROOF. Let N ě M given by Proposition 12.11. We still write f : XN 99K XM for the
lift of f and π : XN Ñ XM for the composition of blow ups. Let x,y be local coordinates
at pN such that EN “ tx “ 0u and FN “ ty “ 0u and let z,w be local coordinates at pM
such that EM “ tz “ 0u and FM “ tw “ 0u. Both maps f and π are monomial at pN
with respect to these coordinates. Write

f px,yq “ pxayb,xcyd
q. (359)

Consider the tree VXM ppM ;EMq with its order ăM, its skewness function αM and
the generic multiplicity function bM. This tree is rooted in ordEM and FM defines the
end νw that we denote by νFM . Let νEN “ 1

bMpENq
ordEN ,νFN “ 1

bMpFNq
ordFN . Suppose

without loss of generality that νEN ăM νFN . Consider the tree VXN ppN ;ENq with its
order ăN and skewness function αN . We have by Proposition 5.20 item (2) that the map
π‚ : VXN ppN ;ENq Ñ VXM ppM;EMq is an inclusion of trees. Hence, the orders ăM,ăN
are compatible and VXN ppN ;ENq is naturally a subtree of VXM ppM;EMq via the map π‚.
We also have the map f‚ : VXN ppN ;ENq Ñ VXM ppM;EMq. The root of VXN ppN ;ENq is
ordEN and FN defines the end νy in VXN ppN ;ENq that we also denote by νFN . We have
that ordEN ăN ν˚ ăN νFN . Using Equation (359), we can write

@ν P VXN ppN ;ENq, f‚pνq “
f˚ν

a ` bνpyq
. (360)

Now, both maps f‚ and π‚ send the segment rordEN ,νFN s into the segment rordEM ,νFM s

via a Möbius transformation. Indeed, if ν1,t P VXN ppN ;ENq is a monomial valuation at
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pN , then f˚ν1,t “ νa`bt,c`td and one has by Lemma 5.13 and Equation (360)

αMp f‚ν1,tq “ αM

´

ν1, c`td
a`tb

¯

“
c ` αNpν1,tqd
a ` αNpν1,tqb

“ M f pαNpν1,tqq (361)

Where M f is the Möbius transformation associated to the matrix
ˆ

d c
b a

˙

. We can do

the same process with the map π‚ to get a Möbius transformation represented by a
matrix Mπ. Set M to be the Möbius transformation M f ˝ M´1

π .

LEMMA 12.13. The Möbius map M is loxodromic with an attracting fixed point
t˚ “ αMpπ‚ν˚q and the multiplier of M at t˚ is ď

b

λ2
λ2

1
ă 1.

In particular, for every ν1,ν2 P VXN ppN ;ENq close enough to ν˚ such that ν1 ă ν˚ ă

ν2, f‚prν1,ν2sq Ť rπ‚ν1,π‚ν2s.

PROOF OF LEMMA 12.13. First of all, M cannot be of finite order. Indeed, for
every ν P rνEN ,νEM s sufficiently close to ν˚, we have Zν ¨ θ˚ ą 0 since θ˚ ¨ θ˚ “ 1. So
f n
‚ ν Ñ ν˚ by Proposition 12.2.

We know that Mpt˚q “ t˚ and we want to show that |M1pt˚q| ă 1. The only way
that the proposition is not true is if t˚ is a parabolic fixed point of M. This means up
to reversing the orientation that t˚ is attracting for t ă t˚ sufficiently close to t˚ and t˚
is repelling for t ą t˚ sufficiently close to t. In particular, there exists t 1 such that the
segment rt 1, t˚s is sent strictly into itself, so we can iterate M on it, and there exist two
constant c1,c2 ą 0 such that c1

n ď |Mnpsq ´ t˚| ď
c2
n . We will show that we have actually

an exponential speed of convergence and this leads to a contradiction. Let ν be the
valuation centered at pN such that αMpπ‚νq “ t 1, we can suppose that ν is divisorial up
to shrinking rt 1, t˚s. Since f n

‚ ν Ñ ν˚, we have Zν ¨ θ˚ ą 0. We have by Equation (84)

1
λk

1
p f k

˚Zνq ¨ EM “ pθ˚ ¨ EMqpZν ¨ θ
˚
q ` O

˜

ˆ

λ2

λ2
1

˙k{2
¸

(362)

1
λk

1
p f k

˚Zνq ¨ FM “ pθ˚ ¨ FMqpZν ¨ θ
˚
q ` O

˜

ˆ

λ2

λ2
1

˙k{2
¸

. (363)

Using Lemma 5.13 we get that

ˇ

ˇ

ˇ
Mk

pαMpπ‚νqq ´ t˚
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

f k
˚Zν ¨ FM

f k
˚Zν ¨ EM

´
θ˚ ¨ FM

θ˚ ¨ EM

ˇ

ˇ

ˇ

ˇ

“ O

˜

ˆ

λ2

λ2
1

˙k{2
¸

. (364)

Therefore the speed of convergence is exponential and this shows that |M1pt˚q| ă

1. □
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End of Proof of Proposition 12.12.– By Lemma 12.13, pick ν1,ν2 P VXN ppN ;ENq

divisorial sufficiently close to ν˚ such that

ordEN ăN ν1 ăN ν˚ ăN ν2 ăN νFN (365)

and
f‚prν1,ν2sq Ă rπ‚ν1,π‚ν2s. (366)

If f‚ is order preserving, then we must have f‚rν1,ν2s Ăsπ‚ν1,π‚ν2r. If f‚ is not order-
preserving, it is possible to have f‚pν2q “ π‚ν1 and f‚pν1q Psπ‚ν1,π‚ν2r. In that case,
f 2
‚ is order-preserving and we have f 2

‚ rν1,ν2s Ăsπ‚ν1,π‚ν2r.
Let UN “ tν : ν1 ă ν ^ νFN ă ν2u Ă VXN ppN ;ENq. It is clear that νFN R UN . Let

ψ P {OXM ,pM be such that νψ ąM f‚prν1,ν2sq. Let ψ1, ¨ ¨ ¨ ,ψr P {OXN ,pN be irreducible
such that f ˚ψ “ ψ1 ¨ ¨ ¨ψr. We can shrink the segment rν1,ν2s to make sure that none of
the ψi belong to UN (see Figure 4). If this is the case, then for all µ P UN , set rµ “ µ^ν2,
then for all i

µ ^ νψi “ rµ ^ νψi (367)
and

µ ^ νFN “ rµ ^ νFN . (368)
Now, for all µ P UN , by Equation (360) and Proposition 5.3

p f‚µqpψq “
µp f ˚ψq

a ` bµpyq
“

ř

k αNpµ ^ νψkmpψkqq

a ` bµpyq
. (369)

By Equations (367) and (368), we get

p f‚µqpψq “ p f‚rµqpψq. (370)

This means that

@µ P UN , αMpp f‚µq ^ νψq “ αMpp f‚rµq ^ νψq. (371)

In particular, f‚pUNq Ť π‚pUNq. So we can iterate f‚ on UN .

PROPOSITION 12.14. For every µ P UN , f n
‚ µ Ñ ν˚ for the weak topology.

PROOF. Let µ P UN and let rµ :“ µ ^ ν2. We have f n
‚rµ Ñ ν˚ for the strong topology

by Lemma 12.13. By equation (368), we have f n
‚ µ ^ ν2 “ f n

‚rµ ^ ν2. Therefore for
ϕ P OXN ,pN irreducible and for n large enough, f n

‚ µ ^ νϕ “ f n
‚rµ ^ νϕ. Therefore,

f n
‚ µpϕq “ αNp f n

‚ µ ^ νϕqmNpϕq (372)

“ αNp f n
‚rµ ^ νϕqmNpϕq (373)

“ f n
‚rµpϕq ÝÝÝÝÑ

nÑ`8
ν˚pϕq. (374)

□
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FIGURE 4. An f‚-invariant open subset of V8, irrational case

Now pick a completion X above XN such that for i “ 1,2, the center of νi is a
prime divisor Ei at infinity such that E1 and E2 intersect at a unique point p. We have
cX pν˚q “ p. The open set UN Ă VXN ppN ;ENq is the image of VX pp;E1q via the inclusion
VX pp;E1q ãÑ VXN ppN ;ENq. Since f‚UN Ă π‚pUNq, this shows that f˚VX ppq Ă VX ppq.
Therefore by Lemma 11.12 the lift f : X 99K X is defined at p, f ppq “ p and since f‚

(or f 2
‚ ) contracts the segment rν1,ν2s we have that f contracts E1 and E2 to p. We have

for every µ P VX pp;mpq, f n
‚ µ Ñ ν˚ by Proposition 12.14.

If Y is a completion above X , then cY pν˚q “ F1 X F2 where Fi is a prime divisor at
infinity because ν˚ is irrational. The segment rνF1,νF2s is a subsegment of rνE1,νE2s

and the same proof applies. This shows that Y satisfies also Proposition 12.12. □

12.3. Attractingness of ν˚, the divisorial case

Here we also suppose that f is tamely ramified. Suppose that ν˚ is divisorial and
let X be a completion such that the center of ν˚ on X is a prime divisor E at infinity.
Since f˚ ordE “ λ1 ordE we have that f induces a dominant rational selfmap of E.

LEMMA 12.15. Either there exists an integer N ą 0 such that f N
|E admits a noncrit-

ical fixed point on E, or E is an elliptic curve and f|E is a translation by a non-torsion
element of E.
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PROOF. The rational transformation f induces a rational selfmap on E. If E is
rational, then E » P1 and f|E is given by a rational fraction Ppxq

Qpxq
and therefore admits

fixed points. It admits a noncritical fixed point if and only if f|E is not a rational fraction

of the form P1pxpq

Q1pxpq
where p “ chark that is if and only if f|E is separable. If E is of

general type, then some iterate of f induces the identity on E. Finally, if E is an elliptic
curve, then f|E “ t´b ˝ g where g : E Ñ E is a homomorphism of elliptic curves and
t´b is the translation by ´b. We have f|Eppq “ p ô gppq ´ p “ b. Thus f|E admits a
fixed point if and only if g ´ id is not the trivial homomorphism, i.e g ‰ id. Now, by
[Sil09] III.5, there exists an invariant 1-form ω with no poles or zeros on E such that
g˚ω “ apgqω where apgq P k. If apgq ‰ 0 then every fixed point of f is non-critical, if
apgq “ 0, then every fixed point of f|E is critical and f|E is inseparable.

Suppose that E » P1 or E is an elliptic curve with f|E inseparable. We show that
this is not possible if f is tamely ramified. Pick a general free point p on E, then f is
defined at p and we can find local coordinates px,yq at p and pz,wq at f ppq such that
x “ 0 and z “ 0 is a local equation of E at p and f ppq respectively and f ˚w is divisible
by y. Thus f is of the form

f px,yq “ pxλ1ψpx,yq,ym
ϕpx,yqq (375)

with ψ,ϕ invertible regular functions and m is an integer divisible by chark. Indeed, E
is f -invariant and y “ 0 is the local equation of an algebraic curve C such that C XX0 ‰

H so it can’t be sent to E by f because f is an endomorphism. Let C1 be the curve
f pCq with its reduced structure, then we have f˚ ordC “ mordC1 and this contradicts the
fact that f is tamely ramified because chark|m. □

In the case where f|E is not a translation by a non-torsion element on an elliptic
curve, f defines a regular fixed point germ at p and we can proceed as in [FJ07] §5.2 to
show that there exists a completion X that contains a prime divisor E0 at infinity such
that p “ E X E0 and f‚ maps the segment of monomial valuations rνE ,νE0s strictly into
itself. Here is how to proceed.

Set X0 “ X , p0 “ p. Define the sequence of completions pXnq as follows: πn :
Xn`1 Ñ Xn is the blow up of Xn at pn and pn`1 is the intersection point of the strict
transform of E with the exceptional divisor of πn`1. We still denote by E its strict
transform in every Xn. For every n, we have f|Eppnq “ pn and if f : Xn 99K X is defined
at pn, we have f ppnq “ p. We apply Theorem 2.9 to get

PROPOSITION 12.16. There exists integers N ě M such that the lift f : XN 99KXM is
defined at pN , f ppNq “ pM. Furthermore, there exists local coordinates px,yq,pz,wq re-
spectively at pN , pM such that x “ 0 and z “ 0 are local equations of the strict transform
of E in XN and XM respectively and f is monomial in these coordinates.

The proof is the same as in Proposition 12.11.
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PROPOSITION 12.17. If ν˚ is divisorial, there exists a completion X such that
(1) cX pν˚q is a prime divisor E at infinity.
(2) E intersects another prime divisor E0 at infinity and we set p “ E X E0.
(3) Up to replacing f by an iterate, f : X 99K X is defined at p, f ppq “ p.
(4) p is a noncritical fixed point of f|E .
(5) f leaves E invariant and contracts E0 to p.
(6) Define f‚ : VX pp;Eq Ñ VX pp;Eq, then for all µ P cVX pp;Eq, f n

‚ µ Ñ ordE for
the weak topology.

If π : pY,Excpπqq Ñ pX , pq is a completion exceptional above p, then all the item above
remain true in Y .

PROOF. Let N ě M be as in Proposition 12.16. Let F : XN 99K XM be the lift of f .
We can suppose that N ě M and denote by π : XN Ñ XM the morphism of completions.
We therefore have a map f‚ : VY ppN ,Eq Ñ VX ppM,Eq. Again, the tree VY ppN ,Eq is a
subtree via the map π‚ and they are both rooted at the divisorial valuation ordE .

Let px,yq,pz,wq be the local coordinates at pN and pM respectively given by Propo-
sition 12.16. We have that x “ 0 is a local equation of E in XN and z “ 0 is a local
equation of E in XM.

f px,yq “

´

xayb,xcyd
¯

. (376)

Since we know that E is not contracted by f we actually have c “ 0. We can therefore
write

@ν P VXN ppN ;Eq, f‚pνq “
f˚ν

a ` bνpyq
. (377)

(Recall from Chapter 5 that VXN ppn;Eq is defined by the normalization νpEq “ 1). We
have

f‚rordE ,νys Ă rordE ,νws (378)
and the map is given by the following formula

f‚ν1,s “ ν1, sd
a`sb

. (379)

As in the irrational case, we can consider the matrix M f and Mπ and study the type of
the Möbius transformation induced by M´1

π ˝ M f . Since ordE is a fixed point, we show
that it is not repelling on the segment rordE ,νys.

Let ν0 P rordE ,νws be a divisorial valuation. We have f‚prordE ,ν0sq Ă rordE ,νws.
Let UN “ tµ : ordE ď µ ^ νy ă ν0u Ă VXN ppN ;Eq. It is clear that νy R UN . Let ψ P

{OXM ,pM be irreducible such that νψ ą f‚prordE ,ν0sq. Let ψ1, ¨ ¨ ¨ ,ψr,P pOXN ,pN be ir-
reducible such that f ˚ψ “ ψ1 ¨ ¨ ¨ψr. Up to shrinking the segment rordE ,ν0s we can
suppose that none of the νψi belong to UN (See Figure 5). If this is the case, then for all
µ P UN , set rµ “ µ ^ ν0, then for all i

µ ^ νψi “ rµ ^ νψi, µ ^ νy “ rµ ^ νy. (380)
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Now, for all µ P UN , by Equation (377) and Proposition 5.3

p f‚µqpψq “
µp f ˚ψq

a ` bµpyq
“

ř

k αNpµ ^ νψkqmpψkq

a ` bµpyq
. (381)

By Equation (380), we get
p f‚µqpψq “ p f‚rµqpψq. (382)

This means that

@µ P UN , αMpp f‚µq ^ νψq “ αMpp f‚rµq ^ νψq. (383)

If ν P V8 is divisorial such that Zν ¨θ˚ ą 0, then 1
λn

1
f n
˚ ν Ñ ν˚ by Proposition 12.2. Then,

there exists N0 ě 1 such that for n ě N0, 1
λn

1
f n
˚ ν P UN . Replace ν by 1

λ
N0
1

f N0
˚ pνq. If ordE

was a repelling fixed point, then we could not have f n
‚ ν Ñ ν˚ by Equation (380) and

(383). Therefore, we can pick ν0 such that f‚rordE ,ν0s Ť π‚rordE ,ν0s. In that case
f‚pUNq Ť π‚pUNq. So we can iterate f‚ on UN .

FIGURE 5. An f‚-invariant open subset of V8, divisorial case

PROPOSITION 12.18. For all µ P UN , f n
‚ µ Ñ ordE for the weak topology.

PROOF. The proof is similar to the proof of Proposition 12.14. Let µ P UN and set
rµ “ µ ^ ν0. Since ordE is an attracting fixed point for f‚ and f‚rordE ,ν0s Ť rordE ,ν0s,
we have f n

‚rµ Ñ ordE for the strong topology. Then, by Equation (383), f n
‚ µ^ν0 “ f n

‚rµ.
Let ϕ P OXN ,pN be irreducible such that ϕ is not a local equation of E, then for n large
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enough

f n
‚ µpϕq “ αEp f n

‚ µ ^ νϕqmEpϕq (384)

“ αEp f n
‚rµ ^ νϕqmEpϕq (385)

“ αEp f n
‚rµqmEpϕq ÝÝÝÝÑ

nÑ`8
0 (386)

□

Let E0 be the divisor associated to the divisorial valuation ν0 and let Z be a comple-
tion such that cZpν0q is the divisor E0 and such that E0 X E is a point p. Then, the open
subset UN corresponds to VZppq and we have f˚VZppq Ă VZppq. By Lemma 11.12, we
have that the lift pf : Z Ñ Z is regular at p, pf ppq “ p and since we know that f‚ν0 ă ν0

and f˚ ordE “ λ1p f qordE we have that pf contracts E0 at p, E is f -invariant and for all
µ P VZpp;Eq, f n

‚ µ Ñ ν˚ by Proposition 12.18.
If π : pZ1,Excpπqq Ñ pZ, pq is a completion exceptional above p, then Excpπq is

a tree of rational curves, let E 1
0 be the irreducible component of Excpπq that intersect

the strict transform of E. Then E 1
0 corresponds to a divisorial valuation ν1

0 such that
ordE “ ν˚ ă ν1

0 ă ν0 and all the proofs above apply so Proposition 12.17 holds also for
Z1. □

LEMMA 12.19. When ν˚ is divisorial, λ1 ď λ2, with equality if and only if f|E :
E Ñ E has degree 1.

PROOF. Let X be a completion such that the center of ν˚ is a prime divisor E at
infinity. Since f˚ν˚ “ λ1ν˚, we have that f ˚E “ λ1E ` R where R denotes an effective
divisor supported at infinity. Now, we also have f˚E “ dE ` R1. From the equality
f˚ ˝ f ˚ “ λ2 id, we get that λ1d ď λ2. In particular, λ1 ď λ2. □

12.4. Local normal form of f

We are now ready to proof Theorem 12.1.

PROOF OF THEOREM 12.1. Suppose ν˚ is infinitely singular. From Proposition
12.3, there exists a completion X such that cX pν˚q “: p P E is a free point, f : X 99K X
is defined at p and f˚pVX ppqq Ť VX ppq. We need to show that the germ of holomorphic
functions induced by f at p is contracting and rigid. It is clear that E Ă Critp f q (Recall
the notations from §2.5). If Critp f q admits another irreducible component, it induces a
curve valuation in VX ppq, we can blow up p to get another completion above X satisfy-
ing Proposition 12.3 such that VX ppq does not contain any curve valuation associated
an irreducible component of Critp f q. Thus, f is rigid at p it remains to show that it is
contracting. Let px,yq be local coordinates at p such that x “ 0 is a local equation of E.
We must have that f ˚x “ xaϕ with a ě 1 and ϕ P Oˆ

X ,p because no other germs of curve
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is contracted to p or sent to E since f is an endomorphism of X0. Since ν˚pEq ą 0 and
f˚ν˚ “ λ1ν˚ we get that

λ1v˚pxq “ f˚v˚pxq “ v˚pxa
ϕq “ av˚pxq. (387)

Thus, λ1 “ a is an integer. Now, since E is contracted by f , we get that f ˚y “ xψ with
ψ P OX ,p but we must have ψ P mp because the image of the curve y “ 0 is a curve that
contains p. Hence, we get that

f px,yq “ pxλ1ϕ,xψq (388)

with ϕ P Oˆ
X ,p and ψ P mp. Consider the norm ||px,yq| | “ maxp|x| , |y|q associated to

the coordinates x,y and let U˚ be the ball of center p and radius ε ą 0. If ε ą 0 is
small enough, then U˚ is f -invariant and f pU˚q Ť U˚, so f is contracting at p. Finally,
there are no f -invariant germ of curves at p. Indeed, if ϕ P yOX ,p is f -invariant, then
f‚νϕ “ νϕ. But we have by Proposition 12.3 that f n

‚ νϕ Ñ ν˚ and this is a contradiction.
Thus, we get that f has the local normal form of (17) with a “ λ1. If k “ C, Looking at
the classification of the rigid contracting germs in dimension 2, we see that f is in Class
4 of Table 1 in [Fav00] hence of type (18) thus there exists local analytic coordinates
pz,wq at p

pf pz,wq “ pza,λzcw ` Ppzqq (389)
where a ě 2,c ě 1,λ P Cˆ and P is a polynomial such that Pp0q “ 0. Since E is the
only germ of curve contracted by f (all the other germs of analytic curves are contained
in X0 they cannot be contracted to p by f since f is an endomorphism of X0), we have
that z “ 0 is a local equation of E. Furthermore, since f does not have any invariant
germ of analytic curve, we get that P ı 0.

Suppose now that ν˚ is irrational, by Proposition 12.12, there exists a completion
X of X0 such that the lift f : X 99K X is defined at p “ cX pν˚q, X contains two divisors
at infinity E,F such that p “ E X F and pf contracts both E and F at p. It remains
to show that f is contracting and rigid at p. First we can suppose up to further blow
ups that Critp f q X X0 “ H. Therefore f is rigid, now since both E,F are contracted
to p, f is contracting. Finally, there are no f -invariant germs of curves at p since for
all µ P VX pp;mpq, f n

‚ µ Ñ ν˚ by Proposition 12.12. Let pz,wq be local coordinates at p
associated to pE,Fq. We have that f is of the pseudomonomial form

f pz,wq “

´

zawb
ϕ,zcwd

ψ

¯

. (390)

with ϕ,ψ P Oˆ
X ,p and a,b,c,d ě 0. Notice that f˚ ordE “ νa,b and f˚ ordF “ νc,d . Con-

sider the segment of monomial valuations I centered at p inside VX pp;mpq we have
that f‚ : I Ñ I is injective, therefore pa,bq is not proportional to pc,dq and ad ´ bc ‰ 0.
We show that in fact ad ´ bc is not divisible by chark. Otherwise, there would be pos-
itive integers s, t such that f˚vs,t “ pvs1,t1 and this contradicts the fact that f is tamely
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ramified because the value group of f˚vs,t in the value group of vs1,t1 has index divisible
by p. Thus, the normal form of f at p is analytically conjugated to the monomial form

f pz,wq “

´

zawb,zcwd
¯

. (391)

Furthermore the open subset U˚ corresponding to the ball of radius ε ą 0 is f -invariant
for ε ą 0 small enough and f pU˚q Ť U˚. In that case, we show that λ1p f q is the spectral

radius of the invertible matrix A “

ˆ

a b
c d

˙

, hence a Perron number of degree 2. Indeed,

ν˚ “ νs,t where ps, tq is an eigenvector of A for the eigenvalue λ1. Since ν˚ is irrational,
we have s{t R Q and therefore λ1 R Q. Now, when we iterate f , we get that f n has a
monomial form at p given by the matrix An, hence we get

λ
n
1

ˆ

ν˚pzq

ν˚pwq

˙

“ An
ˆ

s
t

˙

(392)

Now finally, suppose that ν˚ is divisorial. Take a completion X as in Proposition
12.17. Let p “ E XE0 with ν˚ “ ordE . The lift f : X 99K X is defined at p. Up to further
blow-ups we can suppose that Critp f q X X0 “ H. Therefore, Critp f q Ă E Y E0 which is
totally invariant as f˚VX ppq Ť VX ppq so f is rigid at p. There are no f -invariant germs
of curves apart from E at p since for all µ P VX pp;Eq, f n

‚ µ Ñ ordE by Proposition 12.17.
Let px,yq be local coordinates at p associated to pE,E0q. Since f˚ ordE “ λ1 ordE with
λ1 ě 2 we have f ˚x “ xλ1ϕ with ϕ P OX ,p. Since no germ of curve is sent to E apart
from E0, we have that up to multiplying x by a constant that f ˚x “ xλ1ybp1 ` ϕq with
ϕ P OX ,p. Then, E0 is contracted to p so f ˚y “ ycψ with ψ P Oˆ

X ,p and c “ 1 since p is
a noncritical fixed point of f|E . Hence, in these coordinates the local normal form of f
is (21):

pf px,yq “

´

xayb
p1 ` ϕq,λyp1 ` ψq

¯

(393)

with a “ λ1 ě 2,b ě 1,λ P Cˆ and ϕp0q “ ψp0q “ 0. □



CHAPTER 13

Examples

13.1. An affine surface with a lot of nonproper endomorphisms

13.1.1. A family of rational affine surface with no loxodromic automorphisms.
In [Dub04] Example 2.23, Dubouloz gives an infinite family of examples of rational
complex affine surfaces that admit a minimal completion for which the dual graph of
the curve at infinity is neither a zigzag nor a cycle. This means by Theorem 14.4 that
these surfaces do not admit loxodromic automorphism. The result is the following:
Consider the affine surface S0 Ă A3

C given by the equation

xny “ Ppzq (394)

where n ě 2 and P is a degree r polynomial with r ě 2 distinct roots. Then, S0 admits
a minimial completion for which the dual graph at infinity is given by

‚ ‚ ‚

‚

‚

˝

˝ (395)

where ˝ is a zigzag of p´2q-curves of length n ´ 3 if n ě 3 and ˝ “ H otherwise.

13.1.2. A subfamily with a lot of endomorphisms. In [DP18] §5A, Dubouloz
and Palka study the following family of surfaces

Spnq :“ txny “ zn
´ 1u pn ě 2q. (396)

They fall inside the previous category of affine surfaces; Spnq admits a Z{nZ action
given by

@a P Z{nZ, a ¨ px,y,zq “ pε
ax,y,ε´azq (397)

where ε is a primitive n-th root of unity. The quotient Spnq{pZ{nZq is an affine surface
S1pnq of equation

S1
pnq “ tup1 ` uvq “ wn

u (398)
and the quotient map π : Spnq Ñ S1pnq is given by

πpx,y,zq “ pxn,y,xzq . (399)

We have the surprising result
126
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PROPOSITION 13.1. For every n ě 2 the affine surface S1pnq admits a strict open
embedding into Spnq given by the following formula

jpu,v,wq “ pw,vR0p´uvq,R1p´uvqq (400)

where R1ptq “ pε ´ 1qt ` 1 and R0ptq “
R1ptqn´1

tpt´1q
P Crts where ε ‰ 1 is an n-th root of

unity. Different choices of ε lead to different embeddings that are not conjugated by the
Z{nZ action over Spnq.

Hence we can define the endomorphism f : Spnq Ñ Spnq defined by f “ j ˝ π. This
yields a nonproper endomorphism of Spnq of topological degree n. We can twist this
example using the following result

PROPOSITION 13.2. Let n ě 2 be an integer. Every polynomial P P Crxs yields an
automorphism gP of Spnq defined by

gPpx,y,zq :“
ˆ

x,y `
pz ` Ppxqxnqn ´ zn

xn ,z ` Ppxqxn
˙

. (401)

13.1.3. The surface Sp2q. We treat in details the example of Sp2q “
␣

x2y “ z2 ´ 1
(

.
The Z{2{Z action is given by p´1q¨px,y,zq “ p´x,y,´zq. To find a minimal completion
of Sp2q we follow the computations of [Dub04] Example 2.23. Consider the birational
morphism

ϕ : px,y,zq P Sp2q ÞÑ px,zq P A2
Ă P1

ˆ P1. (402)

Define the following curves in Sp2q,Cε “ tx “ 0,z “ εu where ε “ ˘1,F0 :“ t0u ˆ

P1,F8 “ t8u ˆ P1 and L “ P1 ˆ t8u, then

ϕ : Sp2qzpC1 YC´1q Ñ P1
ˆ P1

zpF0 Y F8 Y Lq (403)

is an isomorphism with inverse given by

ϕ
´1

pu,vq “

ˆ

u,
v2 ´ 1

u2 ,v
˙

. (404)

The curve Cε is contracted by ϕ to p0,εq P F0. Let Fε be the exceptional divisor above
p0,εq. The lift of ϕ contract Cε to a free point on Fε that we call pε. Let X be the blow
up of p1 and p´1, then ϕ induces an open embedding ϕ : Sp2q ãÑ X as Cε is sent by ϕ to
the exceptional divisor above pε. Hence, X is a completion of Sp2q and the dual graph
of the boundary is
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‚
0

F8

‚
0
L

‚
-2
F0

‚
-2
F1

‚
-2

F́ 1 (405)

Here, we stil denote by F8,F0,L their strict transform in X . In particular, F8 is not
linearly equivalent to F0 but to F0 `F1 ` F́ 1 `ϕpC1q`ϕpC´1q which is the strict trans-
form of the "original" F0 “ t0u ˆ P1 Ă P1 ˆ P1.

PROPOSITION 13.3. The surface Sp2q satisfies QAlbpSp2qq “ 0. For every endo-
morphism f of Sp2q such that λ1p f q2 ą λ2p f q, the eigenvaluation v˚ of Theorem 11.16
satisfies cX pν˚q P L.

PROOF. Since Sp2q is birational to A2 we have that it is a rational surface, hence
Pic0pSp2qq “ 0. It suffices to show that Sp2q does not admit any nonconstant invertible
regular function. To do so, we consider the intersection form on Div8pXq “ ZF8 ‘

ZL ‘ZF0 ‘ZF1 ‘ZF́ 1. It suffices to show that it is non degenerate. The matrix of the
intersection form in the basis pF8,L,F0,F1, F́ 1qis given by

M “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
1 0 1 0 0
0 1 ´2 1 1
0 0 1 ´2 0
0 0 1 0 ´2

˛

‹

‹

‹

‹

‚

. (406)

It is inversible with inverse given by

M´1
“

1
4

¨

˚

˚

˚

˚

˝

´4 4 4 2 2
4 0 0 0 0
4 0 ´4 ´2 ´2
2 0 ´2 ´3 ´1
2 0 ´2 ´1 ´3

˛

‹

‹

‹

‹

‚

. (407)

Hence the intersection form in nondegenerate on Div8pXq which shows that QAlbpSp2qq “

0.
Therefore, we are in the condition of Theorem 11.16. Let f be a dominant endo-

morphism with λ1p f q2 ą λ2p f q. Let ν˚ be its eigenvaluation. Then, the invariant class
θ˚ P L2pSp2qq is of the form

θ˚ “ w ` µZν˚
. (408)
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with w P PicpXq X Div8pXqK. Therefore, we must have pZν˚
q2 ě 0 as w2 ď 0 and

since θ˚ is nef, we have pθ˚q2 ď pθ˚,Y q2 for every completion Y . This implies that
pZν˚,X q2 ě 0.

Now, for all prime divisor E of X at infinity, ZordE is given by a column of M´1. In-
deed, M is the matrix of the intersection form in the basis pF8,L,F0,F1, F́ 1q and there-
fore M´1 is the matrix of the intersection form in the dual basis

´

ZordF8
,ZordL ,ZordF0

,ZordF1
,ZordF́ 1

¯

.

For example ZordL “ F8 and ZordF8
“ ´F8 ` L ` F0 ` 1

2F1 ` 1
2 F́ 1. In particular, we

have that L is the unique prime divisor at infinity of X such that Z2
ordL

ě 0. This implies
that cX pν˚q cannot be a free point on a prime divisor E ‰ L otherwise we would get
pZν˚,X q2 ă 0. If cX pv˚q is a satellite point, then it cannot be F0 XFε because in that case

Zν˚,X “ λZordF0
` µZordFε

(409)

with λ,µ ą 0 and looking at the last three rows and colums of M´1 we would get
pZν˚,X q2 ă 0. Hence cX pν˚q P L or cX pν˚q “ L . □

First example of endomorphism.– The endomorphism f “ j ˝ π is equal to

f px,y,zq “
`

xz,4y,2z2
´ 1

˘

. (410)

Using the map ϕ : Sp2q Ñ A2 from Equation (402), we have that f is conjugated to

η : pu,vq P A2
ÞÑ puv,2v2

´ 1q P A2 (411)

Hence we get that λ1p f q “ λ2p f q “ 2. Consider the completion X of Sp2q defined above
with dual graph given by Equation (405). We know that the eigenvaluation ν˚ of f must
be centered on L “ P1 ˆ t8u. Therefore, we can study the local dynamics of f on L
using η. Let rU : T s, rV : W s be the homogenous coordinates of P1 ˆP1 such that u “ U

T
and v “ V

W . In homogenous coordinates we get

ηprU : T s, rV : W sq “
`

rUV : TW s, r2V 2
´W 2 : W 2

s
˘

. (412)

Consider the affine coordinates t “ T
U and w “ W

V . In particular, t “ 0 is a local equation
of F8 and w “ 0 is a local equation of L. Then, in these coordinates we have

ηpt,wq “

ˆ

tw,
w2

2 ´ w2

˙

. (413)

Hence, we get that p0,0q “ F8 X L is a fixed point. From η˚t “ tw we infer
f˚ ordF8

“ ordF8
. Hence, ordF8

is not the eigenvaluation of f because λ1p f q “ 2.
We have that L is contracted to p0,0q so ν˚ must be centered at p0,0q. We blow up
p0,0q “ F8 X L. Let rE be the exceptional divisor and let s,s1 be local coordinates at
rE X L (we still denote by L its strict transform), the blow up map is given by

πps,s1
q “ ps,ss1

q; (414)
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s1 “ 0 is a local equation of L and s “ 0 a local equation of rE. At rE X L, we get

f ps,s1
q “

ˆ

s2s1,
s1

2 ´ s2ps1q2

˙

. (415)

Thus, f ˚s “ s2s1 and therefore f˚ ord
rE “ 2ord

rE . This implies that ν˚ “ ord
rE .

Second example.– Consider Proposition 13.2 with P “ 1 and f the endomorphism
of Sp2q from the previous paragraph. Define g “ g1 ˝ f , then

gpx,y,zq “
`

xz,x2z2
` 4z2

` 4y ´ 2,x2z2
` 2z2

´ 1
˘

(416)

Let A2 Ă P1 ˆP1 with affine coordinates pu,vq and the birational morphism ϕ : Sp2q Ñ

A2. Then, g is conjugated by ϕ to

ηpu,vq “ puv,u2v2
` 2v2

´ 1q. (417)

It is an endomorphism of Sp2q of topological degree 2. By Proposition 13.3, if ν˚ is the
eigenvaluation of g, then its center must belong to L8. Consider the affine coordinates
t “ 1{u,w “ 1{v centered at F8 X L8. In these coordinates we have

ηpt,wq “ ptw,
t2w2

1 ` 2t2 ´ t2w2 q. (418)

Hence, F8 and L8 are both contracted to L8 X F8 “ p so it must be equal to cX pν˚q.
Blow up p and let E1 be the exceptional divisor. Blow up again the intersection point
of E1 and the strict transform of L8 and let E2 be the exceptional divisor. Then there
exists local algebraic coordinates pu,vq at E2 X L8 associated to pE2,L8q such that

gpu,vq “ pu3v,
1

1 ` u2p2 ´ u4v2q
q (419)

we see that the point p0,1q in these coordinates is fixed. Consider the local analytic
coordinates at this point given by pu,wq “ pu,v ´ 1q. Then,

gpu,wq “
`

u3
p1 ` wq,´2u2

` u2
ψpu,wq

˘

(420)

where ψpu,wq is a holomorphic function with ψp0,0q “ 0. We have g˚u “ u3p1 ` wq

this implies that λ1pgq “ 3 and since λ1pgq “ 3 ą λ2pgq “ 2 we have by Lemma 12.19
that ν˚ is not divisorial. Therefore, we get that ν˚ is infinitely singular and the center
of ν˚ is a free point on this completion.

13.2. An affine surface with an elliptic curve at infinity with an action by
translation

We show that the Elliptic case in Theorem 12.1 can happen. Start with a generic
(2,2,2) divisor V in P1 ˆP1 ˆP1. This is a K3 surface. It is given by one equation in the
variables px,y,zq which is of degree 2 with respect to each x,y,z. The projection on the
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plane P1 ˆ P1 induced by forgetting the coordinate x yields a 2:1 cover V Ñ P1 ˆ P1.
Indeed, we can rewrite the equation of V as

apy,zqx2
` bpy,zqx ` cpy,zq “ 0 (421)

where b,c are polynomials in y,z of degree 2 with respect to each variable. Let σx be the
involution of V that switches the folds of the cover. We can define similarly the involu-
tions σy,σz. The group generated by σx,σy,σz is Z{2Z ˚ Z{2Z ˚ Z{2Z (see [Can01a]).
Now, we restict our attention to the subgroup generated by σx,σy. Consider the family
of curves defined by the hyperplane sections Eα :“ V Xtz “ αu. The involutions σx,σy
preserve Eα for every α. Thus, for a very general parameter α the subgroup of AutpEαq

generated by σx|Eα
,σy|Eα

is isomorphic to Z{2Z ˚ Z{2Z.

PROPOSITION 13.4. For α P C very general, set E :“ Eα,X0 “ P1 ˆP1zE where we
have identified P1 ˆ P1 » P1 ˆ P1 ˆ P1Ştz “ αu. Then, X0 is a smooth affine surface
and there exists two endomorphism f ,g of X0 such that

(1) λ1p f q “ λ1pgq “ λ2p f q “ λ2pgq “ 2.
(2) f|E “ σy
(3) g|E “ σx
(4) let h “ g ˝ f , then λ1phq “ λ2phq “ 4 and h|E is a translation by a non-torsion

element.

PROOF. We look again at Example 11.14. We write the equation of E in two differ-
ent ways. There exists degree two rational fractions Ppxq,Qpxq P Cpxq,Rpyq,Spyq P Cpyq

such that the equation of E is of the form

y2
´ Ppxqy ` Qpxq “ 0 (422)

and
x2

´ Rpyqx ` Spyq “ 0 (423)

Let X “ P1 ˆP1 and let X0 “ XzE. Let k : X0 Ñ X0 be the endomorphism from Example
11.14. That is k commutes with prx and acts as z ÞÑ z2 on each fiber with 0,8 P P1

being the intersection points of E with the fiber. We let f be the endomorphism of
X0 that preserves the fibration prx and acts on each fiber p» P1q as z ÞÑ 1{z2 where 0
and 8 are the intersection points of the fiber and E. This defines an endomorphism
with λ1 “ λ2 “ 2 and f|E is an involution. Indeed, we have f 2 “ k2, therefore the
eigenvaluation of f must be ordE and λ1pk2q “ 4. The four points of E where the
discriminant with respect to y vanishes are the four indeterminacy points of f and they
are fixed points of f|E . In coordinates px,yq, f is of the form

f px,yq “

ˆ

x,
Ppxqy2 ´ 2pPpxq2 ´ 2Qpxqqy ` PpxqpPpxq2 ´ Qpxqq

y2 ´ 2Ppxqy ` pPpxq2 ´ 2Qpxqq

˙

. (424)
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It is clear that f|E “ σy|E .
Now, if we exchange the role of the coordinates x,y, we obtain an endomorphism

g with an expression similar to (424) with pRpyq,Spyqq instead of pPpxq,Qpxqq. Set
h “ g ˝ f , then λ1phq “ λ2phq “ 4. Indeed, λ2phq “ λ2p f qλ2pgq. And we have that
h˚ZordE “ g˚ f˚pZordE q “ 4ZordE `w with w P Div8pXqK. Since ZordE “ 1

8E is nef, ordE
must be the eigenvaluation of h and λ1phq “ 4.

Now, let Λ Ă C be a lattice such that E » C{Λ. An involution of E lifts to a linear
map over C of the form

z ÞÑ ´z ` b (425)
with b P C or

z ÞÑ z ` b (426)
with 2b P Λ. However, (426) is impossible for σx|E or σy|E because they admit fixed
points. So, they are both of the form (425) and we get that σx|E ˝ σy|E is a translation
of infinite order because xσx|E ,σy|Ey » Z{2Z ˚ Z{2Z. □

COROLLARY 13.5. The endomorphism g ˝ f does not admit an invariant fibration
over a curve.

PROOF. First, g ˝ f or any of its iterate cannot admit an invariant curve in X0 be-
cause pg ˝ f q|E does not admit any fixed point. Now, suppose that there exists a curve
C and a rational transformation ϕ : C 99KC such that the diagram

X0 X0

C C

g˝ f

π π

ϕ

commutes. Let C be the unique completion of C. We have the commutative diagram

X X

C C

g˝ f

π π

ϕ

.

We cannot have gpCq ě 2 or gpCq “ 0 because in both cases some iterate of ϕ has a
fixed point and its fiber would be an invariant curve in X0. Now, gpCq “ 1 is also not
possible because X is rational. Thus, we have a contradiction. □



CHAPTER 14

The automorphism case

Here we suppose that X0 is an irreducible normal affine surface that admits a lox-
odromic automorphism. In this situation, we can actually deduce a lot more from the
result of Chapter 11. In particular one can first check that X0 has to be rational, see
[DF01] Table 1 Class 5. So the condition Pic0pX0q is automatically satisfied. We
change the notation for this section, we will denote θ˚ and θ˚ by θ` and θ´ respec-
tively. So that p f ˘1q˚θ˘ “ λ1θ˘. By Proposition 11.15 and Theorem 11.16, we get
that

‚ θ`,θ´ P Weil8pX0qXL2pX0q and they are both effective.
‚ θ` “ Zν´

and θ´ “ Zν`
where ν` is the eigenvaluation of f and v´ the eigen-

valuation of f ´1.

PROPOSITION 14.1. Let X0 be a rational affine surface such that krX0sˆ “ kˆ and
let f be a loxodromic automorphism of X0, then

(1) The eigenvaluations ν`, ν´ of f and f ´1 respectively are of the same type.
(2) If λ1 P Zě0, then ν` and ν´ are infinitely singular.
(3) If λ1 P RzZě0 then ν` and ν´ are irrational.

PROOF. If the eigenvaluation was divisorial, then we would get by Lemma 12.19
that λ1 ď λ2 and this is absurd because λ1 ą 1, f being loxodromic. The dichotomy
of the type of eigenvaluation follows from Theorem 12.1 and the fact that λ1p f q “

λ1p f ´1q. □

COROLLARY 14.2. In that case, the nef eigenclasses θ´ and θ` verify

pθ
´

q
2

“ pθ
`

q
2

“ 0

and in any completion X of X0 one has pθ
˘
X q2 ą 0.

PROOF. The equalities pθ´q2 “ pθ`q2 “ 0 come from Theorem 3.28 (87). Since
the eigenvaluations are not divisorial, θ´ and θ` are not Cartier divisors by Corollary
11.4 therefore for any completion X of X0, pθ

˘
X q2 ą 0. Indeed, if pθ

˘
X q2 “ 0 then since

θ˘ is nef, we would get θ
˘
X “ θ˘. □

Let X be a completion of X0. We have a simple criterion to check whether a divisor
at infinity is contracted thanks to Proposition 12.2.

133
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PROPOSITION 14.3. Let E be a prime divisor at infinity in a completion X of X0. If
ZordE ¨ θ´ ą 0 then there exists N ą 0 such that f N contracts E to the point cX pν`q .

14.1. Gizatullin’s work on the boundary and applications

In [Giz71a], Gizatullin considers minimal completions of affine surface. That is a
completion X of X0 minimal with respect to the following property:

‚ The boundary BX X0 does not have three prime divisors that intersect at the
same point.

‚ If BX X0 has a singular irreducible component then BX X0 consists only of one
irreducible curve with at most one nodal singularity.

For such a completion ι : X0 ãÑ X , Gizatullin defines the curve Epιq as the union of the
irreducible components E of BX X0 that are contracted by an automorphism of X0 (the
automorphism depends on E).

We call a zigzag a chain of rational curves. That is a sequence pE1, ¨ ¨ ¨ ,Erq of
rational curves such that Ei ¨ Ei`1 “ 1, i “ 1, ¨ ¨ ¨ ,r ´ 1 and for all i, j such that |i ´ j| ě

2,Ei ¨ E j “ 0. In particular the dual graph with respect to the Ei’s is of the form
‚

E1
‚

E2
‚

Er´1
‚
Er

¨ ¨ ¨

We will write E1 Ź E2 Ź ¨¨ ¨ Ź Er for the zigzag defined by pE1, ¨ ¨ ¨ ,Erq.
A cycle of rational curves is a sequence pE1, ¨ ¨ ¨ ,Erq of rational curves such that

Ei ¨ Ei`1 “ 1 and E1 ¨ Er “ 1. The dual graph with respect to the Ei’s is of the form

‚E1

‚
E2‚

. .
.

. . . ‚
Er´1

‚Er

THEOREM 14.4. Let X0 “ SpeckrX0s be an irreducible normal affine surface such
that krX0sˆ “ kˆ and Pic0pX0q “ 0. Suppose that X0 admits an automorphism f with
λ1p f q ą 1. If X is a minimal completion of X0, one has Epιq “ BX X0. Furthermore we
have two mutually excluding cases

(1) λ1p f q is an integer and in that case Epιq is a zigzag.
(2) λ1p f q is irrational and Epιq is a cycle of rational curves.

Furthermore, there exists a completion Y with two distinct points p`, p´ P BY X0 and
an integer N ą 0 such that

‚ f ˘1pp˘q “ p˘.
‚ f ˘N contracts BY X0 to p˘.
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‚ f ˘1 has a normal form at p˘ given by Theorem 12.1, it is pseudomonomial or
monomial in the cycle case and of type (18) or (17) in the zigzag case.

‚ In the cycle case, this set of properties remains true if we blow up p` or p´.
‚ In the zigzag case, the set of completions above Y that satisfy these properties

is cofinal in the set of all completions above Y .
The normal form of f at p˘ is monomial in the cycle case and of the form of Theorem
12.1 case (3) in the zigzag case.

This shows Theorem E. We will prove Theorem 14.4 in §14.2 and §14.3. We end
this section with some technical result that will be useful in the proof of Theorem 14.4.

LEMMA 14.5. Let X be a completion of X0 and let E be a prime divisor at infinity
such that ZordE ¨ θ` “ 0 and E intersects some prime divisor in the support of θ

`
X , then

cX pν`q belongs to E.

PROOF. Since θ` is effective and ordEpθ`q “ 0 we get θ` ¨E ą 0 since E intersects
the support of θ`. This implies by Proposition 7.6 that cX pν`q belongs to E. □

LEMMA 14.6. Let Y be a completion of X0 and E a prime divisor at infinity of Y
such that ZordE ¨ θ` ą 0. If p P EztcX pν`qu, then for any divisorial valuation ν such
that cX pνq “ p, one has Zν ¨ θ` ą 0.

PROOF. Let Z be the blow up of Y at p. Then, θ
`
Z “ pπ˚θ

`
Y q ` crE for some c P R.

Since the center of ν` is not on rE, one has θ
`
Z ¨ rE “ 0, hence c “ 0. Now whether p is

a free point on E or a satellite point, we have Zord
rE

¨ θ` ě ZordE ¨ θ` ą 0. □

LEMMA 14.7. Let Y be a completion of X0 such that the center of ν` is the inter-
section of two prime divisors at infinity F1,F2. Then, ZordF1

¨ θ` ą 0 or ZordF2
¨ θ` ą 0.

PROOF. Recall that θ` is nef and effective. Suppose that ZordFi
¨ θ` “ 0 for i “ 1,2

and let rE be the exceptional divisor above p`. Let π : Z Ñ Y be the blow-up at p`.
Then we have

θ
`
Z “ π

˚
pθ

`
Y q ` crE

for some c P R. This implies θ` ¨ rE “ ´c ą 0 because p` was the center of ν` on Y ,
therefore c ă 0. But Zord

rE
¨θ

`
Z “ pZordF1

`ZordF2
qθ

`
Y `c “ c ă 0 and this contradicts the

fact that θ` is effective. □

PROPOSITION 14.8. For any completion Y such that cY pν`q is a free point, we have

Suppθ
`
Y “ BY X0. (427)

Hence, if ν˘ is an infinitely singular valuation, then for any completion Z, there exists
an integer N ą 0 such that f ˘NpBZX0q “ p˘.
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PROOF. Let E be the unique prime divisor at infinity such that cY pν`q P E. If
Suppθ

`
Y ‰ BY X0, there a prime divisor F at infinity such that ZordF ¨ θ` “ 0 and F X

Suppθ
`
Y ‰ H. By Lemma 14.5, we have F “ E; therefore ZordE ¨ θ` “ 0. But we have

that θ
`
Y “ λZordE for some λ ą 0 by Proposition 11.5. So pθ

`
Y q2 “ 0, but this is absurd

by Corollary 14.2.
For the second assertion, assume that ν˘ is an infinitely singular valuation. Let Z

be a completion of X0. Then, by Proposition 4.16, there exists a completion Y above Z
such that cY pν˘q is a free point. The first assertion shows that Suppθ

˘
Y “ BY X0 and so

the same is true for Suppθ
˘
Z . The fact that some iterate of f ˘1 contracts the boundary

on p˘ follows from Proposition 14.3. □

14.2. Proof of Theorem 14.4, the cycle case

In that case it was already proven by Gizatullin that BX X0 “ Epιq.

PROPOSITION 14.9 ([ÈH74, CdC19]). Let X be projective surface and U an open
subset of X such that XzU is a cycle of rational curves. Assume that XzU is not an
irreducible curve with one nodal singularity. Let g be an automorphism of U, then
the indeterminacy points of g can only be intersection points of two components of the
cycle.

COROLLARY 14.10. In the cycle case, the eigenvaluation of a loxodromic auto-
morphism must be irrational and therefore λ1 is an algebraic integer of degree 2, in
particular it is irrational.

PROOF. Proposition 14.9 shows that for any completion X of X0, p` “ cX pν`q is
a satellite point at infinity. Indeed, since θ` is nef, its incarnation in X cannot be 0.
Therefore, there exists a prime divisor E at infinity such that ZordE ¨ θ` ą 0 because θ`

is effective. Therefore, by Proposition 14.3, E must be contracted by f N to p` so it
must be an indeterminacy point of f ´N . Proposition 4.16 shows that the eigenvaluations
ν˘ are irrational. □

PROOF OF THEOREM 14.4. Corollary 14.10 shows the first part of the theorem.
We get the normal form at p˘ by blowing up the center of ν˘ enough times. Since
these are always intersection points of two prime divisors at infinity we can suppose
that BY X0 is still a cycle.

It remains to show that BY X0 is contracted by some iterate of f and f ´1. Suppose
that there exists a prime divisor E that is not contracted to p` by any iterate of f . In
particular ZordE ¨ θ` “ 0 by Proposition 14.3. By Lemma 14.5, we have that E contains
cY pν´q and f ´1 contracts E to p´. And by Lemma 14.7 and Corollary 14.10 we have
that E is the unique prime divisor at infinity that satisfy this property. Either f contracts
E to a satellite point p ‰ p` of the boundary or f is sent to a prime divisor at infinity.
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Indeed, we cannot have f pEq “ E, otherwise E is f -invariant but this contradicts that
f ´1 contracts E. If E is contracted, it cannot be contracted to p´ because it is not
an indeterminacy point of f ´1. Therefore, we have that the center of f˚ ordE is either
another prime divisor at infinity or a satellite point at infinity that is not the center of ν`.
In both case, we get f˚ZordE ¨ θ` ą 0 by Lemma 14.6 and this is a contradiction. □

14.3. Proof of Theorem 14.4, the zigzag case

14.3.1. Some technical lemmas about zigzags. We will say following [GD75,
BD11] that a zigzag Z is standard if it is of the form

Z “ F Ź E Ź Z1 (428)

where F2 “ 0,E2 ď ´1 and Z is a negative zigzag meaning that every component of Z1

has self-intersection ď ´2. Any zigzag can be put to a standard form via blow-up of
points and contractions of (-1)-curves (see [GD75], §1.7)

Following [BD11], an almost standard zigzag is a zigzag Z “ B1 Ź B2 Ź ¨¨ ¨ Ź Br
such that

(1) There exists a unique irreducible component Bk such that pBkq2 ě 0.
(2) There exists at most one component Bl such that pBlq

2 “ ´1 and in that case
we must have l “ k ˘ 1.

We need to state some technical results for the proof of Theorem 14.4, we will need
to apply them to a quasiprojective surface which is not necessarily affine. If U is a
quasiprojective surface, a completion of U is defined in the same way as the completion
of an affine surface. All the results in this Section rely heavily on Proposition 2.6 and
the Castelnuovo criterion.

LEMMA 14.11 (Proposition 3.1.3 of [BD11]). Let U be a quasiprojective surface
and X a completion of U such that XzU is an almost standard zigzag that has no
component of self intersection ´1. Let Bk be the unique irreducible component of
nonnegative self-intersection of XzU. Let g be an automorphism of U, then

(1) g has at most one indeterminacy point q on X.
(2) q has to be on Bk (if it exists).
(3) If Bk is not on the boundary of the zigzag then q must be the intersection point

of Bk with Bk`1 or Bk´1.

PROOF. Suppose that g has an indeterminacy point, then g´1 also has one and g
has to contract a curve of the zigzag. Let π : Y Ñ X be the minimal resolution of
indeterminacies of g and let rg be the lift of g. Then, the first curve contracted by rg has
to be the strict transform of Bk. So g has at least one indeterminacy point on Bk.
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There cannot be any indeterminacy point q outside of Bk because otherwise it be-
longs to components that have self-intersection ď ´2 and since the zigzag XzU con-
tains no p´1q-curve any exceptional divisor above q has to be contracted by g so q is
not an indeterminacy point.

Suppose that Bk is not on the boundary and that the indeterminacy point p of g is
not an intersection point. Then, the map π factorizes through the blow-up of p and
after contracting the strict transform of Bk, we get at infinity three prime divisors that
intersect at the same point. But this is a contradiction because rg consists only of blow
ups of point at infinity and XzU does not have three divisors that intersects at the same
point.

Finally, there cannot be more than one indeterminacy point on X . Suppose the
contrary and let p1, p2 be two indeterminacy points, they both belong to Bk. Let E1,E2
be two exceptional divisor above p1 and p2 in Y respectively. They cannot be contracted
by rg because Y is the minimal resolution of singularities of g. Therefore, their strict
transform is either a p´1q-curve or a curve with nonnegative self intersection. But this
is absurd because XzU does not contain any p´1q-curve and has only one curve of
nonnegative self-intersection. □

COROLLARY 14.12. Let X be a completion of U such that XzU is an almost stan-
dard zigzag Z and let f be an automorphism of U. Suppose that f has an indeterminacy
point that is a free point on Bk, then one of the two sides of Z can be contracted so that
Bk becomes a boundary component of the zigzag.

PROOF. Suppose that Bk is not a boundary component of the zigzag and that f
has an indeterminacy point that is a free point on Bk. Then, by Lemma 14.11, Bk´1
or Bk`1 has to be a p´1q-curve, suppose it is Bk`1. We contract it and we obtain an
almost standard zigzag and f still has an indeterminacy point that is a free point on
Bk. If Bk is on the boundary we are done, otherwise the only p´1q-curve is the strict
transform of Bk`2 and we keep contracting until Bk becomes a boundary component of
the zigzag. □

LEMMA 14.13. Let U be a quasiprojective variety and X a completion of U such
that XzU is a zigzag of type p´m1, ¨ ¨ ¨ ,´mk,´1,´1,´mk`1, ¨ ¨ ¨ ,´mrq such that for
all i,mi ě 2. Let f be an automorphism of U. Then the intersection point of the two
p´1q-curves cannot be an indeterminacy point of f .

If the zigzag is of type p´1,´2, . . . , ´2
ljhn

F

, ´1
ljhn

E

,´mk`1, ¨ ¨ ¨ ,´mrq with mi ě 2, then

F X E cannot be an indeterminacy point of f .

PROOF. Let π : Z Ñ X be a minimal resolution of indeterminacy of f : X Ñ X and
let rf : Z Ñ X be the lift of f . The first curve contracted by rf must be the strict transform
of one of the prime divisors at infinity of X . But if the intersection of the p´1q-curves
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is an indeterminacy point of f , then all the strict transforms of the prime divisors at
infinity of X have self-intersections ď ´2 and this is a contradiction.

If XzU is a zigzag Z of type p´1,´2, ¨ ¨ ¨ ,´2,´1,´mk`1, ¨ ¨ ¨ ,´mrq, suppose that
F X E is an indeterminacy point of f , then the first curve contracted by rf must be the
strict transform of the p´1q-curve on the left of the zigzag. So we can start by con-
tracting it and we get a zigzag Z1 of type p´1,´2, ¨ ¨ ¨ , ´2

ljhn

F

, ´1
ljhn

E

,´mk`1, ¨ ¨ ¨ ,´mrq

and of size #Z ´ 1. We can repeat this process until we get a zigzag of the form
p ´1
ljhn

F

, ´1
ljhn

E

,´mk`1, ¨ ¨ ¨ ,´mrq and we have that F X E cannot be an indeterminacy

point of f by the previous case, this is a contradiction. □

LEMMA 14.14. Let f be an automorphism of X0 and let X be a minimal completion
of X0 in the sense of Gizatullin. Then, f defines an automorphism of U “ pEpιqqc Ă X,
the complement of Epιq, i.e the birational map f : X 99K X does not have any indeter-
minacy point on U.

PROOF. Suppose that f admits an indeterminacy point p on some component E1 of
BX X0 with p R Epιq. Let π : Y Ñ X be a minimal resolution of indeterminacies for f and
let F : Y Ñ X be the lift of f . The fiber π´1ppq contains at least one p´1q-curve and
we claim that none of the irreducible components of π´1ppq can be contracted by F ,
indeed since E1 is not contracted, one can only contract p´1q-curves of π´1ppq but that
would contradict the minimality of Y . Therefore, the fiber π´1ppq is not affected by F
and neither are the self-intersections in the fiber. This would imply that BX X0 contains
some p´1q-curves that can be contracted and this contradicts the minimality of X .

□

COROLLARY 14.15. Let Xmin be a minimal completion of the affine surface X0. The
centers cXminpν˘q must belong to Epιq.

We will apply all the results of this section with U “ pEpιqqc Ă Xmin where Xmin is
a minimal completion of X0.

14.3.2. Elementary links between almost standard zigzags. From now on U “

pEpιqqc Ă Xmin where Xmin is a minimal completion of the affine surface X0. All the
results of §14.3.1 will be applied to the following situation. If X is a completion of U
(hence of X0) and f is a loxodromic automorphism of X0, then some positive iterate of
f contracts a component of XzU to cX pν`q. Thus, cX pν`q is an indeterminacy point of
some positive iterate of f ´1 on X .
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PROPOSITION 14.16. Let X be a completion of U such that XzU is an almost
standard zigzag, then one can find a completion Y of U with a birational map ϕ : X Ñ Y
that is an isomorphism above U such that

(1) Y zU is also an almost standard zigzag.
(2) Let rX be the blow up of X at cX pν`q, then the lift ϕ : rX 99K Y is defined at

c
rX pν`q and is a local isomorphism there.

PROOF. Let B the unique irreducible component of XzU of nonnegative self inter-
section.

Case: B is on the boundary. XzU is a zigzag of the form B Ź E Ź Z where B2 ě

0,E2 ď ´1 and Z is a negative zigzag.

‚ cX pν`q is a free point on B If E2 “ ´1, we blow up cX pν`q and then contract
the strict transform of E. Let Y be the new projective surface obtained, it
satisfies the proposition.

Suppose E2 ă ´1, If B2 ą 0 we blow up BXE to obtain a new zigzag BŹ

E 1 ŹZ1 which is still almost standard. We keep blowing up the strict transform
of B with the second component of the zigzag until B2 “ 0. After all these
blowups, let X 1 be the newly obtained projective surface, we have that X 1zU is
an almost standard zigzag of the form BŹE ŹZ where B2 “ 0,E2 “ ´1 and Z
is a negative zigzag. We blow up cX 1pν`q and let rE be the exceptional divisor,
by Lemma 14.13, the center of ν` cannot be the intersection point of rE and
the strict transform of B, therefore it is a free point of rE and we can contract
the strict transform of B. We call Y the new obtained surface it satisfies the
proposition.

‚ cX pν`q is the satellite point B X E We blow up B X E and call rE the excep-
tional divisor. If B2 ą 0 in X , then we still have an almost standard zigzag and
we call Y the new obtained surface. If B2 “ 0 in X , then by Lemma 14.13 is
a free point of rE and we can contract the strict transform of B, we call Y the
newly obtained surface.

Case: B is not on the boundary.

‚ cX pν`q is a free point of B By Corollary 14.12, one of the two sides of XzU
is contractible, so we contract it and call X1 the newly obtained surface, we
can now apply the proof of the boundary case to find Y .

‚ cX pν`q is the satellite point B X E We can suppose up to contraction that if
XzU contains a p´1q-component, it must be E. We start by blowing up cX pν`q

and let rE be the exceptional divisor.
– If B2 ą 0 in X , then we still have an almost standard zigzag and we call Y

the newly obtained surface.
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– If B2 “ 0 in X , then by Lemma 14.13 the center of ν` cannot be the
intersection of rE and the strict transform of B where rE is the exceptional
divisor. So we can contract the strict transform of B and we get an almost
standard zigzag and we call Y the newly obtained surface.

□

COROLLARY 14.17. If BX X0 is a zigzag, the eigenvaluation ν` cannot be irrational,
hence it is infinitely singular and λ1 is an integer. Furthermore, U “ X0.

PROOF. It suffices to show that the sequence of centers of ν` contains infinitely
many free points. If not, we can apply Proposition 14.16 finitely many times so that we
get a completion X of X0 such that XzU is an almost standard zigzag and the center of
ν` is always a satellite point. We show that this leads to a contradiction.

Case 1: cX pν`q “ B X E with E a component of XzU . We can suppose after con-
tractions and blow ups that B2 “ 0. We will show that we can suppose that B is a
boundary component of the zigzag. The zigzag XzU is of the form Z1 Ÿ B Ź E Ź Z.
Denote by pm1, ¨ ¨ ¨ ,mrq the type of Z1.

‚ Case m1 ě 2 Blow up B X E and call rE the exceptional divisor. The center
of ν` has to be B X rE or rE X E, but it cannot be B X rE by Lemma 14.13. So
we can contract the strict transform of B. We get a new zigzag of the form
Z1

1 Ÿ B1 Ź Z1 with m1
1 “ m1 ´ 1 and #Z1

1 “ #Z1.
‚ Case m1 “ 1 call E1 the first component of Z1. Blow up B X E. The center of

ν` is either B X rE or rE X E. Either way, we can contract the strict transform
of E1. We get a zigzag of the form Z1

1 Ÿ B Ź rE Ź E Ź Z where #Z1
1 “ #Z1 ´ 1.

We can apply this procedure recursively, it stops because the sequence p#Z1,m1q is
strictly decreasing for the lexicographical order. And we never blow down a curve that
contains the center of ν` nor do we blow down a curve to the center of ν`.

Now that we have that B is a boundary component, we can suppose that XzU is a 1-
standard zigzag. Call E the p´1q-component of XzU , we will show that Zν`

¨E “ `8.
Indeed, blow up BXE and let rE be the exceptional divisor. By Lemma 14.13, the center
of ν` has to be rE X E. If we blow up the center of ν` again we can still apply Lemma
14.13, so the center of ν` is always the intersection point of the strict transform of E
with the exceptional divisor. This implies that ν` is the curve valuation associated to
the curve E and this is absurd.

Case 2: cX pν`q “ BXC with C a component of BX X0 but CXU ‰ H. This means
that cX pν`q belongs to no other component of XzU than B. Using Lemma 14.11 we
can contract one of the two sides of the zigzag so that B is a boundary component of
the zigzag XzU , we can furthermore suppose that XzU has no p´1q-component. Call
m the self intersection of the component next to B in the zigzag, we have by assumption
m ď ´2.
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‚ Case B2 ą 0 let X 1 be the blow up of BXC and let rE be the exceptional divisor.
Then, since the strict transform of B has nonnegative self intersection X 1zU is
an almost standard zigzag. We must have that cX 1pν`q P rE and by Lemma
14.11 cX 1pν`q must be B X rE and we are back in Case 1. This leads to a
contradiction.

‚ Case B2 “ 0 Let E be the component on XzU next to B (if it exists). Let
X 1 be the blow up of B XC and let rE be the exceptional divisor. By Lemma
14.13, cX 1pν`q cannot be B X rE so it has to be rE X C. Let X2 be the blow
down of the strict transform of B. The strict transform of rE has nonnegative
self-intersection and X2zU is an almost standard zigzag and cX2pν`q “ rE XC.
Rename rE by B in X2. If E2 “ m in X , then the strict transform of E in X2

satisfies E2 “ m ` 1. We repeat this procedure until E2 “ ´1. We then blow
down E and we end up back in the case B2 ą 0 and this leads to a contradiction.

The last case to treat is if XzU is a zigzag containing only B with B2 “ 0.
We will show in that case that ν`pCq “ `8 which is a contradiction. Indeed,
let X 1 be the blow up of B XC and let rE be the exceptional divisor. Then, by
Lemma 14.13, cX 1 cannot be B X rE so it must be rE XC. Let X2 be the blow
up of rE XC and let rEp2q be the exceptional divisor. Again, by Lemma 14.13,
cX2pν`q “ rEp2q XC. By induction, we see that the centers of ν` must always
belong to the strict transform of C in every blow up, this implies that ν` is the
curve valuation associated to C and this is absurd.

Thus, ν` is not irrational. Hence, by Proposition 14.1 ν` is an infinitely singular
valuation, so we get that U “ X0 by Proposition 14.8. □

14.4. A summary and applications

We sum up the content of Theorem 14.18 in Figure 1 and 2

THEOREM 14.18. Let X0 be a normal affine surface defined over a field k such that
krX0sˆ “ kˆ and Pic0pX0q “ 0. Let f be a loxodromic automorphism of X0. Then, there
exists two unique (up to normalization) distinct valuations centered at ν`,ν´ such that
f ˘1
˚ pν˘q “ λ1ν˘. Let θ´ “ Zν`

and θ` “ Zν´
. We have that θ`,θ´ are nef, effective

and satisfy the following relations

f ˚
θ

`
“ λ1θ

`, f ˚
θ

´
“

1
λ1

θ
´ (429)

f˚θ
`

“
1
λ1

θ
`, f˚θ

´
“ λ1θ

´. (430)

Furthermore we have the following intersection relations: pθ`q2 “
`

θ´
˘2

“ 0 and
θ` ¨ θ´ “ 1.
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FIGURE 1. Dynamics at infinity of f when λ1p f q P Zě0

We can find a completion X of X0 such that if p` :“ cX pν`q, p´ :“ cX pν´q, then
(1) p` ‰ p´.
(2) some positive iterate of f ˘1 contracts BX X0 to p˘.
(3) f ˘1 is defined at p˘, f ˘1 “ p˘ and p¯ is the unique indeterminacy point of

f ˘.
(4) There exists an open neighbourhood U˘ of p˘ in XpCvq and local coordinates

at p˘ such that f ˘

|U˘ has a local normal form of (pseudo)monomial type (20)
or ((19)) if λ1p f q R Zě0 or of type (18) or (17) if λ1p f q P Zě0.

PROOF. Any completion provided by Theorem 14.4 satisfies item (1)-(4). □

PROPOSITION 14.19. Let X0 be a normal affine surface defined over k. If f is a
loxodromic automorphism of X0, then, there are no f -invariant algebraic curves in X0.

PROOF. If QAlbpX0q ‰ 0, then by Corollary 10.11 X0 » G2
m and this is known.

If QAlbpX0q “ 0, let X be a completion of X0 given by Theorem 14.18. Suppose that
C Ă X0 is an algebraic curve invariant by f . Let C be the closure of C in X . We must
have tp`, p´u X pC X BX X0q ‰ H. Indeed, C X BX X0 is not empty so let p be a point in
it. If p R tp`, p´u, then f is defined at p and f ppq “ p`. Since C is f -invariant, we get
p` P C. This means that C defines a germ of an analytic curve at p` that is invariant by
f but this is not possible by Theorem 12.1. □
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FIGURE 2. Dynamics at infinity of f when λ1p f q P RzQ

COROLLARY 14.20. If X0 is a normal affine surface defined over a number field
K and f is a loxodromic automorphism of X0, then all periodic points of f are defined
over K.

PROOF. Suppose there exists p P X0pCqzX0pKq such that f Nppq “ p. Let G :“
GalpC{Qq, then for all q P G ¨ p, we have f Npqq “ q. Since p R X0pKq, the orbit G ¨ p is
infinite and its Zariski closure G ¨ p Ă X0 ˆ SpecC has dimension ą 0. If dimG ¨ p “ 2,
then f N “ id and this is impossible because f is loxodromic. If dimG ¨ p “ 1, then
C “ G ¨ p is an f N-invariant curve of X0 ˆ SpecC. This is impossible by Proposition
14.19. □

COROLLARY 14.21. Let X0 be a normal affine surface defined over Cv such that
QAlbpX0q “ 0. Let f be a loxodromic automorphism of X0 and let X be a completion
of X0 from Theorem 14.18. If p P X0pCvq, we have two possibilities.

(1) The forward f -orbit of p is bounded.
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(2) p f nppqqně0 converges towards p`.

PROOF. Suppose that p f nppqqn is not bounded. Since XpCvq is compact, p f nppqq

has an accumulation point q P BX X0. Let U` be the open neighbourhood of p` given
by Theorem 14.18. We must have q P tp`, p´u. Otherwise, since f pqq “ p`, if f N0ppq

is sufficiently close to q, then for all N ě N0 ` 1, f Nppq P U` and q cannot be an ac-
cumulation point. Suppose that q “ p´. Let px,yq be the local coordinates at p´ over
U´ given by Theorem 14.18. Consider the norm maxp|x| , |y|q over U´. Looking at the
normal form of f , for any ε ą 0 small enough, the ball Bpp´,εq of center p´ and ra-
dius ε, with respect to this norm, is f ´1-invariant and we have f ´1Bpp´,εq Ť Bpp´,εq.
Therefore if f N0ppq P Bpp´,εq, we have p P Bpp´,εq. Letting ε Ñ 0 we get p “ p´ and
this is a contradiction. Therefore, the only accumulation point of p f NppqqN is p` and
it is the limit of this sequence.

□

14.5. Affine surfaces with a cycle at infinity

Let X0 be a normal affine surface and suppose that there exists a loxodromic au-
tomorphism f of X0 such that λ1p f q R Z. Then, by Theorem 14.4, for any minimal
completion X of X0, BX X0 is a cycle of rational curves and to study the dynamics of
a loxodromic automorphism it suffices to consider completions where the boundary
remains a cycle of rational curves.

14.5.1. The circle at infinity. Let X be such a completion and let E1, ¨ ¨ ¨ ,Er be the
irreducible components of BX X0. Define CX Ă xV8 by

CX “

r
ď

i“1

rordEi,ordEi`1s. (431)

CX consists only of quasimonomial valuations hence it is a subset of xV8

1

, the subset of
valuations of finite skewness. It can therefore be equipped with the strong topology.

PROPOSITION 14.22. For every completion X such that BX X0 is a cycle of rational
curves, one has

(1) CX “: C does not depend on X.
(2) C is homeomorphic to S1.
(3) C is characterized as follows: for every continuous embedding c : S1 ãÑ xV8,

cpS1q “ C .

PROOF. For (1) we show that if π : Y Ñ X is the blow up of a satellite point, then
CY “ CX . Let p “ E X F be the center of the blow up and let rE be the exceptional
divisor. Then, rordE ,ordF s “ rordE ,ord

rEs Y rord
rE ,ordF s and we see that CX “ CY .
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For (2), recall that the segment rordE ,ordFq is naturally a subsegment of VX pp;Eq

parametrized with the skewness function αE . By Proposition 5.31, we have that αE “

αF
´1 over pordE ,ordFq.
For (3), let c : S1 ãÑ xV8 be a continuous embedding. Suppose that cpS1q ‰ C this

means that there exists a completion X and t0 P S1 such that cpt0q is centered at a free
point p P E at infinity. Let I0 “sa,br be the largest subsegment of S1 containing t0 such
that for all s P I0,cpsq P VX pp;Eq. Because VX pp;Eq is open we must have a “ b and
cpaq “ cpbq “ ordE . Therefore c is a continuous embedding of S1 into VX pp;Eq but
this is not possible since VX pp;Eq is a tree. □

14.5.2. Farey parametrisation. Let X be a completion of X0 and let E be a prime
divisor at infinity and let p P E. A Farey parametrisation of DX ,p Y tEu is given by
the following procedure. Pick positive integers a0,b0 such that gcdpa0,b0q “ 1 and set
FarpE,a0,b0qpEq “ pa0,b0q, then do the following. Suppose that π : Y Ñ X is a comple-
tion exceptional above p such that FarpE,a0,b0qpFq has been defined for every F P Γπ,E .
Then, if q P F is a free point with respect to Γπ,E , set

FarpE,a0,b0qp
rFq “ paF ` 1,bFq (432)

where FarpE,a0,b0qpFq “ paF ,bFq. If q “ F X F 1 is a satellite point with respect to Γπ,E
then set

FarprFq “
`

a ` a1,b ` b1
˘

(433)

where FarpE,a0,b0qpFq “ pa,bq and FarpE,a0,b0qpF 1q “ pa1,b1q.

PROPOSITION 14.23. Let FarpE,a0,b0q be a Farey parametrisation of DX ,p Y tEu.

(1) Set ApE,a0,b0qpFq “ a
b where FarpE,a0,b0qpFq “ pa,bq, then A is a parametrisa-

tion of ΓE .
(2) For any F1,F2 P ΓE that are adjacent such that νF1 ă νF2 we have

a2b1 ´ a1b2 “ 1 (434)

where FarpE,a0,b0qpFiq “ pai,biq.

(3) If M “

ˆ

α β

γ δ

˙

P PSL2pZq, then M ˝ FarpFq :“ pαa ` β,γb ` δq is another

Farey parametrisation of DX ,p.

PROPOSITION 14.24. Let X be a completion of X0 and p “ E X F a satellite point
at infinity. Then, the skewness function αE is a Farey parametrisation of rordE ,νFq.

PROOF. This uses another parametrisation of the valuative tree defined in [FJ04]
called the thinness function. The thinness function AE of the valuative tree VX pp;Eq
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is defined by the Farey parametrisation starting with FarpEq “ p1,1q. The relation
between AE and αE is the following. Define the multiplicity function mE by

@ϕ P xX ,p, mEpϕq “ E ¨p tϕ “ 0u . (435)

The multiplicity of a valuation is defined as

mEpνq :“ mintmEpϕq : νϕ ě νu. (436)

and we have

AEpνq “ 1 `

ż

ν

ordE

mEpµqdαEpµq. (437)

see [FJ04] Definition 3.64. It is clear that on the segment rordE ,νF r we get that mE is
constant equal to 1. Hence, over this segment AE “ 1`αE and αE is a Farey parametri-
sation of the segment. □

PROPOSITION 14.25. Let E,F be two prime divisors at infinity and let p “ E X

F. Let aE ,bE ,aF ,bF be nonnegative integers such that aFbE ´ aEbF “ 1. If M “
ˆ

aF aE
bF bE

˙

P PSL2pZq, then

M ˝ αE (438)

is the Farey parametrisation of rordE ,ordF s such that FarpEq “ paE ,bEq and FarpFq “

paF ,bFq.

14.5.3. The Thompson group. The Thompson group is a subgroup of the group
of homeomorphism of S1 defined as follows. A homeomorphism g is in the Thompson
group if there exists two subdivisions Yr

i“1Ii,Y
r
i“1Ji of S1 into Farey intervals such

that g sends Ii to Ji and gi : Ii Ñ Ji is given by a Mobius transformation with integer
coefficients (i.e given by a matrix of PGL2pZqq. In particular, the group PGL2pZq acting
on S1 via Mobius transformations is a subgroup of the Thompson group.

THEOREM 14.26. If X0 is an affine surface such that XzX0 is a cycle of rational
curves, then every automorphism of X0 acts on C » S1 via an element of the Thompson
group.

PROOF. This is a consequence of Proposition 14.9. Let f P AutpX0q be an automor-
phism. Suppose that Y is a completion above X such that the lift F : Y Ñ X is regular.
Then, satellite points of Y must be sent to satellite points of X . Plus, by applying Theo-
rem 2.9 there exists two completions Y,Z above X such that the lift f : Y Ñ Z is regular
and at every satellite point f is monomial. Let p “ E X F be a satellite point of Y and
q “ f ppq P Z. Then, f is of the form

f px,yq “ pxayb,xcyd
q. (439)
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with ad ´ bc “ ˘1 as the determinant of the matrix of a monomial map is equal to the
topological degree and f is invertible. We get f˚νs,t “ νas`bt,cs`dt . Hence, f‚ sends the
Farey interval determined by rordE ,ordF s to another Farey interval of S1 via a Mobius
transformation. It acts as an element of the Thompson group. □

THEOREM 14.27. There is a group homomorphism AutpX0q Ñ GT hompson. The
kernel is up to finite index an algebraic torus of dimension d ď 2. And we have the
following

(1) If d “ 2, then X0 » G2
m.

(2) If X0 fi G2
m and AutpX0q contains a loxodromic element, then d “ 0. In par-

ticular, the kernel is finite and AutpX0q is countable.
(3) If d “ 1, then up to finite index

AutpX0q » Gm, or AutpX0q » Gm ˆ A (440)

where A is a solvable group.

PROOF. Let X be a completion of X0 such that BX X0 is a cycle. The kernel is
the group U1pCq of [Giz71b] where C “ BX X0. Gizatullin showed that the connected
component of U1pCq must be an algebraic torus of dimension d ď 2 and d “ 2 if and
only if X0 » G2

m. Let K “ U1pCq be the kernel.
Now, Suppose X0 fi G2

m. By [Giz71b] Proposition 1, X0 is rational, therefore we
can suppose AutpX0q Ă BirpP2q. If AutpX0q contains a loxodromic element, then §7 of
[DP12] shows that if K is infinite, then K0 must have an open orbit in X0 and therefore
dimK0 “ 2 which is a contradiction. Thus dimK0 “ 0 and K is finite, AutpX0q is
countable as GT hompson is.

Finally, if dimK0 “ 1, then AutpX0q does not contain loxodromic elements by the
same argument as in the previous paragraph and AutpX0q preserves the fibration over
the affine curve X0{{K0 “:C. Plus AutpX0q acts by conjugation on K0 by an action of al-
gebraic groups. But the group of algebraic group automorphism of K0 is t˘1u because
K0 » Gm. Therefore, up to a finite index subgroup, every element of AutpX0q com-
mutes with the element of K0. We have a group homomorphism AutpX0q Ñ AutpCqq.
Let C be the unique projective curve that is a completion of C.

If gpCq ě 2, then AutpCq is finite because C is of general type and up to finite index
AutpX0q » Gm.

If gpCq “ 1, then AutpCq is the subgroup of AutpCq that preserves CzC. This is a
finite subgroup, so up to finite index we also get AutpX0q » Gm.

Finally, if gpCq “ 0, then C » P1 and AutpCq is the subgroup of AutpP1q » PGL2pCq

that preserves P1zC. If #pP1zCq ě 3, then AutpCq is finite and we get AutpX0q » Gm up
to finite index. Otherwise, up to finite index AutpCq is solvable and AutpX0q » Gm ¸ A
where A is a solvable group. □
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14.6. An example: The Markov surface

Let k be an algebraically closed field with chark ‰ 2, let D P k and consider the
affine surface MD Ă A3

k of equation

x2
` y2

` z2
“ xyz ` D. (441)

For any D P k, MD satisfies QAlbpMDq “ 0. This is because if we consider the Zariski
closure MD of MD in P3, it is defined by the equation

T
`

X2
`Y 2

` Z2˘
“ XY Z ` DT 3. (442)

Thus, MDzMD is the triangle of lines defined by the equations tT “ 0,XY Z “ 0u. One
shows that each line has self intersection ´1, thus the matrix of the intersection form
at infinity is given by

¨

˝

´1 1 1
1 ´1 1
1 1 ´1

˛

‚ (443)

which is nondegenerate. Therefore, MD does not admit nonconstant invertible regular
functions and it admits loxodromic automorphisms, thus by Corollary 10.11 MD ‰ G2

m
and QAlbpMDq “ 0.

If D ‰ 0,4, this is a smooth affine surface. If D “ 0, M0 is a normal affine surface
with a singularity at p0,0,0q. If D “ 4, M4 is a normal affine surface with 4 singularities
at the points

p˘2,˘2,˘2q (444)
where two of the signs must be equal.

We see that each surface MD falls into the category of the surface with a cycle at in-
finity. Thus by Theorem 14.27, there is a group homomorphism AutpMDq Ñ GT hompson
with finite kernel. In the case of the Markov surface there is a very explicit description
of the automorphism group and its image in the Thompson group.

THEOREM 14.28 ([Can09]). Up to finite index AutpMDq » GL2pZq, the kernel of
AutpMDq Ñ GT hompson is a finite group of size 24 given by the permutations of the
coordinates and signs flip. The image of AutpMDq in GT hompson is exactly the group
PGL2pZq acting on S1 by Mobius transformations.

For the parameter D “ 4, the action is very explicit. The surface M4 is the quotient
of G2

m by the involution σ : pu,vq ÞÑ pu´1,v´1q. The quotient map is given by

pu,vq P G2
m ÞÑ pu ` 1{u,v ` 1{v,uv ` 1{uvq P M4. (445)

This involution has four fixed points: p˘1,˘1q which gives the four singularities of
M4. The group GL2pZq acts by monomial automorphisms on G2

m commuting with σ,
this gives the embedding GL2pZq{ ă σ ą“ PGL2pZq ãÑ AutpM4q. For more results on
the dynamics of AutpMDq and characterization of the case D “ 4, see [RR22].
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