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Abstract

The recent article [BHPT24] establishes an analog of the Tits alternative
for semigroups of endomorphisms of the projective line. The proof involves a
ping-pong argument on arithmetic height functions. Extending this method,
we obtain a uniform version of the same alternative. In particular, we show
that semigroups of End(P1) of exponential growth are of uniform exponential
growth.

1 Introduction
Let K be an algebraically closed field and let V be a projective variety over K. We
denote by End(V ) the set of endomorphisms of V defined over K, which has the
structure of a semigroup when endowed with the composition operation. Which
types of growth rate can occur for finitely generated subsemigroups of End(V ),
and how to characterize semigroups of a given growth rate? This is a natural
generalization of the study of finitely generated linear semigroups, an overview of
which can be found in [Okn98].

For any f ∈ End(V ), let PrePer(f) be its set of preperiodic points, that is,
the set of points z ∈ V (K) whose orbits under the iteration of f are finite. An
endomorphism f ∈ End(V ) is said to be polarized by an ample line bundle L if
f ∗L ∼= L⊗d for some d ∈ Z≥2. The integer d is called the algebraic degree of
f . The notion of polarized endomorphisms was introduced in [Zha95]. Such an
endomorphism is also finite (see [Ser60], and [Fak03, §5] for the case of positive
characteristic).
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The purpose of this note is to prove the following result:

Theorem 1.1. Let f1, f2 ∈ End(V ) be polarized by the same line bundle and suppose
that PrePer(f1) ̸= PrePer(f2). Then f1 and f2 generate a free semigroup of rank 2.

This theorem is proven using a ping-pong argument on height functions, which
will be introduced in Section 3. The argument used is essentially a refinement of
the methods in [BHPT24, §3], and answers Question 5.1 of the same article.

Theorem 1.1 allows us to obtain results concerning uniform independence and
uniform exponential growth for certain subsemigroups of End(V ). These results are
best stated using the following definitions:

Let S be any semigroup. Two elements of S are said to be independent if they
generate a free semigroup of rank 2. For any non-empty finite subset F ⊂ S, we
define the diameter of independence of F as

∆(F ) := inf {n ∈ Z≥1 | F ∪ F 2 ∪ · · · ∪ F n contains two independent elements}

where F n = {f1 · · · fn; fi ∈ F}. The algebraic entropy of F is defined as

Σ(F ) := lim
n→∞

1

n
log#(F ∪ F 2 ∪ · · · ∪ F n).

Note that ∆(F ) may be infinite, whereas Σ(F ) is always finite. Moreover, we have
the following inequality:

Σ(F ) ≥ log(2)/∆(F ). (1)

If S is finitely generated, its diameter of independence and its algebraic entropy are
respectively defined as

∆(S) := sup
F

∆(F ) and Σ(S) := inf
F

Σ(F )

where F ranges over all finite generating sets of S. The semigroup S is of exponential
growth if Σ(F ) > 0 for some (equivalently, for any) finite generating set F of S; it
is of uniform exponential growth if Σ(S) > 0.

In order to accomodate for automorphisms, we introduce the following notion:
f ∈ End(V ) is semi-polarized by L if f ∗L ∼= L⊗d for some d ∈ Z≥1. In particular,
we allow d = 1.

Theorem 1.2. Let V be a projective variety over an algebraically closed field K. Let
S be a finitely generated subsemigroup of endomorphsims of V , all semi-polarized
by the same line bundle. Suppose there are f1, f2 ∈ S of algebraic degree at least 2
such that PrePer(f1) ̸= PrePer(f2). Then ∆(S) ≤ 2. In particular, S is of uniform
exponential growth: Σ(S) ≥ log(2)/2.
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In the case where char(K) = 0 and V = P1, we may combine Theorem 1.2 with
[BHPT24, Proposition 4.10], along with results of E. Breuillard and T. Gelander
[BG05] in the linear case, to obtain the following

Theorem 1.3. Let S be a finitely generated subsemigroup of End(P1) over a field
of characteristic 0. Then either S is of polynomial growth, or ∆(S) < +∞. In
particular, semigroups of exponential growth in End(P1) are of uniform exponential
growth.

2 A ping-pong lemma for contractions
The notions introduced in this section are presented in greater detail in the book
[Fal85]. The setting of the book is Euclidean space, but the results still hold in the
generality in which we use them.

Let (X, d) be a non-empty complete metric space, in which we fix a base point
x0. A map α : X → X is called a contraction with ratio c ∈]0, 1[ if

∀x, y ∈ X, d(α(x), α(y)) ≤ c · d(x, y).

By Banach’s fixed point theorem, α has a unique fixed point in X. We denote by
Con(X) the set of contractions on X, a semigroup when endowed with the compo-
sition operation. For any subset F ⊂ Con(X), we denote by ⟨F ⟩ the subsemigroup
generated by F .

The attractor. Let α1, α2 be two contractions with ratios c1, c2, and let C =
{α1, α2}N. For any sequence u = (αni

)i≥0 ∈ C, the sequence ((αn0 · · ·αni
)(x0))i≥0

is Cauchy, and therefore converges to an element xu in X. If we endow C with the
product topology, the map

π : C → X, u 7→ xu (2)

is continuous: its image A is therefore a compact subset of X. The set A is called the
attractor associated with the system {α1, α2}. For i ∈ {1, 2}, we have a commutative
diagram

C C

A A

σi

π π

αi

where σi : (αn0 , αn1 , · · · ) 7→ (αi, αn0 , αn1 , · · · ). Since C = σ1(C) ∪ σ2(C), A satisfies
the self-similarity relation A = α1(A) ∪ α2(A). It is in fact the unique non-empty
compact set that satisfies this relation (see [Fal85, §8.3]).
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For any subset Y ⊂ X, we denote its diameter by diam(Y ). The one-dimensional
Hausdorff measure of Y is defined as follows (see [Fal85, §1.2]):

H1(Y ) = lim
ε→0

inf

{∑
i

diam(Ui)

∣∣∣∣∣ Y ⊂
⋃
i

Ui , 0 < diam(Ui) ≤ ε

}

Proposition 2.1. Let α1, α2 : X → X be two injective contractions with ratios
c1, c2 ∈]0, 1[. Suppose that α1 and α2 have distinct fixed points and c1 + c2 ≤ 1.
Then ⟨α1, α2⟩ is a free semigroup of rank 2.

Proof. Let A be the attractor associated with {α1, α2} and π : C → A be the map
introduced in equation (2). The first step of the proof is adapted from [BH85].

Step 1. Suppose that A is disconnected. We will prove that α1(A) ∩ α2(A) = ∅
and conclude that ⟨α1, α2⟩ is free of rank 2.

Since A is disconnected, there are non-empty compact subsets A1, A2 such that
A1 ∪ A2 = A and A1 ∩ A2 = ∅. By the compactness of A,

inf {d(x1, x2); x1 ∈ A1, x2 ∈ A2} =: δ > 0.

For u1, u2 ∈ C, let λ(u1, u2) be their largest common prefix, and consider the set
P = {λ(u1, u2); (u1, u2) ∈ π−1(A1) × π−1(A2)}. If we choose an integer n ≥ 0
such that δ ≥ (max(c1, c2))

n · diam(A), then the words in P are of length at most
n. We may therefore choose a prefix p ∈ P of maximal length, as well as a pair
(pu1, pu2) ∈ π−1(A1)× π−1(A2). If there existed an element y ∈ α1(A) ∩ α2(A), say

y = π(α1v1) = π(α2v2),

then without loss of generality, p(y) = π(pα1v1) = π(pα2v2) ∈ A1, and pu2 would
have a common prefix with either pα1v1 or pα2v2 which would be longer than p,
contradicting its maximality. We deduce that α1(A) ∩ α2(A) = ∅.

This allows us to perform a ping-pong argument. Suppose there is a pair of
distinct words w1, w2 in the alphabet {α1, α2} such that w1 = w2 in ⟨α1, α2⟩. Since
α1 and α2 are injective, left cancellation implies that α1w

′
1 = α2w

′
2 in ⟨α1, α2⟩ for

some pair of words w′
1, w

′
2. But then

α1w
′
1(A) = α1w

′
1(A) ∩ α2w

′
2(A) ⊂ α1(A) ∩ α2(A) = ∅

which is absurd. We conclude that ⟨α1, α2⟩ is free of rank 2.
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Step 2. Suppose now that A is connected. We will prove that H1(A) = diam(A)
and that α1(A) and α2(A) have an intersection of zero H1-measure. This will allow
us to perform a measurable version of the ping-pong argument above.

By the self-similarity relation that characterizes the attractor, we have for all
n ≥ 0, ⋃

w∈{α1,α2}n
w(A) = A.

Since α1 and α2 are contractions, we have

diam(α1(A)) + diam(α2(A)) ≤ c1 · diam(A) + c2 · diam(A) = (c1 + c2) · diam(A)

and more generally, for all n ≥ 0,∑
w∈{α1,α2}n

diam(w(A)) ≤ (c1 + c2)
n · diam(A).

This construction provides arbitrarily fine covers of A, so that H1(A) ≤ diam(A),
and H1(A) = 0 whenever c1 + c2 < 1.

Let x, y ∈ A be such that d(x, y) = diam(A). The map

A → [0, diam(A)], z 7→ d(x, z)

is surjective because it is continuous and A is connected. Moreover, this map is
also 1-Lipschitz, so diam(A) = H1([0, diam(A)]) ≤ H1(A) ([Fal85, Lemma 1.8]).
Note that diam(A) > 0 because the fixed points of α1 and α2 are distinct. In view
of the upper bounds on H1(A) obtained above, we must have c1 + c2 = 1 and
H1(A) = diam(A). Finally,

H1(A) ≤ H1(α1(A)) +H1(α2(A)) ≤ c1H
1(A) + c2H

1(A) = H1(A)

so H1(α1(A) ∩ α2(A)) = 0.
Suppose there is a distinct pair of words w1, w2 in the alphabet {α1, α2} such

that w1 = w2 in ⟨α1, α2⟩. As in the first step, we may assume that w1 = α1w
′
1

and w2 = α2w
′
2. Let B = w1(A) = w2(A), a connected compact subset of A.

Since α1 and α2 are injective, B has non-zero diameter and thus H1(B) > 0. But
H1(B) = H1(α1w

′
1(A) ∩ α2w

′
2(A)) = 0, which is absurd. We conclude that ⟨α1, α2⟩

is free of rank 2.

Remark 2.2. The bound c1 + c2 ≤ 1 in Proposition 2.1 is sharp. Indeed, for
n ≥ 2, let cn be the solution in ]1

2
, 1[ to the equation x + x2 + · · · + xn = 1. Then

α1 : R → R, x 7→ cnx and α2 : R → R, x 7→ cnx + 1 are injective contractions
(similitudes, even) with common ratio cn, but α1α

n
2 = α2α

n
1 . By increasing n, we

get values of cn that are arbitrarily close to 1
2
.

5



3 Proof of the Theorems
Heights. Let K be a finitely generated field, V a projective variety over K and L
an ample line bundle on V . We also fix an algebraic closure K̄ of K. If K has positive
characteristic, we may assume that it is infinite (otherwise every endomorphism
over K has the same set of preperiodic points and our theorems are vacuous). We
then fix a Weil height function hL : V (K̄) → R, whose construction is detailed
in [BG06, §2.4]. If K is of characteristic zero, we fix a Moriwaki height function
hL : V (K̄) → R, first defined in [Mor00]. Note that if K is a number field, the
Moriwaki height coincides with the classical Weil height. In both cases, the function
hL satisfies two properties:

Northcott property. The set {x ∈ V (K̄) | hL(x) ≤ a, [K(x) : K] ≤ b} is
finite for any a, b > 0.

Functoriality. If f ∈ End(V ) is defined over K and is polarized by L with
algebraic degree d, then d · hL and f ∗hL differ by a bounded function.

These constructions and their properties are also summarized in [BHPT24, §3.2].
The discussion above motivates the introduction of

HL := {h : V (K̄) → R | ∥h− hL∥∞ < +∞},

a complete metric space when endowed with the metric d(h1, h2) := ∥h1−h2∥∞. We
also define, for any endomorphism f polarized by L of algebraic degree d,

αf : HL → HL, h 7→ 1

d
f ∗h.

By the surjectivity of f : V (K̄) → V (K̄), we have

∀h1, h2 ∈ HL, ∥αf (h1)− αf (h2)∥∞ =
1

d
∥h1 − h2∥∞

so αf is an injective contraction with ratio 1
d
. By Banach’s fixed point theorem, αf

has a unique fixed point in HL which is called the canonical height hf associated
with f and L. It therefore satisfies f ∗hf = d · hf . By the Northcott property, we
have {x ∈ V (K̄) | hf (x) = 0} = PrePer(f).

Proof of Theorem 1.1. We are given two endomorphisms f1, f2 of a projective variety
V , polarized by the same line bundle L, say f ∗

i L ∼= L⊗di with di ≥ 2, and with
distinct sets of preperiodic points. We may fix a finitely generated field over which
f1, f2, V and L are defined. This allows us to define the space HL, as well as the
maps α1, α2 : HL → HL associated with f1 and f2. These are injective contractions
with ratios 1

d1
, 1
d2

≤ 1
2

and fixed points hf1 , hf2 .
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Note that the preperiodic points of a polarized endomorphism are isolated, as a
consequence of [Fak03, Corollary 2.2]. In particular, the points in PrePer(fi) defined
over our original field K coincide with the points in PrePer(fi) over K̄. Now, since
we assume that PrePer(f1) ̸= PrePer(f2), we obtain hf1 ̸= hf2 . We can therefore
apply Proposition 2.1: the semigroup generated by α1 and α2 is free of rank 2.
Finally, any relation of the form fi1 · · · fin = fj1 · · · fjm in End(V ) would imply a
relation αin · · ·αi1 = αjm · · ·αj1 . From this we conclude that f1 and f2 generate a
free semigroup of rank 2.

In order to prove Theorem 1.2, we need to adapt [BHPT24, Lemma 4.5]. For
any subset F of endomorphisms of V semi-polarized by the same line bundle, and
any d ≥ 1, we denote by Fd the set of elements of F of algebraic degree d, and by
F≥d the set of elements of F of algebraic degree at least d.

Lemma 3.1. Let S be a subsemigroup of End(V ), all of whose elements are semi-
polarized by the same line bundle. Suppose there is a generating set F of S such
that for any σ, τ ∈ F1∪{id} and any f, g ∈ F≥2, we have PrePer(σf) = PrePer(τg).
Then PrePer(w1) = PrePer(w2) for any w1, w2 ∈ S≥2.

Proof. We may assume that S≥2 is non-empty. Therefore F≥2 is also non-empty:
we fix f ∈ F≥2 and define P = PrePer(f). For any g ∈ F≥2, we may set σ =
τ = id to obtain P = PrePer(f) = PrePer(g). Similarly, for any σ = F1, we have
PrePer(σf) = PrePer(f) = P . In particular, P is both f and σf invariant, so
σ(P ) = σf(P ) = P . Let w ∈ S≥2. Then w is a product of elements of F , and thus
w(P ) = P .

Fix a finitely generated field K over which S is defined, and consider the canonical
height hf of f . We have P = {x ∈ V (K̄) | hf (x) = 0}, so by the Northcott property,
all w-orbits in P are finite. In other words, P ⊂ PrePer(w). As a result of [Fak03,
Theorem 5.1], P is Zariski-dense in V . Hence, we can apply [YZ21, Theorem 1.3,
(3) ⇒ (1)], or [Car20, Theorem A, (3) ⇒ (4)] for the case of positive characteristic,
to conclude that P = PrePer(w).

Proof of Theorem 1.2. Let S be a finitely generated subsemigroup of End(V ), all
of whose elements are semi-polarized by the same line bundle. Let F be any finite
generating set of S. If PrePer(w1) ̸= PrePer(w2) for some w1, w2 ∈ S≥2, then by
Lemma 3.1, PrePer(σf) ̸= PrePer(τg) for some σ, τ ∈ F1 ∪ {id} and f, g ∈ F≥2.
Applying Theorem 1.1, we deduce that σf and τg are independent. Since σf, τg ∈
F ∪ F 2, we have ∆(F ) ≤ 2 and thus ∆(S) ≤ 2. In particular, using inequality (1),

Σ(S) ≥ log(2)/∆(S) ≥ log(2)/2 > 0,

so S is of uniform exponential growth.
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In order to treat the linear case, we shall need the following result from E.
Breuillard and T. Gelander.

Theorem 3.2 ([BG05, Theorem 2.3]). Let K be a finitely generated field, and let
n ≥ 1. There exists a constant c(n,K) < +∞ such that for any subset F ⊂ GLn(K)
that generates a non virtually nilpotent group, ∆(F ) ≤ c(n,K).

Proof of Theorem 1.3. Let S be a finitely generated subsemigroup of End(P1) which
is not of polynomial growth. Fix a finitely generated field K over which S is de-
fined. Since constant maps in End(P1) are left-absorbing, they cannot be part of
an independent pair. In other words, ∆(S) = ∆(S≥1), so we may assume that S
contains no non-constant maps.

If S≥2 is non-emtpy, then by [BHPT24, Proposition 4.10], PrePer(f) ̸= PrePer(g)
for some f, g ∈ S≥2, and so by Theorem 1.2 we have ∆(S) ≤ 2 < +∞. Suppose
then that S only contains elements of degree 1. Let F be any finite generating set
of S. The group generated by F in PGL2(K) is not of polynomial growth, so is not
virtually nilpotent ([Wol68]). By Theorem 3.2, there exists a constant c < +∞ that
only depends on K such that ∆(F ) ≤ c. We conclude that ∆(S) ≤ c < +∞.

In particular, if S is of exponential growth, then Σ(S) ≥ log(2)/∆(S) > 0 so S
is of uniform exponential growth.

Remark 3.3. Note that in the case S≥2 ̸= ∅, the upper bound on the diameter
of independence is absolute, whereas in the linear case, it depends on the choice of
semigroup. Indeed, there is no uniform upper bound on ∆(S) for all semigroups
S ⊂ PGL2 of exponential growth (see [Bre06, Theorem 1.7]; this phenomenon only
occurs when S generates a virtually solvable, non virtually nilpotent group). On
the other hand, the existence of a uniform lower bound on Σ(S) for all semigroups
S ⊂ PGL2 of exponential growth is still unknown; in fact it would imply Lehmer’s
conjecture (see [Bre06, Question 1.8]).
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