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ABSTRACT. In 2002, the Journal für die reine und angewandte Mathematik
published an article of C. T. McMullen on the dynamics of holomorphic dif-
feomorphisms of K3 surfaces, nine years later, a second one followed; both
of them construct automorphisms of K3 surfaces with interesting dynamical
features. The following pages present some of the main developments around
the themes of research initiated in these two publications.
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INTRODUCTION

Our primary concern will be holomorphic diffeomorphisms f : X → X of
compact, complex manifolds, in particular of complex projective surfaces. When
the manifold X is projective, Chow’s theorem implies that f is an algebraic
transformation of X . Thus, for simplicity, holomorphic diffeomorphisms will
be called automorphisms and holomorphic transformations will be called endo-
morphisms.

Let X ⊂ P3
C be a smooth projective surface defined by a homogeneous equa-

tion of degree d. When d = 1, X is a plane P2
C and its automorphism group

Aut(X) is the group of linear projective transformations PGL3(C). When d = 2,
X is isomorphic to P1

C×P1
C and Aut(X) is the semi-direct product of PGL2(C)×

PGL2(C) and the involution (x,y) 7→ (y,x) permuting the two factors of P1
C ×

P1
C. When d = 3 or d ≥ 5, Aut(X) is finite. Thus, if d ̸= 4, (a) Aut(X) is a com-

plex algebraic group (with only finitely many components) and (b) the dynam-
ics of any automorphism f : X → X is well understood. The situation changes
drastically for some specific quartic surfaces, for instance for the Fermat quar-
tic defined in homogeneous coordinates by the equation x4

1 + x4
2 + x4

3 + x4
4 = 0.

Another example is mentionned by A. Weil in [58]: “Early on, he wrote, I was
intrigued by Severi’s example, by means of a quartic in P3, of a surface with
an infinite group of automorphisms related to the group of units of a real qua-
dratic field; for a while, I even hoped to find a way there of generating abelian
extensions of this field.” To this, as we shall see, one can now add that the auto-
morphisms of Segre’s quartic surface have a rich and chaotic dynamics, a fact
already suggested by Y. Manin in [44] when he studied algebraic transforma-
tions of cubic surfaces.

This quote from Weil comes from his commentary on his 1958 presentation
of K3 surfaces. A K3 surface is a compact, complex surface X with first Betti
number b1(X) = 0 and with a non-vanishing holomorphic 2-form ΩX (see [3]).
Such a 2-form can be chosen to satisfy

∫
X ΩX ∧ΩX = 1 and is then unique up

to multiplication by a complex number of modulus 1. K3 surfaces are simply
connected. They form a continuous family of surfaces and, in particular, are all
C∞-diffeomorphic to the same manifold. The first examples are smooth quartic
surfaces in P3, double covers of P2 ramified along a smooth sextic curve, and
smooth surfaces of degree (2,2,2) in P1 ×P1 ×P1. Another example is given
by Kummer’s construction. One starts with a torus C2/Λ and takes the quotient
by the involution η(x,y) = (−x,−y); the quotient is a singular complex analytic
manifold, but its minimal desingularization is a K3 surface (it is projective if,
and only if the torus is projective, which depends on Λ). As this example shows,
K3 surfaces are not all projective. But all are Kähler.
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There is a classification of compact complex surfaces by Enriques and Ko-
daira, and of projective surfaces over algebraically closed field of arbitrary char-
acteristic by Bombieri and Mumford: K3 surfaces occupy a central position in
both classifications.

Understanding the dynamical features of automorphisms of K3 surfaces is
at the heart of the article of McMullen published in 2002 in the Journal für
die reine und angewandte Mathematik, and of its sibling published in the same
journal in 2011 (see [46, 48]). Instead of focusing on their precise content, I will
survey two of the main questions addressed by McMullen: which values can be
taken by the topological entropy of automorphisms of complex surfaces, or by
dynamical degrees of birational maps? Can one find examples of intermingled
dynamical features that is, surfaces in which regions with chaotic dynamics and
regions with tame dynamics coexist?

1. FROM TOPOLOGICAL ENTROPY TO DYNAMICAL DEGREES

1.1. Topological entropy. Consider a continuous transformation f : X → X
of a compact metric space X . The orbit of a point x ∈ X under the dynamics
generated by f is the sequence defined recursively by x0 = x and xn+1 = f (xn);
thus, xn = f n(x) where f n denotes the n-th iterate of f . In other words, X is the
phase space, time takes discrete values n ∈ N, and f determines the evolution
of the system over time; one speaks of the discrete dynamical system generated
by f .

As an example, take f to be the transformation of the unit circle

S1 = {z ∈ C ; |z|= 1} (1)

defined by f (z) = zd , where d is some integer ≥ 2. Writing z = exp(2iπθ) with
θ ∈ R/Z, this transformation reads θ 7→ dθ mod(1). The orbit of z is finite if
and only if its angle θ is rational; it is dense if and only if the d-adic expansion
θ = ∑i≥1 cid−i corresponds to a sequence (ci) ∈ {0,1, . . . ,d −1}N that contains
every finite sequence. Thus, finite orbits, dense orbits, and orbits with a closure
homeomorphic to a Cantor set coexist; in any non-empty open subset of S1, one
finds starting points whose orbits realize any of these three possibilities. As a
consequence, the behavior of an orbit is highly sensitive to the precise value of
its initial condition, i.e. to the starting point x.

Topological entropy is a way to measure the complexity of such a system.
To define it, we fix a distance dist on X which is compatible with its topology.
Then, for any ε > 0 and t ≥ 1, we count the number of orbits that can be dis-
tinguished at scale ε during a period of observation t. To make this precise, we
say that two points x and y are (t,ε)-distinguishable if

dist( f n(x), f n(y))> ε (2)
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for some 0 ≤ n < t and we define the number of orbits N(t,ε) as the maxi-
mal number of elements in a subset of X made of points which are pairwise
distinguishable in time ≤ t (this number is finite because X is compact). The
quantity

h( f ;ε) = limsup
t→+∞

1
t

log(N(t,ε)) (3)

gives the exponential growth rate of N(t,ε) as the period of observation goes to
+∞. And the topological entropy is obtained by making finer and finer obser-
vations:

htop( f ) = lim
ε→0

h( f ;ε). (4)

This quantity is non-negative and does not depend on the initial choice of dis-
tance dist. When X is a manifold and f is Lipschitz, htop( f )≤ dim(X) log(Lip( f )).
In the case of f (z) = zd on the unit circle, one gets easily htop( f ) = log(d).

1.2. Theorems of Yomdin and Gromov. Assume now that X is a compact
and connected manifold, and denote its cohomology groups by

H∗(X ;Z) =
dim(X)⊕

k=0

Hk(X ;Z). (5)

Then, f induces an endomorphism f ∗ of H∗(X ;Z) which preserves each factor
Hk(X ;Z). Taking real coefficients, H∗(X ;R) becomes a finite dimensional real
vector space. Given any norm ∥ · ∥ on End(H∗(X ;R)), the spectral radius of
f ∗ is defined by

ρ( f ∗) = lim
n→+∞

∥ ( f ∗)n ∥1/n (6)

= max{|λ| ; λ ∈ C is an eigenvalue of f ∗ on H∗(X ;C)} . (7)

Y. Yomdin proved in 1986 (see [59, 37]) that a C∞-transformation f of a
compact manifold X satisfies htop( f )≥ log(ρ( f ∗)), a result that had been con-
jectured by M. Shub around 1974. One can get a similar lower bound by looking
at the action of f on the fundamental group of X , even when f is just continuous
(see [16, 43]). On the other hand, in 1976, M. Gromov had obtained an upper
bound for htop( f ) when

• X is a compact Kähler manifold. (That is, X is a compact complex
manifold which admits at least one Kähler form κ, see [52].)

• f is a holomorphic transformation of X .

Combining Yomdin’s and Gromov’s theorems, we obtain the following state-
ment.
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Theorem 1.1 (Gromov-Yomdin). The topological entropy of a holomorphic
transformation f of a compact Kähler manifold X is equal to the logarithm
of the spectral radius of the linear map f ∗ : H∗(X ;R) → H∗(X ;R). That is,
htop( f ) = log(ρ( f ∗)).

This is an amazing theorem: it provides a close formula for a quantity which
is usually extremely hard to estimate and it shows that the entropy is constant
along holomorphic deformations (Xt , ft).

1.3. Dynamical degrees. The proof of Gromov’s upper bound gives more than
just htop( f ) ≤ logρ( f ∗) (see [38]). To describe it, we endow X with the Rie-
mannian metric induced by some fixed Kähler form κ. In a first step, Gromov
introduces the iterated graph Γ( f ;n) =

{
(x, f (x), . . . , f n−1(x)) ; x ∈ X

}
⊂ Xn

and proves that

htop( f )≤ limsup
n→+∞

1
n

log(vol(Γ( f ;n))) (8)

where the volume is computed with respect to the product metric on Xn. This
relies on the fact that complex analytic subsets of Kähler manifolds are minimal
in the sense of Riemannian geometry1. In particular, we have the extraordinary
fact that the iterated graphs Γ( f ;n) are always the "geometrically simplest rep-
resentatives" of their homology classes in Xn.

The second step is a computation of vol(Γ( f ;n)). To describe it, recall that
the cohomology group of a compact Kähler manifold comes with a Hodge de-
composition: for each integer k between 0 and 2dimC(X),

Hk(X ;C) =
⊕

p+q=k

H p,q(X ;C) (9)

where H p,q(X ;C) is the Dolbeault cohomology group of (closed forms of) type
(p,q). The Kähler form κ is of type (1,1) and its exterior powers κp are of
type (p, p). The main input is Bishop’s theorem that says that the volume of
a complex analytic subset Y ⊂ X of dimension ℓ is equal to the integral of κℓ

over Y ; thus, it is also equal to the product [Y ] · [κ]ℓ between the classes of Y in
H2ℓ(X ;Z) and of κℓ in Hℓ,ℓ(X ;C). Gromov applies this theorem in Xn together
with Künneth’s formula, and computes vol(Γ( f ;n)) as an intersection product
that involves only the action of f ∗ on H∗(X ;C) and exterior powers of κ. Since
[κp] ∈ H p,p(X ;C), one gets

ρ( f ∗) = max
p

λp( f ) (10)

where λp( f ) is the spectral radius of f ∗ on H p,p(X ;C).

1This means that a small C1-smooth perturbation Vε of a complex submanifold V in a Kähler
manifold will always have a volume larger than or equal to the volume of V .
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Example 1.2. Consider an endomorphism g of Pm(C). It can be defined in
homogeneous coordinates by m+ 1 homogeneous polynomial functions gi ∈
C[z0, . . . ,zm] of the same degree d and with no non-trivial common zeros:

g[z0 : . . . : zm] = [g0(z0, . . . ,zm) : · · · : gm(z0, . . . ,zm)]. (11)

Each cohomology group Hk(Pm(C);Z) is either trivial (when k is odd) or cyclic
(when k = 2p is even) and the action of g∗ on H2p(Pm(C);Z) is given by mul-
tiplication by dp. In particular, the topological degree of g is dm, it is the largest
eigenvalue of g∗, and

htop(g) = log(degtop(g)) = m log(d). (12)

For instance, if g(z) ∈ C(z) is a rational fraction, viewed as an endomorphism
of the Riemann sphere C = P1(C), its topological entropy is the logarithm of
its degree.

1.4. Meromorphic transformations and dynamical degrees. Gromov’s in-
equality
htop( f )≤maxp logλp( f ) can be extented to meromorphic transformations. The
first issue is to define topological entropy when f has indeterminacy points, the
second is to define the spectral radii λp( f ). For topological entropy, the idea
is to focus on orbits that never visit the indeterminacy locus (for this we refer
to [40]). Let us describe the definition of λp( f ) when f : X 99K X is a dominant
meromorphic transformation of a compact Kähler manifold.

The graph of f provides a correspondence Γ f ⊂ X ×X such that the projec-
tions π1(x,y) = x and π2(x,y) = y are surjective; π1 : Γ f → X is a bimeromor-
phic map, while the topological degree of π2 coincides with the one of f . A
differential form α on X can be pulled back to Γ f by π2 and then pushed for-
ward as a current by π1. This defines a linear operator f ∗α = (π1)∗π∗

2α, which
induces a linear transformation of H∗(X ;Z) preserving the Hodge decomposi-
tion. Note, however, that if g : X 99K X is a meromorphic map, ( f ◦g)∗ usually
differs from g∗ ◦ f ∗. For instance, the involution s : P2(C) 99K P2(C) defined
by s[x0 : x1 : x2] = [x1x2 : x2x0 : x0x1] acts on H2(P2(C);Z) by multiplication by
2; but s◦ s = id acts by multiplication by 1 (not by 4).

With such a definition at hand, the p-th dynamical degree of f is defined by

λp( f ) = lim
n→+∞

∥ ( f n)∗H p,p(X ;C) ∥
1/n (13)

where ∥ · ∥ is any norm on End(H p,p(X ;C)). The existence of this limit and the
following properties are obtained in [29].

(1) λp( f ) = λp(ϕ
−1 ◦ f ◦ϕ) for any bimeromorphic map ϕ : Y 99K X ;
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(2) For any Kähler form κ on X ,

λp( f ) = lim
n→+∞

(∫
X
( f n)∗κ

p ∧κ
dim(X)−p

)1/n

(14)

where ( f n)∗κp and the integral are computed on the complement of the
indeterminacy locus of f n. In particular, this limit does not depend on
κ.

(3) The sequence p 7→ λp( f ) is log-concave, that is

log(λp( f ))≥ 1
2

log(λp−1( f ))+
1
2

log(λp+1( f )) (15)

for any 1 ≤ p ≤ m−1.
T. C. Dinh and N. Sibony proved in [29] that the upper bound

htop( f )≤ max
p

log(λp( f )) (16)

still holds for dominant meromorphic transformations of compact Kähler mani-
folds. On the other hand, one cannot expect equality as in Theorem 1.1 (see [40]
for a simple example).

1.5. Rational transformations of projective varieties. When X is projective,
one can replace κ in Property (2) above by a hyperplane section H of X and
the integral of ( f n)∗κp ∧ κdim(X)−p in Equation (14) by the intersection prod-
uct (( f n)∗H p ·Hdim(X)−p). Doing so, the definition of λp( f ) makes sense any
rational transformation f , defined over any field k:

λp( f ) = lim
n→+∞

(
( f n)∗H p ·Hdim(X)−p

)1/n
. (17)

This is consistent with our initial definition when k = C, and Properties (1)
to (3) are still satisfied in this context (see [27, 56]). Moreover, maxp λp( f )
is equal to the limit of ∥ [Γ f n] ∥1/n where Γ f n is the graph of f n in X × X ,
[Γ f n ] is its numerical class and ∥ · ∥ is any norm on the space of numerical
classes. Thus, dynamical degrees are basic invariants describing the asymptotic
complexity of the n-th iterate f n. When k is a local field and f is regular, f
defines a continuous transformation of the compact space X(k). It turns out
that the topological entropy of f on X(k) is always bounded from above by
logmaxλp( f ) (see [34] for a better statement), but this upper bound is usually
sharp (see Figure 1 below, and [51]).

The first question we shall look at, in the next sections, is: what are the pos-
sible values of λ1( f ) when f is an automorphism or a birational transformation
of a surface?
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2. FROM ENTROPY TO SALEM AND PISOT NUMBERS

Let f be a dominant rational transformation of a closed Riemann surface
X . Then f is an endomorphism and its dynamical degrees are λ0( f ) = 1 and
λ1( f ) = degtop( f ); in particular, they are positive integers and htop( f ) is equal
to log(degtop( f )). When the genus of X is ≥ 2, f is an automorphism of fi-
nite order. Endomorphisms of elliptic curves C/Λ are induced by affine maps
z 7→ az+b, and their dynamical features are well understood. Endomorphisms
of P1 provide some of the most interesting examples of dynamical systems
(see [50, 1]); subgroups of Aut(P1) = PGL2(C) are central to topology, geom-
etry, and dynamics, but individually, each automorphism is just a homography
z 7→ (az+ b)/(cz+ d). Thus, the study of invertible algebraic transformations
and of dynamical degrees really starts in dimension 2.

We shall see that in this dimension Salem and Pisot numbers play an impor-
tant role.

2.1. Salem and Pisot numbers [12]. A Pisot number is a real algebraic integer
λ > 1, the Galois conjugates of which are all in the open unit disk. A Salem
number is a real algebraic integer λ > 1, the Galois conjugates of which are all
in the closed unit disk, with at least one of them on the unit circle. The minimal
polynomial of a Salem number is reciprocal and its degree is even; in particular,
1/λ is one of the conjugates of λ. We include reciprocal quadratic integers into
Pisot numbers ([46] makes a different choice).

R. Salem proved that Pisot numbers form a closed subset of R, and C. L.
Siegel proved that the smallest Pisot number is the root λ ≃ 1.324717 of the
cubic equation t3 = t + 1. On the other hand, the set of Salem numbers is not
closed (every Pisot number is a limit of Salem numbers on both sides) and a
famous conjecture of D. Lehmer asks whether there is a Salem number below
the Lehmer number λ10 ≃ 1.17628, which is given by the unique root > 1 of

t10 + t9 − t7 − t6 − t5 − t4 − t3 + t +1 = 0. (18)

More generally, we shall denote by λd the smallest Salem number of degree d
(d even). This number is well defined; indeed, one sees easily that Pisot and
Salem numbers of degree ≤ d, for any fixed d, form a discrete subset of R.

2.2. Intersection form. Let X be a compact Kähler surface. Let qX denote
the intersection form on H2(X ;Z). On H1,1(X ;R), by the Hodge index the-
orem, qX is non-degenerate and of signature (1,m) where 1 + m = h1,1(X);
thus, its orthogonal group is isomorphic to O1,m(R). The Kähler classes satisfy
qX([κ], [κ

′])> 0 and the set Kah(X) of all Kähler classes is contained in exactly
one component, denoted by Pos+(X), of the set {u∈H1,1(X ;R) ; qX(u,u)> 0}.
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We denote by NS(X) the Néron-Severi group of X , defined as the Z-module
of all Chern classes of holomorphic line bundles on X . Its rank is the Picard
number ρ(X). For projective surfaces defined over some field k, one can replace
NS(X) by numerical classes of divisors, and Pos+(X) by the component of the
cone qX(u,u)> 0 containing ample classes.

2.3. Dynamical degrees are algebraic numbers. The group Aut(X) acts lin-
early on H2(X ;Z) and preserves qX . In particular, it acts by isometries on
H1,1(X ;R), and it preserves the Kähler cone. If f is an automorphism with
positive entropy, f ∗ has an eigenvalue λ1( f )> 1 on H1,1(X ;R), and the corre-
sponding isometry is loxodromic [54]:

(a) f ∗ has an eigenvalue λ1( f ) > 1, another one λ1( f )−1 < 1, and its re-
maining eigenvalues α ∈ C have modulus 1;

(b) the multiplicity of λ1( f ) is 1, and the corresponding eigenspace E+
f is

a line contained in the isotropic cone of (qX)|H1,1(X ;R); one can write
E+

f = RΘ
+
f for some Θ

+
f in the boundary of the Kähler cone of X ;

(c) if u ∈ Pos+(X), the sequence λ1( f )−n( f n)∗(u) converges towards a
non-zero multiple of Θ

+
f as n goes to +∞.

Analogous objects E−
f , Θ

−
f are associated to λ1( f )−1. If κ is some fixed Kähler

form on X , Θ
+
f and Θ

−
f can be chosen to satisfy

qX(Θ
+
f ,Θ

−
f ) = 1 and qX(Θ

±
f , [κ]) = 1. (19)

With such a choice, λ1( f )−n( f n)∗u converges towards qX(u,Θ−
f )Θ

+
f in Prop-

erty (c).
If Ω is a non-zero holomorphic 2-form on X ,

∫
X Ω∧Ω > 0; thus qX(v,v) is

a positive definite Hermitian form on H2,0(X ;C), and the image of Aut(X) in
GL(H2,0(X ;C)) is contained in a compact group. The same holds for H0,2(X ;C)
and, consequently, Property (a) extends to the action of f ∗ on H2(X ;C).

Since f ∗ preserves H2(X ;Z), we see that λ1( f ) is an algebraic integer of de-
gree ≤ b2(X) with Galois conjugates equal to 1/λ1( f ) or of modulus 1. In other
words, λ1( f ) is a Salem number of degree ≤ b2(X) or a reciprocal quadratic
integer. By Kronecker’s Lemma, the eigenvalues of f ∗ that are not Galois con-
jugate to λ1( f ) are roots of unity.

This analysis has been extended to birational transformations by J. Diller and
C. Favre. If f is a birational transformation of a projective surface X , defined
over an algebraically closed field k, they find a birational model ϕ : Y 99K X
of X such that fY := ϕ−1 ◦ f ◦ϕ satisfies ( f ∗Y )

n = ( f n
Y )

∗ for all n ≥ 1, where
f ∗Y is defined as in Section 1.4. Then, λ1( f ) coincides with the eigenvalue of
the linear operator f ∗Y on the Néron-Severi group NS(X). The intersection form
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is not invariant, but qX( f ∗Y u, f ∗Y u) ≥ qX(u,u) if the class u ∈ NS(X) is big and
nef. This inequality turns out to be sufficient to show the following theorem
(see [28] and [14]).

Theorem 2.1. Let f : X 99K X be a birational transformation of a compact
Kähler surface (resp. a projective surface defined over an algebraically closed
field k). Then,

(1) λ1( f ) is equal to 1, to a Salem number or to a Pisot number;
(2) if λ1( f ) is a Salem number, there is a birational model ϕ : Y 99K X such

that the map fY := ϕ−1 ◦ f ◦ϕ is an automorphism of Y .

This result is specific to invertible transformations of surfaces [8, 9]: tran-
scendental dynamical degrees appear for non-invertible maps (resp. varieties of
dimension ≥ 3).

Remark 2.2. For automorphisms of projective surfaces in arbitrary character-
istic, λ1( f ) was defined in Section 1.5 using hyperplane sections; equivalently,
λ1( f ) is the spectral radius of f ∗ on NS(X). Algebraic geometry provides other
cohomology groups - for instance étale ℓ-adic, de Rham, or crystalline coho-
mologies - hence also new concepts of dynamical degrees. H. Esnault and
V. Srinivas proved in [33] that they all coincide (the characteristic polynomial
of f ∗ is always the product of the minimal polynomial of λ1( f ) and cyclotomic
polynomials).

3. POSSIBLE ENTROPIES, POSSIBLE DYNAMICAL DEGREES

We now arrive to one of the main topics initiated in [46] and [48]: among
Pisot and Salem numbers, which ones are realized as dynamical degrees of
automorphisms of surfaces? For complex surfaces, the problem is to describe
the possible values taken by the topological entropy of automorphisms. We
shall enlarge the point of view by considering also birational transformations,
defined over any algebraically closed field; in other words, we want to describe
the dynamical spectrum

Λ = {λ ∈ R ; λ is the dynamical degree λ1( f )

of a birational transformation of a surface}.
Elements of Λ larger than 1 are Pisot or Salem numbers. As we shall see below,
many Pisot and Salem numbers are not in Λ, and the structure of this set is
somewhat mysterious.

3.1. The classification of surfaces. The existence of an automorphism with
positive entropy on a compact complex surface X imposes strong constraints
on the geometry of X . This can be stated in two ways (see [22, 24, 25]).
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(1) If X is a compact complex surface with an automorphism of positive en-
tropy, then X is a blow up of P2, of a torus C2/Λ, of a K3 surface, or of an
Enriques surface2; moreover, in the last three cases, the automorphism comes
from an automorphism of the torus, the K3 surface, or the Enriques surface.
Thus, one only needs to study automorphisms of rational surfaces, tori, and K3
surfaces to understand automorphisms with positive entropy.

(2) If X is a projective surface over an algebraically closed field k with a bi-
rational transformation f such that λ1( f )> 1, then X is birationally equivalent
to a rational surface, an abelian surface, a K3 surface or an Enriques surface.
Moreover, any birational transformation of an abelian surface (resp. a torus), a
K3 surface, or an Enriques surface is in fact an automorphism. Thus, to describe
the possible values of λ1( f ) one only needs to look at birational transformations
of P2, automorphisms of tori, and automorphisms of Enriques and K3 surfaces.

3.2. The lowest dynamical degrees.

Theorem 3.1 (McMullen). The Lehmer number λ10 is the smallest dynamical
degree larger than 1 realized by birational transformations of compact Kähler
surfaces. It is realized by an automorphism of a non-projective K3 surface,
by an automorphism of a projective K3 surface, and by an automorphism of a
rational (hence projective) surface.

This statement concatenates Theorem 2.1(2) and the main results of [46, 45,
47, 49]. As a byproduct, log(λ10) is the minimal positive entropy for automor-
phisms of compact complex surfaces. For projective K3 surfaces, examples of
automorphisms with λ1( f ) = λ10 have been found over any algebraically closed
field k of characteristic ̸= 2,3,7 (see [19]).

The table below shows the smallest dynamical degree for the different types
in the classification of Enriques and Kodaira (see [48, 53]). For surfaces not
birationally equivalent to one of this table, λ1( f ) = 1 for every birational trans-
formation of f : X 99K X .

Type of surface Minimal dynamical degree > 1

rational Lehmer number λ10 ≃ 1.17628
Abelian λ4 ≃ 1.72208, root of t4 − t3 − t2 − t +1

compact torus λ6 ≃ 1.40126, root of t6 − t4 − t3 − t2 +1
(non-)projective K3 Lehmer number λ10 ≃ 1.17628

Enriques λE ≃ 1.59234, root of t6 − t4 −2t3 − t2 +1

2An Enriques surface X is, by definition, the quotient of some K3 surface X ′ by a fixed point
free involution. The surface X ′ is the universal cover of X , and automorphisms of X lifts to
automorphisms of X ′.
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This provides a complete description of the bottom of the dynamical spec-
trum Λ; its structure above λ10, and in particular above its first accumulation
points, is more mysterious.

3.3. The case of K3 surfaces. If X is a K3 surface, Bir(X) coincides with
Aut(X) and, as shown above, the dynamical degree of any loxodromic auto-
morphism f : X → X is a root of a quadratic or Salem polynomial of degree at
most 22 = b2(X), and at most the Picard number ρ(X) when X is projective.
More precisely,

• if X is projective over a field of characteristic 0, then ρ(X) ≤ 20 hence
degλ1( f )≤ 20;

• McMullen constructs automorphisms of K3 surfaces for which the de-
gree of λ1( f ) is 22.

• in any characteristic p > 0, ρ(X) reaches 22 for the so-called super-
singular K3 surfaces. There are automorphisms of K3 surfaces in any
characteristic p > 0 for which degλ1( f ) = 22; those do not lift to char-
acteristic 0 (see [14, 17, 32, 55] for instance).

One does not know yet which ones of the Salem numbers of degree ≤ 22 are re-
alized by automorphisms of K3 surfaces, but a complete answer is provided by
S. Brandhorst if we stabilize the question by allowing taking powers (see [18]):

Theorem 3.2 (Brandhorst). Let λ be a reciprocal quadratic number or a Salem
number of degree at most 20. Then, there is an integer k ≥ 1, a complex projec-
tive K3 surface X, and an automorphism f of X such that λ1( f ) = λk.

Tori, non-projective K3 surfaces, and Enriques surfaces are also dealt with
in [18].

3.4. The case of rational surfaces. Let π : X → P2 be any surface obtained by
blowing up the projective plane m times. Pulling back a line from P2 to X and
taking its class, one obtains an element e0 ∈ NS(X). Pulling back the excep-
tional divisors of the blow-ups, one obtains m additional classes ei ∈ NS(X).

Denote simply by ( · ), instead of qX( , ), the intersection form on NS(X).
The classes e j form an orthogonal basis of NS(X) for the intersection form, with
(e0 ·e0) = +1 and (ei ·ei) =−1 if 1 ≤ i ≤ m. The vectors r0 = e0−e1−e2−e3
and ri = ei − ei+1 for 1 ≤ i ≤ m−1, satisfy (r j · r j) = −2. The reflection with
respect to the orthogonal complement r⊥j is s j : u 7→ u+ (u · r j)r j, and these
reflections generate a subgroup Wm ⊂ O1,m(Z) isomorphic to the Coxeter group
attached to the diagram of type Em. Moreover, Wm preserves the canonical class
km = −3e0 +∑i≥1 ei and its action on k⊥m is the Tits representation of Wm. By
a theorem of M. Nagata, the image of Aut(X) in GL(NS(X)) is contained in
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Wm. In particular, dynamical degrees of automorphisms of rational surfaces are
eigenvalues of elements of Wm (for some m).

Theorem 3.3 (T. Uehara [57]). A real number λ ≥ 1 is the dynamical degree
of some automorphism of some complex rational surface if and only if there is
an integer m ≥ 1 and an element w in the Coxeter group Wm such that λ is the
largest eigenvalue of w in its Tits representation.

The integer m is arbitrary large and the numbers λ obtained in this way do
not form a discrete subset of R. But some structure naturally shows up: the
dynamical spectrum Λ is a well ordered subset of R (every decreasing sequence
of dynamical degrees is finite), its order type is ωω, and every number in this set
is a limit of dynamical degrees of automorphisms (see [14, 15]). For instance,
the golden mean γ = (1+

√
5)/2 is the dynamical degree of the birational map

(x,y) 7→ (y,xy); it is a limit from below of Pisot and Salem numbers contained
in Λ; and there is an ε0 > 0 such that ]γ,γ+ ε0[ contains infinitely many Pisot
and Salem numbers, none of which is a dynamical degree.

4. PERIODIC POINTS AND THE CANONICAL VOLUME FORM

Let X be a compact Kähler surface and f an automorphism of X with positive
topological entropy. Let Θ

+
f and Θ

−
f be the eigenvectors of f ∗ in H1,1(X ;R)

constructed in Section 2.3, with the normalization from Equation (19) for some
Kähler form κ. Then, one easily shows that there is a unique closed positive
current T+

f (resp. T−
f ) of type (1,1) such that [T+

f ] = Θ
+
f (resp. [T−

f ] = Θ
−
f ).

These currents satisfy f ∗T±
f = λ1( f )±1T±

f and the value of T±
f on a smooth

2-form ω can be obtained dynamically as the limit

⟨T±
f |ω⟩= lim

n→+∞

1
λ1( f )n

∫
X

ω∧ ( f±n)∗κ. (20)

Moreover, locally T±
f = ddcg± for some continuous function, which implies

that the product µ f = T+
f ∧T−

f is a well defined probability measure; this mea-
sure is invariant by f . Thus, Hodge’s theory and complex analysis provide a
natural f -invariant probability measure. As we shall see now, µ f describes the
equidistribution of periodic points of f .

Denote by Per( f ;n) the set of periodic points of f of period n: by definition
x ∈ Per( f ;n) if f n(x) = x and f k(x) ̸= x for 1 ≤ k ≤ n− 1. This algebraic set
might contain a curve, and one denotes by Per0( f ;n) the finite subset of its
isolated points. A point q ∈ Per( f ;n) is a saddle if the eigenvalues α and β of
the tangent map D f n

q satisfy |α| > 1 > |β|. Saddle periodic points are isolated
(for, if 1 is not an eigenvalue of D f n

q the graph of f n in X ×X is transverse
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FIGURE 1. This, is the real part of a K3 surface with an automor-
phism acting on it. On the left, distinct colors correspond to distinct
orbits. Some are trapped in invariant (KAM) islands; some might a
priori fill densely a subset of positive Lebesgue measure. On the right,
the curve is (the real part of) a stable manifold W s(q), for some saddle
fixed point q. [COURTESY C. T. MCMULLEN AND V. PIT]

to the diagonal). Averaging on the set of isolated periodic points one gets a
probability measure

µn =
1

|Per0( f ;n)| ∑
q∈Per0( f ;n)

δq. (21)

Averaging over the set Pers( f ;n) of saddle periodic points, one gets a second
probability measure µs

n. The following equidistribution result is proven in [23,
24, 30].

Theorem 4.1. Let X be a complex projective surface and f be an automorphism
of X with positive entropy htop( f ) = log(λ1( f )). Then, |Per0( f ;n)| ∼ λ1( f )n

and the sequence of probability measures (µn) converges towards µ f as n goes
to +∞. Similarly |Pers( f ;n)| ∼ λ1( f )n and (µs

n) converges towards µ f .

In particular, there are infinitely many isolated periodic points, something
that can be derived from the Lefschetz fixed point formula (see [24]), and most
of them are saddle periodic points. Moreover, saddle periodic points are dense
in the support of µ f , a compact set with positive Hausdorff dimension. On the
support of µ f , the dynamics is chaotic: the behaviour of an orbit ( f n(x)) is
sensitive to the initial condition x, as in the prototypical example z 7→ zd from
Section 1.1. To each saddle periodic point q are associated a stable manifold
W s(q) and an unstable manifold W u(q); they are f n-invariant, where n is the



DYNAMICAL DEGREES, ENTROPY, AND FATOU SETS 15

period of q; and they are parametrized by injective holomorphic entire curves
ξs/u : C → X such that f n ◦ξs(z) = ξs(βz) (resp. f n ◦ξu(z) = ξu(αz)) where α

and β are the eigenvalues of D f n
q . Stable manifolds intersect unstable ones, and

create horseshoe pictures (see [21, 43]).
As explained in the introduction, a K3 surface admits a natural holomorphic

2-form ΩX which is uniquely determined up to a scalar factor of modulus 1.
Thus, the volume form volX = ΩX ∧ΩX is preserved by Aut(X). Kummer sur-
faces are the only one for which µ f = volX (see [26, 35]), and natural questions
arise. What are the possible stochastic properties of volX with respect to loxo-
dromic automorphisms? What can be said on µ f and its support? The study of
Fatou sets is related to these questions.

5. FATOU SETS AND SIEGEL BALLS

If f is an automorphism of a complex projective surface X with positive
entropy, its dynamics is chaotic. At least, this is true on the support of the
invariant measure µ f . But it might occur that this support be a “thin” subset of
X , for instance with empty interior. Note, however, that Figure 1 is misleading:
in this example µ f (X(R)) = 0, most periodic points are not real, and it might
very well be the case that the support of µ f be equal to X(C). The notion of
Fatou sets, described below, is the right one to understand the complement of
the support of µ f or, more accurately, the complement of the supports of T+

f
and T−

f .

5.1. The Fatou set. Let f : X → X be a dominant endomorphism of a com-
pact complex manifold X . A point x ∈ X is in the Fatou set Fat( f ) if there
is a compact neighborhood U of x on which the iterates f n : U → X form a
normal family in the sense of Montel. In other words, the family (( f n)|U) is
pre-compact: for any subsequence (( f ni)|U), one can extract a further subse-
quence that converges uniformly to a holomorphic map U → X ; equivalently,
on U the differential D f n is bounded by a constant that does not depend on n.
The Fatou set is open and f−1(Fat( f )) = Fat( f ). The connected components
of Fat( f ) are called Fatou components.

By definition, the dynamics of f on Fat( f ) is tame; for instance, Fat( f ) = X
if and only if f is invertible and contained in a compact subgroup of Aut(X);
in that case, there is an f -invariant Riemannian metric on X , in particular the
entropy of f vanishes. Thus, in the most interesting cases, Fat( f ) is a proper
subset of X , but it is usually hard, on a given example, to determine whether
Fat( f ) is empty or not.

When f is an endomorphism of P1(C) of degree d ≥ 2, a celebrated theorem
of D. Sullivan says that
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(1) the orbit f n(V ) of every Fatou component V is ultimately periodic: there
is a Fatou component U = f m(V ) such that f ℓ(U) = U , for some m,
ℓ≥ 1;

(2) an f -invariant Fatou component is either a Siegel disk, a Herman ring,
or an immediate attracting bassin.

By a Siegel disk, we mean a domain U ⊂ P1(C) for which there is a biholo-
morphic mapping ϕ : D→U such that ϕ−1 ◦ f ◦ϕ is a rotation of the unit disk.
Similarly, a Herman ring is a rotation domain which is biholomorphic to an an-
nulus {z ∈ C ; a < |z|< b}. Siegel disks contain fixed points (periodic Siegel
disks contain periodic points), but Herman rings do not. If q is a fixed point
such that | f ′(q)| < 1, its attracting bassin is the open set of points z ∈ P1(C)
such that f n(z) converges towards q as n goes to +∞; its immediate attracting
bassin is the component containing q.

Such a classification of Fatou components does not hold in higher dimension
or for dynamics over complete non-archimedean fields. In particular, there are
examples of Fatou components V such that the f n(V ) are parirwise disjoint
(see [2, 10, 11, 31]). (On a K3 surface, the volume form volX being invariant,
Poincaré’s recurrence theorem implies that every Fatou component is periodic.)

5.2. Constructing Siegel balls. Let f be a holomorphic transformation of a
complex manifold X of dimension m. One way to construct a Fatou component
is to conjugate locally the dynamics of f to the dynamics of a rotation around
a fixed point of f . More precisely, let us denote by Bm the unit ball of Cm

with respect to the standard Hermitian metric, and by Um the unitary group. A
Siegel ball for f is an open subset U ⊂ X such that (i) f (U) =U and (ii) there
is a biholomorphism ϕ : Bm → U that conjugates f to a rotation R ∈ Um. The
center of the ball is fixed by the rotation, the point x = ϕ(0) is fixed by f , and
Dϕ0 conjugates R to D fx. Conversely, assume f fixes a point x ∈ X and D fx is
conjugate to a rotation R ∈ Um by some linear change of coordinates. One can
then try to conjugate f itself to R on some neighborhood of x. Let α1, . . ., αm
be the eigenvalues of D fx, repeated according to their multiplicities (they all
have modulus 1). By definition, the αi are multiplicatively independent if the
only solution to α

k1
1 · · ·αkm

m = 1 with k = (k1, . . . ,km) ∈ Zm is the trivial solution
k = 0; and they satisfy a Diophantine condition if

|αk1
1 · · ·αkm

m −1| ≥ C
(max |ki|)M (22)

for some positive constants C and M and for all k ∈ Zm \ {0}. The following
theorem is due to C. L. Siegel and S. Sternberg (see [41]).

Theorem 5.1. Let g be a germ of holomorphic diffeomorphism of Cm fixing the
origin 0. Suppose the eigenvalues {αi}m

i=1 of Dg0 have modulus 1 and satisfy
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a Diophantine condition. Then, there is a holomorphic diffeomorphism ϕ from
Bm to an open and g-invariant neighborhood U of 0 in Cm that conjugates g to
the rotation R(z1, . . . ,zm) = (α1z1, . . . ,αmzm).

Coming back to holomorphic transformations of complex manifolds, we see
that if f fixes x, D fx is conjugate to a rotation R, and its eigenvalues satisfy
a Diophantine condition, then f is locally conjugate to R on a neighborhood
of x and Fat( f ) contains x. When a Siegel ball U is obtained in this way, the
images of the coordinate hyperplanes by the conjugacy ϕ are f -invariant; in
their complement, each orbit is dense in an m-dimensional real torus.

6. SIEGEL BALLS IN COMPACT KÄHLER SURFACES

Theorem 6.1. There are examples of automorphisms f : X → X of compact
complex surfaces with positive entropy and an invariant Siegel ball. Such ex-
amples can be constructed on rational surfaces and K3 surfaces.

Examples on rational surfaces are constructed in [6, 47], while [46] and [42]
concern non-projective K3 surfaces. On the other hand, it is an open question
to decide whether such an example can be constructed on a projective K3 or an
Enriques surface (see below Section 7). As explained in Sections 4 and 5, this
theorem provides examples of automorphisms with positive entropy for which
the support of µ f is not equal to X , so that periodic points are not dense.

6.1. Proof strategy. Here is how the proof goes for K3 surfaces.

The Torelli theorem. The Torelli theorem for K3 surfaces provides a way to
construct a K3 surface X and an automorphism f of X from Hodge theoretic
data.

The complex structure of X determines
• a Hodge decomposition H2(X ;Z)⊗Z C=H2,0(X)⊕H1,1(X)⊕H0,2(X),

and
• a Kähler cone Kah(X) ⊂ H1,1(X ;R) (made of all classes of Kähler

forms).
Both are invariant under the action of Aut(X). Conversely, the Torelli theorem
says that if an element F of GL(H2(X ;Z)) preserves qX , the Hodge decompo-
sition, and the Kähler cone, then F = f ∗ for a unique f ∈ Aut(X).

To understand the second constraint, a description of Kah(X) is necessary.
Firstly, Kah(X) is contained in Pos+(X) (see Section 2.2). Secondly, if C ⊂ X
is a complex curve and κ is a Kähler form, then

∫
C κ > 0; thus, identifying

the homology class of C with its Poincaré dual [C] ∈ H1,1(X ;R), we obtain
qX([κ], [C])> 0. Conversely, those constraints determine completely Kah(X): a
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class in Pos+(X) that intersects every curve positively is a Kähler class. More-
over, by the Hodge index theorem one only needs to test this last property on
irreducible curves E with negative self-intersection and, on a K3 surface, such a
curve is a smooth rational curve with qX(E,E) =−2; conversely if u is a class
with qX(u,u) = −2 then u or −u is a sum of classes of smooth rational curves
of self-intersection −2.

To sum up, each class u ∈ NS(X) with qX(u,u) = −2 determines a hyper-
plane u⊥. The arrangement of hyperplanes obtained in this way cuts Pos+(X)
into a certain (finite or infinite) number of chambers, and Kah(X) is one of these
chambers.

Surjectivity of the period map. Since all K3 surfaces are diffeomorphic they
all have the same cohomology group. With the intersection form qX , it turns
out that H2(X ;Z) is isometric to the unique, even, unimodular lattice3 II3,19 of
rank 22 and signature (3,19). For simplicity, we denote this lattice by (L,qL)
and identify (H2(X ;Z),qX) with it. Doing so, the Hodge decomposition gives
a decomposition L⊗Z C = L2,0⊕L1,1⊕L0,2 into three complex subspaces such
that L2,0 = L0,2, dim(L1,1) = 20, and qL is of signature (1,19) on L1,1(R). In a
nutshell, the surjectivity of the period map tells us that all such decompositions
come from an identification of L with H2(X ;Z) for some K3 surface.

The Lefschetz formulas. In the holomorphic setting, the Lefschetz fixed point
formula is the conjonction of several equalities due to M. Atiyah and R. Bott,
one for each integer ℓ≤ dim(X) (see [36]).

Here is a consequence of those formulas when f is an automorphism of a K3
surface constructed from the Torelli theorem, that is from f ∗ ∈ GL(H2(X ;Z)).
Suppose the largest eigenvalue λ1( f ) of f ∗ is a Salem number of degree 22.
Then, 1 is not an eigenvalue of f ∗ on H2(X ;Z), thus f does not fix any curve
and its fixed points are isolated. If the trace of f ∗ is −1, the classical Lefschetz
formula tells us that f has a unique fixed point x0 ∈ X . The determinant of D fx0

is the eigenvalue δ of f ∗ on H2,0(X) and its trace can then be obtained from
the holomorphic Lefschetz formulas. In particular, the eigenvalues α and β of
D fx0 are algebraic numbers determined by δ. For good choices of δ, they have
modulus 1.

As a general fact (assuming λ1( f )> 1), δ not being a root of unity is equiva-
lent to δ being Galois conjugate to λ1( f ) and to X not being a projective surface.

3This lattice II3,19 is isometric to 3U ⊕ 2E8(−1) where U is Z2 with the intersection form
2xy and E8(−1) is the lattice or rank 8 associated to the graph of type E8, but with sign reversed
to be negative definite.
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Since we supposed deg(λ1( f )) = 22 = b2(X), we are in this situation. More-
over, the characteristic polynomial of f ∗ is the minimal polynomial of λ1( f ),
so the trace of f ∗ is the trace of λ1( f ).

Gel’fond-Baker independence of logarithms. If the algebraic numbers α and
β are multiplicatively independent4, a theorem of N. I. Feldman, based on the
Gel’fond-Baker method, implies that they satisfy a Diophantine condition, as
in Equation (22) (see [13] for a good introduction). From Theorem 5.1, we
conclude that f has a Siegel ball centered at x0.

Lattices. So, doing some reverse engineering, one starts with a Salem number
λ and one wants to construct a triple made of

(a) an F ∈ GL(L;Z) preserving the intersection form qL and with spectral
radius λ;

(b) an F-invariant decomposition L⊗Z C = L2,0 ⊕L1,1 ⊕L0,2 into complex
subspaces such that L2,0 = L0,2, dim(L1,1) = 20, and the signature of qL
on L1,1(R) is (1,19);

(c) in {v ∈ L1,1(R) ; qL(v,v)> 0}, an F-invariant component K of the com-
plement of the hyperplanes {u⊥ ; u ∈ L1,1 ∩L, qL(u,u) =−2}.

Then, the surjectivity of the period map and the Torelli theorem will provide an
automorphism f of a K3 surface X with f ∗ ≃ F and H1,1(X)≃ L1,1.

On top of that, one wants λ to have degree 22 and trace −1 and additional
conditions on the eigenvalue δ of F on L2,0 to insure that D fx0 has multiplica-
tively independent eigenvalues of modulus 1. This is achieved in [46] with a
beautiful blend of arithmetic and lattice theoretic arguments. In the construc-
tion of this example, Property (c) follows directly from deg(λ) = 22. Indeed,
since 22 is the rank of L, every proper F-invariant subspace of L⊗Z Q is trivial.
Thus, L1,1 ∩L is empty and (c) is void.

So, the main issues are to construct adequate Salem numbers5 and then an
isometry F of L with characteristic polynomial equal to the minimal poly-
nomial S(t) of λ. Once λ is given, the lattice is chosen to be the ring of
integers Z[t]/⟨S(t)⟩, F is multiplication by t, and the quadratic form qL is
qL(x,y) = Tr(axy) where Tr is the trace function and a ∈ Q[t]/⟨S(t)⟩ is cho-
sen to obtain an even, unimodular form of signature (3,19). (See [4, 5, 39]

4McMullen shows in Theorem 6.1 and Lemma 7.5 of [48] that (1) the trace of D fx0 is
(1+δ+δ2)/(1+δ), (2) α and β have modulus 1 if and only if δ+δ−1 > 1−2

√
2 ≃−1.82842,

and (3) α and β are multiplicatively independent as soon as some Galois conjugate of δ+δ−1

is < 1−2
√

2.
5It is known now, by a theorem of J. McKee and C. Smyth, that every integer is the trace

of some Salem numbers. The existence of infinitely many Salem numbers with trace −1 was a
recent result of C. Smyth in 2002.
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for a complete description of characteristic polynomials of isometries of even
unimodular lattices.)

6.2. Other examples. To get Theorem 3.1 for K3 surfaces, one starts with
the Lehmer number λ10. The natural lattices associated to it have rank 10 =
deg(λ10) (for instance, λ10 is an eigenvalue of the Coxeter element in W10, the
group introduced in Section 3.4). Thus, to construct the pair (L,F) one needs
to glue such a lattice M of rank 10 to an additional lattice M′ of rank 12 (on
which F will act as a finite order isometry), so as to get a lattice isometric
to L. In general, M ⊕M′ is not unimodular and a finite index extension M ⊕
M′ ⊂ L is needed in the gluing construction: this is a classical but tricky part,
perfectly described in §2-4 of [48]. What makes the construction significatively
more delicate is the Constraint (c) related to the invariance of a candidate K
for the Kähler cone. Typically, the hyperplanes u⊥, where u ∈ L1,1 ∩L satisfies
qL(u,u) =−2, cut the positive cone into infinitely many chambers and one must
tune the construction of L, F , and the decomposition L2,0 ⊕L1,1 ⊕L0,2 in such
a way that at least one chamber be F-invariant. This problem is at the heart
of [48, 49, 53].

This does not end the story. As the reader certainly noticed, even if the end
product is an automorphism f : X → X of a projective surface, the surjectivity
of the period map is an implicit statement that does not provide explicit models
of X . Finding an embedding X ⊂ PN

C, equations defining X , and formulas for f
is an additional, nontrivial task. It has been achieved in [19] for one of the most
interesting examples with λ1( f ) = λ10 (see also [7, 20, 49]).

7. AN OPEN QUESTION

Does there exist an automorphism f of a complex projective K3 surface X
such that λ1( f ) > 1 and the set of its periodic points is not dense in X(C) for
the euclidean topology?

A stronger formulation would be to require Fat( f ) ̸= /0. An example with a
Siegel ball would provide a positive answer, but Siegel balls are much harder
to construct because on a projective K3 surface the Jacobian determinant δ of
any automorphism is a root of unity, which implies multiplicative dependence
of the eigenvalues at periodic points.

One dimensional Herman rings suggest another strategy, which leads to the
following questions. Does there exist a loxodromic automorphism f : XR → XR
of a real projective K3 surface such that X(R) is non-empty and contained in
Fat( f )?
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