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ABSTRACT. We classify complex projective surfaces X with an automorphism f
of positive entropy for which the unique measure of maximal entropy is absolutely
continuous with respect to the Lebesgue measure. As a byproduct, if X is a K3
surface and is not a Kummer surface, the periodic points of f are equidistributed
with respect to a probability measure which is singular with respect to the canonical
volume of X . The proof is based on complex algebraic geometry and Hodge theory,
Pesin’s theory and renormalization techniques. A crucial argument relies on a new
compactness property of entire curves parametrizing the invariant manifolds of the
automorphism.

1. INTRODUCTION

1.1. Automorphisms and absolutely continuous measures. Let X be a complex
projective surface and f be an element of Aut(X), the group of holomorphic diffeo-
morphisms (also called automorphisms) of X . By definition, the dynamical degree
of f is equal to the spectral radius λ f of the linear endomorphism

f ∗ : H2(X ;Z)→ H2(X ;Z),

where H2(X ;Z) denotes the second cohomology group of X . As a root of the char-
acteristic polynomial of f ∗ : H2(X ;Z)→H2(X ;Z), λ f is an algebraic integer; more
precisely, λ f is equal to 1, to a reciprocal quadratic integer, or to a Salem number
(see [27]). By the Gromov-Yomdin theorem, the topological entropy htop( f ) of an
automorphism f is equal to the logarithm of its dynamical degree:

htop( f ) = log(λ f ).

Thus, f has positive entropy if, and only if there is an eigenvalue λ of f ∗ with |λ|> 1.
If it exists, such an eigenvalue is in fact unique and is equal to λ f .

When the entropy is positive, there is a natural f -invariant probability measure µ f

on X which satisfies the following properties (see [8, 23]):

• µ f is the unique f -invariant probability measure with maximal entropy; it is
ergodic;
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• if µn denotes the average on the set of isolated fixed points of f n, then µn

converges towards µ f as n goes to +∞.

Thus µ f encodes some of the most interesting features of the dynamics of f . In
the sequel we shall call µ f the measure of maximal entropy of f .

The main goal of this paper is to study the regularity properties of this measure.
Since it is ergodic, it is either singular or absolutely continuous with respect to the
Lebesgue measure: by definition, it is singular if there exists a Borel subset A of X
satisfying µ f (A) = 1 and vol(A) = 0 (the volume is taken with respect to any smooth
volume form on X); it is absolutely continuous if µ f (B) = 0 for every Borel subset
B⊂ X such that vol(B) = 0.

Classical examples of pairs (X , f ) for which µ f is absolutely continuous are de-
scribed in Section 1.2 below. The first examples are linear Anosov automorphisms
of complex tori; one derives new examples from them by performing equivariant
quotients under finite group actions and by blowing up periodic orbits. Our main
theorem, stated in Section 1.3, establishes that these are the only possibilities.

This theorem allows to exhibit automorphisms of complex projective surfaces for
which µ f is singular (see Section 1.4). All previously known examples were con-
structed on rational surfaces whereas here, we focus on K3 surfaces. A complex
projective surface X is a K3 surface if it is simply connected and if it supports a
holomorphic 2-form ΩX that does not vanish. Such a form is unique up to multipli-
cation by a non-zero complex number; thus, if one imposes the constraint∫

X
ΩX ∧ΩX = 1,

the volume form volX := ΩX ∧ΩX is uniquely determined by the complex structure
of X ; in particular, this volume form is Aut(X)-invariant. A byproduct of our main
theorem is a characterization of the pairs (X , f ) for which µ f = volX ; this occurs if
and only if µ f is absolutely continuous. For instance, if X is not a Kummer surface
(see below), the periodic points of any automorphism f with λ f > 1 are equidis-
tributed with respect to a measure µ f which is singular with respect to the canonical
volume volX ; this means that the measure provided by algebraic geometry is “or-
thogonal” to the measure which is dynamically meaningful.

Example 1.1. A good example to keep in mind is the family of (smooth) surfaces
of degree (2,2,2) in P1

C× P1
C× P1

C. Such a surface X comes with three double
covers X → P1

C×P1
C, hence with three holomorphic involutions σ1, σ2, and σ3. If

X is generic in the family of such surfaces, the composition f = σ1 ◦σ2 ◦σ3 is an
automorphism of X of positive entropy and µ f is singular with respect to volX .



DYNAMICS ON COMPLEX SURFACES 3

1.2. Examples with an absolutely continuous measure of maximal entropy.

1.2.1. Abelian surfaces. Let A be a complex abelian surface and let volA denote the
Lebesgue (i.e. Haar) measure on A, normalized by volA(A) = 1. Every f ∈ Aut(A)
preserves volA, and the measure of maximal entropy µ f is equal to volA when λ f > 1
(see [23, 70]). Complex abelian surfaces with automorphisms of positive entropy
have been classified in [53]. To describe the simplest example, start with an elliptic
curve E = C/Λ0 and consider the product A = E ×E. The group GL2(Z) acts on
C2 linearly, preserving the lattice Λ = Λ0×Λ0 ; thus, it acts also on the quotient
A = C2/Λ. This gives rise to a homomorphism M ∈ GL2(Z) 7→ fM ∈ Aut(A). The
spectral radius of ( fM)∗ on H2(A;Z) is equal to the square of the spectral radius of
M. In particular, λ f > 1 as soon as the trace of M satisfies |tr(M)|> 2.

1.2.2. Classical Kummer surfaces. Consider the complex abelian surface A=E×E
as in Section 1.2.1. The center of GL2(Z) is generated by the involution η =−Id; it
acts on A by

η(x,y) = (−x,−y).

The quotient X ′ = A/η is a singular surface. Its singularities are sixteen ordinary
double points; they can be resolved by simple blow-ups, each one giving rise to a
smooth rational curve with self-intersection −2. Denote by X this minimal regular
model of X ′. Since GL2(Z) commutes to η, one gets an injective homomorphism
M 7→ gM from PGL2(Z) to Aut(X). The topological entropy of gM (on X) is equal
to the topological entropy of fM (on A). The holomorphic 2-form ΩA = dx∧ dy
is η-invariant and determines a non-vanishing holomorphic 2-form ΩX on X . The
volume form ΩX ∧ΩX is invariant under gM: when λgM > 1, the probability measure
corresponding to this form coincides with the measure of maximal entropy µgM .
Hence, again, the measure of maximal entropy is absolutely continuous. The surface
X is a Kummer surface and provides a famous example of K3 surface (see [4]).

Remark 1.2. There are explicit families (Xt , ft)t∈D of automorphisms of K3 surfaces
such that (Xt , ft) is a Kummer example if and only if t = 0 (see [26], §8.2). However,
Kummer surfaces A/η with A a complex torus and η(x,y) = (−x,−y) form a dense
subset of the moduli space of K3 surfaces, see [4].

1.2.3. Rational quotients. Consider the complex abelian surface A = E ×E, as in
Section 1.2.1, with the lattice Λ0 = Z[τ] with τ2 = −1 or τ3 = 1 (and τ 6= 1). The
group GL2(Z[τ]) acts on A and its center contains

ητ(x,y) = (τx,τy).
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The quotient space X ′ = A/ητ is singular and rational. Resolving the singularities,
one gets examples of smooth rational surfaces X with automorphisms h of positive
entropy. The image of the Lebesgue measure on A provides a probability measure on
X which is smooth on a Zariski open subset of X and has integrable poles along the
exceptional divisor of the projection π : X → X ′; hence, it is absolutely continuous
with respect to the Lebesgue measure (see [26]). Note that most of these examples
h : X → X are rigid (see [55], Corollaries 4.11 and 4.20)

1.3. Main theorem. The examples of Section 1.2 lead to the following definition
(see [25, 33, 83]).

Definition 1.3. Let X be a complex projective surface and let f be an automorphism
of X. The pair (X , f ) is a Kummer example if there exist

• a birational morphism π : X → X ′ onto an orbifold X ′,
• a finite orbifold cover ε : Y → X ′ by a complex torus Y ,
• an automorphism fX ′ of X ′ and an automorphism fY of Y such that

fX ′ ◦π = π◦ f and fX ′ ◦ ε = ε◦ fY .

If (X , f ) is a Kummer example with λ f > 1 one easily proves that µ f is absolutely
continuous with respect to the Lebesgue measure.

Main Theorem. Let X be a complex projective surface and f be an automorphism
of X with positive entropy. Let µ f be the measure of maximal entropy of f . This
measure is absolutely continuous with respect to the Lebesgue measure if and only
if (X , f ) is a Kummer example.

This answers a question raised by the first author in his thesis [22] and solves
Conjecture 3.31 of McMullen in [71]. Moreover, the surfaces X that can occur are
specified by the following theorem (see [29, 30]).

Classification Theorem. Let X be a complex projective surface and f be an auto-
morphism of X of positive entropy. If (X , f ) is a Kummer example, then:

(1) either X is a rational surface, or there is a birational morphism π : X → Y
onto an abelian or a K3 surface Y , and there is an automorphism fY of Y
such that π◦ f = fY ◦π.

(2) If X is a K3 surface, it is a classical Kummer surface, i.e. the minimal
resolution of the quotient of an abelian surface A by the involution η(x,y) =
(−x,−y); in particular, the Picard number of X is not less than 17.

(3) If X is rational, then λ f is contained in Q(ζl) where ζl is a primitive root of
unity of order l = 3, 4, or 5.
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Remark 1.4 (see [12, 14, 69, 82]). Consider a holomorphic endomorphism g of the
projective space Pk

C of topological degree > 1. There is also an invariant probability
measure µg that describes the distribution of periodic points and is the unique mea-
sure of maximal entropy; if µg is absolutely continuous with respect to the Lebesgue
measure, g is a Lattès example: it lifts to an endomorphism of an abelian variety via
an equivariant ramified cover. This statement is analogous to our main theorem. It
is due to Zdunik for k = 1 and to Berteloot, Loeb and the second author for k ≥ 2.

Remark 1.5 (see [25], Théorème C). There are examples of rational transforma-
tions h : X 99K X of K3 surfaces with topological degree > 1 such that the topo-
logical entropy of h is positive, h preserves a unique measure of maximal entropy
µh, µh coincides with the canonical volume form volX = ΩX ∧ΩX on X , but h is
not topologically conjugate to a Kummer-Lattès example. In particular the Kummer
and Lattès rigidities do not extend to non injective rational mappings. (The rigidity
is recovered if one imposes that the topological degree of h is equal to the square of
the spectral radius of h∗ on H1,1(X ;R), see [25].)

Remark 1.6. In [48], Filip and Tosatti extend our Main Theorem to all compact
Kähler surfaces. The only case not covered by our theorem is the one of non-
projective K3 surfaces. The main new input of [48] is a beautiful control of the
Lyapunov exponents which is obtained via the existence of a Ricci flat metric on
any K3 surface (see § 3.1 in [48]). Our strategy does not apply in the non-projective
case: it makes use of results on the geometric intersection of currents which are not
available in the non-projective case (see § 5.1 in [46], and the end of § 6.3 in [27]).

1.4. Applications.

1.4.1. Lyapunov exponents and Hausdorff dimension. The first consequence of our
main theorem relies on theorems due to Ledrappier, Ruelle and Young.

Corollary 1.7. Let X be a complex projective surface and f be an automorphism
of X with positive entropy logλ f . Let λs < λu denote the negative and positive
Lyapunov exponents of the measure µ f . The following properties are equivalent

(1) µ f is absolutely continuous with respect to the Lebesgue measure;
(2) λs =−1

2 logλ f and λu =
1
2 logλ f ;

(3) for µ f -almost every x ∈ X,

lim
r→0

logµ f (Bx(r))
logr

= 4;

(4) (X , f ) is a Kummer example.
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If X is a K3 surface or, more generally, if there is an f -invariant volume form on
X , the Lyapunov exponents of µ f are opposite (λu = −λs), and one can replace the
second item by either one of the two equalities.

1.4.2. K3 and Enriques surfaces. Recall that the Néron-Severi group NS(X) of
a complex projective surface X is the subgroup of the second homology group
H2(X ;Z) generated by the homology classes of algebraic curves on X . The rank
of this abelian group is the Picard number ρ(X). When ρ(X) is equal to 1, the
entropy of every automorphism f of X vanishes (see [26, 27]); thus, the first inter-
esting case is ρ(X) = 2. Examples of such K3 surfaces with an infinite group of
automorphisms are described in [32, 79].

Corollary 1.8. Let X be a complex projective K3 surface with Picard number 2.
Assume that the intersection form does not represent 0 and −2 on NS(X). Then

(1) Aut(X) contains an infinite cyclic subgroup of index at most 2;
(2) if f ∈ Aut(X) has infinite order its entropy is positive and its measure of

maximal entropy µ f is singular with respect to the Lebesgue measure.

An Enriques surface Z is the quotient of a K3 surface by a fixed point free involu-
tion. If π : X→ Z is such a quotient, the canonical volume form volX of X determines
a smooth Aut(Z)-invariant volume form volZ on Z. Thus, Enriques surfaces have a
natural invariant volume form that is uniquely determined by the complex structure.

If X is an Enriques surface, every global section of the canonical bundle KX van-
ishes identically; thus, there is no dominant morphism from X to a K3 or abelian
surface, and the Classification Theorem provides the following corollary.

Corollary 1.9. If f is an automorphism of an Enriques surface with positive entropy,
then µ f is singular with respect to the Lebesgue measure. In particular, the periodic
points of f do not equidistribute with respect to the canonical volume form of the
surface.

Let now Z be a general Enriques surface. Up to finite indices, Aut(Z) is isomor-
phic to the group of isometries of the lattice H2(Z;Z) ' U⊕ (−E8) (see [5, 35]);
thus, it contains automorphisms f with positive topological entropy and Corol-
lary 1.9 implies that µ f is singular. On the other hand, the volume form volZ is the
only probability measure that is invariant under the action of the full group Aut(Z),
as shown in [24].

1.4.3. Dynamical degrees and rational surfaces. For the next statement, recall that
the dynamical degree λ f is an algebraic integer (see Section 1.1).
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Corollary 1.10. Let X be a complex projective surface and f be an automorphism
of X with positive entropy. If the degree of λ f (as an algebraic integer) is at least 5
then µ f is singular with respect to the Lebesgue measure.

This can be applied to the examples constructed by Bedford and Kim (see [6,
7]) and McMullen (see [72]). They exhibit families of automorphisms of rational
surfaces fm : Xm → Xm for which the degree λ fm increases with m. Thus µ fm is
singular with respect to the Lebesgue measure when m is large enough. This may
also be applied to examples constructed by Blanc. (See Sections 9.3.1 and 9.3.2)

1.5. Related problems.

1.5.1. Geodesic flows. A similar question of entropy rigidity concerns the geodesic
flow (θt)t∈R on a negatively curved riemannian manifold (M,g). Negative curvature
implies that this flow is Anosov with a unique invariant probability measure ν of
maximal entropy (i.e. with metric entropy h(θ1,ν) equal to htop(θ1)). The flow
preserves also the Liouville measure λg, and the Entropy conjecture predicts that νg

is absolutely continuous with respect to λg if and only if the riemannian manifold
(M,g) is locally symmetric. This was proved by Katok for surfaces (see [61]). See
[66] for a nice survey on this type of problem and [50, 9] for its relationship to
rigidity properties of Anosov flows with smooth stable and unstable foliations.

1.5.2. Random walks. Another related question concerns the regularity of harmonic
measures. Consider the fundamental group Γg of an orientable closed surface of
genus g ≥ 2, and identify the boundary ∂Γg to the unit circle S1. Let ν be a prob-
ability measure on Γg whose support is finite and generates Γg. The measure ν

determines a random walk on Γg. Given a starting point x in Γg and a subset A of
the boundary ∂Γg, the harmonic measure ωx(A) is the probability that a random path
which starts at x converges to a point of A when the time goes to +∞. It is conjec-
tured that ωx is singular with respect to the Lebesgue measure on ∂Γg = S1. We refer
to [60, 15] for an introduction to this topic and to [18] for a recent example.

1.5.3. Non-archimedean fields. In [47], §1.1.2, Filip suggests that the rigidity result
given by our Main Theorem may hold for the dynamics of automorphisms of K3
surfaces over certain non-archimedean valued fields.

1.6. Organization of the paper. Fix a complex projective surface X and an auto-
morphism f of X with positive entropy. Section 2 recalls classical facts concerning
the dynamics of f . In particular, we explain that µ f is the product of two closed
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positive currents T+
f and T−f . Assume, now, that µ f is absolutely continuous with

respect to the Lebesgue measure.

1.6.1. Renormalization along the invariant manifolds. We first show that

(1) the absolute continuity of µ f can be transferred to the currents T+
f and T−f ;

(2) if x ∈ X is µ f -generic, its stable manifold is parametrized by an injective
holomorphic map ξ : C→⊂ X and such a parametrization satisfies ξ∗T−f =

a i
2dz∧dz̄ for some constant a > 0.

These two steps occupy Sections 3 to 5. The proof of Property (1) builds on the local
product structure of µ f and on the weak laminarity properties of T±f . The proof of
(2) relies on a renormalization argument (along µ f -generic orbits).

Remark 1.11. The renormalization techniques already appear in the proof of Lat-
tès rigidity for endomorphisms of Pk

C (see [69] and [12]). Our context is actually
closer to the conformal case k = 1 since the renormalization is done along the stable
and unstable manifolds. For endomorphisms of Pk

C, the unstable manifolds cover
open subsets of Pk

C; hence, a property analogous to (2) is a strong constraint which
rigidifies the dynamics on open subsets (see Lemma 3 in [12]). Here, the stable and
unstable manifolds have co-dimension 1, and it is much harder to relate Property (2)
to a rigidity property of the pair (X , f ).

1.6.2. Normal families of entire curves. In Section 6, we combine Zalcman’s repa-
rametrization lemma, the Hodge index theorem, and a result of Dinh and Sibony to
derive a compactness property, in the sense of Montel, for entire parametrizations of
stable and unstable manifolds. This crucial step provides a new strategy to control
entire curves (given by stable or unstable manifolds), which may be useful for other
questions regarding the dynamics of automorphisms.

1.6.3. Laminations, foliations, and conclusion. Thanks to the previous step, we
prove that the stable (resp. unstable) manifolds of f are organized in a (singular)
lamination by holomorphic curves (Sections 7 and 8). Then, an argument of Ghys
can be coupled to Hartogs phenomenon to show that this lamination extends to an
f -invariant, singular, holomorphic foliation of X . At this stage of the proof, the
starting hypothesis on µ f has been upgraded to a regularity property for T+

f and T−f :
these currents are smooth, and correspond to transverse invariant measures for two
holomorphic foliations. To conclude, we refer to a previous theorem of the first au-
thor and Favre concerning symmetries of foliated surfaces (Theorem 3.1 in [29], p.
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209-210). One could also construct by hands the complex torus and the commuta-
tive diagrams defining a Kummer example by following the arguments of the proof
of Théorème 7.4 in [23].

1.6.4. Consequences and Appendices. Section 9 contains the proofs of the main
corollaries and consequences.

The strategy described in § 1.6.2 relies on Proposition 6.9; it requires to blow
down all periodic curves of f and to work on a singular surface X0. The proof of this
proposition is contained in Section 10. It is based on a precise study of the projection
of T+

f and T−f on X0; we show that T+
f + T−f is cohomologous to a semi-Kähler

current which is bounded from below by the pull-back of a positive (1,1)-form κ0 on
X0. It also makes use of an unpublished result of Dinh and Sibony concerning entire
holomorphic curves; we include a proof of their result. One difficulty comes from
the fact that X0 is not always projective: we provide such an example in Section 11.

1.6.5. A special case. If one assumes that the automorphism f , with positive en-
tropy, has no periodic curve, then one can skip most of the appendices. In that case,
our Main Theorem reads: µ f is absolutely continuous with respect to the Lebesgue
measure if and only if X is an abelian surface (and f is an Anosov linear map of X).

1.7. Acknowledgements. We thank Eric Bedford, Dominique Cerveau, Benoît
Claudon, Romain Dujardin, Sébastien Gouëzel, Anatole Katok, Misha Lyubich,
François Maucourant, and Nessim Sibony for useful discussions related to this arti-
cle. Thanks to the anonymous referees, who pointed out a mistake in the first version
of Sections 4.3 and 10, and suggested many improvements of the exposition.

2. INVARIANT CURRENTS T±f AND THE MEASURE µ f

We collect general results concerning the dynamics of automorphisms of compact
Kähler surfaces X (see [27], and the references therein, for a complete exposition).

2.1. Cohomology groups. Let X be a compact Kähler surface. Let Hk(X ;R) and
Hk(X ;C) denote the real and complex de Rham cohomology groups of X . If η is
a closed differential form (or a closed current, see below), its cohomology class is
denoted by [η]. For 0≤ p, q≤ 2, let H p,q(X ;C) denote the subspace of H p+q(X ;C)

of all classes represented by closed (p,q)-forms, and let hp,q(X) be its dimension.
Hodge theory implies that

Hk(X ;C) =
⊕

p+q=k

H p,q(X ;C).
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Complex conjugation exchanges H p,q(X ;C) and Hq,p(X ;C); thus, H1,1(X ;C) in-
herits a real structure, with real part H1,1(X ;R) := H1,1(X ;C)∩H2(X ;R).

The intersection form is an integral quadratic form on H2(X ;Z). It satisfies

∀u,v ∈ H2(X ;R) , 〈u|v〉 :=
∫

X
ũ∧ ṽ,

where ũ and ṽ are closed 2-forms on X representing u and v. By the Hodge index
theorem 〈·|·〉 is non-degenerate and of signature (1,h1,1(X)−1) on H1,1(X ;R). This
endows H1,1(X ;R) with the structure of a Minkowski space.

The Kähler cone is the subset of H1,1(X ;R) consisting of classes of Kähler forms.
By definition, the closure of the Kähler cone is the nef cone. These cones intersect
only one of the two connected components of {u ∈ H1,1(X ;R) , 〈u|u〉 = 1} and
we denote by H(X) this component; H(X) is a model of the hyperbolic space of
dimension h1,1(X)−1 (see [27]).

2.2. Action on cohomology groups (see [27], §2). Every f ∈ Aut(X) induces a
linear invertible mapping f ∗ on H1,1(X ;R) which is an isometry for the intersection
product. Since the Kähler cone is f ∗-invariant, so is H(X). Let λ f denote the spectral
radius of f ∗ : H1,1(X ;R)→ H1,1(X ;R).

• λ f coincides with the spectral radius of f ∗ acting on the full cohomology
group ⊕4

k=0Hk(X ;C).
• The topological entropy of f is equal to logλ f .
• When λ f > 1 the eigenvalues of f ∗ on H1,1(X ;R) (resp. on H2(X ;R)) are

precisely λ f , λ
−1
f (which are both simple), and complex numbers of modu-

lus 1. The eigenlines corresponding to λ f and λ
−1
f are isotropic, and they

intersect the nef cone.

From the third item, we can fix a nef eigenvector θ
+
f (resp. θ

−
f ) for the eigenvalue

λ f (resp. λ
−1
f ); we shall impose extra conditions on these classes in Section 2.4. Let

Π f be the subspace generated by θ
+
f and θ

−
f , and let Π⊥f be its orthogonal comple-

ment in H1,1(X ;R). The intersection form has signature (1,1) on Π f and is negative
definite on Π⊥f . Classes of irreducible periodic curves are in Π⊥f ; hence, there are
only finitely many of them, and we can contract them by the Grauert-Mumford crite-
rion: this produces a (normal) singular complex analytic surface X0 (see Section 6.1).
Starting with Section 6, it will be necessary to work on such a singular surface.

2.3. Invariant currents and continuous potentials. We refer to [54, Chapter 3]
and [38] for an account concerning currents on complex manifolds. Let T be a
closed positive current (of bidegree (1,1)) on X . It is locally equal to ddcu where u
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is a pluri-subharmonic function. By definition u is a local potential of T , it is unique
up to addition of a pluri-harmonic function. Every closed positive current T has a
cohomology class [T ] in H1,1(X ,R). For instance, if C ⊂ X is a complex curve and
TC is the current of integration on C, then [TC] = [C]. If f ∈ Aut(X) one can define
f ∗T by duality: the value of f ∗T on a (1,1)-form η is equal to the value of T on
( f−1)∗η. If u is a local potential for T , then u◦ f is a local potential for f ∗T .

Theorem 2.1 (see [41, 73, 27]). Let f be an automorphism of a compact Kähler
surface X with positive entropy logλ f . There exists a unique closed positive current
T+

f of bidegree (1,1) on X such that [T+
f ] coincides with the nef class θ

+
f . Its local

potentials are Hölder continuous. Moreover, f ∗T+
f = λ f T+

f .

Similarly, there exists a unique closed positive current T−f of bidegree (1,1) such
that [T−f ] coincides with the nef class θ

−
f ; this current satisfies f ∗T−f = λ

−1
f T−f .

Remark 2.2. Dinh and Sibony strengthen Theorem 2.1 in [43] by showing that T±f
is the unique ddc-closed positive current whose cohomology class is [T±f ].

Let C be a Riemann surface and θ : C→ X be a non-constant holomorphic map-
ping. The pull-back θ∗(T+

f ) is locally defined as ddc(u+ ◦ θ) where u+ is a local
potential; by definition, this measure (resp. its image on θ(C)) is called the slice of
T+

f by θ. The same definition applies for θ∗(T−f ).

Example 2.3. The following classical argument illustrates this notion. Let ξ : D→
X be a holomorphic map. Assume that there is a sequence of integers ni→+∞ such
that f ni ◦ξ converges locally uniformly towards a holomorphic map η : D→ X . Let
ϕ : D→ R+ be a smooth function with compact support in D. Then, on one hand
〈( f ni ◦ ξ)∗T+

f |ϕ〉 = λ
ni
f 〈ξ∗T

+
f |ϕ〉, and on the other hand 〈( f ni ◦ ξ)∗T+

f |ϕ〉 converges
towards 〈η∗T+

f |ϕ〉. Since λ
ni
f goes to +∞, we get ξ∗T+

f = 0. For instance, if ξ(D) is
contained in a stable manifold of f , then ξ∗T+

f = 0 (see below Theorem 5.1).

2.4. Definition and properties of µ f (see § 1.1 and [27]). In what follows, we
assume that X is projective and we fix the following data: a Kähler form κ on X
and eigenvectors θ

+
f and θ

−
f with respect to the eigenvalues λ f and λ

−1
f for the

endomorphism f ∗ of H1,1(X ;R) such that

〈θ+f |θ
−
f 〉= 1, 〈θ+f |[κ]〉= 〈θ

−
f |[κ]〉= 1. (2.1)

Then, consider the currents T±f provided by Theorem 2.1. The wedge product T+
f ∧

T−f is locally defined as the ddc-derivative of u+ddcu−, where u+ and u− are local
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potentials for T+ and T−. This product defines an f -invariant probability measure

µ f := T+
f ∧T−f .

The dynamics of f with respect to µ f is ergodic and mixing; moreover, µ f is the
unique invariant measure with maximal entropy.

3. STABLE MANIFOLDS: PARAMETRIZATION AND CURRENTS

In this section we recall Pesin theory and state that f can be linearized along the
stable manifolds, as in [13, 59]. The stable manifolds are isomorphic to C and we
deal with their Ahlfors currents (see also [8, Section 2.6]).

3.1. The Oseledets theorem and Lyapunov exponents (see [81, 62] and [8, 27]).
Let X be a complex projective surface and f be an automorphism of X with positive
entropy logλ f . Let T±f be the invariant currents introduced in Section 2.3. The
normalization chosen in Equation (2.1) implies that T+

f and T−f have mass 1 with
respect to the Kähler form κ, and that µ f = T+

f ∧T−f is an f -invariant probability
measure. Since µ f has positive entropy and is ergodic, it has one negative and one
positive Lyapunov exponent; we denote them by λs and λu, with λs < 0 < λu (each
of them has multiplicity 2 if f is viewed as a diffeomorphism of the 4-dimensional
real manifold X).

In what follows, ε denotes a positive real number that satisfies ε�min(|λs|,λu).
The set Λ will be a Borel subset of X of total µ f -measure; its precise definition
depends on ε and may change from one paragraph to another. By construction,
we can (and do) assume that Λ is invariant: indeed, Λ can always be replaced
by ∩n∈Z f n(Λ). A measurable function α : Λ→]0,1] is ε-tempered if it satisfies
e−εα(x)≤ α( f (x))≤ eεα(x) for every x ∈ Λ.

We use the same notation ‖ · ‖ for the standard hermitian norm on C2 and for
the hermitian norm on the tangent bundle T X induced by the Kähler form κ. The
distance on X is denoted distX ; Bx(r) is the ball of radius r centered at x.

Theorem 3.1 (Oseledets-Pesin). Let X be a complex projective surface and let f be
an automorphism of X with positive entropy logλ( f )> 0.

There exist an f -invariant Borel subset Λ ⊂ X with µ f (Λ) = 1, two ε-tempered
functions q : Λ→]0,1], β : Λ→]0,1], and a family of holomorphic mappings (Ψx)x∈Λ

satisfying the following properties.

(1) Ψx is defined on the bidisk D(q(x))×D(q(x)), takes values in X, maps the
origin to the point x, and is a diffeomorphism onto its image.
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(2) β(x) ‖ z1− z2 ‖≤ distX(Ψx(z1),Ψx(z2))≤‖ z1− z2 ‖ for all pairs of points z1

and z2 in the bidisk.
(3) The local diffeomorphism fx := Ψ

−1
f (x) ◦ f ◦Ψx is well defined near the origin

in D(q(x))×D(q(x)), and the matrix of D0 fx is diagonal with coefficients
a(x) and b(x) that satisfy

|a(x)| ∈ eλu · [e−ε,eε], |b(x)| ∈ eλs · [e−ε,eε].

Moreover fx is ε-close to the linear mapping D0 fx in the C 1 topology.

The global stable manifold of a point x is the set W s(x) of points x′ such that
distX( f n(x), f n(x′)) goes to 0 as n goes to +∞. The local stable manifold W s,loc(x)
is the connected component of W s(x)∩Ψx(D(q(x))×D(q(x))) that contains x.

In D(q(x))×D(q(x)), the inverse image by Ψx of the local stable manifold is a
vertical graph; in other words, it can be parametrized by a holomorphic map

γx : D(q(x))→ D(q(x))×D(q(x)), z 7→ (gx(z),z),

where gx is holomorphic and satisfies gx(0) = 0, g′x(0) = 0, and Lipgx ≤ 1. We have
W s(x) = ∪n≥0 f−n(W s,loc( f n(x))).

Notation 3.2. For every x in Λ, we set σx :=Ψx◦γx. This is a holomorphic parametriza-
tion of the local stable manifold W s,loc(x). By construction,

• β(x)≤‖ σ′x(0) ‖≤ 1,
• f (W s,loc(x))⊂W s,loc( f (x)) and W s,loc(x)⊂ Bx(1),
• limn→+∞ distX( f n(x), f n(y)) = 0 for every y ∈W s,loc(x).

We denote by Fx : D(q(x))→ D(q( f (x))) the mapping that satisfies

f ◦σx = σ f (x) ◦Fx,

and by Mx : D(q(x))→ D(q( f (x))) the linear mapping given by

Mx(z) := mx · z, with mx := F ′x(0).

By construction, |mx| ∈ eλs · [e−ε,eε] (note that mx is equal to the complex number
b(x) of Theorem 3.1).

3.2. Linearization along the stable manifolds and entire parametrizations. The
following proposition provides a linearization of f along the stable manifolds, we
refer to [13, 59] for a statement in arbitrary dimension. We keep the same notations
as in the previous paragraph: ε is fixed and Λ is given by Theorem 3.1.
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Proposition 3.3. Let f be an automorphism of a complex projective surface X with
positive entropy. If ε is small enough, there exist a real number c = c(ε,λs) ∈]0,1]
and holomorphic injective functions (ηx)x∈Λ, such that

(1) ηx is defined on D(cq(x)), with values in D(q(x)), and it satisfies ηx(0) = 0
and η′x(0) = 1;

(2) f ◦ (σx ◦ηx) = (σ f (x) ◦η f (x))◦Mx on D(cq(x)).

Definition 3.2 and Proposition 3.3 allow us to introduce the following notation.

Notation 3.4. For every x ∈ Λ, define ξ
s,loc
x : D(cq(x))→W s,loc(x) by

ξ
s,loc
x := σx ◦ηx.

By construction, ξ
s,loc
x is holomorphic, injective and satisfies

• ξ
s,loc
x (0) = x and β(x)≤‖ (ξs,loc

x )′(0) ‖≤ 1;
• 2β(x)/3≤‖ (ξs,loc

x )′ ‖≤ 2 on D(cq(x));
• f ◦ξ

s,loc
x = ξ

s,loc
f (x) ◦Mx on D(cq(x)).

The second item follows from the construction of σx and Koebe’s inequality for ηx.

Since the global stable manifolds satisfy W s(x) = ∪n≥0 f−n (W s,loc( f n(x))), they
are simply connected Riemann surfaces.

Proposition 3.5. For every x∈Λ, the Riemann surface W s(x) is biholomorphic to C.
Moreover, there exists a biholomorphism ξs

x : C→W s(x) such that

• ξs
x(0) = x,

• ξs
x = ξ

s,loc
x on D(cq(x)),

• f ◦ξs
x = ξs

f (x) ◦Mx on C.

Proof. Set Mm
x := M f m−1(x) ◦ . . . ◦Mx : C→ C for every m ≥ 1, and observe that

|Mm
x (z)| ∈ emλs · [e−mε,emε] · |z|. Then, define

∀z ∈ C, ξ
s
x(z) := f−m(z) ◦ξ

s,loc
f m(z)(x)

◦Mm(z)
x (z),

where m(z) is a large positive integer, so that Mm(z)
x (z) ∈ D(cq( f m(z)(x))); such an

integer exists because the function q is ε-tempered. One easily verifies that (i) the
definition of ξs

x does not depend on m(z) and (ii) f ◦ξs
x = ξs

f (x) ◦Mx on C by analytic
continuation. The map ξs

x : C→W s(x) is a biholomorphism by the definition of
W s(x) and the fact that f has empty critical set. �
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Remark 3.6. The definition of ξs
x : C→W s(x) depends on the local parametriza-

tions (ξs,loc
x )x∈Λ, hence on Pesin’s theory. In particular, the derivative (ξs

x)
′(0) de-

pends measurably on x. Two biholomorphisms C→W s(x) differ by an affine au-
tomorphism z 7→ az+b where (a,b) ∈ C∗×C. Thus, (i) the stable manifold W s(x)
inherits a natural affine structure and (ii) every biholomorphism C→W s(x) sending
0 to x is equal to ξs

x modulo composition with a homothety z 7→ az.

3.3. Currents associated to entire curves.

3.3.1. Ahlfors-Nevanlinna currents. Let X be a compact Kähler surface and ‖ v ‖
the norm of a tangent vector v with respect to this metric. Let ξ : C→ X be a non-
constant entire curve. The area of ξ(Dr) and the length of ξ(∂Dr) are defined by

A(r;ξ) :=
∫ r

0

∫ 2π

0
‖ ξ
′(teiθ) ‖2 tdtdθ

L(r;ξ) :=
∫ 2π

0
‖ ξ
′(reiθ) ‖ rdθ.

Let {ξ(Ds)} be the current of integration on ξ(Ds) counting multiplicities and let

S(r;ξ) :=
1

A(r;ξ)
{ξ(Dr)}.

Ahlfors proved that there exist sequences (rn) tending to infinity such that the ratio
L(rn;ξ)/A(rn;ξ) tends to zero (see [74, §7.6.4] and Section 10.4.2 below). Hence
(S(r;ξ))r has closed limits; these limits are the Ahlfors currents associated to ξ.
Let us also define

N(r;ξ) :=
1

T (r;ξ)

∫ r

s=0
{ξ(Ds)}

ds
s

where T (r;ξ) :=
∫ r

s=0 A(s;ξ)ds
s . As before there exist sequences (rn) such that

N(rn;ξ) converges to a closed positive current on M, see [20]. These limits are
called the Ahlfors-Nevanlinna currents associated to ξ.

Proposition 3.7 (Brunella [20]; see also § 10.4.2). Let X be a compact Kähler sur-
face and ξ : C→ X be a non-constant entire curve. Let A be an Ahlfors-Nevanlinna
current determined by ξ, and let [A] ∈ H1,1(X ,R) be its cohomology class.

(1) If ξ(C) is contained in an irreducible curve E, then the genus of E is equal
to 0 or 1 and A is equal to Area(E)−1{E}.

(2) If the area A(r;ξ) is bounded by a constant which does not depend on r, then
ξ(C) is contained in a compact curve E ⊂ X.

If ξ(C) is not contained in a compact curve, then

(3) 〈[A]|[C]〉 ≥ 0 for every curve C ⊂ X;
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(4) [A] is in the nef cone of X and therefore 〈[A]|[A]〉 ≥ 0.

Properties (3) and (4) may a priori fail for Ahlfors currents (though we do not
know of any example).

3.3.2. Stable and unstable Ahlfors currents. By the following theorem, the currents
associated to the stable manifolds of f are equal to T+

f ; to state it, recall that Λ is the
set of full µ f -measure introduced in Theorem 3.1.

Theorem 3.8 (see [8, 23, 27]). Let f be an automorphism of a complex projective
surface X with positive entropy. Let ξs

x : C→ X be a parametrization of the stable
manifold W s(x) of a point x ∈ Λ. If ξs

x(C) is not contained in an algebraic periodic
curve, then all Ahlfors-Nevanlinna currents associated to ξs

x coincide with T+
f .

For ξs
x one can take the parametrization of Proposition 3.5. A similar result holds

for unstable manifolds and the current T−f .

Remark 3.9. In [43], Dinh and Sibony proved the following strengthening of The-
orem 3.8 (we shall not need it): if ξ : C→ X is an entire curve such that

• ξ(C) is not contained in an algebraic periodic curve of f , and
• the family of entire curves f n ◦ ξ, n ≥ 1, is locally equicontinuous (i.e. is a

normal family of entire curves),

then all Ahlfors-Nevanlinna currents of ξ coincide with T+
f .

4. PRODUCT STRUCTURE AND ABSOLUTE CONTINUITY

The currents T±f have a geometric property called weak laminarity. We relate it
to the dynamical notion of Pesin boxes, and explain that µ f has a product structure
in these boxes. This leads to Proposition 4.5 saying that almost all slices of T−f and
T+

f by stable and unstable manifolds give rise to absolutely continuous measures;
in other words, one can transfer the regularity assumption on µ f to a (rather weak)
regularity property of T+

f and T−f . We refer to [8, 23, 27, 46] for the proofs of some
of the results used in this section.

4.1. Laminations and quasi-conformal homeomorphisms.

4.1.1. Quasi-conformal homeomorphisms (see [1, Chapter II]). Let h : U → V be
an orientation preserving homeomorphism between two Riemann surfaces. One
says that h is K-quasi-conformal, for some real number K ≥ 1, if h is absolutely
continuous on lines and

|∂zh| ≤
K−1
K +1

|∂zh|
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almost everywhere. A 1-quasi-conformal mapping is holomorphic. We shall say that
a homeomorphism h between two (open subsets of) Riemann surfaces is absolutely
continuous with respect to the Lebesgue measure if h and h−1 map sets of measure
0 to sets of measure 0 or, equivalently, if h preserves the Lebesgue class (see [68],
§ III.3, pages 190-191).

Lemma 4.1 (see [1], Chapter II, Theorem 3). If h is a quasi-conformal homeomor-
phism, then h is absolutely continuous with respect to the Lebesgue measure.

To be more precise, fix a local co-ordinate z on U, with Lebesgue measure Leb

given by i
2dz∧dz. Then, the partial derivatives of h are well defined almost every-

where because h is absolutely continuous on lines. Its jacobian determinant Jac(h)
is locally integrable, it is positive Lebesgue almost everywhere, and for every Borel
subset A⊂U it satisfies

Leb(h(A)) =
∫

A
Jac(h)(z)

i

2
dz∧dz.

4.1.2. Laminations in bidisks (see [45, 52]). By definition, a horizontal graph in
the bidisk D×D is the graph {(z,ϕ(z));z∈D} of a holomorphic function ϕ : D→D;
thus, horizontal graphs are smooth analytic subsets of D×D that intersect every
vertical disk {z}×D in exactly one point. Vertical graphs are images of horizontal
graphs by permutation of the co-ordinates.

Consider a family of disjoint, horizontal graphs in D×D. If m is a point on
{0}×D which is contained in one of these graphs, one denotes by ϕm : D→ D the
holomorphic function such that z 7→ (z,ϕm(z)) parametrizes the graph through m. By
the Montel and Hurwitz theorems, one can extend this family of graphs in a unique
way into a lamination L of a compact subset K of D×D by disjoint horizontal
graphs. The leaf of L through a point m is denoted L(m).

If z1 and z2 are two points on D, the vertical disks

∆ j = {(z,w) | z = z j} ( j = 1,2)

are transverse to the lamination L . Denote by hz1,z2 the holonomy of the lamination
L from ∆1 to ∆2; more generally, if ∆ and ∆′ are two complex analytic transversals
(intersecting each leaf into exactly one point), one gets a holonomy map from ∆ to
∆′. By the Λ-Lemma (see [45]), the holonomy is automatically quasi-conformal (one
also says quasi-symmetric); by this, we mean that it extends to a quasi-conformal
homeomorphism of a neighborhood of ∆1∩K to a neighborhood of ∆2∩K ; in par-
ticular, it is absolutely continuous with respect to the Lebesgue measure. Moreover,
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the quasi-conformal constant K(z1,z2) of hz1,z2 satisfies

0≤ K(z1,z2)−1≤ |z2− z1|.

It converges to 1 when ∆′ converges to ∆ in the C 1-topology.
Let K 0 be the intersection of the support K of L with the vertical disk {0}×D.

Define Φ : D×K 0→ D×D by

Φ(z,m) = (z,ϕm(z));

this map realizes a homeomorphism from D×K 0 to K that maps the trivial hori-
zontal lamination to the lamination L .

Lemma 4.2. The homeomorphism Φ is absolutely continuous with respect to the
Lebesgue measure on D×D, i.e. Lebesgue subsets with zero Lebesgue measure are
mapped to subsets with zero Lebesgue measure.

Proof. Let B ⊂ D×D be a Borel subset with Lebesgue measure 0. Let Bz denote
the vertical slices of B, Bz := B∩{z}×D. By the Fubini theorem, almost every Bz

is negligeable for the Lebesgue measure on the vertical disk. The image of Bz by
the homeomorphism Φ is the set of points {(z,ϕm(z)) | (z,m)∈ Bz}, and it coincides
with the image of {(0,m) | (z,m) ∈ Bz} under the holonomy map h0,z. Since the
holonomy maps are quasi-conformal, they are absolutely continuous, and Φ(Bz)

is Lebesgue negligeable for almost every z. By the Fubini theorem, the Lebesgue
measure of Φ(B) in D×D vanishes. �

4.2. Laminarity and Pesin boxes.

4.2.1. Pesin boxes (see [8, Section 4] and [23, 27, 46]). A Pesin box P for the
automorphism f : X→ X consists in an open subset U of X which is biholomorphic
to a bidisk D×D together with two transverse laminations Ls and Lu satisfying
properties that we now describe.

By convention, the lamination Lu is horizontal: its leaves Lu(m) are horizon-
tal graphs. These graphs Lu(m) intersect the vertical transversal {0}×D onto a
compact set K − and the union of these graphs is homeomorphic to the product
D×K −. Similarly, Ls is a lamination by vertical graphs with support homeomor-
phic to K +×D.

Given a point w ∈ K − and a point w′ ∈ K +, the horizontal leaf Lu((0,w)) in-
tersects the vertical leaf Ls((w′,0)) in a unique point [w,w′] ∈ U. This provides a
homeomorphism h between the product K −×K + and the intersection K ⊂ U of
the supports of Ls and Lu. Moreover, by definition, a Pesin box P = (U,Lu,Ls)

must satisfy the following properties.



DYNAMICS ON COMPLEX SURFACES 19

(0) – For µ f -almost every point x ∈ K , the leaf Lu(x) (resp. Ls(x)) is contained
in the global stable manifold W u(x) (resp. W s(x)).

(1) – There is a measure ν+ whose support is K + such that the laminar current

T+
P :=

∫
w∈K +

{Ls(w)}dν
+(w)

is dominated by the restriction of T+
f to U and coincides with T+

f on the set of
continuous (1,1)-forms whose support is a compact subset of the support of Ls.

(2) – There is, similarly, a uniformly laminar current T−P associated to the lam-
ination Lu and a transverse measure ν− whose support is K −; this current is the
restriction of T−f to the support of the unstable lamination Lu.

(3) – Via the homeomorphism h : K −×K +→ K , the measure µ f corresponds
to the product measure ν+⊗ν−, i.e. µ f |K = h∗(ν+⊗ν−).

In a Pesin box P , the measure ν+ can be identified to the conditional measure of
µ f with respect to the lamination Ls (see Property (3)). One way to specify this fact
is the following. By Property (1), one can slice T+

f with an unstable leaf Lu(m) to get
a measure (T+

f )|Lu(m) (see Section 2.3), then restrict this measure to the intersection
of Lu(m) with the support of the stable lamination, and then push it on K + (using
the holonomy of Ls); again, one gets ν+.

Pesin boxes exist, and their union has full µ f -measure: this comes from Pesin the-
ory of non-uniformly hyperbolic dynamical systems, and from the fact that T+

f and
T−f are Ahlfors currents of entire curves parametrizing generic stable and unstable
manifolds. See [8, Section 4] (and also [23, 27, 46]).

4.2.2. Laminar structure of T±f (see [8, 46, 27]). The previous section says that T±f
is uniformly laminar in each Pesin box. In fact, T±f is a sum of such currents. More
precisely, there is a countable family of Pesin boxes Pi = (Ui,Lu

i ,Ls
i ), with trans-

verse measures ν
±
i , such that the support of the stable laminations Ls

i are disjoint,
and T+

f is the sum

T+
f = ∑

i
T+

Pi

where T+
Pi

is the laminar current associated to an atomless measure ν
+
i :

T+
Pi

=
∫

w∈K +
{Ls

i (w)} dν
+
i (w).

Similarly, T−f is a sum of uniformly laminar currents T−P j
with respect to disjoint

Pesin boxes. The generic disks in these laminar structures are pieces of unstable
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manifolds of f (resp. of stable manifolds for T+
f ). Therefore, ξ∗(T−f ) = 0 for all

parametrizations of unstable manifolds of f (see Example 2.3).

4.3. Absolute continuity of the slices of the invariant currents.

4.3.1. Absolute continuity of the transverse measures ν± in Pesin boxes.

Lemma 4.3. Let P = (U,Lu,Ls) be a Pesin box with transverse measures ν+ and
ν− as in Section 4.2. If µ f is absolutely continuous with respect to the Lebesgue
measure, then ν+ and ν− are absolutely continuous with respect to the Lebesgue
measure.

As was the case with Lemma 4.2, the proof resides on the absolute continuity of
the holonomy of Lu and Ls, which we obtained from the Λ-lemma. We provide this
proof because it is closely related to the arguments of Section 8.1. There is a more
general approach, due to Pesin, which necessitates a direct proof of the absolute
continuity of the stable and unstable laminations, see [3, Chapter 8] and [75, Chapter
7].

Proof. Let ∆ be the vertical disk {0}×D; it is transverse to Lu. Let A ⊂ ∆ be a
Borel subset with Lebesgue measure 0. Let Lu(A) be the union of the leaves of Lu

that intersect A. Since the holonomy maps are absolutely continuous (see Section
4.1.2), every slice of Lu(A) by a vertical disk has Lebesgue measure 0. Thus, by
the Fubini theorem and the absolute continuity of µ f , µ f (Lu(A)) = 0. Since µ f =

h∗(ν+⊗ν−) in K (see Property (3) of Pesin boxes), one concludes that ν+(A) = 0.
This shows that ν+ is absolutely continuous with respect to the Lebesgue measure.
The argument is similar for ν−. �

4.3.2. Slices of the invariant currents.

Lemma 4.4. Let M be a complex manifold. Let T be a closed positive (1,1)-current
with local continuous potentials on M. Let U be an open subset of C. Let νn : U→
M be a sequence of holomorphic mappings that converges uniformly to ν : U→M
on compact subsets of U. Then, the sequence of measures ν∗nT converges weakly to
ν∗T as n goes to +∞.

Proof. Let V be an open subset of M on which T is given by a continuous potential
u. If ν maps U′ ⊂U into V , then for every test function ϕ with support contained
in U′, the dominated convergence theorem implies that

〈ν∗T |ϕ〉=
∫

U′
u◦ν(z)ddc

ϕ(z) = lim
n→∞

∫
U′

u◦νn(z)ddc
ϕ(z) = lim

n→∞
〈ν∗nT |ϕ〉.
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The result follows. �

Let us now consider a uniformly laminar current S, in a subset U of X which is
biholomorphic to the bidisk D×D; more precisely, S is determined by a lamination
L of a compact subset K of U by horizontal graphs and by a transverse measure νS:
for every smooth test form α whose support is contained in U,

〈S|α〉=
∫

K 0

∫
L(m)

α dνS(m) =
∫

K 0

〈L(m)|α〉 dνS(m)

where K 0 is the intersection of K with the vertical disk {0}×D ⊂U. We denote
by Φ the homeomorphism from D×K 0 to K ⊂ L which is defined by Φ(z,m) =

(z,ϕm(z)); fixing m, we get a holomorphic parametrization

Φm(z) := Φ(z,m) = (z,ϕm(z))

of the leaf L(m) (see the notation from Section 4.1.2).

Proposition 4.5. Let S be such a uniformly laminar current, and assume that S≤ T+
f

in U. If µ f is absolutely continuous with respect to the Lebesgue measure (on X)
then, for νS almost every m ∈ K 0, the measure Φ∗m(T

−
f ) is absolutely continuous

with respect to the Lebesgue measure on D.

Proof. First, recall that T−f has continuous potentials: on the bidisk U, one can find
a continuous function u− such that T−f = ddc(u−) in U. The pull-back Φ∗m(T

−
f ) of

T−f is defined by Φ∗m(T
−
f ) = ddc(u− ◦Φm) for every leaf L(m).

Since S ≤ T+
f , one knows that S has continuous potentials (see [8, Lemmas 8.2

and 8.3]), and that S∧T−f ≤ T+
f ∧T−f is absolutely continuous with respect to the

Lebesgue measure, because µ f = T+
f ∧T−f is absolutely continuous.

The product S∧T−f is defined by its values on smooth functions α : U→ R with
compact support:

〈S∧T−f |α〉= 〈S|u
−ddc(α)〉=

∫
K 0

∫
L(m)

u−ddc(α) dνS(m).

Moreover,∫
L(m)

u−ddc(α) =
∫
D

u− ◦Φm ·ddc(α◦Φm) = 〈Φ∗mT−f |α◦Φm〉.

In other words, the measure Φ∗(S∧T−f ) satisfies

〈Φ∗(S∧T−f )|ψ〉=
∫

K 0

∫
D

ψ(z,m)dΦ
∗
m(T

−
f )(z) dνS(m). (4.1)
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From Lemma 4.2, we know that Φ∗(S∧T−f ) is absolutely continuous with respect
to the Lebesgue measure, because S∧T−f is. Consider the projection π : D×D→D
defined by π(z,m) = m, and define M(m) to be the total mass of Φ∗m(T

−
f ) on the disk

D; Equation (4.1) says that the marginal of the measure Φ∗(S∧T−f ) with respect to
the projection π is the measure

M(m)dνS(m)

and that the conditional measures along the fibers D×{m} coincide with the mea-
sures M(m)−1Φ∗m(T

−
f ). Thus, for a νS-generic point m, the marginal Φ∗m(T

−
f ) is

absolutely continuous with respect to the Lebesgue measure, as desired. �

Corollary 4.6. Let P = (U,Lu,Ls) be a Pesin box with transverse measures ν+ and
ν−, as in Section 4.2. If µ f is absolutely continuous with respect to the Lebesgue
measure (on X), then ν+-almost every slice {Ls(m)}∧T−f is absolutely continuous
with respect to the Lebesgue mesure (on Ls(m) ' D). The same result holds for
ν−-almost every slice {Lu(m)}∧T+

f .

This follows from Proposition 4.5 and the inequality T+
P ≤ T+

f .

Remark 4.7. Another strategy to prove this corollary is to use the decomposition
T±f = ∑i T±Pi

, Lemma 4.3, and the theory of geometric intersection, as described in
[46], in order to write the intersection T+

f ∧T−f as a sum of intersection of uniformly
laminar currents.

4.4. Lebesgue density points. Assume that µ f is absolutely continuous with re-
spect to the Lebesgue measure. Consider the pull-back of T−f by a holomorphic
curve θ : C→ X such that θ∗T−f is absolutely continuous: in local co-ordinates

θ
∗(T−f ) = ϕ(z)

i

2
dz∧dz

where ϕ is a non-negative locally integrable function, i.e. ϕ ∈ L1
loc(Leb). Recall that

a Lebesgue density point for a function ϕ ∈ L1
loc(Leb) is a point z such that

1
πr2

∫
D(z,r)

|ϕ(w)−ϕ(z)| i
2

dw∧dw −→ 0

as r goes to 0. This notion does not depend on the choice of local co-ordinates.
Thus, on the curve θ(C)⊂ X , there is a well defined set of density points

Dens(θ(C);T−f ) = {θ(z) ∈ θ(C) | z is a density point of θ
∗T−f }.

Moreover, the set of density points has full Lebesgue measure in θ(C) because θ∗T−f
is absolutely continuous. The same notion applies for slices of T+

f .
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The goal of this section is the following proposition; to state it, recall that, for
every x ∈ Λ, we defined injective parametrizations ξ

s/u
x : D(cq(x))→W s/u,loc(x) of

the local stable and unstable manifolds (see Section 3.2).

Proposition 4.8. Let G be the set of points x ∈ Λ for which there exist 0 < t(x) ≤
cq(x) and a measurable function ϕx ∈ L1

loc(D(t(x))) satisfying the two conditions

(1) (ξu
x)
∗T+

f = ϕx(z) i
2dz∧dz̄ on D(t(x)),

(2) 0 is a Lebesgue density point for ϕx.

Then µ f (G) = 1.

A similar statement holds for T−f . The proof of Proposition 4.8 relies on the
following lemma, the proof of which is closely related to the proof of Lemma 4.2.

Lemma 4.9. Let P = (U,Lu,Ls) be a Pesin box. Let A ⊂ K − be a Borel subset
with positive ν−-measure. If µ f is absolutely continuous, then

D := ∪w∈A Dens(Lu(w);T+
f )

has positive µ f -measure.

Proof. Identify U with the bidisk D×D, with co-ordinates (z,w). We also use co-
ordinates (z,w) on D×K − (thus, K − is viewed alternatively as a subset of {0}×D
or D). As explained in Section 4.1.2, there is a homeomorphism Φ : D×K −→ Lu

which maps the horizontal lamination of D×K − to the lamination Lu, and is the
identity map on {0}×K −. There are two ways of looking at this homeomorphism:

• Φ maps each horizontal disk to a graph in U = D×D:

Φ : (z,w) ∈ D×K − 7→ (z,ϕw(z))

where ϕw : D→D is the holomorphic function whose graph is the leaf of Lu

through (0,w).
• Φ is given by the holonomy maps h0,z from the vertical {0}×D to the verti-

cal {z}×D⊂U; more precisely, Φ(z,w) = (z,h0,z(w)).

Let Leb denote the standard Lebesgue measure on D; since µ f is absolutely contin-
uous, there exists an L1-function ∆µ f such that µ f = ∆µ f (z,w)dLeb(z)⊗dLeb(w) on
D×D.

Let us assume that µ f (D) = 0 and find a contradiction. The vanishing of µ f (D)

implies that for Leb-almost every point z ∈ D,∫
(z,w)∈D

∆µ f (z,w)dLeb(w) = 0.
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Let us use the homeomorphism Φ : D×K − −→ Lu. Since for every z ∈ D the map
w 7→ h(0,z)(w) is absolutely continuous, we get∫

(z,w)∈Φ−1(D)
∆µ f ◦Φ(z,w) · Jac(h(0,z))(w) ·dLeb(w) = 0

for Leb-almost every z. Let 1Φ−1(D) be the characteristic function of the set Φ−1(D).
For every z∈D, the function Jac(h(0,z)) is positive Leb-almost everywhere on A (see
Section 4.1.1); hence 1Φ−1(D) ·∆µ f ◦Φ(z,w) = 0 for Leb-almost every z ∈ D and for
Leb-almost every (0,w) ∈ A.

Now we use that Φ(z,w) = (z,ϕw(z)) is holomorphic in the variable z. There is
a subset A′ of A with ν−(A′) = ν−(A) > 0 such that D has full Lebesgue measure
in every leaf Lu(0,w), (0,w) ∈ A′; thus, the function 1Φ−1(D) is equal to 1 almost
everywhere on every horizontal disk D×{w}, for (0,w) in A′. We obtain

∆µ f ◦Φ(z,w) = 0

for Leb-almost every z ∈ D and every (0,w) ∈ A′. Consequently, the product of
∆µ f ◦Φ(z,w) by the jacobian of Φ(z,w) vanishes almost everywhere on D×{w}.
Thus, the Fubini theorem implies that the integral of Φ∗µ f on D×A′ is equal to
0, while ν−(A′) > 0. But µ f has a product structure ν+⊗ ν− in K = K +×K −,
and ν+(K +) > 0 because the measure µ f (K ) of the Pesin box is positive; hence
Φ∗µ f (D×A′) should be positive. This contradiction concludes the proof. �

Let us complete the proof of Proposition 4.8. The set G has positive µ f -measure
by Lemma 4.9. Since µ f is ergodic, it suffices to verify that G is f -invariant. This
property is a consequence of the relation

(ξu
f (x))

∗T+
f = λ f (M−1

x )∗(ξu
x)
∗T+

f .

To prove this relation, it suffices to combine f ∗T+
f = λ f T+

f and f ◦ ξu
x = ξu

f (x) ◦Mx

on a neighborhood of the origin, where Mx is the multiplication by the non zero
complex number mx (see Notation 3.2).

5. RENORMALIZATION ALONG STABLE MANIFOLDS

Our main goal in this section is the following theorem.

Theorem 5.1. Let f be an automorphism of a complex projective surface X with
positive entropy. Assume that the measure of maximal entropy µ f = T+

f ∧T−f is ab-
solutely continuous with respect to the Lebesgue measure. Then there exists a mea-
surable subset Λ ⊂ X such that (i) µ f (Λ) = 1 and (ii) every stable manifold W s(x)
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for x ∈ Λ is parametrized by an injective entire curve ξs
x : C→W s(x) satisfying

ξ
s
x(0) = x, (ξs

x)
∗T+

f = 0, and (ξs
x)
∗T−f =

i

2
dz∧dz. (5.1)

Remark 5.2. The parametrization of an unstable manifold W s(x) by C is unique up
to composition by an affine transformation z 7→ az+b of C. Thus,

(1) every biholomorphism C→W s(x) with Properties (5.1) is equal to ξs
x up to

composition by a homothety z 7→ az with |a|= 1;
(2) the parametrization ξs

x is the same as the parametrization defined in Sec-
tion 3.2 up to composition by a dilation z 7→ az, a 6= 0. This is the reason
why we do not introduce a new notation.

The equalities ξs
x(0) = x and (ξs

x)
∗T+

f = 0 in Equations (5.1) are automatically
satisfied (see Example 2.3), so all we need to prove in Theorem 5.1 is the third
property. There are three steps:

• (see Section 5.1) We exhibit local parametrizations ξx of a neighborhood of
x in W s(x) such that ξ∗xT−f = α(x) i2dz∧dz.
• (see Section 5.2) Let ξs

x : C→W s(x) be the global parametrization of W s(x)
defined in Section 3.2. Using the first step we obtain that

(ξs
x)
∗T−f = α(x)|hx(z)|2

i

2
dz∧dz

for some holomorphic function hx on D(β(x)ρ(x)/4).
• To conclude, we show that |hx| is indeed constant by using recurrence and

exhaustion arguments.

5.1. First step: smoothness of a local density. In the following proposition Λ, β

and q are respectively the measurable set and the ε-tempered functions introduced
in Theorem 3.1. Let c > 0 be the constant introduced in Proposition 3.3.

Proposition 5.3. Let f be an automorphism of a complex projective surface X with
positive entropy logλ f . Assume that µ f is absolutely continuous with respect to the
Lebesgue measure.

(1) Then for every x ∈Λ there exist ρ(x)> 0 and an injective holomorphic map-
ping ξx : D(ρ(x))→W s,loc(x) such that

(i) ξx(0) = x and β(x)≤‖ ξ
′
x(0) ‖≤ 1,

(ii) 2β(x)/3≤‖ ξ
′
x(z) ‖≤ 2 on D(ρ(x)),

(iii) ξ
∗
xT−f = α(x) · i

2
dz∧dz̄ on D(ρ(x)) for some α(x)> 0.
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(2) The Lyapunov exponents of µ f satisfy

λs =−
1
2

logλ f and λu =
1
2

logλ f .

Proof. We prove the first assertion together with the estimate | logλ f + 2λs| ≤ 2ε.
The second assertion follows from this estimate, applied to both f and f−1 for arbi-
trary small ε > 0.

• Good subsets Ql,m.– To prove the proposition it suffices to work in a fixed Pesin
box P because the union of all Pesin boxes has full µ f -measure. Let us recall that
σx : D(q(x))→W s,loc(x) is the injective parametrization of the local stable manifold
introduced in Section 3.2. Let ηx : D(cq(x))→D(q(x)) be the holomorphic function
of Proposition 3.3; it satisfies ηx(0) = 0, η′x(0) = 1, and

f ◦ (σx ◦ηx) = (σ f (x) ◦η f (x))◦Mx.

We recall that ξ
s,loc
x = σx ◦ηx and that it is equal to the restriction of ξs

x on D(cq(x)).
Changing Λ in another invariant subset of full measure if necessary, Proposition
4.8 implies that for every x ∈ P ∩Λ there exists a function ϕx ∈ L1

loc(D(t(x))) with
0 < t(x)≤ cq(x) such that 0 is a Lebesgue density point of ϕx and

(ξs
x)
∗T−f = ϕx(z) ·

i

2
dz∧dz̄ on D(t(x)). (5.2)

Since the origin 0 is a Lebesgue density point of ϕx, the value ϕx(0) is a well defined
non-negative number. Let us define for every l ≥ 1:

Ql := P ∩Λ∩{1/l ≤ t(x)}∩{1/l ≤ β(x)≤ 1}∩{1/l ≤ ϕx(0)≤ l}.

Then apply the Lusin theorem to find for every m≥ 1 a subset Ql,m ⊂Ql of measure
(1−1/m)µ f (Ql) on which β is continuous. One may assume Ql,m ⊂Ql,m+1, and we
have

µ f (∪l,m≥1Ql,m) = µ f (P ).

Fix a pair of integers (l,m) and denote Ql,m by Q in what follows. Since the union
of the sets Ql,m has full µ f -measure, we only need to prove the proposition for µ f -
generic points x ∈ Q.

• Montel property.– Let f̃ : Q→ Q be the first return map defined as f̃ (x) :=
f r(x)(x) where r(x) is the smallest integer r ≥ 1 satisfying f r(x) ∈ Q. The induced
measure µ̃(·) := µ(Q∩·)/µ(Q) is f̃ -invariant and ergodic. Let x be a generic point of
Q. The Birkhoff ergodic theorem, applied to f̃ , yields a sequence (n j) j depending on
x such that f−n j(x) is contained in Q and converges to x. To simplify the exposition
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we avoid the indices of the subsequence and write f−n(x) instead of f−n j(x). Define
xn := f−n(x), ηn = ηxn , and σn = σxn .

Since t ≥ 1/l on Q = Ql,m, the restriction ηn : D(1/l)→ D(q(xn)) ⊂ D makes
sense. The Montel and Hurwitz theorems provide a subsequence such that

(i) ηn converges towards an injective, holomorphic function η : D(1/l)→ D
such that η(0) = 0 and η′(0) = 1. Moreover, |η(z)| ≤ l|z| on D(1/l) by the
Schwarz lemma.

We can also consider the restriction σn : D(1/l)→W s,loc(xn). For large enough
n, its image is contained in the ball Bx(2), and the image of Ψx ◦Ψ−1

xn
◦σn is a graph

above the vertical axis. Moreover |σ′n(0)| ≥ β(xn)≥ 1/l. The Montel and Hurwirtz
theorems and the continuity of β on Q = Ql,m then yield

(ii) σn converges towards an injective holomorphic mapping σ :D(1/l)→W s,loc(x)
such that σ(0) = x and |σ′(0)| ≥ β(x)≥ 1/l.

Thus, the function ξ := σ ◦η : D(1/l2)→W s,loc(x) is well defined, injective and
satisfies σ◦η(0)= x; by construction, the sequence of parametrizations ξs

n :=σn◦ηn

converges towards the holomorphic map ξ on D(1/l2). This map will be our desired
ξx, it is a non-constant holomorphic mapping with values in the stable manifold
W s(x) (we shall compare it with ξs

x in Section 5.2). Since all ξs
n satisfy the Lipschitz

property listed in Section 3.2, we get

2β(x)/3≤ |ξ′(z)| ≤ 2 on D(1/l2).

• Renormalization.– The identity ( f n)∗T−f = λ
−n
f T−f for n≥ 1 implies

( f n ◦ξ
s
n)
∗T−f = λ

−n
f (ξs

n)
∗T−f on D(1/l2).

On the other hand, Proposition 3.3 yields

( f n ◦ξ
s
n)
∗T−f = (ξs

x ◦Mn)
∗T−f on D(1/l2),

where Mn is defined by Mn := Mx−1 ◦ · · ·◦Mx−n . Note that Mn(z) = mn ·z on D(1/l2)

with |mn| ∈ enλs · [e−nε,enε]. Combining these two equations, one gets

(ξs
n)
∗T−f = λ

n
f M∗n (ξs

x)
∗T−f on D(1/l2). (5.3)

Now, denote by ϕn the density of (ξs
n)
∗T−f and by ϕx the density for (ξs

x)
∗T−f , as in

Equation (5.2). Equation (5.3) gives

ϕn(z) = λ
n
f |mn|2ϕx(z).

Since xn and x are in the set Q, the origin is a Lebesgue density point for the densities
ϕn and ϕx, and l−1≤ϕn(0), ϕx(0)≤ l. Thus, l−2≤ λn

f |mn|2≤ l2. Taking logarithms,
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dividing by n, and letting n go to +∞ lead to

| logλ f +2λs|< 2ε,

as desired. Moreover, taking a subsequence, one may assume that λn
f |mn|2 converges

to a positive real number θ ∈ [l−2, l2].
Now, we come back to the Equation (5.3) which can be written

(ξs
n)
∗T−f = λ

n
f |mn|2 ·ϕx(mnz) · i

2
dz∧dz̄ on D(1/l2). (5.4)

The left hand side converges to ξ∗T−f in the sense of distributions on D(1/l2), be-
cause T−f has continuous potentials (see Lemma 4.4). The right hand side converges
in the sense of distributions to

θ ·ϕx(0) ·
i

2
dz∧dz̄,

because Mn converges locally uniformly to the constant mapping 0 on compact sub-
sets of D(1/l2) and 0 is a Lebesgue density point for ϕx. As a consequence,

ξ
∗T−f = θ ·ϕx(0) ·

i

2
dz∧dz̄ on D(1/l2).

Setting ξx = ξ, ρ(x) = 1/l2 and α(x) = θϕx(0) we get ξ∗xT−f = α(x) · i2dz∧ dz̄ on
D(ρ(x)) (ρ(x) can be defined as the best constant l for which x ∈ Ql,m). �

5.2. Second step: from ξx to ξs
x. We need to translate Proposition 5.3 in terms of

the global parametrization ξs
x : C→W s(x). Proposition 5.3 asserts that there is a

parametrization ξx : D(ρ(x))→W s(x) of a small neighborhood of x in W s(x) such
that ξ∗xT−f = α(x) i2dz∧dz̄ on D(ρ(x)). Both ξx and ξs

x satisfy the Lipschitz property

2β(x)/3≤‖ ξ
′(z) ‖≤ 2

on their domain of definition (see Notation 3.2), thus (ξs
x)
−1 ◦ ξx is defined on

D(ρ(x)) and the modulus of its derivative is bounded from below by β(x)/3 and
from above by 3β(x)−1; moreover, its derivative at the origin is in [β(x),β(x)−1].
This function is injective and its domain of definition is D(ρ(x)). By Koebe’s (1/4)-
theorem, its image contains the disk of radius β(x)ρ(x)/4, so that its reciprocal func-
tion is defined on D(β(x)ρ(x)/4) and has derivative in [β(x)/3,3β(x)−1] on this disk.

In order to pull back T−f by ξs
x, one can first compute its pull-back by ξx, the result

being α(x) i2dz∧dz̄, and then take its pull-back under (ξx)
−1 ◦ξs

x. This gives

(ξs
x)
∗T−f = α(x)|hx(z)|

i

2
dz∧dz̄ (5.5)
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on D(β(x)ρ(x)/4), where hx is holomorphic and

β(x)/3≤ |hx(z)| ≤ 3β(x)−1. (5.6)

5.3. Final step for the proof of Theorem 5.1. Now, fix a Pesin box P , and a subset
Q = Ql,m as in the proof of Proposition 5.3. Then, there exists N ≥ 1 such that

1/N ≤ (βρ/4)2 ≤ 1, 1/N ≤ β/3≤ 1, and 1/N ≤ α≤ N

on the set Q. Apply the Birkhoff ergodic theorem: for a generic point x of Q there is
a sequence of points f−ni(x) ∈ Q that converges towards x. As above, we drop the
index i from ni, and write xn for f−n(x), ξs

n for ξs
xn

. As in Equation (5.3), we obtain

(ξs
x)
∗T−f = λ

n
f M∗n (ξs

xn
)∗T−f on C, (5.7)

where Mn is a linear map z 7→ mn · z with |mn| ∈ enλs · [e−nε,enε]. Equation (5.5)
shows that the right hand side of Equation (5.7) has density

λ
n
f |M′n|2 ·α(xn) · |hn(Mn(z))| (5.8)

on M−1
n (D(1/N)), where hn is holomorphic with modulus in [1/N,N]. Again,

evaluation at z = 0 gives λn
f |mn|2 · α(xn) ∈ [1/N3,N3], so that a subsequence of

λn
f |mn|2 ·α(xn) converges to some θ in [1/N3,N3]. Moreover the Montel theorem

and Equation (5.6) imply that the sequence (hn)n is equicontinuous on D(1/N); thus
a subsequence converges locally uniformly to a function h : D(1/N)→C with mod-
ulus in [1/N,N].

Let γ(x) := θ|h(0)|2. Let K be a compact subset of C and restrict the study to
integers n ≥ 1 such that K ⊂ M−1

n (D(1/N)). Since (Mn)n converges uniformly to
zero on K, we get

(ξs
x)
∗T−f = γ(x)

i

2
dz∧dz̄ on K.

Taking an exhaustion by compact subsets, the same formula holds on C. Chang-
ing ξs

x into ξs
x(az) with |a|−2 := γ(x), we obtain the parametrization promised by

Theorem 5.1.

6. THE SINGULAR SURFACE X0 AND COMPACTNESS OF ENTIRE CURVES

A crucial tool for the proof of the Main Theorem is a compactness property of
a family of entire curves related to unstable manifolds. To obtain it, we need to
contract all f -periodic algebraic curves: the result is a singular surface X0. We start
with a description of X0 before proving the compactness theorem (Theorem 6.13).
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6.1. Construction of X0. We use the notations of Section 2. If C ⊂ X is a complex
curve, one denotes by [C] ∈ H2(X ;Z) the dual of the homology class of C for the
natural pairing between H2(X ;Z) and H2(X ;Z). We call it the cohomology class of
C, this is an element of H1,1(X ;R).

Proposition 6.1 (see [27], §4.1). Let f be an automorphism of a compact Kähler
surface X with positive entropy. There exist a (compact, singular, complex analytic)
normal surface X0, a bimeromorphic morphism π : X → X0 and an automorphism
f0 of X0 such that

(1) π◦ f = f0 ◦π.
(2) A curve C ⊂ X is contracted by π if and only if C is periodic, if and only if

[C] ∈Π⊥f (resp. [C] ∈ (θ+f )
⊥, resp. [C] ∈ (θ−f )

⊥).
(3) If C is a connected periodic curve, then the arithmetic genus of C is 0 or 1.

The surface X0 is not always projective, even if X is (see Section 11). If (X , f ) is
a Kummer example on a K3 or rational surface, then X0 is automatically singular.

Sketch of the proof. The intersection form being negative definite on Π⊥f , the Grauert-
Mumford criterion allows us to contract all irreducible curves C with [C] ∈Π⊥f , and
only those curves. This yields the desired morphism π : X → X0, where X0 is a nor-
mal, compact, complex analytic surface (see [4], § III.2 and [57], Remark 5.7.2 and
Example 5.7.3).

Let C be an irreducible curve. If C is periodic, then ( f ∗)n[C] = [C] for some
positive iterate of f ∗, so that [C] is in Π⊥f . Now, if [C] ·θ−f = 0, then the positive orbit
(( f ∗)n[C])n≥0 is a bounded subset of (θ−f )

⊥∩H2(X ;Z) because (θ−f )
⊥ is the direct

sum of Π⊥f and Rθ
−
f , and f ∗ acts as a rotation on Π⊥f and as a contraction on Rθ

−
f .

This implies that the orbit of [C] is a finite subset of Π⊥f . As a consequence, C is
constracted by π, C is the unique curve representing the cohomology class [C], and
C is periodic. This proves the second assertion when [C] ∈ (θ−f )

⊥; the other cases
are obtained in a similar way.

Property (3) is more difficult to establish. It is due to Castelnuovo for irreducible
curves and to Diller, Jackson, and Sommese for the general case (see [39]). �

Remark 6.2. The class Σ := θ
+
f +θ

−
f ∈H1,1(X ;R) has positive self-intersection and

is in the nef cone. After contraction of all periodic curves by the morphism π : X →
X0, there is no curve E with 〈π∗(θ+f +θ

−
f )|[E]〉 = 0. Hence, π∗(θ

+
f +θ

−
f ) “behaves

as a Kähler class” on X0, a statement which is made precise in Proposition 10.7.
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6.2. Analysis on X0. The material of this section will be used in §10.3, §10.4 and
§10.5. We present it for general (reduced and pure dimensional) compact complex
spaces M (X0 is such a space); our references are [2], [36], [56], and [77].

Let Mreg and Msing denote the regular and singular parts of M. There is a finite
collection of open sets Mα ⊂ M covering M such that each Mα is isomorphic, via
an embedding jα, to an analytic subset of the unit ball in CN (for some N). By
definition, a (p,q)-form of class C k on Mα is a (p,q)-form on Mreg

α which is the
pull back by jα of a (p,q)-form of class C k on the unit ball. A form is positive if it
comes from of a positive form. A smooth function is the restriction to jα(Mα) of a
smooth function on the unit ball of CN . These notions do not depend on the local
embeddings (see [56, §5.A, Theorems 14 and 16], and [36, §1]). By [2], Proposition
2.4.4, one can find a partition of unity subordinated to the Mα: smooth functions
ϕα ≥ 0 with compact support ⊂Mα such that ∑α ϕα = 1 on M.

Let ω be the standard hermitian (1,1)-form of CN and set κα := j∗αω. Then

κ0 := ∑
α

ϕακα

is a smooth positive (1,1)-form on M. If ν is a holomorphic disk drawn on Mα,
the norm ‖ ν′(z) ‖ with respect to κ0 is defined as ‖ ν′(z) ‖2:= ∑α ϕα(z) ‖ ( jα ◦
ν)′(z) ‖2

CN ; this makes sense even if ν(z) ∈ Msing (this definition is used in §6.4
and §7.2). From the above definitions, and from the compactness of M, we deduce
that if κ′ is another positive (1,1)-form then a−1κ0 ≤ κ′ ≤ aκ0 for some a > 0, i.e.
a−1 ‖ ν′(z) ‖≤‖ ν′(z) ‖κ′≤ a ‖ ν′(z) ‖ for every holomorphic disk.

A current of bidegree (n− p,n− q) on Mα (where n = dimM) is an element of
the dual of the space of smooth (p,q)-forms with compact support in Mα; a current
on M is an element of the dual of the space of smooth (p,q)-forms (see [36]). Every
current T on Mα induces a current ( jα)∗T on CN by the formula 〈( jα)∗T |φ〉 :=
〈T |( jα)∗φ〉. By definition, a current T is positive if ( jα)∗T is positive for every α.
The trace measure of a positive (n−1,n−1)-current T on M is defined by

T ∧κ0 := ∑
α

〈T |ϕακα〉,

it is equal to zero if and only if T is equal to zero.
A real valued function u on Mα is pluri-subharmonic if it is the restriction to

Mα of a pluri-subharmonic function on the unit ball of CN . One has the following
criterion : let u : Mα→ [−∞,+∞[ be an upper semi-continuous function which is not
identically −∞ on any open subset of Mα; then u is pluri-subharmonic if and only if
u◦ν is sub-harmonic or identically−∞ for every holomorphic disk ν : D→Mα (see
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Theorem 5.3.1 of [49], or [36]). Moreover, if u is continuous and pluri-subharmonic
on Mα, then u is the restriction of a continuous and pluri-subharmonic function ũ
on the unit ball of CN (see [77], Satz 2.4). For such a function, the current ddcu is
defined on Mα by

〈ddcu,φ〉 :=
∫

jα(M)
ũddc

φ̃

for every (n−1,n−1)-test form φ on Mα, coming from an (n−1,n−1)-test form
φ̃ on CN ; the integral is computed on the smooth part (see [36, 38], and § 10.5
below) and is therefore equal to

∫
Mreg

α
uddcφ. A function defined on an open set U

of M is pluri-subharmonic if its restriction to the intersections U ∩Mα are pluri-
subharmonic.

We shall need the following definition to state Theorem 10.8: a closed positive
(1,1)-current T on M has a continuous potential around x if T = ddcu on some open
neighborhood U of x, for some continuous pluri-subharmonic function u : U→ R.
If T has a continuous potential around x, its product with a closed positive (1,1)-
current S on U is denoted by S∧T (or ddc(uS)) and is defined by

S∧T (ϕ) = 〈( jα)∗S|ũddc
ϕ̃〉

for every smooth real valued function ϕ on U (and any smooth extension ϕ̃ of ϕ to
the unit ball). This is a positive measure on U, see [38], Chapter III.3.

Notation 6.3. We set T±0 := π∗T±f , where T±f are the invariant currents of § 2.4.

Remark 6.4. We do not know whether T0 := T+
0 +T−0 always has continuous po-

tentials near the singularities of X0 (this holds if X0 has quotient singularities, and
in particular if X is a K3 surface); but we will not need that property. In Section
10.5 (in which Proposition 6.9 will be proved), Theorem 10.8 is applied on compact
subsets K of X reg

0 , and on such sets, T0 has local continuous potentials.

6.3. Slices of T±0 .

Lemma 6.5. Let C be a Riemann surface and ν : C→ X0 be a non-constant holo-
morphic map. There is a unique holomorphic map ν̂ : C→ X such that π◦ ν̂ = ν.

Proof. Since this is a local statement, we can replace C by the unit disk D and as-
sume that (i) X0 is an analytic subset of the open unit ball B ⊂ CN with a unique
singularity q0 ∈ B, (ii) D = ν(D) is an analytic subset of B of dimension 1, (iii)
ν−1(q0) = {0}, and (iv) the germ (D,q0) is irreducible. Then, π−1(D) is an analytic
subset of π−1(B), and this analytic subset decomposes into finitely many irreducible
components. One, and exactly one of these components F projects onto D and the
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other components are contracted by π. The component F intersects the exceptional
divisor π−1(q0) in a unique point m, because otherwise (D,q0) would not be an ir-
reducible germ. One can then define ν̂ by ν̂ = π−1 ◦ν on D\{0} and ν̂(0) = m. �

Notation 6.6. We define ν∗T±0 locally by ddc(u± ◦ ν̂), where u± are continuous
potentials of T±f .

We say that a sequence of holomorphic disks νn : D → X0 converges towards
ν : D→ X0 if νn converges locally uniformly towards ν. This convergence can be
locally described in local charts ⊂ CN .

Lemma 6.7. Let νn : D→ X0 be a sequence of holomorphic maps, converging to-
wards a non-constant holomorphic map ν : D→ X0. Then

(1) ν−1(X sing
0 ) is a discrete subset of D;

(2) the measures ν∗(T+
0 ) and ν∗n(T

+
0 ) have no atom;

(3) ν∗nT+
0 converges towards ν∗T+

0 on D\ν−1(X sing
0 );

(4) if ν∗nT+
0 converges towards an atomless measure µ, then ν∗T+

0 = µ.

Assertion (4) will be used in the following case: let (an) be a sequence of non-
negative real numbers converging towards a ∈ R+; if ν∗nT+

0 = an
i
2dz∧ dz for all

n≥ 1, then ν∗T+
0 = a i

2dz∧dz.

Proof. Since zeroes of analytic functions are isolated, we get (1). To prove (2),
it suffices to notice that if µ is a positive measure with a continous potential u on
D, then µ has no atom at the origin. This is well known, but we sketch the proof
because it will be used again in Lemma 10.13. Changing u into u−u(0) we assume
that u(0) = 0. Then, we denote by Dr the disk of radius r and we let χ : D3→ [0,1]
be a smooth non-negative function which is equal to 1 on D1 and to 0 on D3 \D2.
For ε≤ 1/3, define χε(x) := χ(x/ε). Then

0≤ 〈µ|χε〉=
∫
D

u ddc
χε ≤max

D3ε

|u| ·max
D3ε

‖ ddc
χε ‖ ·Area(D3ε).

But the maximum of |u| goes to 0 with ε because u is continuous, the maximum of
‖ ddcχε ‖ is bounded from above by csteε−2, and Area(D3ε) = 9πε2. Thus 〈µ|χε〉
goes to 0 with ε, and µ has no atom at the origin.

On D\ν−1(X sing
0 ) we know that ν̂n converges locally towards ν̂, because they are

obtained from νn and ν by composition with π−1 (for n large). Thus, Assertion (3)
follows from Lemma 4.4. Assertion (4) follows from (2) and (3). �

6.4. Entire curves on X0.
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6.4.1. Definitions. A sequence of entire curves ξn : C→X0 converges towards ξ : C→
X0 if ξn converges locally uniformly to ξ. A family E of entire curves on X0 is closed
if the limit of every converging sequence (ξn) ∈ EN is an element of E . It is nor-
mal if every sequence of elements of E contains a converging subsequence. It is
compact if it is non empty, normal and closed. A Brody curve ξ : C→ X0 is a
non-constant entire curve such that ‖ ξ′(z) ‖ is uniformly bounded.

6.4.2. Zalcman reparametrization. We have the following classical Lemma for gen-
eral compact complex spaces.

Lemma 6.8 (Zalcman). Let M be a compact complex space. If a sequence of entire
curves ξn : C→ M is not normal then there exists a sequence of affine automor-
phisms z 7→ anz+bn such that

(1) limn an = 0,
(2) the sequence νn : C→M defined by z 7→ ξn(anz+ bn) converges towards a

Brody curve ν : C→M.

The proof is the same as for compact complex manifolds, in particular it relies
on a control of the derivatives of holomorphic disks in M (see for instance [11], and
[63, Chapter III]).

6.4.3. Non existence of degenerate entire curves. The following proposition is cru-
cial to show the compactness of the family Au

f , see Theorem 6.13.

Proposition 6.9. Let f be an automorphism of a complex projective surface X with
positive entropy. Let π : X → X0 be the contraction of the f -periodic curves and let
T±0 := π∗T±f . There is no non-constant entire curve ξ : C→ X0 satisfying

ξ
∗(T+

0 +T−0 ) = 0.

The proof is given in Section 10, it relies on a result of Dinh-Sibony [40], which
we extend to the context of (singular) complex spaces. Let us explain the strategy
when f has no periodic curve, so that X0 = X is smooth. In that case, T+

0 +T−0 =

T+
f +T−f is cohomologous to a Kähler form κ (see § 10.2 and [76]). Starting with

ξ, Brody’s lemma provides an entire curve ξ̃ which is not constant, has a uniformly
bounded derivative, and satisfies ξ̃∗(T+

f + T−f ) = 0. Then, the above mentioned
result of [40] provides an Ahlfors current S for ξ̃ such that S∧ (T+

f +T−f ) vanishes
identically. This is a contradiction since T+

f +T−f is cohomologous to a Kähler form
and S is non trivial closed and positive current.
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6.4.4. The family Au
f .

Definition 6.10. Let Au
f be the family of entire curves ξ : C→ X0 such that

ξ
∗(T+

0 ) =
i

2
dz∧dz and ξ

∗(T−0 ) = 0.

If µ f is absolutely continuous, Theorem 5.1 and Lemma 6.11 below show that
almost every unstable manifold W u

f (x) can be parametrized by an injective entire
curve ξu

x : C→ X0 that belongs to Au
f . In particular Au

f is not empty.

Lemma 6.11. For µ f -almost every x ∈Λ, the global stable manifold W s(x) does not
intersect the f -periodic curves. In particular, the injective parametrization ξs

x : C→
X remains injective when one projects it into X0.

Proof. Let ξ : C→ X be an injective parametrization of W s(x). Assume that ξ is
not contained in any f -periodic curve. Let D be an irreducible periodic curve, and
suppose that f (D) = D for simplicity. If W s(x) intersects D, the forward orbit of x
converges towards D. On the other hand, µ f (D) = 0 because µ f does not charge any
proper analytic subset of X . Thus, the forward orbit of x does not equidistribute, and
by Birkhoff’s theorem x is not a generic point with respect to µ f . �

Notation 6.12. In what follows, we keep the same notation ξ
u/s
x for the unstable and

stable manifolds, but considered as entire curves in X0.

6.4.5. Compactness of Au
f .

Theorem 6.13. Let f be an automorphism of a complex projective surface X with
positive entropy. If non-empty, the family Au

f is compact.

Proof. Lemma 6.7(4) implies that Au
f is closed. Let us prove that Au

f is a normal
family. If not, Lemma 6.8 provides a sequence of curves ξn ∈ Au

f and affine au-
tomorphisms gn : z 7→ anz+ bn such that limn an = 0 and νn := ξn ◦ gn converges
towards a Brody curve ν : C→ X0. By Lemma 6.7, this curve satisfies

ν
∗(T+

0 ) = lim
n→∞

ν
∗
n(T

+
0 ) = lim

n→∞
g∗n

(
i

2
dz∧dz

)
= lim

n→∞
|an|2

i

2
dz∧dz = 0.

Similarly, ν∗(T−0 ) = 0, and this contradicts Proposition 6.9. �

Remark 6.14. Theorem 6.13 does not need any assumption on µ f .
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7. LAMINATIONS BY UNSTABLE MANIFOLDS

7.1. The compact family Bu
f of unstable manifolds. We assume that µ f is abso-

lutely continuous, so that Au
f is not empty.

Definition 7.1. Let Bu
f be the smallest compact subset of Au

f that contains all injec-
tive parametrizations of unstable manifolds which are in Au

f . We set

Bu
f (X0) = X reg

0

⋂ ⋃
ξ∈Bu

f

ξ(C).

Note that Au
f and Bu

f are invariant under translation and rotation: if ξ is an element
of one of these sets, then z 7→ ξ(eiθz+ b) is an element of the same set for all b ∈
C and θ ∈ R. Using this remark, one verifies that Bu

f (X0) is a closed subset of
X reg

0 , because Bu
f is a compact family of entire curves. The sets Bs

f and Bs
f (X0)

are defined in a similar way, with parametrizations of stable manifolds such that
(ξs

x)
∗T−f = i

2dz∧dz. Let us now derive further properties of Bu
f and Bu

f (X0).

Lemma 7.2. Let η1,η2 be elements of Bu
f . Then either η1(C) and η2(C) are disjoint

or η1(C) = η2(C). In the latter case η1(z) = η2(eiθz+b) on C for some b ∈ C and
θ ∈ R.

Proof. First, note that two unstable manifolds W u(x) and W u(x′) of f either co-
incide or are disjoint; indeed, if y is a point of intersection, then the distances
dist( f n(y), f n(x)) and dist( f n(y), f n(x′)) go to 0 as n goes to −∞; thus the distance
dist( f n(x), f n(x′)) also goes to 0, so that x and x′ are in the same unstable manifold.
The first property of the lemma follows from the Hurwitz Theorem:

Lemma 7.3 (Hurwitz, see [8]). Let Cn and Dn be two families of irreducible curves
in the unit ball of C2. Assume that Cn∩Dn is empty for all n, that Cn converges to
an irreducible curve C uniformly and that Dn converges to an irreducible curve D
uniformly. Then either C∩D is empty or C coincides with D.

To prove the second property, assume that η1 and η2 have the same image W .
Let m be a point of W and fix two points z1 and z2 such that η1(z1) = η2(z2) = m.
Assume that (η2)

′(z2) 6= 0; one can always find such pairs (m,z2) because η2 is not
constant. Then η2 determines a local diffeomorphism from a neighborhood of z2

in C to a neighborhood of m in W . The map ϕ = η
−1
2 ◦η1 is defined on a small disk

centered at z1, is holomorphic, and preserves i
2dz∧ dz̄. Thus, ϕ(z) = eiθz+ b for

some b ∈C and θ ∈R. As a consequence, there is a non-empty open subset of C on
which η2(eiθz+b) = η1(z); this property holds on C by analytic continuation. �
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Lemma 7.4. Let x be an element of Bu
f (X0) and ξ be an element of Bu

f with x = ξ(0).
Let W ⊂ X reg

0 be a neighborhood of x and r0 be a positive radius such that ξ(Dr0)⊂
W . Let ε be a positive real number. There exists a neighborhood V ⊂W of x such
that: for every η ∈ Bu

f with η(0) ∈ V , there exists θ ∈ R satisfying

∀z ∈ Dr0 , distX0(η(e
iθz),ξ(z))≤ ε.

Proof. If not, there exists a sequence ηn ∈ Bu
f such that ηn(0) ∈ Bx(

1
n) and

∀θ ∈ R/2πZ, ∃zn,θ ∈ Dr0, dist(ηn(eiθzn,θ),ξ(zn,θ))> ε.

For every angle θ ∈ R, choose a limit point zθ ∈ Dr0 of the sequence zn,θ. By com-
pactness of Bu

f , one can assume that ηn converges to some η ∈ Bu
f with η(0) = x.

By construction,
∀θ ∈ R, distX0(η(e

iθzθ),ξ(zθ))≥ ε.

In particular η is not equal to ξ up to a rotation, contradicting Lemma 7.2. �

Proposition 7.5. Assume that the measure µ f is absolutely continuous with respect
to the Lebesgue measure. Let ξ be an element of Bu

f . Then

(1) ξ(C)∩X reg
0 is contained in Bu

f (X0)∩Bs
f (X0);

(2) ∀z ∈ C, ξ(z) is contained in the image of an entire curve ν ∈ Bs
f ;

(3) the set of points z ∈ C such that ξ intersects a stable manifold ξs
y of f trans-

versely at ξ(z) is dense in C.

The same result holds if one permutes the roles of stable and unstable parame-
trizations.

Proof. Assertion (2) is weaker than assertion (1). Thus, we only prove (1) and (3).
First, by definition, ξ(C)∩X reg

0 is contained in Bu
f (X0). Since Bu

f (X0) is a closed

subset of X reg
0 , it contains ξ(C)∩X reg

0 ; similarly, Bs
f (X0) contains η(C)∩X reg

0 for all
curves η ∈ Bs

f . Since ξ∗T+
0 coincides with the Lebesgue measure, it has full support

in C. But T+
0 is an Ahlfors-Nevanlinna current for every stable manifold ξs

x : C→X0

(see Section 3.8). Taking ξs
y in Bs

f , we obtain

ξ(C)⊂ ξs
y(C)⊂ Bs

f (X0),

and the first assertion follows from these inclusions.
To prove (3), we apply (2): given any open subset V of C, the Riemann surface

ξ(V ) is contained in the family of entire curves η(C), η ∈ Bs
f ; by Lemma 7.2, these

curves η(C) are pairwise disjoint. Now, apply the following lemma to conclude that
the generic intersections between ξ(V ) and the curves η ∈ Bs

f are transversal. �
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Lemma 7.6 ([8], Lemma 6.4). Let C and D be complex submanifolds of C2 such
that (i) C∩D = {p} and (ii) TpC = TpD. Let U be a bounded neighborhood of p. If
D′ is sufficiently close to D but D∩D′ = /0, then the intersection of D′ and C in U is
non-empty and non-tangential at all intersection points.

7.2. Local laminations. Every ξ ∈ Bu
f is locally a uniform limit of (generic) unsta-

ble manifolds ξu
n ∈ Au

f ; such ξu
n take values in X reg

0 and (ξu
n)
′(z) 6= 0 for every z ∈ C.

It may happen that ξ′(z) = 0 for some z ∈ C. For instance, in (singular) Kummer
examples, the velocity vanishes for the stable and unstable manifolds when they
pass through the singularities of X0. To keep another example in mind, consider the
curve ξ(z) = (z2,0) for z∈D; this curve is not injective but its image is the (smooth)
horizontal disk D×{0} ⊂ D2. Moreover, ξ is the limit of the pairwise disjoint and
injective curves ξn(z) = (z2,3−n(1+ z/5)). Such a non-injective limit may a priori
arise in Bu

f .

Remark 7.7. Let ξ ∈ Bu
f and z ∈ C satisfy ξ(z) ∈ X reg

0 and ξ′(z) = 0. Since ξ is the
limit of pairwise disjoint entire curves, the germ ξ((C,z)) is not singular at ξ(z) by
[67, Proposition 12]. We thank Misha Lyubich for this reference; see also [10].

Recall that ‖ · ‖ is defined in Section 6.2.

Definition 7.8. The velocity v(x) at a point x ∈ Bu
f (X0) is defined by

v(x) :=‖ ξ
′(0) ‖,

where ξ is any element of Bu
f such that ξ(0) = x. The set Bu

f (X0) is partitioned into

Bu,+
f (X0) :=

{
x ∈ Bu

f (X0) , v(x)> 0
}

and
Bu,0

f (X0) :=
{

x ∈ Bu
f (X0) , v(x) = 0

}
.

The fact that the velocity is well defined, i.e. does not depend on the choice of the
parametrization ξ ∈ Bu

f , follows from Lemma 7.2. We first study the local geometry

of the unstable manifolds near points of Bu,+
f (X0); points of Bu,0

f (X0) are dealt with
in Section 8.2.

Proposition 7.9. Assume that µ f is absolutely continuous. Let x be a point in
Bu,+

f (X0) and ξ be an element of Bu
f such that ξ(0) = x. There are neighborhoods

U ⊂U′ of x in X reg
0 such that

(1) U′ is isomorphic to a bidisk D×D.



DYNAMICS ON COMPLEX SURFACES 39

(2) The connected component of ξ(C)∩U′ that contains x is a horizontal graph
in U.

(3) There is a lamination Lu of the whole open set U by horizontal graphs, each
of which is contained in the image of a curve η ∈ Bu

f . In particular x is an
interior point of Bu

f (X0) in the complex surface X reg
0 .

(4) If η is an element of Bu
f , ∆ is an open subset of C and η(∆) is contained in

U then η(∆) is contained in a leaf of this lamination.
(5) There is a transversal to the lamination Lu which is a piece of a stable

manifold of f .
(6) The support of µ f in U coincides with U.

U

U"

U’

V

FIGURE 1. The point x is the red point right in the middle of the picture.
The open set V is the red shaded ball, the open set U is grey; U ′ is light grey
with a green contour, and U” is white with a blue contour. The horizontal
curves represent pieces of unstable manifolds (one of them is not a graph
above D).

Proof. By definition, ξ′(0) 6= 0. Hence, there exist r0 > 0 and neighborhoods U′ ⊂
U′′ of x in X reg

0 such that

• ξ(Dr0) is a smooth curve,
• the pair of open sets (U′,U′′) is isomorphic to a pair of bidisks (D×D,DR×
DR), with R > 1,
• ξ(∂Dr0)⊂ X reg

0 \U′ and ξ(Dr0) is contained in U′′,
• ξ(Dr0)∩U′ is a horizontal graph in the bidisk U′.
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Changing (U′,U′′) if necessary there exists r < r0 such that ξ(Dr0)∩U′ = ξ(Dr).

Lemma 7.10. Let r0 > 0 and U′ as above. There exists a neighborhood V of x in
X reg

0 such that for every η∈Bu
f with η(0)∈V , the curve η(Dr0)∩U′ is a horizontal

graph in U′.

Proof. Apply Lemma 7.4: given ε > 0, there is a neighborhood V of ξ(0) such that
every curve η ∈ Bu

f with η(0) ∈ V is ε-close to ξ on Dr0 after composition with a
rotation z 7→ eiθz. All we need to prove, is that η is also a horizontal graph if ε is
small enough.

Let π : U′′ ' DR×DR→ DR denote the first projection. The holomorphic map-
pings π ◦ ξ and π ◦η are ε-close on Dr0 . On the smaller disk Dr, the map π ◦ ξ is
one-to-one, with image equal to the unit disk D. If ε is small enough, |π◦η−π◦ξ|<
|π◦ξ| on the boundary of Dr0 . Thus, the Rouché theorem implies that π◦η : Dr→D
is also one-to-one, and the result follows. �

Fix V as in the previous lemma. The curves η(Dr0)∩U′ with η ∈ Bu
f and η(0) ∈

V form a family of horizontal graphs in U′. Let U be the union of these graphs. By
Lemma 7.2 it is laminated by disjoint horizontal graphs; we denote this lamination
by Lu. Apply Proposition 7.5, Assertion (3), to the curve ξ. One can find an element
ξs

y of Bs
f such that ξs

y(0) ∈ ξ(Dr)∩V , with transverse intersection. Let ∆ be a disk
centered at the origin for which ξs

y(∆) is contained in V . Apply Proposition 7.5,
Assertion (1), but to the stable manifold ξs

y: every point of ξs
y(∆) is contained in the

image of a curve η ∈ Bu
f . Thus, the set U contains ξs

y(∆). But U is laminated, and
the Λ-lemma implies that the holonomy maps of a lamination are (quasi-conformal)
homeomorphisms. Thus, U contains a neighborhood of ξ(Dr), and we replace U
by such a laminated open neighborhood.

For Property (5), shrink ∆ and U to assure that ξs
y(∆) is transverse to Lu.

The previous argument shows that the support of the restriction T−f |U coincides
with U because its slice (ξs

y)
∗(T−f )|∆ is the Lebesgue measure (see the proof of

Proposition 7.5). To prove Property (6), fix a small ball B ⊂U. Since T−f charges
B, there is an unstable manifold that enters B. Take a point x′ ∈ B on this unstable
manifold which intersects a stable manifold transversally, and apply Properties (1)
to (5) for the stable manifolds: we get a stable lamination Ls of a neighborhood W
of x′ which is transverse to Lu. In W , the product of T−f and T+

f is strictly positive;
hence µ f (B)> 0 (see § 4.2.1). �
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8. HOLOMORPHIC FOLIATION AND HARTOGS EXTENSION

We conclude the proof of the main theorem. The first step is to promote the lo-
cal laminations obtained in Proposition 7.9 into local holomorphic foliations. Then
we use the Hartogs phenomenon to extend the foliation into a global, singular foli-
ation of X . The theorem eventually follows from a classification of automorphisms
preserving holomorphic foliations.

8.1. From laminations to holomorphic foliations. Proposition 7.9 asserts that Bu
f

determines near every x∈Bu,+
f (X0) a local lamination denoted by Lu. In this section

we promote these local laminations into local holomorphic foliations.

Proposition 8.1. The local laminations Lu are holomorphic.

Proof. The following argument is due to Ghys (see [51, 23]).
Let U and U′ be connected open subsets of X reg

0 such that U′ is biholomorphic to
a bidisk D×D, U is contained in U′, and the lamination Lu of U is made of disjoint
horizontal graphs (as in Fig. 1). Denote by (x1,x2) the coordinates in U′ ' D×D
and by π1 and π2 the two projections (πi(x1,x2) = xi, i = 1,2). Let p = (p1, p2) be a
point of U and ∆p ⊂U′ be the vertical curve {x1 = p1}. Denote by γ a continuous
path in the leaf through x that starts at x and ends at another point q = (q1,q2).
The holonomy map from the transversal ∆p to the transversal ∆q := {x1 = q1} is a
homeomorphism hγ from ∆p,U := ∆p∩U to its image ∆q,U := ∆q∩U. According to
the Λ-lemma, this homeomorphism hp,q is K(p,q)-quasi-conformal, with a constant
K(p,q) satisfying

0≤ K(p,q)−1≤ dist(p,q).

Recall that a 1-quasi-conformal map is conformal, hence holomorphic (see Section
4.1.1). Instead of looking at vertical disks, we may choose pairs of disks ∆ and ∆′

which are contained in stable manifolds of f and are transverse to the lamination.
Let γ be a path in a leaf Lu(m) that joins the intersection points x := ∆∩Lu(m) and
x′ := Lu(m)∩∆′, let hγ be the (germ of) holonomy from ∆ to ∆′. Applying f−n and
using Remark 3.6 there exists αn ∈ C∗ such that

f−n ◦ξ
u
x(z) = ξ

u
f−n(x)(αnz).

Proposition 3.5 precisely asserts that limn αn = 0 for almost every point x.
Using the Poincaré recurrence theorem we can assume that f−n(x) ∈U. This and

the compactness of Bu
f imply that the path γ is shrunk uniformly under the action

of f−n; simultaneously, the disks ∆ and ∆′ are mapped to large disks f−n(∆) and
f−n(∆′): the connected components of f−n(∆)∩U and f−n(∆′)∩U containing
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f−n(x) and f−n(x′) are vertical disks in U, and their relative distance goes to 0
with n. Thus, the holonomy h−n between these disks is Kn-quasi-conformal, with
limn Kn = 1. But f n conjugates h−n with hγ on a small neighborhood of x in ∆.
Hence, for almost every point x ∈ ∆ (with respect to the conditional measure of
µ f and therefore also with respect to the Lebesgue measure), and for every ε > 0,
the holonomy hγ is (1+ ε)-quasi-conformal on a small neighborhood ∆ε ⊂ ∆ of x.
This implies that hγ is (1+ ε)-quasi-conformal for all ε > 0; hence, hγ is indeed
conformal.

We have proved that the holonomy between two transversal disks which are con-
tained in stable manifolds is holomorphic. By Proposition 7.5 these transversal disks
form a dense subset of transversals. Consequently, the holonomy between all pairs
of vertical disks ∆x and ∆y is holomorphic. This implies that the lamination Lu is
holomorphic. �

Lemma 8.2. The local holomorphic foliations Lu defined near every point of Bu,+
f (X0)

can be glued together to provide a holomorphic foliation F u of the open set Bu,+
f (X0).

Proof. Propositions 7.9 and 8.1 show that if x ∈ Bu,+
f (X0), then there exist a neigh-

borhood U of x and a holomorphic foliation Lu of U such that all entire curves
η ∈ Bu

f are tangent to Lu. More precisely, if η is an element of Bu
f and η(∆) is

contained in U, then η(∆) is contained in a leaf of Lu; in other words, if ωu is a
holomorphic 1-form on U which defines the foliation Lu, then η∗ωu = 0 on ∆. The
holomorphic foliation F u can thus be defined as the unique holomorphic foliation
of Bu,+

f (X0) such that the generic unstable manifolds of f are leaves of F u. �

8.2. Hartogs extension of the holomorphic foliation F u. The foliation F u is de-
fined on the open set Bu,+

f (X0). We extend it to X reg
0 (i.e. through Bu,0

f (X0)).

Proposition 8.3. Let x be an element of Bu,0
f (X0). There exists a neighborhood V of

x in X reg
0 such that the holomorphic foliation F u extends as a (singular) holomorphic

foliation of V .

To prove this proposition, fix a curve ξ ∈ Bu
f with ξ(0) = x (and ξ′(0) = 0). Re-

mark 7.7 tells us that ξ(D) is smooth, but we shall not need this result. Even if ξ(D)
is singular, there exists an open neighborhood V of x such that

(i) V ⊂ C2 up to a local choice of co-ordinates,
(ii) the connected component of ξ−1(V ) containing 0 contains a disk Dr,

(iii) ξ′(0) = 0 but ξ′ does not vanish on Dr \{0}.
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The existence of such a neighborhood follows, for instance, from the Weierstrass
preparation theorem (applied to the curve ξ(D)); it follows also from Remark 7.7
(since ξ(Ds) is smooth for s small).

Fix a radius s with 0 < s < r/3. Since ξ′ does not vanish on ∂Ds, there is an open
neighborhood U ⊂ V of ξ(∂Ds) and a holomorphic foliation Lu on U such that all
entire curves η ∈ Bu

f are tangent to Lu in U.
Fix ε > 0. Let θ ∈ R and define xθ := ξ(seiθ). By Lemma 7.4 there exists a

neighborhood U(θ,ε) ⊂ U of xθ such that, if η ∈ Bu
f and η(seiθ) ∈ U(θ,ε), then

there exists a complex number a with |a|= 1 such that η(z) and ξ(az) are ε-close on
Dr. In particular, the curve η(D2s) is contained in an ε-neighborhood of ξ(Dr).

Thus, there is a neighborhood U0 ⊂U of ξ(∂Ds) satisfying

• ∀m ∈U0, the leaf of Lu through m is contained in a disk η(D2s) where η is
an element of Bu

f which is ε-close to ξ on Dr;
• if (xn) ∈UN

0 converges towards a point of ξ(Ds), one can choose such disks
ηn(D2s) with ηn ∈ Bu

f converging towards ξ uniformly on Dr.

Let (xn)n≥1 be such a sequence, with the additional property that xn is contained
in an unstable manifold of f for all n. Then, ηn is a parametrization of an unstable
manifold, and therefore η′n does not vanish. Hence, there is an open neighborhood
Un of ηn(Ds) such that Lu extends as a holomorphic foliation of U0 ∪Un. As
explained in Section 8.1, the extensions of Lu to the open sets Un are compatible,
and determine a foliation of U∞ := ∪n≥0Un.

Note that U∞ is a subset of V ⊂ C2. The slopes of the leaves of Lu determine
a holomorphic function su : U∞ → P1 (with P1 the projective line of all possible
“slopes”). Such a function extends as a meromorphic function ŝu on the envelop of
holomorphy Û∞ of U∞ (see [58]). The function ŝu determines a (singular) holomor-
phic foliation on Û∞ which extends Lu.

It remains to show that Û∞ contains a neighborhood of ξ(Ds), hence a neighbor-
hood of x. For this purpose, we apply the following theorem to D=U∞, Sn =ηn(Ds)

and S = ξ(Ds), and we remark that the boundaries ηn(∂Ds) are contained in a com-
pact neighborhood K of ξ(∂Ds) with K ⊂U0.

Theorem 8.4 (Behnke-Sommer, [34], chapter 13). Let D be a bounded domain of
Cm, m ≥ 2. Let Sn be a sequence of complex analytic curves which are properly
contained in D. Assume that Sn converges towards a curve S ⊂ Cm and that the
boundaries ∂Sn converge to a curve Γ b D. Then every holomorphic function h ∈
O(D) extends to a neighborhood of S.
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Since, on a surface, the singularities of a holomorphic foliation are isolated (they
correspond to the indeterminacy points of the “ slope function ŝu ”), there is an open
neighborhood of x in which Lu has at most one singular leaf, namely the leaf ξ(Dr).

Corollary 8.5. The set Bu
f (X0) coincides with X reg

0 , the foliation F u extends to a
(singular) holomorphic foliation of X reg

0 , and this foliation is f -invariant. Its lift to
X by the bimeromorphic morphism π : X → X0 determines a (singular) f -invariant
foliation of X.

Proof. The set Bu
f (X0) is closed. Propositions 7.9 and 8.3 show that Bu

f (X0) is also
open. Since X reg

0 is isomorphic to the complement of finitely many curves in X , it
is connected. Thus, Bu

f (X0) is equal to X reg
0 , and X reg

0 supports a (singular) holo-
morphic foliation F u, such that every unstable manifold of f is a leaf of F u. This
implies that f preserves F u. Then, we lift F u to a (singular) holomorphic folia-
tion on π−1(X reg

0 ); by [21, §1], this foliation automatically extends to an f -invariant
holomorphic foliation of X . �

8.3. Proof of the main theorem. To complete the proof of the main theorem, we
refer to [23] and [29, Théorème 3.1], in which the following theorem is proved:

Theorem 8.6. Let X be a compact Kähler surface, with a (singular) holomorphic
foliation F and an automorphism f : X → X of positive entropy. If f preserves F ,
then (X , f ) is a Kummer example, and the stable (or unstable) manifolds of f are
leaves of F .

In fact, [29] classifies all triples (X ,F , f ) where X is a smooth surface, F is a
(singular) holomorphic foliation of X , and f is a birational transformation of X of
infinite order preserving F .

A posteriori, one verifies that the surface X ′ in Definition 1.3 coincides with the
surface X0 of Proposition 6.1 (the morphism π contracts only periodic curves of f ,
and all of them because fY has no periodic curve).

9. CONSEQUENCES AND APPLICATIONS

9.1. Equivalent dynamical characterizations. As before, consider an automor-
phism f of a complex projective surface X , with positive entropy logλ f .

9.1.1. Ruelle’s inequalities and absolute continuity. The first part of the following
result is due to Ruelle. The second part is proved by Ledrappier in [65, Corollaire
5.6], in a more general setting. Here the local product structure of µ f leads to a
somewhat simplified proof.
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Proposition 9.1 (Ruelle, Ledrappier). Let X be a complex projective surface and f
be an automorphism of X with positive entropy logλ f . Then the Lyapunov exponents
of f with respect to µ f satisfy

λs ≤−
1
2

logλ f and λu ≥
1
2

logλ f .

If equality holds simultaneously in these two inequalities, then µ f is absolutely con-
tinuous with respect to the Lebesgue measure.

Proof. The Ruelle inequality states that log(λ f ) ≤ 2λu and log(λ f ) ≤ −2λs (see
[78] and [62], p. 669). Assume that equality holds simultaneously in these two
inequalities. Fix a Pesin box P , as in Section 4.2. According to [65, Théorème 4.8],
the conditional measures of µ f with respect to the stable and unstable manifolds are
absolutely continuous with respect to the Lebesgue measure. In other words, both
ν+ and ν− are absolutely continuous with respect to the Lebesgue measure, because
they coincide with the conditional measures of µ f with respect to the stable and
unstable laminations of P . In the Pesin box, µ f corresponds to the product measure
ν+⊗ ν− via the homeomorphism h of Section 4.2.1. Since the holonomy of the
stable and unstable laminations are quasi-conformal, they are absolutely continuous
with respect to the Lebesgue measure (see Section 4.3.1). Hence, µ f is absolutely
continuous with respect to the Lebesgue measure in P , and therefore in X . �

9.1.2. Proof of Corollary 1.7. Our main theorem proves (1)⇒ (4), while the re-
verse implication is obvious. We proved (2)⇒ (1) in Proposition 9.1 and (1)⇒ (2)
in Proposition 5.3 (this equivalence follows also from [65, Corollaire 5.6]). To
prove (2)⇔ (3) we use Ruelle’s inequality [78], which provides λs ≤ −1

2 logλ f

and λu ≥ 1
2 logλ f , and Young’s theorem [80] which ensures that the generic limits

in Property (3) are equal to (1/λu− 1/λs) logλ f . (Young’s theorem is proved for
C ∞-diffeomorphisms of compact surfaces, but her proof applies also to our context)

9.2. K3 and Enriques surfaces.

9.2.1. The Classification Theorem. The Classification Theorem stated in the intro-
duction is proved in [29, 30]. Let us add two remarks. Its first assertion rules out the
case of Enriques surfaces: if f is an automorphism of an Enriques surface with posi-
tive entropy, then µ f is singular with respect to the Lebesgue measure. Assertion (3)
is sharp, meaning that there are rational Kummer examples with λ f in Q(ζl) for all
possible orders l = 3, 4, and 5. For instance, an example is given in [30], of an auto-
morphism g of an abelian surface A such that λg = |1+ζ5|2, where ζ5 is the primitive
fifth root of unity exp(2iπ/5). The linear transformation (x,y) 7→ (ζ5x,ζ5y) induces
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an automorphism of A, and the quotient is a rational surface: this gives examples of
Kummer automorphisms on rational surfaces for which λ f has degree 4.

9.2.2. Proof of Corollary 1.8. This corollary is a direct consequence of the second
assertion of the Classification Theorem and the following classical result.

Lemma 9.2. Let X be a complex projective K3 surface, with Picard number equal
to 2. The group of automorphisms of X is infinite if and only if the intersection form
does not represent 0 and −2 in NS(X). If it is infinite, then it is virtually cyclic, and
all elements of Aut(X) of infinite order have positive topological entropy.

Sketch of proof. Let Iso(NS(X)) be the group of isometries of the lattice NS(X) with
respect to the intersection form 〈·|·〉.

Step 1.– By the Hodge index theorem the intersection form has signature (1,1)
on NSR(X). Assume that this form represents 0; this means that the two isotropic
lines of 〈·|·〉 are defined over Z: they contain primitive elements v1 and v2 in NS(X).
Since the isotropic cone is Iso(NS(X))-invariant and the automorphisms of Z co-
incides with ±Id, a subgroup of index at most 4 in Iso(NS(X)) preserves the two
isotropic lines pointwise. Thus, Iso(NS(X)) has at most four elements. On the other
hand, every element f of Aut(X) determines an element f ∗ in Iso(X) and the homo-
morphism f 7→ f ∗ has finite kernel (because the group of automorphisms of a K3
surface is discrete). Thus, if the intersection form represents 0, Aut(X) is finite.

Step 2.– Now assume that 〈·|·〉 does not represent 0. Let Iso(NS(X))+ denote the
subgroup Iso(NS(X)) that fixes the connected component H of {u∈NSR(X); 〈u|u〉>
0} containing ample classes. This group is infinite, and is either cyclic, or dihedral
(this is equivalent to the resolution of the Pell-Fermat equations); more precisely, a
subgroup of Iso(NS(X))+ of index at most 2 is generated by a hyperbolic isometry
ψ, which dilates one of the isotropic lines by a factor λψ > 1 and contracts the other
one by 1/λψ. If the ample cone of X coincides with H, the Torelli theorem shows
that the image of Aut(X) in Iso(NS(X)) is a finite index subgroup of Iso(NS(X))+

(see [4]). Since the kernel of f 7→ f ∗ is finite, Aut(X) is virtually cyclic and, if f
is an automorphism of X of infinite order, f ∗ coincides with an iterate of ψl , l 6= 0.
Thus, the topological entropy of f is equal to |l| log(λψ) and is positive.

Step 3.– The ample cone of X is the subset of classes a ∈H such that 〈a|[E]〉> 0
for all irreducible curves E ⊂X with negative self-intersection. But, on a K3 surface,
such a curve is a smooth rational curve with self-intersection −2. Thus, H is the
ample cone if and only if X does not contain any −2-curve. On the other hand, the
Riemann-Roch formula implies that X contains such a −2-curve if and only if the
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intersection form represents −2 on NS(X). To sum up, if 〈·|·〉 represents −2, the
ample cone is a strict sub-cone of H. In that case, the group of isometries of NS(X)

preserving both H and the ample cone is finite, so that Aut(X) is finite too. �

9.3. Rational surfaces and Galois conjugates.

9.3.1. Proof of Corollary 1.10. Let A be a complex abelian surface. Its Picard num-
ber is bounded from above by h1,1(A;R) hence by 4. The dynamical degree λg of
every g ∈ Aut(A) is the largest eigenvalue of g∗ on NS(A)⊗Z R. As such, λg is a
root of the characteristic polynomial of g∗ : NS(A)→ NS(A), and it is an algebraic
integer of degree at most 4. Passing to a finite g-equivariant quotient π : A→ X0, one
does not change the topological entropy. Thus, if (X , f ) is a Kummer example, the
dynamical degree λ f is also an algebraic integer of degree at most 4.

Example 9.3. Bedford and Kim in [6, 7], and McMullen in [72], construct automor-
phisms fn : Xn→ Xn of rational surfaces with positive entropy. Most of them have a
singular measure of maximal entropy because the degree of λ fn goes to +∞ with n.

9.3.2. Blanc’s automorphisms. An automorphism of an abelian surface with pos-
itive entropy does not preserve any curve of genus 1. And the resolution of an
orbifold singularity only creates rational curves. Thus, our Main Theorem gives:

Lemma 9.4. Let f : X → X be an automorphism of a complex projective surface
with positive entropy logλ f . Assume that X contains a curve of genus 1 which is
f -periodic. Then µ f is singular with respect to the Lebesgue measure.

In [16], Blanc constructs rational surfaces Xn which are obtained by blowing up a
finite set of points on a smooth cubic curve C0⊂P2(C); on these surfaces, there are n
involutions σi, 1≤ i≤ n, that preserve the strict transform C of C0 and do not satisfy
any non trivial relation (they generate a group of automorphisms isomorphic to a
free product Z/2Z? · · ·?Z/2Z). The composition fi jk = σi ◦σ j ◦σk of three distinct
involutions is an automorphism with positive entropy that preserves the genus 1
curve C. We conclude that the measure of maximal entropy of fi jk is singular with
respect to the Lebesgue measure.

10. APPENDIX I: CURRENTS AND POTENTIALS NEAR PERIODIC CURVES

Recall that, blowing down the periodic curves of the automorphism f : X → X ,
we get a bimeromorphic morphism π : X → X0 (X is a proper modification of the
normal surface X0, see Section 6.1).
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This section starts with a study of T+
f + T−f : Proposition 10.7 shows that this

current is cohomologous to a semi-Kähler current τ̂ which is bounded from below
by the pull-back π∗(κ0) of a positive (1,1)-form κ0 on X0 (the interested reader may
also consult [39] and [73] for related results). Then, a result of Dinh and Sibony
is stated, and proved, in the context of complex spaces (see Theorem 10.8). Put
together, these preliminary statements lead to a proof of Proposition 6.9.

Remark 10.1. Two difficulties appear: firstly, the surface X0 could be non-projective
(see Section 11); secondly, even if the currents T±f have local potentials on X , their
projections π∗(T±f ) could fail to satisfy such a property at the singularities of X0.

10.1. Big and nef classes in a neighborhood of the class Σ := θ
+
f +θ

−
f . We keep

the notations of Section 2. The tensor product NS(X)⊗Z A, for A in {Z,Q,R,C}, is
denoted NS(X ;A). Consider the subspace PC f of NS(X ;R) generated by all classes
of f -periodic curves. By construction, PC f is a subspace of Π⊥f , because 〈θ±f |[C]〉=
0 for every periodic curve (see Sections 2.2 and 6.1).

Denote by Ψ f ∈ Z[t] the minimal polynomial of the algebraic integer λ f . The
characteristic polynomial of f ∗ ∈ GL(NS(X)) is a product of Ψ f and cyclotomic
factors. The vector space NS(X ;Q) splits as a direct sum N f ⊕N⊥f such that

(1) N f and N⊥f are f ∗-invariant vector subspaces of NS(X ;Q);
(2) the characteristic polynomial of f ∗ : N f → N f is equal to Ψ f ;
(3) the characteristic polynomial of f ∗ : N⊥f → N⊥f is a product of cyclotomic

factors;
(4) N f ⊗Q R contains θ

+
f and θ

−
f , and the intersection form is of Minkowski type

on N f ;
(5) N⊥f ⊗Q R contains PC f and the intersection form is negative definite on N⊥f .

Observe that if PC f = Π⊥f then the plane Π f is defined over Q and λ f is a qua-
dratic unit. Thus PC f is usually much smaller than Π⊥f (see [31, 76]).

Lemma 10.2. There is an open neighborhood W of the class Σ := θ
+
f +θ

−
f in N f ⊗Q

R which is contained in the big and nef cone.

This lemma corresponds to Theorem 3 and Proposition 10 of [76]; we include a
proof for completeness.

Proof. The class Σ is nef because θ
+
f and θ

−
f are nef. Since Σ2 = 2〈θ+f |θ

−
f 〉> 0, it is

also big. If C is a(n effective) curve then 〈Σ|[C]〉 ≥ 0, with equality if and only if [C]

is in Π⊥f , if and only if C is a periodic curve, if and only if [C] ∈ PC f (see Section
6.1). We now prove the lemma by contradiction. Since the condition u2 > 0 is open
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in H1,1(X ,R), we may assume that there is a sequence (wn) of classes wn ∈ N f

converging towards Σ such that wn is not nef. Since wn is not nef, there exists an
irreducible curve Cn such that 〈wn|[Cn]〉< 0. In particular, the curve Cn is not in PC f ,
because wn is an element of N f ; thus, 〈Σ|[Cn]〉 > 0. We may also assume that the
curves Cn are pairwise distinct; otherwise, we could extract a constant subsequence
Cn j = C and we would have 〈Σ|[C]〉 ≤ 0 because Σ is the limit of (wn): this would
contradict that C is effective but not in PC f .

Take a subsequence of ([Cn]/ ‖ [Cn] ‖) that converges to a non-zero pseudo-
effective class c∞. We have 〈Σ|c∞〉 = 0, because wn converges towards Σ. Being
pseudo-effective, c∞ is in Π⊥f and consequently c2

∞ < 0. On the other hand, c2
∞ is the

limit of 〈Cn|Cn+1〉/(‖ [Cn] ‖‖ [Cn+1] ‖) and, as such, is non-negative. This contra-
diction concludes the proof. �

Remark 10.3. Since the cone of nef and big classes is f ∗-invariant, this lemma
implies that every element of the form aθ

+
f +bθ

−
f with a and b positive is in the big

and nef cone, and is in the relative interior of this cone in N f ⊗Q R.

10.2. A current τ in the class Σ = θ
+
f +θ

−
f .

10.2.1. Semi-Kähler forms. A smooth (1,1)-form κ on X is semi-Kähler if it is
closed and the set of points x ∈ X around which κ is (strictly) positive is the comple-
ment of a Zariski closed set Z(κ)⊂ X (hence, κ induces a Kähler form on X \Z(κ)).

The main source of examples is the following (see [64, §2.1.B]). Let M be a big
and semi-ample line bundle. Set

Free(X ;M) = {m ∈ N | mM is base point free}.

(We use additive notations, hence mM is also the line bundle M⊗m.) It is a semi-
group, and we denote by fr(M) the largest natural number such that every element
of Free(X ;M) is a multiple of fr(M). Given k in Free(X ;M), the line bundle kM
determines a birational morphism

ΦkM : X → XkM ⊂ P(H0(X ,kM)∗),

onto a projective (singular) surface XkM. According to [64], Theorem 2.1.27, there
is an algebraic fibre space Φ : X → Y such that

(1) Y is a normal projective surface (see [64], Example 2.1.15);
(2) XkM = Y and ΦkM = Φ for sufficiently large elements k of Free(X ;M);
(3) there is an ample line bundle A on Y such that Φ∗A = fr(M)M.

For large elements k of Free(X ;M), the pull-back of a Fubini-Study form by ΦkM is a
semi-Kähler form κkM on X , and the Chern class c1(M) is represented by (1/k)κkM.
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This semi-Kähler form κkM vanishes along the set of curves which are blown-down
by ΦkM (i.e. by Φ).

Remark 10.4. If y is a singularity of XkM, one can find a ball V in P(H0(X ,kM)∗)

containing y and a smooth potential u : V → R for the Fubini-Study form on V .
Then Φ

−1
kM(V ) is a neighborhood of Φ

−1
kM{y} on which u◦ΦkM is a global potential

for κkM.

10.2.2. A representative of the class Σ = θ
+
f +θ

−
f .

Proposition 10.5. There exists a closed positive current τ on X such that

(1) τ represents the class Σ;
(2) τ = κ+ {F} where κ is a semi-Kähler form and {F} is the current of inte-

gration on a real effective divisor F;
(3) Z(κ) and the support Supp(F) of F are both unions of f -periodic curves,

and every irreducible periodic curve is contained in Z(κ)∪Supp(F);
(4) Supp(F) is a union of connected components of the union of periodic curves;
(5) If E is a connected component of the union of periodic curves, then E is a

connected component of Supp(F) or of Z(κ), but not both;
(6) the form κ and the currents T+

f and T−f have continuous potentials in neigh-
borhoods of Z(κ).

Assertion (6) means that there is an open neighborhood U of Z(κ) and continuous
functions uκ, u+, and u− on U such that the restrictions κ|U , T+

|U , T−|U coincide

respectively with i
π

∂∂uκ, i
π

∂∂u+, i
π

∂∂u−. Proposition 10.5 does not assert that Z(κ)
and Supp(F) are disjoint. A priori, κ may vanish on an irreducible periodic curve
C ⊂ Supp(F); but, according to Property (5), κ can not be identically zero on a
connected component of Supp(F). From this property, we can classify the connected
components E of the union of periodic curves in two types: the ones in Supp(F),
and the others in Z(κ).

Since T = T+
f +T−f also represents the class Σ, we can and shall write

τ = T +ddch.

From Property (2) and the existence of continuous potentials for T , the function
h : X → [−∞,∞[ is a continuous function with logarithmic singularities along F .
Locally, h is given by a potential of the semi-Kähler form κ, plus the logarithm of an
equation for F , minus a potential of T . From Properties (4), (5), and (6), we see that,
if E is a connected component of Z(κ) \Supp(F), there is a neighborhood of E on
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which h is the difference of a smooth pluri-subharmonic function and a continuous
pluri-subharmonic one.

10.2.3. Proof of Proposition 10.5. Let BN(N f ) be the set of big and nef line bun-
dles with Chern class in N f (see Lemma 10.2). Given L∈BN(N f ), and a sufficiently
divisible integer `, one can decompose `L as the sum `L = F +M of its fixed com-
ponent F = ∑

m
i=1 aiFi and a movable part M; hence, M has a finite base locus, and

is big and nef. By a theorem of Zariski (see Remark 2.1.32 of [64]), there exists a
positive integer k0 such that kM is semi-ample for all sufficiently divisible k ≥ k0.
Thus, c1(M) is represented by a semi-Kähler form (1/k)κkM, as in Section 10.2.1;
for simplicity, we denote its zero locus by Z(L) instead of Z(κkM): by construction,
Z(L) is either empty, or a curve. Denote by Z f the intersection of the sets Z(L) for L
in BN(N f ). Since BN(N f ) is f -invariant, the set Z f is also invariant. If L and L′ are
two elements of BN(N f ), their sum L+L′ is also in BN(N f ), and the movable part
of `(L+L′) is larger than the sum M+M′ of the movable parts of `L and `L′. Thus,

Z(L+L′)⊂ Z(L)∩Z(L′),

and we see that (i) there are line bundles L ∈ BN(N f ) with Z(L) = Z f , and (ii) Z f is
either empty or a curve. Thus, Z f is empty or a union of irreducible periodic curves.

Let us now study the fixed component F of `L and its decomposition F =∑
m
i=1 aiFi

in irreducible components; we assume that F is not empty and that ai > 0 for every
index 1 ≤ i ≤ m. Suppose that the irreducible components F1, . . ., Fs are not f -
periodic and that Fs+1, . . ., Fm are all periodic. For 1≤ i≤ s, we obtain

• θ
+
f ·Fi > 0, because Fi is not periodic (see Proposition 6.1 in Section 6.1);

• λ
−n
f ( f n)∗Fi converges towards a positive multiple biθ

+
f of θ

+
f as n goes to

infinity.

Let Di,n = ciFi +di( f n)∗Fi, where ci and di are positive integers. Then

Di,n ·Fi ' ciF2
i +dibiλ

n
f (θ

+
f ·Fi)> 0

if n is large enough. Similarly, Di,n intersects ( f n)∗Fi positively for large values of n.
Thus, Di,n is big and nef. The fixed component of (a large multiple of) Di,n is either
equal to c′iFi for some 0 ≤ c′i < ci, or to d′i( f n)∗Fi for some 0 ≤ d′i < di. Assume
that the fixed component of D1,n is a multiple of F1. Then, the fixed component
of (c1− c′1)`L+ d1( f n)∗(`L) does not involve the curves F1 and ( f n)∗F1 anymore,
and it involves at most one of the curves Fi or ( f n)∗(Fi) for 2 ≤ i ≤ l. This process
reduces the number of non-periodic irreducible fixed components by (at least) 1.
Thus, in a finite number of steps, we construct a linear combination with positive
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coefficients of the ( f n)∗(`L) with only f -periodic fixed components. To sum up,
there are line bundles L satisfying the following properties

(a) L is an element of BN(N f ),
(b) Z(L) = Z f is a union of f -periodic curves,
(c) the fixed component F of L is a sum ∑ j a jFj where each irreducible curve Fj

is periodic.

Lemma 10.6. The class Σ = θ
+
f +θ

−
f is a positive sum ∑ j b jc1(L j) of Chern classes

of line bundles satisfying properties (a), (b), and (c).

Proof. Note that there is a direct sum decomposition

N f ⊗R = Rθ
+
f ⊕Rθ

−
f ⊕

⊕
i

Vi (10.1)

such that each Vi is an f ∗-invariant plane R2 on which f ∗ acts as an irrational rotation
(the eigenvalues of f ∗ on Vi⊗C are Galois conjugates of λ f ). Fix a line bundle
L satisfying properties (a), (b), and (c), and decompose its Chern class as a sum
c1(L) = c+(L)+ c−(L)+∑i c⊥,i(L) with respect to the direct sum (10.1). We get

f ∗(c1(L)) = λ f c+(L)+λ
−1
f c−(L)+∑

i
f ∗|Vi

(c⊥,i(L)).

Then, remark that an irrational rotation r of a plane V has the following property: the
convex hull of the orbit of any given vector v∈V \{0} under the action of r contains
the origin 0 ∈ V . Thus, there is a linear combination σ = ∑i αi( f i)∗(c1(L)) of the
classes ( f i)∗(c1(L)) with coefficients αi ∈ R∗+ which is contained in Rθ

+
f ⊕Rθ

−
f .

Since the properties (a), (b), (c) are invariant under the action of f , the class σ ∈
Rθ

+
f ⊕Rθ

−
f is a positive sum of Chern classes of line bundles Li := ( f i)∗L satisfying

(a), (b), and (c). To conclude, remark that Σ is a positive linear combination of
( f−m)∗σ and ( f m)∗σ for large enough natural integers m. �

Fix line bundles L j as in Lemma 10.6 and denote by M j the movable part of (a
sufficiently divisible multiple of) L j. For k sufficiently divisible, kM j provides a
birational morphism

Φ j : X →Φ j(X)⊂ P(H0(X ,kM j)
∗).

This morphism contracts Z(L j) = Z f , it is an isomorphism in the complement of
Z(L j), and its image is a (singular) normal projective surface X j; the pull-back κ j

of the Fubini-Study form is a semi-Kähler form on X , with zero set Z(κ j) = Z f (see
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Section 10.2.1). Thus, the form

κ =
1
k ∑

j
b jκ j (10.2)

is a semi-Kähler form with zero set Z(κ) = Z f . The class Σ=∑ j b jc1(L j) = θ
+
f +θ

−
f

is represented by the closed positive current τ = κ+ {F}, where {F} is a current
of integration on a real effective divisor supported on the f -periodic curves. This
proves Properties (1) and (2) of Proposition 10.5.

Now, consider an irreducible f -periodic curve C. If C intersects Supp(F), but is
not contained in it, we obtain

[τ] · [C] = [F ] · [C]+
∫

C
κ > 0

because [F ] · [C] > 0 and the form κ is non-negative. But [τ] · [C] = 0 because C is
periodic. This contradiction shows that C is contained in the support of F as soon
as it intersects it. If C is not contained in Supp(F), the same argument shows that
[F ] · [C] and

∫
C κ both vanish. In particular, the semi-Kähler form κ vanishes along

C. Thus, every irreducible periodic curve is contained in Z f = Z(κ) or in Supp(F),
so that Properties (3) and (4) are satisfied.

Now, let E be a connected component of the union of periodic curves, and assume
that E is contained in Supp(F). Consider the effective divisor FE which is supported
on E and whose coefficients ai are the same as the coefficients of F for all irreducible
components Ci of E. Then, [FE ]

2 < 0 because [FE ] is contained in PC f . If κ vanishes
along E one gets [τ] · [FE ] = [FE ]

2 < 0, and this is a contradiction because FE is
supported on a set of periodic curves. Thus, E can not be contained in Z(κ), and
Property (5) is established: there are two types of connected components of the
union of periodic curves, the first ones in Z f and the others in Supp(F).

As above, let Φi be the birational morphism associated to the mobile part kMi, let
Xi = Φi(X) be its image, and let κi be the associated semi-Kähler form on X . Since
the Fubini-Study metric has local smooth potentials, the forms κi and the form κ

have smooth potentials in small neighborhoods of Z f (see Remark 10.4). The same
property holds for the forms ( f n)∗κi, because Z f is f -invariant. Let us now prove
that T+

f and T−f also have local continuous potentials in a neighborhood of Z f .
The cohomology classes [( f n)∗κ1] generate a finite dimensional subspace W of

H1,1(X ;R). Set m = dim(W ). Then the classes of κ1,1 = κ1, κ1,2 = ( f )∗κ1, ...,
κ1,m = ( f m)∗κ1 form a basis of W , and there is a companion matrix (ai, j)∈ GLm(R)
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and there are smooth functions gi : X → R such that

f ∗κ1,i =
m

∑
j=1

ai, jκ1, j +ddc(gi)

for every index i. We already know that T+
f is the limit of the sequence 1

λn
f
( f n)∗κ1

as n goes to +∞. One can now copy the proof of Proposition 2.4 in [41] (or [73], p.
58) to show that

T+
f = lim

n→+∞

1
λn

f
( f n)∗κ1 =

m

∑
j=1

α jκ1, j +ddc(u)

where the α j are real numbers and u : X→R is a Hölder continuous function. Since
each κ1, j has a continuous potential in a neighborhood of Z f , then so does T+

f . The
same argument applies to T−f , and this completes the proof of Proposition 10.5.

10.3. Regularization of the current τ. We denote by τ := T + ddch = κ+ {F}
the current which is provided by Proposition 10.5; we keep the notations from Sec-
tion 10.2, hence κ = (1/k)∑ j b jκ j where each κ j is the pull-back of the Fubini-
Study form by the morphism Φ j. Recall that κ0 is a positive form on X0; we refer to
Section 6.2 for the definition of κ0 and complex analysis on X0.

Proposition 10.7. There is a continuous function ĥ : X → R such that:

(1) τ̂ := T +ddcĥ is a closed positive current and τ̂≥ ε0π∗κ0 for some ε0 > 0;
(2) ĥ is constant on every connected component E of the union of the f -periodic

curves. If such a component E is contained in Z(κ), then ĥ is the difference of
a smooth pluri-subharmonic function and a continuous pluri-subharmonic
function in a neighborhood of E; if E is contained in the support of F, then
ĥ is a smooth pluri-subharmonic function in a neighborhood of E.

(3) if E is such a connected component, one can find a neighborhood U0 of π(E)
in X0, and an embedding of U0 in the unit ball of CN such that (π∗ĥ)|U0 is
the restriction to U0 of the difference of two continuous pluri-subharmonic
functions defined on the unit ball of CN .

Proof. • First, we construct a form κ′0. Let E be a connected component of the
union of periodic curves. Consider the point q0 := π(E) ∈ X0 and choose a small
neighborhood W0 of q0 which does not contain any other critical value of π. We can
assume that W0 is an analytic subset in the unit ball of CN .

If E ⊂ Supp(F), let ω0 (resp. g0) be the restriction to W0 of the standard (1,1)-
Kähler form on CN (resp. of a potential of the standard Kähler form); then, define
κ′0 = ω0 on W0.
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Now, assume E ⊂ Z(κ) (hence E is not in Supp(F) by Proposition 10.5). The
bimeromorphic morphisms π and Φ j both contract E onto normal surfaces; thus,
there is an open neighborhood U of E and a local diffeomorphism η : π(U) →
Φ j(U) such that η◦π = Φ j. The restriction of the Fubini-Study metric to Φ j(U) is
a smooth positive (1,1)-form κ j,0, and we define

κ
′
0 =

1
k ∑

j
b jη
∗
κ j,0

on π(U); hence, π∗κ′0 = κ on U (see Equation 10.2).
This done, κ′0 is defined in a small neighborhood of every singular point of X0.

We extend it to a global, smooth, positive (1,1)-form on X0, that we still denote κ′0.
There exists 0 < ε0 ≤ 1 such that

κ≥ ε0π
∗
κ
′
0 on X . (10.3)

In particular, π∗ω0 ≥ ε0π∗κ′0 on a small neighborhood of the support of F .
• Let τ = κ+{F}= T +ddch be the current given by Proposition 10.5. Consider

a connected component E of the union of f -periodic curves.
Asssume E ⊂ Z(κ) (hence E ∩Supp(F) = /0). In a neighborhood of E, the cur-

rent T is defined by a continuous pluri-subharmonic potential u. The form κ also
has a smooth potential v on a neighborhood of E. By the maximum principle, the
restriction of u and v to E are constant. Then, on some neighborhood of E, h is
the difference of the smooth pluri-subharmonic function v and the continuous pluri-
subharmonic function u; in particular, it is constant along E. By construction,

τ = κ+{F} ≥ κ≥ ε0π
∗
κ
′
0 near E.

Now, assume E ⊂ Supp(F). As above, let W0 ⊂ CN be a small neighborhood
of q0 := π(E) and let g0 be a smooth potential for ω0 on W0. We define a new
continuous function on π−1(W0) by

hη := m̃ax(g0 ◦π−η,h),

where η is a large real number and m̃ax is the regularized maximum, as defined
in Section I.5.E of [38]1. Since h is continuous on the boundary of π−1(W0), the
function hη coincides with h near this boundary for η large enough (see Lemma
5.18(b,c) of [38]). Since h has a pole along E, the function hη coincides with π∗g0−

1To define it, let θ : R→ R be an even, non-negative function of class C ∞ with support in [−1,1]
such that

∫
R θ(t)dt = 1. Then, fix a pair α = (α1,α2) of positive real numbers, and set Mα(a,b) =∫

R2 max(a + s,b + t)(α1α2)
−1θ(s/α1)θ(t/α2)dsdt for all pairs of real numbers (a,b). Then, set

m̃ax(u,v)(x) = Mα(u(x),v(x)), with α1 and α2 very small.
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η in an open neighborhood VE ⊂ π−1(W0) of E. Thus, hη extends to a continuous
function on X that coincides with h outside π−1(W0), that is smooth and pluri-
subharmonic in a neighborhood of E, and that is constant along E.

We reproduce the same surgery near every connected component E of the sup-
port of F . This replaces h by a continuous function ĥ (equal to hη near every such
component E), and we define

τ̂ := T +ddcĥ.

• We now prove that τ̂ ≥ ε0π∗κ′0 on X ; this implies τ̂ ≥ ε0π∗κ0 on X by taking
a smaller ε0 (see §6.2) and completes the proof of Proposition 10.7. Consider a
finite open cover (Uα) of X , with potentials uα : Uα → R for the current T . Let
E ⊂ Supp(F), W0 ⊂ X0 and VE ⊂ X be as above. On Uα ∩ π−1(W0) we have
ddc(uα+g0◦π−η)≥ ddc(g0◦π) = π∗ω0, which is bounded from below by ε0π∗κ′0.
This implies that τ̂ ≥ ε0π∗κ′0 on the neighborhood VE of E. Let V be the union of
these open sets VE , for E ⊂ Supp(F). This open set contains F .

It remains to verify τ̂ ≥ ε0π∗κ′0 on X \V , and for that we use the properties of
the regularized maximum. Locally on X \V , the current ddc(uα +h) is equal to the
semi-Kähler form κ, which is bounded from below by ε0π∗κ′0 by Equation (10.3).
Since ddc(uα+h) and ddc(uα+g0◦π−η) are both larger than ε0π∗κ′0 on π−1(W0)\
V , Lemma 5.18(d,e) of [38] ensures that τ̂≥ ε0π∗κ′0 on X \V .
• Let us prove the third item. Let E be a connected component of the union of

the f -periodic curves. Assume that E ⊂ Supp(F) and let VE be a neighborhood of
E on which ĥ is continuous and pluri-subharmonic. Since ĥ is continuous on VE

and constant on E, π∗ĥ is continuous on V0 := π(VE). Now if ν : D→ V0 is a
holomorphic disk, then π∗ĥ◦ν = ĥ◦ ν̂, where ν̂ : D→ VE is the lift of ν defined by
Lemma 6.5. Since ĥ is pluri-subharmonic on VE , π∗ĥ◦ν = ĥ◦ ν̂ is sub-harmonic on
D. Now, reducing V0 to a smaller open neighborhood U0 of π(E) if necessary, we
can embed U0 in the unit ball B of CN for some N > 0. We now refer to the results
of Fornaess, Narasimhan and Richberg described in Section 6.2. By [49, Theorem
5.3.1] we deduce that π∗ĥ is a pluri-subharmonic function on U0: it is the restriction
of a pluri-subharmonic function B→ R. Then [77, Satz 2.4] ensures that π∗ĥ is the
restriction to U0 of a continuous pluri-subharmonic function defined on B.

The proof is similar when E is contained in Z(κ). �

10.4. Dinh-Sibony’s arguments.

10.4.1. Introduction. We use the notions and notations introduced in Section 6.2.
Let M be a compact complex space endowed with a positive (1,1)-form κ0. A



DYNAMICS ON COMPLEX SURFACES 57

Brody curve ξ : C→M is a non-constant entire curve such that ‖ ξ′(z) ‖ is uniformly
bounded. As in Section 3.3.1, A(r;ξ) denotes the area of ξ(Dr) with respect to the
metric κ0 (the area is counted with multiplicity).

Let K ⊂M be a compact subset. Let T and S be closed positive (1,1)-currents on
M. We recall that if x ∈ K has a neighborhood U in M on which T = ddcu for some
continuous potential u on U, then S∧T := ddc(uS) is a well defined measure on U
(see Section 6.2). If this product vanishes on an open neighborhood of every point x
of K, we say that “S∧T = 0 on K”. Similarly, if ξ : C→M is an entire curve, we
write “ξ∗T = 0 on K” if the continuous functions u◦ξ are harmonic on ξ−1(U).

Theorem 10.8. Let M be a compact complex space, and K a compact subset of M.
Let T be a closed positive (1,1)-current on M such that T has a local continuous
potential in a neighborhood of every point x ∈ K. Let ξ : C→M be a Brody curve
for which ξ∗T = 0 on K. Then there exists a sequence of radii (rn)n such that the
sequence of currents

Sn :=
1

A(rn;ξ)
{ξ(Drn)}

converges towards a closed positive current S on M such that S∧T = 0 on K.

We have 〈S|κ0〉 = 1 since lengths and areas are computed with respect to κ0.
Theorem 10.8 is applied in Section 10.5 to T0 := π∗(T+

f +T−f ) and compact subsets
of X reg

0 (T0 has local continuous potentials near every point x ∈ X reg
0 ). Theorem 10.8

is due to Dinh-Sibony when M is smooth [40]. We first prove it for entire curves
with finite area, then we adapt the arguments from [40] for the unbounded area case.

10.4.2. Bounded area.

Theorem 10.9 (Demailly, Moncet [37, 73]). Let M be a compact complex space. Let
ξ : C→M be a non-constant entire curve such that the function A(·;ξ) is bounded,
and let A(∞;ξ) be its limit as r goes to +∞. Then ξ extends uniquely to a holomor-
phic mapping ξ̃ : C→ M. In particular, every Ahlfors current S associated to ξ is
equal to the current of integration {ξ̃(C)}/A(∞;ξ).

Before starting the proof, let us recall the Ahlfors inequality and one of its con-
sequences. Denote by L(r;ξ) the length, counted with multiplicity, of the image of
the circle of radius r by ξ. If A′(·;ξ) is the derivative of A(·;ξ), the Cauchy-Schwarz
inequality yields

L(r;ξ)2 ≤ 2πr A′(r;ξ). (10.4)

If the ratio L(r;ξ)/A(r;ξ) is bounded from below by a positive constant B, integrat-
ing between 1 and R, one gets B2 log(R) ≤ 2π(1/A(R;ξ)−1/A(1;ξ)), and this is a
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contradiction for large values of R. Thus, there is a sequence of radii (Rn) going to
infinity such that L(Rn;ξ)/A(Rn;ξ) goes to 0 as n goes to ∞; consequently, the limit
S of any converging subsequence of {ξ(DRn)}/A(Rn;ξ) is a closed current.

Proof of Theorem 10.9. Let Er denote the subset ξ(C \Dr) of M. The diameter
diam(Er) is a non-increasing function, and we denote by δ its limit as r goes to
infinity. If δ = 0 then ξ extends to a continuous mapping ξ̃ : C→M, and ξ̃ is holo-
morphic because it is continuous on C and holomorphic on C.

We now assume that δ is positive and derive a contradiction. Set C(r,r′) := ξ({r <
|z| < r′}). Given r, we have diamC(r,r′) ≥ 2δ/3 for r′ >> 1. From the Ahlfors
inequality there exists a sequence (Rn)n going to infinity along which L(Rn;ξ) goes
to 0. Let us extract two sequences (rn)n and (r′n)n from (Rn)n such that

(a) rn < r′n < rn+1,
(b) L(rn;ξ)< δ/6 and L(r′n;ξ)< δ/6,
(c) diamC(rn,r′n)≥ 2δ/3.

If every x ∈C(rn,r′n) were at distance < δ/12 from one of the two boundary curves
ξ({|z| = rn}) and ξ({|z| = r′n}), the diameter of C(rn,r′n) would be at most 4δ/12,
contradicting item (c): indeed, C(rn,r′n) is connected, and those two curves have
diameter < δ/12 by item (b). Thus, there is a point xn in C(rn,r′n) whose distance to
∂C(rn,r′n) is at least δ/12.

The Lelong theorem gives an η > 0 (depending on M,κ0,δ) such that for every
x ∈ M, the area of every analytic curve V ⊂ Bx(δ/12) containing x is larger than
η. Applied to the curves V = C(rn,r′n) and the centers xn, it shows that the area
of C(rn,r′n) is larger than η. Since the annuli C(rn,r′n) are pairwise disjoint subsets
of C, the area A(r;ξ) goes to infinity as r goes to infinity, in contradiction with the
assumed upper bound. �

Let us now show Theorem 10.8 in the bounded area case. Apply Theorem 10.9.
Fix an open neighborhood V of K on which ξ∗T = 0. Let ϕ be a smooth function
with support contained in an open subset U of V on which T has a local poten-
tial u. We want to show that 〈S∧ T |ϕ〉 = 0, where S is the current of integration
{ξ̃(C)}. The function ũ := u◦ ξ̃ is a (bounded) continuous function on ξ̃−1(U) and
is harmonic on the complement of ∞; as such, it extends to a harmonic function on
ξ̃−1(U). Thus, ddc(ũ) = 0 on the support of ϕ◦ ξ̃, and this implies 〈S∧T |ϕ〉= 0.

10.4.3. Unbounded area: preliminary estimate. In this section the entire curve ξ

has unbounded area; it will be a Brody curve in Section 10.4.4. We cover the com-
pact set K by two finite families of open subsets Uα ⊂ Vα such that ξ∗T = 0 on
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the union of the Vα and T has local continuous potentials on the Vα. We want to
construct an Ahlfors current S = limSn of ξ such that 〈S|uαddcϕα〉= 0 for every test
function ϕα supported on Uα. We denote by ε the distance

ε =
1
2

min
α

dist(Uα,∂Vα),

we drop the index α from the notation, and we define

U′ := ξ
−1(U), V ′ := ξ

−1(V ), D′r := Dr∩ξ
−1U, ũ := u◦ξ, and ϕ̃ := ϕ◦ξ.

We set dvol(z) := i
2dz∧dz on C. The following lemma holds for every entire curve

ξ such that ũ is harmonic on U′ (ξ does not need to be a Brody curve).

Lemma 10.10. There exists a constant C > 0 such that

∀r ≥ 1 ,
∫
D′r
‖ ∇ũ ‖ dvol ≤C r A(2r;ξ)1/2.

Proof. Since ũ is bounded and harmonic, the Harnack inequality provides a constant
c > 0 such that ‖ ∇ũ(z) ‖≤ cdist(z,∂V ′)−1 for every z ∈ V ′. Thus, all we need to
do is to exhibit a constant C′ such that

∀r ≥ 1 , J(r) :=
∫
D′r
dist(z,∂V ′)−1dvol(z)≤C′ r A(2r;ξ)1/2.

To obtain this upper bound, choose a positive number δ and define

D′r(δ) = {z ∈ D′r |dist(z,∂V ′)< δ}.

For every ∆ > 0, the Fubini theorem implies∫
∆

0
AreaC(D′r(δ))

dδ

δ2 =
∫
D′r(∆)

(
1

dist(z,∂V ′)
− 1

∆

)
dvol(z),

where AreaC denotes the euclidean area in C. Thus, if one splits the integral J(r)
into an integral over D′r(∆) and another over D′r \D′r(∆) one gets the upper bound

J(r) ≤
∫
D′r\D′r(∆)

dvol(z)
∆

+
∫
D′r(∆)

dvol(z)
∆

+
∫

∆

0
AreaC(D′r(δ))

dδ

δ2

≤ πr2

∆
+

∫
∆

0
AreaC(D′r(δ))

dδ

δ2 .

Lemma 10.10 follows if one takes ∆ = r/A(2r;ξ)1/2 and if one proves the following
fact: there exists a constant C′′ such that

∀r ≥ 1 , ∀δ > 0 ,
AreaC(D′r(δ))

δ2 ≤C′′A(2r;ξ). (10.5)
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Fix r ≥ 1. If δ≥ r/4 we are done because

AreaC(D′r(δ))
δ2 ≤ πr2

(r/4)2 = 16π≤ 16π

A(2;ξ)
A(2r;ξ).

Now, assume δ < r/4 and fix a covering of D′r by finitely many disks D(zi;δ) such
that every point of D′r is contained in at most 36 disks D(zi;3δ). Since each zi is in
Dr+δ and r+4δ≤ 2r, we obtain D(zi;3δ)⊂ D2r.

Lemma 10.11 (Briend-Duval). Let M be a compact complex space endowed with a
positive (1,1)-form κ0. For every ε > 0 and 0 < a < 1 there exists η > 0 such that

Area(ψ(D1))≤ η =⇒ Diameter(ψ(Da))≤ ε

for every holomorphic mapping ψ : D1→M.

The proof which is given in the appendix of [19] and relies on the Lelong inequal-
ity and conformal moduli of annuli, as well as the one from [42, Lemma 1.55] using
Cauchy estimates, both work for compact complex spaces.

Applying this lemma with the constant ε≤ 1
2dist(U,∂V ), we get η > 0 such that

for every z ∈ C,

Area(ξ(D(z,3δ)))≤ η =⇒ Diameter(ξ(D(z,2δ)))≤ ε

(here, areas and diameters are computed in M, with respect to its hermitian metric).
Split the set of centers {zi} into two disjoint subsets {a j} and {bk} such that

Area(ξ(D(a j;3δ)))> η, Area(ξ(D(bk;3δ)))≤ η (∀i, j).

In particular, the diameter of ξ(D(bk;2δ)) is at most ε. Now, if z is a point in
D(bk;δ)∩D′r, then ξ(z) ∈ U, ξ(D(bk;2δ)) is contained in V by definition of ε,
and thus dist(z,∂V ′) > δ; as a consequence, D(bk;δ) does not intersect D′r(δ) and
D′r(δ) is covered by the disks D(a j;δ). Let N be the number of these disks, so that
AreaC(D′r(δ))≤ Nπδ2. Since Nη is bounded above by 36A(2r;ξ), we get

AreaC(D′r(δ))
δ2 ≤ Nπ≤ 36π

η
A(2r;ξ),

and Equation (10.5) follows. This completes the proof of Lemma 10.10. �

10.4.4. Unbounded area: conclusion. We have not used that ξ is a Brody curve yet.
This assumption implies that A(r;ξ) grows at most quadratically. Thus, there is a
sequence of radii (Rn) such that Rn goes to ∞ with n and A(2Rn;ξ)≤ 3A(Rn;ξ). The
next lemma is a consequence of Lemma 10.10.
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Lemma 10.12. Let σr denote the arc length measure on the circle of radius r in C.
There exist a constant D̃ > 0 and a sequence of radii (rn)n satisfying Rn ≤ rn ≤ 2Rn

such that

L(rn;ξ)≤ D̃ A(rn;ξ)1/2 and
∫

∂D′rn

‖ ∇ũ ‖ dσrn ≤ D̃ A(rn;ξ)1/2.

Proof. We first establish that there exists D > 0 such that∫ 2Rn

Rn

L(r;ξ)dr≤D Rn A(Rn;ξ)1/2 and
∫ 2Rn

Rn

∫
∂D′r
‖∇ũ ‖ dσrdr≤D Rn A(Rn;ξ)1/2.

(10.6)
The second inequality follows from Lemma 10.10 and A(2Rn;ξ) ≤ 3A(Rn;ξ). For
the first one, we apply the Ahlfors inequality as in § 10.4.2, and integrate from Rn to
2Rn: ∫ 2Rn

Rn

L(r;ξ)2dr ≤ 4π Rn A(2Rn;ξ)≤ 12π Rn A(Rn;ξ).

The first inequality of (10.6) is then again a consequence of the Cauchy-Schwarz
inequality. We deduce from Equation (10.6) that

1
Rn

∫ R2n

Rn

(
L(r;ξ)+

∫
∂D′r
‖ ∇ũ ‖ dσr

)
dr ≤ 2D A(Rn;ξ)1/2.

Thus, there exists rn between Rn and 2Rn such that

L(rn;ξ)+
∫

∂D′rn

‖ ∇ũ ‖ dσrn ≤ 2D A(Rn;ξ)1/2.

This completes the proof of Lemma 10.12. �

We can now complete the proof of Theorem 10.8. Let (rn)n be a sequence pro-
vided by Lemma 10.12. Extracting a subsequence, we may assume that the sequence
of currents Sn =

1
A(rn;ξ){ξ(Drn)} converges towards a positive current S on M; since

L(rn;ξ)/A(rn;ξ) goes to zero as n goes to +∞, the current S is closed.
By assumption, ũ is harmonic on V ′, hence smooth. Since ddc(ũ) = 0, an inte-

gration by parts yields

I(n) := 〈Sn|uddc
ϕ〉= 1

A(rn;ξ)

∫
D′rn

ũ ddc
ϕ̃ =

−1
A(rn;ξ)

∫
D′rn

(d(ϕ̃dcũ)+dc(ũdϕ̃)).

And the Stokes formula gives

I(n) =
−1

A(rn;ξ)

∫
∂D′rn

ϕ̃dcũ︸ ︷︷ ︸
I1(n)

+
−1

A(rn;ξ)

∫
D′rn

dc(ũdϕ̃)︸ ︷︷ ︸
I2(n)

.
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Let us show that I1(n) and I2(n) tend to zero. Since 2πdcũ = ∂y(ũ)dx−∂x(ũ)dy one
obtains

|I1(n)| ≤
max |ϕ|

2π

1
A(rn;ξ)

∫
∂D′rn

‖ ∇ũ ‖ dσrn.

The second inequality of Lemma 10.12 shows that I1(n) goes to zero. For I2(n), let
us write ũdϕ̃ = adx+bdy, where a and b are smooth functions. The Stokes formula
gives

I2(n) =
1

2πA(rn;ξ)

∫
∂Drn

(ady−bdx)

and if max(u) denotes the maximum of |u| on the support of ϕ, one gets

|I2(n)| ≤
max(u) ‖ dϕ ‖κ L(rn;ξ)

2πA(rn;ξ)
.

Thus, the first inequality of Lemma 10.12 shows that I2(n) tends to zero, completing
the proof of Theorem 10.8.

10.5. Proof of Proposition 6.9. Let T := T+
f +T−f . We apply Proposition 10.7 to

construct the current τ̂ = T +ddcĥ. We set

T0 := π∗T , h0 := π∗ĥ , τ̂0 := π∗τ̂.

By Proposition 10.7, there exists ε0 > 0 such that τ̂0 = T0 + ddch0 ≥ ε0κ0 and h0

is locally the difference of two continuous pluri-subharmonic functions. More pre-
cisely, every point of X0 has a neighborhood U0 which embeds into the unit ball
B ⊂ CN and on which h0 is the restriction of a difference of two continuous pluri-
subharmonic functions defined on B.

Suppose that there is a non-constant entire curve ξ : C→ X0 such that ξ∗(T0) = 0.
It means that ddc((u++ u−) ◦ ξ̂) = 0, where u± are local continuous potentials of
T±f and ξ̂ : C→ X is the lift of ξ. If ξ is not a Brody curve, apply the Zalcman’s
Lemma 6.8 and Lemma 6.7 to replace it by a Brody curve with the same properties.

Let Km be an increasing sequence of compact subsets of X reg
0 , the interiors of

which exhaust X reg
0 . On X reg

0 the current T0 = π∗(T ) has local continuous potentials,
and Theorem 10.8 provides an Ahlfors current Sm on X0 for the curve ξ such that
Sm∧T0 = 0 on (small neighborhoods of) Km. We recall that this product is locally
equal to ddc(uSm), where u is a local potential of T0 (near Km). The currents Sm

have mass 1 with respect to the positive (1,1)-form κ0, so that we can extract a
subsequence converging towards a closed positive current S on X0. Since Sm∧T0 = 0
on Km, we get S∧T0 = 0 on X reg

0 . Note that we do not need to define (or to extend)
the product S∧T0 on X0; the computation of this product is only done on the regular
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part. All we need to know is that, on X reg
0 , the product S∧ T0 is a well defined

(non-negative) measure and is, in fact, the zero measure.
As in Section 6.2, we define the signed measure S∧ddch0 on X0 as ddc(h0S). Let

us be more precise. If x is a point of X0, we consider a local embedding j : (X0,x)→
(B,0), with B the unit ball in CN , for some N. We know that h0 is the restriction on
(X0,x) of a difference h̃ of two continuous pluri-subharmonic functions on B (this
follows from Proposition 10.7(3) if x = π(E) for some component of the periodic
curves, and from 10.7(1) otherwise). If ϕ is a smooth real valued function on X0

which is given by the restriction of a smooth test function ϕ̃ : B→ R, then

〈S∧ddch0|ϕ〉 := 〈 j∗S∧ddch̃|ϕ̃〉= 〈 j∗S|h̃ddc
ϕ̃〉.

This is a signed measure on X0, see [38, Chapter III.3].

Lemma 10.13. Let S be a closed positive current on X0. The signed measure S∧
ddch0 and the positive measure S∧κ0 on X0 have no atom.

Proof. Let x be a point of X0. With the above notation, let us show that x is not
an atom of the measure j∗S∧ ddch̃. Changing h̃ into h̃− h̃(x), we can assume that
h̃(x) = 0. Let B(r)⊂ (CN ,0) be the euclidian ball of radius r centered at the origin.
Let χ : B(3)→ [0,1] be a smooth non-negative function equal to 1 on B(1) and to 0
on B(3)\B(2). Define χε(x) := χ(x/ε). Then

|〈 j∗S∧ddch̃|χε〉|= |〈 j∗S|h̃ddc
χε〉| ≤max

B(3ε)
|h̃| ·max

B(3ε)
‖ ddc

χε ‖ ·
∫

B(3ε)
j∗S∧ω0,

where ω0 is the standard Kähler form on (CN ,0). But the maximum of |h̃| goes to 0
with ε because h̃ is continuous, the maximum of ‖ ddcχε ‖ is bounded from above
by csteε−2, and the mass of j∗S in B(3ε) is bounded from above by csteε2 because
j∗S is a closed positive current of bidimension (1,1) (Lelong’s inequality, see [38]
Chapter III.5). Thus, the right hand term of this inequality goes to 0 with ε, and
j∗S∧ddch̃ does not charge the origin, as desired. The same proof holds for S∧κ0,
since we compute it from j∗S∧ddcg0, where g0 is a potential of κ0 on (CN ,0). �

Applying Lemma 10.13 to the limit S of the currents Sm, we see that S∧ ddch0

and S∧κ0 are atomless measures on the surface X0. From T0 + ddch0 ≥ ε0κ0 and
S∧T0 = 0 on X reg

0 , we get

〈S∧ddch0|1〉X reg
0
≥ ε0〈S∧κ0|1〉X reg

0

where 1 is the constant function equal to 1, and the index X reg
0 means that we inte-

grate on X reg
0 . Since the measures S∧ddch0 and S∧κ0 have no atom on X0, we can
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also integrate on X0, and we obtain

〈S∧ddch0|1〉 ≥ ε0〈S∧κ0|1〉.

By definition of the product S∧ddch0 and by using a partition of unity, one has

〈S∧ddch0|1〉= 〈S|h0 ddc(1)〉= 0.

This provides a contradiction because 〈S∧κ0|1〉= 1.

11. APPENDIX II : A FAMILY OF EXAMPLES WITH X0 NON-PROJECTIVE

Theorem 11.1. There are automorphisms of rational surfaces g : Y → Y with a
unique irreducible g-periodic curve C ⊂Y such that the contraction of C provides a
normal surface Y0 which is not projective. For every even n≥ 10, one can find such
an automorphism whose entropy is the logarithm of a Salem number of degree n.

We construct such examples by blowing-up points of a plane cuspidal cubic.
When n = 10, one can find such an automorphism with entropy log(λL), where
λL is the Lehmer number (see Remark 11.3 below, and Corollary 1.3 in [72]).

11.1. Picard groups. Let Y be a complex projective surface, and C ⊂ Y be an irre-
ducible curve for which the restriction

resC : Pic(Y )→ Pic(C)

is injective. If 〈C|C〉 < 0, there is a bimeromorphic morphism π : Y → Y0 onto a
normal surface Y0 that contracts C to a point q and is an isomorphism from Y \{C}
to Y0 \ {q}. Since resC is injective, there is no nontrivial line bundle on Y0 and Y0

is not projective (see [57], Example 5.7.3). We shall construct such an example,
together with an automorphism g of Y which preserves C and has positive entropy.

11.2. The groups Wn. Let n ≥ 10 be an even integer. Blow up n distinct points
pi of P2(C) to get a rational surface Y . Denote by ei, 1 ≤ i ≤ n, the classes of the
exceptional divisors Ei, and by e0 the class of the total transform of a line. The
canonical class of Y is kn = −3e0 + e1 + . . .+ en. The group Aut(Y ) acts on the
Néron-Severi group of Y , preserving the intersection form and the class kn. Thus,
Aut(Y ) acts by isometries on the orthogonal complement k⊥n . Nagata proved that
the image of Aut(Y ) in O(k⊥n ) is contained in an explicit Coxeter group Wn (see
[28, 44, 72] for instance). The group Wn is defined as follows. Denote by αi the
simple roots

α0 = e0− e1− e2− e3, αi = ei− ei+1, for 1≤ i≤ n−1.
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Each of the αi is an element of k⊥n and has self-intersection −2; it determines an
isometric involution si of k⊥n , defined by si(x) = x+ 〈x|αi〉αi. The group Wn is the
group generated by those n involutions. By definition, ∪iWn(αi) is the set of roots.

Lemma 11.2. The action of Wn on k⊥n determines a Zariski dense subgroup of the
linear algebraic group O(k⊥n ⊗R). There are elements w of Wn such that the char-
acteristic polynomial χw(t) ∈ Z[t] is irreducible of degree n and has a real root > 1.

Sketch of the proof. The representation of Wn on k⊥n ⊗R is irreducible; in fact, it
coincides with the Tits representation of the Coxeter group Wn, and for n ≥ 10 the
Zariski closure is O(k⊥n ⊗R) (see [28, 44]). Thus, the proof given in [17], §3.2.2, can
be applied to deduce the lemma. (One uses that n is even to say that the characteristic
polynomial of a general element of O(k⊥n ⊗R) does not vanish on roots of unity) �

Remark 11.3. If n = 10 and wn denotes the Coxeter element in Wn, then χw10(t) ∈
Z[t] is irreducible, and its unique root > 1 is the Lehmer number (see [72]).

11.3. Cuspidal cubic curves. From now on, we fix an element w ∈ Wn whose
characteristic polynomial is irreducible over Q and has a real root λ > 1, as in
Lemma 11.2. This implies that every proper, w-invariant, rational subspace of k⊥n
is trivial. Since w is an isometry of a quadratic form of signature (1,n− 1), its
Galois conjugates have modulus ≤ 1, and 1/λ is one of them. Thus, λ is a Salem
number of degree n.

Suppose one can find n points pi in P2(C), an automorphism g of the surface Y ,
and an irreducible g-invariant curve C such that (i) g∗ coincides with w on k⊥n and
(ii) [C] =−kn. By (ii), k⊥n coincides with the subspace of classes with degree 0 along
the curve C. By (i), we get the following alternative:

• either the image of the restriction resC : k⊥n ⊂ Pic(Y )→ Pic0(C) is finite;
• or the image resC(k⊥n ) is infinite and resC : Pic(Y )→ Pic(C) is injective.

Indeed, the kernel of resC in k⊥n being g∗-invariant, it is either co-finite or trivial. In
the second case, one can blow-down C to get a surface Y0, and by Section 11.1, Y0 is
not projective. Thus, for Theorem 11.1, we only have to construct such an example.

Start with the cuspidal cubic curve C0 = {yz2 = x3} in P2(C). The smooth part
of C0 is parametrized by C via the morphism s : t 7→ [t : t3 : 1], and the Picard group
Pic0(C0) is isomorphic to C. Fix an eigenvalue β of w (for instance β = λw, the
largest one). There is a non-trivial linear form ρC : k⊥n ⊗Z C→ C such that

ρC(w(x)) = βρ(x).
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for all x ∈ k⊥n ⊗Z C. Let ρ be the restriction of ρC to k⊥n . This is an injective ho-
momorphism of abelian groups, because the w-orbit of every u ∈ Zn \{0} generates
a finite index subgroup of Zn (every proper w-invariant subspace of Qn is trivial).
Once such an embedding ρ is fixed, it determines n points

pi = s(ρ(ei)), 1≤ i≤ n,

on the curve C0. Blow up the pi to construct a surface Y and denote by C the strict
transform of C0: since C0 is a cubic and each pi is a smooth point of C0, we get
[C] = −kn. The homomorphism resC coincides with ρ on k⊥n . Since ρ is injective,
there is no root α ∈ k⊥n with resC(α) = 0. Thus, a result of McMullen (see [72], § 6,
7) implies that w is realized by an automorphism g of Y that fixes C. It turns out
that C is the unique periodic curve of g because Ng = k⊥n . By construction, Y0 is not
projective.

Remark 11.4 (see [39, 72]). If β has modulus 1, g preserves a “volume form” Ω∧Ω,
where Ω is a meromorphic section of KY that does not vanish and has a pole along C.
This form is singular along C and its total volume is infinite, but it is smooth on Y \C.
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