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SERGE CANTAT, DOMINIQUE CERVEAU

ABSTRACT. Let Σ be a closed orientable surface of genusg≥ 3. Let Γ be any
finite index subgroup of the mapping class group ofΣ. We prove that there
is no faithful analytic action ofΓ on compact surfaces with non zero Euler
characteristic.

1. INTRODUCTION

Let Σg be a closed oriented surface of genusg. If k is a non negative integer
or ∞, Diff

k(Σg) will denote the group of diffeomorphisms ofΣg of classC k.

By definition, whenk = 0, this group coïncides with the groupHomeo(Σg) of
homeomorphisms of the surfaceΣg. The same notation, but withk = ω, will
denote the group of real analytic diffeomorphisms ofΣg. Note that we made an
implicit choice of aC k-structure on the surface. If we change theC k-structure,
then the subgroupDiff

k(Σg) of Homeo(Σg) changes by a conjugacy.
For all k in {0,1, ...,∞}, Diff

k
0(Σg) will stand for the group ofC k-diffeomor-

-phisms which are isotopic to the identity. This coincides with the connected
component of the identity inDiff

k(Σg). The modular group, or mapping class
group, of Σg will be denotedMCG(Σg). Whatever the choice ofk in {0,1, ...,∞},

MCG(Σg) is isomorphic to the quotient ofDiff
k(Σg) by its normal subgroup

Diff
k
0(Σg). This definition provides an exact sequence

{IdΣg}→ Diff
k
0(Σg) → Diff

k(Σg) → MCG(Σg) →{1}

where the second and third morphisms

ι : Diff
k
0(Σg) → Diff

k(Σg), π : Diff
k(Σg) → MCG(Σg)

are respectively the inclusion and the canonical projection.
A natural question, which appears as one of Thurston’s question in Kirby’s

list of problems [11], is whether this exact sequence splits, i.e. whether there
is a morphisms : MCG(Σg) → Diff

k(Σg), called a section ofπ, such thatπ ◦

s is the identity. When the genusg is 1, such a section indeed exists:Σ1 is
the torusR2/Z2 and the groupGL(2,Z) acts faithfully on the torus by analytic
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diffeomorphisms; the restriction ofπ to GL(2,Z) is a bijection ontoMCG(Σ1)

and the inverse mapping provides the desired section (for all k).
For higher genus, there is no section: This was first proved byMorita for k≥ 2

in [15, 16], and then by Markovic fork = 0 in [13].

Markovic-Morita Theorem. If Σg is a closed orientable surface of genus g> 5,

the canonical projection

π : Homeo(Σg) → MCG(Σg)

does not have any section.

It is conjectured that the same result holds as soon as the genusg is at least 2 ;
a recent preprint by Franks and Handel extends this result tog≥ 3 if we consider
sections into the groupDiff

1(Σg) [7]. The first goal of this paper is to provide
a simple proof of a slightly more precise result for sectionsinto the group of
analytic diffeomorphisms ofΣg.

Theorem A. Let Σg be a closed orientable surface of genus g≥ 2. Let Γ be
a finite index subgroup ofMCG(Σg). Then, there is no homomorphism s: Γ →

Diff
ω(Σg) such thatπ◦s is the identity ofΓ.

Morita’s proof of the previous theorem implies the same statement for sections
into Diff

2(Σg) as soon asg≥ 5. Markovic’s arguments use finite order elements
in MCG(Σg) ; since there is a torsion free, finite index subgroup inMCG(Σg),

it is not possible to adapt easily his ideas to get a proof of theorem A. Never-
theless, it seems reasonable to expect that the same result holds for sections into
Homeo(Σg) with g≥ 2.

The second result that we shall prove is much stronger.

Theorem B. Let Σg be a closed orientable surface of genus g≥ 3 andΓ be any
finite index subgroup ofMCG(Σg). Then, there is no faithful analytic action ofΓ
on a closed surface of non zero Euler characteristic.

The hypothesisg≥ 3 and the hypothesis on the Euler characteristic are tech-
nical; the same result should hold forg= 2, and for analytic actions on the torus.
Unfortunately, our proof does not work in this wider context. Once again, theo-
rem B should also hold for actions by homeomorphisms.

In order to prove theoremB, we first study commuting groups of germs of
analytic diffeomorphisms near a fixed point. The main result, which is summa-
rized in theorem 3.1 below, is already an interesting and independant statement
that may be useful for other purposes.
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2. SECTIONS INTO THE GROUP OF ANALYTIC DIFFEOMORPHISMS

In this section, we prove theorem A.

2.1. Centralizer of an analytic diffeomorphism. Let f be an analytic diffeo-
morphism of a closed surfaceS. The centralizer off in Diff

ω(S) is the subgroup
of all analytic diffeomorphismsg which commute withf . The following result
is proved in [4].

Theorem 2.1. Let S be a closed surface. If f is an analytic diffeomorphism of S
with positive topological entropy, then f generates a finiteindex subgroup in its
centralizer.

Let us sketch the proof of a weaker statement which is sufficient for our pur-
pose. LetA be the centralizer off . We shall prove thatA contains a finite index
abelian subgroup(see [17] for a similar argument).

Sketch of proof.Since the topological entropy off is positive, f has a periodic
saddle pointq, the stable and unstable manifolds of which intersect each other
(see [9]). As a consequence,Wu(q) andWs(q) are Zariski-dense (if an analytic
function vanishes alongWu(q), the function vanishes identically).

The groupApermutes the isolated fixed points off k, wherek is the period ofq,

so that a finite index subgroupA′ in A fixesq and stabilizesWs(q) andWu(q).

If g is an element ofA′, the restriction ofg toWs(q) determinesg, becauseWs(q)

is Zariski-dense, and commutes tof .
If λ denotes the derivative off k at q alongWs(q), then |λ| < 1, and there

exists an analytic parametrizationξ : R→ Sof Ws(q) such thatf k◦ξ(t) = ξ(λt).
If g is an element ofA′, its restriction toWs(q) commutes tot 7→ λt and is
therefore linear in the variablet. This implies that the restriction ofA′ to Ws(q),

and thereforeA′ itself, are abelian groups. �

2.2. Action on the fundamental group and entropy. We now describe a result
due to Bowen and Katok which provides a criterium in order to prove that a
homeomorphism has positive entropy.

Let M be a compact manifold, andx be a base point onM. Let f be a homeo-
morphism ofM which fixes the base pointx. Then f induces an automorphismf∗
of the fundamental groupπ1(M,x). SinceM is compact, we can choose a finite
generating set{a1, ...,ak} for π1(M,x). From this we get a length function on
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π1(M,x): the distanceL(b) from a loopb to the trivial loop is the smallest inte-
gerl such thatb is a product of at mostl generatorsai. The asymptotic stretching
factorλ( f∗) is then defined by

λ( f∗) = limsup
n→+∞

(max{L( f n
∗ (ai)) | i = 1, ...,k})1/n .

Theorem 2.2 (Bowen, Katok, see [3] or [10]). The topological entropy of a
homeomorphism f of a compact manifold M is not less than the logarithm of the
asymptotic stretching factor of f∗ : π1(M) → π1(M).

Together with theorem 2.1, we get the following result.

Corollary 2.3. If f is an analytic diffeomorphism of a closed surface withλ( f∗) >

1, the centralizer of f is virtually cyclic.

A weaker result which depends only on what is fully proved in the previous
section asserts thatthe centralizer of f is almost abelian whenλ( f∗) > 1.

2.3. Proof of theorem A. Let Γ be a finite index subgroup ofMCG(Σg), with
g≥ 2. Assume thats : Γ → Diff

k(Σg) is a section of the projectionπ.

Let a1, b1, a2, b2, ... be the loops onΣg which are described in figure 1. Lettc
denote the Dehn twist along the curvec, with c∈ {a1,b1,a2,b2...,}. Sinces is a
section ofπ, we get

• s(ta1) ands(tb1) commute withs(ta2) ands(tb2);
• s(ta1) ands(tb2) generate a non abelian free group ;
• (s(ta1 ◦ tb1))∗ = ta1 ◦ tb1 has a positive asymptotic stretching factor.

Together with the previous corollary (even in its weak formulation), this shows
that the image ofscan not be contained inDiff

ω(Σg). Theorem A is proved.

3. COMMUTING GERMS OF ANALYTIC DIFFEOMORPHISMS

The main goal of this section is to prove the following result, which concerns
the groupD̂iff Id(C2,0) of formal diffeomorphisms at the origin inC2 which are
tangent to the identity.

Theorem 3.1.Let F and G be two subgroups of̂Diff Id(C2,0) such that

• neither F nor G is a solvable group ;
• F and G commute: f◦g = g◦ f for all f in F and g in G.

Then, there existΨF andΨG, two quotients of formal power series in two vari-
ables, such that

• dΨF ∧dΨG does not vanish identically;
• ΨF is F-invariant, i.e.ΨF ◦ f = ΨF for all f in F, andΨG is G-invariant;
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• there is an injective morphismεF (resp. εG) from F to D̂iff Id(C,0) or
PSL2(C) such that

ΨG◦ f = εF( f )◦ΨG, ∀ f ∈ F

(resp.ΨF ◦g = εG(g)◦ΨF , ∀g∈ G).

3.1. Formal vector fields and the exponential mapping.By Ô (Cn) we denote
the ring of formal power series inn complex variables. The field of fractions of

formal power series is denoted bŷM (Cn).

Let χ̂0(Cn,0) be the Lie algebra of formal vector fields at the origin ofCn

with vanishing first jet. IfX is an element of̂χ0(Cn,0), the flowφ(X, t) of X is a
formal power series; this series is polynomial with respectto the time variablet:

φ(X, t) = ∑
I

aI(t)x
I

whereI descibes the set of multi-indices,xI are the corresponding monomials
and eachaI : C → Cn is a polynomial application in the variablet. In particular,
φ(X, t) is a well defined germ of formal diffeomorphism fixing the origin. By
definition, the exponential mapping is the map

exp :χ̂0(Cn,0) → D̂iff Id(Cn,0), exp(X) = φ(X,1).

It follows from the fact that groups ofk-jets of elements of̂DiffId(Cn,0) are
nilpotent groups that exp is a bijection. In other words,χ̂0(Cn,0) plays the role
of the Lie algebra for the group̂Diff Id(Cn,0), and the exponential mapping co-
incides with the formal flow at time 1.

If f is an element of̂DiffId(Cn,0), L f will denote the unique element of
χ̂0(Cn,0) such that

exp(L f ) = f .

Two formal germs of diffeomorphismsf andg commute if and only if the cor-
responding vector fieldsL f andLg commute (i.e. if their Lie bracket vanishes
identically).

3.2. Linear part and Jordan decomposition. Let us briefly describe the Jor-
dan decomposition in̂Diff(Cn,0) (see [1], §23). This will not be used until
section 3.7.

If ∆ is a diagonalizable matrix with eigenvaluesαi, i = 1, ...n, a resonnance
for ∆ is a relation of type

αi = ∏αmj
j ,
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wheremj are positive integers, and∑mj ≥ 2. Let xi , i = 1, ...n, be coordinates in
which∆ is diagonal. A resonnant monomial is a monomialM = ∏x

mj
j , ∑mj ≥ 2,

which satisfies an equation of type

M ◦∆ = αiM

for at least one eigenvalueαi.

If f is a formal germ of diffeomorphism, we can writef uniquely as the com-
positions◦u of two formal germs of diffeomorphisms such that

• sandu commute:s◦u = u◦s;
• s is diagonalizable: there is a formal change of coordinatesφ such that

∆ = φ◦s◦φ−1 is a linear diagonal mapping;
• the linear part ofs andu coincide respectively with the diagonalizable

part and the unipotent part in the Jordan decomposition ofD0 f ;
• sinceu commutes withs, the higher order monomial terms ofφ◦u◦φ−1

are resonnant with respect to∆.

The diagonalizable terms is called the semi-simple part off andu is called the
unipotent part off . The unipotent partu is the flow at time 1 of a unique formal
vector field which vanishes at the origin and has a nilpotent first jet.

By uniqueness of the decomposition, ifg commutes tof , theng commutes at
the same time to the semi-simple part and to the unipotent part of f . Similarly, if
Φ is an f -invariant meromorphic function, thenΦ is boths andu-invariant (see
[2], chapter I.4).

3.3. First integral of foliations. If X is a non zero element of̂χ0(Cn,0), then
X defines a formal germ of dimension 1 foliationFX at the origin. Two elements
X andY of χ̂0(Cn,0) define the same foliation if and only ifX is parallel to Y,

which means that there exists a formal meromorphic functionr such thatX = rY.

If f is an element of̂Diff Id(Cn,0), we shall denote byF f the foliation which is
determined byL f .

A (formal) first integral ofX, or of FX, is a formal power seriesΨ ∈ Ô (Cn)

such that its Lie derivativeX ·Ψ vanishes identically. A meromorphic first in-

tegral is an element of̂M (Cn) which satisfies the same property. The set of
first integrals forms a ring, and the set of meromorphic first integrals forms a
field. The existence of a non constant meromorphic first integral is not granted :
there are examples of holomorphic germs of foliations without any non constant
formal meromorphic first integral.

Recall from section 3.1 that the flowφ(X, t) is polynomial with respect to the
time variablet. As a consequence,
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• Ψ is a formal (meromorphic) first integral ofX if and only if Ψ is invari-
ant by the flow ofφ(X, t) ;

• if f is an element of̂Diff Id(Cn,0) \ {Id}, thenΨ is a first integral ofF f

if and only if Ψ is f -invariant.

Let us now assume thatn is 2. The following results are proved in [14] and [5].

Theorem 3.2. Let X be an element of̂χ0(C2,0). If X admits a non constant
formal first integral, then

• there exists a first integralΨ which is not a (non trivial) power of another
first integral ;

• for any choice of such aΨ, the ring of formal first integral coincides with
the ringC{{Ψ}} of formal power series inΨ ;

• Ψ is unique up to post composition with a germ of formal diffeomorphism
near the origin inC.

A purely meromorphic first integralΨ is a quotient of two formal power series
that does not coincide with a formal power series or the inverse of a formal
power series. The following statement is a consequence of Luroth’s theorem
([5], section 5.V, page 137).

Theorem 3.3.Let X be an element of̂χ0(C2,0) without non constant formal first
integral. If X admits a purely meromorphic first integral, then

• there exists a purely meromorphic first integralΨ such that the field
of meromorphic first integrals coincides with the fieldC(Ψ) of rational
functions inΨ;

• this first integralΨ is unique up to composition by a homographic trans-
formation M∈ PGL2(C).

If X has a non constant first integral, any generatorΨ of the ring of first integral
will be called aminimal first integral. If X does not possess any non constant
first integral but admits a purely meromorphic first integralthen any generatorΨ
of the field of meromorphic first integrals will be called aminimal first integral.

If G is a group of formal diffeomorphisms which preserves the foliation F ,

then G acts on the set of first integrals ofF ; if g is an element ofG and Ψ
a first integral, thenΨ ◦ g−1 is of the formε(g)Ψ, whereε(g) is an element
of D̂iff(C1,0) or PGL2(C) according to the type of the first integralΨ (power
series or purely meromorphic).

3.4. Proof of theorem 3.1, step 1.In order to prove theorem 3.1, we now as-
sume thatF andG are two commuting non solvable subgroups of̂Diff Id(C2,0).
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Let g0 be an element ofG\ {Id}. In this first step, we assume that all vector
fields Lg, g in G, are parallel toLg0, by which we mean that there existsrg in

M̂ (C2) such that

Lg = rgLg0.

SinceF andG commute,f∗Lg = Lg for any pair( f ,g) in F ×G. It follows that

rgLg0 = Lg = f∗Lg = (rg◦ f−1) f∗Lg0 = (rg◦ f−1)Lg0,

and thatrg is f -invariant for all pairs( f ,g) in F ×G.

SinceG is not abelian, there is at least one elementg1 in G for which rg1 is not
constant. This implies thatrg1 is a non constant first integral ofL f for all f in F,

and therefore that allL f are parallel. As a consequence, the vector fieldsL f , f
in F, define a unique formal foliationFF .

In other words,the vector fields Lg, g ∈ G, are all parallel one to another if
and only if the vector fields Lf , f ∈ F, are.

The foliationFF admitsrg1 as a non constant first integral. LetΨF be a min-
imal first integral of the foliationFF (see §3.3). SinceG commutes toF, G pre-
serves the foliation, and eachg ∈ G sendsΨF to another minimal first integral.
According to section 3.3, two distinct cases may arise:

(i) ΨF is purely meromorphic. In this case, there exists a morphismεG :
G→ PSL(2,C) such that

ΨF ◦g = εG(g)◦ΨF , ∀g∈ G;

(ii) ΨF is a formal power series. In this case, there exists a morphism εG :
G→ D̂iff Id(C,0) such that

ΨF ◦g = εG(g)◦ΨF , ∀g∈ G.

Of course, a similar result holds if we permuteF and G. This provides a
minimal first integralΨG for the foliationFG and a morphismεF such that

ΨG◦ f = εF( f )◦ΨG, ∀ f ∈ F.

3.5. Proof of theorem 3.1, step 2.Still assuming that all vector fieldsLg are
parallel, we now prove that bothεG andεF are injective mophisms.

Let us assume that there is an elementg in G\{Id} which is contained in the
kernel ofεG ; by definition ofεG, ΨF is g-invariant, and therefore

ΨF ◦gn = ΨF , ∀n∈ Z.

This implies thatΨF is invariant under the flow ofLg, and thatFF coincides
with FG (see section 3.3). In particular,ΨF is bothF andG-invariant, and the
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foliationsFF andFG coincide. To simplify the notation, we may now denote by
F this foliation andΨ the chosen first integral.

Let C̃2 be the surface obtained by blowing-up the origin ofC2, let E be the
exceptional divisor, andc : C̃2 → (C2,0) be the blowing down ofE. The (formal)
foliation c∗F has a finite number of singularities alongE. If F is not dicrital,
thenE is a leaf ofc∗F , and ifF is dicritical, thenc∗F is transverse toE in the
complement of a finite set.

Let p be a generic point ofE. There are formal coordinates(x, t) at p such that
p corresponds to the origin(0,0) and

Ψ◦c = x.

If F is not dicritical, thenx vanishes alongE.

SinceF andG are tangent to the identity, we can liftF andG to groups of
formal germs of diffeomorphisms̃F andG̃ in D̂iff(C̃2, p). SinceΨ is bothF and
G-invariant, elements of̃F andG̃ may be written

f̃ (x, t) = (x, f2(x, t)), g̃(x, t) = (x,g2(x, t))

in local coordinates(x, t). In other words,f̃ andg̃ correspond to formal vector
fields of type

L̃ f = Af (x, t)
∂
∂t

, L̃g = Bg(x, t)
∂
∂t

whereAf andBf are formal power series. SinceF commutes toG, we get

∂
∂t

(
Af

Bg

)
= 0

for any pair of elements( f ,g) in F×G. As a consequence, ifg1 is a fixed element
of G\{Id}, we can write the seriesAf in the form

Af (x, t) = af (x)Bg1(x, t),

whereaf is a formal meromorphic function in one variable. This implies that the
groupF̃ , and thereforeF itself, is abelian. This contradiction shows thatεG is
indeed injective.

3.6. Proof of theorem 3.1, step 3.In order to conclude the proof of theorem
3.1, we may now assume that the formal vector fieldsLg, g in G, are not all
parallel; we may therefore fix two elementsh andk of G such thatLh andLk are

not parallel. Ifg is an element ofG, there is a unique pair(Hg,Kg) in M̂ (C2,0)

such that

Lg = HgLh +KgLk.
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SinceF commutes toG, we obtain

Hg◦ f = Hg, Kg◦ f = Kg

for all ( f ,g) in F ×G. If one of the formal power seriesHg or Kg is not constant,
then, as in step 1, all formal vector fieldsL f are parallel, and therefore all formal
vector fieldsLg are also parallel, a contradiction. This implies that all formal
power seriesHg andKg, g in G, ar in fact constant.

From this we deduce that the Lie algebra generated by the formal vector fields
Lg has dimension 2, and, as such, is solvable. This implies thatG itself is a
solvable group; this contradiction completes the proof of theorem 3.1.

3.7. A corollary.

Corollary 3.4. Let G and H be two groups. If neither G nor H is solvable, there
is no injective morphism of the groupZ×G×H into the group of formal germs
of diffeomorphismŝDiff(C2,0).

We shall use the following lemmas.

Lemma 3.5. Let f be an element of̂Diff(C1,0). If f is not periodic, there exists
p∈ Z such that the centralizer of f is isomorphic toZ×Z/pZ. In particular, if f
commutes to a subgroup of̂Diff(C1,0) which is not solvable, then f is periodic.

Proof. If f ′(0) is not a root of unity,f is formally linearizable. Up to a change
of formal coordinate

f (z) = f ′(0)z,

and in this new coordinate, the centralizer off coïncides with the group of ho-
motheties. This group is abelian.

If f ′(0) is a root of unity, we decomposef into the composition of its semi-
simple parts and its unipotent partu. Up to conjugacy,s(z) = f ′(0)z. If f is not
periodic, the centralizer off is contained in the centralizer of its unipotent part,
and this group is of typeZ×Z/pZ (see [6], or [12], chapter 1). �

Lemma 3.6. Let f be an element of̂Diff(C2,0). Let Φ and Ψ be two formal
power series at the origin ofC2 such that dΦ ∧ dΨ is not identically0. If f
preserves bothΦ andΨ, then f is periodic.

Proof. If f is tangent to the identity, there exists a unique formal vector field
X ∈ χ̂0(C2,0) for which f = exp(X). Sincef preservesΦ andΨ, both Lie deriva-
tivesX ·Φ andX ·Ψ vanish identically (see section 3.3). SincedΦ∧dΨ 6= 0, X
vanishes identically andf is the identity.
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If f is unipotent, i.e. its semi-simple is trivial, the same proof applies (withX
a formal vector field, the linear part of which is nilpotent).

If f = s◦u is the decomposition off into its semi-simple and unipotent parts,
thenΦ andΨ are boths andu-invariant (see section 3.2). FromdΦ∧dΨ 6= 0,

we deduce thats is periodic. If k is the period ofs, then f k is unipotent and
preservesΦ andΨ, so thatf k is the identity. �

Proof of the corollary.Let us assume that there is a faithful representation of
Z ×G×H into D̂iff(C2,0). We identifyG andH to their images, and we fix a
generatorf for the image ofZ.

• Let us show that there are two non solvable subgroupsG1 ⊂ G andH1 ⊂ H
with trivial linear part at the origin.

If k is an element of̂Diff(C2,0), we shall denote its linear part, or 1-jet, at the
origine byJ1(k).

First we assume the existence of an elementg in G, the linear part of which
has two distinct eigenvaluesα andβ. We then choose formal coordinates atp
so that the semi-simple part ofg is a diagonal linear transformation (see section
3.2). Leth be an element ofH. Sinceh commutes tog, its linear partJ1(h) is
also diagonal. The morphismh 7→ J1(h) has an abelian image, and its kernel is
therefore a non nonsolvable subgroupH1 of H. Higher order terms of elements
of H1 are resonnant with respect to the eigenvaluesα andβ. Since elements of
G commute with elements ofH1, their semi-simple parts commute with reson-
nant monomials, and are therefore diagonal. This implies that a non solvable
subgroupG1 of G has trivial linear part.

Now assume that there is an elementh of H, the linear part of which has two
distinct eigenvalues. PermutingG andH, the same argument shows that there
are two subgroupsG1 andH1 in G andH which are tangent to the identity and
are not solvable.

If all elements ofG and ofH have a unique eigenvalue, the groups of linear
partsJ1(G) andJ1(H) are solvable, and the same conclusion holds.

• We can now apply theorem 3.1 toG1×H1. Since f commutes toG1 there
exists a formal diffeomorphismη f (resp. an elementη f of PSL(2,C), depending
on the type of the first integralΨG1) such that

ΨG1 ◦ f = η f ◦ΨG1.

The formal diffeomorphism (resp. Möbius transformation)η f commutes to the
non solvable subgroupεH1(H1). This implies thatη f has finite order, i.e. that
ΨG1 is f k-invariant for somek > 0 (lemma 3.5). The same argument shows that
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ΨH1 is also f l -invariant for somel > 0. From this follows thatf kl preserves
both ΨG1 and ΨH1, and that f has finite order, becausedΨG1 ∧ dΨH1 is not
identically 0 (lemma 3.6). This contradicts the starting assumption, namely that
Z×G×H embeds intôDiff(C2,0). �

4. ANALYTIC ACTIONS OF MAPPING CLASS GROUPS

We now prove theorem B. This requires a few technical resultson groups of
diffeomorphisms of the circle.

4.1. Preliminaries on diffeomorphisms of the circle. Let Homeo+(S1) be the
group of orientation preserving homeomorphisms of the circle.

Proposition 4.1. Let G be a finitely generated subgroup ofHomeo+(S1). If all
elements of G are periodic, then G is finite. In particular G isfinite as soon as
all G-orbits are finite.

Proof. Since all elements ofG are periodic,G does not contain any free non
abelian group. Margulis-Tits’ alternative forHomeo+(S1) shows thatG pre-
serves a probability measureµ (see [8]). In particular, the rotation number
ρ : G → R/Z is a morphism, with values inQ/Z; its image is finite because
G is finitely generated. Elements of the kernel ofρ are periodic, and have a fixed
point. Since any periodic, orientation preserving, homeomorphism of the circle
with a fixed point is the identity,G is finite. �

Proposition 4.2. Let G be an infinite, finitely generated subgroup ofDiff
ω(S1).

Let H be a finitely generated subgroup ofDiff
ω(S1). If (i) all elements of G have

a rational rotation number and(ii) G and H commute, then

• either H is finite,
• or G×H has a finite orbit.

Proof. From proposition 4.1, we know that there exists an elementg in G which
is not periodic; since its rotation number is rational, we can changeg in gk,

k > 0, and assume that the set of fixed pointsFix(g) is non empty. This set is
finite becauseg is an analytic diffeomorphism.

The groupH commutes tog, and therefore permutes its fixed points. As a
consequence, there is a finite index subgroupH1 in H which fixesFix(g) point-
wise. If H1 is finite, so isH. Otherwise, the set of fixed points ofH1 is finite.
But this set isG-invariant, becauseG andH1 commute. This provides a finite
(G×H1)-orbit, and therefore a finiteG×H orbit. �
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4.2. Notation and strategy of the proof. In what follows,Σg is the orientable
closed surface of genusg, with g≥3, andΓ is a finite index subgroup ofMCG(Σg).

We shall consider the following set of non separating closedcurves onΣg and

c

a1 a2

b1 b2

a3

ag

b3

bg

FIGURE 1. Curves on Σg.

denote byF0, G0, andH0 the subgroups ofMCG(Σg) generated by the following
Dehn twits.

• F0 is generated by the twist alonga1, and the twist alongb1.

• G0 is generated by the twist alonga2, and the twist alongb2.

• H0 is generated by the twists alongak, and the twist alongbk, 3≤ k≤ g.

SinceΓ has finite index inMCG(Σg), Γ intersectsF0 (resp.G0, H0) on a finite
index subgroupF (resp. G, H) of F0 (resp. G0, H0). The groupsF andG are
non abelian free groups, whileH is a commutative product ofg−2 non abelian
free groups. The groupsF, G andH commute to each other, so that the product
F ×G×H embeds intoΓ.

Let us now assume thatΓ acts faithfully by analytic diffeomorphisms on a
compact surfaceS, so that we can identifyΓ to a subgroup ofDiff

ω(S). In the
following sections, we shall study the action ofF ×G×H on S in order to find
common fixed points and then get a contradiction from corollary 3.4.

4.3. Isolated fixed points. Let f be an element ofF \ {Id}. Since the Euler
characteristic ofS is different from 0, the set of fixed pointsFix( f ) is a non
emptyreal analytic subset ofS. Isolated fixed points off correspond to the 0-
dimensional part ofFix( f ) (a finite set), while non isolated fixed points form a
finite union of analytic curves. Since the Euler characteristic of the surfaceS is
not zero, the setFix( f ) is non empty.

Let us first assume that there exists an elementf of F \{Id} with at least one
isolated fixed pointp. Let N be the number of isolated fixed points off . Since
G (resp.H) commutes tof , G (resp.H) permutes the set of isolated fixed points
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of f . From this we deduce that the subgroupG1 (resp.H1) of G (resp.H) fixing
p has index at mostN! in G (resp.H). BothG1 andH1 are free groups, and the
group〈 f 〉×G1×H1 fixes p. Corollary 3.4 provides a contradiction.

4.4. No isolated fixed point. Let us now assume that there is no element in
F with an isolated fixed point. Let us fix an elementf in F \ {Id}, and an
irreducible componentC of its set of fixed points. IfC is not smooth, the set of
its singular points is finite, and a finite index subgroupG1 in G (resp.H1 in H)
fixes all these singular points. We then conclude as in the previous section.

If C is smooth, thenC is diffeomorphic to a circleS1. Let G1 (resp. H1) be
the finite index subgroup ofG (resp. H) which stabilizes the componentC of
Fix( f ). We obtain a morphismκ : G1×H1 → Diff

ω(S1).

In what follows, we construct a common fixed pointp∈C for large subgroups
of F, G1 andH1 and conclude with corollary 3.4. The basic idea is summarized
in the following remark.

Remark 4.3. If κ(G1×H1) has a finite orbit, there exist finite index subgroups
G2 ≤ G1 andH2 ≤ H1 and a pointp∈C which is fixed by the group〈 f 〉×G2×

H2. We then get a contradication from corollary 3.4.

4.4.1. If κ(G1) is finite. Let us first assume thatκ(G1) is a finite group: the
kernel ofκ : G1 → Diff

ω(S1) is a finite index subgroupG2 of G1 which fixesC
pointwise. SinceC is an irreducible component of the set of fixed points ofG2, a
finite index subgroupF1 of F stabilizes the curveC and the restriction morphism
κ is also defined onF1 (note thatf is contained inF1).

If κ(H1) is finite, remark 4.3 provides the desired contradiction.
If κ(H1) is infinite but all elements ofκ(H1) have a rational rotation number,

proposition 4.2 shows that eitherκ(F1)× κ(H1) has a finite orbit, orκ(F1) is
finite. In the first case, there are finite index subgroupsF2 ≤ F1 andH2 ≤ H1

such thatF2×G2×H2 has a fixed pointp in C. In the second case, there is a
finite index subgroupF2 in F1 which fixesC pointwise and at least one elementh
in H1 with a fixed pointp onC (recall allκ(h) have a rational rotation number) ;
let H2 be the cyclic group generated byh. In both cases, we get a common fixed
point p for F2×G2×H2, and corollary 3.4 provides a contradiction.

The remaining case is whenH1 contains an elementh such that the rota-
tion number ofκ(h) is irrational. In that case,κ(h) is conjugate to an irra-
tional rotation by a homeomorphism (see [10], chapters 11 and 12). Sinceκ(F1)

commutes toκ(h), the groupκ(F1) is abelian ; this implies that the kernel of
κ : F1 → Diff

ω(S1) is a non solvable subgroupF2 (maybe of infinite index inF1).
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Let nowc be the curve onΣg shown on figure 1 Lettc be the Dehn twist along
c. The twist tc commutes tota2. Let k be a positive integer such thattk

a2
is in

G2. The curveC is contained in the set of fixed points oftk
a2

, and is therefore
stabilized by an iteratet l

c of tc, l > 0. Sincetc commutes toH,

• either t l
c has a periodic orbit of periodk > 0 alongC. We then get a

contradiction sinceh commutes totc andκ(h) does not have any periodic
orbit.

• or t l
c has an irrational rotation number alongC. In that caseκ(H1) is

abelian, since it commutes tot l
c ; as a consequence, a non solvable sub-

groupH2 of H1 fixesC pointwise, and we get a contradiction from corol-
lary 3.4 if we apply it toF2×G2×H2.

4.4.2. Conclusion.SinceG1 andH1 play a symmetric role, we can now assume
that bothκ(G1) andκ(H1) are infinite. From remark 4.3, we can also assume
that all κ(G1×H1)-orbits are infinite. Together with proposition 4.2, we may
therefore assume that bothκ(G1) and κ(H1) contain elements with irrational
rotation number. SinceG1 andH1 commute, this implies thatκ(G1) andκ(H1)

are abelian subgroups ofDiff
ω(S1). It follows that the kernel ofκ intersectsG1

(resp.H1) on a non solvable subgroupG2 (resp.H2), and we get a contradiction
if we apply corollary 3.4 to the group〈 f 〉×G2×H2.
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