ANALYTIC ACTIONS OF MAPPING CLASS GROUPS ON
SURFACES.

SERGE CANTAT, DOMINIQUE CERVEAU

ABSTRACT. Let2 be a closed orientable surface of gegus 3. Letl" be any
finite index subgroup of the mapping class groupzofWe prove that there
is no faithful analytic action of on compact surfaces with non zero Euler
characteristic.

1. INTRODUCTION

Let Z4 be a closed oriented surface of gemusf k is a non negative integer
or oo, Dika(Zg) will denote the group of diffeomorphisms &f; of classck.
By definition, whenk = 0, this group coincides with the groutfomeo(Zy) of
homeomorphisms of the surfagg. The same notation, but witk = w, will
denote the group of real analytic diffeomorphism&gf Note that we made an
implicit choice of acX-structure on the surface. If we change tHestructure,
then the subgrouDiffk(Zg) of Homeo(Z4) changes by a conjugacy.

For allk in {0,1,...,%0}, Diff§(Zq) will stand for the group ot ¥-diffeomor-
-phisms which are isotopic to the identity. This coincidathwhe connected
component of the identity ilﬁ)iffk(Zg). The modular group or mapping class
group, of Zy will be denotedMCG(%4). Whatever the choice d¢fin {0,1, ..., 0},
MCG(Zg) is isomorphic to the quotient d})iffk(zg) by its normal subgroup
Diffé(zg). This definition provides an exact sequence

{Ids,} — Diff§(=q) — Diff*(Zg) — MCG(Zg) — {1}
where the second and third morphisms
- Diff§(Zq) — Diff(Zg), Ttz Diff*(Zg) — MCG(Zg)

are respectively the inclusion and the canonical projactio

A natural question, which appears as one of Thurston’s murest Kirby’s
list of problems [11], is whether this exact sequence splies whether there
is a morphisms : MCG(%4) — Diffk(zg), called a section oft, such thatrto
s is the identity. When the genugis 1, such a section indeed exist&; is
the torusR?/Z? and the groufGL (2,Z) acts faithfully on the torus by analytic
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diffeomorphisms; the restriction af to GL (2,Z) is a bijection ontoICG(Z1)
and the inverse mapping provides the desired section (f&j.al

For higher genus, there is no section: This was first proveddyta fork > 2
in [15, 16], and then by Markovic fdc= 0 in [13].

Markovic-Morita Theorem. If Zg is a closed orientable surface of genus &,
the canonical projection

Tt: Homeo(24) — MCG(Zg)

does not have any section.

It is conjectured that the same result holds as soon as thesgenat least 2 ;
a recent preprint by Franks and Handel extends this resgltt8 if we consider
sections into the grouDiffl(Zg) [7]. The first goal of this paper is to provide
a simple proof of a slightly more precise result for sectiorie the group of
analytic diffeomorphisms ai.

Theorem A. Let 24 be a closed orientable surface of genus@. Let " be
a finite index subgroup d¥1CG(Zg). Then, there is no homomorphismIs —
Diff®(Z4) such thatrto s is the identity of .

Morita’s proof of the previous theorem implies the sameesteent for sections
into Diff2(Z4) as soon ag > 5. Markovic’s arguments use finite order elements
in MCG(Zg) ; since there is a torsion free, finite index subgroupf6G(2y),
it is not possible to adapt easily his ideas to get a proof ebtéem A. Never-
theless, it seems reasonable to expect that the same rekldtfbr sections into
Homeo(Zg) with g > 2.

The second result that we shall prove is much stronger.

Theorem B. Let>4 be a closed orientable surface of genus § andl™ be any
finite index subgroup d1CG(Zg). Then, there is no faithful analytic action bf
on a closed surface of non zero Euler characteristic.

The hypothesig > 3 and the hypothesis on the Euler characteristic are tech-
nical; the same result should hold @& 2, and for analytic actions on the torus.
Unfortunately, our proof does not work in this wider conte@ince again, theo-
rem B should also hold for actions by homeomorphisms.

In order to prove theorerB, we first study commuting groups of germs of
analytic diffeomorphisms near a fixed point. The main resuftich is summa-
rized in theorem 3.1 below, is already an interesting andpeddant statement
that may be useful for other purposes.
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2. SECTIONS INTO THE GROUP OF ANALYTIC DIFFEOMORPHISMS

In this section, we prove theorem A.

2.1. Centralizer of an analytic diffeomorphism. Let f be an analytic diffeo-
morphism of a closed surfa& The centralizer of in Diff®(S) is the subgroup
of all analytic diffeomorphismg which commute withf. The following result
is proved in [4].

Theorem 2.1.Let S be a closed surface. If f is an analytic diffeomorphié@® o
with positive topological entropy, then f generates a fimtiex subgroup in its
centralizer.

Let us sketch the proof of a weaker statement which is suffi¢e our pur-
pose. LetA be the centralizer of. We shall prove thaf contains a finite index
abelian subgrougsee [17] for a similar argument).

Sketch of proofSince the topological entropy dfis positive,f has a periodic
saddle poing, the stable and unstable manifolds of which intersect eadgérot
(see [9]). As a consequendd)(q) andW?3(q) are Zariski-dense (if an analytic
function vanishes along/(q), the function vanishes identically).

The groupA permutes the isolated fixed pointsfdf wherek is the period ofj,
so that a finite index subgrould in A fixes g and stabilize®V3(q) andW"(q).
If gis an element of', the restriction ofytoWS(q) determineg, becaus&Vs(q)
is Zariski-dense, and commutesfto

If A denotes the derivative of at q alongWs(q), then|A| < 1, and there
exists an analytic parametrizatign R — Sof WS(q) such thatfXo &(t) = &(At).
If g is an element ofY, its restriction toWs(q) commutes ta — At and is
therefore linear in the variabte This implies that the restriction @& toWS(q),
and thereforeY itself, are abelian groups. O

2.2. Action on the fundamental group and entropy. We now describe a result
due to Bowen and Katok which provides a criterium in order tovp that a
homeomorphism has positive entropy.

Let M be a compact manifold, andbe a base point oll. Let f be a homeo-
morphism ofM which fixes the base point Thenf induces an automorphisi
of the fundamental group; (M, x). SinceM is compact, we can choose a finite
generating sefay, ...,a} for (M, x). From this we get a length function on
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™ (M, X): the distance.(b) from a loopb to the trivial loop is the smallest inte-
gerl such thabis a product of at mostgenerators;. The asymptotic stretching
factorA(f.) is then defined by

A(f.) = limsup(max{L(f"(a))|i=1,....k})"".

N—-+o00

Theorem 2.2 (Bowen, Katok, see [3] or [10])The topological entropy of a
homeomorphism f of a compact manifold M is not less than tperitthm of the
asymptotic stretching factor of. f p(M) — T (M).

Together with theorem 2.1, we get the following result.

Corollary 2.3. If f is an analytic diffeomorphism of a closed surface wif,.) >
1, the centralizer of f is virtually cyclic.

A weaker result which depends only on what is fully provedha previous
section asserts th#te centralizer of f is almost abelian wh&(f,.) > 1.

2.3. Proof of theorem A. Let " be a finite index subgroup ¢ICG(Z), with
g> 2. Assume thas: N — Dika(Zg) is a section of the projection
Letay, by, a, by, ... be the loops oy which are described in figure 1. Ligt

denote the Dehn twist along the curwewith c € {aj,b1,az,b,..., }. Sincesis a
section ofrt, we get

e S(ta,) ands(ty,) commute withs(ta,) ands(ty, );

e S(ty,) ands(t,,) generate a non abelian free group ;

o (S(ta, oth,))« = ta oty has a positive asymptotic stretching factor.
Together with the previous corollary (even in its weak folation), this shows
that the image o§ can not be contained iff(Zg). Theorem A is proved.

3. COMMUTING GERMS OF ANALYTIC DIFFEOMORPHISMS

The main goal of this section is to prove the following reswtiich concerns
the groupDiff,4(C?,0) of formal diffeomorphisms at the origin i@ which are
tangent to the identity.

Theorem 3.1.Let F and G be two subgroups Ef?ﬁd(Cz,O) such that

e neither F nor G is a solvable group ;

e Fand G commute: §g=gofforall finFandginG
Then, there exis¥r andWg, two quotients of formal power series in two vari-
ables, such that

e dWr AdWs does not vanish identically;

e WrisF-invariant,i.e.Wgof =We forall f in F, andWg is G-invariant;
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e there is an injective morphisigg (resp. €g) from F to Sﬁd(C,O) or
PSL>(C) such that

Wegof =¢p(f)oWg, VIeF
(resp.Wrog=¢tg(g)oWr, VgeG).

3.1. Formal vector fields and the exponential mapping.By B(C”) we denote
the ring of formal power series 'lr/n\complex variables. The field of fractions of
formal power series is denoted by (C").

Let Xo(C",0) be the Lie algebra of formal vector fields at the origin@Jf
with vanishing first jet. X is an element o§o(C",0), the flow@(X,t) of X is a
formal power series; this series is polynomial with respedhe time variablé:

Xt = Zaa(t)xl

wherel descibes the set of multi-indices, are the corresponding monomials
and eachy : C — C"is a polynomial application in the variakieln particular,
@(X,t) is a well defined germ of formal diffeomorphism fixing the anig By
definition, the exponential mapping is the map

exp :Xo(C",0) — Diffig(C",0), exp(X) = (X, 1).

It follows from the fact that groups df-jets of elements Of/)i\ffm(C”,O) are
nilpotent groups that exp is a bijection. In other worgs,C",0) plays the role
of the Lie algebra for the grouﬁfﬁd(C”,O), and the exponential mapping co-
incides with the formal flow at time.1

If fis an element oﬁfﬂd(C”,O), Lt will denote the unique element of
Xo(C",0) such that

exp(Ls) = f.

Two formal germs of diffeomorphismsandg commute if and only if the cor-
responding vector fieldss andLg commute (i.e. if their Lie bracket vanishes
identically).

3.2. Linear part and Jordan decomposition. Let us briefly describe the Jor-
dan decomposition irﬁ/)i\fF(C”,O) (see [1], §23). This will not be used until
section 3.7.
If Ais a diagonalizable matrix with eigenvalues i = 1,...n, a resonnance
for Ais a relation of type
ai =] O(Enj,
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wherem; are positive integers, arglm; > 2. Letx;, i = 1,...n, be coordinates in
whichAis diagonal. A resonnant monomial is a mononMai= X ymj>2,
which satisfies an equation of type

MoA=aiM

for at least one eigenvaluws.
If fisaformal germ of diffeomorphism, we can writauniquely as the com-
positionso u of two formal germs of diffeomorphisms such that

e sandu commute:Sou=uos;

e sis diagonalizable: there is a formal change of coordingtesch that
A = @oso@Lis alinear diagonal mapping;

e the linear part os andu coincide respectively with the diagonalizable
part and the unipotent part in the Jordan decompositidydf

e sinceu commutes witls, the higher order monomial terms @b uo ¢!
are resonnant with respecto

The diagonalizable termis called the semi-simple part dfandu is called the
unipotent part off. The unipotent pant is the flow at time 1 of a unique formal
vector field which vanishes at the origin and has a nilpotesit jit.

By uniqueness of the decompositiongiEommutes tdf, theng commutes at
the same time to the semi-simple part and to the unipotehbpdir Similarly, if
@ is an f-invariant meromorphic function, theh is boths andu-invariant (see
[2], chapter 1.4).

3.3. First integral of foliations. If X is a non zero element ¢f(C",0), then
X defines a formal germ of dimension 1 foliatigi at the origin. Two elements
X andY of Xo(C",0) define the same foliation if and only ¥ is parallel to Y,
which means that there exists a formal meromorphic funetgurch thaX =rY.

If fisan element oﬁﬁm(C”,O), we shall denote by; the foliation which is
determined by ¢.

A (formal) first integral ofX, or of #x, is a formal power serie¥ € 5(C”)
such that its Lie deriva/tive( - P vanishes identically. A meromorphic first in-
tegral is an element afs (C") which satisfies the same property. The set of
first integrals forms a ring, and the set of meromorphic finségrals forms a
field. The existence of a non constant meromorphic first nalég not granted :
there are examples of holomorphic germs of foliations witremy non constant
formal meromorphic first integral.

Recall from section 3.1 that the flog(X,t) is polynomial with respect to the
time variable. As a consequence,
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e Wis aformal (meromorphic) first integral of if and only if W is invari-
ant by the flow ofp(X,t) ;

e if f is an element obiff4(C",0)\ {Id}, thenW is a first integral ofF¢
if and only if W is f-invariant.

Let us now assume thais 2. The following results are proved in [14] and [5].

Theorem 3.2. Let X be an element ¢§o(C?,0). If X admits a non constant
formal first integral, then

o there exists a first integra¥ which is not a (non trivial) power of another
firstintegral ;

e for any choice of such ¥, the ring of formal first integral coincides with
the ringC{{W}} of formal power series i ;

e Wis unique up to post composition with a germ of formal diffegrhism
near the origin inC.

A purely meromorphic first integr& is a quotient of two formal power series
that does not coincide with a formal power series or the sweaf a formal
power series. The following statement is a consequence adfth's theorem
([5], section 5.V, page 137).

Theorem 3.3.Let X be an element &b (C?,0) without non constant formal first
integral. If X admits a purely meromorphic first integralgetn

e there exists a purely meromorphic first integidll such that the field
of meromorphic first integrals coincides with the fi€dW) of rational
functions in¥;

e this first integral¥ is unique up to composition by a homographic trans-
formation Me PGL »(C).

If X has a non constant first integral, any genergtof the ring of first integral
will be called aminimal first integral. If X does not possess any non constant
first integral but admits a purely meromorphic first intedghain any generatép
of the field of meromorphic first integrals will be calledranimal first integral.

If Gis a group of formal diffeomorphisms which preserves theafmn 7 ,
then G acts on the set of first integrals of; if g is an element ofs and W
a first integral, thert! o g~1 is of the forme(g)W, whereg(g) is an element
of Sﬁ(cl,O) or PGL>(C) according to the type of the first integrd (power
series or purely meromorphic).

3.4. Proof of theorem 3.1, step 1.In order to prove theorem 3.1, we now as-
sume thaF andG are two commuting non solvable subgroup®if,4(C?,0).
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Let go be an element o6\ {Id}. In this first step, we assume that all vector
fields Ly, g in G, are parallel td_g,, by which we mean that there existgin
M (C?) such that
Lg = rglg,:
SinceF andG commute,f.Lg = Lq for any pair(f,g) in F x G. It follows that
I’ngO = Lg = f*l_g = (rgO fﬁl) f*Lgo = (rgO fﬁl)l_go,

and thatrg is f-invariant for all pair f,g) in F x G.

SinceG s not abelian, there is at least one elenwarih G for whichryg, is not
constant. This implies tha, is a non constant first integral bf for all f in F,
and therefore that alls are parallel. As a consequence, the vector fieldsf
in F, define a unique formal foliationr.

In other wordsthe vector fields §, g € G, are all parallel one to another if
and only if the vector fieldsql, f € F, are.

The foliation 7 admitsrg, as a non constant first integral. L¥t be a min-
imal first integral of the foliationfFr (see 83.3). Sinc& commutes td-, G pre-
serves the foliation, and eaghe G sendsWr to another minimal first integral.
According to section 3.3, two distinct cases may arise:

(i) W is purely meromorphic. In this case, there exists a morplagm
G — PSL(2,C) such that

Wrog=¢g(9)oWr, VQgeG

(i) We is a formal power series. In this case, there exists a marpégs:
G — Diff14(C,0) such that

Wrog=¢tg(g)oWr, VgeG.

Of course, a similar result holds if we permuteand G. This provides a
minimal first integraMg for the foliation #g and a morphisnag such that

Wegof=¢gp(f)oWg, VFeF.

3.5. Proof of theorem 3.1, step 2.Still assuming that all vector fieldsy are
parallel, we now prove that botlg; andeg are injective mophisms.

Let us assume that there is an elemgimt G\ {Id } which is contained in the
kernel ofeg ; by definition ofeg, Wr is g-invariant, and therefore

We og”:LIJF, vneZ.

This implies that¥r is invariant under the flow ofy, and that7r coincides
with 7g (see section 3.3). In particuld¥g is bothF andG-invariant, and the
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foliations 7r and #¢ coincide. To simplify the notation, we may now denote by
¥ this foliation and¥ the chosen first integral.

Let C2 be the surface obtained by blowing-up the originG3t let E be the
exceptional divisor, and: c2 (C?,0) be the blowing down o. The (formal)
foliation c*# has a finite number of singularities alokg If # is not dicrital,
thenE is a leaf ofc* ¥ , and if 7 is dicritical, thenc* # is transverse t& in the
complement of a finite set.

Let p be a generic point dE. There are formal coordinatés,t) at p such that
p corresponds to the origif®, 0) and

WYoc=x

If 7 is not dicritical, therx vanishes along.

SinceF and G are tangent to the identity, we can IFftand G to groups of
formal germs of diffeomorphisnts andG in Sﬁ(CEZ, p). SinceW is bothF and
G-invariant, elements df andG may be written

foot) = (x fa(x 1)), §(xt) = (X, ga(x1))
in local coordinategx,t). In other words,f andg correspond to formal vector
fields of type

~ 0 - 0
Lt =Af(X,t)=, Lg=Bg(Xt)=—
f f(a)atv g g(,)at
whereAs andBs are formal power series. SinEecommutes tds, we get

0 [ A
a(s—g)—o

for any pair of elementsf, g) in F x G. As a consequence,df is a fixed element
of G\ {Id}, we can write the serie&; in the form

Ag <X7t) = as (X) Bgl(xﬂ),

wherea; is a formal meromorphic function in one variable. This ineglthat the
groupF, and thereforer itself, is abelian. This contradiction shows tleatis
indeed injective.

3.6. Proof of theorem 3.1, step 3.In order to conclude the proof of theorem
3.1, we may now assume that the formal vector fidlgsg in G, are not all
parallel; we may therefore fix two elemeitsindk of G such thatp, %rld Ly are
not parallel. Ifgis an element 06, there is a unique paiHg, Kg) in ¢ (C2,0)
such that
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SinceF commutes tds, we obtain
HgOf:Hg, KgOf:Kg

forall (f,g) in F x G. If one of the formal power seriddq or Kq is not constant,
then, as in step 1, all formal vector fields are parallel, and therefore all formal
vector fieldsLy are also parallel, a contradiction. This implies that athfal
power seriesdy andKgy, gin G, ar in fact constant.

From this we deduce that the Lie algebra generated by theafaractor fields
Ly has dimension 2and, as such, is solvable. This implies tiaitself is a
solvable group; this contradiction completes the proohebrem 3.1.

3.7. A corollary.

Corollary 3.4. Let G and H be two groups. If neither G nor H is solvable, there
is no injective morphism of the groupx G x H into the group of formal germs
of diffeomorphism®iff (C?,0).

We shall use the following lemmas.

Lemma 3.5. Let f be an element dﬁi\ff(cl,O). If f is not periodic, there exists
p € Z such that the centralizer of f isisomorphicZo< Z/pZ. In particular, if f
commutes to a subgroup Bfff(C?,0) which is not solvable, then f is periodic.

Proof. If f/(0) is not a root of unity,f is formally linearizable. Up to a change
of formal coordinate

f(z)=1'(0)z
and in this new coordinate, the centralizerfofoincides with the group of ho-
motheties. This group is abelian.

If f/(0) is a root of unity, we decomposkinto the composition of its semi-
simple partsand its unipotent pad. Up to conjugacys(z) = f/(0)z If f is not
periodic, the centralizer off is contained in the centralizer of its unipotent part,
and this group is of typg x Z/pZ (see [6], or [12], chapter 1). O

Lemma 3.6. Let f be an element dﬂ(CZ,O). Let ® and ¥ be two formal
power series at the origin of? such that @ A dW is not identicallyO. If f
preserves botlkb andW, then f is periodic.

Proof. If f is tangent to the identity, there exists a unique formal mefield

X € Xo(C?,0) for which f = exp(X). Sincef preserves and¥, both Lie deriva-
tivesX - ® andX - W vanish identically (see section 3.3). Sire@ AdW # 0, X

vanishes identically anfl is the identity.
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If fisunipotent,i.e. its semi-simple is trivial, the same prayplies (withX
a formal vector field, the linear part of which is nilpotent).

If f=souisthe decomposition of into its semi-simple and unipotent parts,
then® andW are boths andu-invariant (see section 3.2). Frod® A dW = 0,
we deduce thas is periodic. Ifk is the period ofs, then fK is unipotent and
preservesb andW¥, so thatfK is the identity. O

Proof of the corollary.Let us assume that there is a faithful representation of
Z xGxH into SFF(CZ,O). We identify G andH to their images, and we fix a
generatorf for the image oZ.

e Let us show that there are two non solvable subgrdéps G andH, C H
with trivial linear part at the origin.

If kis an element oﬁﬁ(CZ,O), we shall denote its linear part, or 1-jet, at the
origine byJ(k).

First we assume the existence of an elengeimt G, the linear part of which
has two distinct eigenvalues and 3. We then choose formal coordinatespat
so that the semi-simple part gfis a diagonal linear transformation (see section
3.2). Leth be an element ofl. Sinceh commutes tay, its linear partJ(h) is
also diagonal. The morphism— J'(h) has an abelian image, and its kernel is
therefore a non nonsolvable subgrddpof H. Higher order terms of elements
of Hy are resonnant with respect to the eigenvaluesdp. Since elements of
G commute with elements dfl1, their semi-simple parts commute with reson-
nant monomials, and are therefore diagonal. This implias @hnon solvable
subgroupG; of G has trivial linear part.

Now assume that there is an elembrmif H, the linear part of which has two
distinct eigenvalues. Permutirgg andH, the same argument shows that there
are two subgroup&, andH; in G andH which are tangent to the identity and
are not solvable.

If all elements ofG and ofH have a unique eigenvalue, the groups of linear
partsJ'(G) andJ'(H) are solvable, and the same conclusion holds.

e We can now apply theorem 3.1 @y x Hi. Sincef commutes td5; there
exists a formal diffeomorphism; (resp. an elememt; of PSL (2,C), depending
on the type of the first integr&lg,) such that

Wg, o f =ntoWg,.

The formal diffeomorphism (resp. Mdbius transformatign)commutes to the
non solvable subgrougy, (H1). This implies thatn+ has finite order, i.e. that
Wg, is fK-invariant for somé > 0 (lemma 3.5). The same argument shows that
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Wy, is also f'-invariant for somd > 0. From this follows thatf preserves
both Wg, and Wy, and thatf has finite order, becaus#¥g, A d¥y, is not
identically O (lemma 3.6). This contradicts the startinguasption, namely that
Z x G x H embeds intdiff (C2,0). O

4. ANALYTIC ACTIONS OF MAPPING CLASS GROUPS

We now prove theorem B. This requires a few technical resuitgroups of
diffeomorphisms of the circle.

4.1. Preliminaries on diffeomorphisms of the circle. Let Homeo, (S*) be the
group of orientation preserving homeomorphisms of thdeirc

Proposition 4.1. Let G be a finitely generated subgroupHdmeo. (S1). If all
elements of G are periodic, then G is finite. In particular Girmgte as soon as
all G-orbits are finite.

Proof. Since all elements o are periodic,G does not contain any free non
abelian group. Margulis-Tits’ alternative fétomeo, (S') shows thatG pre-
serves a probability measuge(see [8]). In particular, the rotation number
p: G — R/Z is a morphism, with values iQ/Z; its image is finite because
G is finitely generated. Elements of the kernepadre periodic, and have a fixed
point. Since any periodic, orientation preserving, homeqrhism of the circle
with a fixed point is the identityG is finite. O

Proposition 4.2. Let G be an infinite, finitely generated subgrouaf(S?).
Let H be a finitely generated subgroupiff®(St). If (i) all elements of G have
a rational rotation number andii ) G and H commute, then

e either H is finite,
e or G x H has a finite orbit.

Proof. From proposition 4.1, we know that there exists an elergemiG which
is not periodic; since its rotation number is rational, wa changeg in g¥,
k > 0, and assume that the set of fixed poiRi%(g) is non empty. This set is
finite becausg is an analytic diffeomorphism.

The groupH commutes tay, and therefore permutes its fixed points. As a
consequence, there is a finite index subgrblgpn H which fixesFix(g) point-
wise. If Hq is finite, so isH. Otherwise, the set of fixed points bk, is finite.
But this set isG-invariant, becaus& andH; commute. This provides a finite
(G x Hq)-orbit, and therefore a finit& x H orbit. O
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4.2. Notation and strategy of the proof. In what follows,Zq is the orientable
closed surface of gengswith g > 3, andr is afinite index subgroup dfiCG(Zy).
We shall consider the following set of non separating closgwes on>y and

FIGURE 1. Curves on 2.

denote byFy, Go, andHg the subgroups d¥1ICG(Zg) generated by the following
Dehn twits.

e pis generated by the twist alorag, and the twist alondp;.
e Gp is generated by the twist alorag, and the twist alondp,.
e Hpis generated by the twists aloag and the twist alongy,, 3<k <g.

Sincel has finite index itMMCG(Zg), I' intersectdy (resp.Go, Ho) on a finite
index subgroug- (resp. G, H) of Fy (resp. Gg, Hp). The groups andG are
non abelian free groups, whilke is a commutative product @f— 2 non abelian
free groups. The grougs G andH commute to each other, so that the product
F x G x H embeds intd .

Let us now assume théat acts faithfully by analytic diffeomorphisms on a
compact surfac&, so that we can identif§ to a subgroup oDiff®(S). In the
following sections, we shall study the actionfofx G x H on Sin order to find
common fixed points and then get a contradiction from conplBa4.

4.3. Isolated fixed points. Let f be an element oF \ {Id}. Since the Euler
characteristic ofS is different from Q the set of fixed point&ix(f) is anon
emptyreal analytic subset db. Isolated fixed points of correspond to the O-
dimensional part oFix(f) (a finite set), while non isolated fixed points form a
finite union of analytic curves. Since the Euler charactiersf the surfaceSis
not zero, the setix(f) is non empty.

Let us first assume that there exists an eleniesftF \ {Id} with at least one
isolated fixed poinp. Let N be the number of isolated fixed points bfSince
G (resp.H) commutes td, G (resp.H) permutes the set of isolated fixed points
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of f. From this we deduce that the subgrdsp(resp.H;) of G (resp.H) fixing
p has index at mod\l! in G (resp.H). Both G; andH; are free groups, and the
group(f) x G1 x Hp fixes p. Corollary 3.4 provides a contradiction.

4.4. No isolated fixed point. Let us now assume that there is no element in
F with an isolated fixed point. Let us fix an elemehtin F \ {Id}, and an
irreducible componer of its set of fixed points. I€ is not smooth, the set of
its singular points is finite, and a finite index subgrdspin G (resp.H1 in H)
fixes all these singular points. We then conclude as in théque section.

If C is smooth, therC is diffeomorphic to a circlé&!. Let G; (resp. H1) be
the finite index subgroup d& (resp. H) which stabilizes the componegt of
Fix(f). We obtain a morphism : G; x Hy — Diff®(S?).

In what follows, we construct a common fixed pop C for large subgroups
of F, G; andH1 and conclude with corollary 3.4. The basic idea is summdrize
in the following remark.

Remark 4.3. If k(G1 x H1) has a finite orbit, there exist finite index subgroups
G, < G3 andH;, < Hjp and a pointp € C which is fixed by the groupf) x G, x
H.. We then get a contradication from corollary 3.4.

4.4.1.If K(Gq) is finite. Let us first assume that(G;) is a finite group: the
kernel ofk : G — Diff‘*’(Sl) is a finite index subgrou@, of G1 which fixesC
pointwise. Sinc& is an irreducible component of the set of fixed point&ef a
finite index subgroujp; of F stabilizes the curv€ and the restriction morphism
K is also defined ofr; (note thatf is contained irfFy).

If K(H1) is finite, remark 4.3 provides the desired contradiction.

If kK(H4) is infinite but all elements of(H1) have a rational rotation number,
proposition 4.2 shows that eithe(F;) x K(H1) has a finite orbit, ok(F7) is
finite. In the first case, there are finite index subgrobps. F1 andH, < H;
such that~ x G, x Hz has a fixed poinp in C. In the second case, there is a
finite index subgroujp» in F; which fixesC pointwise and at least one elemént
in H1 with a fixed pointp onC (recall allk(h) have a rational rotation number) ;
let H, be the cyclic group generated hyln both cases, we get a common fixed
point p for F, x G2 x Hy, and corollary 3.4 provides a contradiction.

The remaining case is whdd; contains an elemertt such that the rota-
tion number ofk(h) is irrational. In that casek(h) is conjugate to an irra-
tional rotation by a homeomorphism (see [10], chapters H1&). Sincex(Fy)
commutes tx (h), the groupk(F;) is abelian ; this implies that the kernel of
K : F; — Diff®(S!) is a non solvable subgrou (maybe of infinite index irfFy).
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Let nowc be the curve oiig shown on figure 1 Lef be the Dehn twist along
c. The twistt; commutes td,,. Let k be a positive integer such thé;g is in
Go. The curveC is contained in the set of fixed points tg;, and is therefore
stabilized by an iteratliC of te, | > 0. Sincet; commutes td,

e eithert! has a periodic orbit of periodl > 0 alongC. We then get a
contradiction sincéd commutes ta. andk (h) does not have any periodic
orbit.

e ort\ has an irrational rotation number alofly In that casex(H;) is
abelian, since it commutes tp; as a consequence, a non solvable sub-
groupH. of H4 fixesC pointwise, and we get a contradiction from corol-
lary 3.4 if we apply it toF x Gy x Ha.

4.4.2. Conclusion.SinceG; andH1 play a symmetric role, we can now assume
that bothk(G;1) andk(H1) are infinite. From remark 4.3, we can also assume
that allk(G; x Hq)-orbits are infinite. Together with proposition 4.2, we may
therefore assume that bok{G;) andk(H;) contain elements with irrational
rotation number. Sinc&; andH; commute, this implies that(G1) andk(Hj)

are abelian subgroups Biff®(S?). It follows that the kernel ok intersectsG;
(resp.H1) on a non solvable subgro@» (resp.Hy), and we get a contradiction

if we apply corollary 3.4 to the grouff) x G, x Ha.
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