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ABSTRACT. In these notes, I prove a theorem of Margulis and Soifer: the
proof follows arguments from Philip Hall that date back to the 50’s, as ex-
plained to me by Adrien Le Boudec and Vincent Guirardel. Then, I go on
to prove a second result of Hall, namely that finitely generated metabelian
groups are residually finite. I also describe examples of solvable groups
with uncountably many distinct maximal subgroups, due to Yves de Cor-
nulier. The main references are an article of Margulis and Soifer [4], the
book by Lennox and Robinson [3], papers by Hall [1, 2].(1)
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Part 1.– Maximal Subgroups

1. MAXIMAL SUBGROUPS OF LINEAR SOLVABLE GROUPS

Theorem A.– Let k be a field and m be a positive integer. Let G be a finitely
generated and solvable subgroup of GLm(k). If P is a maximal subgroup of
G, then G/P is finite.

This result is the second part of a theorem of Margulis and Soifer which
says that a finitely generated subgroup of GLm(k) satisfies exactly one of the
following assertions:

• either G contains a non-abelian free group and then G contains un-
countably many maximal subgroups, in particular it contains maximal
subgroups of infinite index;

• or G is virtually solvable, and then all its maximal subgroups have
finite index, so that in particular G contains at most countably many
maximal subgroups.

Our goal is to give a simple proof of Theorem A. The proof given by Mar-
gulis and Soifer relies on a deep result of Roseblade on polycyclic groups;
here, we reduce the proof to a simpler theorem concerning metabelian groups.

2. MAXIMAL SUBGROUPS OF METABELIAN GROUPS

Theorem B.– Let G be a finitely generated metabelian group. If P ⊂ G is a
maximal subgroup, then P has finite index in G.

Proof. Let A = [G,G] be the derived subgroup and Q = G/A be the abelian-
ization of G; both A and Q are abelian, and Q is finitely generated. We have
an exact sequence

1 → A → G → Q → 1

and we can write

Q = Zr ⊕
s⊕

i=1

Z/aiZ

for some prime powers ai ≥ 1. Since the maximal subgroups of Q have finite
index in Q, we can now assume that the projection from P to Q is onto. Thus,
every g ∈ G can be written as a product g = pa for some a ∈ A and p ∈ P.
This implies that A∩P is a normal subgroup of G, because if x ∈ A∩P and
g = pa ∈ G, then gxg−1 = pxp−1 (A being abelian) is both in A (A being
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normal) and in P (x and p being in P). After taking the quotient by A∩P, we
can assume that A∩P = {1G}. This does not change Q and this implies that
the projection from P to Q is an isomorphism. Thus, we can now identify P to
Q and write G as a semi-direct product G = A⋊P.

Consider A as a Z[P]-module, P acting on A by conjugation. This module
is simple, because if B were a non-trivial proper sub-module of A, we could
adjoin B to P to get a proper subgroup B⋊P of G, contradicting the maximality
of P. The key point is given by the following lemma.

Lemma 2.1. A simple Z[Q]-module is automatically finite.

Indeed, if we take this lemma for granted, then A is finite, and P has finite
index in G = A⋊P. □

Proof of Lemma 2.1. First, note that Z[Q] is the commutative, finitely gener-
ated ring

Z[Q] = Z[ti, t−1
i ;1 ≤ i ≤ r+ s]/I

where I is the ideal generated by the polynomial functions tai
i −1 for i = r+1

to r+ s. Let A be a simple Z[Q]-module and pick a non-trivial element y in A.
Then A = Z[Q] · y = Z[Q]/J where J is the ideal of Z[Q] defined by

J = { f ∈ Z[Q] ; f · y = 0}.

Since A is simple, J is a maximal ideal in Z[Q], and since Z[Q] is finitely
generated, A is a field which is finitely generated as a ring. This implies that A
is finite (see Section 8 below). □

Corollary 2.2. If G is an extension of an abelian group by a virtually abelian
group, and P ⊂ G is a maximal subgroup, then G/P is finite.

Indeed, we have the following lemma.

Lemma 2.3. Let G be a finitely generated group and let H be a finite index
subgroup of G. If every maximal subgroup of H has finite index in H, then the
same property holds for G.

Proof. First, recall that G is finitely generated if and only if H is. Now, sup-
pose that every maximal subgroup of H has finite index. Let P be a maximal
subgroup of G, assume that its index is infinite, and set PH = P∩H. Since H is
finitely generated, PH is contained in a maximal subgroup M; by assumption,
M/PH is infinite. The subgroup M′ = ∩p∈P pMp−1 has finite index in G, it
contains PH , and again, M′/PH is infinite. Thus, the subgroup of G generated
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by P and M′ contains P strictly and is a proper subgroup of G, contradicting
the maximality of P. □

3. NILPOTENT BY ABELIAN GROUPS; APPLICATION

Remark 3.1. Let G be a group and P be a maximal subgroup of G. If N ⊂ G
is a normal subgroup, then

• either N ⊂ P, in which case P/N is maximal in G/N;
• or N and P generate G, which implies that

G = NP = {np ; n ∈ N, p ∈ P}

because N is normal.

Theorem C.– Let G be a finitely generated group that contains a normal,
nilpotent subgroup N such that G/N is virtually abelian. Then, every maximal
subgroup of G has finite index.

Lemma 3.2. If N is a nilpotent group and H ⊂ N is a subgroup such that
[N,N]H = N, then H = N.

Note that [N,N]H = N means that H projects onto the abelianization of N.

Proof. We argue by induction on the nilpotent lengh of N. If N is abelian, the
lemma is obvious. Then, consider the quotient of N by its center Z. Again, the
group H/Z ⊂ N/Z maps onto the abelianization of N/Z, thus H/Z = N/Z,
by the induction hypothesis. In other words, HZ = N. This implies that H
is normal in N, and that N/H is a nilpotent group with trivial abelianization.
Thus N = H. □

Proof. Let P be a maximal subgroup of G. The derived subgroup [N,N] is
characteristic in N, hence normal in G. From Remark 3.1, there are a priori
two (mutually exclusive) cases: either P contains [N,N] or G = [N,N]P.

Let us exclude the second case. Indeed, we would have ([N,N]P)∩N = N
and, by Lemma 3.2, P∩N = N. But then, N ⊂ P and we are in the first case:
[N,N]⊂ P.

Taking the quotient by [N,N], the projection P = P/[N,N] of P becomes
a maximal subgroup of G = G/[N,N]. Doing so, we are reduced to the case
when N is a normal and abelian subgroup of G with G/N virtually abelian. In
this case, the conclusion follows from Corollary 2.2. □



LINEAR SOLVABLE GROUPS AND METABELIAN GROUPS 5

Proof of Theorem A. Let G be a (finitely generated) virtually solvable sub-
group of GLm(k), for some field k. Assume that k is algebraically closed, for
simplicity. Let Zar(G) be the Zariski closure of G in GLm(k) and let Zar(G)◦

the connected component of the identity in Zar(G). Set G◦ := G∩Zar(G)◦

has finite index in G. Moreover, by Borel fixed point theorem, Zar(G)◦ is
conjugate to a group of upper triangular matrices. Thus, its derived subgroup
is nilpotent. This shows that G◦ is nilpotent by abelian, and we can apply
Theorem D to get Theorem A. □

4. VARIATION

The following is a variation on the first part of the proof of Theorem B.

Theorem D.– Let G be a group containing (a) a non-trivial, normal, and
abelian subgroup A ⊂ G and (b) a maximal subgroup P ⊂ G that does not
contain any non-trivial normal subgroup of G. Then,

(1) G = A⋊P;

(2) if B ⊂ A is normal in G, then B = {1G} or B = A;

(3) the centralizer of A in G coincides with A (it intersects P trivially);

(4) every non-trivial normal subgroup of G contains A;

(5) A is characteristically simple, which means that it does not contain any
non-trivial proper subgroup that would be invariant under Aut(A).

Proof. (1).– The subgroup A is not contained in P, hence G= AP, as explained
above. Moreover, A∩P is normal in G (as in the proof of Theorem B), and the
hypothesis made on P implies A∩P = {1G}. Thus, G = A⋊P.

(2).– Let B be a proper subgroup of A and a normal subgroup of G. By (1),
applied to B, we see that either B = { 1G} or G = B⋊P, which implies B = A
since G = A⋊P.

(3).– Let CG be the centralizer of A in G. Let CP =CG∩P be the centralizer
of A in P. Then CP is centralized by A and normalized by P, so that CP is
normal in G. Since CP ⊂ P, the hypothesis on P implies CP = {1G}. Since
G = A⋊P, this implies that CG = A.

(4).– Let N be a non-trivial normal subgroup of G. Then N ∩A is normal in
G, and by (2) either N contains A or N ∩A = {1G}. Since both A and N are
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normal, we have [A,N] ⊂ A∩N. Thus, if N does not contain A, N centralizes
A, in contradiction with (3).

(5).– If A contained a non-trivial characteristic subgroup B, B would be
normal in G, in contradiction with (4). □

Remark 4.1. Conversely, suppose that G = A⋊ P with A abelian, normal,
non-trivial, and minimal for these properties. Then P is a maximal subgroup
of G.

Remark 4.2. Let P be a maximal subgroup of a group G. Let M be the normal
core of P:

M =
⋂

g∈G

gPg−1.

Then, taking quotient by M, P/M is a maximal subgroup of G/M, it does
not contain any non-trivial normal subgroup of G/M, and Theorem C can be
applied to P/M ⊂ G/M. For instance, if G is solvable, and if A/M is the last
derived subgroup of G/M, we see that G/M = (A/M)⋊ (P/M).

Corollary 4.3. If G, A, and P are as in Theorem C, and if G is residually finite,
then G is finite.

Proof. Fix x ∈ A, x ̸= 1G. Since G is residually finite, there is a normal, finite
index subgroup N ⊂ G that does not contain x. By Assertion (4) of Theorem C
we deduce that N = {1G}, which means that G is finite. □

Remark 4.4. If we use the theorem of P. Hall that says that a finitely generated
metabelian group is residually finite, then we recover Theorem B from the
previous corollary. But this theorem of Hall is harder to prove than Theorem B.

5. EXAMPLES OF HALL AND CORNULIER

5.1. Hall’s example. Consider the Q-vector space

V =
⊕
i∈Z

Qei;

the ei form a basis of V and the elements of V are sums v = ∑i aiei with finite
support (i.e. only finitely many of the ai are ̸= 0). Consider the following
linear automorphisms of V . Firstly, the shift s : V →V defined by

s(ei) = ei+1.
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Secondly, the diagonal transformation m : V →V defined by

mλ(ei) = λiei

where (λi)i∈Z is a sequence of non-zero rational numbers. The group P =

⟨s,mλ⟩ ⊂ GL(V ) acts on V , and V can be considered as a P-module or, equiv-
alently, as a Z[P]-module. We also obtain a semi-direct product

G = P⋉V.

(1) The group G is solvable.

Proof. Elements of G can be written as affine transformations of V of type
f (v) = ℓ(v)+u where the linear part ℓ is a composition ℓ= skm for some inte-
ger k and some diagonal map m, the coefficients of which are products of λi’s
and their inverses. When one derives G once, one kills the shift part sk. Then,
all elements of the second derived subgroup [[G,G], [G,G]] are translations, so
that this group is abelian. □

(2) Suppose every non-zero rational numbers α appears in (λi). Then, G
is generated by s, m, and e0.

Proof. If one e0 by s j, apply m, and shift back, one gets λ je0. If one shift
again, one obtain λ jei for every pair (i, j). By assumption, the λ jei generate V
as a group. This concludes the proof. □

(3) Suppose every finite sequence of non-zero rational numbers (α j)
r
j=1

appears in (λi), meaning there is an integer i0 such that α j = λi0+ j

for all j ≤ r. Then, the Z[P]-module V is simple and P is a maximal
subgroup of G of infinite index.

Proof. To prove that V is simple, pick a non-zero vector v = ∑
i+
i=i− aiei in V .

Shifting by s, multiplying by m, and shifting back again, one constructs a new
vector v′ = ∑

i+
i=i− biei with coefficients bi = −ai for i < i+ and bi+ = 1− ai+ .

Then, v+v′ = ei+ . Shifting by s−i+ , one gets e0, hence V by Assertion (2). □

Putting everythin together, we obtain

Hall’s Example.– If every finite sequence of non-zero rational numbers ap-
pears in (λi), the group G is finitely generated, solvable (of length 3), and
P ⊂ G is a maximal subgroup of infinite index.
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Remark 5.1. We could also start with a vector space over Fq (q a prime power)
instead of Q in this construction. There are uncountably many possible choices
for the sequence (λi)i∈Z (see below § 5.2.4).

5.2. Cornulier’s examples. The goal of this section is to construct a group
with uncountably many maximal subgroups of infinite indices. The idea is to
vary the choice of the sequence (λi)i∈Z.

5.2.1. Consider the wreath product L = Z/2Z ≀Z, i.e. the lamplighter group.
It is the semi-direct product of W ⋊Z where W is the additive group of finitely
supported sequences Z → Z/2Z; elements of W are written as sequences
(ui)i∈Z with ui = 0 or 1, and all ui = 0 except finitely many of them. The
group L is generated by two elements:

• the element u, all of whose coefficients are 0 except u0 = 1;
• the shift s that maps a sequence (ui) to (ui+1).

This group L is solvable, its derived group being the additive group W .

5.2.2. Fix a prime p and a sequence λ = (λi)i∈Z be a sequence of non-zero
elements of Fp. Consider the Fp-vector space with basis (ei)i∈Z,

M =
⊕
i∈Z

Fpei,

and the representation of L in GL(M) given by

s(ei) = ei+1 ∀i ∈ Z
u(ei) = λiei ∀i ∈ Z

(i.e. u is mapped to mλ with the notation from the previous section). This
endows M with the structure of an L-module (or a Z[L]-module) , denoted by
Mλ in what follows. The argument given in the previous section shows that

(1) If λ contains every finite sequences of elements in F×
p , then Mλ is a sim-

ple Z[L]-module and the subgroup L of L⋉Mλ is maximal, of infinite
index.

5.2.3. Define a new group G by

G = L⋉Fp[L]

where L acts on Fp[L] by left multiplication. This group is finitely generated,
by s and u in L and 1L ∈ Fp[L], and is solvable of length three.

The important feature of G is that, for each sequence λ ∈ (F×
p )

Z, the group
Gλ = L⋉Mλ is a quotient of G. This group Gλ contains a maximal subgroup
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Pλ of infinite index, namely the image of L in Gλ. We shall denote by Pλ the
preimage of Pλ in G. We obtain

(2) The subgroups Pλ ⊂ G are maximal subgroups of G of infinite index.

The map pλ : Fp[L] 7→ Mλ defined by pλ(w) = w(e0), or in full by

pλ(∑
h∈L

αhh) = ∑
h∈L

αhh(e0)

(where h is the linear transformation associated to h ∈ L in GL(Mλ)), is a
homomorphism of abelian groups (resp. of Fp-vector spaces). Its kernel Iλ is

Iλ =

{
∑
h∈L

αhh ; ∑
h∈L

αhh(e0) = 0

}
.

This is a ideal for the action of L on Fp[L] by left multiplication. And this ideal
determines λ, because α1L − skus−k is in Iλ if and only if α = λ. Thus,

(3) The intersection Pλ∩Fp[L] = Iλ determines λ, so Pλ ⊂G determines λ.

5.2.4. There are uncountably many sequences λ containing all possible finite
sequences of elements of F×

p . To see this, note that finite sequences of ele-
ments of a countable set (as F×

p or Q×) form a countable set. So we can list
these sequences and then concatenate them in an infinite, one-sided, sequence.
For instance, with F×

2 , one can take

(0;1;0,0;0,1;1,0;1,1;0,0,0;0,0,1;0,1,0;1,0,0;0,1,1;1,0,1; . . .).

Then, one can put any sequence (λi)i≤−1 on the negative side. So, putting
everything together, we obtain

Cornulier’s Example.– Let p be a prime, let L be the lamplighter group
L = Z/2Z ≀Z, and set G = L⋉Fp[L]. Then G is a finitely generated, solvable
group that contains uncountably many maximal subgroups Pλ.
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Part 2.– Subgroups of finite index

6. RESIDUAL FINITENESS I

Theorem E.– Let G be finitely generated group. If G is virtually metabelian,
then it is residually finite.

This theorem is also due to Philip Hall. It holds more generally for finitely
generated groups which are abelian by nilpotent. Note that if H ⊂ G is a finite
index subgroup, then G is residually finite if and only if H is. Thus, Theorem E
holds if and only if it holds for finitely generated metabelian groups.

To prove this theorem, we shall use the Artin-Rees lemma from commuta-
tive algebra.

Lemma 6.1 (Artin-Rees). Let R be a noetherian ring and I an ideal of R. Let
M be a finitely generated R-module, and let N be a submodule of M. Then,
there is an integer k ≥ 0 such that

InM∩N = In−k(IkM∩N)

for every n ≥ k.

The proof of this lemma will be given below in Section 9. Note that, with
n = k+1, we get the existence of an integer n ≥ 1 such that

InM∩N ⊂ IN.

Proof of Theorem E. As explained above, we can assume that G is metabelian.
Let A be the derived subgroup of G, and let Q be the quotient G/A.

Fix x ∈ G, x ̸= 1G. Since G is finitely generated, there is a normal subgroup
K of G which is maximal among normal subgroups that do not contain x. Our
goal is to show that G/K is finite. Thus, in what follows, we can suppose
that K = 1, or more precisely that x is contained in every non-trivial normal
subgroup of G. In other words, x is contained in the normal core M of G, i.e.
in the intersection of all non-trivial normal subgroups of G. In particular,

• A contains M and x.
• viewed as a Z[Q]-module (for the action of G and thus Q by conjuga-

tion), M is a simple submodule of A.

From Lemma 2.1, we deduce that M is finite and, consequently, that its central-
izer C ⊂ G has finite index in G. Since A is abelian, C contains A. Since G/C
is finite, C is finitely generated, and C/A is a finitely generated abelian group.
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In what follows, we view A as a module under the action of C by conjugation,
or more precisely as a Z[C/A]-module.

Now, consider the ideal IC ⊂ Z[C/A] generated by all the elements 1− c,
with c ∈C. Set

I∗C = {a ∈ A ; (1− c) ·a = 0, for all c ∈C/A}
= {a ∈ A ; a− cac−1 = 0, for all c ∈C/A}
= centralizer of C in A.

Then, I∗C is a submodule of A. The ring Z[C/A] is noetherian1. By the lemma
of Artin and Rees, there is a positive integer m such that

(Im
C ·A)∩ I∗C ⊂ IC · I∗C = 0,

since by definition IC · I∗C = 0. This means that Im
C A does not intersect the cen-

tralizer of C in A; in particular, it does not intersect M. But, using multiplica-
tive notations instead of additive ones, IC ·A is the subgroup of A generated by
the commutators [a,c], and then by recursion we see that Im

C ·A is the subgroup
of A generated by the elements of type

[[. . . [[a,c1],c2], . . .],cm],

with a in A and the ci in C. Since C/A is abelian, [C,C] is contained in A, and
it follows that the subgroup of G generated by commutators

[[. . . [[c0,c1],c2], . . .],cm+1]

of elements of C does not intersect M. But M being contained in any non-
trivial normal subgroup of G, this implies that C is nilpotent, of length ≤m+2.

To conclude, we rely on the next section, which proves that any nilpotent,
finitely generated group is residually finite. □

7. RESIDUAL FINITENESS II

Theorem F.– If G is a finitely generated nilpotent group, then G is residually
finite.

Lemma 7.1. If G is nilpotent and finitely generated, then its derived group is
finitely generated too.

1As in the proof of Lemma 2.1, if C/A is isomorphic to Zr ⊕
⊕

i Z/aiZ, then Z[C/A] is the
commutative, finitely generated ring Z[ti, t−1

i ;1 ≤ i ≤ r+ s]/I where I is the ideal generated
by the polynomial functions tai

i −1 for i = r+1 to r+ s.
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Of course, this is specific to nilpotent groups. For instance, the derived
subgroup of a non-abelian free group is note finitely generated, and the derived
subgroup of the solvable group 2Z ⋉Z[1/2] is not finitely generated either.

Proof of Lemma 7.1. In fact, every element in the lower central series γmG is
finitely generated. Recall that γ1G = G and γm+1G = [G,γmG], so that γ2G is
the derived subgroup. Then, γ1G/γ2G is finitely generated, because G = γ1G
is.

The key remark is that γ2G/γ3G is finitely generated too. More precisely,
if g1, . . ., gn1 is a system of generators of γ1G, then the commutators [gi,g j]

generate γ2G/γ3G. To see this, note that for any triple of elements g, h, k in G
we have

[gh,k] = ghkh−1g−1k−1

= g[h,k][k,g−1]g−1

= (g[h,k]g−1g)([k,g−1]g−1).

Thus, γ2G is generated by the conjugates of the commutators [gi,g j]. Modulo
γ3G = [G,γ2G], the [gi,g j] become central, thus γ2G/γ3G is generated by the
[gi,g j]. Denote these commutators by g2,i with i = 1, . . . ,n2 with n2 ≤ n1(n1−
1)/2.

Then, the same argument shows that the commutators [gi,g2, j] generate
γ3G/γ4G, and so on. Since γmG = {1G} for some m ≥ 1, we see that γm−1G is
finitely generated, and then that each γ jG is finitely generated. □

Proof of Theorem F. Let x be an element of G, x ̸= 1G. We are looking for a
finite index subgroup of G that does not contain x. The abelianization of G is
a finitely generated abelian group, and such a group is residually finite, so we
can assume that x ∈ [G,G]. By recursion on the derived length of G, and the
fact that the derived subgroup is also finitely generated, we know that [G,G] is
residually finite; thus, we can take the quotient by a characteristic subgroup of
[G,G] of finite index and assume that [G,G] is finite.

Consider the centralizer C of the finite group [G,G]. Its index in G is finite,
hence C is also finitely generated. And [C,C] is finite and central in C, so C is
nilpotent of length ≤ 2. If x /∈C we are done. So, we can assume x ∈C.

Thus, we are reduced to prove Theorem F for finitely generated, nilpotent
groups G of length ≤ 2 such that [G,G] is finite and central. If such a group
has a finite abelianization, then it is finite. Thus, we can restrict our problem to
groups with an infinite abelianization and argue by recursion on the rank of the
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torsion free part of G/[G,G]. For this, take a surjective homomorphism from
G onto an infinite cyclic group and denote by H its kernel. The abelianization
H/[H,H] might be bigger than its image in G/[G,G], but the kernel of the
natural homomorphism H/[H,H] → G/[G,G] is finite, because so is [G,G].
Thus, the rank of H/[H,H] is less than the one of G/[G,G] and the induction
hypothesis show that H is residually finite, which concludes the proof. □

Remark 7.2. (1) From Theorem F, we deduce that a finitely generated solv-
able group S is torsion if and only if it is finite. This can be proved directly. The
case of abelian group follows from the fact that any finitely generated abelian
group is isomorphic to a finite sum Zr ⊕

⊕
i Z/aiZ. Thus, the abelianization

S/[S,S] of S must be finite. Then, arguing by induction on the solvable length
of S, we get that [S,S] is finite and we conclude that S itself is finite.

(2) If S is a finitely generated solvable group, and if n≥ 1, then the subgroup
of S generated by the nth power gn, g ∈ S, is a finite index, normal subgroup
of S. Indeed, the quotient is a finitely generated, nilpotent group in which the
order of every element divides n.
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Part 3.– Appendices

8. APPENDIX A

Lemma 8.1. A field which is finitely generated as a ring is a finite field.

To prove this lemma, let K be a field which is finitely generated as a ring.
Let F be its prime field. If the characteristic of K is 0, F = Q, if it is posi-
tive, equal to some prime p, F = Fp. Since K is finitely generated as a field,
it is an extension of finite degree of some purely transcendental extension
F[x1, . . . ,xm], of transcendental degree m <+∞.

If m = 0, then either K is finite, or K is a number field. In this second case,
let us write K = Z[a1, . . . ,an] for some a j ∈ K. Let (u1, . . ., ud) be a basis
of K as a Q-vector space. The multiplication mak : t ∈ K 7→ akt is a linear
endomorphism of K; denote by ck(i, j) ∈ Q the coefficients of its matrix in the
basis (ui). Since K = Z[ϕ1, . . . ,ϕn], the matrix of mv : t 7→ vt has coefficients
in the ring Z[ck(i, j);k ≤ n, i, j ≤ d]. Taking v = 1/q, where q is a prime
that does not appear in the prime decompositions of the ck(i, j), we obtain a
contradiction. Thus, K if finite when m = 0.

The same proof applies when m ≥ 1. Choose a basis (ui) of K as a vector
space over the field L = F[x1, . . . ,xm]. List the coefficients ck(i, j) ∈ L of the
matrix of mak and pick an irreducible polynomial q in F[x1] of degree larger
than the degrees of the irreducible factors in the decompositions of the ck(i, j).
Then, 1/q is not in Z[a1, . . . ,am].

9. APPENDIX B

Lemma 9.1 (Artin-Rees). Let A be a noetherian ring. Let M be a finitely
generated A-module, and let N be a submodule of M. Let I be an ideal of A.
There exists an integer k ≥ 0 such that

(InM)∩N = In−k((IkM)∩N)

for every n ≥ k.

The goal of this section is to prove this lemma. As a warm up, we start with
the Nakayama lemma and Krull’s intersection theorem.

Lemma 9.2 (Nakayama). Let A be a ring, M a finitely generated A-module,
and I an ideal of A. The following properties are equivalent:

• IM contains M;
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• there exists an element a of I such that (1+a)M = 0.

Proof. Suppose that IM contains M. Let u1, . . ., ud be a finite set of generators
of M. Each ui can be written as a sum ∑bi, ju j with the bi, j in I. Let B be
the d×d matrix with entries bi, j. The transpose of the comatrix tCom(id−B)
satisfies tCom(id−B)B = det(id−B)id. And det(id−B) is an element of
1+ I; it can be written as 1+a for some a ∈ I. From this we get (1+a)M = 0.

Conversely, if (1+ a)M = 0, then the multiplication by a maps M onto M
and IM contains M. □

Theorem 9.3 (Krull’s intersection theorem). Let A be a noetherian ring, let I
be an ideal of A, and let M be a finitely generated A-module. Then⋂

n≥1

InM = {x ∈ M ; ∃a ∈ I,(1−a)x = 0}.

Moreover, such an a exists that does not depend on x.

Proof. Let us derive this theorem from the Artin-Rees and Nakayama lemmas.
Set N = ∩n≥1InM. If (1−a)x = 0 then x = anx for all n ≥ 1 and x ∈ N. The
interesting statement is the converse, which we now prove. First, note that
the Artin-Rees lemma, applied to N ⊂ M = I, gives Ik+1 ∩N = I(Ik ∩N) and
therefore N = IN. Now, the Nakayama lemma provides an a ∈ I such that
(1+a)N = 0, as desired. □

Remark 9.4. Let I be an ideal in a noetherian ring A. Krull’s theorem implies
that ∩nIn = {0} if and only if 1+ I does not contain any zero divisor. So, if
the ring A is an integral domain and I ̸= A, we conclude that ∩nIn = {0}.

We now move to the proof of the Artin-Rees Lemma. Let I be an ideal in a
ring A. Let us introduce the blow-up

BI =
⊕

n
In.

This A-algebra is isomorphic to the Rees algebra

A[It] =
⊕
n≥0

Intn ⊂ A[t].

One says that a decreasing sequence of submodules M = M0 ⊃ M1 ⊃ ·· · ⊂
Mn ⊃ ·· · is an I-filtration if IMn ⊂ Mn+1, and it is a stable one if IMn = Mn+1

for sufficiently large n. Given an I-filtration, we set

BIM =
⊕

n
Mn.
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It is a graded module over BI . Now, if the filtration is by finitely generated
A-modules, the following are equivalent:

(a) BIM is finitely generated as a BI-module;
(b) the filtration is I-stable.

Proof. To see this, suppose (b), that is IMn = Mn+1 for n ≥ k; then BIM is
generated by the first k terms Mk, and since M0 is finitely generated as an A-
module, BIM is finitely generated as a BI-module. Conversely, suppose that
BIM is finitely generated as a BI-module. Pick a finite system of generators
gn,i ∈ Mn for some indices n ≤ n0, i ≤ i0 (we may assume i0 does not depend
on the degree n). Then, every element f of Mm can be written as a sum

f = ∑
n≤n0

∑
i≤i0

an,ign,i

with n ≤ m and an,i ∈ Im−n. This implies that f is in Im−n0Mn0 , and from this
we get the stability IMm = Mm+1 for m ≥ n0. □

We can now prove the Artin-Rees lemma. Set Mn = InM, they form an
I-filtration, which is stable by construction. By assumption, M is finitely gen-
erated and A is noetherian, so each Mn is a finitely generated A-module. Thus,
since (b) implies (a), we deduce that BIM =

⊕
n InM is finitely generated as

a BI module. But BI ≃ A[It] is a noetherian ring, because A is. Thus, every
BI-submodule of M is finitely generated. Apply this to BIN with the filtration
Nn = Mn ∩N; since (a) implies (b), the filtration Nn is I-stable: there is an
integer k such that ImNn = Nn+m for n ≥ k, as desired.
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