INVARIANT MEASURES FOR LARGE AUTOMORPHISM GROUPS OF
PROJECTIVE SURFACES

SERGE CANTAT AND ROMAIN DUJARDIN

ABSTRACT. We classify invariant measures for non-elementary groups of automor-
phisms, on any compact Kéhler surface X, under the assumption that the group con-
tains a so-called “parabolic automorphism”. We also provide finiteness results for the
number of invariant, ergodic, probability measures with a Zariski dense support.
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1.1. Non-elementary groups and parabolic automorphisms. Let I" be a group of au-

tomorphisms of a compact Kihler surface X. We say that I' is non-elementary if

its

image I'* in GL(H?(X; Z)), induced by its action on the cohomology of X, contains a
non-abelian free group. We refer to [[11]] for a description of such groups of automor-

phisms. In particular, it is shown in [[11]] that the existence of a non-elementary subgro
in Aut(.X) implies that X is a projective surface.
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By definition, an element g of Aut(X) is a parabolic automorphism if ||(¢g")*||
grows quadratically with the number n of iterates, where |-| is any operator norm on
End(H?(X; C)). Any parabolic automorphism g preserves some genus 1 fibration, and
a group I' < Aut(X) containing a parabolic automorphism is non-elementary if and
only if it contains two parabolic automorphisms preserving distinct fibrations [11} [10].

1.2. Classification. In this article, we classify probability measures on X which are
invariant by a non-elementary group containing a parabolic automorphisms. Our first
theorem was already announced in [[11} 10]:

Theorem A. Let X be a compact Kdihler surface. Let I" be a non-elementary subgroup
of Aut(X) containing a parabolic element. Let 11 be a I'-invariant ergodic probability
measure on X. Then, p satisfies exactly one of the following properties.

(a) w is the average on a finite orbit of I';

(b) p is nonatomic and supported on a I'-invariant curve D < X;

(c) There is a I'-invariant proper algebraic subset Z of X, and a T'-invariant, totally
real analytic surface ¥ of X\Z such that (1) (X)) = 1 and u(Z) = 0; (2) ¥ has
finitely many irreducible components; (3) the singular locus of Y. is locally finite;
and (4) p is absolutely continuous with respect to the Lebesgue measure on Y., and
(5) its density (with respect to any real analytic area form on the regular part of )
is real analytic;

(d) There is a T'-invariant proper algebraic subset Z of X such that (1) u(Z) = 0, (2)
the support of 1 is equal to X; (3) p is absolutely continuous with respect to the
Lebesgue measure on X; and (4) the density of |1 with respect to any real analytic
volume form on X is real analytic on X\Z.

Remark 1.1.

(1) Recall that an analytic surface > in an open U < X is totally real if for every
smooth point z of Y, the (real) tangent space 7.3 contains a basis of the complex
tangent space 7, X ; equivalently 7% and its image jx(7,>) by the complex
structure satisfy 7, ®r jx (1,2) = T, X.

(2) Thus, each of the four cases (a), (b), (c), and (d) is characterized by a property
of the support Supp(u): being finite, Zariski dense in a curve, totally real, or
equal to X.

(3) Given any non-elementary group [' < Aut(X), there is a unique maximal I'-
invariant curve Dr < X (see §.I]below). The invariant algebraic set Z is inde-
pendent of ;¢ and admits an explicit description (see Propositions 4.9)and {.15)).
It is made of components of Dy together with a residual finite set.
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Corollary B. Let X be a compact Kiihler surface. Let I be a non-elementary subgroup
of Aut(X) that contains a parabolic element and does not preserve any proper algebraic
subset of X. If u is a I'-invariant and ergodic probability measure on X, then (i is

(a) either a measure with real-analytic density on a compact, smooth, totally real, and
real analytic surface Y. of X;
(b) or a measure with real-analytic density on X.

In the totally real case (c) of Theorem/[A] it is natural to inquire about the structure of
Y on the whole surface X, including Z. Under a mild geometric condition (AC) we are
indeed able to show that 3 admits a semi-analytic extension across Z (see Theorem|A’|in
Section@); this means that ¥ is defined locally by finitely many analytic inequalities (see
§5.1). Since it requires some additional concepts, the condition (AC) will be described
only in § it concerns the action of I' on the singular fibers of the elliptic fibration
invariant by a parabolic element of I'. This condition is satisfied in many interesting
cases (for instance if Dy is empty) and can be checked on concrete examples.

In Sections 8 and [9] we provide examples showing that the geometric conclusions of
Theorems[A]and [A’] are, in a sense, optimal. More precisely it is shown that in case (c),

— Y is not necessarily contained in the real part of X, for some real structure on
X, in other words, it is not necessarily contained in the fixed point set of an
anti-holomorphic involution of X (see Corollary 8.2);

— 3 can have a non-empty boundary (see §9.2)).

1.3. Finitely many invariant measures. Theorem |A|is a key ingredient of the finite-
ness results for the number of periodic orbits in [10]. It also leads to the following
alternative which is reminiscent of, but independent from, [[10, Thm B].

Theorem C. Let X be a compact Kdihler surface, and let I' be a non-elementary sub-
group of Aut(X) containing a parabolic element. Then there are only finitely many
ergodic I'-invariant probability measures giving no mass to proper Zariski closed sub-
sets, unless (X, 1) is a Kummer group.

We refer to [[10] for the definition of Kummer groups; roughly speaking it means that
the dynamics of I' on X comes from the dynamics of a group of automorphisms on
some torus C?/A. This result will be established in Section [7. We also show in §
that a Kummer group can indeed admit infinitely many ergodic invariant measures of
totally real type. Together with [10, Thm. C] (finitely many finite orbits) we thus obtain:

Corollary D. Let X be a compact Kdihler surface which is not a torus. Let I" be a
subgroup of Aut(X) which contains a parabolic element and does not preserve any
algebraic curve. Then there are at most finitely many I'-invariant, ergodic probability
measures on X.



INVARIANT MEASURES FOR AUTOMORPHISM GROUPS OF SURFACES 4

1.4. Notes. A weak form of Theorem [A]is proven in [5] in the special case of K3 sur-
face The results of [5] do not describe the support of the measure or the smoothness
of its density, and are not sufficient to derive the global structure of > given by Corol-
lary [B] nor the finiteness result of Theorem [C]

1.5. Structure of the paper. In Section 2] we start by briefly describing a few basic
examples which are useful to be kept in mind; more advanced examples are given in
Sections [§] and [9] In Section [3] we collect some preliminary results on genus 1 fibra-
tions, their singular fibers, and the dynamics of automorphisms preserving such fibra-
tions. We hope that this could prove useful beyond this paper (see also Duistermaat’s
monograph [21]] for a thorough treatment with a different focus). The core of the paper
extends from Sections [ to [7l A basic dichotomy is whether X is birationally equiv-
alent to a torus, or not. The torus case relies on elementary tools from homogeneous
dynamics, and the details are given in Appendix [Al The proof of Theorem [A] occupies
Sections 4] and |5l Theorems |A’|on the semi-analyticity of 3 and Theorem |C| are largely
intertwined, and rest on a careful analysis of the action of the parabolic elements of
I" near the singular fibers of the associated elliptic fibrations. The details are given in
Sections 6] and [71

2. TWO EXAMPLES

2.1. K3 surfaces. Let X be any K3 surface. There is a holomorphic 2-form {2y on X
that does not vanish and satisfies {, Qx A Qx = 1; this form is unique up to multipli-
cation by a complex number of modulus 1. Thus, the volume form voly := Qx A Qy is
Aut(X)-invariant. If X comes with a real structure for which X (R) is non-empty, then
X (R) is orientable and some multiple of {2 restricts to a positive area form on X (R)
(see [29, §VIIL.4] and §1 of [18]]). This area form is multiplied by +1 by elements
of Aut(XR); in particular, the measure induced by this form is invariant (see also Re-
markbelow). We refer to [[17,[19] for the topology of X (R): it can be a sphere, the
union of a sphere and a surface of genus 2, a torus, etc. Here are two explicit examples.

Example 2.1. (See [11}, [14]]).— Take three copies of P!, with respective coordinates
zi = |xi tyi], i =1,2,3. Let X < P! x P! x P! be a Wehler surface, i.e. a smooth
surface of degree (2, 2, 2); assume that X is very general in the family of such surfaces.
In particular, X is smooth and it is a K3 surface. Fix an index k € {1,2,3},leti < j be
the two indices such that {7, j, k} = {1, 2, 3}, and let m;;: X — P! x P! be the projection

I Also, one of the statements in [3] is slightly erroneous. In case (c), one first shows that ;. gives mass
to some germs of real analytic surfaces, and one has to glue these germs together to construct the surface
33; to do so there is a monodromy problem which is overlooked in [5]]. To say it differently, the results
of [5] only imply that X is the analytic continuation of such a germ, which could a priori be dense in X.
Overcoming this problem occupies a significant part of the present paper.
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that forgets the k-th coordinate; this projection is a 2-to-1 cover, and we denote by o},
the involution that permutes the points in the fibers of 7;;. Then, Aut(X) is generated by
the three involutions o}, and is non-elementary (see [4, 11, 31]); the composition o; o 0
is a parabolic automorphism preserving the genus 1 fibration 7y (z1, 22, 23) = 2; and
the composition 0, © 05 © 03 is a loxodromic automorphism —with topological entropy
log(9 + 4\/5) > (. It is shown in [[10, Thm A] that for a very general X, there is no
Aut(X)-invariant proper algebraic subset. If X is defined by a polynomial equation
with real coefficients, then Aut(X) preserves the real structure Xg because the three
involutions do. In particular, the real part X (R) is Aut(X)-invariant.

For future reference let us note that the canonical invariant 2-form admits a simple
explicit expression: consider affine coordinates x; € C corresponding to each of the
three P! factors (with z; = [z; : 1]); then, X is defined by a polynomial equation
P(z1,19,23) = 0, and at every point in X, one of the partial derivatives of P does not
vanish because X is smooth; then, up to some constant factor,

_dry Andry  dvy ndrs drs A dr

2.1 Q — = =
@D X Opy P 0y, P Oy P
Example 2.2. (See 11} §3.2]).— Fix five lengths ({o, {2, . . ., £4) € (R*)® such that there
is at least one pentagon P = (ay, . .., a4) in R?, the sides of which satisfy (a;, a;41) = ;

(for 7 taken modulo 5); here, by a pentagon, we just mean an ordered set of five points
a; in R2. Assume that the family of such pentagons does not contain any flat pentagon
(for instance this imposes ¢y + {1 # {5 + {5+ {4). Consider the set of all such pentagons
modulo affine positive isometries of R?; thus, each pentagon can now be put in a normal
position, with ay = (0,0) and a; = ({y,0). This set can be identified with a real
algebraic surface X (R) that depends on (, ..., ¢,). There are five natural involutions
acting algebraically on this surface: given one of the vertices a; of a pentagon P €
X (R), consider the two circles with centers a;_; and a;,; and respective radii ¢; _; and
¢;, where indices are taken modulo 5; these circles intersect in two points a; and a;
thus we get an involution o; of X (R), mapping P to the pentagon o;(P) with the same
vertices except for a; that is replaced by a;. Our hypotheses imply that X (R) is the real
part of some real K3 surface Xgr and o; € Aut(Xgr). Again, the composition o; © ;4
is a parabolic automorphism of X when the lengths are chosen generically.

Similar examples of large groups of automorphisms preserving a volume form on X
(resp. a smooth measure on X (R)) can be constructed on some abelian surfaces and on
most Enriques surfaces (see [[11] for instance).

Remark 2.3. If ¥ is a totally real surface (of class C', say) in an abelian or K3 surface
X, which is invariant under a group I' = Aut(X), then the canonical 2-form €2x induces
a ['-invariant measure on Y. Indeed for every x € X, the tangent space 7, X contains
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two C linearly independent vectors, thus {2y |y, induces a complex valued 2-form on %
that does not vanish. Thus locally we can define an area form Qx, by Qx . = &(2)Qx .
where ¢ is a function with values in the unit circle, and whenever X is orientable or
not, this induces (by taking the associated density |{25| in the non-orientable case) the
desired measure on ..

If X is an Enriques surface, the universal cover ¢: X’ — X is an étale 2-to-1 cover by
a K3 surface. If ¥ < X is a totally real surface, then its pre-image ¥’ = ¢~ 1(2) is also
totally real, and the automorphism of the covering ¢ is an element of Aut(X’; ¥’). Thus,
applying the above construction in X’ and pushing forward to X, we get an invariant
measure on > as well.

Finally, if X is a blow-up of an abelian, K3, or Enriques surface, the same construc-
tion applies, except that the density of the associated volume form may vanish along the
exceptional divisor of the blow-up.

2.2. Rational surfaces. The family of Coble surfaces (see [9, [11]]) and the examples
described by Blanc in [3] give rational surfaces X such that Aut(.X') is non-elementary
and contains parabolic elements (see [L1], §3.4, and Example [6.§ below). They are
constructing by blowing up a finite number of points in P?: the 10 double points of
some rational sextic S for Coble surfaces; a finite number of points on a cubic curve
C for Blanc surfaces. The strict transform S” and C”’ of these curves are preserved by
Aut(X). Denote by Ky the canonical bundle of the surface.

(1) In the Coble case, there is a meromorphic section €2 of K E?Q that does not vanish
and has a simple pole along S’.

(2) InBlanc’s example, there is a meromorphic section {2 of K x that does not vanish
and has a simple pole along C".

In both cases, €2 induces a natural measure on X: for Blanc surfaces, it is given by
the form Q A Q; for Coble surfaces, it is given by QY2 A 51/2. In the Coble case, the
total mass of this measure is finite, while in Blanc’s example it is infinite. Moreover,
if I' = Aut(X) is any subgroup generated by parabolic elements, then I" preserves this
measure.

2.3. Subgroups. In each of the previous examples, one can replace Aut(X) by a thin
subgroup, i.e. a subgroup I' = Aut(X) of infinite index but with
(2.2) Zar(Aut(X)*)/Zar(I'™*) < +o0;

here, Zar(I'*) is the Zariski closure in GL(H?(X; R)). For instance, pick finitely many
parabolic automorphisms g¢; in Aut(.X'), and consider the group I' generated by high
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powers g;" of the g;. If the g; do not preserve the same fibrations (see below), I' is non-
elementary; and if one chooses the g; correctly, I' is thin. In case of Wehler surfaces, it
suffices to take g; = 09 0 03 and go = 03 0 0y and m = 3.

3. THE DYNAMICS OF HALPHEN TWISTS

3.1. Parabolic automorphisms and Halphen twists. An automorphism f of a com-
pact Kihler surface X is said parabolic if

3.1) f (f")*k A k= n?
b'e

for some (hence any) Kihler form x on X; equivalently, some power (f™)* of f* €
GL(H?*(X;Z)) is unipotent and the maximal size of its Jordan blocks is equal to 3;
equivalently, f* acts on H!(X;R) as a parabolic isometry with respect to the inter-
section form given by the cup product (see [8]).

Theorem 3.1. Let f: X — X be a parabolic automorphism of a compact Kdhler
surface.

(1) there exists a genus 1 fibration m: X — B and an automorphism fg of the Riemann
surface B such that mo f = fgom,

(2) if E is any (scheme theoretic) fiber of 7, and F' is a member of the linear system |E
then F'is a fiber of m;

(3) the foliation determined by the fibration m is the unique f-invariant complex ana-
lytic (smooth or singular) foliation on X ;

(4) fg has finite order, unless X is a compact torus.

y

The existence of the invariant fibration is proven in [26] when X is a rational surface,
and is easily obtained for other types of surfaces by the Riemann-Roch theorem (see [4,
Proposition 1.4], and [8]] for a survey). The second assertion is not specific to invariant
fibrations, but is good to be kept in mind; phrased differently, it says that the space of
sections H°(X; O(E)) is 2-dimensional, and the divisor of zeroes div(s), of any section
s € H°(X;O(F)) is a fiber of 7. The uniqueness of the invariant foliation and the last
assertion are proven in [12] (see Remark below for the Kihler case).

When fp = idp we say that f is a Halphen twist. From the last item of the theorem,
we see that if X is not a torus, for every parabolic f there exists k > 1 such that f* is a
Halphen twist. Beware that this terminology may differ from other references.
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Remark 3.2. Consider a fiber F of 7, as in Assertion (2) of Theorem [3.1} Its class
[F] € H'(X;R) generates a ray R, [E] with the following property: if D is an effec-
tive divisor with [D] € R, [E], then D is mapped to a point by 7. Thus, R, [F] charac-
terizes 7 as the unique fibration contracting these curves. In particular, an automrophism
h of X permutes the fibers of 7 if and only if 2* preserves R, [F] < H"(X; R).

3.2. Complex and real analytic structures on fibers. Let 7: X — B be a genus 1
fibration on a compact Kihler surface X ( in this section, we do not assume that 7 is
invariant by a parabolic automorphism). Our goal is to describe a foliation which is
associated to 7 and the choice of a section of 7 (see [[13l, §2.1] for further details).

Denote by Crit(m) < B the set of critical values of 7, and by B° the complement of
this finite set. On 71 (B°), 7 is a proper submersion and each fiber X, := 7~ 1(w) is a
curve of genus 1. Let U < B° be an open subset, endowed with

— a holomorphic section o: U — X of 7 above U,
— a continuous choice of basis of H1(X,;Z), forw € U.

If we declare that o (w) is the neutral element of X, then X, becomes an elliptic curve
for each w € U. There is, therefore, a unique holomorphic function 7 from U to the
upper half-plane H, < C such that

— forevery w € U, X,, = C/Lat(w) where
(3.2) Lat(w) = Z® Z7(w) ~ H(Xy; Z)
— the basis (1, 7(w)) of Lat(w) corresponds to the chosen basis of H;(X,;Z).

Indeed, Xy := 7 '(U) is holomorphically equivalent to the quotient of U x C by
the action of Z? defined by (p,q) - (w,2) = (w,z + p + q7(w)) for (p,q) € Z* and
(w,z) e U x C.

In the real-analytic category all one-dimensional complex tori are equivalent to R? /Z?
as real Lie groups. Concretely, there is a unique isomorphism ¥, : X,, — R?/Z? which
maps the basis (1, 7(w)) of Lat(w) to the canonical basis ((1,0), (0, 1)) of Z?; in coor-
dinates, if 7(w) = 7 (w) + i2(w) and z = x + iy, then

(3.3) U, (2) = (x— Tl(w)y, L )y> .

T2 (w) TQ(UJ
The real analytic diffeomorphism ¥: 71(U) — U x R?/Z? defined by
(3.4) U(w, z) = (w, ¥,y (2))

is the unique homeomorphism such that (1) 7 o W = 7, where m; is the first projec-
tion; (2) ¥ maps the basis of H(X,;Z) to the canonical basis of Z?; and (3) ¥ is an
isomorphism of Lie groups in each fiber. In particular, ¥ (w, o(w)) = (w, (0,0)).

In the following remarks, mo: U x R?/Z? — R?/Z? denotes the second projection.
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Remark 3.3. For any (a,b) € R?/Z?, the holomorphic map w € U — a + br(w) €
C/Lat(w) determines a local section of 7 above U this section coincides with

(3.5) U H{(w, (2,9)) ; (z.y) = (a,b)}.

So, if we consider the real analytic foliation of U x R? / Z? whose leaves are the fibers
of 7y, and if we pull-back this foliation by W, we get a real analytic foliation F; of Xy,
with holomorphic leaves, which will be referred to as the (local) Betti foliation. Now,
consider the holomorphic map [k]y: #~1(U) — 7 !(U) given by multiplication by
some integer k > 2 along the fibers of 7; by definition, it fixes o(U) pointwise. Then,
JFu is invariant under the action of [k]y. A leaf is pre-periodic if and only if it contains
a torsion point of X, for some and then for any w € U. The union of these preperiodic
leaves is dense and each leaf of ¢ is a limit of such leaves.

Remark 3.4. Suppose that X is projective and o is the restriction of an algebraic multi-
section of degree ¢. This means that there is an irreducible curve C' in X intersecting the
general fiber of 7 in ¢ points such that the graph of ¢ is contained in C'. Set £ = ¢ + 1.
Then the multiplication map [k]; extends as a rational transformation [k]g: X --+ X.
Indeed, if X, is a general fiber and « is a point of X, there is a unique point y such that
(¢ + 1)z — y is linearly equivalent to the divisor C' n X,,: by definition, [k]z(z) = .

If C is a section, i.e. £ = 1, Fy extends globally to a foliation F of 7=*(B°); we
shall also refer to F as the (global) Betti foliation. The leaves of F corresponding to
torsion points are, in fact, algebraic curves in X, since they correspond to the curves
defined by [2]%"%(z) = [2]5(z) for some m > 0 and ¢ > 1. On the other hand, the
local projections 7y o W: 7= 1(U) — R?/Z? are not canonically defined; if ~y is a loop
in B°, with base point w, € U, then the analytic continuation of w5 o ¥ along the loop
is M(vy) o mg o W, where M (vy) € SLy(Z) is given by the monodromy of the fibration
(the determinant of A () is 1 because the orientation of the fibers is preserved). In
other words, the monodromy of the fibration is induced by the holonomy of the Betti
foliation. The section o provides a fixed point o(wg) of the holonomy; the curves of
pre-periodic points of [2]5 correspond simultaneously to finite orbits of the holonomy
group and to torsion points of the fiber X, .

On the other hand, if C'is a multisection of degree ¢ > 2, the Betti foliation F;; does
not extend to B°: instead we obtain a web of degree at most ¢, which is locally the
superposition of the local Betti foliations associated to the ¢ choices of local sections
whose graphs are contained in C.

Remark 3.5. (see [13])). The form 7} (dz A dy) is a smooth closed form. Its pull back
to Xy is the local Betti form wg = V*n3(dx A dy): (1) wp is a closed semi-positive
(1, 1)-form; (2) it vanishes along the leaves of F; (its kernel coincides with 7' Fy); and
(3) for w € B°, wpx,, is the unique translation invariant form of type (1, 1) such that
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§ x,, wB, = 1. These properties characterize wg,. If there is a global section, these forms
patch together to define a global real analytic Betti form wg on Xpgo (the monodromy
group is contained in SLy(Z), so it preserves dx A dy).

Note that the Betti form and Betti foliation depend on the choice of a section, but not
on the choice of a basis of Hy(X,,; Z).

3.3. Singular fibers. Our goal in this section is to collect some facts concerning the
geometry of a genus 1 fibration 7: X — B around one of its singular fibers. Further-
more, if f is a Halphen twist preserving 7, we describe how its dynamical properties
degenerate at a singular fiber, and how they are affected by the stabilization process,
which reduces a singular fiber to a canonical model (see below). Of particular interest
to us is the set of points w € B such that the orbits of f in X, are finite, or dense,
or have a closure of dimension 1 (cf. Section [3.4). A first instance of stabilization is
when 7 is not relatively minimal, that is when there is an exceptional curve of the first
kind F contained in a fiber of . There are finitely many such curves, so f permutes
them, and some positive iterate f™ fixes each of them. Thus, one can contract E in
an f™-equivariant way, to end up with a birational morphism ¢: X — X’, a fibration
7’: X’ — Bsuch that 7’oe = 7, and an automorphism f” of X’ such thateo f™ = f’oe.
The dynamical properties of f’ are the same as the ones of f: for example, the param-
eters w € B° such that each orbit of f in X, is dense coincide with the parameters for
which the orbits of f’ in X satisfy the same property.

The local geometry of 7 around a critical value s € Crit(7) was described by Kodaira.
The reader is referred to [1]] for details, in particular Sections III.10, V.9, and V.10
there. From the above discussion, we may assume that X is relatively minimal. We fix
s € Crit(m) and further assume that X is not a multiple fiber; the adaptation to the case
of a multiple fiber will be described in § [3.3.3]

3.3.1. Local sections. A first observation is that when X is not a multiple fiber there
exists a local section of the fibration 7 around s. More precisely, for every component
C of multiplicity 1 of 7~!(s), any small disk transverse to C is the graph of a section c;
and by Kodaira’s classification, such a component always exists (see [1, §V.7]). Let us
fix a small open disk V' < B around s, such that V' n Crit(7) = {s}, together with such
a local section o: V — X. Set Xy = (V) and let X!, be the complement in X of
the irreducible components of X that do not intersect o(V") (resp. of the singular point
of X if X is irreducible); this set depends the chosen section. In other words, we keep
from X the smooth locus of the unique component intersecting o(1"); we shall denote
by X! Xf, this residual curve.
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3.3.2. Type I,. The main example of singular fibers are those of type [, with b € N*
(type I corresponds to the smooth case). For b = 1, X is a rational curve with a unique
normal crossing singularity; when b > 2, X is a cycle of b smooth rational curves of
self-intersection —2. So, X? is biholomorphic to C* = P!(C)\{0, oc}. Shrinking V if
necessary, we can identify (V, s) with a disk (Dg, 0) of radius R < 1, and X, with the
quotient of Dg x C by the family of lattices Lat(w) = Z @ Z7(w) given by

(3.6) T(w) = i log(w), forw € Dg

(note that log(w) is not well-defined but Lat(w) is). For w = 0, the lattice Lat(w)
degenerates to Lat(0) = Z < C. If v is a loop making one positive turn around s, the
monodromy M () maps the basis (1, 7(wg)) to (1, 7(wg) + b).

Lett: V' — C be a holomorphic function. The transformation g: V x C - V x C
defined by g(w, z) = (w,z + t(w)) induces, by taking the quotient, a holomorphic
diffeomorphism of X‘ﬁ,. By [1} Prop. III.(8.5)], it extends to a diffeomorphism of Xy
that preserves 7. Conversely, if f is a holomorphic diffeomorphism of Xy that preserves
each fiber of 7, some positive iterate f* of f preserves each component of X, and
then f™ maps o to another section f™ o o intersecting X?¥. Lifting to the universal
cover, we see that there is a holomorphic function ¢t: V' — C such that f is induced
by (w, z) — (w, z + t(w)); the function t(w) = f(o(w)) — o(w) can be viewed as a
section of the Jacobian fibration associated to 7 (see [l1, §V.9] for details).

Consider the map

(3.7) (w,2) € D x C — (w,v) := (w,exp(2irz)) € D x C*.

It is the quotient map for the action of Z < Lat(w) on C by integral translations. If
w # 0, the vertical fiber {w} x C* is mapped in Xy to the elliptic curve C* /w2 ~ X,
(because exp(2ir7(w)) = w®). The fiber {0} x C* is mapped injectively onto the central
fiber X! of X7,

Consider the Betti foliation F defined in 7' (V/\{s}) by the choice of the section o.
In D% x C, the leaves of F correspond to the curves (w, c+dr(w)), for (¢, d) € R?. They
are mapped in D% x C* to the curves 7. 4(w) = (w, exp(2ime)wb?); here, [exp(2irc)| =
1 because ¢ € R and w"? is multivalued as soon as bd ¢ Z. Let us describe the local
dynamics of F around X;. To simplify the exposition, we contract the components of
X that do not intersect the neutral section o (V") onto a point ¢; this gives a new surface
Xy . The central fiber of X is irreducible and ¢ is its unique singularity; when b > 2, ¢
is also a singular point of X,. By construction, X ‘ﬁ/ is biholomorphically equivalent to
X\{q}. When d = 0, the leaf defined by the curve 7. extends to a local holomorphic
section of , given by (w,v) = (w,exp(2imc)); the union of these curves is, locally,
an F-invariant real 3-manifold which intersects the central fiber X! ~ C* along the
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unit circle {v € C* ; |v| = 1}. When d is rational, v.q4(w) = (w,exp(2imc)w’?)
extends to a local multisection of 7; when o is the restriction of a global section of 7
to the disk V' < B, this local multisection . 4 extends to an algebraic curve of X (a
pre-periodic curve for 2], see Remarks |3.3[and . Finally, when d € R\Q, 7.4 is a
transcendental and multivalued curve; in Xy, the singularity ¢ is the unique limit point
of this curve on the central fiber.

Remark 3.6. In D}, x C*,

N dw dv
(3.3) ay = log(Jv])— — log(|w|)—~
is a real analytic (1, 0)-form that vanishes along the curves . 4. Being invariant under
the transformation (w,v) — (w,w’v), it induces by taking the quotient a (1,0)-form
ay on 1 (V\{s}), the kernel of which coincides with the tangent space of the Betti
foliation. To get the Betti form wp defined by 7 and o, one needs to multiply ay A oy
by a factor (w) to ensure . (w)ay A @y = 1 for every w in V\{s}. The result is

i b

G2 “B = 5 3{log [u])?

ay A Qy.

3.3.3. Multiple fibers (see [1, §II1.9 and V.10]). Let us assume in this paragraph that
X, 1s a multiple fiber; it is necessarily of type m/I, for some b > 0. Let us do a local
base change under the map p: ( — (™ = w; in other words, we consider the surface
X{, given locally above V' ~ Dp by X{, = { ((,z) € Dg x Xy ; w(x) = ("},
together with the projection 7’: X{, — Dpg defined by 7n'(¢,z) = (. Then, the map
P: ((,z) e X{, — x € Xy satisfies mo P = pon’. The surface X{, may be singular, so
we let X7, be the normalization of X{, and X ‘(,m) be the minimal resolution of X{,; there
is a natural fibration 7("™ : X ‘(/m) — g and a natural map P X‘(/m) — Xy such that
7o P = por(™ Now, it turns out that 7("™ has no multiple fiber and that its central
fiber (the unique possible singular fiber above V') is of type I.

If f is a holomorphic diffeomorphism of Xy such that 7 o f = 7, then f can be
lifted to a holomorphic diffeomorphism f(™ of X ‘(/m) such that P(™) o f(™) — f. First,
one lifts f to X{, by (w, z) — (w, f(z)) and then to the normalization and its minimal
resolution. Conversely, one recovers X by taking the quotient of X ™ by the action of
a finite group Z/mZ that commutes to (™). Thus, to study the local dynamics around
multiple fibers, one only needs to study the case of fibers of type I, (including smooth
fibers), and take a quotient by such a finite group.

3.3.4. Unstable fibers (see [1, §111.10 and V.10]). Let us now assume that X is not
multiple and not of type I; it is an unstable fiber of type I1, [11, IV ,or I}, [T*, [11*,
IV*. As in the previous paragraph, a local base change can be performed to end up



INVARIANT MEASURES FOR AUTOMORPHISM GROUPS OF SURFACES 13

with a local stable fibration; its central fiber will be smooth, except for the types [},
b = 1 which lead to a central fiber of type [,. To do so, one first blows up the central
fiber to ensure that its singularities are nodes, which gives rise to a new surface Xy
then, one does a base change to construct a new surface Y, (as above with X (m)y: a
priori, the induced fibration on Yy is not relatively minimal anymore, so one contracts
curves in the central fiber to construct a surface Yy, with a relatively minimal fibration.
Finally, Xy can be recovered from Yy by taking a finite quotient, however only up to
bimeromorphic equivalence (see [1, §111.10 and V.10]).

After taking some positive iterate f"*, so that f fixes each irreducible component
of the singular fiber, the holomorphic diffeomorphism can be lifted to a holomorphic
diffeomorphism of Yy ; indeed, f™ induces a meromorphic map of Yy, and this map is a
local diffeomorphism by [l1, Prop. III(8.5)]. Thus, to study the dynamical properties of
f we can focus locally on regular fibrations and singular fibrations of type [, and then
take a quotient by a finite group. Moreover, this finite group acts by multiplication by a
root of unity on the base V' ~ Dp.

3.4. The dynamics of Halphen twists: twisting property. We pursue the study of a
Halphen twist f: X — X and of its invariant fibration 7: X — B. Let U < B° be an
open disk, endowed with a section o: U — X of 7w and a continuous choice of basis of
Hy(X,;Z), for w € U. As in Section [3.2] there is a holomorphic function 7: U — H,
such that the fibers X, can be idendified to C/Lat(w), where Lat(w) = Z + Z7(w).
Along each fiber X,, = C/Lat(w), f can be expressed in the coordinate z € C as
£z +t(w), where t: U — C is holomorphic. Here, £ is a root of unity (of order dividing
12) which is determined by the action of f on H,(X,;Z) ~ Z? and, as such, is locally
constant; if £ # 1, f has finite order on each fiber X, w € U, so f is periodic, and this
contradicts the parabolicity assumption. Thus, f(z) = z + t(w) along X, and f acts
by translation along each fiber X, w € U, of m. Now, conjugating f locally by the
diffeomorphism W: 7~} (U) — U x R?/Z? introduced in Section[3.2} f becomes

(3.10) fu(w, (2,y)) = (w, (z,y) + T(w))

for some real analytic map T: U — R2. The following lemma says that “t(w) varies
independently from T(w)”.

Lemma 3.7. The analytic map w € U — T'(w) € R?/Z? is not constant.

This is shown in [3]], proof of Proposition 2.2, but the proof makes use of a global
multisection of 7, which exists if and only if X is projectiveﬂ For completeness, we
present an argument which is more straightforward and applies to all Kéhler surfaces.

’The proof in [5] is written for K3 surfaces but extends to other projective surfaces
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Remark 3.8. If o is replaced by another local section o', the diffeomorphism ¥ is
replaced by V' = ® o ¥, with ®(w, (z,y)) = (w, (z,y) + S(w)) for some analytic map
S: U — R?/Z>. Then, fy is changed into ® o fy o @' and T is unchanged. Likewise,
if the basis of H;(X,;Z) is changed, T" is mapped to A o T for some A € GLy(Z).
Thus, the property that 7" is locally constant does not depend on the choices we made.
Moreover, 7" is constant on U if and only if f preserves the Betti foliation F; associated
to o; thus, if this property holds above U for some choice of section, then it holds above
any disk U’ < B¢ and for any choice of local section.

Proof of Lemma We fix a Kihler form « on X, and compute the norm of the tangent
map | D f|| with respect to x. Assume that 7" is constant on U. Then at each point
(w, (x,y)) of U x R?/Z?, the tangent map (D fy)(w,(xy)) is the identity; this implies
that | D f"|| is uniformly bounded above U, independently of n. By Remark this
property propagates over B°: if K < B° is any compact subset, there is a constant
C(K) such that |[Df"| < C(K) foralln > 0 and all x € 71 (K).

Let us now study the behavior of f and D f near a singular fiber X, of type I, for
some s € Crit(7). Let V be a small disk around s, endowed with a sectiono: V' — X,
as in § We identify V' to Dy and Xf/ to the quotient of Dr x C by the family
of lattices Lat(w) = Z + Z7(w), with 7(w) as in Equation (3.6). Then, we change
f into a positive iterate to assume that it fixes each irreducible component of the cen-
tral fiber X,. From Remark we know that the local Betti foliation F defined above
V\{s} is f-invariant. As shown in Section the leaves of F which extend to local
sections of X?, foliate a unique local 3-manifold (that intersects X* on a circle). Since
f is a diffeomorphism preserving F and m, it preserves this 3-manifold. In the local
coordinates (w,v) € Dg x C* introduced in Section this means that f acts by
(w,v) — (w,h(w)v) for some holomorphic map w € Dr — h(w) € C* taking its
values in the unit circle. This shows that & is a constant of modulus 1, and that the iter-
ates of f are locally contained, above V/, in a compact group of local diffeomorphisms.
Thus, | D f™] is also uniformly bounded around every singular fiber of type Ij,.

As explained in §3.3.4] we can contract curves and perform a stable reduction to get
an automorphism ¢ of a compact Kihler surface Y preserving a fibration 7’: Y — B/,
a finite map 7: B’ — B, and a meromorphic, dominant map £: Y --» X such that
moe =non and e o g = f oe. The fact that T is constant on some open set
is an intrinsic property, so it also holds for g. Since all singular fibers of 7’ are now
of type I, the previous argument shows that |Dg™| is uniformly bounded on Y; in
particular, |[(¢g")*|| m2(y;r) is uniformly bounded. Let us show that this contradicts the
parabolic behavior of f. Write € as a composition o o 1)~ where ¢: Z — X is regular
and ¢: Z — Y is a bimeromorphic morphism. Set h = ¢! o g o 1), which is a
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bimeromorphic map of Z. By [20, Prop. 1.15], [[(2")*| ;1.1 (z.g) is bounded. Then,

BN [ (e A () = [ o (R R = desle) | ()R A

b's
The left hand side is bounded because ||(7")*| ;1.1 g is bounded. This contradicts the
parabolic behavior of f and concludes the proof. U

Lemma 3.9. The differential DT,,: T,,U — R? of T has rank 2 everywhere, except for
finitely many points w; € U at which DT,,; = 0. The analytic map T": U — R? is an
open mapping.

If DT, = 0, we shall say that f does not twist along the fiber X,; this notion is
intrinsic: it does not depend on the choice of the local diffeomorphism W (the argument
is the same as that of Remark [3.8). We define the set of non-twisting points by

(3.12) NT; = {we B; DT, = 0}.

Proof of Lemma[3.9} Since f is holomorphic, its differential commutes with the com-
plex structure jx of X. This implies that DT, o j = j(w) o DT, where j is the complex
structure on U = B and j(w) is a complex structure on R?/Z? that depends on w (it
is the conjugate of the complex structure of C/Lat(w) by the linear map DW,,). As
a consequence, the rank of DT, is equal to 2 or 0. Assume that the real analytic set
{weU; DT, = 0} contains some connected real analytic curve C' < U. Along C, T
is a constant 7j; then, the image fy ({(w, (0,0)) ; w € U}) of the zero section intersects
the horizontal disk {(w, (z,y)) ; (x,y) = Ty} on a real analytic curve. Now, let us
come back to the complex surface X. The image f(o(U)) of the zero section and, by
Remark [3.3] the set U=1{(w, (x,v)) ; (z,y) = Ty} are two connected complex analytic
curves. Since they intersect along a non-discrete subset, they coincide; this implies that
T is constant, in contradiction with Lemma Thus, the set of points at which DT,
has rank < 2 is locally finite. The last assertion follows easily from the first. U

Remark 3.10. Lemma (3.9 shows that every f-invariant holomorphic foliation G on X
is given by the invariant fibration 7. Indeed, if T'(w) € Q*/Z* and DT,, # 0, then a
positive iterate f™ fixes X,, pointwise and, at every point z € X, Ker(Dm,) < T, X is
the unique line invariant by the tangent map D f)"*; thus G must be everywhere tangent
to X, and X, must be a leaf of G. Since T is open, T~(Q?/Z?) is dense in U, so G
coincides with the fibration above U, hence everywhere on X. This proves Assertion (3)
of Theorem [3.1| for compact Kihler surfaces ([12] considered only projective surfaces).

Lemma does not say that N'T'; is finite: it could cluster at a critical value of .
To exclude this possibility, let us first reformulate the twisting property. Consider an
open set U — B endowed with a section ¢ and the induced local Betti foliation F.
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Its image f.(F) is generically transverse to F; these foliations are tangent at x € X,
if, and only if D715,y = 0 if, and only if they are tangent along the fiber X (. So,
7L (NTy) = Tang(F, f.(F)).

Lemma 3.11. Let s € Crit(m) be the projection of a fiber of type I, b = 1. Let V be
an open disk containing s, with a section o: V. — X of w; let F be the Betti foliation

determined by o above V\{s}. If V' is small enough, f.(F) is everywhere transverse to
F above V\{s}.

Proof. We make use of Remark and work in Dg x C*. The automorphism f is given
by f(w,v) = (w,h(w)v) for some holomorphic function h(w) = exp(2int(w)) that
does not vanish. In these coordinates, the neutral section o is given by o(w) = (w, 1),
and its image under f is the curve f o o: w — (w, exp(2int(w))). The points w above
which F is tangent to f,JF are the points where the image of f o o is tangent to F; they
are determined by the equality ay ((f o o) (w)) = 0, with &y as in Equation (3.8)). This
leads to the constraint

(3.13) —ilog(Jw])wt' (w) = Im(t(w));

writing t(w) = aw” + h.o.t., for some k in N, we get —iak log(|w|)w” ~ Im(awk). As
a consequence there is no solution close to the origin, and the proof is complete. U

According to Section the local dynamics of f near an unstable or multiple fiber
is covered by the dynamics of a parabolic automorphism near a curve of type [;,. So, the
next result is a corollary of the previous lemmas. (Note that the existence of a section
in Assertion (2) implies that X is projective and that m does not have multiple ﬁbersﬂ)

Proposition 3.12. Let f be a parabolic automorphism of a compact Kdhler surface X,
acting trivially on the base of its invariant fibration m: X — B.

(1) The set of fibers ' (w) along which f does not twist is finite, i.e. NT is finite.
(2) If ™ admits a global section 0: B — X and F is the associated Betti foliation on
7 Y(B®), then Tang(F, f«(F)) is a finite union of fibers.

3.5. The dynamics of Halphen twists: orbit closure. We keep the notation from Sec-
tion[3.4} we let U  B° be a disk, on which a continuous choice of basis for H;(X,,; Z)
and a section of 7 have been chosen, so that H(X,;Z) ~ Z? and X, ~ R?/Z*.

3Indeed, if D < X is the graph of a section and F'is a fiber, then F'- D = 1, so F' can not be multiple;
and if F' is reducible, D intersects F' along a component of multiplicity 1. Moreover, if a € Z is large
enough, then aF' + D is big and nef.
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3.5.1. A proper and closed subgroup of X, is finite or 1-dimensional.

A closed 1-dimensional subgroup L — X, is characterized by two data: a slope (p, ¢),
given by a primitive vector in Z2, and the number & > 1 of connected components of L.
The connected component of the identity LY < L is the kernel of the homomorphism
X, ~ R?/Z? — R/Z defined by

(3.14) (z,y) — qx — py,

and L is the preimage of the unique cyclic subgroup of order k in R/Z. Equivalently,
L is the kernel of (z,y) — k(qx — py). We denote this subgroup by L,,(k, (p, q)). The
integer k is intrinsically defined, but the slope depends on the basis of H;(X,,;Z).

Notation 3.13. For z € X, we denote by L(z) the closure of the orbit of z, and by
L(2) the connected component of z in Ly(z). For w in B, we denote by f,, the restric-
tion of f to the fiber X,,. If m(2) ¢ Crit(7), fx(») is a translation in X (.); thus Ls(2) is
either finite, or a translate of a 1-dimensional subgroup of X ), or equal to X(.). By
definition a translate of a connected, closed, 1-dimensional subgroup of X ., will be
called a circle.

3.5.2.  Define

(3.15) Tor(U) ={weU; f, X, — X, isaperiodic translation}
={w e U ; t(w) has finite order in X,, = C/Lat(w)}
={weU:; T(w) e Q*/Z?}.

This set is intrinsically defined (it does not depend on the section or on the basis of

H,(Xy;Z)). By Lemma[3.9] Tor(B°) is a countable and dense subset of B°. A point
w belongs to Tor(B°) if and only if the orbit of every z € X, is a finite subset of X,.

3.5.3. The next level of complexity is when ¢(w) belongs to a 1-dimensional subgroup
of X,,. Write fy(w, (z,y)) = (w, (z,y) + T(w)). For (a, 8) in Q*/Z? and (p,q) €
Z>\{(0,0)}, we set

(3.16) Ry (U)={weU; T(w) e (a,f) + R (p,q)}.

This set depends only on the slope (p, ¢) and on g —pf € R/Z, but not really on («, 3)

itself. Using holomorphic coordinates, this real analytic curve R;‘j;f (U) is alternatively
expressed as

R;‘:f(U) = {w ; the complex numbers t(w) — o(q,5) (w) and p + ¢7(w) are
R-collinear},

where o, g) is the local holomorphic section of 7 defined by

(3.17) O(a,p) (W) = U Hw, (o, B)) = a+ Br(w) mod Lat(w);
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here, as in Equation (3.4)) , ¥,, maps the basis (1, 7(w)) of Lat(w) < C onto the basis
((1,0),(0,1)) of Z* — R?. This equation of R’ can be written locally as

(3.18) In](t“U)U@LM(UO) o

P+ qr(w)

This curve may have singularities, as does the curve defined by Im(w*) = 0 in the unit
D when £ > 2; this happens precisely when w € N'T';.

LetRE (U) < U be the closure of the set of points w for which L(z) has k connected
components of slope (p, q) for all z € X,,; it is the (finite) union of the Rz‘f (U), for all
(a, B) in Q?/Z? such that ga — p3 has order k in R/Z. Thus, R} (U) is an analytic
curve in U. For w € R’;q(U)\Tor(U) and z € X, Lf(2) is a translate of L,,(k, (p,q)).

When performing an analytic continuation of R’;q(U ) around a critical value of T,
the continuation may hit U again along a component of Rl;,’q,(U ) for some new slope
(p',q'); the vector (p',¢q’) is in the orbit of (p, ¢) under the action of the monodromy
group of the fibration. Since the orbit of (p, ¢) is typically infinite, the analytic continu-
ation could a priori intersect U on infinitely many distinct RI;,,q, (U).

Finally, for each integer & > 1, we set

(3.19) R¥(U) = U  Rp(U), and R(U)=[JR*U).

(p,q)€Z2 primitive k=1

These sets are intrinsically defined. Intuitively R*(U/) should be thought as the set of
w € U such that for z € X,,, L¢(z) is a union of k circles; formally, this is not a correct
characterization of R*(U) because R*(U) contains points of Tor(U).

3.5.4. Summarizing this discussion, and keeping the same notation, we obtain:

Lemma 3.14. Let f be a parabolic automorphism of a compact Kdhler surface acting
trivially on the base of its invariant fibration m: X — B. Let U < B° be an open disk.

(1) The set Tor(B°) is a dense and countable subset of B, and w € Tor(B®) if and only
if the translation f,, is periodic, if and only if L;(z) is finite for every z € X,,.

(2) For each slope (p,q), the set Rl;q(U ) is either empty, or a (possibly singular)
real analytic curve; the set R¥(U) is the union of these curves. Moreover, w €
R(B°)\ Tor(B°) if and only if L}(2) is a circle for each z in X,, if and only if the
closure of each orbit of f,, is a union of circles embedded in X,,,;

(3) If w € B°\ R(B°), then each orbit of f,, is dense in X,

In the second case, every [,,-invariant and ergodic probability measure is the Lebesgue
measure on Ly(z) for some z € X,,; in the third case, the only f-invariant probability
measure on X, is the Lebesgue measure.
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3.6. Additional notes on the curves R2;7(U). Fix a finite set of real analytic arcs (slits)
v; < B intersecting transversally, and containing the critical values of 7, such that the
complement of | Jv; in B is topologically a disk. Denote this disk by U. Then, choose a
section ¢ of 7 and a continuous family of basis for Hy(X,,; Z) above U. Each R3:?(U)
is a real analytic curve in U; but when crossing an arc ;, the analytic continuation of
R2:2(U) must be glued to another R;V,:’g (U).

In §6.2] we will have to understand the local structure of these curves near critical
values of 7 and, as before, the important case is that of singular fibers of type ;. Here,
we content ourselves with a few simple remarks, which help understand some of the
subtleties of the problem of the semi-analytic extension of the curves o, in Section [6]

Choose a local coordinate w as in § and, to fix the ideas, suppose («, 5) = (0,0).
From Equations (3.18) and (3.6), R, is determined by the equation

q

t(w) _
(3.20) Im (p - q%bg(w) =0,

where log(w) is viewed as a multivalued function. The multivaluedness of the logarithm
takes care of the monodromy in the sense that winding around the origin changes log(w)
into log(w) + 2im, which in this equation corresponds to the monodromy action (p, q) —
(p + gb, q). The function ¢(w) is a well-defined local holomorphic function, which may
or may not vanish at the origin (see §3.3.2).

If ¢ = 0, Equation (3.20) reduces to Im(¢(w)) = 0 which is an analytic subset of the
disk (including the origin if Im(¢(0)) = 0).

Now, we focus on the case ¢ # 0, and we assume that ¢(w) = tow”. Write w = e~
where s belongs to some right half plane, and write t, = €**0. Then, Equation (3.20)
becomes

efk(sfso)
(3.21) Im|{ —————] =0,
P+ q5-(—5)

Writing s = x + iy and so = xo + iyp, and making a few elementary manipulations, this
equation reduces to

2m
(3.22) x = (y + b_qp) tank(y — vo),
which after a vertical translation gives = = (y — ;) tan(ky) for some y; € R. There
are two different regimes:

(1) if & = 0 the curve is a line, which descends to a logarithmic spiral in the w-
coordinate;

(2) if £ > 0, one distinguishes two cases, depending on whether y; is of the form
%(7—; + j7), j € Z, or not (see Figure . In both cases, these curves have infinitely
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many branches asymptotic to the horizontal lines y = %(% +jm),j € L,asx — +o0.
In the w-plane, these branches have well-defined tangent directions at the origin, so
they extend as C'* curves at 0, but they are not semi-analytic.

|

7/)// /)/,/w/)/
5 o . 5 10 — 25
iﬂ\ S -
\\’\m\i\ 7\\\R\7\
== A T

FIGURE 1. The curves z = (y + %) tany (left) and = = (y + %) tany (right).

4. PROOF OF THEOREM : PRELIMINARIES, FIRST STEPS, AND COROLLARIES

Let X be a smooth, compact, Kihler surface. Fix a subgroup I" of Aut(X) such that:

(i) I'is non-elementary,
(i1) I' contains a parabolic element.

Then, as shown in [11], X is a smooth complex projective surface. Our goal in this
section is to prove Theorem [A|under the stronger assumption:

(ii’) T" contains a Halphen twist g (see §|3.1)); equivalently I" contains a parabolic auto-
morphism acting with finite order on the base of its invariant fibration.

As explained in Theorem [3.1] this hypothesis automatically follows from (ii) when X
is not an Abelian surface. For the easier case of Abelian surfaces, a direct proof of
Theorem [A]is given in the Appendix.

Notation 4.1. If & is a Halphen twist, we denote by 7, : X — B, its invariant fibration,
and by Sing(7,) the union of its singular and multiple fibers. For U < B, (resp. w €
By), weset XP = m; H(U) (resp. X! = 7, ' (w)). Similarly, we make use of the notation
Ry (U) and Tory,(U), with the index h. We denote by Hal(I") the set of Halphen twists
h e I' preserving each irreducible component of each fiber of 7. This set is invariant
under conjugation: if f € T" and h € Hal(T'"), then f~! o h o f is an element of Hal(T")
and its invariant fibration is given by 7, o f.

Remark 4.2. The foliation defined by 7, is uniquely determined by h, but 7, itself is not
canonically defined: post-composition by an automorphism of 5B, would give another
projection defining the same fibration. Thus, the notation means that a projection 7,
was chosen for every fibration invariant by an element 4 € Hal(T"), the choice being the
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same for two twists preserving the same fibration. Then 7, o f equals 7j-1,405 up to
post composition by an automorphism of the base.

4.1. Invariant curves, Tang and STang. According to [11, Lemma 2.13] and [10,
Section 3], there is a unique reduced, effective, and ['-invariant divisor Dr in X such
that:

(1) the I'-periodic irreducible curves C' = X are exactly the irreducible components C;
of Dr;
(2) the intersection form is negative definite on

(4.1) V(Dr) := Vect([Cy],i = 1,..., k) « H*(X;R).

Remark 4.3. If g € Hal(I"), the divisor Dr is made of irreducible components of fibers
of 7y, but Dr does not contain any complete fiber: indeed the intersection form is neg-
ative definite on V(Dr) < H?(X; R), while the self-intersection of a fiber is 0.

For (g,h) € Hal(T')?, we let Tang(m,, 7,) be the set of points 2 € X such that
(dmg A dmy)(x) = 0, and define

(4.2) Tangr = (|  Tang(m, m)
(g,h)eHal(T")?2

In plain words, = ¢ Tangy. if one can find ¢ and % in Hal(I") such that 7, and 7, are
transverse projections in a neighborhood of z (this is compatible with our convention for
T4, see Remark[4.2). Note that by definition if /" is a multiple component of a fiber of 7,
then dr, A dm, = 0 along F for all h € Hal(T') (see §5.2.2|for more on this). Let Tang;.
(resp. Tang®) be the union of the 1-dimensional (resp. 0-dimensional) components of
Tangp. We also put

4.3) STang(m,, m,) = Tang(my, 7,) U Sing(m,) U Sing(my,)

and

(4.4) STang. = (|  STang(m,, m),
(g,h)eHal(T")2

and define STangy. and STang similarly.

Lemma 4.4. The reduced divisors given by Dr,Tangr. and STangt. are all equal. The
0-dimensional parts Tangy. and STang. are finite I'-invariant sets.

Proof. By definition, Tang(I") and STangy are I'-invariant algebraic sets, and STang;.
contains Tangg. So, Tangy.  STang; < Dr. Now, fix g € Hal(T"). If C'is a g-periodic
irreducible curve, Lemma entails that 7,(C') must be a point. So, all fibrations 7,
must be tangent along any component of Dr, and it follows that D = Tangf. The
second assertion is straightforward. U
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Proposition 4.5 (See [10], Proposition 3.9). There is a normal projective surface X
and a birational morphism n: X — X, such that

(1) n contracts Dr on a finite number of points;
(2) T induces a subgroup of Aut(Xy), i.e. there is an injective homomorphism f € T —
fo € Aut(Xo) such thatno f = foonforall f eTl.

Example 4.6. The Coble surfaces and the surfaces constructed by Blanc (see §2.2)
provide examples of pairs (X, I") such that X is rational and I" preserves a smooth
rational curve or a smooth curve of genus 1, respectively.

4.2. Analytic subsets of positive mass, dgr(/:), and dc(p). Let p be a T'-invariant
and ergodic probability measure. Denote by dr (i) the minimum of the dimensions
k € {0,1,2,3,4} such that there exist an open set U — X, for the euclidean topology,
and a real analytic submanifold W < U of real dimension &k with p(1/') > 0.

Remark 4.7. Pick such a local analytic submanifold W < U with u(WW) > 0 and
dimg (W) = dr(p). By ergodicity, u gives full mass to (J,.p g(W). If W n g(W)
has empty relative interior in W and g(W), then g(WW) n W is contained in at most
countably many analytic submanifolds of lower dimension, so p(g(W) n W) = 0.

Likewise, let dc () be the minimal dimension & € {0, 1,2} such that u(Z) > 0 for
some irreducible local complex analytic subset Z — X of (complex) dimension k.

Lemma 4.8. Assume that U satisfies (i) and (ii’), and let |1 be an ergodic I'-invariant
measure.

() Ifdc(p) = 0, p is supported on a finite orbit of T
(2) If dc(p) = 1, p is supported on Dr.

So, we see that dc (i) = 2 is equivalent to: u gives no mass to algebraic sets (or more
precisely to proper algebraic subsets).

Proof. The zero-dimensional case is left to the reader. So, suppose that 1 has no atom
and let Z < X be a local, 1-dimensional, complex analytic set such that u(Z) > 0. If
Z is not contained in Dr, one can find g € Hal(I") and a holomorphic disk A < Z of
positive measure which is transverse to m,. By Lemma for any k # £, g*(A) n
g“(A) is a finite set; since 1 is atomless and g-invariant, this implies /(| J,-, 9"(A))
D =0 M(A) = oo. This contradiction completes the proof.

oo

4.3. The smooth case. For g € Hal(I'), the (marginal) measure p, := (7,).p is a
probability measure on B,. Let Ry = R(B;) (cf. Equation (3.19)).
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Proposition 4.9. Let 11 be an invariant and T'-ergodic measure which gives no mass

to proper algebraic subsets (i.e. dc(p) = 2)). Assume that there exists an element
g € Hal(I") such that
4.5) pg(B,\Ry) > 0.

Then v is absolutely continuous with respect to the Lebesgue measure on X and its
support is equal to X. Moreover, the density of p with respect to any real analytic
volume form on X is a real analytic function in the complement of STangy.

The proof occupies §§ #.3.1]to [d.3.4] below.

4.3.1. Preliminaries: special subgroups.

Definition 4.10. A pair (g, k) of Halphen twists is special if

(1) the group (g, h) is a non-abelian free group on two generators (in particular the
fibrations 7, and 7, are distinct);

(2) an element f € {g,h) is a power of g if and only if it fixes the class of the
fibration 7, in the Néron-Severi group NS(X; Z), if and only if it permutes the
fibers of g, if and only if it maps some smooth fiber of 7, to a fiber of 7;

(3) Property (2) holds also for A in place of g.

In Assertion (2), the important part is that an f € (g, h) that permutes the fibers of ,
is an element of gZ. Indeed, the following remark shows that the last three properties in
Assertion (2) are always equivalent.

Remark 4.11. Consider an arbitrary pair (g, h) of Halphen twists, and let £ be a scheme
theoretic fiber of 7, (that is, if w is a local coordinate near wy, = m,(£), the equation
of Eis my(§) = w). If f € I' maps E in a fiber E' of ), then the class |f(£)]
must be proportional to [E’], because the self-intersection of f(E) is zero and in the
vector space generated by the classes of the components of F’, all isotropic vectors are
proportional to [E’]. Thus the classes of the fibers of 7, o f and 7, generate the same
ray in H'(X;R); by Remark 3.2} 7, o f~! and m,, are equal, up to post composition
by an isomorphism Bj, — B,. In particular, if g and h preserve distinct fibrations, no
fiber of 7, is entirely contracted by 7.

Lemma 4.12. If g and h are Halphen twists associated to distinct fibrations, then for
large enough n, the pair (g", h™) is special.

Proof. Consider the action of T on H!(X; R). It preserves the isotropic cone

(4.6) {ue H"'(X;R) ; (ulu) = 0},

where (-|-) is the intersection form. Projectively, this cone is a sphere S (which can be
considered as the boundary of a hyperbolic space, see [8, [11]). Now, ¢g* is a parabolic
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transformation on S, fixing a unique point u,. Let us fix a small neighborhood U, of
ug; if x is a point of S\{u,} there is small neighborhood V' (z) of x in S and a positive
integer m (V' (x)) such that (¢")*(V(x)) < U, for every n € Z with |n| = ny,(V(x)). A
similar property is satisfied by /. The points u, and w,, are determined by the classes of
the fibers of the invariant fibrations 7, and 7. We choose U, and U}, small and disjoint,
and ng such that for all n € Z with |n| = ny

4.7) (9")"(Un) = Ug\ {ug} and (h")*(Ug) = Up\ {un} -

In the following we fix such an n. Then, the first assertion follows from the ping-pong
lemma (see [[16], Chapter I).

Let us show that if f € (¢, h"), then f*u, = u, if and only if f € (g). We assume
that f*u, = u,, and we want to show that f is an iterate of g. Write f as a word in
g"and h": f = g™ o h™1 o ... o ks the k; and ¢; being non-zero integers, except
possibly for k; and ¢; which may vanish. The proof is by induction on |f| = [{i ; k; #
0} + [{¢; ¢; # 0}|. The result is obvious when |f| = 0 or 1.

The point u, corresponds to an isotropic line in ' (X; R), and this line intersects
H?(X;Z) on a discrete set Z[ D], for some integral class [D] on the boundary of the
ample cone.Since f* preserves H?(X;Z) and the ray R, [D], it fixes [D]. Thus, f*
cannot be loxodromic (see [8]]).

If f starts with h and ends with g (i.e. ¢;k; # 0), then f* maps U, strictly inside
itself and (f*)~* maps U, strictly inside itself. This implies that f* is loxodromic, a
contradiction. Therefore f starts and ends with the same letter. If this letter were h,
then u, would in fact be mapped into Uj, by f; thus, f starts and ends by a power of
g. Conjugating f by a power of g, we reduce its length without changing the property
f*ug = uy. Thus, by induction, f is a power of g. O

4.3.2. Preliminaries: disintegration. If g is any Halphen twist, we may disintegrate x
with respect to m,: there is a measurable family of probability measures 4., on the
fibers X9 such that

(48) | @ duta) - ng Li () ditguul2) dptg(w)

for every Borel function {: X — R. The measures p,,, are unique, in the following
sense: if y ,, is another family of probability measures satisfying Equation (4.8)), then
,u’g’w = [igw fOr pi,-almost every w. Thus, the measures yi,,, are invariant under the
action of g|xg.

4.3.3. Proof of Proposition 4.9 special case. In this paragraph we assume that there
exists i € Hal(T') such that the pair (g, h) is special in the sense of Definition 4.10} and
let 'y = (g, h). Note that I'; satisfies assumptions (i) and (ii’) from p[20] Let p be as
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in the statement of Proposition 4.9] Let us show that the conclusions of the proposition
hold under the additional assumption that that y is I'1-ergodic (also in this first part of
the proof, the analyticity of the density will only be established outside STang(r,, 73,)).

Let B, be a Borel subset of B, which is disjoint from R, and satisfies y,(B,) > 0.
According to Lemma [3.14] the dynamics of g on X is uniquely ergodic for every
w € B,. Thus, we get:

Step 1.— If w € By, then g xg is uniquely ergodic and ji ., is equal to the Haar
measure \, ., on the fiber X9 ~ C/Lat,(w). Here, Lat,(w) = Z® Z71,(w) and A\, ,, =
(Im(7,y(w)))~tidz A dz, as in Section[3]

Step 2.— We have dc(p) = 2 and j14(Ry) = 0.
The first assertion follows directly from Lemma4.8[and Lemma

For the second one, we argue by contradiction, assuming that there is an analytic arc
v < Ry such that p,(y) > 0. Since dc(p) > 1, we can shorten v to ensure that it does
not contain any critical value of 7,. Set W, = 7, (7). Then p(W,) > 0, so dr (1) < 3.
By ergodicity of i, Jcr, f(W,) is a subset of full measure.

Pick f € I';. If it permutes the fibers of 7, then f € g% because (g, h) is special,
and thus f(W,) = W,; thus pu(f(W,) n 7, (B,)) = u() = 0 in that case. Now,
suppose f does not permute the fibers of 7,. Note that if W, intersects an irreducible
curve C' < X on some non-empty open subset of C, then C' must be a fiber of 7,
because its projection in By is locally contained in . Thus, if w € By and f(W,) n X7
contains a non-empty open subset of X7 then f~! maps X into a fiber of 7, above
7, and this contradicts the fact that (g, h) is special. We deduce that f(W,) n X9 is
contained in a countable union of real analytic submanifolds of dimension 1 in X¢, for
every w € Bj. In particular if w € By, Ag.,(f(W,) n XJ) = 0, and we conclude
that 1(f(W,) n 7' (B,)) = 0 in that case too. Since yu({J;ep, f(W,)) = 1 and
simultaneously u(ﬁg_l(Bg)) > ( we obtain a contradiction, which concludes the proof
of the second step.

Step 3.— From Step 2 we can suppose /i,(B,) = 1. Let us show that yi, := (73,)sp
is absolutely continous with respect to the Lebesgue measure. In particular, h satisfies
un(By\Rp) = 1 too.

Let A — By, be a Borel set of Lebesgue measure 0. Remark [4.11|shows that if X9 is
a smooth fiber of 7y, then X is not contracted by 7, so Th|x8, - X9 — By, is a finite
ramified cover, and Ay, (7 xg) " (A)) = 0. This shows that

(4.9) Mg (T H(A) N X9) =0
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for 1, almost every point w € By. Since 114(B,) = 1 and p,,, coincides with the Haar
measure )\, ,, for j, almost every w € B,, Equation (4.8)) implies p(7;,*(A)) = 0; thus
wn(A) = 0, as required.

Step 4.— The support of  is X.

Indeed, p;, being absolutely continuous with respect to the Lebesgue measure of
By, pn(Ry) = 0. Thus, symetrically, /1, is absolutely continuous with respect to the
Lebesgue measure of 5, and from Equation we deduce that p is absolutely contin-
uous with respect to the Lebesgue measure on X . If U is an open subset of B, X, inter-
sects every smooth fiber of 7, on a set of positive Haar-measure; thus p(X7;) = 14(U)
is positive, and we infer that the support of p, is equal to By. Since fig,, 1S pg-almost
surely the Haar measure ), ,,, we conclude that the support of 1 is equal to X.

Step 5.— The density is analytic outside STang(my, 7).
Let z be a point of X\STang(7,, 7,) and V' be a small neighborhood of x, such that

— w4 and 7y, are everywhere transverse on V/,
— U, :=my(V) and U}, := 7, (V') are small disks in B, and By, respectively,
— 74 (resp. my,) is a proper submersion above U, (resp. Uy,).

In a chart W, mapping X7 to U, x R?/Z?, Equation (#.8) implies that (\Ifg)*(MXiq]g) is
invariant under the action of all vertical translations; the same property holds with re-
spect to 7;,. Coming back to X, these translations act analytically and locally transitively
on V: for every y in V' there is a pair of such translations such that their composition
maps xo to y (V' is not invariant under such translations). Following the proof of [22,
Proposition 1], we deduce that x4 has a real analytic density on V, with respect to the
analytic structure of X . Indeed, embed V' in R* and denote by vol a volume form on R*.
In these coordinates, ;. = & vol, for some non-negative integrable function £. Changing
xo € V if necessary, we suppose that x is a Lebesgue density point for p; this means
that ;(e K )vol(eK) ™" converges to () when € — 0, for every ellipsoid K centered
at xo. If zo 1s mapped to y by a diffeomorphism ¢, preserving 1, then the boundedness
of the distortion of ¢, shows that y is also a Lebesgue density point of 1, with density
£(y) = (Jac(py) (o)) €(20). Now, choosing ¢, as a composition of two translations,
we can assume that y — Jac(p,)(xo) is an analytic function; thus, the density ¢ is
real-analytic in a neighborhood of z. U

4.3.4. Proof of Proposition 4.9y general case. Let p and g be as in the statement of
the proposition. Fix h € Hal(T') such that dm, A dm, # 0. Then by Lemma
we find n > 1 such that (¢”, h") is special; set I'; = (¢, h"). Since Ry» = Ry, the
assumption (4.5)) holds with ¢g” instead of g. However p is not necessarily I'y-ergodic,
so the results of § 4.3.3] cannot be applied directly. To get around this difficulty, we
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use the I';-ergodic decomposition of 4 (see [30]): p = SX Bz du(x) for an essentially
unique, ['-invariant, Borel map (3 :  — [, such that /3, is pu-almost surely a I';-ergodic
probability measure.

Set Q; = {x € X ; dc(B:) = j}, for j = 0,1. By ergodicity, 5,(Dr,) = 1 for
every x € {;. Since p(Dr,) = 0, we deduce that (4(€2;) = 0. For x € €y, 5, gives full
mass to the union of the (fixed) countable set 7, ' (Tor(B;)) N m, '(Tor(B;)) and the
Zariski closed set Sing(m,) U Sing(7,); since dc (i) = 2, we also get 11(€29) = 0. Thus
dimg(8;) = 2 for u-almost every .

So, for z in a subset 2 = X with () = 1, the results of § apply to [3,. There
are two possibilities:

— either ﬁx(wg_l(B;\ R,)) > 0, /3, is absolutely continuous, and its support is X;

—or B.(m; ' (Ry)) = 1.
Denote by €, (for “absolutely continuous”) and by (2; (for “singular”) the set of points
such that the first or second alternative holds, respectively. Both are Borel subsets and
(e U Q) = 1. Assumption (£.3) implies that 1(2,.) > 0. If u(2) > 0, then
w(m; ' (Ry)) > 0, and since y is T'-ergodic, we infer that u(I" - 7, (R,)) = 1. But the
Lebesgue measure of I' - ' (R,) is zero, so § _, B.(T' - 7, (Ry)) du(x) = 0 and we
deduce that j1(£2,.) = 0. This contradiction shows that 1(£2;) = 0 and 11(2,.) = 1.

Finally, if  and y are in €2, then 3, and §3, are I';-ergodic measures of full support,

the densities of which are analytic on the complement of proper analytic sets. So 3, =

By, and this implies that 3, = p almost surely. In particular, p is I';-ergodic and satisfies
the conclusions of § 4.3.3

Remark 4.13. This argument shows that if p is a I'-ergodic probability measure, p
gives no mass to algebraic subsets, and 1,(B;\Ry) > 0 for some g € Hal(T'), then
pg (By\Rg) = 1 for any g’ € Hal(T'): this follows from the absolute continuity of /.

To conclude the proof of Proposition it remains to show that the density of p is
analytic outside STang. For every x € X\STang there exists a pair (¢/, h’) € Hal(T")?
such that x ¢ STang(r,, 73,), and by Lemma we can assume that this pair is special.
By the previous remark, the results of § apply to (¢’,h'). So, p is smooth near z,
and we are done. U

4.4. Dimension < 1.
Lemma 4.14. If dr (1) < 1 then p is either supported on a finite orbit, or on Dr.

Proof. By Lemma we may assume that dc(p) = 2, in particular p, is atomless,
and we seek a contradiction. Pick g € Hal(I'). By assumption there is a (local) real
analytic curve W < X such that y(W) > 0 and W is Zariski dense in X. Shrinking it,
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we can assume that W is an analytic path, transverse to the fibration 7, that intersects
each fiber above 7,(1/) in a unique point. By Proposition my(W) is contained in
R,. Let us disintegrate 1 with respect to m,. Since f, is atomless, Lemma [3.14] shows
that, for y,-almost every w, the measures which are invariant under g,, are atomless;
thus, the conditional measure /., is almost surely atomless and s ,,(W n Xg) = 0.
This contradicts (W) > 0. O

4.5. The totally real case. We are now reduced to the case where dg (1) > 2 and p,
is supported on R, for every g € Hal(I'). The properties of y are summarized in the
following proposition, the proof of which will be given in Section [5

Proposition 4.15. Let ;1 be an ergodic I'-invariant measure. Assume that |1 gives no
mass to algebraic subsets and that j1,(R,) > 0 for some g € Hal("). Then dg (1) = 2,
and there exists a totally real analytic subset > of X\STang. of pure dimension 2 such
that:

(1) u(X) = 1 and Supp(p) = ¥

(2) X has finitely many irreducible components;

(3) the singular locus of 3. is locally finite;

(4) on the regular part of %, p has a real analytic density with respect to any real
analytic area form;

Example 4.16. The main example is when the projective surface X is defined over R,
and (. is a measure supported on X (R) giving no mass to algebraic subsets. This occurs
for instance when I' = Aut(Xg) preserves an area form on X (R) (see Section[2). An
example of a different kind is given in Section [§]

A noteworthy consequence of Propositions and [4.9]is:

Corollary 4.17. The dimension dg(p) cannot be equal to 3.

4.6. Proof of the main theorem, and consequences.

Proof of Theorem[A] If 1 gives positive mass to a proper algebraic subset of X, then
according to Lemma either Assertion (a) or (b) of Theorem [A|is satisfied. Other-
wise, we know from Lemma and Corollary that dgr (1) is either equal to 2 or
4, and exactly one of Proposition or Proposition applies. If dg (1) = 2, Propo-
sition shows that the conclusions of case (c) of the theorem hold. The remaining
case (d) is covered by Proposition In both cases the exceptional set Z is equal to
STangp. O

Proof of Corollary[B| When I' does not preserve any proper algebraic subset, then we
must be in one of the cases (¢) (if dr (1) = 2) or (d) (if dr(p) = 4) of Theorem
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Furthermore STangy. is empty. Thus if dg (1) = 4 we infer that x has an analytic posi-
tive density on X. If dg (1) = 2, note that the analytic surface 3 is smooth everywhere,
since otherwise its singular locus would be a finite invariant subset (see Assertion (4) of

Proposition @.15]). O
Let us point out the following immediate consequence of Theorem

Corollary 4.18. If X is a real projective surface, X (R) is nonempty, I' < Aut(XRr),
and yu is a T-invariant ergodic probability measure on X (R), then

(a) either i is supported by a I'-invariant proper real algebraic subset of X,

(b) or there is a I'-invariant proper real algebraic subset Z of X such that ji is sup-
ported by a union of connected components of X (R)\Z(R) and 1 has a real ana-
lytic density on that set.

In particular if I" does not preserve any proper real algebraic subset of X, | is given
by a real analytic area form on X (R), restricted to a I'-invariant union of connected
components of X (R).

Let X be (a blow up of) an abelian, K3, or Enriques surface, and let volx be the
natural probability measure on X (see[2.I). Likewise, if X is a totally real submanifold
in X, let voly, be the measure induced by the normalized 2-form Qx (see Remark [2.3)).
By positivity of the density of ;o and ergodicity, we obtain:

Corollary 4.19. If in Theorem[A} X is a blow-up of an abelian, K3, or Enriques surface,
then in case (c) i is a multiple of vols, and in case (d) it coincides with volx.

In case (c), this implies in particular that X has finite area. Similarly, case (d) does
not appear in Blanc’s example (see § [2.2).

5. PROOF OF PROPOSITION [4.13]

In this section, we prove Proposition.15] Thus, unless otherwise specified, we study
ergodic invariant measures with dc(p) = 2 and p,(y) > 0 for some g € Hal(I') and
some local, smooth, analytic arc ¥ < R,. The main step of the proof is to show that
extends to an analytic curve o in Bj. From Proposition Fli)‘, we already know that the
support of y, is contained in the closure of R,; however the analytic continuation of ~y
and the support of /4, still could a priori be a complicated subset in B, (see Remark [5.8§).
The main point is to exclude such a phenomenon.

After some preliminaries in §§[5.1] and [5.2] the proof of Proposition {.15]is carried
out in §§[5.3|to
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5.1. Vocabulary of analytic and semi-analytic geometry. Let us recall briefly a few
basic facts from analytic and semi-analytic geometry. A semi-analytic set £ in a (o-
compact) real-analytic manifold M is a subset such that every x € M admits an open
neighborhood U in which £/ n U is defined by finitely many inequalities of the form
f=0o0r f>0,where f: U — R is analytic. The class of semi-analytic sets is stable
under many operations such as taking a finite union or intersection, the closure, the
boundary, the connected components, or the preimage under an analytic map. However
the image of a semi-analytic set by a proper analytic map needs not be semi-analytic:
adding such projections, one obtains the class of subanalytic sets. The main fact that
we will need from subanalytic geometry is: any subanalytic set of dimension < 1 is
semi-analytic. In this way we will only have to deal with semi-analytic sets (see [2} 28]
for more details on these facts).

A point z in E is regular if £ is an analytic submanifold in the neighborhood of x,
otherwise F is singular at x. The dimension of £ is the maximal dimension of £ at
its regular points. We say that £ is of pure dimension if its dimension is the same at all
regular points.

A delicate point in semi-analytic and real-analytic geometry is that the notion of
irreducible component is not well behaved (we will discuss only the analytic case).
To get around this problem, the following notion was introduced by Cartan [15] and
Whitney and Bruhat [32]: a subset F of a real analytic manifold M is C-analytic (or
global analytic) if it the common zero set of a finite number of analytic functions defined
on the whole of M. Equivalently, there is a coherent analytic sheaf whose zero set is £/
(see [32, Prop. 10]). This class is stable by union and intersection. Every C-analytic set
E admits a unique locally finite decomposition £ = | J, E; into irreducible components;
here, the irreducibility means that F; is not the union of two distinct C-analytic sets
(beware that it might be reducible as an analytic set, see [32, §11.a]). f E < M isa
smooth analytic submanifold, or if £ is locally a finite union of smooth plaques of the
same dimension, then £ is C-analytic. Indeed, in this case it is easy to see that for every
x € E there exists an open neighborhood U > z and a finite family of analytic functions
fi; on U such that for every open subset V' < U, the intersection of the zero sets of
the f; coincides with £ in V: this implies that £ is the zero set of a coherent analytic
sheaf, hence it is C-analytic. Another useful fact is that every 1-dimensional analytic
set is C-analytic; more generally, if £ is analytic, the canonical ideal sheaf of analytic
functions vanishing on E is coherent outside a codimension 2 subset of £, (see [25]).

A semi-analytic subset > — X of pure dimension 2 is totally real if at every regular
point x € ¥, T, is a totally real subspace of T, X, that is, j,(T,%) ®r 1,2 = T, X,
where j, is the complex structure (multiplication by 4/—1).

5.2. Preliminaries and conventions.
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5.2.1. Choice of Halphen twists. Recall from Remark [4.13|that under the assumptions
of Proposition pg(Ry) = 1 for any g € Hal(I'). We fix a pair of elements
(g,h) € Hal(T")? associated to different fibrations. This pair will be kept fixed until
Subsection |5.7|. Recall from Notation that we denote by X the fiber 7, " (w), and
similarly for h.

5.2.2. A decomposition of the tangency locus. By definition, the tangency locus Tang(r,, 75)
is the locus where the map (7,,7,): X — B, x B}, is not a local diffeomorphism;
Tang(m,, 7) is a curve that contains all multiple components of fibers of 7, and 7y, as

well as the curves along which the foliations determined by these fibrations are tangent.

To be more precise, we split Tang(r,, ) into four parts,

(5.1) Tang" (7, m,) U Tang™ (7, m,) U Tang™ (7, 71,) U Tang™ (7, m5)
which are defined as follows. An irreducible component C' of Tang(r,, 73,) is

— contained in Tangﬂ(ﬂg, 7,) if and only if C'is contained in a fiber of 7, and in
a fiber of 7, (in that case, C' is both ¢ and h-invariant, and its self intersection is
negative, see § 4.1));

— contained in Tangft(ﬂg, ) if and only if C' is a multiple component of a fiber
of m, but is generically transverse to 7y;

— contained in Tangtf(ﬂg, 7y, if and only if C'is a multiple component of a fiber
of 7, but is generically transverse to 7,;

— contained in Tang"(m,, 7;,) if it is generically transverse to both fibrations.

The superscripts f, t stand for fiber and transverse.

Lemma 5.1. If Tangtt(ﬂg, ) is empty, the fibrations 7, and m, are both isotrivial.

The isotriviality of 7, means that the j-invariant of the fibers X is constanton B;. In
this case, the discussion of § shows that no fiber of 7, is of type [ or I}/, b > 1, and
that after a finite base change, m, becomes birationnally equivalent to a trivial fibration.

Proof. 1f Tang" (7, 7,) is empty, the foliation associated to 7, is transverse to 7, on
w;l(B;’) (though a multiple fiber of 7, may intersect every fiber of 7). If 5: [0, 1] —
B, is a smooth path, the holonomy of this foliation determines a holomorphic diffeo-
morphism holg: X ,g(o) - X 5(1)- Thus, all fibers of 7, are isomorphic, and likewise for
Th. ]

5.3. Geometry of g-orbits. Let us fix a Kdhler metric on X, given by a Kihler form «,
as well as a Kihler form x4, on B, (hence also on By, see § . Lengths, areas, and
diameters will be computed with respect to these metrics.

According to the Notation [3.13] a circle in an elliptic curve is a translate of a 1-
dimensional, closed, and connected subgroup. Being invariant under translation, this
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notion is well defined on X, for every w € B). If w € R]; and z € X, the closure of
its g-orbit is a union of k circles; the circle containing z is denoted Lg(z). In the next
lemma we use the notation introduced in Section the norm of a slope (p, q) is, by
definition |(p, q)| = (p* + ¢*)"/2. Since circles are homotopically non-trivial and long
circles become asymptotically dense, we get:

Lemma 5.2. Let U € B, be a disk, endowed with a continuous choice of basis for
H,(X9;Z) and a local section of 7.

(1) There is a real number ((U) such that the length of every circle of every fiber X9,
forw € U, is bounded from below by ((U).

(2) Foreverye > 0, there is a real number D > 0 such that for all (p, q) with ||(p, q)| >
D, and all w € U, every circle of slope (p,q) is e-dense in X9. In particular,
for every € > 0, there is a real number D > 0 such that if |(p,q)| > D, and
w € R’pf’q(U)\ Tor(U) for some k then the circle L)(z) is e-dense in XY, for every
ze X9

(3) For every ¢ > 0, there is an integer ky > 0 such that for every k > ko, every
w e R];’q(U)\Tor(U), and every z € X3, the orbit closure L,(2) is e-dense in X9,

As a consequence, if K is a compact subset of B;, there is a real number ¢(K') such
that the length of every circle of every fiber X7, for w € K, is bounded from below
by ¢(K'). Another consequence is:

Lemma 5.3. For every 6, > 0 there exists 6o > 0 such that if w € By is do-far from
Crit(m,), any circle in X9, escapes the 6,-neighborhood of Tang(m,, 7).

Let 7 denote half of the injectivity radius of the metric x,. For every w € B, the
(riemannian) exponential map is a diffeomorphism from the disk of radius 7 in 7,5,
to some open subset of 53,. By definition, the diameter of an interval J < T,,B, is its
length with respect to kg ,,; its radius is half its diameter.

Now, let I < B, be a smooth real analytic arc, and let w be a point of /. The tangent
direction to [ at w determines an orthogonal decomposition of 7', B, into a direct sum
TwI ®r (T, I)*. Let r be a positive number < 7. We say that I is of size (at least) r at
w if its preimage in 7, B, by the exponential map contains the graph {s + ¢(s) ;s € J}
of a function ¢: J < T,,I — (T,,I)* such that:

(i) % is defined on an interval J of radius r around 0 in 7}, /;
(ii) ¥(0) = 0, its first derivative ¢’ is bounded by 1, and its second derivative )" is
bounded by 1/r.

Note that since ¢’ is bounded by 1, v takes its values in an interval of length < r in
(T, 1)*.
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This definition is scale invariant. Similar notions can be defined on B}, or on X, or
along the fibers XJ. When talking about the size of an arc, it should be clear from the
context whether we are working in X, B, or B},

Since circles on a torus are geodesics for the flat metrics, we get:

Lemma 5.4. For every 0 > 0 there exists r1 = r1(6) > 0 such that if w € By is such
that dist(w, Crit(m,)) > 9§, then any circle of X9 is of size at least ry at any of its points.

The ramification points of the restriction of 7, to the leaves of the foliation induced
by 7, are located in Tang"™ (7, 7,) U Tang™(7,, 7,) U Tang® (7, 77,). This implies:

Corollary 5.5. For every § > 0 there exists ro = r9(8) > 0 such that if ¢ € X is §-far
from Tang" (7, m,) U Tang™ (7, 7,) U Tang™ (7, m,), then the projection under ., of
any circle in X fjh (¢) has size at least r5 at 7g(&).

Of course a similar result holds by swapping g and h.

5.4. Local structure of 1. Recall that we work under the hypotheses of Proposition|4.1
By assumption, s,(R,) is positive and (Tang(m,, m,)) = 0, because the tangency lo-
cus Tang(m,, 7,) is a proper algebraic subset of X. And by Remark te(Ry) =
pn(Rp) = 1.

Pick an analytic arc y € R, such that z,(y) > 0; shrinking + if necessary, we choose
an open subset U as in Section and parameters («, ) and (p, ¢) such that v is a
smooth, real analytic subset of Rg‘;qﬁ (g; U) diffeomorphic to an interval. Then

(5.2) 0 < p(m, (7)) = plm, ' (v) N, (Re)) < 1

consequently, there is an open subset U’ of B} and a smooth analytic arc 7’ in some
R;,:Z,(h; U') such that yu(, () n m, ' (7')) > 0. On the complement of Tang(my, ),
the intersection 7' () n m, '(7') is transverse; thus reducing y, U, v/ and U’ again if
necessary, we may assume that (7, 7) is a local diffeomorphism from X7, n X7, to
U x U'; in particular the intersection 7, (v) n m, ' (/) is transverse. Then, the set

(5.3) 71';1(’}/) nml(Y)=S u---usS

is a disjoint union of small “squares” — diffeomorphic to v x 7/ — which, for w € ~,
intersect the fiber XJ along pieces of circles (of the same slope). In what follows, we
denote by S any one of the squares S; such that ;(.S;) > 0; hence

(5.4) Scrt(y)nmt(y), wS) >0,

g
and (mg, m,): S — v x 7/ is a diffeomorphism. Thus, dr(;) < 2, and Lemma [4.14]
implies

Lemma 5.6. dg (1) = 2.
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FIGURE 2. This figure represents (one of) the square(s) S. The intersection of
S with X", is contained in the orbit closure L) (z). The points &, w, w' are in
green; the magenta points are critical values of 7, and 7. The pre-image of ~y
in X", is locally contained in L9 (¢).

We now initiate the study of the analytic continuation of y. We say that an arc J < B,
is evenly charged by p, if p1,(J") > 0 for every non-empty, open interval J' < J.
Likewise, we say that a surface S in X is evenly charged by pu if x(S”) > 0 for any
non-empty relatively open subset S" < S.

For w' € 4/\ Tor(By) and ¢’ € X", L;,(¢') is a finite union of circles of X",, and
LY(¢') is invariant under some iterate of h. For p-almost every w’, the conditional
measure /i,y 1S invariant under h,,; as such, it is supported on a union of such orbit
closures. The set S N XZZ, is an interval, which is a piece of the circle Lg(g’ ), for
¢ e S n X", The sef]

(5.5) Lu(S) = | J Ln(€)) (resp. L§(S) = | ] L3(€)),

¢'es ¢'es
is a finite union of real analytic annuli — each of which a circle bundle above +'— which
is h-invariant (resp. is an h*-invariant annulus, for some k& > 0). For ¢’ € S such that
w' = m,(¢') ¢ Tor,(By) the restriction of the conditional measure /i, v to LY (¢') is the

Haar measure. Projecting under the real analytic map 7,, we get:

Lemma 5.7. With the above notation, 7,(L%(S)) is a semi-analytic curve containing
7, which is evenly charged by 4. In particular any (semi-)analytic continuation of vy
contains 7,(L(S)).

“We must take the closure in Equationbecause L9 (2') is reduced to {2’} when 7y, (') € Tor(By).
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Remark 5.8. Pick ¢’ in S and set w’ = m,(¢'). If L) (&) is disjoint from the ramification
points of my|x» = X" — By, then m,(L)(S)) is an analytic loop in B,, and this loop
provides a coriulplete description of the analytic continuation of . On the other hand,
if L) (&) hits a ramification point of my|xx , its image my(Lp (') should be thought of
as a segment which is strictly contained in the analytic continuation of ~, and whose
endpoints are contained in the projections of the ramification points. As £ moves in S,
the endpoints and the length of 7, (L (£)) may vary within a curve contained in R, and
after successively saturating as in (5.5)), 11, might fill up a complicated, possibly dense,
curve in By

Lemma 5.9. The restriction of | to S is absolutely continuous with respect to the
2-dimensional Lebesgue measure on S and its density with respect to any real analytic
area form on S is given by a positive real analytic function.

The argument is the same as in Step 5 in the proof of Proposition Now, from
Section [5.3] we get the following a priori bound on the analytic continuation of .

Lemma 5.10. For every § > 0 there exists v = r(6) > 0 such that if v € R, is an
(analytic) arc with p,(y) > 0 and w is a point of y such that dist(w, Crit(m,)) > 6,
then vy admits an analytic continuation to an analytic arc of size r at w, which is evenly
charged by .

Proof. We may assume that w € v\ Tor(B,). With notation as above, pick { € X9 n S.
By Lemma |5.3] there exists £’ € L)(&) such that dist(¢’, Tang(my, 7)) > 02 = d2(6).
By g-invariance of y, £’ plays the same role as £. Now by Corollary my(LY(€")) has
size 75(05) at my(£") = w and applying Lemma [5.7] concludes the proof. O

Remark 5.11. It may happen that the local equation for some Rgf (By) is of type
Im(w*) = 0, with w in a small disk D. < B; (see the definition of NT, in § .
At the origin of such a disk, the curve is singular, with several branches going through
the origin. Lemma [5.10|says that if € « r and ~ is a smooth analytic arc in one of these
branches, then it can be continued to an evenly charged analytic arc accross the origin.
So, if one of the branches is charged by p, its symmetric with respect to the origin is
charged too.

5.5. Analytic continuation of v: the isotrivial case. From this point the proof splits
in two separate arguments according to the isotrivial or non-isotrivial nature of the fi-
brations (more precisely, according to the emptyness, or not, of Tangtt(wg, Th))-

Lemma 5.12. If 7, is isotrivial there is an analytic subset ¢ of B, such that:

(1) o is of pure dimension 1 and extends ;
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(2) p14(6) > 1/2 and Supp(pig|s) is a semi-analytic set ¢ < G; it is a finite union of
immersed real analytic loops in B, and immersed real analytic arcs with endpoints
in Crit (7).

Proof. As observed in §[5.2.2} 7, becomes birationally equivalent to a trivial fibration
after a finite base change B’ — B,. In particular its monodromy is finite and the curves
Rl;,q define global analytic subsets of B’. Coming back to 7,: X — B,, the local
curves RF (U) extend as (singular) global analytic subsets of By. Since 14(Ry) = 1
we can find a finite number of smooth analytic arcs 7, . .., 7, contained in R, such that
fig(71 U - -+ U ) > 1/2. Since every 7; is contained in some RF (U), it is contained
in a global analytic subset 6; of B,. We put & = &, U --- U 6. By Lemma([5.10] every
irreducible component of ¢ N B of positive mass is evenly charged by 1,. To conclude,
we define o to be the closure of the union of the components of 6 n By charged by
1. (

5.6. Analytic continuation of : the general case. By Lemmal5.1] if Tang" (m,, m,) =
& then my and m;, are isotrivial; in that case, Lemma applies. Now, we assume
Tang" (7, 7,) # &, and our goal is to establish the following lemma.

Lemma 5.13. If Tang" (m,, m,) # &, then there exists a unique analytic curve o, in
B, such that

(1) if p is any ergodic I'-invariant probability measure such that ji,(R,) > 0, then

fg(og) = 1;
(2) if vy < o, is any arc, then p(y) > 0 for at least one such measure.

This result is both stronger and weaker than Lemma[5.12} indeed its conclusion holds
for all invariant measures with u,(R,) > 0 (this fact will be important for Theorem [C));
on the other hand it gives no information on the structure of the analytic continuation
o, near Crit(7,) (this issue will be investigated in the next section).

The curve o, is defined by this lemma. Note that, at this stage of the proof, it could
contain for instance a sequence of small topological circles converging to a critical value
of 7,. We shall exclude such a possibility later.

5.6.1. An elementary lemma. Let M, : C — C be the monomial My(z) = 2*.

Lemma 5.14. Let r be a positive real number. For any 0 < € < r there is a constant
C..(g) > 0 with the following property. If zy € C satisfies |zy| < ¢, and if y is an analytic
arc of size = r at zy with 0 ¢ -y, then My,(~y) contains a point at which the curvature is
> C,(e)e™ .
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FIGURE 3. A (green) curve of bounded geometry passing near the origin
and its image (in blue) by z — 2?2 on the left, and z — z° on the right.

Proof. We prove it via an explicit computation; see Figure[5.6.1|for a graphical explana-
tion. We may assume that » = 1, so that 0 < € « 1, and that ~y is of size 1 (we truncate ~y
if necessary). Let z; be the point closest to 0 on . Applying a rotation we may assume
that z; = n € R, for some 1 < <. Since 2; is closest to the origin, v is a graph over the
y-axis: it is of the form x = ¢(y), with p(y) = n + ay® + O(y?). Since ~ has size 1 at
2o and € « 1, it has size > 1/2 at z;, in particular || < 2. In polar coordinates (p, 6),
the equation of +y is of the form

1
(5.6) p=1(0)=n (1 + (5 + om) 0 + 0(93))
for 6 small. Thus the polar equation of M;(y) near § = 0 is
1/1
(5.7) p=v(0/k)F =n" (1 + 7 <§ + om) 0 + 0(03)) ,

and finally the value of the curvature at ¢ = 0 is

2 2 N2 " k—1—=2
(5.8) p ‘*‘2 (p )/ : 372P %TO‘” >nF et
(P> + ()2 |,
This completes the proof. U

5.6.2. Extension of y in By: proof of Lemma Let p be an arbitrary I'-invariant
and ergodic measure, giving no mass to algebraic subsets, and assume that y,(R,) > 0.
Then, by Remark [4.13] 1., gives full mass to R,.

Fix a small open disk U € B, in which we have fixed a section of 7, and a continuous
choice of basis for H'(X?,Z). In U, R, is the union of the analytic curves R’;q(U ) (see
§3.5). To prove the lemma, we seek a uniform bound on max(k, ||(p, ¢)|) for the indices
(k, (p,q)) such that ug(R’;q(U )) > 0 for at least one I'-invariant ergodic measure .
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Note that even for a single y, 1, could charge infinitely many of the R]; ,(U); due to the
monodromy of the fibration, the analytic continuation of an arc v of positive mass could
come back infinitely many times in U, each time along a new R'}iq(U ).

Suppose that there is a sequence of curves 7,, = R’;& o, (U) withmax (ky, | (P, qn)l]) —
o such that p, 4(7,) > 0 for some I'-invariant measures /1, (that depend a priori on n).
The ~,, are evenly charged (by ), and by Lemma they have uniformly bounded
geometry (the constant r(¢) in Lemma does not depend on fi,,). In particular the

accumulation locus of (7,,) is uncountable.

Over U, there exists ¢ = £(k, p, q), with e(k, p, ¢) — 0as max(k, ||(p, q)||) — < such
that for every w € U, any translate of L, (k, (p,q)) is e-dense in X9 (see § and
Lemma . Hence, there is a sequence (£,) € (R* )N converging to 0 such that L,(¢&)
is e,-dense in X7 for any w € 7,,\ Tor,(U) and £ € X9.

Since Tangtt(ﬂg,wh) is non-empty, it intersects every X¢ along some non-empty
finite subset, which by definition is not persistently contained in Sing(7,). Furthermore
Tang"(7,, 7,) is generically transverse to 7,. So we can pick wy in the accumulation
set of (v,) together with & € Tang™ (7, m,) N X9 such that 7, (&) is 26-far from
Crit(my,) for some 6 > 0, and &; can be locally holomorphically followed as a point
& (w) in Tang" (my, m,) N X9 for w near wy.

Pick a sequence w,, € ,,\ Tor,(U) converging to wy, and consider the corresponding
sequence & (wy,). For each n there is a finite union of annuli A, < X9 such that
7y maps A, onto v,, m,: A, — 7, is a fiber bundle whose fibers are unions of k,
circles of type Lj(£), and p charges A, evenly. We can choose &, € A, such that
0 < dist(&),, & (wn) < 2e,. In Xg, the curve L)(&;,) is a circle, with uniformly bounded
geometry. Near & (w,) the restriction of 7;, to X7, is locally conjugate to z — 2* where
k > 2 is the order of tangency between 7, and ;, along Tang" (7, 75) at & (w,,). The
local change of coordinates that transforms 7, into z + z* depends on the fiber, hence
on w,, but the first and second derivatives of these changes of coordinates are uniformly
controlled, independently of n. Thus, Lemma [5.14] shows that the curvature of the
projections (L) (&},)) goes to +00 as n — 0. But m,(L)(&),)) is a piece of Ry, which
is charged by iy, and is d-far from Crit(7,) for large n; so by Lemma its curvature
must be uniformly bounded (with respect to n). This is a contradiction, and the proof of
Lemma [5.13]is complete. U

Remark 5.15. The proof shows that under the assumptions of Lemma |5.13| if v is an
arc of a curve R’;’ , such that j1,(7y) > 0 for some invariant probability measure /i, then
max(k, |(p, ¢)|) is uniformly bounded.

5.7. Conclusion of the proof of Proposition .15
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Proof of Propositiond.15 Let g be as in the statement of the proposition. Recall the
definition of STang from (4.4):

(5.9 STang = ﬂ (Sing(my, ) U Sing(mp,) U Tang(my,, Th,))
(h1,h2)eHal(T")2

By the Noether property, this infinite intersection can be written as a finite intersection.

Thus, we can choose a finite set of Halphen twists (g;)1<i<s With g; = ¢ and such that

if z ¢ STangr, there exist ¢ # j such that the fibers of 7 , and 7y, at x are smooth fibers

and are transverse at x.

For x ¢ STangy, there are £ < ¢ and a (Zariski) neighborhood V' 5 x disjoint from
Sing(m,, ) N Sing(m,,) such that 7, and 7, are transverse in V. Let us show that in V/,
Supp() is a real analytic set satisfying the conclusions of the proposition. There are
two possibilities:

(A1) either there exists k& # ¢ such that Tang"(r,, ,7,,) = &; then by Lemma
74, and 7,, are isotrivial;
(A2) or for every k # (, Tang" (7, , 7,,) # .

e Let us first complete the proof in case (Al). Fix k # ¢ given by Condition (Al)
and apply Lemma [5.12} there exist analytic curves 6, in By, and G, in By, such that
fig,(6x) > 1/2 and pug,(6¢) > 1/2. Then Sy 1= m,'(6,,) N 7, (Gy,) is a real analytic
subset of X such that M(Ekl) > (0. Observe that Ekl is C-analytic in X (see § . for
this notion): indeed the curves o, and 7, being of dimension 1, are defined by global
equations in B,, and B,,, hence so does ¥y = ngl(O'gk> N, (Gg,) on X. Let >0
be an irreducible component of j; such that ;(Xo) > 0. If f is an element of T',
1(f(20)) = (o), and pu(f(X0) N o) = 0, unless f(Xq) N X contains a non-empty,
relatively open subset. In the latter case f (20) >o. Thus, a finite index subgroup '
of I' fixes f]o. Define

(5.10) S = Uf (30) = U f(Zo0)
fer fel’/Ty

This is a C-analytic subset of X (hence of X\STangy) such that ;(3) = 1. We finally
define X to be the union of the irreducible components of i\STamgF that are charged by
p. Using the I'-invariance of X'\STang . and repeating the previous argument shows that
Y’ has finitely many irreducible components which are permuted by I' (Assertion (2) of
the proposition), and by construction 3 (hence ¥) is semi-analytic in X. By definition
w(X) = 1.

Now choose any irreducible component >; of > and any = € ;. Around z, there
are two transverse projections 7, and m,,. The results of §§ and imply that
%, is locally a finite union of “squares” of the form 7' (v) N 7, ' (v') (where + and
~" are smooth analytic curves), along which p has a positive real analytic density. In
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particular ;(31) > 0 and X is evenly charged by p.. Thus, Assertions (1) and (4) of the
proposition are established.

It remains to prove Assertion (3). For this, note that if non-empty, the 1-dimensional
part of Sing (X)) is I'-invariant. Suppose we can find an arc 3 in Sing(X). If 7,(5) were
not a point, the closure of the g-orbit of 8 would contain a 2-dimensional annulus that
would be contained in Sing(X): contradiction. Thus 7,(/3) is a point, and so is 7, ()
for any ¢’ € Hal(T'). This contradicts 5 = X\STangf. Thus, Sing(X) is a discrete
subset of X\STangt..

e In case (A2), we fix k # ¢ and apply Lemma to 7, and m,,: it yields an-
alytic curves oy, in By and o4, in B;, such that pg, (0x) = 1 and j4,(0y) = 1. Set
Su = m, (0g,) 0w, (0g,); it is a 2-dimensional totally real C-analytic subset of
X\(Sing(m,, ) v Sing(m,,)). We then further restrict it to X, := X\STang(ny, , 7))
and define Y., to be the union of irreducible components of ike N Xy of positive p-
mass. Note that ;(X,) = 1. From the analysis of § we know that any irreducible
component of Y, is evenly charged by . So, for any other pair (£, ¢’), the equality
w(Epe N Xye) = 1 implies that the analytic sets ¥y, and Xy coincide on Xyp N Xprpr.
Thus the ¥, patch together to form a real analytic subset 3 of |, ., X = X \STangy.
Since it is locally a finite union of 2-dimensional real analytic (and totally real) plaques,
we infer that ¥ is C-analytic in X \STang. Using the I'-invariance of X\STang ., we
see that any component 3} of positive mass is invariant under a finite index subgroup of
I" (see Equation (5.10) and the lines preceding it); hence, ¥ has finitely many irreducible
components. The remaining properties of > are obtained exactly as in case (Al), and
the proof is complete. U

Remark 5.16. The proof shows that if the curve o, constructed in Lemma is semi-
analytic in B, then the surface X is semi-analytic in X. This holds automatically in
case (Al).

6. SEMI-ANALYTICITY OF ¥ AND COMPLEMENTS

In this section we continue the investigation of case (c) of Theorem [A| by studying
the semi-analyticity of 3. This leads to Theorem |A’| in § and also prepares the
ground for Theorem [Cl We keep the choice of Halphen twists ¢, A from § By
Remark [5.16|the semi-analyticity of X is already established in the isotrivial case, so:

throughout this section we assume that Tang" (7, 7,) # &.

By Remark [5.16] we only need to show that the curve o, from Lemma [5.13] admits a
semi-analytic continuation to B,. So, the work takes place near the singular fibers of 7.
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6.1. Preparation and strategy. Recall that locally in B, o, is a union of smooth
branches with uniformly bounded geometry. Recall also from § [5.1] that analytic curves
have well-defined irreducible components.

Lemma 6.1. Assume that Tangtt(wg, mn) # . Any irreducible component of o, is
either an analytic loop in B or an immersed line converging to Crit(my) at its two
endpoints.

Here by analytic loop we mean an analytic immersion of the circle, with possible
self-intersections. And by an immersed line we mean an analytic immersion of the real
line R — B,.

Proof. Let o be a component of o,. If o is compactly contained in B, then by Lem-
mas and it is an analytic curve in B, and we are in the first situation. Oth-
erwise, there is a semi-infinite branch o* of o; since o is analytic outside the finite
set Crit(7,) and the accumulation set of o™ is connected, we deduce that the accumu-
lation set of o is reduced to a singleton {c,} < Crit(m,). Then the second branch
must accumulate Crit(r,) as well (otherwise o would be an analytic loop) and we are
done. U

From now on we study the structure of o, locally near a fixed s € Crit(m,). We
already know that o, is locally a union of smooth branches of the form Rfj”qﬁ , with
(o, B,p,q) € Q*/Z* x Z2. The study of o, will employ two types of arguments:

— first, we only use the dynamics of g and analyze the curves Rf,‘,f near s, as started
in Section 3| The rest of the group I' is not taken into account. This allows us
to make some operations (base change, blowing down (—1)-curves in fibers of
T4, €tc) which are not I'-equivariant but preserve the curves R;‘;qﬁ . This analysis,
which is also crucial for Theorem|[C| is developed in §6.2]

— then in we take into account the whole action of I' on the singular fibers;
doing so, we have to work on X, without simplifying the fibration 7,. This is
where condition (AC) enters into play.

6.2. Geometry of the curves Rgf. As explained above, in this paragraph, the only
information that we retain from the dynamics of I' is the existence of the curve oy, its
geometric properties, and the fact that it is locally a union of smooth branches of the
form Rg;qﬂ . After base change and some birational modification, as described in §§
and [3.3.4] which we simply refer to as the “reduction” of the singular fiber, we only
have to consider a central fiber X7 of type [, (that is, a regular fiber) or [, with b > 1.

6.2.1. Case 1: type Iy. This corresponds to the stable reduction of fibers of type ,, 1,
I I IV, 15, IT*, I11*, IV* and their blow-ups.
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Lemma 6.2. If the reduction of X7 is of type Iy, then o, admits a semi-analytic ex-
tension at s. In particular it admits only finitely many irreducible components in a
neighborhood of s.

Proof. We may, and do assume that X7 is of type I, (but the results obtained so far for
0,4 hold only outside s).

Fix a pair of disks V' € V' centered at s, with a local section of 7, and a fixed
basis for (XY, Z). Recall the real-analytic map 7: V' — R? introduced in §3.2|and
the definition (3:16) of R2;7(V) in terms of T', which says that locally R2:7(V) is the
preimage of a straight line under 7, in particular every branch of R%#(V)\ {s} admits a
semi-analytic extension at s. In V, o is a union of branches of R%7(V)\ {s}. We need
to show that o, includes only finitely many such branches. For this, observe that by
Lemma|5.13| o, is analytic in V'\V. So if we can show that any irreducible component
of o, in V reaches 0V, the finiteness follows. This relies on a topological argument that
avoids explicit computations and will be used again below to prove Lemma|[6.3]

By Lemma[3.9we may assume that either 7" is a diffeomorphism from V"’ to V’ or that
s is the unique critical point of 7" in V’. Suppose that some branch ~y of R%:7(V)\ {s} is
completely contained in V' (see Figure 4| below): it is either an analytic loop in V\ {s}
or an immersed arc clustering at s at its two ends. We claim that y contains a critical
point of I', which is a contradiction. Indeed, parameterize v by a smooth immersion
¢ :(0,1) — V, which extends continuously to [0, 1], with ¢(0) = ¢(1) = c¢(withc = s
if v is not a loop). Then, T o ¢ is a smooth map from (0, 1) to the line (o, 8) + R(p, q),

FIGURE 4.

it is continuous up to the boundary, and 7" o p(0) = T o ¢(1); by Rolle’s Theorem it
admits a critical point in (0, 1), as claimed. O
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6.2.2. Case 2: type I, b = 1. This corresponds to the stable reduction of fibers of type
Iy, 1y, I (with b > 1), and their blow-ups. As before we fix a pair of disks V' € V'
centered at s. The real analytic map 7" is only locally defined in V'\ {s}, but its critical
points form a well defined subset of V'\{s} and, by Proposition we can assume
this set to be empty. We resume the computations from §3.60 From Equations (3.18)
and (3.6), there is a coordinate w around s in which s = 0 and the equation of Rg"f is

_ b
©.1) m (t(w) (a + B logw)> _o.

p+q%logw

here log w is viewed as a multivalued function and ¢(w) is a well-defined holomorphic
function near the origin (see § . As already observed, the curve Rg}f depends on
(a, B) € Q? only through qa — p3 € Q/Z; we denote by k the order of this torsion point

qa —ppe Q/Z.

Lemma 6.3. If R>"F admits a compact component in V\ {s}, then ¢ = 0 and this com-
ponent winds non-trivially around s.

Note that the notion of slope (p, ¢) depends a priori on our choice of local coordinates,
but the property ¢ = 0 does not: indeed the action of the monodromy around the loop
is given by (p, q) — (p + bq, q) (geometrically, circles of slope (1,0) correspond to the
“vanishing cycle”).

Proof. Let C be such a component. It can be parametrized by a degree 1 immersion
¢ : S' — C (not necessarily injective, for C' may have self-crossings). If C' does not
wind around the origin, there is a continuous determination of 7" o ¢ on S!. In this way,
T o ¢ is a smooth map from S* to a line of slope (p, ¢) in R?, so it admits a critical point.
This contradicts our choice of V’. So, the winding number /- around the origin is not
zero. Consider a small open disk U < V'\{s} containing a point w of C. If we follow
the local determination of 7" along C' by turning counterclockwise around the origin, 7'
is composed with the monodromy (u, v) — (u-+{cbv,v). Thus, in U, C locally satisfies
an equation of the form £7'(z,y) € R(p, q) as well as kT'(x,y) € R(p + nlcbg, q) for
every n € Z. Since C' has only finitely many components in U, this implies ¢ = 0. [J

Lemma 6.4. Assume that the reduction of X9 is of type I, b > 1. Let C be a branch of
oy in V\ {s} with ¢ = 0 along some open subset of C. Then C admits a semi-analytic
extension at s.

Proof. Since (p,q) is primitive, p = 1 and in some small disk U < V\ {s}, C' is of
the form R‘ibﬁ . We can choose («, 3) of the form (0, 5), and the local equation of C'
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becomes

(6.2) Im (t(w) — 5% log w) = 0.

If B = 0 this defines an analytic subset of V. This set contains the origin if and only if
the imaginary part ot ¢(w) vanishes at w = 0, in which case C' coincides with a branch
of {Im (t(w)) = 0} \ {0}.

If 5 # 0, we write w = e~ * as in §3.6, where s = = + iy ranges in some right half
plane = > xy. The Equation (6.2) rewrltes as

(6.3) Im(t(e™®)) — %x =0, thatis, f(z,y)— gx =0,

where #(,y) is (27) -periodic in y and admits a finite limit Im(¢(0)) as @ — +c0; this
defines an analytic curve C in the s- plane. In particular  is uniformly bounded along C,
hence C' is contained in a vertical strip {zo < = < xl} The branch C' is the projection
under s — e ° of a connected component Cy of C. It is contained in the annulus
{exp(—z1) < |w| < exp(—xp)} and it is an analytic subset of this annulus because it is
contained in 04. According to Lemma C' must then be a loop that winds around the
critical value s of 7. U

Remark 6.5. If Im(¢(0)) # 0 and § # 0 is small, Equation defines a small loop
around the origin. A priori, at this stage of the proof, o, might have arbitrarily many
small components of this type, converging to s. We shall rule out this phenomenon in

Proposition

Lemma 6.6. If the reduction of X is of type I, b > 1 and if C is a branch of o, in
V\ {s} such that q # 0 along some open subset of C, then one end of C' converges to s
and the other one escapes V. There are at most finitely many such branches in o,.

Proof. The last statement follows from the first because every such branch reaches V'\V
and o, is analytic in V'\ V.

Since ¢ # 0, we can choose («, ) of the form («,0) for some o € Q, and the
equation of C' becomes

6.4) Im (t(“’)—_a> 0
P+ q2”r log w

for some (primitive) slope (p, q). The denominator of this expression does not vanish
because |w| < 1. Again, we shall write w = e™*, s = = + iy, with x > 27 = 0.

By Lemma C contains a branch that accumulates towards s. If the other branch
escapes V/, we are done. So, by Lemma@ all we have to do is to show that the second
branch does not converge towards s. We argue by contradiction, and parameterize C'
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by an analytic immersion u € R — ¢(u) € V\{s} such that p(u) goes to s = 0
as u goes to +oo and —oo. Along that curve, the function u — t(p(u)) converges
towards ¢(0) as u goes to +o0 and to —oo. Writing w = pexp(2ind), Equation (3.6)
yields ;7(w) = 6 — 5-log(p); hence, the real part 7 of 7 remains bounded while its
imaginary part 75 goes to +o0 along both ends of C'. Now, let us consider the function 7'
on the curve C. We start with a local definition of 7" in a small open subset U < V'\{s}
that intersects C; locally, T'|c takes values in a line L < R? of slope (p,q). Now,
since R is simply connected, the function 7’| can be analytically continued along C'
since its values are locally contained in L, they are indefinitely contained in that line.
Using Equation (3.3)), we can write 7" = (t; — :—;tg, %tg) in U, and this local equality
propagates along C' by analytic continuation. Thus, 7’| converges to (¢1(0), 0) at both
ends. By Rolle’s theorem, we deduce that the derivative of 7’| vanishes at least once
and, by Lemma T has a critical point in V'\{s}. This contradiction concludes the
proof. U

6.2.3. A general finiteness result. The above results give a rather complete account of
the geometry of the branches of o, near a critical value of 7,. However, for fibers of
type I, b > 1, our results do not yet imply that o, is semi-analytic at s: this is already
apparent for the case of curves Rg“;qﬁ with ¢ # 0 in the toy calculations of § Still,
we have the following finiteness result. It does not rely on the choice of a particular
invariant measure, so it is stronger than the finiteness of the number of components of
Y in Proposition This will play a key role in Theorem [C]

Proposition 6.7. If Tang" (m,, ) # &, then o, has finitely many irreducible compo-
nents.

Proof. Since o, is analytic in B, only finitely many components of o, intersect any
given compact K € Bj. So, we can work locally near some fixed s € Crit(m,). By
Lemmas [6.2]and [6.6] the only case to deal with is that of fibers reducing to type I, and
branches of type R]f,o (i.e. with ¢ = 0). According to (the proof of) Lemma we have
to rule out the existence of an infinite sequence of small loops of the form R(fjg", with
B, — 0, winding around the origin s and converging to it (see Remark [6.3). For this
we come back to the analysis of the local structure of invariant measures from § [5.4]
If an arc v Rﬁ’;g is locally contained in o, in some open set U < V'\ {s}, there ex-
ists an ergodic invariant measure £ such that for w € v\ Tor,(U), its conditional
on X puts positive weight on some circle L; (&) of slope (1,0) through ¢ (see §.
Then, the g-invariance shows that ji,,, puts positive mass on each of the k& compo-
nents of L,(&) ~ L, (k, (1,0)), where k is the order of /5 in R/Z (see the definition of
Ly (k, (p,q)) in § 3.5.1]and the discussion around Equation (3.3))). Now, since 3, tends

to 0, its order k,, tends to infinity. Near s, this means that when o, contains a component
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of type R?:g“, it contains also a component of R(l]:%ﬁn forall j =1,...,|8, . Fixd >0
small and consider the level sets R%’B " for & < jf, < 20. Then, from Lemma (see
Remark [6.5), this creates an accumulation of components of o, away from Crit(m,),
which is a contradiction. U

6.3. Condition (AC) and conclusion. If X! is a singular fiber of 7, with reduction of
type I, b = 1, we define the active components of XY to be the set of its irreducible
components which are not contracted during the reduction process. More precisely, if
XY is not relatively minimal, there exists a unique birational morphism ¢ : X — X',
with X’ smooth, so that 7, o e~ is relatively minimal: no fiber contains a (—1)-curve.
By definition, the components of the exceptional divisor of ¢ are not active. After this
contraction, X? becomes a fiber £(XY) of type ,,, [, for some m > 1, or I}*. In the first
case the active components of X?¢ are the components which are not contracted by «¢;
equivalently, they are the components of the proper transform of £((X’)¢). In the [;f
case, we retain only the proper transform of the b + 1 components of multiplicity 2 in
e((X)9)-

S

The Active Components condition reads as follows:

(AC) there exists g € Hal(I") such that every fiber of 7, reducing to type I, b > 1,
contains an active component which is not in Dr.

Theorem A’. If in Theorem [A| we further assume the non-degeneracy condition (AC),

then in the totally real case (c) we can add the conclusion: (5) X is a semi-analytic
subset of X.

Example 6.8. If Dr is empty, then (AC) is satisfied. This is the case for general Wehler
surfaces and general Enriques surfaces if one takes I' = Aut(X) (see [10] and the
references therein). If X is minimal and 7, does not contain singular fibers of type I,
then (AC) is satisfied.

Let us show that the examples obtained by Blanc’s construction for three points (see
§ satisfy condition (AC). One starts with a smooth cubic C' = P?(C) and three
general points p, ¢, 7 on C. Then, X is the blow-up of P?(C) at p, ¢, 7, and at the 12
points a(p), b(p), c(p), d(p), a(q), ..., d(q), a(r), ..., d(r) of C such that the tangent to
C' at one of these points intersects C'in p, g, or r, respectively. The Jonquieres involution
sp (resp. s,, S,) that preserves the pencil of lines through p (resp. ¢, r) and fixes C
pointwise lifts to an automorphism of X. According to [3], the subgroup of Aut(X)
generated by s, s4, S, is a free product Z/2Z « Z /2Z » Z,/2Z. From the formulas given
in [3, Lem. 17] for the action of s, on NS(X), it can be deduced that the composition
g = sp 0 54 1s a parabolic automorphism, preserving the pencil of plane quartic curves
passing through p and ¢ with multiplicity 2 and through the eight points a(p), .. ., d(q)
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with multiplicity 1. The union of C' and the line L, , through p and ¢ belongs to this
pencil; this gives a reducible fiber of 7,: X — P!(C) which, after blowing down the
strict transform of L, 4, is of type Iy. It is easy to see that the unique effective divisor
which is invariant by s, s, and s, is the proper transform of C, i.e. D, 5,5, = C.
Since condition (AC) deals only with fibers of type [, b > 1, we conclude that it holds
for (sp, Sq, Sy

Example 6.9. General Coble surfaces with I' = Aut(X) do not satisfy condition (AC).
More precisely, if g is a Halphen twist, then 7, has 10 singular fibers with

— 8 singular fibers of type I;, each of them made of a single, active component;

— 1 fiber made of two rational curves (intersecting transversally in two points), the
first is a (—1)-curve E, (contracted by the reduction process), the second is a
(—2)-curve S which reduces to a I; fiber, so it is active;

— one multiple fiber M, of type 21.

The curve S does not depend on g, and Dr = S, so we see that condition (AC) is
violated. On the other hand, if we blow-down the (—2)-curve S onto a point, we get a
singular surface on which Theorem [A”] applies.

The relevance of condition (AC) comes from the following lemma. We resume the
context of Lemma

Lemma 6.10. Ler s € Crit(m,) be such that X9 reduces to type I, b > 1. Let C be a
branch of o, accumulating s, of type R;q with q # 0. Let (w,) be a sequence of points
of C\ Tor(B;) converging toward s. Pick an arbitrary sequence &, € XY . If A is any
active component of X7, then Lg (&n) accumulates A along a non-trivial curve.

Proof. Since A is not contracted during the reduction process, we can assume that X7
is already of type [,. We now rely on the description of fibers of type I, given in
§§[3.3.1]and [3.3.2] On a small disk V' < B, containing s, we pick a local section of 7,
intersecting A at a smooth point of X?¢ and we construct the surface X 94 with central
fiber X9* corresponding to A. Since ¢ # 0, the circle Lg(fn) is not homotopic to a
vanishing cycle, so its length is bounded from below by the injectivity radius of X.
More precisely, we can extract a subsequence Lg(fni) that converges in X ‘g/ﬁ towards

a logarithmic spiral in the central fiber X9* ~ C*. Here, by a logarithmic spiral we
mean a translate of a one parameter subgroup that goes from 0 to oo in the complex
multiplicative group C*. The result follows. U

Proof of Theorem By assumption I satisfies (AC). We shall revisit the choice of the
Halphen twists g and h from §5.2.1} First, we choose g with the required property in
(AC); an extra condition will also be imposed on & (see below).



INVARIANT MEASURES FOR AUTOMORPHISM GROUPS OF SURFACES 48

From the first lines of we may assume Tang"(m,, ) # &, and we have to
show that o, admits a semi-analytic continuation to B,. Fix s € Crit(m,) and small
disks V' € V' centered at s, as in §[6.2] If the singular fiber X'¢ reduces to type I, then
0,4 18 semi-analytic at s by Lemma If it reduces to type I, b > 1, any branch of
o4 with ¢ = 0 is semi-analytic by Lemma|[6.4] By Proposition [6.7] o, has finitely many
components near s; thus, we only need to show that any given branch of o, with ¢ # 0
is semi-analytic.

Fix a branch v converging to s, of type Rgf for some ¢ # 0. Since Tang contains
Dr, we may assume that there is an active component A < X¢ which is not contained
in any fiber of h. Now, fix an invariant, ergodic probability measure p such that s,
evenly charges . We will argue as in Lemma [5.10] except that the uniform geometric
estimates from §5.3] are replaced by Lemma [6.10]

The details are as follows. Let r be such that any logarithmic spiral in A contains
an arc of size r. Fix e « 0 « r. Set k := |Tang"(my, m,) N X¢|; k < +o0 by
definition of Tang"(7,, 7). Identify V with Dg, and for 0 < R’ < R, consider
the set 7, ' (Dp/) N Tang"(my, m,). As R’ converges towards 0, this open subset of
Tang"(m,, ;) converges towards the finite set Tang" (7, 7,) N X? in the Hausdorff
topology. Thus, if R’ is small enough, 7, ' (Dp) N Tang"(my, ) is a union of k sub-
sets, each of diameter < ¢; its projection under 7, is contained in a union of & disks
A; < By, each of diameter less than O(e).

Fix a sequence (w,) in 7\ Tor(B;) converging towards s. For large n, pick a point
§n € X which is contained in a small square above v on which p restricts to a smooth
measure, as in Section ; the orbit Lg(fn) is a circle in X and by Lemma a
subsequence of Lg(ﬁn) converges to a logarithmic spiral in A. Changing &, into another
point &/, € L(g)(én), we can therefore assume that (a) &, is in the support of u, (b) w!, :=
(&) is 0-far from Crit(m,) U Ule A;, and (¢) w/, is not in Tor(By,); then, (d) LY (&)
is a circle in Xf;;l, whose size at every point is bounded from below by a constant that
does not depend on n (here we apply Lemma |5.4|to h).

The set 7 YDg) N X&z is an open subset of X&l that contains ¢/. If w/, is close
enough to s and R is small, we may assume that the connected component V! of this
open set that contains £/, contains a unique point s of A, that V/ is a disk, and that
mglyr: VI — V is a covering which is ramified at s’ only (indeed, property (b) above
implies that Tang" (m,, ;) does not intersect V’). Consider the connected component
I, < V! of L)(£) that contains &,. The projection 7,(I,) is locally contained in ~y
around w,. If I, did not contain ', then 7,|;, would have no ramification point, so
m4(1,) would be an arc with boundary points in 0V'; being contained in this arc,
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would not converge to s, a contradiction. Thus /,, contains s’ and m,(/,) is a semi-
analytic subset of the disk V' that contains s. It is smooth and analytic in V'\ {s}, and =y
is a component of 7,(/,,)\ {s}; therefore 7 is semi-analytic, as desired. O

7. FINITELY MANY INVARIANT MEASURES: PROOF OF THEOREM [C]

Let as usual X be a compact Kéhler surface and I' be a non-elementary subgroup of
Aut(X) containing a parabolic element. We want to show the following alternative:

— either (X, I') is a Kummer example,
— or there are only finitely many ['-invariant ergodic measures with a Zariski dense
support.

It is shown in § [A.3] that Kummer groups can indeed admit infinitely many ergodic
totally real measures (i.e. with do(p) = 2 and dg (i) = 2).

Lemma 7.1. There is at most one I'-invariant, ergodic probability measure which is
absolutely continuous with respect to the Lebesgue measure.

Proof. Let u and 1/ be such measures. Fix a real analytic volume form w on X, for
instance w = k A k for some Fubini-Study form. From Theorem (A} du(z) = &(x)w
(resp. dy/(z) = &(r)w) for some function & (resp. &) which is positive and real
analytic on the complement of some proper real analytic subset B(y) (resp. B(x')). On
X\(B(u) u B(y')), the function £’ /€ is continuous and I'-invariant; since y is ergodic,
&' /€ is constant, and ' = p. O

According to Theorem |A| and Lemma [/.1, we are interested only in measures of
type (c): those with a totally real support. To prove the finiteness we revisit the proof of
Proposition [4.15]and use an alternative similar to that of indeed, exactly one of the
following two situations holds (compared with the alternative of the quantifiers
are switched):

(A1) Tang"(m,,m,) = & for every pair g, h in Hal(I") such that 7, # 7, (recall the
convention of Remark [4.2));
(A2’) there exists g, h in Hal(T") such that Tang" (7 , 7,) # .

Theorem [C]is then an immediate consequence of the following two lemmas.

Lemma 7.2. [f Alternative (A1’) holds, then (X, ") is a Kummer group.

Lemma 7.3. If Alternative (A2') holds, then there are only finitely many ergodic, T'-
invariant probability measures with a Zariski dense support.

Proof of Lemma[7.2] By Proposition 3.12 in [10], we can choose g, h € Hal(I"') which
are conjugate in [' and such that every periodic curve for h o g is contained in Dy. With
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such a choice, the common components of 7, and 7, coincide with the components
of Dr, and the foliations F, and F, induced by 7, and m;, are everywhere transverse,
except along Tang® (7, 7,) = Dr.

Remark 7.4. If X — X, is the contraction of Dr (see Proposition {.5)), the fibrations
74 and 7, define two genus 1 fibrations on X, and the associated foliations F, and F},
are transverse everywhere, except on the finite set Sing(X). Indeed, a smooth point of
the surface can not be an isolated point of tangency between two foliations.

If 3:[0,1] — Bj is a path joining two points wy and w of By, the holonomy of
F, determines an isomorphism hol,(3): XJ — X thus, 7, is an isotrivial fibra-
tion (cf. Lemma . This construction defines a representatlon holy, : 7 (Bg; wo) —
Aut(X ), the image of which fixes the finite subsets XA X9, forevery w' € By.
Thus, hol, (71 (Bg;w)) is a finite subgroup H of automorphisms of the genus 1 curve
E = X{J . A similar argument applies to 7, in place of 7 ; we shall denote by E’
the genus 1 curve X h,, for some wy, in By, and by H' the corresponding holonomy
group. (Note that we have E' ~ FE because the two fibrations are conjugate by some
automorphism of X.) We also fix a point £, € X whose projections are wy = 7,4(&)
and w(, = m,(&o)-

This construction yields a holomorphic map W from X\ Dr, or equivalently X,\Sing(Xj),
to £'/H' x E/H, which is defined as follows. To a point £ in X\ Dr, we associate the in-
tersection of the leaf of F, through ¢ (i.e. X’ ) with the fiber X h, ; this gives a unique
point modulo the action of H’, hence a point ¢ (&) e E'/H'. Domg the same with re-
spect to Fy, and 7, we get a point ¢)(£) € E/H, and then we set ¥ (§) = (¢'(£), ¢ (€)).
Let £ be a singularity of X and let U be a small neighborhood of £. Then /(X ﬁg(U)) is
contained in a small disk V'’ < E’/H’; similarly, ¢ (X f:h(U)) is contained in a small disk
V < E/H. Thus, ¥ maps U\{{} in a bidisk /' x V; as a consequence, ¥ extends to
U, for the singularities of X are normal (see [10, Prop. 3.9]). Altogether, this defines a
finite ramified cover V: Xy — E'/H’' x E/H.

We also define a regular map ® from £’ x ' to X. For this, without loss of generality
we declare that the neutral element of X f;(,) is & and denote by O the neutral element
of E’; hence, the pair (E" x {0},(0,0)) is identified to (ng,’ &) by an isomorphism
on: (E',0) — (Xgé,go). Similarly, we identify {0} x E to X¢_ via an isomorphism
¢, that maps 0 to {,. We shall denote by ' < E’ (resp. F' < E) the finite subset
oy, ! (m,(Crit(my)) (resp. @, (m, ' (Crit(m)))); F' corresponds to the intersection of
©p(E") with singular and multiple fibers of 7,. If (u,v) is a point of E’ x E close to
(0,0), then the fibers XY (on(w) and X fjh( 00 () have a unique intersection point near &.
This defines a germ of dlffeomorphism $: F' x E — X, mapping (0,0) to & and
preserving the fibrations; it is defined in a a small bidisk D' x D < E’ x E. Observe that
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the composition Wod coincides with the natural projection from E'x Fto E'/H'x E/H.
Reducing the bidisk if necessary, this map ® extends uniquely to ' x E and provides
a local trivialization of the fibration 7, above 7,(ID’). Similarly, it extends to E’ x D.
So ® is defined in a “cross” of the form ' x £ U E’ x D. By analytic continuation,
it extends uniquely to (E'\F") x F and to E’ x (E\F), thatis, to (E’ x E)\(F' x F).
Moreover, ¥ o &: E' x E — E'/H' x E/H is the quotient map with respect to the
action of H' x H. From this, we deduce that the default of injectivity of ® is given by
a subgroup G of H' x H: ®(p) = ®(p) if and only if p’ — p € G. Since V: X, —
E'/H' x E/H is a finite map, it follows that for each (u,v) € F’ x F there is a point
¢ € Xj, an open neighborhood U of &, and an open neighborhood W of (u,v) such
that ® maps W\{(u,v)} into U. Embedding U into some affine space, we see by the
Hartogs extension theorem that ® extends to /. Thus, ® extends to a holomorphic map
E' x E — X, which fits in a sequence

(7.1) E'xE> Xy% E'/H x E/H,

such that the composition W o ® is the natural projection onto the quotient, and the fibers
of ® are orbits of .

Thus, X is a generalized (singular) Kummer surface (see [[10]): it is a quotient of
the abelian surface £’ x E by a finite subgroup G of H' x H; the singularities of X
correspond to the fixed points of elements of G\{id}. Restricting ® to the complement
of these fixed points, we get a regular finite cover onto the regular part of X, with GG as
a group of deck transformations. Denote A and A’ lattices in C such that £ = C/A and
E' = C/N’; the universal cover of E' x F is C?, with projection C? — C?/(A’ x A).
If we think of X, as an orbifold with quotient singularities, its universal cover is C2.

From this point, the argument is identical to [10, Thm. 5.15]. Let f be an element of
Aut(Xj) and lift it as a holomorphic diffeomorphism F' of C?. Its differential DF{,
at a point (z,y) € C? is an element of GLy(C). Let L(G) = GLy(C) be the linear
part of G it is a finite group, and the class [DF, )| of DF{, ) in GLy(C)/L(G) deter-
mines a holomorphic map that is invariant under translations by the lattice A’ x A; since
GL2(C)/L(G) is an affine variety, this map is constant. So, all lifts of all elements of
Aut(Xj) to C? are affine maps.

Now, consider the full group I' = Aut(X). It preserves Dr and induces a subgroup

I'% of Aut(Xj). By the previous paragraph, all elements of T'° come from affine trans-
formations of £ x E. This proves that (X, T'°) and (X, T') are Kummer groups. [

Proof of Lemma([7.3] By Lemma[5.13] there is an analytic curve o, < By (resp. o), <
By) such that p14(0,) = 1 (resp. pp(op) = 1) for any ergodic invariant measure ;. By
Proposition there exists a compact subset K, € B, such that any component of
o, intersects K, (and similarly for /). In particular any invariant probability measure
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gives positive mass to 7, ' (K,) n 7, ' (K}). In 7, (K,) n 7, (Kp), the regular set of
7, '(04) 0 7, (o), which is semi-analytic, has finitely many connected components
(see and [2, Cor. 2.7]). By the analyticity of the density in Theorem[A](c), if X is
such a connected component, there is at most one ergodic invariant probability measure

giving positive mass to Yy, and the proof is complete. U

8. INVARIANT ANALYTIC SURFACES WHICH ARE NOT REAL PARTS

In this section we construct examples of pairs (X, I') such that Property (c) in Theo-
rem [Alholds and for which:

(1) the support X of 1 is an analytic real surface;
(2) there is no real structure on X for which ¥ is contained in the real part X (R).

8.1. A family of lattices. Let ¢ be a positive real number, and set 7 = % + it, where
i = +/—1. Consider the lattice A = C defined by

(8.1) A=Z@Z(%+it):Z®ZT.

Since % — it belongs to A, the complex conjugation z — Z induces an anti-holomorphic
involution o (z) = Z on the elliptic curve E = C/A: this gives a real structure on F.
The fixed point set of op gives the real part of £; one checks easily that it coincides
with the projection of the real axis:

(8.2) E(R) =R/Z = R/(A " R).

8.2. Abelian and Kummer surfaces. Now, consider the abelian surface A = EF x
E = C?/A?, and the real structure o 4(x,y) = (7,7) mod (A?). Its fixed point set is
A(R) = E(R)? = R?/Z*. The group GL,(Z) acts linearly on C? by preserving A2, so
it also acts on A by “linear automorphisms”. Set

(83) e = (1,0), €y = (T, 0), €3 = (0,1)7 ey = (077').

The vectors e; and e; form a basis of the complex plane C2, and the four vectors e;,
..., €, form a basis of the real vector space C*> ~ R*. The real planes Vectgr (e, e3)
and Vectg(e2, e4) are invariant under the action of GLy(Z), and they determine two
invariant real tori in A, the first one being equal to A(R)). Define

(8.4) Y4 = Vectr (e, e4)/A* = Vectr (e, e4)/(Zey ® Zey) ~ R?/Z°.

Now, consider the Kummer surface X, = A/n, where 7 is the holomorphic involution
of A defined by n(x,y) = (—x,—y) mod (A?). This surface has sixteen singularities,
each of which is resolved by a simple blow-up. Let Xy be the projection of > 4 in Xj.
We also let > x < X be the proper transform of 3} in the smooth K3 surface X obtained
by resolving the singularities of Xj.
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8.3. Statements.

Theorem 8.1. With notation as above, the following properties are equivalent:

(a) there is a real structure s, on A whose real part contains ¥ 4;
(b) there is a real structure sx on X whose real part contains X x;
(c) the positive real number t is equal to \/3/2, 1/2, or /3 /6.

In addition when t = 1/2 (resp. \/3/2 or \/3/6) the curve E is isomorphic to the
quotient of C by the lattice of Gaussian integers (resp. Eisenstein integers).

The equivalences (a)<(c) and (b)<>(c) are proven respectively in §[8.4]and[8.5|below.

Corollary 8.2. There exist examples of abelian and Kummer surfaces X, and non-
elementary subgroups I' — Aut(X) such that (1) " preserves an analytic, totally real
surface > < X, (2) I' has a dense orbit and an invariant, ergodic, smooth, probability
measure with support equal to %, and (3) there is no real structure on X whose real
part contains ..

Indeed, one can just take I' = GLy(Z) in the previous examples, and for the invariant
probability measure one takes the measure coming from the Lebesgue measure on X 4.

8.4. Proof for the abelian surface. Let s be a real structure on A, i.e. an anti-holomor-
phic involution. Then s o 0 4 1s holomorphic, so s = B o 04 for some automorphism B
of A. Now, assume that the fixed point set of s is equal to ¥ 4. Since the origin (0, 0)
of A is fixed by 04 and s, it is fixed by B too. This means that B is induced by a linear
automorphism of the complex vector space C2, i.e. by an element of GL,(C).

Near the origin of A, we can write s(x,y) = B o oa(x,y) = B(T,7), and our
assumption implies that the vector e; = (7,0) satisfies B(7,0) = (7,0), i.e. Bey =
(17/T)eq because B is C-linear. The same property is satisfied by e,. Since (eq, e4) is a
basis of the complex plane C?, B is a homothety: B = (7/7)ld. As a consequence, the
linear map M : C — C defined by M (z) = (7/7)z preserves the lattice A = Z ® Zr,
with 7 = 1/2 + it. Thus, we can find a quadruple of integers (a, b, ¢, d) such that

(8.5) L —a+br and Lr=c+dr
T T
This implies a = ¢ = —1, by looking at the imaginary parts after both equations have

been multiplied by 7. Then
3
(8.6) 1=0b|7]*> and 1 t* =d|7]*

The first equation plus the relation |7|*> = 1/4 + ¢* > 1/4 imply that 1 < b < 3,
and more precisely (b,t) € {(1,4/3/2),(2,1/2),(3,4/3/6)}. Together with the second
equation we end up with exactly three possibilities:
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(1) (b,d,t) = (1,0,/3/2), the lattice Z@®Z is the lattice of Eisenstein integers Z[(1 +
iv3)/2], and s(z,y) = (™37, ¥™/37) = 2™ 30 4 (x,y);

(2) (b,d,t) =(2,1,1/2), 7 = (1+1i)/2, the lattice is the image of the lattice of Gaussian
integers Z[i] by the similitude z — 'z, and s(z,y) = (iZ,y) = ioa(z,y);

(3) (b,d,t) = (3,2,4/3/6) and 7 = 1/2 + i1/3/6; modulo the action of PSLy(Z) on the
upper half plane, 7 is equivalent to 2 — 1/7 = (1 + i1/3)/2 so we end up again with
the Eisenstein integers, and s(z, y) = (e?™/5%, 27/67) = e2™/6q 4 (2, 1)

This completes the proof of the implication (a)=(c), and for the converse implication
the explicit formulas for s(x, y) provides the desired real structure.

Note that in each of these cases, s is conjugate to o4 by Jid € GLy(C), with respec-
tively 3 = e27/6, ¢27/8 2712 However in the second and third cases, this conjugacy
is only satisfied near the origin, because (id does not preserve the lattice (i.e. it does
not induce an automorphism of A). U

8.5. Proof for the (smooth) Kummer surface. Suppose there is a real structure sx on
X whose fixed point set contains X x. Let o x be the real structure induced by o 4 on the
Kummer surface X. Then, there is an automorphism Bx of X such that sx = Bxooy.

Consider the origin (0,0) of A, and its blow-up ¢: A — A. In local coordinates it
expresses as €(u,v) = (u,uv) = (z,y) € A, with exceptional divisor D = {u = 0}.
The involution 7 lifts to 7(u, v) = (—u, v); it is the identity on D, it acts transversally as
u — —u, and the quotient map A — X = A/7 is locally given by ¢: (u,v) — (u2,v).
Lifting o4, we obtain 6 4(u,v) = (u,v). In A, ¥4 is locally parametrized by (s, s'7)
with s and s’ small real numbers; its strict transform is the real analytic surface Sa given
by (u,v) = (s7,s'/s). So, the intersection of 34 with D is determined by the equation
v € R. In particular, 4 N D is fixed by 6 4. The image of D in X is a curve C' ~ P!(C)
and the image of the subset {u = 0, v € R} is a great circle S < C. This circle is fixed
by ox, as we just saw, and by s, by definition of X y. Thus, Bx fixes S, hence (' itself

since S is Zariski dense in C' (for the complex algebraic structure on X).

Since By fixes C', we can contract C' onto a singularity of X,: Bx and ox descend to
regular (holomorphic and anti-holomorphic) maps on a neighborhood of the singularity.
Since this singularity is the quotient singularity (C?,0)/n, we can lift Bx, ox, and sy
to germs of diffeomorphisms B, 04, and s 4 near the origin in C?. Using the natural,
local coordinates given by the projection C? — A — X, the lifts can be written

(87) O-A(xvy) = (f7 y) and BA(l’,y) = ( Z aklxkyea Z bk,kaye)
k=0 k£=0

for some locally convergent power series k.l ak7g$ky€ and )] K buxkyé . In these coor-
dinates, ¥ x corresponds to the real plane (ur, v7) for (u,v) € R?, and the equation for
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the fixed points of s gives B4 (u7,vT) = (ur,v7) for (u,v) € R2 This implies that B4
is linear in these coordinates, equal to the homothety of factor /7.

Up to this point, we have worked locally near the singularity of X, corresponding to
the origin of A, we now globalize the argument. As a consequence of its local form, B4
preserves the horizontal line {y = 0}, so that By preserves the quotient curve

(8.8) (C/(A) x {0})/n ~P'(C) = X.
Furthermore, in the coordinate x given by the projection
(8.9 C x {0} - E x {0} = C/A x {0} — P'(C)

(where the last arrow is a branched cover of degree 2), By is covered by the linear
map = — (7/7)x. Thus the analysis of the previous subsection applies, and shows
that 7 = 1/2 +iv/3/2, (1 +1)/2, or 1/2 + i1/3/6, and the proof of (b)=>(c) complete.
For the converse implication, it is enough to observe that for each of these three cases,
the explicit anti-holomorphic involution on A given in § [8.4] commutes with 7, so it
descends to the Kummer surface X. U

9. INVARIANT SURFACES WITH BOUNDARY

In this section, we show that in case (¢) of Theorem the surface > may have a
non-trivial boundary in X. We provide two examples, one for a Kummer surface, and
then a deformation keeping the main features of the first example but on a surface which
is not anymore a Kummer surface. We also give examples of invariant curves that do
not support any invariant measure.

9.1. On a Kummer surface. Consider a Kummer example, with the same construction
as in Sections[8.1]and 8.2] Embed the curve E = C/A in P2, in a Weierstrass form. Its
equation is

©.1) y* = 42® — gox — g3

with coefficients g; € R depending on the parameter ¢; the real structure og(z) = Z
is the restriction to F of the real structure [z : y : z] — [T : ¥ : Z] on P2, Since
E(R) = Fix(og) is connected, g- is negative. By convention, we fix the origin of the
elliptic curve for its group law at the (inflexion) point at infinity. If v and v are two points
of I/, the line containing v and v intersects £ in a third point w. The sum v + v + w is
zero for the group law. If u = (x,y) is a point of F, then —u = (x, —y) and the fixed
points of this involution v — —u on E(R) are the two points (¢, 0) and (o0, c0) where
7 is the unique real solution of the equation 423 = g,z + gs.

Now, consider the map ®: E'x £ — P! x P! x P! which is defined as follows: if (u,v)
belongs to E' x E, with u = (z1,y;) and v = (22,92), and if w = —(u + v) = (23, 93),
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then ®(u, v) = (x1, 22, x3). One easily checks that Pon = &, with n(u,v) = (—u, —v),
and ® embeds the Kummer surface Xy = (E x E)/n into P! x P! x P! as a singular
(2,2, 2)-surface (see [7, §8.2]). The singularities of X correspond to the fixed points
of n, i.e. to the group A[2] of torsion points of order 2 in A = E x E. This gives 16
points, of which only 4 are real:

(92) (ZE07I0,OC)7 (ZE()?OO,LU())7 (OO,$0,LU0)7 (OO,OO7OO>.

The real part of X, corresponds to the fixed point set of oy, i.e. of 04 viewed on the
quotient space X. Recall that o 4(21, 22) = (z1, %) if we think of A as C*/A% The
fixed points of o are of two types: those coming from the fixed points of o4, hence
from the real part A(R), and those coming from

(9.3) A= {(z1,22) € A; 0a(z1,22) = n(21, 22)}.

In the quotient Xy, A(R) projects onto a sphere with four singularities; the projection of
A is another sphere with the same four singularities. These two spheres are glued along
those four points; locally X is the quotient of C? by {id, —id}, so up to an analytic
change of coordinates, Xo(R) is a quadratic cone isomorphic to z1x = 3.

Xo(R)

The natural action of GLy(Z) on E x E descends to an action of PGLy(Z) on X,
which preserves X(R); it also preserves individually each of the two connected compo-
nents of X,(R)\Sing(Xy(R)). The action of PGLy(Z) on these two punctured spheres
has dense orbits (and finite orbits too, corresponding to torsion points of A). If we
resolve the singularities of X,(R), the two punctured spheres become two surfaces
homeomorphic to a sphere minus four disks; they are glued together along their bound-
aries to form a closed, orientable surface of genus 3, which is the real part of X (R) for
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the real structure ox. Thus, the generic orbit of PGLy(Z) in X (R) is dense in one of
these two open subsets of X (R). This gives a first example of an invariant surface with
boundary ¥, given by the component A(R)/n, with an invariant measure . given by the
push forward of the Haar measure from A(R) to X.

9.2. Deformation. Let us come back to Xy(R). Switching the chart in P! x P! x P!
so that the coordinates (1, o, x3) are replaced by their inverses (1/x1,1/z5,1/x3), the
four singularities become

(9'4) (OC,OZ, 0)7 (@,0,0&), (0,0C,OZ), (07 070)

with @ = 1/xy. Note that the three vectors v; = (o, ,0), v2 = (a,0, ), and vz =
(0, a, @) are linearly independent (their determinant is —2a?). Thus, given any triple
(€1,€2,€3) € {£1}3, there is a real quadratic form Q(x1, x5, 3) such that £;Q(v;) > 0
for each 1 < i < 3. If P denotes the equation of X, (after changing the z; in 1/z;
as above) and ¢ is a small real number, then P + () is an equation of a new surface
X, of degree (2,2,2) in P! x P! x P!. At the origin (0,0, 0), the linear term of the
equation P = 0 is not changed by the addition of £(), and the quadratic term is only
slightly perturbed if € is small enough, so X still admits a quadratic singularity, which
is non-degenerate of signature (2, 1). At the other three real singularities of X, we can
choose the sign of ()(v;) in such a way that X.(R) is locally disconnected (as does a
hyperboloid with two sheets).

We claim that, shifting () a little bit if necessary, all (real or complex) singularities
of X disappear in the perturbation X, except the origin. Indeed, by conjugating by a
diagonal automorphism (h, h, h) € Aut(P1)3, such that h € PGLy(C) fixes 0 and a, we
points of X, (with 5o = 0) and choose () in such a way that )(s;) # 0 for j > 1. Let
N = J; B(sj,n), where n is so small that Q # 0 on | J;-, B(s;,7). Take ¢ to be small
and non-zero. Then,X. is smooth in | J,, B(s;,7), because its equation P + Q) = 0
reduces to P/Q + ¢ = 0 there, and such a hypersurface is smooth for ¢ # 0 small.
Finally, smoothness being an open property, X is also smooth in the complement of V.

Remark 9.1. Such a deformation appears naturally in the closely related example of
character varieties for the once punctured torus (see [6} 27]).

The result, for a sufficiently small € and a good choice of (), is a real surface X, of
degree (2,2, 2) in P! x P! x P! with areal part X, (R) satisfying the following properties.

— The surface X.(R) has a unique singularity, at the origin.
— After a minimal resolution of the singularity, we get a real K3 surface X.. Indeed,
the area form 2x_ defined in Example [2.1] lifts to a trivialization of the canonical
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>
>
>

X:(R)

bundle of Xg; and Xg(C) is simply connected (to see this one can use the fibrations
#ii: Xo(C) = X.(C) — P(C)).

— The surface X, (R) is homeomorphic to a sphere S?; the exceptional divisor is a curve
S, < XE(R)O that separates XE(R) in two one-holed spheres with boundary S;;

— The three involutions o;: X, — X, described in Example [2.1] lift to three automor-
phisms of X.. They generate a non-elementary subgroup I'. of Aut(X - ) that preserves
the real structure (the compositions o; o o; are parabolic automorphisms with respect
to distinct fibrations). A subgroup of index 4 preserves simultaneously each compo-
nent of X, (R)\S and the canonical area form of the K3 surface.

This provides examples with non-trivial invariant open subsets of X (R) for a non-
elementary subgroup of Aut(Xgr), in a case where X is not a Kummer surface (the
dynamics of the group I'. is not covered by a linear dynamics on a torus).

9.3. Invariant curves. Let us continue with the example given by X..

When ¢ = 0, X is a (singular) Kummer surface, and its singularities are in 1 to 1
correspondance with the element of A[2]. Let I'(2) < GLy(Z) be the subgroup that
fixes A[2] pointwise. The image of I'(2) in Aut(X,) preserves the 16 singularities of
Xo. This group lifts to a group of automorphisms 'y < Aut(X,). Let S, — X, be the
(—2)-curve obtained by the minimal resolution of one of the singularities of X. The
dynamics of I" on .Sy coincides, up to conjugacy, with the linear projective action of
['(2) = GLy(Z) on P(C?). This is a non-elementary subgroup of Aut(P!) ~ PGLy(C);
in particular, this action does not preserve any probability measure.
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Now, consider the small perturbation X, and the group ['., as constructed in Sec-
tion Then, I'. preserves the (—2)-curve S. X_, and for ¢ = 0, we recover the
group Iy up to finite index. Since the non-elementary property of I'y|s, = PGLy(C)
is invariant under small perturbations or after taking finite index subgroups, we deduce
that I'. induces a non-elementary subgroup of S.. Thus, we obtain examples of K3 sur-
faces X, with of a non-elementary subgroup I'. Aut(Xe) such that I" preserves a
smooth rational curve S, C XE but S, does not support any U.-invariant probability
measure; here, the examples are deformations of a Kummer example (XO, Ty).

Remark 9.2. Similar examples can be constructed on some Coble surfaces Y: Aut(Y)
preserves a rational curve, coming from a plane sextic with ten nodes; and then, taking
a double cover of Y ramified along the invariant sextic, one gets K3 surfaces.

Remark 9.3. Consider the above example ()A(a, S, T'.) and a probability measure v on
I'. whose support is finite and generates I'.. Then, the curve S. ~ P!(C) supports a
unique v-stationary measure /i, because I'. = PGLy(C) is non-elementary (see [23]]).
If, as above, everything is defined over R, the support of 1, is contained in a circle; but
if we apply the same construction with a well chosen, small complex deformation X,
the support of 1, is supported on a fractal quasi-circle.

APPENDIX A. ABELIAN SURFACES

In this appendix, we consider the case when all parabolic automorphisms g of I' induce an
automorphism gp of infinite order on the base of their invariant fibration 7,. In that case, we
know from [12, Proposition 3.6] that X is a compact torus, and in fact an abelian surface since
I is non-elementary. Thus, we assume that

(i) X is an abelian surface, isomorphic to C? /A for some lattice A;
(i1) I' is a non-elementary group of automorphisms of X that contains a parabolic element g;
(iii) every parabolic element g of I' acts on the base of its invariant fibration 7,: X — B, by
an automorphism gp: By, — B, of infinite order.

We provide an argument to complete the proof of Theorem |[A|in that case; the strategy is the
same as in Sections [ and [5] but simpler since the dynamics is linear:

Proposition A.1. Under the above hypotheses (i), (ii), (iii), if p is a I'-invariant and ergodic
measure, then either p is the Haar measure on the abelian surface X, or there are finitely many

subtori S; < X of real dimension 2, and points aj € X, j = 1,..., k, such that
(1) U;(a; + ;) is U-invariant;
(2) T permutes transitively the subsets a; + S;, j = 1,...,k;

(3) w is supported on | J;(a; + S;) and on each aj + Sj, ju is given by %mj where mj is the
Haar measure on a; + Sj.

Here, what we call Haar measure on a; + S; is the image of the Haar measure on S; by the
translation s € S; +— a; 4 s. With the results of Sections 4] this proposition concludes the proof
of Theorem[Al
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A.1. Parabolic, affine transformations. The group I" acts on X by affine transformations
(A.1) flx,y) = Af(z,y) + S5 mod (A)

where the linear part Ay € GLo(C) preserves the lattice A < C? and the translation part S 1 is
an element of C2/A. Now, pick a parabolic element g € T'; its linear part is given by

(A.2) Agz(i 2)

after a linear change of coordinates in C2. In these coordinates, the fibration 74 18 induced by
the projection 7y : (x,y) — x, and a conjugation by a translation reduces g to the form

(A.3) g(xz,y) = (x + s,y +x) mod (A)
where s has infinite order in the elliptic curve B, = C/m1(A).

Lemma A.2. If the orbits of gg: © — x + s are dense in By, then g is uniquely ergodic: the
unique g-invariant probability measure on X is the Haar measure.

This result is due to Furstenberg (see [24} §3.3]). Thus, in this case w is the Haar measure on
X and we are done. So in what follows, we assume that for every g € Hal(T") the orbits of the
translation gp are not dense: they equidistribute along circles x + T}, where T}, is the closure
of the group Zs — B,; changing g into a positive iterate we may assume that this closure is
isomorphic to R/Z (as a real Lie group). We let £, be the quotient map C?/A — By/T,.

Lemma A.3. Every fiber of the linear projection {4 is a 3-dimensional g-invariant torus, and g
is uniquely ergodic on almost every fiber.

To prove Lemma we think of C? as a real vector space and fix a basis of A. Then C? is
identified with R* and A with Z* — R*. The eigenspace of A, for the eigenvalue 1 is defined
over Z with respect to A = Z*. Moreover, Ay acts trivially on the quotient space R/ Fix(Ay).
Thus adapting the basis of Z* to g, we may assume that

(A4) g(z1, 2,23, 24) = (21,22 + S2,x3 + axy + bro, x4 + cxy + dx2),

for some irrational number sy and some integers a, b, ¢, and d. The linear projection /4 is now
given by (z1, x2, x3, 24) > 21 and Lemma|[A.3|boils down to the following statement.

Lemma A.4. If1, s; and so are linearly independent over Q, then g is uniquely ergodic on the
level set {x1 = s1}.

Proof. Let us first observe that ad — bc # 0. Indeed, otherwise the linear part of g would
have a fixed point set of dimension 3, which is impossible because g is holomorphic (see
Equation (A.2))). To prove unique ergodicity, we use the following criterion due to Fursten-
berg (see [24, Prop. 3.10]): let h be a homeomorphism on R/Z x (R?/Z?) of the form
(z,y) — (x + u,y + ¢(x)), where u is irrational, then h is uniquely ergodic if and only if
it is ergodic for the Haar measure. On the fiber 1 = s;, our map g is of the form

(A.5) (x2,x3,24) —> (T2 + S2, 23 + asy + bxa, x4 + cs1 + dxa),

so we need to check that it is ergodic for the Haar measure. For this, we pick a measurable
invariant subset A = R3/Z3, we denote by 14 € L?(R3/Z?) its indicator function, and we
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expand it into a Fourier series 1 4(x2, 23, 14) = Z(k 0,m)ezZ? ck,g,mem”(’“‘”?”‘”“mu). Then

(A.6) 140 g(l‘g, T3, 334) _ Z Ck,é,memﬂksz 62i7r(€a+mc)sl62i7r(k+€b+md)z2 62iw€$3 62i7rm:c4
(k,6,m)eZ3

and, from the g-invariance of 1 4 and the uniqueness of the expansion, we get
(A7) Ck,f,m _ e?iﬂ'kSQ €2iﬂ—(6a+m6)51Ck—fb—md,f,m

for all (k,¢,m) € Z3. For { = m = 0, the irrationality of so implies that c; o = O unless
k = 0. If £b + md # 0, iterating the relation |c ¢.m| = |¢k—tb—md,¢,m| and using the fact that
Fourier coefficients decay to zero at infinity, we infer that ¢, ¢, = 0. Finally, if £b + md = 0
and one of ¢ or m is nonzero, since ad — bc # 0 we get that fa + mc # 0 and gives
Chm = eQi”(kSQ+(é“+mc)51)ck7g,m. Since 1, s1, and sg are Q-linearly independent, we derive
Cke,m = 0. Thus, 14 is a constant, which means that the Haar measure of A is 0 or 1. U

A.2. Using distinct parabolic automorphisms. To complete the proof of Theorem |A|in the
case of tori, one can now follow the same ideas as in Sections 4]and [5] We only need to replace
the dimension dimg () by the minimal dimension of a real subtorus Z — X such that (g +
Z) > 0 for some ¢ € X, the invariant fibration 7, by the R-linear projection ¢4, and the set
Ry(By) = B, by

(A.8) R(g) = {y € By/T} ; g is not uniquely ergodic in égl(y)} c By/Ty.
Lemma [A 4]shows that R(g) is countable.

Lemma A.5. If there is a parabolic element g € I" for which ((£4)«pt)(R(g)) < 1, then y is the
Haar measure on X.

Proof. The proof is the same as for Proposition4.9] Pick another parabolic transformation i € T,
such that ¢, and ¢}, are linearly independent; such an h exist because I' is non-elementary. The
main tool is the disintegration of 1 with respect to ¢,; for y in a subset YV, < B, /T, of positive
measure, the conditional measure ), , is the Haar measure on the 3-dimensional torus E;l(y).
Hence dimg(p) > 3 and ((¢)«1)(R(g)) = 0, as in Step 2 of the proof of Proposition
As in Steps 3 and 4, we infer that (¢},).x does not charge R(h) and that (¢5)u is absolutely
continuous with respect to the Lebesgue measure on R/Z. This, implies that  itself is invariant
by all translations along the fibers of 5, because yo = §, Ay d((¢r)«pt)(y) and Ay, is the Haar
measure for almost every y. Permuting the roles of g and h, p is in fact invariant under all
translations. Hence, p is the Haar measure on X. O

Now, we we are reduced to the case where (¢4).(R(g)) = 1 for every parabolic automor-
phism g in I'. Since R(g) is countable, dr (1) < 3 and p charges some fiber of ¢,. Using
another parabolic automorphism h, we see that p gives positive mass to a translate ag + So
of a 2-dimensional torus Sy < X whose projections ¢,(ag + So) = ¢4(ap) and £p,(ap) are in
the countable sets R(g) < By/T, and R(h) < Bj/T}, respectively. Thus, by ergodicity, we
conclude that 41 is supported on a finite union of translates of 2-dimensional tori a; + S; < X,
0<i<k—1forsomek > 1.

A subgroup 'y of index < k!in I preserves ag + Sp, and gk! and h* acton ag + Sy ~ R2/Z2
as two linear parabolic transformations with respect to transverse linear fibrations. So, it follows
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that /14,4 5, is proportional to the Haar measure of ag + So, and the proof of Proposition @ is
complete.

A.3. No or infinitely many invariant real tori. Consider a compact complex torus X = C2/A
of dimension 2. Let I" be a subgroup of Aut(X). As in § write the elements f of Aut(X)
in the form f(x,y) = A¢(x,y) + Sy, and denote by Ar < GLy(C) the image of I" by the
homomorphism f ~— A;. The group I' is non-elementary if and only if Ar contains a free
group, if and only if the Zariski closure of Ar in the real algebraic group GLy(C) is semi-
simple.

Now, assume that I is non-elementary and preserves at least one ergodic probability measure
w with dimg (1) = 2. Equivalently, after conjugation by a translation, there is a finite index
subgroup I'g = T that preserves a real, two-dimensional subtorus ¥ = IT/Ay, where IT = C?
is a real vector space of dimension 2 and Ar := II n A is a lattice in II (the restriction of i to
I1/Ay is proportional to the Haar measure). The goal of this last section is to explain that, in
fact, I preserves infinitely many ergodic measures pj with dimg (p1;) = 2. Two mechanisms
can be used to establish this fact.

The first one relies on the fact that T'y acts on the quotient Q = X /¥ ~ R?/Z?, fixing the
origin. Moreover, the action of I'g on Q = R?/Z? is induced by an injective homomorphism
'y — GL2(Z) (to see this, note that C? = II @R ill and ill surjects onto Q). This implies that
I'g has arbitrarily large finite orbits in () (coming from torsion points of )). The preimages of
these orbits in X provide surfaces >; < X; they are “parallel” to X and have an arbitrarily large
number of connected components; they are ['g-invariant; and each of them supports a unique
invariant, ergodic, probability measure y; with dimg () = 2.

For the second mechanism, we assume that I'g fixes the origin and, changing I'y in a finite
index subgroup if necessary, we identify I'y with a subgroup of SLo(C). Identify (II, Ary) to
(R?,Z?) and the restriction gy to a subgroup of GLy(Z); since I'y is non-elementary, I' is
Zariski dense in SLy(C) and I'g|qy is Zariski dense in SLy(R) (resp. in SL2(C)). In particular,
the Q-algebra generated by I'g|yy is the algebra of 2 x 2 matrices with rational coefficients.
The decomposition C? = II @g ill is I'g-invariant, and the multiplication by i defines a I',-
equivariant map from II to iIl. Thus, I'y preserves each of the real planes II,, = {(z,y) +
ni(z,y) ; for (x,y) € II}, with n € R. Now, consider the (real) projection ¢ of C? onto II
parallel to iIl, and set A’ = g(A). It is a ['p-invariant subgroup of II of rank at most 4, and it
contains Ayy ~ Z?2. Then, one checks easily that

(1) A" is commensurable to A @ oAy, for some o € R\Q, or to Ay, in which case we set
a = 0;

(2) A is commensurable to Ayp @ K, 5(Amr) where K, g is the linear map from II to IT @ iIl
defined by K, g(u) = au + SBiu;

(3) for m in Z, the real plane II,,,/3 is -invariant and intersects A on a cocompact lattice

A, 5-

Then, the surfaces ¥, = Il,,,o/3/Am,,,., /5 form an infinite family of I'-invariant tori in X.

Remark A.6. This second argument does not apply in the following case. Let E = C/Z]i],
A = Z[i] x Z[i] € C?,and X = C?/A = E x E. The group I' = SL»(Z) x R?/Z? is a
subgroup of Aut(X) that preserves the torus IT/Ay; for IT = R? < C?2, but has no fixed point
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(because I" contains IT/Ary), and every I'-invariant surface is a finite union of translates of this
torus .

On the other hand, this second argument applies when X and I" come from a genuine Kummer
example, that is, a Kummer example defined on a surface that is not a compact torus. Indeed in
that case I' contains a finite index subgroup with a fixed point.
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